Science.gov

Sample records for acoustic vector soliton

  1. Resonance vector soliton of the Rayleigh wave.

    PubMed

    Adamashvili, G T

    2016-02-01

    A theory of acoustic vector solitons of self-induced transparency of the Rayleigh wave is constructed. A thin resonance transition layer on an elastic surface is considered using a model of a two-dimensional gas of impurity paramagnetic atoms or quantum dots. Explicit analytical expressions for the profile and parameters of the Rayleigh vector soliton with two different oscillation frequencies is obtained, as well as simulations of this nonlinear surface acoustic wave with realistic parameters, which can be used in acoustic experiments. It is shown that the properties of a surface vector soliton of the Rayleigh wave depend on the parameters of the resonance layer, the elastic medium, and the transverse structure of the surface acoustic wave. PMID:26986400

  2. Envelope Solitons in Acoustically Dispersive Vitreous Silica

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2012-01-01

    Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or dc waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 plus or minus 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 plus or minus 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model.

  3. Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene.

    PubMed

    Song, Y F; Zhang, H; Zhao, L M; Shen, D Y; Tang, D Y

    2016-01-25

    We report on the experimental observation of vector and bound vector solitons in a fiber laser passively mode locked by graphene. Localized interactions between vector solitons, vector soliton with bound vector solitons, and vector soliton with a bunch of vector solitons are experimentally investigated. We show that depending on the soliton interactions, various stable and dynamic multiple vector soliton states could be formed. PMID:26832559

  4. Bright vector solitons in cross-defocusing nonlinear media

    SciTech Connect

    Yakimenko, A. I.; Prikhodko, O. O.; Vilchynskyi, S. I.

    2010-07-15

    We study two-dimensional soliton-soliton vector pairs in media with self-focusing nonlinearities and defocusing cross interactions. The general properties of the stationary states and their stability are investigated. The different scenarios of instability are observed using numerical simulations. The quasistable propagation regime of the high-power vector solitons is revealed.

  5. Dust acoustic dressed soliton with dust charge fluctuations

    SciTech Connect

    Asgari, H.; Muniandy, S. V.; Wong, C. S.

    2010-06-15

    Modeling of dust acoustic solitons observed in dusty plasma experiment [Bandyopadhyay et al., Phys. Rev. Lett. 101, 065006 (2008)] using the Korteweg-de Vries (KdV) equation showed significant discrepancies in the regime of large amplitudes (or high soliton speed). In this paper, higher order perturbation corrections to the standard KdV soliton are proposed and the resulting dressed soliton is shown to describe the experimental data better, in particular, at high soliton speed. The effects of dust charge fluctuations on the dust acoustic dressed soliton in a dusty plasma system are also investigated. The KdV equation and a linear inhomogeneous equation, governing the evolution of first and second order potentials, respectively, are derived for the system by using reductive perturbation technique. Renormalization procedure is used to obtain nonsecular solutions of these coupled equations. The characteristics of dust acoustic dressed solitons with and without dust charge fluctuations are discussed.

  6. Vector bright soliton behaviors associated with negative coherent coupling.

    PubMed

    Lü, Xing; Tian, Bo

    2012-02-01

    With the introduction of an auxiliary function, a genuine bilinear system (in contrast to the published trilinear forms) is obtained for the two-coupled nonlinear Schrödinger equations with negative coherent coupling in the optical fiber communications. With symbolic computation, degenerate and nondegenerate vector solitons are derived associated with the corresponding phase-parameter constraints. In virtue of asymptotic analysis and graphical simulation, vector solitons of the single-hump, double-hump, or flat-top profiles are displayed, and the collision mechanisms of such vector solitons are revealed as well; namely, the collisions among degenerate solitons and among nondegenerate solitons are both elastic. The only possible inelastic collision, the collision in the degenerate-nondegenerate case, is pointed out, where a degenerate soliton interacts with a nondegenerate one. Results in this paper may be useful for the optical switching with the combined effects of self-phase modulation, cross-phase modulation, and negative coherent coupling. PMID:22463289

  7. Observations of ion-acoustic cylindrical solitons

    NASA Technical Reports Server (NTRS)

    Hershkowitz, N.; Romesser, T.

    1974-01-01

    Experimental observations of cylindrical solitons in a collisionless plasma are presented. The data obtained show that cylindrical solitonlike objects exist and that their properties are consistent with those of one- and three-dimensional solitons. It is found that compressive density perturbations evolve into solitons. The number of the solitons is determined by the width and amplitude of the applied pulse.

  8. Effect of two-temperature trapped electrons to nonlinear dust-ion-acoustic solitons

    SciTech Connect

    Moslem, Waleed M.; El-Taibany, W.F.

    2005-12-15

    Propagation of three-dimensional dust-ion-acoustic solitons is investigated in a dusty plasma consisting of positive ions, negatively variable-charged dust particles, and two-temperature trapped electrons. We use the reductive perturbation theory to reduce the basic set of fluid equations to one evolution equation called damped modified Kadontsev-Petviashivili equation. Exact solution of this equation is not possible, so we obtain the time evolution solitary wave form approximate solution. It is found that only compressive soliton can propagate in this system. We develop a theoretical estimate condition under which the solitons can propagate. It is found that this condition is satisfied for Saturn's F ring. It is found also that low electron temperature has a role on the behavior of the soliton width, i.e., for lower (higher) range of low electron temperature the soliton width decreases (increases). However, high electron temperature decreases the width. The trapped electrons have no effect on the soliton width. The ratio of free low (high) to trapped low (high) electron temperatures increases the soliton amplitude. Also, the amplitude increases with free low and free high electron temperatures. To investigate the stabilty of the waves, we used a method based on energy consideration to obtain a condition for stable solitons. It is found that this condition depends on dust charge variation, streaming velocity, directional cosine of the wave vector k along the x axis, and temperatures of dust particles, ions, and free electrons.

  9. Large amplitude ion-acoustic solitons in dusty plasmas

    SciTech Connect

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-08-15

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW{sup 2} of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW{sup 2}), are discussed in detail.

  10. Ion acoustic solitons in Earth's upward current region

    SciTech Connect

    Main, D. S.; Scholz, C.; Newman, D. L.; Ergun, R. E.

    2012-07-15

    The formation and evolution of ion acoustic solitons in Earth's auroral upward current region are studied using one- and two-dimensional (2D) electrostatic particle-in-cell simulations. The one-dimensional simulations are confined to processes that occur in the auroral cavity and include four plasma populations: hot electrons, H{sup +} and O{sup +} anti-earthward ion beams, and a hot H{sup +} background population. Ion acoustic solitons are found to form for auroral-cavity ion beams consistent with acceleration through double-layer (DL) potentials measured by FAST. A simplified one-dimensional model simulation is then presented in order to isolate the mechanisms that lead to the formation of the ion acoustic soliton. Results of a two-dimensional simulation, which include both the ionosphere and the auroral cavity, separated by a low-altitude DL, are then presented in order to confirm that the soliton forms in a more realistic 2D geometry. The 2D simulation is initialized with a U-shaped potential structure that mimics the inferred shape of the low altitude transition region based on observations. In this simulation, a soliton localized perpendicular to the geomagnetic field is observed to form and reside next to the DL. Finally, the 2D simulation results are compared with FAST data and it is found that certain aspects of the data can be explained by assuming the presence of an ion acoustic soliton.

  11. Acoustic solitons in inhomogeneous pair-ion plasmas

    SciTech Connect

    Shah, Asif; Mahmood, S.; Haque, Q.

    2010-12-15

    The acoustic solitons are investigated in inhomogeneous unmagnetized pair ion plasmas. The Korteweg-de Vries (KdV) like equation with an additional term due to density gradients is deduced by employing reductive perturbation technique. It is noticed that pair-ion plasma system is conducive for the propagation of compressive as well as rarefactive solitons. The increase in the temperature ratio causes the amplitude of the rarefactive soliton to decrease. However, the amplitude of the compressive solitons is found to be increased as the temperature ratio of ions is enhanced. The amplitude of both compressive and rarefactive solitons is found to be increased as the density gradient parameter is increased. The equlibrium density profile is assumed to be exponential. The numerical results are shown for illustration.

  12. Spatial vector solitons in a four-level tripod-type atomic system

    SciTech Connect

    Qi Yihong; Huang Ting; Gong Shangqing; Zhou Fengxue; Niu Yueping

    2011-08-15

    We study the generation of weak-light spatial vector solitons in a cold tripod-type atomic system. The condition of generating spatial vector solitons is discussed by analyzing the linear and nonlinear properties of the system. Due to the balance between the enhanced self-phase and cross-phase modulation of the Kerr nonlinearity and the diffraction effect, two orthogonal polarization components of the weak-light probe field can form various spatial vector solitons in the atomic system, such as bright-bright vector solitons and dark-dark vector solitons. We also demonstrate the possibility of generating Manakov spatial vector solitons in this atomic system.

  13. Ion acoustic envelope solitons in explosive ionospheric experiments

    NASA Astrophysics Data System (ADS)

    Kovaleva, I. Kh.

    2008-01-01

    The conditions are studied under which stable ion acoustic envelope solitons propagating perpendicular to the magnetic field lines can exist in the ionospheric plasma. The amplitudes, frequencies, and lengths of the waves are determined. The results obtained are compared with the experimental data. It is suggested that such solitons play an important role in both the formation of an ionization front and its motion across the magnetic field and also give rise to a fluctuation precursor in explosive ionospheric experiments.

  14. Ion acoustic envelope solitons in explosive ionospheric experiments

    SciTech Connect

    Kovaleva, I. Kh.

    2008-01-15

    The conditions are studied under which stable ion acoustic envelope solitons propagating perpendicular to the magnetic field lines can exist in the ionospheric plasma. The amplitudes, frequencies, and lengths of the waves are determined. The results obtained are compared with the experimental data. It is suggested that such solitons play an important role in both the formation of an ionization front and its motion across the magnetic field and also give rise to a fluctuation precursor in explosive ionospheric experiments.

  15. Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.

    PubMed

    Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J

    2015-02-01

    We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations. PMID:25768623

  16. Existence domains of dust-acoustic solitons and supersolitons

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2013-08-15

    Using the Sagdeev potential method, the existence of large amplitude dust-acoustic solitons and supersolitons is investigated in a plasma comprising cold negative dust, adiabatic positive dust, Boltzmann electrons, and non-thermal ions. This model supports the existence of positive potential supersolitons in a certain region in parameter space in addition to regular solitons having negative and positive potentials. The lower Mach number limit for supersolitons coincides with the occurrence of double layers whereas the upper limit is imposed by the constraint that the adiabatic positive dust number density must remain real valued. The upper Mach number limits for negative potential (positive potential) solitons coincide with limiting values of the negative (positive) potential for which the negative (positive) dust number density is real valued. Alternatively, the existence of positive potential solitons can terminate when positive potential double layers occur.

  17. Stable and unstable vector dark solitons of coupled nonlinear Schroedinger equations: Application to two-component Bose-Einstein condensates

    SciTech Connect

    Brazhnyi, V.A.; Konotop, V.V.

    2005-08-01

    The dynamics of vector dark solitons in two-component Bose-Einstein condensates is studied within the framework of coupled one-dimensional nonlinear Schroedinger (NLS) equations. We consider the small-amplitude limit in which the coupled NLS equations are reduced to coupled Korteweg-de Vries (KdV) equations. For a specific choice of the parameters the obtained coupled KdV equations are exactly integrable. We find that there exist two branches of (slow and fast) dark solitons corresponding to the two branches of the sound waves. Slow solitons, corresponding to the lower branch of the acoustic wave, appear to be unstable and transform during the evolution into stable fast solitons (corresponding to the upper branch of the dispersion law). Vector dark solitons of arbitrary depths are studied numerically. It is shown that effectively different parabolic traps, to which the two components are subjected, cause an instability of the solitons, leading to a splitting of their components and subsequent decay. A simple phenomenological theory, describing the oscillations of vector dark solitons in a magnetic trap, is proposed.

  18. Bunch of restless vector solitons in a fiber laser with SESAM.

    PubMed

    Zhao, L M; Tang, D Y; Zhang, H; Wu, X

    2009-05-11

    We report on the experimental observation of a novel form of vector soliton interaction in a fiber laser mode-locked with SESAM. Several vector solitons bunch in the cavity and move as a unit with the cavity repetition rate. However, inside the bunch the vector solitons make repeatedly contractive and repulsive motions, resembling the contraction and extension of a spring. The number of vector solitons in the bunch is controllable by changing the pump power. In addition, polarization rotation locking and period doubling bifurcation of the vector soliton bunch are also experimentally observed. PMID:19434141

  19. Ion-acoustic dressed solitons in a dusty plasma

    SciTech Connect

    Tiwari, R.S.; Mishra, M.K.

    2006-06-15

    Using the reductive perturbation method, equations for ion-acoustic waves governing the evolution of first- and second-order potentials in a dusty plasma including the dynamics of charged dust grains have been derived. The renormalization procedure of Kodama and Taniuti is used to obtain a steady state nonsecular solution of these equations. The variation of velocity and width of the Korteweg-de Vries (KdV) as well as dressed solitons with amplitude have been studied for different concentrations and charge multiplicity of dust grains. The higher-order perturbation corrections to the KdV soliton description significantly affect the characteristics of the solitons in dusty plasma. It is found that in the presence of positively charged dust grains the system supports only compressive solitons. However, the plasma with negatively charged dust grains can support compressive solitons only up to a certain concentration of dust. Above this critical concentration of negative charge, the dusty plasma can support rarefactive solitons. An expression for the critical concentration of negatively charged dust in terms of charge and mass ratio of dust grains with plasma ions is also derived.

  20. Weakly Dissipative Dust Ion-Acoustic Solitons in the Presence of Electromagnetic Radiation

    SciTech Connect

    Golub', A. P.; Izvekova, Y. N.; Losseva, T. V.; Popel, S. I.; Shukla, P. K.

    2011-11-29

    We present the model, which describes nonlinear dust ion-acoustic (DIA) perturbations in complex plasmas with electromagnetic radiation. We study time-evolution of the individual DIA soliton and interaction of two DIA solitons.

  1. Oblique Propagation of Ion Acoustic Solitons in Magnetized Superthermal Plasmas

    NASA Astrophysics Data System (ADS)

    Devanandhan, S.; Sreeraj, T.; Singh, S.; Lakhina, G. S.

    2015-12-01

    Small amplitude ion-acoustic solitons are studied in a magnetized plasma consisting of protons, doubly charged helium ions and superthermal electrons. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) is derived to examine the properties of ion acoustic solitary structures observed in space plasmas. Our model is applicable for weakly magnetized plasmas. The results will be applied to the satellite observations in the solar wind at 1 AU where magnetized ion acoustic waves with superthermal electrons can exist. The effects of superthermality, temperature and densities on these solitary structures will be discussed.

  2. Dust-ion-acoustic solitons with transverse perturbation

    SciTech Connect

    Moslem, Waleed M.; El-Taibany, W.F.; El-Shewy, E.K.; El-Shamy, E.F.

    2005-05-15

    The ionization source model is considered, for the first time, to study the combined effects of trapped electrons, transverse perturbation, ion streaming velocity, and dust charge fluctuations on the propagation of dust-ion-acoustic solitons in dusty plasmas. The solitary waves are investigated through the derivation of the damped modified Kadomtsev-Petviashivili equation using the reductive perturbation method. Conditions for the formation of solitons as well as their properties are clearly explained. The relevance of our investigation to supernovae shells is also discussed.

  3. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  4. Turbulence generated by a gas of electron acoustic solitons

    SciTech Connect

    Dubouloz, N.; Pottelette, R.; Malingre, M.; Treumann, R.A.

    1993-10-01

    The authors consider a gas of electron acoustic solitons propagating in a magnetized plasma, such as the auroral region. They show that such modes can exist, and propagate, and that the velocities and amplitudes of such waves, consistent with measured plasma density and temperature, are capable of explaining the high frequency part of the broadband electrostatic noise observed by the Viking satellite, which is in a spectral region forbidden to linear electrostatic waves.

  5. Imaging marine geophysical environments with vector acoustics.

    PubMed

    Lindwall, Dennis

    2006-09-01

    Using vector acoustic sensors for marine geoacoustic surveys instead of the usual scalar hydrophones enables one to acquire three-dimensional (3D) survey data with instrumentation and logistics similar to current 2D surveys. Vector acoustic sensors measure the sound wave direction directly without the cumbersome arrays that hydrophones require. This concept was tested by a scaled experiment in an acoustic water tank that had a well-controlled environment with a few targets. Using vector acoustic data from a single line of sources, the three-dimensional tank environment was imaged by directly locating the source and all reflectors. PMID:17004497

  6. Generation of broadband electrostatic noise by electron acoustic solitons

    SciTech Connect

    Dubouloz, N.; Pottelette, R.; Malingre, M. ); Treumann, R.A. )

    1991-02-01

    Broadband electrostatic noise (BEN) bursts whose amplitude sometimes reaches about 100 mV m{sup {minus}1} have been observed by the Viking satellite in the dayside auroral zone. These emissions have been shown to be greatly influenced by nonlinear effects and to occur simultaneously with the observation of particle distributions favouring the destabilization of the electron acoustic mode. It is shown that electron acoustic solitons passing by the satellite would generate spectra that can explain the high-frequency part of BEN, above the electron plasma frequency.

  7. Gap-Acoustic Solitons: Slowing and Stopping of Light

    NASA Astrophysics Data System (ADS)

    Tasgal, Richard S.; Shnaiderman, Roman; Band, Yehuda B.

    Solitons are paradigm localized states in physics. We consider here gapacoustic solitons (GASs), which are stable pulses that exist in Bragg waveguides, and which offer promising new avenues for slowing light. A Bragg grating can be produced by doping the waveguide with ions, and imprinting a periodic variation in the index of refraction with ultraviolet light. The Bragg grating in an optical waveguide reflects rightward-moving light to the left, and vice versa, and creates a gap in the allowed frequency spectrum of light. Nonlinearities, though, add complications to this simple picture. While low intensity light cannot propagate at frequencies inside the band gap, more intense fields can exist where low-intensity fields cannot. An optical gap soliton is an intense optical pulse which can exist in a Bragg waveguide because the intensity and nonlinearity let it dig a hole for itself inside the band gap, in which it can then reside. Far from the center of the pulse, the intensity is weak, and drops off exponentially with distance from the center. The optical gap soliton structure can be stable, and can have velocities from zero (i.e., stopped light) up to the group-velocity of light in the medium. When one also considers the system's electrostrictive effects, i.e., the dependence of the index of refraction on the density of the material, which is a universal light-sound interaction in condensed matter, one obtains GASs. These solitons share many of the properties of standard gap solitons, but they show many fascinating new characteristics. GASs have especially interesting dynamics when their velocities are close to the speed of sound, in which range they interact strongly with the acoustic field. GASs which are moving at supersonic velocities may experience instabilities which leave the GAS whole, but bring the velocity abruptly to almost zero. Furthermore, GASs may be made to change velocity by collision with acoustic pulses. Moving GASs may be retarded by the

  8. Deflection of nematicon-vortex vector solitons in liquid crystals

    NASA Astrophysics Data System (ADS)

    Assanto, Gaetano; Minzoni, Antonmaria A.; Smyth, Noel F.

    2014-01-01

    The deflection of a vector soliton formed by a solitary wave and an optical vortex in nematic liquid crystals is investigated upon interaction with a localized refractive index defect. The azimuthal instability of the vortex can be triggered by the index perturbation and enhanced by the distortion of the copropagating solitary wave when in the vicinity of the defect. A modulation theory is developed to study the refraction of the vector soliton and is found to be in good agreement with numerical solutions. This model reveals the crucial role of the diffractive radiation shed by both beam components as they evolve, showing that radiation reduces the destabilizing effect of the solitary wave interaction with the vortex, thus enlightening the effect of this continuous spectrum on the evolution of the nonlinear wave packets.

  9. Acoustic pressure-vector sensor array

    NASA Astrophysics Data System (ADS)

    Huang, Dehua; Elswick, Roy C.; McEachern, James F.

    2001-05-01

    Pressure-vector sensors measure both scalar and vector components of the acoustic field. December 2003 measurements at the NUWC Seneca Lake test facility verify previous observations that acoustic ambient noise spectrum levels measured by acoustic intensity sensors are reduced relative to either acoustic pressure or acoustic vector sensor spectrum levels. The Seneca measurements indicate a reduction by as much as 15 dB at the upper measurement frequency of 2500 Hz. A nonlinear array synthesis theory for pressure-vector sensors will be introduced that allows smaller apertures to achieve narrow beams. The significantly reduced ambient noise of individual pressure-vector elements observed in the ocean by others, and now at Seneca Lake, should allow a nonlinearly combined array to detect significantly lower levels than has been observed in previous multiplicative processing of pressure sensors alone. Nonlinear array synthesis of pressure-vector sensors differs from conventional super-directive algorithms that linearly combine pressure elements with positive and negative weights, thereby reducing the sensitivity of conventional super-directive arrays. The much smaller aperture of acoustic pressure-vector sensor arrays will be attractive for acoustic systems on underwater vehicles, as well as for other applications that require narrow beam acoustic receivers. [The authors gratefully acknowledge the support of ONR and NUWC.

  10. Vector-soliton storage and three-pulse-area theorem

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Cuevas, Rodrigo; Eberly, Joseph H.

    2016-07-01

    In the present work, we present a high-speed method to control, manipulate, and retrieve an intense vector soliton stored in the ground-state coherences of a four-level atomic system. Additionally, we show the importance of the pulse area in determining the evolution of the system and present a constant in the evolution defined as the three-pulse area; a surprising extension to previously defined pulse areas.

  11. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma

    SciTech Connect

    Boruah, A.; Sharma, S. K. Bailung, H.; Nakamura, Y.

    2015-09-15

    The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7 times the initial soliton amplitude.

  12. Ion- and electron-acoustic solitons in two-electron temperature space plasmas

    SciTech Connect

    Lakhina, G. S.; Kakad, A. P.; Singh, S. V.; Verheest, F.

    2008-06-15

    Properties of ion- and electron-acoustic solitons are investigated in an unmagnetized multicomponent plasma system consisting of cold and hot electrons and hot ions using the Sagdeev pseudopotential technique. The analysis is based on fluid equations and the Poisson equation. Solitary wave solutions are found when the Mach numbers exceed some critical values. The critical Mach numbers for the ion-acoustic solitons are found to be smaller than those for electron-acoustic solitons for a given set of plasma parameters. The critical Mach numbers of ion-acoustic solitons increase with the increase of hot electron temperature and the decrease of cold electron density. On the other hand, the critical Mach numbers of electron-acoustic solitons increase with the increase of the cold electron density as well as the hot electron temperature. The ion-acoustic solitons have positive potentials for the parameters considered. However, the electron-acoustic solitons have positive or negative potentials depending whether the fractional cold electron density with respect to the ion density is greater or less than a certain critical value. Further, the amplitudes of both the ion- and electron-acoustic solitons increase with the increase of the hot electron temperature. Possible application of this model to electrostatic solitary waves observed on the auroral field lines by the Viking spacecraft is discussed.

  13. Vector solitons in two-component Bose-Einstein condensates with tunable interactions and harmonic potential

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Fei; Hu, Xing-Hua; Liu, Xun-Xu; Liu, W. M.

    2009-03-01

    We present a family of exact vector-soliton solutions for the coupled nonlinear Schrödinger equations with tunable interactions and harmonic potential, and then apply the model to investigate the dynamics of solitons and collisions between two orthogonal solitons in the case with equal interaction parameters. Our results show that the exact vector-soliton solutions can be obtained with arbitrary tunable interactions as long as a proper harmonic potential is applied. The dynamics of solitons can be controlled by the Feshbach resonance and the collisions are essentially elastic and do not depend on the initial conditions.

  14. Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Cheng; Chen, Guo-Jie; Han, Ding-An; Li, Bin

    2014-06-01

    A fiber laser with either a polarization-independent semiconductor saturable absorption mirror (PID-SESAM) or a polarization-dependent SESAM (PD-SESAM) as a passive mode-locker is constructed for obtaining the vector soliton bunching. The temporal patterns of the soliton bunching generated from the fiber laser with a PD-SESAM are much more abundant than that in fiber laser with a PID-SESAM. Only the vibrating soliton bunching is generated from the fiber laser with a PID-SESAM. However, there are another three interesting temporal patterns of the soliton bunching generated from the fiber laser with a PD-SESAM except for the vibrating soliton bunching. They are variable length soliton bunching, breathing soliton bunching and stable soliton bunching along the slow axis induced by polarization instability. It is found that the polarization property of the saturable absorber plays a pivotal role for achieving different temporal patterns of the soliton bunching.

  15. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  16. Ion acoustic solitons in a warm magnetoplasma

    SciTech Connect

    Ghosh, K.K.; Ray, D.

    1987-11-01

    Kalita and Bujarbarua (J. Phys. A: Math. Gen. 16, 439 (1983)) obtained a set of equations to describe the nonlinear propagation of ion acoustic waves in a warm magnetoplasma and made a numerical study of these equations for particular values of the physical parameters. In this paper a rigorous and general analytical study is presented. Some simple necessary and sufficient conditions for solitary wave solutions are derived and it is also shown that cavity solutions are not possible.

  17. Vector plasmonic lattice solitons in nonlinear graphene-pair arrays.

    PubMed

    Wang, Zhouqing; Wang, Bing; Wang, Kai; Long, Hua; Lu, Peixiang

    2016-08-01

    We investigate the vector plasmonic lattice solitons (PLSs) in nonlinear graphene-pair arrays (GPAs) consisting of periodically arranged double graphene sheets, which are spatially separated. There are two dispersion bands for the Bloch modes in the array due to the coupling of surface plasmon polaritons (SPPs) between the graphene pairs. The vector PLSs composed of two components originate from the nonlinear interaction of Bloch modes in different bands. Both components undergo mutual self-trapping through the balance between diffraction and self-focusing nonlinearity of graphene. Thanks to the strong confinement of SPPs, the vector PLSs can be squeezed into a lateral width of ∼λ/100. The study provides a promising approach to all-optical control on a deep-subwavelength scale. PMID:27472633

  18. The acoustic vector sensor: a versatile battlefield acoustics sensor

    NASA Astrophysics Data System (ADS)

    de Bree, Hans-Elias; Wind, Jelmer W.

    2011-06-01

    The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.

  19. Stopbands in the existence domains of acoustic solitons

    SciTech Connect

    Nsengiyumva, F. Hellberg, M. A. Mace, R. L.; Verheest, F.

    2014-10-15

    A fully nonlinear Sagdeev pseudopotential approach is used to study the existence domain of fast mode ion-acoustic solitons in a three-species plasma composed of cold and warm adiabatic positive ion species and Boltzmann electrons. It is shown that for appropriate values of the cold-to-warm ion charge-to-mass ratio, μ, and the effective warm ion-to-electron temperature ratio, τ, there is a range in cold to warm ion charge density ratio, f, over which a stopband in soliton speed exists. Solitons do not propagate in the stopband, although they can occur for both higher and lower speeds. The stopbands are associated with a limiting curve of the existence domain that is double-valued in speed for a range of values of f. Analytical estimates of the upper and lower limits of τ and μ that support stopbands are found. It is suggested that, inter alia, the analysis should be applicable to the solar wind plasma.

  20. Stopbands in the existence domains of acoustic solitons

    NASA Astrophysics Data System (ADS)

    Nsengiyumva, F.; Hellberg, M. A.; Verheest, F.; Mace, R. L.

    2014-10-01

    A fully nonlinear Sagdeev pseudopotential approach is used to study the existence domain of fast mode ion-acoustic solitons in a three-species plasma composed of cold and warm adiabatic positive ion species and Boltzmann electrons. It is shown that for appropriate values of the cold-to-warm ion charge-to-mass ratio, μ, and the effective warm ion-to-electron temperature ratio, τ, there is a range in cold to warm ion charge density ratio, f, over which a stopband in soliton speed exists. Solitons do not propagate in the stopband, although they can occur for both higher and lower speeds. The stopbands are associated with a limiting curve of the existence domain that is double-valued in speed for a range of values of f. Analytical estimates of the upper and lower limits of τ and μ that support stopbands are found. It is suggested that, inter alia, the analysis should be applicable to the solar wind plasma.

  1. Vector solitons in harmonic mode-locked erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Habruseva, Tatiana; Mkhitaryan, Mkhitar; Mou, Chengbo; Rozhin, Aleksey; Turitsyn, Sergei K.; Sergeyev, Sergey V.

    2014-05-01

    We report experimental study of vector solitons for the fundamental and harmonic mode-locked operation in erbiumdoper fiber lasers with carbon nanotubes based saturable absorbers and anomalous dispersion cavities. We measure evolution of the output pulses polarization and demonstrate vector solitons with various polarization attractors, including locked polarization, periodic polarization switching, and polarization precession.

  2. Issues in acoustic vector-sensor processing

    NASA Astrophysics Data System (ADS)

    Hawkes, Malcolm Alistair

    This dissertation examines the ability of acoustic vector sensors to solve the passive direction-of-arrival (DOA) estimation and 3-D localization problems. These sensors measure the three-dimensional acoustic particle velocity vector, as well as the acoustic pressure, at one location. By preserving directional information that is present in the structure of the velocity field, they gain a number of advantages over traditional arrays of scalar sensors, such as hydrophones and microphones. We compute and examine, through the Cramér-Rao bound and beam-forming based methods, the ability of arrays of acoustic vector sensors to estimate direction. We first consider the case of an array in free space then extend these results to account for the presence of a reflecting boundary, such as the seabed or a vessel's hull, located near the array. Next, we derive expressions for the noise correlation structure induced by various ambient noise fields, isotropic and anisotropic, at an acoustic vector sensor array, and use them to examine its localization performance. We then propose a decentralized processing scheme to rapidly locate a wideband target in three dimensions. Finally, we present a general framework for the analysis of errors associated with the estimation of a vector, or system of vectors, that has geometrical interpretations in terms of length, angle, etc. The framework is employed throughout the thesis.

  3. Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: application to two-component Bose-Einstein condensates.

    PubMed

    Brazhnyi, V A; Konotop, V V

    2005-08-01

    The dynamics of vector dark solitons in two-component Bose-Einstein condensates is studied within the framework of coupled one-dimensional nonlinear Schrödinger (NLS) equations. We consider the small-amplitude limit in which the coupled NLS equations are reduced to coupled Korteweg-de Vries (KdV) equations. For a specific choice of the parameters the obtained coupled KdV equations are exactly integrable. We find that there exist two branches of (slow and fast) dark solitons corresponding to the two branches of the sound waves. Slow solitons, corresponding to the lower branch of the acoustic wave, appear to be unstable and transform during the evolution into stable fast solitons (corresponding to the upper branch of the dispersion law). Vector dark solitons of arbitrary depths are studied numerically. It is shown that effectively different parabolic traps, to which the two components are subjected, cause an instability of the solitons, leading to a splitting of their components and subsequent decay. A simple phenomenological theory, describing the oscillations of vector dark solitons in a magnetic trap, is proposed. PMID:16196744

  4. Different evolution dynamics of vector solitons depending on their polarization states

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Cheng; Chen, Guo-Jie

    2014-03-01

    There are three types of temporal evolution dynamics of vector solitons observed in a ring fiber laser with a semiconductor saturable absorption mirror (SESAM) as a mode-locker. It is found that the polarization property of vector solitons is an important factor for achieving different evolution dynamics. The vector soliton with a uniform polarization state across the whole pulse profile and zero polarization extinction ratio operates at a fundamental repetition rate with a single pulse profile. The elliptically polarized vector soliton with a larger polarization extinction ratio exhibits a harmonic pulse train. The soliton bunching with multi-peak structures exists between the above two states and shows elliptical polarization with a small polarization extinction ratio.

  5. Vector Sensor Arrays in Underwater Acoustic Applications

    NASA Astrophysics Data System (ADS)

    Santos, Paulo; Felisberto, Paulo; Jesus, Sérgio M.

    Traditionally, ocean acoustic signals have been acquired using hydrophones, which measure the pressure field and are typically omnidirectional. A vector sensor measures both the acoustic pressure and the three components of particle velocity. Assembled into an array, a vector sensor array (VSA) improves spatial filtering capabilities when compared with arrays of same length and same number of hydrophones. The objective of this work is to show the advantage of the use of vector sensors in underwater acoustic applications such as direction of arrival (DOA) estimation and geoacoustic inversion. Beyond the improvements in DOA estimation, it will be shown the advantages of using the VSA in bottom parameters estimation. Additionally, is tested the possibility of using high frequency signals (say 8-14 kHz band), acquired during the MakaiEx 2005, to allow a small aperture array, reducing the cost of actual sub-bottom profilers and providing a compact and easy-to-deploy system.

  6. Compressive and rarefactive ion acoustic solitons in a magnetized two-ion component plasma

    NASA Astrophysics Data System (ADS)

    Ur-Rehman, Hafeez; Mahmood, S.; Aman-ur-Rehman

    2014-10-01

    The formation of compressive (hump) and rarefactive (dip) ion acoustic solitons is studied in magnetized O+- H+- e and O+- H-- e plasmas. The hydrodynamics equations are described for cold heavy (oxygen) ions, warm light (hydrogen) ions and isothermal Boltzmann distributed electrons along with Poisson equations in the presence of a magnetic field. The reductive perturbation method is used to derive the nonlinear Zakharov-Kuznetsov (ZK) equation for an ion acoustic wave in magnetized two-ion component plasma. It is found that two modes of ion acoustic waves with fast and slow speeds can propagate in the linear limit in such a plasma. It is noticed that, in the case of positively charged light hydrogen ions O+- H+- e plasmas, the slow ion acoustic wave solitons formed both potential hump as well as dip structures, while fast ion acoustic wave solitons give only hump structures. However in the case of negatively charged light hydrogen ions O+- H-- e plasmas, the slow ion acoustic wave solitons formed potential hump structures while fast ion acoustic wave solitons produce dip structures. The variations in the amplitude and width of the nonlinear slow and fast ion acoustic wave structures with density, temperature of light ions and magnetic field intensity are obtained in magnetized two-ion component plasmas. The magnetic field has its effect only on the width of the nonlinear ion acoustic wave structures in two-ion component plasmas.

  7. Energy-exchange collisions of dark-bright-bright vector solitons.

    PubMed

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices. PMID:26764780

  8. Energy-exchange collisions of dark-bright-bright vector solitons

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, R.; Manikandan, N.; Aravinthan, K.

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  9. A study of the connection between tidal velocities, soliton packets and acoustic signal losses

    NASA Astrophysics Data System (ADS)

    Chin-Bing, Stanley A.; Warn-Varnas, Alex C.; King, David B.; Lamb, Kevin G.; Hawkins, James A.; Teixeira, Marvi

    2002-11-01

    Coupled ocean model and acoustic model simulations of soliton packets in the Yellow Sea have indicated that the environmental conditions necessary for anomalous signal losses can occur several times in a 24 h period. These conditions and the subsequent signal losses were observed in simulations made over an 80 h space-time evolution of soliton packets that were generated by a 0.7 m/s tidal velocity [Chin-Bing et al., J. Acoust. Soc. Am. 111, 2459 (2002)]. This particular tidal velocity was used to initiate the Lamb soliton model because the soliton packets that were generated compared favorably with SAR measurements of soliton packets in the Yellow Sea. The tidal velocities in this region can range from 0.3 m/s to 1.2 m/s. In this work we extend our simulations and analyses to include soliton packets generated by other tidal velocities in the 0.3-1.2 m/s band. Anomalous signal losses are again observed. Examples will be shown that illustrate the connections between the tidal velocities, the soliton packets that are generated by these tidal velocities, and the signal losses that can occur when acoustic signals are propagated through these soliton packets. [Work supported by ONR/NRL and by a High Performance Computing DoD grant.

  10. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect

    Lakhina, G. S. Singh, S. V. Kakad, A. P.

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  11. Vector Acoustics, Vector Sensors, and 3D Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2007-12-01

    Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.

  12. Vector solitons with a uniform polarisation state induced by polarisation filtering in a fibre laser

    SciTech Connect

    Chen Weicheng; Chen Guojie; Han Dingan; Xie Jianing

    2013-06-30

    A fibre laser with a SESAM as a passive mode-locker is constructed for obtaining a vector soliton with the Kelly sidebands. The analysis of the peculiarities of the sidebands shows that the polarisation states are nonuniform across the entire pulse spectral profile from the leading edge to the trailing edge. Polarisation filtering effect is proposed to obtain a vector soliton with a uniform polarisation state. It is shown that during the polarisation filtering by a polariser incorporated into the laser cavity, the spectral width of the vector solitons gradually broadens and the pulse power decreases. It is found that at a maximum spectral width and a minimum pulse power, vector solitons with a uniform polarisation state are generated. (nonlinear optical phenomena)

  13. Ion Acoustic Solitons and Double Layers in the Solar Wind Having Kappa Distributed Electrons

    NASA Astrophysics Data System (ADS)

    Lakhina, G. S.; Singh, S. V.

    2015-12-01

    It is shown that two types of, slow and fast, ion-acoustic solitary waves can occur in a solar wind plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having k- distribution. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. The slow ion-acoustic mode can exist even when the relative streaming, U0, between alphas and protons is zero, provided alpha temperature, Ti, is not exactly equal to 4 times the proton temperature, Tp. An increase of the k- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The model can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft in terms of slow ion-acoustic double layers. It is proposed that both slow and fast ion-acoustic solitons may be responsible for the ion- acoustic like wave activity in the solar wind.

  14. Acoustic communication in insect disease vectors

    PubMed Central

    Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio

    2013-01-01

    Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800

  15. Acoustic vector fields in underwater waveguides

    NASA Astrophysics Data System (ADS)

    Rapids, Brian

    2005-09-01

    The ability to compute the sound pressure level as well as the vectors associated with the acoustic particle motion has existed for some time. However, propagation studies and ambient noise investigations have typically focused only upon the sound pressure levels that would be observed by an omnidirectional hydrophone or array of hydrophones. Recent interest in geophones and accelerometers for use as vector and dyadic sensors should encourage the investigation and analysis of the underlying vector fields contributing to the acoustic intensity and energy density fields. The frequency domain properties of the acoustic vector field generated by monopole sources having frequencies <1kHz in a simple iso-velocity waveguide are presented in order to build a fundamental understanding of the related quantities. Subsequently, similar field quantities computed for more realistic environments such as downward refracting profiles and deep-water profiles supporting convergence zone propagation will be discussed. Regions and phenomena associated with perturbations in the energy flux density will be highlighted.

  16. Vector single- and double-hump solitons for the coupled Sasa-Satsuma equations in optical media

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Tian, Bo

    2016-06-01

    In this paper, we investigate the coupled Sasa-Satsuma equations for the propagation of the ultrashort pulse in optical media. Through the binary Bell polynomials and introduction of three auxiliary functions, bilinear form, vector single- and double-hump soliton solutions in bright-dark form are obtained. To our knowledge, vector double-hump solitons in bright-dark form have not been studied in the existing literature. Based on those solutions, (i) parametric conditions for the existence of the vector single- and double-hump solitons, (ii) four types of soliton amplitudes and (iii) the interval between the two peaks for the double-hump soliton are presented analytically.

  17. Ion-acoustic solitons in negative ion plasma with two-electron temperature distributions

    SciTech Connect

    Mishra, M. K.; Tiwari, R. S.; Chawla, J. K.

    2012-06-15

    Ion-acoustic solitons in a warm positive and negative ion species with different masses, concentrations, and charge states with two electron temperature distributions are studied. Using reductive perturbation method, Korteweg de-Vries (KdV) and modified-KdV (m-KdV) equations are derived for the system. The soliton solution of the KdV and m-KdV equations is discussed in detail. It is found that if the ions have finite temperatures, then there exist two types of modes, namely slow and fast ion-acoustic modes. It is also investigated that the parameter determining the nature of soliton (i.e., whether the system will support compressive or rarefactive solitons) is different for slow and fast modes. For the slow mode, the parameter is the relative temperature of the two ion species; whereas for the fast mode, it is the relative concentration of the two ion species. At a critical concentration of negative ions, both compressive and rarefactive solitons coexist. The amplitude and width of the solitons are discussed in detail at critical concentration for m-KdV solitons. The effect of the relative temperature of the two-electron and cold-electron concentration on the characteristics of the solitons are also discussed.

  18. Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas

    NASA Astrophysics Data System (ADS)

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2016-06-01

    We examine the characteristics of fast electron-acoustic solitons in a four-component unmagnetised plasma model consisting of cool, warm, and hot electrons, and cool ions. We retain the inertia and pressure for all the plasma species by assuming adiabatic fluid behaviour for all the species. By using the Sagdeev pseudo-potential technique, the allowable Mach number ranges for fast electron-acoustic solitary waves are explored and discussed. It is found that the cool and warm electron number densities determine the polarity switch of the fast electron-acoustic solitons which are limited by either the occurrence of fast electron-acoustic double layers or warm and hot electron number density becoming unreal. For the first time in the study of solitons, we report on the coexistence of fast electron-acoustic solitons, in addition to the regular fast electron-acoustic solitons and double layers in our multi-species plasma model. Our results are applied to the generation of broadband electrostatic noise in the dayside auroral region.

  19. Arbitrary amplitude slow electron-acoustic solitons in three-electron temperature space plasmas

    SciTech Connect

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2015-06-15

    We examine the characteristics of large amplitude slow electron-acoustic solitons supported in a four-component unmagnetised plasma composed of cool, warm, hot electrons, and cool ions. The inertia and pressure for all the species in this plasma system are retained by assuming that they are adiabatic fluids. Our findings reveal that both positive and negative potential slow electron-acoustic solitons are supported in the four-component plasma system. The polarity switch of the slow electron-acoustic solitons is determined by the number densities of the cool and warm electrons. Negative potential solitons, which are limited by the cool and warm electron number densities becoming unreal and the occurrence of negative potential double layers, are found for low values of the cool electron density, while the positive potential solitons occurring for large values of the cool electron density are only limited by positive potential double layers. Both the lower and upper Mach numbers for the slow electron-acoustic solitons are computed and discussed.

  20. Ion acoustic solitons in a solar wind magnetoplasma with Kappa distributed electrons

    NASA Astrophysics Data System (ADS)

    Devanandhan, Selvaraj; Singh, Satyavir; Singh Lakhina, Gurbax; Sreeraj, T.

    2016-07-01

    In many space plasma environments, the velocity distribution of particles often deviates from Maxwellian and is well-modelled by a kappa distribution function. We have analyzed the ion acoustic soliton in a magnetized consisting of plasma Protons, Helium ions, an electron beam and superthermal hot electrons following kappa distribution function. Under the assumption of weak nonlinearity, the ion-acoustic solitons are described by the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation. The solution of KdV-ZK equation is used to model the characteristics of the ion acoustic solitary waves in a solar wind magnetoplasma observed at 1 AU. We have found both slow and fast ion acoustic solitons in our study. It is found that the superthermality of hot electrons greatly influence the existence regime of the solitary waves. The numerical results of this study to explain solar wind observations will be discussed in detail.

  1. Vector Acoustic Sensors for Marine Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2005-12-01

    Using vector acoustic sensors for marine seismic and geo-acoustic surveys instead of the usual scalar hydrophones allows for acquiring a 3-D survey with the instrumentation and logistics similar to current 2-D surveys. Vector acoustic sensors measure the wave direction directly without the large and cumbersome arrays that hydrophones require. This concept was tested by a scaled experiment in an acoustic water tank that has a well controlled environment with a few targets. The experiment was scaled to the size of the available water tank and the frequency limits of the sensor. The sensor consists of a three-axis accelerometer as well as a hydrophone. The sound source was a standard hydrophone driven by a short 8 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. During part of the experiment, several floats (acoustic targets) were placed in the tank at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Vector data from single shots show that the wave motion direction can be readily determined for both direct waves and scattered waves. Without resorting to the usual methods of seismic imaging, which in this case would have only been two dimensional and relied entirely on the use of a synthetic source aperture, the three-dimensional volume of the tank environment was imaged. This work was supported by the Office of Naval Research, program element 61153N.

  2. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    SciTech Connect

    Zhong, Wei-Ping; Belić, Milivoj

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.

  3. Ion-acoustic compressive and rarefactive solitons in an electron-beam plasma system

    SciTech Connect

    Yadav, L.L.; Tiwari, R.S.; Sharma, S.R. )

    1994-03-01

    Using the general formulation of reductive perturbation method, the Korteweg--de Vries (KdV) equation is derived for an electron-beam plasma with hot isothermal beam and plasma electrons and warm ions. The soliton solution of the KdV equation is discussed in detail. It is found that above a critical velocity of electron-beam two additional ion-acoustic soliton branches appear. It is found that corresponding to two linear modes, the system supports the existence of compressive as well as rarefactive solitons depending upon the plasma parameters, while corresponding to other two wave modes, the system supports only rarefactive solitons. The effect of different parameters on the characteristics of solitons have been investigated in detail.

  4. Dust-ion-acoustic solitons in plasmas with non-Maxwellian electron distribution function

    SciTech Connect

    Pajouh, H. Hakimi; Abbasi, H.

    2008-10-15

    Stationary dust-ion-acoustic (DIA) solitons in plasma with non-Maxwellian electron distribution function (DF) are studied. This is an important issue in low-pressure electrical gas discharges that the particle DF is generally non-Maxwellian. In the discharge plasmas, the electron temperature is usually much greater than the ion temperature. Thus, neglecting the ions velocity distribution, the electron DF is modeled by the generalized Lorentzian ({kappa})-DF. The formalism is derived near the ion-plasma frequency. In this range of frequency, the ion dynamics is considerable and the dust-ion-acoustic solitons are the stationary solution of the governing equations. Electron trapping is included in the model as the result of nonlinear resonant interaction of the DIA soliton with electrons. The solitons attributes and influence of the non-Maxwellian electrons are studied.

  5. Vector solitons in nearly one-dimensional Bose-Einstein condensates

    SciTech Connect

    Salasnich, Luca; Malomed, Boris A.

    2006-11-15

    We derive a system of nonpolynomial Schroedinger equations for one-dimensional wave functions of two components in a binary self-attractive Bose-Einstein condensate loaded in a cigar-shaped trap. The system is obtained by means of the variational approximation, starting from the coupled three-dimensional (3D) Gross-Pitaevskii equations and assuming, as usual, the factorization of 3D wave functions. The system can be obtained in a tractable form under a natural condition of symmetry between the two species. A family of vector (two-component) soliton solutions is constructed. Collisions between orthogonal solitons (ones belonging to the different components) are investigated by means of simulations. The collisions are essentially inelastic. They result in strong excitation of intrinsic vibrations in the solitons, and create a small orthogonal component ('shadow') in each colliding soliton. The collision may initiate collapse, which depends on the mass and velocities of the solitons.

  6. Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting Lasers.

    PubMed

    Averlant, Etienne; Tlidi, Mustapha; Thienpont, Hugo; Ackemann, Thorsten; Panajotov, Krassimir

    2016-01-01

    We report the experimental observation of two-dimensional vector cavity solitons in a Vertical-Cavity Surface-Emitting Laser (VCSEL) under linearly polarized optical injection when varying optical injection linear polarization direction. The polarization of the cavity soliton is not the one of the optical injection as it acquires a distinct ellipticity. These experimental results are qualitatively reproduced by the spin-flip VCSEL model. Our findings open the road to polarization multiplexing when using cavity solitons in broad-area lasers as pixels in information technology. PMID:26847004

  7. Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting Lasers

    PubMed Central

    Averlant, Etienne; Tlidi, Mustapha; Thienpont, Hugo; Ackemann, Thorsten; Panajotov, Krassimir

    2016-01-01

    We report the experimental observation of two-dimensional vector cavity solitons in a Vertical-Cavity Surface-Emitting Laser (VCSEL) under linearly polarized optical injection when varying optical injection linear polarization direction. The polarization of the cavity soliton is not the one of the optical injection as it acquires a distinct ellipticity. These experimental results are qualitatively reproduced by the spin-flip VCSEL model. Our findings open the road to polarization multiplexing when using cavity solitons in broad-area lasers as pixels in information technology. PMID:26847004

  8. Radiative corrections to the nucleon axial vector coupling constant in the chiral soliton quark model

    SciTech Connect

    Duck, I. )

    1993-04-01

    Second-order radiative corrections to the nucleon axial vector coupling constant from gluon, pion, and sigma meson exchange are calculated in the chiral soliton quark model. Many apparent processes are found not to contribute. The soliton is elastically decoupled from meson radiative corrections which are dominated by a gluon exchange contribution equivalent to a gluonic hybrid component of the nucleon. A 30% radiative reduction of the axial coupling strength is indicated.

  9. Dressing method for the vector sine-Gordon equation and its soliton interactions

    NASA Astrophysics Data System (ADS)

    Mikhailov, Alexander V.; Papamikos, Georgios; Wang, Jing Ping

    2016-06-01

    In this paper, we develop the dressing method to study the exact solutions for the vector sine-Gordon equation. The explicit formulas for one kink and one breather are derived. The method can be used to construct multi-soliton solutions. Two soliton interactions are also studied. The formulas for position shift of the kink and position and phase shifts of the breather are given. These quantities only depend on the pole positions of the dressing matrices.

  10. Interaction of vector solitons and beam break up at thin film gallium-silica waveguide structure

    NASA Astrophysics Data System (ADS)

    Sharma, Arvind; Nagar, A. K.

    2016-05-01

    We investigate the interaction of optical vector soliton with a symmetric thin-film gallium-silica waveguide structure using the equivalent particle theory. The relevant nonlinear Schrodinger equation has been solved by the method of phase plane analysis. The analysis shows beam break up into transmitted, reflected and nonlinear surface waves at the interface. The stability properties of the solitons so formed have been discussed.

  11. Head-on collision of dust-ion-acoustic soliton in quantum pair-ion plasma

    SciTech Connect

    Chatterjee, Prasanta; Ghorui, Malay kr.; Wong, C. S.

    2011-10-15

    In this paper, we study the head-on collision between two dust ion acoustic solitons in quantum pair-ion plasma. Using the extended Poincare-Lighthill-Kuo method, we obtain the Korteweg-de Vries equation, the phase shifts, and the trajectories after the head-on collision of the two dust ion acoustic solitons. It is observed that the phase shifts are significantly affected by the values of the quantum parameter H, the ratio of the multiples of the charge state and density of positive ions to that of the negative ions {beta} and the concentration of the negatively charged dust particles {delta}.

  12. Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons

    SciTech Connect

    Ishak-Boushaki, M.; Djellout, D.; Annou, R.

    2012-07-15

    The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.

  13. Ion-acoustic solitons, double layers and supersolitons in a plasma with two ion- and two electron species

    SciTech Connect

    Olivier, C. P. Maharaj, S. K.; Bharuthram, R.

    2015-08-15

    The polarity of ion-acoustic solitons that arise in a plasma with two (same mass, different temperature) ion species and two (different temperature) electron species is investigated. Two different fluid models are compared. The first model treats all species as adiabatic fluids, while the second model treats the ion species as adiabatic, and the electron species as isothermal. Nonlinear structures are analysed via the reductive perturbation analysis and pseudo-potential analysis. Each model supports both slow and fast ion-acoustic solitons, associated with the two (slow and fast) ion-acoustic speeds. The models support both positive and negative polarity solitons associated with the slow ion-acoustic speed. Moreover, results are in good agreement, and both models support positive and negative polarity double layers. For the fast ion-acoustic speed, the first model supports only positive polarity solitons, while the second model supports solitons of both polarity, coexistence of positive and negative polarity solitons, double layers and supersolitons. A novel feature of our analysis is the evaluation of nonlinear structures at critical number densities where polarity changes occur. This analysis shows that solitons that occur at the acoustic speed are neither a necessary nor a sufficient condition for the phenomenon of coexistence. The relationship between the existence regions of supersolitons and soliton polarity is also discussed.

  14. Vector solitons in parity-time symmetric lattices with nonlocal nonlinearity

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhu, Xing; Li, Huagang; Lai, Tianshu

    2016-09-01

    We investigate mixed-gap vector solitons involving incoherently coupled fundamental and dipole components in a parity-time symmetric lattice with nonlocal focusing nonlinearity. The fundamental component exists in the semi-infinite gap with propagation constant μ 1 and the dipole component exists in the first gap with propagation constant μ 2. We find that the width of the existence domain on μ 1 (μ 2) for vector solitons shrinks with the growth of nonlocality degree d and expands almost linearly with the increase of μ 2 (μ 1). In particular, linear stability analyses show that this type of vector solitons are unstable in the high-power region of the dipole component.

  15. Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory

    SciTech Connect

    Kakad, Amar; Omura, Yoshiharu; Kakad, Bharati

    2013-06-15

    We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.

  16. Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory

    NASA Astrophysics Data System (ADS)

    Kakad, Amar; Omura, Yoshiharu; Kakad, Bharati

    2013-06-01

    We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.

  17. Dust ion acoustic solitons in a plasma with kappa-distributed electrons

    SciTech Connect

    Baluku, T. K.; Hellberg, M. A.; Kourakis, I.; Saini, N. S.

    2010-05-15

    Dust ion acoustic solitons in an unmagnetized dusty plasma comprising cold dust particles, adiabatic fluid ions, and electrons satisfying a kappa distribution are investigated using both small amplitude and arbitrary amplitude techniques. Their existence domain is discussed in the parameter space of Mach number M and electron density fraction f over a wide range of values of kappa. For all kappa>3/2, including the Maxwellian distribution, negative dust supports solitons of both polarities over a range in f. In that region of parameter space solitary structures of finite amplitude can be obtained even at the lowest Mach number, the acoustic speed, for all kappa. These cannot be found from small amplitude theories. This surprising behavior is investigated, and it is shown that f{sub c}, the value of f at which the KdV coefficient A vanishes, plays a critical role. In the presence of positive dust, only positive potential solitons are found.

  18. Semi-Implicit Operator Splitting Pade Method For Vector HNLS Solitons

    SciTech Connect

    Aziez, Siham; Smadi, Moussa; Bahloul, Derradji

    2008-09-23

    We use in this paper the semi-implicit finite difference operator splitting Pade(OSPD) method for solving the coupled higher-order nonlinear Schroedinger equation which describes the propagation of vector solitons in optical fibers. This method having a fourth order accuracy in space shows good stability and efficiency for the coupled HNLS equations describing vector solitons. We have tested this method for analyzing the behavior of optical pulses in birefringent fibers verifying that the third order dispersion TOD has different effects on the two polarizations and the asymmetric oscillation is significant only in one polarization.

  19. Nonlinear reflection and refraction of planar ion-acoustic plasma solitons

    NASA Astrophysics Data System (ADS)

    Nagasawa, T.; Nishida, Y.

    1986-06-01

    Experimental observations on the reflection and refraction of a planar ion-acoustic soliton from a metallic mesh electrode are performed in a uniform double-plasma device. Reflection and refraction angles are observed to depend on the incident wave amplitude, showing a nonlinear Snell's law.

  20. Dynamics of vector solitons in two-component Bose-Einstein condensates with time-dependent interactions and harmonic potential

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Yu, Hui-You; Yan, Jia-Ren

    2010-01-01

    We present two kinds of exact vector-soliton solutions for coupled nonlinear Schrödinger equations with time-varying interactions and time-varying harmonic potential. Using the variational approach, we investigate the dynamics of the vector solitons. It is found that the two bright solitons oscillate about slightly and pass through each other around the equilibration state which means that they are stable under our model. At the same time, we obtain the opposite situation for dark-dark solitons.

  1. Vector rogue waves and dark-bright boomeronic solitons in autonomous and nonautonomous settings.

    PubMed

    Mareeswaran, R Babu; Charalampidis, E G; Kanna, T; Kevrekidis, P G; Frantzeskakis, D J

    2014-10-01

    In this work we consider the dynamics of vector rogue waves and dark-bright solitons in two-component nonlinear Schrödinger equations with various physically motivated time-dependent nonlinearity coefficients, as well as spatiotemporally dependent potentials. A similarity transformation is utilized to convert the system into the integrable Manakov system and subsequently the vector rogue and dark-bright boomeronlike soliton solutions of the latter are converted back into ones of the original nonautonomous model. Using direct numerical simulations we find that, in most cases, the rogue wave formation is rapidly followed by a modulational instability that leads to the emergence of an expanding soliton train. Scenarios different than this generic phenomenology are also reported. PMID:25375572

  2. Vector bright solitons associated with positive coherent coupling via Darboux transformation.

    PubMed

    Lü, Xing; Ling, Liming

    2015-12-01

    Describing coherently coupled and orthogonally polarized waveguide modes in the Kerr medium, vector bright solitons associated with positive coherent coupling are studied in this paper. Some conserved quantities and infinitely many conservation laws are computed, and the existence of Lax pair indicates the integrability of the two-coupled nonlinear Schrödinger system with positive coherent coupling. Performing the iterative algorithm of Darboux transformation, we present formulas of one-, two-, and even N-soliton solutions. With appropriate choices of the phase parameters, collision mechanisms of vector bright solitons (of single-hump, double-hump, or flat-top profiles) are displayed, which show the elastic collision under the combined influences of group velocity dispersion, self-phase modulation, cross-phase modulation, and positive coherent coupling. PMID:26723142

  3. Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser

    PubMed Central

    Tsatourian, Veronika; Sergeyev, Sergey V.; Mou, Chengbo; Rozhin, Alex; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.; Turitsyn, Sergei K.

    2013-01-01

    Two fundamental laser physics phenomena - dissipative soliton and polarisation of light are recently merged to the concept of vector dissipative soliton (VDS), viz. train of short pulses with specific state of polarisation (SOP) and shape defined by an interplay between anisotropy, gain/loss, dispersion, and nonlinearity. Emergence of VDSs is both of the fundamental scientific interest and is also a promising technique for control of dynamic SOPs important for numerous applications from nano-optics to high capacity fibre optic communications. Using specially designed and developed fast polarimeter, we present here the first experimental results on SOP evolution of vector soliton molecules with periodic polarisation switching between two and three SOPs and superposition of polarisation switching with SOP precessing. The underlying physics presents an interplay between linear and circular birefringence of a laser cavity along with light induced anisotropy caused by polarisation hole burning. PMID:24193374

  4. Properties of the Acoustic Vector Field in Underwater Waveguides

    NASA Astrophysics Data System (ADS)

    Dall'Osto, David R.

    This thesis focuses on the description and measurement of the underwater acoustic field, based on vector properties of acoustic particle velocity. The specific goal is to interpret vector sensor measurements in underwater waveguides, in particular those measurements made in littoral (shallow) waters. To that end, theoretical models, which include the effects of reflections from the waveguide boundaries, are developed for the acoustic intensity, i.e. the product of acoustic pressure and acoustic particle velocity. Vector properties of acoustic intensity are shown to correspond to a non-dimensional vector property of acoustic particle velocity, its degree of circularity, which describes the trajectory of particle motion. Both experimental measurements and simulations of this non-dimensional vector property are used to analyze characteristics of sound propagation in underwater waveguides. Two measurement techniques are utilized in the experiments described in this thesis. In the first, particle velocity is obtained indirectly by time integration of the measured pressure gradient between two closely spaced (with respect to an acoustic wavelength) conventional pressure sensitive hydrophones. This method was used in ocean experiments conducted with vertical line arrays of hydrophones. In the second technique, particle velocity is measured directly by time integration of the signal generated by an accelerometer. An additional pressure measurement from a co-located hydrophone forms what is known as a "combined sensor" in the Russian literature, which allows for estimation of the vector acoustic intensity. This method was utilized mainly in laboratory experiments.

  5. Ion acoustic solitons in dense magnetized plasmas with nonrelativistic and ultrarelativistic degenerate electrons and positrons

    SciTech Connect

    Sadiq, Safeer; Mahmood, S.; Haque, Q.; Ali, Munazza Zulfiqar

    2014-09-20

    The propagation of electrostatic waves in a dense magnetized electron-positron-ion (EPI) plasma with nonrelativistic and ultrarelativistic degenerate electrons and positrons is investigated. The linear dispersion relation is obtained for slow and fast electrostatic waves in the EPI plasma. The limiting cases for ion acoustic wave (slow) and ion cyclotron wave (fast) are also discussed. Using the reductive perturbation method, two-dimensional propagation of ion acoustic solitons is found for both the nonrelativistic and ultrarelativistic degenerate electrons and positrons. The effects of positron concentration, magnetic field, and mass of ions on ion acoustic solitons are shown in numerical plots. The proper form of Fermi temperature for nonrelativistic and ultrarelativistic degenerate electrons and positrons is employed, which has not been used in earlier published work. The present investigation is useful for the understanding of linear and nonlinear electrostatic wave propagation in the dense magnetized EPI plasma of compact stars. For illustration purposes, we have applied our results to a pulsar magnetosphere.

  6. Vector interactions of steady-state planar solitons in biased photorefractive media

    NASA Astrophysics Data System (ADS)

    Singh, S. R.; Carvalho, M. I.; Christodoulides, D. N.

    1995-11-01

    A theory describing the steady-state propagation of orthogonally polarized planar bright beams in biased photorefractive media is developed. Interactions between soliton states of each polarization in a strontium barium niobate photorefractive crystal are then investigated numerically. Our results indicate that such vector interactions can lead to a number of interesting effects such as beam compression and beam steering.

  7. Modulation instability of ion acoustic waves, solitons, and their interactions in nonthermal electron-positron-ion plasmas

    SciTech Connect

    Zhang Jiefang; Wang Yueyue; Wu Lei

    2009-06-15

    The propagation of ion acoustic waves in plasmas composed of ions, positrons, and nonthermally distributed electrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability of ion acoustic wave is analyzed, where the nonthermal parameter is found to be of significant importance. Furthermore, analytical expressions for the bright and dark solitons are obtained, and the interaction of multiple solitons is discussed.

  8. Higher-order corrections to dust ion-acoustic soliton in a quantum dusty plasma

    SciTech Connect

    Chatterjee, Prasanta; Das, Brindaban; Mondal, Ganesh; Muniandy, S. V.; Wong, C. S.

    2010-10-15

    Dust ion-acoustic soliton is studied in an electron-dust-ion plasma by employing a two-fluid quantum hydrodynamic model. Ions and electrons are assumed to follow quantum mechanical behaviors in dust background. The Korteweg-de Vries (KdV) equation and higher order contribution to KdV equations are derived using reductive perturbation technique. The higher order contribution is obtained as a higher order inhomogeneous differential equation. The nonsecular solution of the higher order contribution is obtained by using the renormalization method and the particular solution of the inhomogeneous equation is determined using a truncated series solution method. The effects of dust concentration, quantum parameter for ions and electrons, and soliton velocity on the amplitude and width of the dressed soliton are discussed.

  9. Switching of bound vector solitons for the coupled nonlinear Schroedinger equations with nonhomogenously stochastic perturbations

    SciTech Connect

    Sun Zhiyuan; Yu Xin; Liu Ying; Gao Yitian

    2012-12-15

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schroedinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  10. Generalized dark-bright vector soliton solution to the mixed coupled nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Manikandan, N.; Radhakrishnan, R.; Aravinthan, K.

    2014-08-01

    We have constructed a dark-bright N-soliton solution with 4N+3 real parameters for the physically interesting system of mixed coupled nonlinear Schrödinger equations. Using this as well as an asymptotic analysis we have investigated the interaction between dark-bright vector solitons. Each colliding dark-bright one-soliton at the asymptotic limits includes more coupling parameters not only in the polarization vector but also in the amplitude part. Our present solution generalizes the dark-bright soliton in the literature with parametric constraints. By exploiting the role of such coupling parameters we are able to control certain interaction effects, namely beating, breathing, bouncing, attraction, jumping, etc., without affecting other soliton parameters. Particularly, the results of the interactions between the bound state dark-bright vector solitons reveal oscillations in their amplitudes under certain parametric choices. A similar kind of effect was also observed experimentally in the BECs. We have also characterized the solutions with complicated structure and nonobvious wrinkle to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation. It is interesting to identify that the polarization vector of the dark-bright one-soliton evolves on a spherical surface instead of a hyperboloid surface as in the bright-bright case of the mixed coupled nonlinear Schrödinger equations.

  11. Oblique propagation of ion acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons

    SciTech Connect

    Wang, Jian-Yong; Cheng, Xue-Ping; Tang, Xiao-Yan; Yang, Jian-Rong; Ren, Bo

    2014-03-15

    The oblique propagation of ion-acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons is studied. Linear dispersion relations of the fast and slow ion-acoustic modes are discussed under the weak and strong magnetic field situations. By means of the reductive perturbation approach, Korteweg-de Vries equations governing ion-acoustic waves of fast and slow modes are derived, respectively. Explicit interacting soliton-cnoidal wave solutions are obtained by the generalized truncated Painlevé expansion. It is found that every peak of a cnoidal wave elastically interacts with a usual soliton except for some phase shifts. The influence of the electron superthermality, positron concentration, and magnetic field obliqueness on the soliton-cnoidal wave are investigated in detail.

  12. Ion-acoustic Gardner Solitons in electron-positron-ion plasma with two-electron temperature distributions

    NASA Astrophysics Data System (ADS)

    Rehman, Momin A.; Mishra, M. K.

    2016-01-01

    The ion-acoustic solitons in collisionless plasma consisting of warm adiabatic ions, isothermal positrons, and two temperature distribution of electrons have been studied. Using reductive perturbation method, Korteweg-de Vries (K-dV), the modified K-dV (m-KdV), and Gardner equations are derived for the system. The soliton solution of the Gardner equation is discussed in detail. It is found that for a given set of parameter values, there exists a critical value of β=Tc/Th, (ratio of cold to hot electron temperature) below which only rarefactive KdV solitons exist and above it compressive KdV solitons exist. At the critical value of β, both compressive and rarefactive m-KdV solitons co-exist. We have also investigated the soliton in the parametric regime where the KdV equation is not valid to study soliton solution. In this region, it is found that below the critical concentration the system supports rarefactive Gardner solitons and above it compressive Gardner solitons are found. The effects of temperature ratio of two-electron species, cold electron concentration, positron concentration on the characteristics of solitons are also discussed.

  13. Acoustic nonlinear periodic (cnoidal) waves and solitons in pair-ion plasmas

    NASA Astrophysics Data System (ADS)

    Kaladze, T.; Mahmood, S.; Ur-Rehman, Hafeez

    2012-09-01

    Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of the same mass ion species with different temperatures. It is found that the temperature difference between negatively and positively charged ions appropriates the dispersion property to linear acoustic waves and this difference has a decisive role in nonlinear dynamics as well. Using a reductive perturbation method and appropriate boundary conditions the Korteweg-de Vries equation is derived. Both cnoidal wave and soliton solutions are discussed in detail. In the special case, it is revealed that the amplitude of a soliton may become larger than what is allowed by the nonlinear stationary wave theory, which is equal to the quantum tunneling by a particle through a potential barrier effect. The serious flaw in the results obtained for ion acoustic nonlinear periodic waves by Yadav et al (1995 Phys. Rev. E 52 3045) in two-electron temperature plasmas and Chawla and Misra (2010 Phys. Plasmas 17 102315) in electron-positron-ion plasmas is also pointed out.

  14. Dust Acoustic Solitons in the Dusty Plasma of the Earth's Ionosphere

    SciTech Connect

    Kopnin, S.I.; Kosarev, I.N.; Popel, S.I.; Yu, M.Y.

    2005-03-15

    Stratified structures that are observed at heights of 80-95 km in the lower part of the Earth's ionosphere are known as noctilucent clouds and polar mesosphere summer echoes. These structures are thought to be associated with the presence of vast amounts of charged dust or aerosols. The layers in the lower ionosphere where there are substantial amounts of dust are called the dusty ionosphere. The dust grains can carry a positive or a negative charge, depending on their constituent materials. As a rule, the grains are ice crystals, which may contain metallic inclusions. A grain with a sufficiently large metallic content can acquire a positive charge. Crystals of pure ice are charged negatively. The distribution of the dust grains over their charges has a profound impact on the ionizational and other properties of dust structures in the dusty ionosphere. In the present paper, a study is made of the effect of the sign of the dust charge on the properties of dust acoustic solitons propagating in the dusty ionosphere. It is shown that, when the dust charge is positive, dust acoustic solitons correspond to a hill in the electron density and a well in the ion density. When the dust is charged negatively, the situation is opposite. These differences in the properties of dust acoustic solitons can be used to diagnose the plasmas of noctilucent clouds and polar mesosphere summer echoes.

  15. Oblique modulation of ion-acoustic waves and envelope solitons in electron-positron-ion plasma

    SciTech Connect

    Jehan, Nusrat; Salahuddin, M.; Mirza, Arshad M.

    2009-06-15

    The effect of oblique modulation on the amplitude dynamics of ion-acoustic wave propagating in a collisionless electron-positron-ion plasma is investigated. Using Krylov-Bogoliubov-Mitropolsky (KBM) perturbation method, a nonlinear Schroedinger (NLS) equation is derived which governs the evolution of obliquely modulated ion-acoustic envelope excitations. It is found that the presence of positron component significantly modifies the stability domains for small angles of propagation with the direction of modulation. The stationary solutions of NLS equation, i.e., bright and dark envelope solitons, become narrower as the concentration of positron component increases.

  16. Geo-acoustic inversion with a vector sensor array

    NASA Astrophysics Data System (ADS)

    Li, Fenghua; Zhang, Renhe; Sun, Mei

    2012-11-01

    Geo-acoustic inversion has been paid much attention in the last several decades. Various geo-acoustic inversion methods based on hydrophone arrays have been developed. However, few studies on inverting the bottom parameters with a vector sensor array have been performed. In this paper, theoretical analyses and numerical simulations show that in comparison with pressure, the vertical particle velocity has different spatial distribution, which can provide more information for geo-acoustic inversion. Two geo-acoustic inversion methods, based on coherent and incoherent matched field processing with a vector sensor array, have been developed. To establish the validity of the proposed methods, a shallow water experiment was performed in 2009. The experimental data indicates that the uncertainty of the inversion results is decreased by the coherent inversion method with a vector sensor array in comparison with the results obtained by a hydrophone array only.

  17. A proposal for dust-ion-acoustic soliton excitation in a discharge plasma

    SciTech Connect

    Abbasi, H.; Pajouh, H. Hakimi

    2009-03-15

    Nonlinear dynamics of disintegration process of a localized perturbation into dust-ion-acoustic (DIA) solitons is studied. The present paper is a theoretical attempt to propose and model the experimental DIA soliton excitation [Y. Nakamura and A. Sarma, Phys. Plasmas 8, 3921 (2001)] in the presence of both superthermal and trapped electrons. The proposal is designed for low-pressure electrical gas discharges that are in nonequilibrium state. In the discharge plasmas, the electron temperature is usually much greater than ion temperature. Thus, the electron distribution function (DF) that in low-pressure discharges is generally non-Maxwellian has to be modeled. For this purpose, the generalized Lorentzian ({kappa})-DF is used to simulate the electron DF. The formalism is derived near the ion-plasma frequency. In this range of frequency, the ion dynamics is considerable and the DIA solitons are the outcome of the disintegration process. Electron trapping is included in the model as the result of positive polarity of the initial potential. A Gaussian initial perturbation is used to model the localized perturbation. It is shown that a slowly varying dynamics of the order of ion motions causes an initial Gaussian perturbation to be, adiabatically, disintegrated to a number of DIA solitons. The disintegration attributes and influence of both trapped and superthermal electrons on this process, are studied.

  18. Particle-in-cell simulation of large amplitude ion-acoustic solitons

    SciTech Connect

    Sharma, Sarveshwar Sengupta, Sudip; Sen, Abhijit

    2015-02-15

    The propagation of large amplitude ion-acoustic solitons is studied in the laboratory frame (x, t) using a 1-D particle-in-cell code that evolves the ion dynamics by treating them as particles but assumes the electrons to follow the usual Boltzmann distribution. It is observed that for very low Mach numbers the simulation results closely match the Korteweg-de Vries soliton solutions, obtained in the wave frame, and which propagate without distortion. The collision of two such profiles is observed to exhibit the usual solitonic behaviour. As the Mach number is increased, the given profile initially evolves and then settles down to the exact solution of the full non-linear Poisson equation, which then subsequently propagates without distortion. The fractional change in amplitude is found to increase linearly with Mach number. It is further observed that initial profiles satisfying k{sup 2}λ{sub de}{sup 2}<1 break up into a series of solitons.

  19. Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal

    SciTech Connect

    Bugay, A. N.; Sazonov, S. V.

    2008-08-15

    A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible.

  20. Tunable narrow-band spectral peak imposed onto a soliton with an acoustic long-period grating

    NASA Astrophysics Data System (ADS)

    Bolger, Jeremy A.; Luan, Feng; Yeom, Dong-Il; Tsoy, Eduard; de Sterke, C. Martijn; Eggleton, Benjamin J.

    2008-01-01

    We demonstrate a method of local spectral enhancement of an ultrafast soliton pulse. We use an in-line acoustic long-period grating (LPG), a periodic structure modifying both the phase and the loss of the propagating light, and which is readily tuned by simple adjustment of an applied electrical signal. The soliton perturbed by this narrow-band filter evolves with nonlinear propagation into an intense localised spectral peak. Our setup consists of creation of a red-shifted optical soliton by propagation of pulses from a fibre laser in standard single-mode optical fibre, followed by imposition of a spectrally narrow LPG near to the soliton peak, and then continuing propagation. The wavelength and the peak value of the resulting local enhancement can be tuned by adjustment of the applied acoustic frequency and amplitude. The physics of the observed local spectral enhancement will be discussed in detail here.

  1. Hybrid (Vlasov-Fluid) simulation of ion-acoustic solitons chain formation including trapped electrons

    SciTech Connect

    Behjat, E.; Aminmansoor, F.; Abbasi, H.

    2015-08-15

    Disintegration of a Gaussian profile into ion-acoustic solitons in the presence of trapped electrons [H. Hakimi Pajouh and H. Abbasi, Phys. Plasmas 15, 082105 (2008)] is revisited. Through a hybrid (Vlasov-Fluid) model, the restrictions associated with the simple modified Korteweg de-Vries (mKdV) model are studied. For instance, the lack of vital information in the phase space associated with the evolution of electron velocity distribution, the perturbative nature of mKdV model which limits it to the weak nonlinear cases, and the special spatio-temporal scaling based on which the mKdV is derived. Remarkable differences between the results of the two models lead us to conclude that the mKdV model can only monitor the general aspects of the dynamics, and the precise picture including the correct spatio-temporal scales and the properties of solitons should be studied within the framework of hybrid model.

  2. Group velocity locked vector dissipative solitons in a high repetition rate fiber laser.

    PubMed

    Luo, Yiyang; Li, Lei; Liu, Deming; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Tang, Dingyuan; Fu, Songnian; Zhao, Luming

    2016-08-01

    Vectorial nature of dissipative solitons (DSs) with high repetition rate is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectrum, which can be considered as an auxiliary indicator of the group velocity locked vector DSs. Moreover, numerical simulations well confirm the experimental observations and further reveal the impact of the net cavity birefringence on the properties of the formed vector DSs. PMID:27505834

  3. Dressed ion-acoustic solitons in magnetized dusty plasmas

    SciTech Connect

    El-Labany, S. K.; El-Shamy, E. F.; El-Warraki, S. A.

    2009-01-15

    In the present research paper, the characteristics of ion acoustic solitary waves are investigated in hot magnetized dusty plasmas consisting of negatively charged dust grains, positively charged ion fluid, and isothermal electrons. Applying a reductive perturbation theory, a nonlinear Korteweg-de Vries (KdV) equation for the first-order perturbed potential and a linear inhomogeneous KdV-type equation for the second-order perturbed potentials are derived. Stationary solutions of these coupled equations are obtained using a renormalization method. The effects of the external oblique magnetic field, hot ion fluid, and higher-order nonlinearity on the nature of the ion acoustic solitary waves are discussed. The results complement and provide new insights into previously published results on this problem [R. S. Tiwari and M. K. Mishra, Phys. Plasmas 13, 062112 (2006)].

  4. Tracking sperm whales with a towed acoustic vector sensor.

    PubMed

    Thode, Aaron; Skinner, Jeff; Scott, Pam; Roswell, Jeremy; Straley, Janice; Folkert, Kendall

    2010-11-01

    Passive acoustic towed linear arrays are increasingly used to detect marine mammal sounds during mobile anthropogenic activities. However, these arrays cannot resolve between signals arriving from the port or starboard without vessel course changes or multiple cable deployments, and their performance is degraded by vessel self-noise and non-acoustic mechanical vibration. In principle acoustic vector sensors can resolve these directional ambiguities, as well as flag the presence of non-acoustic contamination, provided that the vibration-sensitive sensors can be successfully integrated into compact tow modules. Here a vector sensor module attached to the end of a 800 m towed array is used to detect and localize 1813 sperm whale "clicks" off the coast of Sitka, AK. Three methods were used to identify frequency regimes relatively free of non-acoustic noise contamination, and then the active intensity (propagating energy) of the signal was computed between 4-10 kHz along three orthogonal directions, providing unambiguous bearing estimates of two sperm whales over time. These bearing estimates are consistent with those obtained via conventional methods, but the standard deviations of the vector sensor bearing estimates are twice those of the conventionally-derived bearings. The resolved ambiguities of the bearings deduced from vessel course changes match the vector sensor predictions. PMID:21110564

  5. Higher order solutions to ion-acoustic solitons in a weakly relativistic two-fluid plasma

    SciTech Connect

    Gill, Tarsem Singh; Bala, Parveen; Kaur, Harvinder

    2008-12-15

    The nonlinear wave structure of small amplitude ion-acoustic solitary waves (IASs) is investigated in a two-fluid plasma consisting of weakly relativistic streaming ions and electrons. Using the reductive perturbation theory, the basic set of governing equations is reduced to the Korteweg-de Vries (KdV) equation for the lowest order perturbation. This analysis is further extended using the renormalization technique for the inclusion of higher order nonlinear and dispersive effects for better accuracy. The effect of higher order correction and various parameters on the soliton characteristics is investigated and also discussed.

  6. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2016-07-01

    The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg-deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

  7. Dust-ion-acoustic Gardner solitons in a dusty plasma with bi-Maxwellian electrons

    SciTech Connect

    Masud, M. M.; Asaduzzaman, M.; Mamun, A. A.

    2012-10-15

    The nonlinear propagation of dust-ion-acoustic (DIA) waves in a dusty plasma with bi-Maxwellian electrons, namely, lower and higher temperature electrons (composed of negatively charged stationary dust, inertial ions, and non-inertial two-temperature-electrons) is investigated by deriving the Gardner equation using the reductive perturbation technique. The basic features (amplitude, width, etc.) of the hump (positive potential) and dip (negative potential) shaped DIA solitons (Gardner solitons, i.e., GSs) are found to exist beyond the Korteweg-de Vries (K-dV) limit. These DIA-GSs are qualitatively different from the K-dV and modified K-dV solitons. It is also shown that depending on the parameter {sigma} (where {sigma}=T{sub e1}/T{sub e2}, T{sub e1} and T{sub e2} being the temperatures of two distinct electrons and T{sub e1} Much-Less-Than T{sub e2}), the DIA-GSs exhibit hump and dip shape solitary structures. The implications of our results in understanding the localized nonlinear electrostatic perturbations observed in double-plasma machines, rf discharge plasma, noctilucent cloud region in Earths atmosphere, etc., where population of two thermal electrons can significantly dominate the wave dynamics, are also briefly addressed.

  8. Effects of hot electron inertia on electron-acoustic solitons and double layers

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.

    2015-07-15

    The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs. Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.

  9. Propagation of vector solitons in a quasi-resonant medium with stark deformation of quantum states

    SciTech Connect

    Sazonov, S. V.; Ustinov, N. V.

    2012-11-15

    The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces {sigma} transitions, while the extraordinary component induces the {pi} transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.

  10. Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma

    SciTech Connect

    Ema, S. A.; Ferdousi, M.; Mamun, A. A.

    2015-04-15

    The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas.

  11. Polarization scattering by soliton-soliton collisions

    NASA Astrophysics Data System (ADS)

    Mollenauer, L. F.; Gordon, J. P.; Heismann, F.

    1995-10-01

    We have discovered experimentally that soliton-soliton collisions in wavelength division multiplexing significantly alter the polarization states of the colliding solitons. Analysis shows that the change in polarization is according to the cross product of the Stokes vectors of the colliding solitons. Birefringence of the fiber spans can turn this polarization scattering into a significant source of timing jitter.

  12. Solitonic and chaotic behaviors for the nonlinear dust-acoustic waves in a magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong

    2016-05-01

    A model for the nonlinear dust-ion-acoustic waves in a two-ion-temperature, magnetized dusty plasma is studied in this paper. Via the symbolic computation, one-, two- and N-soliton solutions are obtained. It is found that when √{μeμi }<2 T/i2 Te2 +T/i Te , the soliton amplitude is positively related to μe, μi, Ti, Zd, and B0, but inversely related to Te and md, with Te, Ti, μe, and μi as the temperature of an electron, temperature of a positive ion, normalized initial density of electrons, and normalized initial density of positive ions, respectively, Zd, B0, and md as the charge number of a dust particle, strength of the static magnetic field, and mass of a dust particle, respectively. It is also found that the two solitons are always parallel during the propagation on the x - y, x - t, and y - t planes, where x, y, and z are the scaled spacial coordinates, and t is the retarded time. Upon the introduction of the driving force Γ(t ) , both the developed and weak chaotic motions as well as the effect of Γ(t ) are explored. Via the phase projections and power spectra, we find the difference between the two chaotic motions roots in the relative magnitude of nonlinearity and external force. Increasing the frequency of the external force or the strength of the damped term can weaken the chaotic motions of such a forced model.

  13. Dust acoustic solitons in a charge varying dusty plasma in the presence of ion nonthermality and background nonextensivity

    SciTech Connect

    Benzekka, Moufida; Tribeche, Mouloud

    2013-08-15

    Dust acoustic (DA) solitons are addressed in a charge varying dusty plasma in the presence of ion nonthermality and background nonextensivity. A physically meaningful nonthermal nonextensive ion distribution is outlined. The correct non-Maxwellian ion charging current is derived based on the orbit-limited motion theory. Under grain-current balance, the variable dust charge is expressed in terms of the Lambert function. It is found that nonthermality and its nonextensive nature may act concurrently and influence the restoring force and hence the soliton profile. Due to the flexibility provided by the nonextensive parameter, we think that our model should provide a better fit of the space observations.

  14. Large acoustic solitons and double layers in plasmas with two positive ion species

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.; Saini, Nareshpal Singh; Kourakis, Ioannis

    2011-04-15

    Large nonlinear acoustic waves are discussed in a plasma made up of cold supersonic and adiabatic subsonic positive ions, in the presence of hot isothermal electrons, with the help of Sagdeev pseudopotential theory. In this model, no solitons are found at the acoustic speed, and no compositional parameter ranges exist where solutions of opposite polarities can coexist. All nonlinear modes are thus super-acoustic, but polarity changes are possible. The upper limits on admissible structure velocities come from different physical arguments, in a strict order when the fractional cool ion density is increased: infinite cold ion compression, warm ion sonic point, positive double layers, negative double layers, and finally, positive double layers again. However, not all ranges exist for all mass and temperature ratios. Whereas the cold and warm ion sonic point limitations are always present over a wide range of mass and temperature ratios, and thus positive polarity solutions can easily be obtained, double layers have a more restricted existence range, specially if polarity changes are sought.

  15. Dust acoustic soliton and double layers with streaming dust and superthermal particles

    NASA Astrophysics Data System (ADS)

    Shan, S. Ali; Mushtaq, A.

    2013-07-01

    Dust acoustic waves are investigated in plasma system containing dynamic and streaming dust, supertherrmal electrons and ions. Linear and nonlinear studies are carried out and elaborated with the help of parameters taken for Saturn's F-ring. An energy integral equation is obtained by using the Sagdeev potential approach, and results are displayed by solving it analytically and numerically. The dependence of nonlinear structures on κ values, the ratio of electron to dust equilibrium densities μ ed , Mach number M, and dust streaming speed v d0 have been presented. The streaming speed appears as a destructive partner for the Mach number M in the pseudoenergy equation and hence plays a dominant modifying role in the formation of nonlinear structures. It plays a destructive role for some of the solitons and works as a source, for the emergence of new solitons (region). Formation of double layers are also investigated and shown that the amplitude, width and existence of double layers structures are predominantly affected by the presence of superthermal electrons, ions, and streaming dust beam.

  16. Mixed-type vector solitons for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in an optical fiber

    NASA Astrophysics Data System (ADS)

    Chai, Jun; Tian, Bo; Wang, Yu-Feng; Zhen, Hui-Ling; Wang, Yun-Po

    2015-09-01

    In this paper, we investigate the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients, which describe the effects of quintic nonlinearity for the ultrashort optical pulse propagation in a non-Kerr medium, or in the twin-core nonlinear optical fiber or waveguide. Under certain constraints on the variable coefficients in such equations, mixed-type (bright-dark) vector one- and two-soliton solutions are derived via the Hirota method and symbolic computation, and such vector-soliton solutions are only related to the delayed nonlinear response effect and nonlinearity. Through the graphic analysis, we find that the delayed nonlinear response effect and nonlinearity can both affect the vector-soliton amplitude, while the vector-soliton velocity merely depends on the delayed nonlinear response effect. With the choice on the variable coefficients representing the delayed nonlinear response effect and nonlinearity, interactions between the amplitude- and velocity-unchanging, amplitude-changing, velocity-changing and amplitude- and velocity-changing vector two solitons are obtained. We see that the interaction between the vector two solitons is elastic. We also find that the interaction period of the bound vector solitons decreases as the increase of the delayed nonlinear response effect or increases as the decrease of the delayed nonlinear response effect, but is independent of the nonlinearity.

  17. Cylindrical and spherical ion-acoustic envelope solitons in multicomponent plasmas with positrons.

    PubMed

    Sabry, R; Moslem, W M; Shukla, P K; Saleem, H

    2009-05-01

    The nonlinear wave modulation of planar and nonplanar (cylindrical and spherical) ion-acoustic envelope solitons in a collisionless unmagnetized electron-positron-ion plasma with two-electron temperature distributions has been studied. The reductive perturbative technique is used to obtain a modified nonlinear Schrödinger equation, which includes a damping term that accounts for the geometrical effect. The critical wave number threshold Kc, which indicates where the modulational instability sets in, has been determined for various regimes. It is found that an increase in the positron concentration (alpha) leads to a decrease in the critical wave number (Kc) until alpha approaches certain value alphac (critical positron concentration), then further increase in alpha beyond alphac increases the value of Kc. Also, it is found that there is a modulation instability period for the cylindrical and spherical wave modulation, which does not exist in the one-dimensional case. PMID:19518571

  18. Nonlinear birefringence in plasmas: Polarization dynamics, vector modulational instability, and vector solitons

    SciTech Connect

    Borhanian, Jafar

    2014-06-15

    The propagation of an elliptically polarized intense laser pulse in an unmagnetized collisionless uniform plasma is considered. A multiple scale perturbation theory is employed to show that in a weakly relativistic regime, evolution of the components of vector potential is governed by two coherently coupled nonlinear Schrödinger (NLS) equations. A set of equations describing the evolution of Stokes parameters is derived within the continuous wave approximation and the dynamics of components of field amplitude is studied. The polarization dynamics of a pulse is investigated by means of numerical solution of the coupled NLS equations. A detailed analysis of vector modulational instability is presented and the possibility for occurrence of various kinds of vector solitary waves is addressed.

  19. Bearing estimation with acoustic vector-sensor arrays

    SciTech Connect

    Hawkes, M.; Nehorai, A.

    1996-04-01

    We consider direction-of-arrival (DOA) estimation using arrays of acoustic vector sensors in free space, and derive expressions for the Cram{acute e}r-Rao bound on the DOA parameters when there is a single source. The vector-sensor array is seen to have improved performance over the traditional scalar-sensor (pressure-sensor) array for two distinct reasons: its elements have an inherent directional sensitivity and the array makes a greater number of measurements. The improvement is greatest for small array apertures and low signal-to-noise ratios. Examination of the conventional beamforming and Capon DOA estimators shows that vector-sensor arrays can completely resolve the bearing, even with a linear array, and can remove the ambiguities associated with spatial undersampling. We also propose and analyze a diversely-oriented array of velocity sensors that possesses some of the advantages of the vector-sensor array without the increase in hardware and computation. In addition, in certain scenarios it can avoid problems with spatially correlated noise that the vector-sensor array may suffer. {copyright} {ital 1996 American Institute of Physics.}

  20. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    SciTech Connect

    Rufai, O. R. Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  1. Nonplanar dust-acoustic Gardner solitons in a four-component dusty plasma.

    PubMed

    Mannan, A; Mamun, A A

    2011-08-01

    The nonlinear propagation of Gardner solitons (GSs) in a nonplanar (cylindrical and spherical) four-component dusty plasma (composed of inertial positively and negatively dust, Boltzmann electrons, and ions) is studied by the reductive perturbation method. The modified Gardner equation is derived and numerically solved. It has been found that the basic characteristics of the dust-acoustic (DA) GSs, which are shown to exist for μ around its critical value μ(c) [where μ=Z(dp)m(dn)/Z(dn)m(dp), Z(dn) (Z(dp)) is the number of electrons (protons) residing on a negative (positive) dust, m(dp) (m(dn)) is the mass of the positive (negative) dust, μ(c) is the value of μ corresponding to the vanishing of the nonlinear coefficient of the Korteweg-de Vries (KdV) equation, e.g., μ(c)≃0.174 for μ(e)=n(e0)/Z(dn)n(dn0)=0.2, μ(i)=n(i0)/Z(d)}n(dn0)=0.4, and σ=T(i)/T(e)=0.1, n(e0), n(i0), and n(dn0) are, respectively, electron, ion, and dust number densities, and T(i) (T(e)) is the ion (electron) temperature], are different from those of the KdV solitons, which do not exist for μ around μ(c). It has been also found that the propagation characteristics of nonplanar DA GSs significantly differ from those of planar ones. PMID:21929121

  2. Nonplanar dust-acoustic Gardner solitons in a four-component dusty plasma

    SciTech Connect

    Mannan, A.; Mamun, A. A.

    2011-08-15

    The nonlinear propagation of Gardner solitons (GSs) in a nonplanar (cylindrical and spherical) four-component dusty plasma (composed of inertial positively and negatively dust, Boltzmann electrons, and ions) is studied by the reductive perturbation method. The modified Gardner equation is derived and numerically solved. It has been found that the basic characteristics of the dust-acoustic (DA) GSs, which are shown to exist for {mu} around its critical value {mu}{sub c}[where {mu}=Z{sub dp}m{sub dn}/Z{sub dn}m{sub dp}, Z{sub dn} (Z{sub dp}) is the number of electrons (protons) residing on a negative (positive) dust, m{sub dp} (m{sub dn}) is the mass of the positive (negative) dust, {mu}{sub c} is the value of {mu} corresponding to the vanishing of the nonlinear coefficient of the Korteweg-de Vries (KdV) equation, e.g., {mu}{sub c}{approx_equal}0.174 for {mu}{sub e}=n{sub e0}/Z{sub dn}n{sub dn0}=0.2, {mu}{sub i}=n{sub i0}/Z{sub dn}n{sub dn0}=0.4, and {sigma}=T{sub i}/T{sub e}=0.1, n{sub e0}, n{sub i0}, and n{sub dn0} are, respectively, electron, ion, and dust number densities, and T{sub i} (T{sub e}) is the ion (electron) temperature], are different from those of the KdV solitons, which do not exist for {mu} around {mu}{sub c}. It has been also found that the propagation characteristics of nonplanar DA GSs significantly differ from those of planar ones.

  3. Conservation Laws and Mixed-Type Vector Solitons for the 3-Coupled Variable-Coefficient Nonlinear Schrödinger Equations in Inhomogeneous Multicomponent Optical Fibre

    NASA Astrophysics Data System (ADS)

    Chai, Jun; Tian, Bo; Wang, Yu-Feng; Sun, Wen-Rong; Wang, Yun-Po

    2016-06-01

    In this article, the propagation and collision of vector solitons are investigated from the 3-coupled variable-coefficient nonlinear Schrödinger equations, which describe the amplification or attenuation of the picosecond pulses in the inhomogeneous multicomponent optical fibre with different frequencies or polarizations. On the basis of the Lax pair, infinitely-many conservation laws are obtained. Under an integrability constraint among the variable coefficients for the group velocity dispersion (GVD), nonlinearity and fibre gain/loss, and two mixed-type (2-bright-1-dark and 1-bright-2-dark) vector one- and two-soliton solutions are derived via the Hirota method and symbolic computation. Influence of the variable coefficients for the GVD and nonlinearity on the vector soliton amplitudes and velocities is analysed. Through the asymptotic and graphic analysis, bound states and elastic and inelastic collisions between the vector two solitons are investigated: Not only the elastic but also inelastic collision between the 2-bright-1-dark vector two solitons can occur, whereas the collision between the 1-bright-2-dark vector two solitons is always elastic; for the bound states, the GVD and nonlinearity affect their types; with the GVD and nonlinearity being the constants, collision period decreases as the GVD increases but is independent of the nonlinearity.

  4. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. I. Low-frequency ion-acoustic solitons

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-07-15

    Using the Sagdeev pseudopotential technique, the existence of large amplitude ion-acoustic solitons is investigated for a plasma composed of ions, and hot and cool electrons. Not only are all species treated as adiabatic fluids but the model for which inertial effects of the hot electrons is neglected whilst retaining inertia and pressure for the ions and cool electrons has also been considered. The focus of this investigation has been on identifying the admissible Mach number ranges for large amplitude nonlinear ion-acoustic soliton structures. The lower Mach number limit yields a minimum velocity for the existence of ion-acoustic solitons. The upper Mach number limit for positive potential solitons is found to coincide with the limiting value of the potential (positive) beyond which the ion number density ceases to be real valued, and ion-acoustic solitons can no longer exist. Small amplitude solitons having negative potentials are found to be supported when the temperature of the cool electrons is negligible.

  5. New Type of Extremely Short Vector Solitons in a Medium of Asymmetric Molecules

    NASA Astrophysics Data System (ADS)

    Sazonov, S. V.

    2015-12-01

    A new type of extremely short terahertz electromagnetic solitons, which can be formed in a system of molecules with permanent dipole moments in stationary states, has been predicted. It has been shown that such solitons can be formed when the ordinary component of the field excites quantum transitions and, in addition, the extraordinary component dynamically shifts their frequencies. The mechanism of propagation of such solitons in the presence of the nonstationary Stark inversion of quantum levels accompanied by the effective generation of a pulse of the extraordinary wave has been analyzed. The solitons under consideration have no analogs in the visible range.

  6. Comparison study of time reversal OFDM acoustic communication with vector and scalar sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zhongkang; Zhang, Hongtao; Xie, Zhe

    2012-11-01

    To compare the performance of time reversal orthogonal frequency division multiplexing (OFDM) acoustic communication on vector and scalar sensors, the vector and scalar acoustic fields were modeled. Time reversal OFDM acoustic communication was then simulated for each sensor type. These results are compared with data from the CAPEx'09 experiment. The abilityof particle velocity channels to achieve reliable acoustic communication, as predicted by the model, is confirmed with the experiment data. Experimental results show that vector receivers can reduce the required array size, in comparisonto hydrophone arrays, whileproviding comparable communication performance.

  7. Investigation of Interference Phenomena of Broadband Acoustic Vector Signals in Shallow Water

    NASA Astrophysics Data System (ADS)

    Piao, Shengchun; Ren, Qunyan

    2010-09-01

    Although the ocean environment in shallow water is very complex, there still exists stable interference pattern for broadband low frequency sound propagation. The waveguide invariant concept is introduced to describe the broadband interference structure of the acoustic pressure field in a waveguide and now it is widely used in underwater acoustic signal processing. Acoustic vector sensor can measure the particle velocity in the ocean and provides more information for the underwater sound field. In this paper, the interference phenomena of broadband vector acoustic signals in shallow water are investigated by numerical simulation. Energy spatial-frequency distributions are shown for energy flux density vector obtained by combination of pressure and particle velocity signals and they are analyzed according to normal mode theory. Comparisons of the interference structure between the scale acoustic field and vector acoustic field also have been made. The waveguide invariant concept is extended to describe the interference structure of vector acoustic field in shallow water. A method for extraction of the waveguide invariant from interference patterns in vector acoustic field spectrograms is presented, which can be used in matched-field processing and geoacoustic inversion. It is shown that this method may have more advantages than the traditional methods which calculate the waveguide invariant using measured sound pressure in the ocean.

  8. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    SciTech Connect

    Rufai, O. R.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  9. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    NASA Astrophysics Data System (ADS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2015-10-01

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  10. Obliquely propagating ion-acoustic solitons and supersolitons in four-component auroral plasmas

    NASA Astrophysics Data System (ADS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2016-02-01

    Arbitrary amplitude nonlinear low frequency electrostatic soliton and supersoliton structures are studied in magnetized four-component auroral plasmas composed of a cold singly charged oxygen-ion fluid, Boltzmann distribution of hot protons and two distinct group of electron species. Using the Sagdeev pseudo-potential technique, the characteristics of obliquely propagating nonlinear structures are investigated analytically and numerically. The model supports the evolution of soliton and supersoliton structures in the auroral acceleration region. Depending on the parametric region, the positive and negative potential solitons coexists at lower Mach numbers, but at higher Mach numbers only negative potential solitons and supersolitons can exist. The presence of hot protons restricted the Mach number of the nonlinear structures to exist only at the subsonic region. The present investigation concurs with the Swedish Viking satellite observations in the auroral region.

  11. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-12-15

    A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density of either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.

  12. Experimental investigation of the interference structure in a shallow-water vector acoustic field

    NASA Astrophysics Data System (ADS)

    Lin, Wangsheng; Liang, Guolong; Wang, Yan; Wang, Yilin

    2012-11-01

    The waveguide invariant concept describes the interference striations in the acoustic pressure spectrograms produced with an underwater broadband source. In this paper, the existence of interference structure in the vector acoustic field is examined using sea trial data, and the waveguide invariant is exploited to interpret fringes of the vector field. The experimental data, which recorded a merchant vessel passing on a straight path, were collected by a 2-dimensional vector sensor during an experiment in the South China Sea. The intensity and phase spectra of the energy flux density vector in the acoustic field radiated by the moving vessel are obtained from the magnitude and phase angle of the product of the pressure and the horizontal particle velocity's complex conjugate. Distinct interference patterns appear in the vector intensity and phase spectra. The characteristics of these have been analyzed by comparison with the scaled acoustic field. The equation describing the striations associated with the ship's trajectory is derived from waveguide invariant theory. The Hough transform method is used to extract the waveguide invariant from the data. To improve the quality of the patterns derived from the vector field, a better value of waveguide invariant can be estimated. Good agreement between reconstructed trajectories and real patterns suggests that it is feasible to use the interference structure in an acoustic vector field to determine the waveguide characteristics.

  13. Dust-acoustic Gardner solitons and double layers in dusty plasmas with nonthermally distributed ions of two distinct temperatures

    SciTech Connect

    Tasnim, I.; Mamun, A. A.; Masud, M. M.; Asaduzzaman, M.

    2013-03-15

    A rigorous theoretical investigation has been performed on dust-acoustic (DA) solitary structures in an unmagnetized dusty plasma, consisting of negatively charged mobile dust grains, Boltzmann distributed electrons, and nonthermally distributed ions of two distinct temperatures. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV) and Gardner equations, and their solitary waves (SWs) and double layer (DL) (in case of Gardner equation) solutions are derived by using the reductive perturbation technique. The basic features of the DA Gardner solitons (GSs) and DLs are studied analytically as well as numerically. It has been observed that the GSs significantly differ from K-dV and mK-dV solitons, and only positive potential DLs exist in the system. It is also studied that two-temperature nonthermal ions significantly modify the nature and basic properties of the DA SWs. The present investigation can be very effective for understanding and studying the nonlinear characteristics of the DA waves in laboratory and space dusty plasmas.

  14. Cylindrical and spherical dust-ion-acoustic modified Gardner solitons in dusty plasmas with two-temperature superthermal electrons

    SciTech Connect

    Alam, M. S.; Masud, M. M.; Mamun, A. A.

    2013-12-15

    A rigorous theoretical investigation has been performed on the propagation of cylindrical and spherical Gardner solitons (GSs) associated with dust-ion-acoustic (DIA) waves in a dusty plasma consisting of inertial ions, negatively charged immobile dust, and two populations of kappa distributed electrons having two distinct temperatures. The well-known reductive perturbation method has been used to derive the modified Gardner (mG) equation. The basic features (amplitude, width, polarity, etc.) of nonplanar DIA modified Gardner solitons (mGSs) have been thoroughly examined by the numerical analysis of the mG equation. It has been found that the characteristics of the nonplanar DIA mGSs significantly differ from those of planar ones. It has been also observed that kappa distributed electrons with two distinct temperatures significantly modify the basic properties of the DIA solitary waves and that the plasma system under consideration supports both compressive and rarefactive DIA mGSs. The present investigation should play an important role for understanding localized electrostatic disturbances in space and laboratory dusty plasmas where stationary negatively charged dust, inertial ions, and superthermal electrons with two distinct temperatures are omnipresent ingredients.

  15. Effect Of Grain Size-Distribution And Nonthermal Ion Distribution On Dust Acoustic Solitons

    SciTech Connect

    Annou, K.; Annou, R.

    2005-10-31

    The investigation of the formation of non-linear coherent structures in dusty plasmas taking into account the dust size and non-thermal ion distributions is conducted. Conditions of the existence of solitons in terms of the Mach number, concentration of non-thermal ions, dust charge and the permeability of the grains are evaluated.

  16. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

    NASA Astrophysics Data System (ADS)

    A. M., El-Hanbaly; E. K., El-Shewy; Elgarayhi, A.; A. I., Kassem

    2015-11-01

    The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  17. Hybrid (Vlasov-Fluid) simulation of ion-acoustic soliton chain formation and validity of Korteweg de-Vries model

    SciTech Connect

    Aminmansoor, F.; Abbasi, H.

    2015-08-15

    The present paper is devoted to simulation of nonlinear disintegration of a localized perturbation into ion-acoustic solitons train in a plasma with hot electrons and cold ions. A Gaussian initial perturbation is used to model the localized perturbation. For this purpose, first, we reduce fluid system of equations to a Korteweg de-Vries equation by the following well-known assumptions. (i) On the ion-acoustic evolution time-scale, the electron velocity distribution function (EVDF) is assumed to be stationary. (ii) The calculation is restricted to small amplitude cases. Next, in order to generalize the model to finite amplitudes cases, the evolution of EVDF is included. To this end, a hybrid code is designed to simulate the case, in which electrons dynamics is governed by Vlasov equation, while cold ions dynamics is, like before, studied by the fluid equations. A comparison between the two models shows that although the fluid model is capable of demonstrating the general features of the process, to have a better insight into the relevant physics resulting from the evolution of EVDF, the use of kinetic treatment is of great importance.

  18. Comment on "Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas" [Phys. Plasmas 22, 032313 (2015)

    NASA Astrophysics Data System (ADS)

    Olivier, C. P.; Maharaj, S. K.; Bharuthram, R.

    2016-06-01

    In a series of papers by Maharaj et al., including "Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas" [Phys. Plasmas 22, 032313 (2015)], incorrect expressions for the Sagdeev potential are presented. In this paper, we provide the correct expression of the Sagdeev potential. The correct expression was used to generate the numerical results for the above-mentioned series of papers, so that all results and conclusions are correct, despite the wrong Sagdeev potential expressions printed in the papers. The correct expression of the Sagdeev potential presented here is a very useful generic expression in the sense that a single expression can be used to study nonlinear structures associated with any acoustic mode, despite the fact that the supersonic and subsonic species would vary if solitons associated with different linear modes are studied.

  19. The design of a broadband ocean acoustic laboratory: detailed examination of vector sensor performance

    NASA Astrophysics Data System (ADS)

    Carpenter, Robert; Silvia, Manuel; Cray, Benjamin A.

    2006-05-01

    Acoustic vector sensors measure the acoustic pressure and three orthogonal components of the acoustic particle acceleration at a single point in space. These sensors, and arrays composed of them, have a number of advantages over traditional hydrophone arrays. This includes full azimuth/elevation angle estimation, even with a single sensor. It is of interest to see how in-water vector sensor performance matches theoretical bounds. A series of experiments designed to characterize the performance of vector sensors operating in shallow water was conducted to assess sensor mounting techniques, and evaluate the sensor's ability to measure bearing and elevation angles to a source as a function of waveform characteristics and signal-to-noise ratio.

  20. New Research on MEMS Acoustic Vector Sensors Used in Pipeline Ground Markers

    PubMed Central

    Song, Xiaopeng; Jian, Zeming; Zhang, Guojun; Liu, Mengran; Guo, Nan; Zhang, Wendong

    2015-01-01

    According to the demands of current pipeline detection systems, the above-ground marker (AGM) system based on sound detection principle has been a major development trend in pipeline technology. A novel MEMS acoustic vector sensor for AGM systems which has advantages of high sensitivity, high signal-to-noise ratio (SNR), and good low frequency performance has been put forward. Firstly, it is presented that the frequency of the detected sound signal is concentrated in a lower frequency range, and the sound attenuation is relatively low in soil. Secondly, the MEMS acoustic vector sensor structure and basic principles are introduced. Finally, experimental tests are conducted and the results show that in the range of 0°∼90°, when r = 5 m, the proposed MEMS acoustic vector sensor can effectively detect sound signals in soil. The measurement errors of all angles are less than 5°. PMID:25609046

  1. Transverse instability of ion acoustic solitons in a magnetized plasma including -nonextensive electrons and positrons

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; El-Taibany, W. F.; Mahmood, S.; Behery, E. E.; Khan, S. A.; Ali, S.; Hussain, S.

    2015-10-01

    > . The magnetic field has no effect on the amplitude of the IASW, whereas the obliqueness angle of the wave propagation, the ion-to-electron temperature ratio and positron-to-ion density concentration ratio affect both the amplitude and the width of the solitary wave structures. The transverse instability analysis illustrates that the one soliton solution has a constant growth rate, and it suffers from instability in the transverse direction. The relevance of the present study to astrophysical space plasmas is also discussed.

  2. Acoustic vector sensor beamforming reduces masking from underwater industrial noise during passive monitoring.

    PubMed

    Thode, Aaron M; Kim, Katherine H; Norman, Robert G; Blackwell, Susanna B; Greene, Charles R

    2016-04-01

    Masking from industrial noise can hamper the ability to detect marine mammal sounds near industrial operations, whenever conventional (pressure sensor) hydrophones are used for passive acoustic monitoring. Using data collected from an autonomous recorder with directional capabilities (Directional Autonomous Seafloor Acoustic Recorder), deployed 4.1 km from an arctic drilling site in 2012, the authors demonstrate how conventional beamforming on an acoustic vector sensor can be used to suppress noise arriving from a narrow sector of geographic azimuths. Improvements in signal-to-noise ratio of up to 15 dB are demonstrated on bowhead whale calls, which were otherwise undetectable using conventional hydrophones. PMID:27106345

  3. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu

    2010-06-01

    Hybrid near-field acoustical holography (NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH, we combine statistically optimized near-field acoustical holography (SONAH) and broadband acoustical holography from intensity measurements (BAHIM) to reconstruct the underwater cylindrical source field. First, the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary, and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal, and the measurement array can be smaller than the source, thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then, an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement, as well as the identification and localization of noise sources.

  4. Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

    SciTech Connect

    Saberian, E.; Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M.

    2013-03-15

    The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.

  5. Development of a standing wave apparatus for calibrating acoustic vector sensors and hydrophones.

    PubMed

    Lenhart, Richard D; Sagers, Jason D; Wilson, Preston S

    2016-01-01

    An apparatus was developed to calibrate acoustic hydrophones and vector sensors between 25 and 2000 Hz. A standing wave field is established inside a vertically oriented, water-filled, elastic-walled waveguide by a piston velocity source at the bottom and a pressure-release boundary condition at the air/water interface. A computer-controlled linear positioning system allows a device under test to be precisely located in the water column while the acoustic response is measured. Some of the challenges of calibrating hydrophones and vector sensors in such an apparatus are discussed, including designing the waveguide to mitigate dispersion, understanding the impact of waveguide structural resonances on the acoustic field, and developing algorithms to post-process calibration measurement data performed in a standing wave field. Data from waveguide characterization experiments and calibration measurements are presented and calibration uncertainty is reported. PMID:26827015

  6. Acoustic intensity methods and their applications to vector sensor use and design

    NASA Astrophysics Data System (ADS)

    Naluai, Nathan Kahikina

    Applications of acoustic intensity processing methods to vector sensor output signals are investigated for three specific cases: acoustic intensity scattering, spatial correlations of intensities, and conceptual design of a high frequency inertial vector sensor with a novel suspension. An overview of intensity processing is presented and the concept of a complex intensity is illustrated. Measurement techniques for determining the complex intensity spectra from the signals received by a standard acoustic vector sensor are demonstrated. Acoustic intensity processing of signals from SSQ-53D sonobuoys is used to enhance the detection of submerged bodies in bi-static sonar applications. Deep water experiments conducted at Lake Pend Oreille in northern Idaho are described. A submerged body is located between a source and a number of SSQ-53D sonobuoy receivers. Scalar pressure measurements change by less than 0.5 dB when the scattering body is inserted in the field. The phase of the orthogonal intensity component shows repeatable and strong variations of nearly 55°. The classical solution for the spatial correlation of the pressure field is presented. The derivation techniques are expanded to derive previously unsolved analytic forms for the spatial correlations of separated intensity field components based on combinations of the solutions for various pressure and velocity components. Experimental validation of these correlation solutions are performed computationally and in an underwater environment. The computational experiments are designed to test highly controlled variations to the idealized case (e.g. sound field content, transducer phasing issues, additive output noise, etc.) Additional verification is provided from physical tests measuring the correlations between a pair of acoustic vector sensors in a large reverberant tank which is excited acoustically with broadband noise. The results successfully corroborate the derivation methods for correlations of

  7. Ion-acoustic solitons, double layers and rogue waves in plasma having superthermal electrons

    NASA Astrophysics Data System (ADS)

    Singh Saini, Nareshpal

    2016-07-01

    Most of the space and astrophysical plasmas contain different type of charged particles with non-Maxwellian velocity distributions (e.g., nonthermal, superthermal, Tsallis ). These distributions are commonly found in the auroral region of the Earth's magnetosphere, planetary magnetosphere, solar and stellar coronas, solar wind, etc. The observations from various satellite missions have confirmed the presence of superthermal particles in space and astrophysical environments. Over the last many years, there have been a much interest in studying the different kind of properties of the electrostatic nonlinear excitations (solitons, double layers, rogue waves etc.) in a multi-component plasmas in the presence of superthermal particles. It has been analyzed that superthermal distributions are more appropriate than Maxwellian distribution for the modeling of space data. It is interesting to study the dynamics of various kinds of solitary waves, Double layers, Shocks etc. in varieties of plasma systems containing different kind of species obeying Lorentzian (kappa-type)/Tsallis distribution. In this talk, I have focused on the study of large amplitude IA solitary structures (bipolar solitary structures, double layers etc.), modulational instability and rogue waves in multicomponent plasmas. The Sagdeev potential method has been employed to setup an energy balance equation, from which we have studied the characteristics of large amplitude solitary waves under the influence of superthermality of charged particles and other plasma parameters. The critical Mach number has been determined, above which solitary structures are observed and its variation with superthermality of electrons and other parameters has also been discussed. Double layers have also been discussed. Multiple scale reductive perturbation method has been employed to derive NLS equation. From the different kind of solutions of this equation, amplitude modulation of envelope solitons and rogue waves have been

  8. Conditions for reflection and transmission of an ion acoustic soliton in a dusty plasma with variable charge dust

    SciTech Connect

    Malik, Hitendra K.; Tomar, Renu; Dahiya, Raj P.

    2014-07-15

    Modified Korteweg-de Vries (mKdV) equations are derived for the incident, reflected, and transmitted waves in order to examine the soliton reflection and its transmission through an inhomogeneous plasma comprising ions, dust grains with fluctuating charge and two types of electrons, namely nonisothermal electrons and isothermal electrons. All the mKdV equations are coupled at the point of reflection and solved for the reflected soliton. Unlike others, a relation is established between the velocity shifts of the incident, reflected and transmitted solitons, and based on a critical value of the shift of incident soliton the strengths of the soliton reflection and transmission are talked about. Conditions are obtained for the soliton reflection and its transmission, and a comparative study is made for the two cases of fixed and fluctuating charges on the dust grains.

  9. Experimental Results of Underwater Cooperative Source Localization Using a Single Acoustic Vector Sensor

    PubMed Central

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M.

    2013-01-01

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257

  10. Experimental results of underwater cooperative source localization using a single acoustic vector sensor.

    PubMed

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M

    2013-01-01

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8-14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257

  11. Stringent limitations on reductive perturbation studies of nonplanar acoustic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Verheest, Frank; Hellberg, Manfred A.

    2016-06-01

    More than fifty years ago, the Korteweg-de Vries equation was shown to describe not only solitary surface waves on shallow water, but also nonlinear ion-acoustic waves. Because of the algorithmic ease of using reductive perturbation theory, intensive research followed on a wide range of wave types. Soon, the formalism was extended to nonplanar modes by introducing a stretching designed to accommodate spherically and cylindrically symmetric ion-acoustic waves. Over the last two decades many authors followed this approach, but almost all have ignored the severe restrictions in parameter space imposed by the Ansatz. In addition, for other steps in the formalism, the justification is often not spelled out, leading to effects that are physically undesirable or ambiguous. Hence, there is a need to critically assess this approach to nonplanar modes and to use it with the utmost care, respecting the restrictions on its validity. Only inward propagation may be meaningfully studied and respect for weak nonlinearities of at most 1/10 implies that one cannot get closer to the axis or centre of symmetry than about 30 Debye lengths. Thus, one is in a regime where the modes are quasi-planar and not particularly interesting. Most papers disregard these constraints and hence reach questionable conclusions.

  12. Small amplitude electron-acoustic double layers and solitons in fully relativistic plasmas of two-temperature electrons

    SciTech Connect

    Lee, Nam C.

    2009-04-15

    A Korteweg-de Vries (KdV) equation for fully relativistic one dimensional plasmas of arbitrarily large streaming speed and temperature is derived by using the reductive perturbation method. For plasmas with more than two species of particles, the coefficient representing quadratic nonlinearity in KdV can vanish at critical values of certain parameters. To describe the nonlinear evolution at this critical parameter, a modified KdV (mKdV) equation that contains a cubic nonlinear term is obtained. Furthermore, a mixed mKdV equation pertaining to parameters in the vicinity of the critical values is also derived, in which the quadratic and cubic nonlinearities are both present. As an illustration of the results, the mixed mKdV equation is applied to a plasma comprised of cold ions and electrons having cold (T=0) and finite temperature components. For warm temperature T<acoustic nonlinear waves in the shape of double layer (kink) and solitary waves can exist, which have phase speed {radical}(3T/(4+{alpha})m{sub e}) in the rest frame of plasma, where {alpha} is the polytropic index of the equation of state of the warm electrons. The thickness of the transitional layer of the kink structure is of the order of Debye length {lambda}{sub D}. For extremely high temperature T>>m{sub e}c{sup 2}, it is also found that double layer and soliton-type solutions can exist with phase speed {radical}({alpha}-1)c, which is equal to the well known relativistic sound speed c/{radical}(3) for {alpha}=4/3. The thickness of the transition layer scales as {delta}{approx}T{sup -1/4}, which is different from the T<

  13. Underwater patch near-field acoustical holography based on particle velocity and vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, DeSen; Li, SiChun; Sun, Yu; Mo, ShiQi; Shi, ShengGuo

    2012-11-01

    One-step patch near-field acoustical holography (PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field. The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices, which cost more in computation. A one-step procedure based on measuring of the normal component of the particle velocity is described, including the mathematical formulation. The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure. These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array. The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.

  14. Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation

    NASA Astrophysics Data System (ADS)

    Si, Liu-Gang; Yang, Wen-Xing; Lü, Xin-You; Hao, Xiangying; Yang, Xiaoxue

    2010-07-01

    In this article, a theoretical scheme is proposed to investigate the formation and propagation of three-wave coupled vector optical solitons with ultraslow group velocities in a lifetime-broadened seven-state triple-Λ atomic system under Raman excitation. We show that in the presence of a weak applied magnetic field that removes the degeneracy of the corresponding sublevels of the atomic medium, three continuous-wave control fields with circularly left or right polarized fields induce a quantum interference effect which can largely suppress the absorption of the three low-intensity pulsed fields, that is, the circularly σ- (right), the linearly π, and the circularly σ+ (left) polarized fields converted from one weak linear-polarized probe field. By means of the standard method of multiple scales, we solve the equations of motion of atomic response and probe-control electromagnetic fields and derive three-coupled nonlinear Schrödinger equations that govern the nonlinear evolution of the envelopes of the probe fields in this scheme. We then demonstrate that because of the nonlinear coupling to one another, the three probe fields can evolve into three-wave temporal, group velocity, and amplitude-matched optical solitons under appropriate conditions, which are produced from the delicate balance of the dispersion effects and the self- and cross-phase modulation effects. This scheme may thus pave the way to generate ultraslow vector optical solitons composed of three field components in a highly resonant atomic medium and result in a substantial impact on this field of nonlinear optics.

  15. Properties of the acoustic intensity vector field in a shallow water waveguide.

    PubMed

    Dall'Osto, David R; Dahl, Peter H; Choi, Jee Woong

    2012-03-01

    Acoustic intensity is a vector quantity described by collocated measurements of acoustic pressure and particle velocity. In an ocean waveguide, the interaction among multipath arrivals of propagating wavefronts manifests unique behavior in the acoustic intensity. The instantaneous intensity, or energy flux, contains two components: a propagating and non-propagating energy flux. The instantaneous intensity is described by the time-dependent complex intensity, where the propagating and non-propagating energy fluxes are modulated by the active and reactive intensity envelopes, respectively. Properties of complex intensity are observed in data collected on a vertical line array during the transverse acoustic variability experiment (TAVEX) that took place in August of 2008, 17 km northeast of the Ieodo ocean research station in the East China Sea, 63 m depth. Parabolic equation (PE) simulations of the TAVEX waveguide supplement the experimental data set and provide a detailed analysis of the spatial structure of the complex intensity. A normalized intensity quantity, the pressure-intensity index, is used to describe features of the complex intensity which have a functional relationship between range and frequency, related to the waveguide invariant. The waveguide invariant is used to describe the spatial structure of intensity in the TAVEX waveguide using data taken at discrete ranges. PMID:22423699

  16. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  17. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  18. Vector transition form factors of the NK→Θ and NK→Σ10 OverBar∗- in the SU(3) chiral quark soliton model

    NASA Astrophysics Data System (ADS)

    Ledwig, Tim; Kim, Hyun-Chul; Goeke, Klaus

    2008-10-01

    We investigate the vector transition form factors of the nucleon and vector meson K to the pentaquark baryon Θ within the framework of the SU(3) chiral quark-soliton model. We take into account the rotational 1/N and linear m corrections, assuming isospin symmetry and employing the symmetry-conserving quantization. It turns out that the leading-order contributions to the form factors are almost cancelled by the rotational corrections. Because of this, the flavor SU(3) symmetry-breaking terms yield sizeable effects on the vector transition form factors. In particular, the main contribution to the electric-like transition form factor comes from the wave-function corrections, which is a consequence of the generalized Ademollo-Gatto theorem derived in the present work. We estimate with the help of the vector meson dominance the K vector and tensor coupling constants for the Θ: g=0.74-0.87 and f=0.53-1.16. We argue that the outcome of the present work is consistent with the null results of the CLAS experiments in the reactions γn→KΘ and γp→KΘ. The results of the present work are also consistent with the recent experiments at KEK. In addition, we present the results of the Σ→NK transition form factors and its KNΣ coupling constants.

  19. SOLITONS: Dynamics of strong coupling formation between laser solitons

    NASA Astrophysics Data System (ADS)

    Rosanov, Nikolai N.; Fedorov, S. V.; Shatsev, A. N.

    2005-03-01

    The dynamics of the strong coupling formation between two solitons with the unit topological charge is studied in detail for a wide-aperture class A laser. The sequence of bifurcations of the vector field of energy fluxes in the transverse plane was demonstrated during the formation of a soliton complex.

  20. Modified particle filtering algorithm for single acoustic vector sensor DOA tracking.

    PubMed

    Li, Xinbo; Sun, Haixin; Jiang, Liangxu; Shi, Yaowu; Wu, Yue

    2015-01-01

    The conventional direction of arrival (DOA) estimation algorithm with static sources assumption usually estimates the source angles of two adjacent moments independently and the correlation of the moments is not considered. In this article, we focus on the DOA estimation of moving sources and a modified particle filtering (MPF) algorithm is proposed with state space model of single acoustic vector sensor. Although the particle filtering (PF) algorithm has been introduced for acoustic vector sensor applications, it is not suitable for the case that one dimension angle of source is estimated with large deviation, the two dimension angles (pitch angle and azimuth angle) cannot be simultaneously employed to update the state through resampling processing of PF algorithm. To solve the problems mentioned above, the MPF algorithm is proposed in which the state estimation of previous moment is introduced to the particle sampling of present moment to improve the importance function. Moreover, the independent relationship of pitch angle and azimuth angle is considered and the two dimension angles are sampled and evaluated, respectively. Then, the MUSIC spectrum function is used as the "likehood" function of the MPF algorithm, and the modified PF-MUSIC (MPF-MUSIC) algorithm is proposed to improve the root mean square error (RMSE) and the probability of convergence. The theoretical analysis and the simulation results validate the effectiveness and feasibility of the two proposed algorithms. PMID:26501280

  1. Modified Particle Filtering Algorithm for Single Acoustic Vector Sensor DOA Tracking

    PubMed Central

    Li, Xinbo; Sun, Haixin; Jiang, Liangxu; Shi, Yaowu; Wu, Yue

    2015-01-01

    The conventional direction of arrival (DOA) estimation algorithm with static sources assumption usually estimates the source angles of two adjacent moments independently and the correlation of the moments is not considered. In this article, we focus on the DOA estimation of moving sources and a modified particle filtering (MPF) algorithm is proposed with state space model of single acoustic vector sensor. Although the particle filtering (PF) algorithm has been introduced for acoustic vector sensor applications, it is not suitable for the case that one dimension angle of source is estimated with large deviation, the two dimension angles (pitch angle and azimuth angle) cannot be simultaneously employed to update the state through resampling processing of PF algorithm. To solve the problems mentioned above, the MPF algorithm is proposed in which the state estimation of previous moment is introduced to the particle sampling of present moment to improve the importance function. Moreover, the independent relationship of pitch angle and azimuth angle is considered and the two dimension angles are sampled and evaluated, respectively. Then, the MUSIC spectrum function is used as the “likehood” function of the MPF algorithm, and the modified PF-MUSIC (MPF-MUSIC) algorithm is proposed to improve the root mean square error (RMSE) and the probability of convergence. The theoretical analysis and the simulation results validate the effectiveness and feasibility of the two proposed algorithms. PMID:26501280

  2. Axial-vector transitions and strong decays of the baryon antidecuplet in the self-consistent SU(3) chiral quark-soliton model

    SciTech Connect

    Ledwig, Tim; Kim, Hyun-Chul; Goeke, Klaus

    2008-09-01

    We investigate the axial-vector transition constants of the baryon antidecuplet to the octet and decuplet within the framework of the self-consistent SU(3) chiral quark-soliton model. Taking into account rotational 1/N{sub c} and linear m{sub s} corrections and using the symmetry-conserving quantization, we calculate the axial-vector transition constants. It is found that the leading-order contributions are generally almost canceled by the rotational 1/N{sub c} corrections. Thus, the m{sub s} corrections turn out to be essential contributions to the axial-vector constants. The decay width of the {theta}{sup +}{yields}NK transition is determined to be {gamma}({theta}{yields}NK)=0.71 MeV, based on the result of the axial-vector transition constant g{sub A}*({theta}{yields}NK)=0.05. In addition, other strong decays of the baryon antidecuplet are investigated. The forbidden decays from the baryon antidecuplet to the decuplet are also studied.

  3. A PARALIND Decomposition-Based Coherent Two-Dimensional Direction of Arrival Estimation Algorithm for Acoustic Vector-Sensor Arrays

    PubMed Central

    Zhang, Xiaofei; Zhou, Min; Li, Jianfeng

    2013-01-01

    In this paper, we combine the acoustic vector-sensor array parameter estimation problem with the parallel profiles with linear dependencies (PARALIND) model, which was originally applied to biology and chemistry. Exploiting the PARALIND decomposition approach, we propose a blind coherent two-dimensional direction of arrival (2D-DOA) estimation algorithm for arbitrarily spaced acoustic vector-sensor arrays subject to unknown locations. The proposed algorithm works well to achieve automatically paired azimuth and elevation angles for coherent and incoherent angle estimation of acoustic vector-sensor arrays, as well as the paired correlated matrix of the sources. Our algorithm, in contrast with conventional coherent angle estimation algorithms such as the forward backward spatial smoothing (FBSS) estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, not only has much better angle estimation performance, even for closely-spaced sources, but is also available for arbitrary arrays. Simulation results verify the effectiveness of our algorithm. PMID:23604030

  4. Nonplanar ion-acoustic solitons collision in Xe+-F-- SF6- and Ar+-F-- SF6- plasmas

    NASA Astrophysics Data System (ADS)

    El-Tantawy, S. A.; Carbonaro, P.

    2016-04-01

    The solitons collision in nonplanar (cylindrical and spherical) plasmas consisting of positive ions, two different negative ions, and isothermal electrons is studied. For this purpose, the Poincaré-Lighthill-Kuo (PLK) method is used to obtain two-coupled nonplanar Korteweg-de Vries (nKdV) equations. Also, the nonplanar phase shifts are calculated. The physical parameters of two plasma experiments; namely Xe+-F-- SF6- and Ar+-F-- SF6- are used to examine the properties of the localized pulses and their phase shifts after collision. It is found that the present model gives rise to the propagation of positive and negative pulses. The effects of the total negative ions concentration, the density ratio of the second-negative ions, the temperature ratio, and the geometrical effects on the behavior of solitons collisions and their phase shifts are investigated. Furthermore, it is found that the phase shifts in the case of the Ar+-F-- SF6- plasma are much larger than those of the Xe+-F-- SF6- plasma. Also, for fixed plasma parameters, the solitons collision received the largest phase shift in spherical geometry, followed by the cylindrical and planar geometries.

  5. The electrical soliton oscillator

    NASA Astrophysics Data System (ADS)

    Ricketts, David Shawn

    Solitons are a special class of pulse-shaped waves that propagate in nonlinear dispersive media while maintaining their spatial confinement. They are found throughout nature where the proper balance between nonlinearity and dispersion is achieved. Examples of the soliton phenomena include shallow water waves, vibrations in a nonlinear spring-mass lattice, acoustic waves in plasma, and optical pulses in fiber optic cable. In electronics, the nonlinear transmission line (NLTL) serves as a nonlinear dispersive medium that propagates voltage solitons. Electrical solitons on the NLTL have been actively investigated over the last 40 years, particularly in the microwave domain, for sharp pulse generation applications and for high-speed RF and microwave sampling applications. In these past studies the NLTL has been predominantly used as a 2-port system where a high-frequency input is required to generate a sharp soliton output through a transient process. One meaningful extension of the past 2-port NLTL works would be to construct a 1-port self-sustained electrical soliton oscillator by properly combining the NLTL with an amplifier (positive active feedback). Such an oscillator would self-start by growing from ambient noise to produce a train of periodic soliton pulses in steady-state, and hence would make a self-contained soliton generator not requiring an external high-frequency input. While such a circuit may offer a new direction in the field of electrical pulse generation, there has not been a robust electrical soliton oscillator reported to date to the best of our knowledge. In this thesis we introduce the first robust electrical soliton oscillator, which is able to self-generate a stable, periodic train of electrical solitons. This new oscillator is made possible by combining the NLTL with a unique nonlinear amplifier that is able to "tame" the unruly dynamics of the NLTL. The principle contribution of this thesis is the identification of the key instability

  6. Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry.

    PubMed

    Wajid, Mohd; Kumar, Arun; Bahl, Rajendar

    2016-05-01

    Acoustic vector-sensors (AVS) have been designed using the P-P method for different microphone configurations. These configurations have been used to project the acoustic intensity on the orthogonal axes through which the direction of arrival (DoA) of a sound source has been estimated. The analytical expressions for the DoA for different microphone configurations have been derived for two-dimensional geometry. Finite element method simulation using COMSOL-Multiphysics has been performed, where the microphone signals for AVS configurations have been recorded in free field conditions. The performance of all the configurations has been evaluated with respect to angular error and root-mean-square angular error. The simulation results obtained with ideal geometry for different configurations have been corroborated experimentally with prototype AVS realizations and also compared with microphone-array method, viz., Multiple Signal Classification and Generalized Cross Correlation. Experiments have been performed in an anechoic room using different prototype AVS configurations made from small size microphones. The DoA performance using analytical expressions, simulation studies, and experiments with prototype AVS in anechoic chamber are presented in the paper. The square and delta configurations are found to perform better in the absence and presence of noise, respectively. PMID:27250174

  7. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Self-Similar Hermite-Gaussian Spatial Solitons in Two-Dimensional Nonlocal Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Zhong, Wei-Ping; Belić, Milivoj R.

    2010-05-01

    We study analytically and numerically the propagation of spatial solitons in a two-dimensional strongly nonlocal nonlinear medium. Exact analytical solutions in the form of self-similar spatial solitons are obtained involving higher-order Hermite-Gaussian functions. Our theoretical predictions provide new insights into the low-energy spatial soliton transmission with high fidelity.

  8. Self-adapting root-MUSIC algorithm and its real-valued formulation for acoustic vector sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Guo-jun; Xue, Chen-yang; Zhang, Wen-dong; Xiong, Ji-jun

    2012-12-01

    In this paper, based on the root-MUSIC algorithm for acoustic pressure sensor array, a new self-adapting root-MUSIC algorithm for acoustic vector sensor array is proposed by self-adaptive selecting the lead orientation vector, and its real-valued formulation by Forward-Backward(FB) smoothing and real-valued inverse covariance matrix is also proposed, which can reduce the computational complexity and distinguish the coherent signals. The simulation experiment results show the better performance of two new algorithm with low Signal-to-Noise (SNR) in direction of arrival (DOA) estimation than traditional MUSIC algorithm, and the experiment results using MEMS vector hydrophone array in lake trails show the engineering practicability of two new algorithms.

  9. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Incoherently Coupled Grey-Grey Spatial Soliton Pairs in Biased Two-Photon Photovoltaic Photorefractive Crystals

    NASA Astrophysics Data System (ADS)

    Su, Yan-Li; Jiang, Qi-Chang; Ji, Xuan-Mang

    2010-05-01

    The incoherently coupled grey-grey screening-photovoltaic spatial soliton pairs are predicted in biased two-photon photovoltaic photorefractive crystals under steady-state conditions. These grey-grey screening-photovoltaic soliton pairs can be established provided that the incident beams have the same polarization, wavelength, and are mutually incoherent. The grey-grey screening-photovoltaic soliton pairs can be considered as the united form of grey-grey screening soliton pairs and open or closed-circuit grey-grey photovoltaic soliton pairs.

  10. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Temporal Behavior of Low-Amplitude Grey Spatial Solitons in Biased Two-Photon Photorefractive Crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Qi-Chang; Su, Yan-Li; Ji, Xuan-Mang

    2010-12-01

    The temporal property of grey screening spatial solitons due to two-photon photorefractive effect in low-amplitude regime is analyzed. The results indicate that a broad solitons is generated at the beginning, and as time evolves, the intensity width of grey solitons decreases monotonically to a minimum value toward steady state. In the same propagation time, the FWHM of solitons decreases with ρ increasing or m decreasing. Moreover, the formation time of solitons is independent of ρ and m. The time is close to a constant determined by the dielectric relaxation time.

  11. Spatial Solitons in Algaas Waveguides

    NASA Astrophysics Data System (ADS)

    Kang, Jin Ung

    In this work, by measuring the two-, three-photon absorption, and the nonlinear refractive index coefficients, a useful bandwidth for an all-optical switching applications in the AlGaAs below half the band gap is identified. Operating in this material system, several types of spatial solitons such as fundamental bright solitons, Vector solitons, and Manakov solitons are experimentally demonstrated. The propagation and the interaction behaviors of these solitons are studied experimentally and numerically. The distinct properties of each soliton are discussed along with some possible applications. Some applications, such as all -optical switching based on spatial soliton dragging and the efficient guiding of orthogonally polarized femtosecond pulses by a bright spatial soliton, are experimentally demonstrated. The signal gain due to an ultrafast polarization coupling, better known as Four Wave Mixing (FWM) is demonstrated in a channel waveguide. The effects of FWM are studied experimentally and numerically. This effect is also used to demonstrate polarization switching. The linear and nonlinear properties of AlGaAs/GaAs multiple quantum well waveguides are measured. Anisotropic two photon absorption and nonlinear refractive indices near half the band gap are measured along with the linear birefringence for several different quantum well structures. The usefulness of multiple quantum well structures for an all -optical switching because of anisotropic nature of this material system is discussed.

  12. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    PubMed

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters. PMID:27369140

  13. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave.

    PubMed

    Zhang, Wending; Huang, Ligang; Wei, Keyan; Li, Peng; Jiang, Biqiang; Mao, Dong; Gao, Feng; Mei, Ting; Zhang, Guoquan; Zhao, Jianlin

    2016-05-16

    Theoretical analysis and experimental demonstration are presented for the generation of cylindrical vector beams (CVBs) via mode conversion in fiber from HE11 mode to TM01 and TE01 modes, which have radial and azimuthal polarizations, respectively. Intermodal coupling is caused by an acoustic flexural wave applied on the fiber, whereas polarization control is necessary for the mode conversion, i.e. HE11x→TM01 and HE11y→TE01 for acoustic vibration along the x-axis. The frequency of the RF driving signal for actuating the acoustic wave is determined by the phase matching condition that the period of acoustic wave equals the beatlength of two coupled modes. With phase matching condition tunability, this approach can be used to generate different types of CVBs at the same wavelength over a broadband. Experimental demonstration was done in the visible and communication bands. PMID:27409861

  14. "Wandering" soliton in a nonlinear photonic crystal

    NASA Astrophysics Data System (ADS)

    Lysak, T. M.; Trofimov, V. A.

    2015-12-01

    On the basis of computer simulation, we demonstrate the possibility of a new type of "wandering" solitons implementation in nonlinear periodic layered structures. "Wandering" soliton moves across the layers, repeatedly changing its direction of motion due to the reflection from the photonic crystal (PC) boundaries with the ambient medium. The initial soliton is located inside a PC and occupies several of its layers. Its profile can be found as the solution of the corresponding nonlinear eigenvalue problem. "Wandering" solitons are formed as a result of a large perturbation of the wave vector, which leads to the soliton motion across photonic crystal layers. In the process of reflection from the boundary with the ambient medium, the soliton partly penetrates into the ambient medium at a depth equal to the width of several PC layers. A slow return of light energy, which previously left the PC, can take place at this moment.

  15. CALL FOR PAPERS: Optical solitons

    NASA Astrophysics Data System (ADS)

    Drummond, P. D.; Haelterman, Marc; Vilaseca, R.

    2003-06-01

    A topical issue of Journal of Optics B: Quantum and Semiclassical Optics will be devoted to recent advances in optical solitons. The topics to be covered will include, but are not limited to: bulletProperties, control and dynamics of temporal solitons bulletProperties, control and dynamics of spatial solitons bulletCavity solitons in passive and active resonators bulletThree-dimensional spatial solitons bulletDark, bright, grey solitons; interface dynamics bulletCompound or vector solitons; incoherent solitons bulletLight and matter solitons in BEC bulletNonlinear localized structures in microstructured and nanostructured materials (photonic crystals, etc) bulletAngular momentum effects associated with localized light structures; vortex solitons bulletQuantum effects associated with localized light structures bulletInteraction of solitons with atoms and other media bulletApplications of optical solitons The DEADLINE for submission of contributions is 31 July 2003 to allow the topical issue to appear in about February 2004. All papers will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. Submissions should ideally be in either standard LaTeX form or Microsoft Word. There are no page charges for publication. In addition to the usual 50 free reprints, the corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should if possible be submitted electronically at www.iop.org/journals/jopb. or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the electronic code) to: Dr Claire Bedrock (Publisher), Journal of Optics B: Quantum and Semiclassical Optics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. All

  16. Solitons induced by boundary conditions

    SciTech Connect

    Zhou, R.L.

    1987-01-01

    Although soliton phenomena have attracted wide attention since 1965, there are still not enough efforts paid to mixed-boundary - initial-value problems that are important in real physical cases. The main purpose of this thesis is to study carefully the various boundary-induced soliton under different initial conditions. The author states with three sets of nonlinear equations: KdV equations and Boussinesq equations (for water); two-fluid equations for cold-ion plasma. He was interested in four types of problems involved with water solitons: excitation by different time-dependent boundary conditions under different initial conditions; head-on and over-taking collisions; reflection at a wall and the excitation by pure initial conditions. For KdV equations, only cases one and four are conducted. The results from two fully nonlinear KdV and Boussinesq equations are compared, and agree extremely well. The Boussinesq equations permit solition head-on collisions and reflections, studied the first time. The results from take-over collision agree with KdV results. For the ion-acoustic plasma, a set of Boussinesq-type equations was derived from the standard two-fluid equations for the ion-acoustic plasma. It theoretically proves the essential nature of the solitary wave solutions of the cold-ion plasma. The ion acoustic solitons are also obtained by prescribing a potential phi/sub 0/ at one grid point.

  17. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  18. Do changes in the size of mud flocs affect the acoustic backscatter values recorded by a Vector ADV?

    NASA Astrophysics Data System (ADS)

    Rouhnia, Mohamad; Keyvani, Ali; Strom, Kyle

    2014-08-01

    A series of experiments were conducted to examine the effect of mud floc growth on the acoustic back-scatter signal recorded by a Nortek Vector acoustic Doppler velocimeter (ADV). Several studies have shown that calibration equations can be developed to link the backscatter strength with average suspended sediment concentration (SSC) when the sediment particle size distribution remains constant. However, when mud is present, the process of flocculation can alter the suspended particle size distribution. Past studies have shown that it is still unclear as to the degree of dependence of the calibration equation on changes in floc size. Part of the ambiguity lies in the fact that flocs can be porous and rather loosely packed and therefore will not scatter sound waves as a solid particle would. In addition, direct, detailed measurements of floc size have not accompanied experiments examining the dependence of ADV backscatter and suspended sediment concentration. In this set of experiments, direct measurement of the floc size distribution is made with time in a mixing chamber using a floc camera system. A Vector ADV and an OBS are also placed within the tank to measure acoustic backscatter and SSC as the flocs change size with time; concentration in the experiments ranges from 15 to 90 mg/l. Results showed that the growth of mud flocs did influence the SNR recorded by the Vector ADV, and that the sensitivity of the SNR signal to changes in floc size was higher for flocs with diameters less than ≈80 μm (it kr=1 at a diameter of 80 μm). The response of SNR to changes in floc size and SSC was modeled with a modified sonar equation. If properly calibrated, the model was able to capture the functional behavior of SNR with changes in floc size and concentration. Values of the calibration coefficients showed that while changes in floc diameter up to about 80 μm did alter the SNR, the change was less than what would be expected from a similar change in the size of solid

  19. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Exact Soliton Solutions to a Generalized Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Xu, Si-Liu; Liang, Jian-Chu; Yi, Lin

    2010-01-01

    The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schrödinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exist two kinds of soliton solutions. The evolution features of exact solutions have been numerically studied. The (3+1)D soliton solutions may help us to understand the nonlinear wave propagation in the nonlinear media such as classical optical waves and the matter waves of the Bose-Einstein condensates.

  20. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Ultraslow Optical Solitons in a Coupled Double Quantum-Well Nanostructure

    NASA Astrophysics Data System (ADS)

    Hao, Xiang-Ying; Liu, Ji-Bing; Lü, Xin-You; Song, Pei-Jun; Si, Liu-Gang

    2009-03-01

    We demonstrate the formation of ultraslow dark optical solitons with a four-level scheme in an asymmetric semiconductor double quantum well (SDQW) structure based on intersubband transitions by using only a low-intensity pulsed laser radiation. With appropriate conditions we show numerically that the dark optical soliton can travel with a ultraslow group velocity Vg/c ~ - 10-3. Such a semiconductor system is much more practical than its atomic counterpart because of its flexible design and the controllable interference strength. This nonlinear optical process in the SDQW solid-state material may be used for the control technology of optical delay lines and optical buffers.

  1. Nonplanar solitons collision in ultracold neutral plasmas

    SciTech Connect

    El-Tantawy, S. A.; Moslem, W. M.; El-Metwally, M.; Sabry, R.; El-Labany, S. K.; Schlickeiser, R.

    2013-09-15

    Collisions between two nonplanar ion-acoustic solitons in strongly coupled ultracold neutral plasmas composed of ion fluid and non-Maxwellian (nonthermal or superthermal) electron distributions are investigated. The extended Poincare-Lighthill-Kuo method is used to obtain coupled nonplanar Kortweg-de Vries equations for describing the system. The nonplanar phase shifts after the interaction of the two solitons are calculated. It is found that the properties of the nonplanar colliding solitons and its corresponding phase shifts are different from those in the planar case. The polarity of the colliding solitons strongly depends on the type of the non-Maxwellian electron distributions. A critical nonthermality parameter β{sub c} is identified. For values of β ≤ β{sub c} solitons with double polarity exist, while this behavior cannot occur for superthermal plasmas. The phase shift for nonthermal plasmas increases below β{sub c} for a positive soliton, but it decreases for β > β{sub c} for a negative soliton. For superthermal plasmas, the phase shift enhances rapidly for low values of spectral index κ and higher values of ions effective temperature ratio σ{sub *}. For 2 ≲ κ<10, the phase shift decreases but does not change for κ > 10. The nonlinear structure, as reported here, is useful for controlling the solitons created in forthcoming ultracold neutral plasma experiments.

  2. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  3. Soliton turbulence

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  4. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.

    PubMed

    Gur, Berke

    2014-06-01

    In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms. PMID:24907810

  5. Bending of solitons in weak and slowly varying inhomogeneous plasma

    SciTech Connect

    Mukherjee, Abhik Janaki, M. S. Kundu, Anjan

    2015-12-15

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  6. Soliton solutions for a (3 + 1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a plasma

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Tian, Bo; Zhen, Hui-Ling; Wu, Xiao-Yu; Xie, Xi-Yang

    2016-07-01

    Under investigation in this paper is a (3 + 1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov (KdV-ZK) equation, which describes the nonlinear behaviors of ion-acoustic waves in a magnetized plasma where the cooler ions are treated as a fluid with adiabatic pressure and the hot isothermal electrons are described by a Boltzmann distribution. With the Hirota method and symbolic computation, we obtain the one-, two- and three-soliton solutions for such an equation. We graphically study the solitons related with the coefficient of the cubic nonlinearity M. Amplitude of the one soliton increases with increasing M, but the width of one soliton keeps unchanged as M increases. The two solitons and three solitons are parallel, and the amplitudes of the solitons increase with increasing M, but the widths of the solitons are unchanged. It is shown that the interactions between the two solitons and among the three solitons are elastic.

  7. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Integrability Aspects and Soliton Solutions for a System Describing Ultrashort Pulse Propagation in an Inhomogeneous Multi-Component Medium

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Tian, Bo; Lü, Xing; Zhang, Hai-Qiang; Xu, Tao

    2010-09-01

    For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painlevé analysis shows that this system admits the Painlevé property under some constraints. By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pair of this system is derived, and the Darboux transformation (DT) is constructed with the help of the obtained Lax pair. With symbolic computation, the soliton solutions are obtained by virtue of the DT algorithm. Figures are plotted to illustrate the dynamical features of the soliton solutions. Characteristics of the solitons propagating in an inhomogeneous multi-component nonlinear medium are discussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlap phenomenon between two solitons; (iv) Collision of two head-on solitons and two head-on two-peak solitons; (v) Two different types of interactions of the three solitons; (vi) Decomposition phenomenon of one soliton into two solitons. The results might be useful in the study on the ultrashort-pulse propagation in the inhomogeneous multi-component nonlinear media.

  8. Solitons on Tori and Soliton Crystals

    NASA Astrophysics Data System (ADS)

    Speight, J. M.

    2014-11-01

    Necessary conditions for a soliton on a torus to be a soliton crystal, that is, a spatially periodic array of topological solitons in stable equilibrium, are derived. The stress tensor of the soliton must be L 2 orthogonal to , the space of parallel symmetric bilinear forms on TM, and, further, a certain symmetric bilinear form on , called the hessian, must be positive. It is shown that, for baby Skyrme models, the first condition actually implies the second. It is also shown that, for any choice of period lattice Λ, there is a baby Skyrme model which supports a soliton crystal of periodicity Λ. For the three-dimensional Skyrme model, it is shown that any soliton solution on a cubic lattice which satisfies a virial constraint and is equivariant with respect to (a subgroup of) the lattice symmetries automatically satisfies both tests. This verifies, in particular, that the celebrated Skyrme crystal of Castillejo et al., and Kugler and Shtrikman, passes both tests.

  9. Ponderable soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The theory of Lee and Pang (1987), who obtained solutions for soliton stars composed of zero-temperature fermions and bosons, is applied here to quark soliton stars. Model soliton stars based on a simple physical model of the proton are computed, and the properties of the solitons are discussed, including the important problem of the existence of a limiting mass and thus the possible formation of black holes of primordial origin. It is shown that there is a definite mass limit for ponderable soliton stars, so that during cooling a soliton star might reach a stage beyond which no equilibrium configuration exists and the soliton star probably will collapse to become a black hole. The radiation of ponderable soliton stars may alter the short-wavelength character of the cosmic background radiation, and may be observed as highly redshifted objects at z of about 100,000.

  10. Topological Solitons in Physics.

    ERIC Educational Resources Information Center

    Parsa, Zohreh

    1979-01-01

    A broad definition of solitons and a discussion of their role in physics is given. Vortices and magnetic monopoles which are examples of topological solitons in two and three spatial dimensions are described in some detail. (BB)

  11. Anderson Localization of Solitons

    NASA Astrophysics Data System (ADS)

    Sacha, Krzysztof; Müller, Cord A.; Delande, Dominique; Zakrzewski, Jakub

    2009-11-01

    At low temperature, a quasi-one-dimensional ensemble of atoms with an attractive interaction forms a bright soliton. When exposed to a weak and smooth external potential, the shape of the soliton is hardly modified, but its center-of-mass motion is affected. We show that in a spatially correlated disordered potential, the quantum motion of a bright soliton displays Anderson localization. The localization length can be much larger than the soliton size and could be observed experimentally.

  12. Anderson Localization of Solitons

    SciTech Connect

    Sacha, Krzysztof; Zakrzewski, Jakub; Mueller, Cord A.; Delande, Dominique

    2009-11-20

    At low temperature, a quasi-one-dimensional ensemble of atoms with an attractive interaction forms a bright soliton. When exposed to a weak and smooth external potential, the shape of the soliton is hardly modified, but its center-of-mass motion is affected. We show that in a spatially correlated disordered potential, the quantum motion of a bright soliton displays Anderson localization. The localization length can be much larger than the soliton size and could be observed experimentally.

  13. Dressed soliton in quantum dusty pair-ion plasma

    SciTech Connect

    Chatterjee, Prasanta; Muniandy, S. V.; Wong, C. S.; Roy, Kaushik

    2009-11-15

    Nonlinear propagation of a quantum ion-acoustic dressed soliton is studied in a dusty pair-ion plasma. The Korteweg-de Vries (KdV) equation is derived using reductive perturbation technique. A higher order inhomogeneous differential equation is obtained for the higher order correction. The expression for a dressed soliton is calculated using a renormalization method. The expressions for higher order correction are determined using a series solution technique developed by Chatterjee et al. [Phys. Plasmas 16, 072102 (2009)].

  14. Dissipative solitons in pair-ion plasmas

    SciTech Connect

    Ghosh, Samiran; Adak, Ashish Khan, Manoranjan

    2014-01-15

    The effects of ion-neutral collisions on the dynamics of the nonlinear ion acoustic wave in pair-ion plasma are investigated. The standard perturbative approach leads to a Korteweg-de Vries equation with a linear damping term for the dynamics of the finite amplitude wave. The ion-neutral collision induced dissipation is responsible for the linear damping. The analytical solution and numerical simulation reveal that the nonlinear wave propagates in the form of a weakly dissipative compressive solitons. Furthermore, the width of the soliton is proportional to the amplitude of the wave for fixed soliton velocity. Results are discussed in the context of the fullerene pair-ion plasma experiment.

  15. Solitons in nonlinear optics

    SciTech Connect

    Maimistov, Andrei I

    2010-11-13

    The classic examples of optical phenomena resulting in the appearance of solitons are self-focusing, self-induced transparency, and parametric three-wave interaction. To date, the list of the fields of nonlinear optics and models where solitons play an important role has significantly expanded. Now long-lived or stable solitary waves are called solitons, including, for example, dissipative, gap, parametric, and topological solitons. This review considers nonlinear optics models giving rise to the appearance of solitons in a narrow sense: solitary waves corresponding to the solutions of completely integrable systems of equations basic for the models being discussed. (review)

  16. Effects of ion-temperature on propagation of the large-amplitude ion-acoustic solitons in degenerate electron-positron-ion plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2010-08-15

    Large-amplitude ion-acoustic solitary wave (IASW) propagation and matching criteria of existence of such waves are investigated in a degenerate dense electron-positron-ion plasma considering the ion-temperature as well as electron/positron degeneracy effects. It is shown that the ion-temperature effects play an important role in the existence criteria and allowed Mach-number range in such plasmas. Furthermore, a fundamental difference is remarked in the existence of supersonic IASW propagations between degenerate plasmas with nonrelativistic and ultrarelativistic electrons and positrons. Current study may be helpful in astrophysical as well as the laboratory inertial confinement fusion-research.

  17. Estimating the acoustic characteristics of surface layers of the sea bottom using four-component vector-scalar receivers

    NASA Astrophysics Data System (ADS)

    Belov, A. I.; Kuznetsov, G. N.

    2016-03-01

    It is shown that scalar, horizontal, and vertical vector receivers efficiently split modes of different numbers, which makes it possible to analyze the mode structure and estimate the characteristics of surface layers of a shallow sea bottom. To analyze the mode structure of propagating pulses from a towed pneumatic source, Winger transform was applied, with which seven modes were isolated by vertical vector receivers, whereas the scalar receivers and horizontal vector receivers isolated only three modes. It is established that the use of four-component vector-scalar receivers makes it possible to increase the accuracy in estimating the parameters of a layered bottom model.

  18. Acoustic nonlinearity in dispersive solids

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1991-01-01

    An investigation to consider the effects of dispersion on the generation of the static acoustic wave component is presented. It is considered that an acoustic toneburst may be modeled as a modulated continuous waveform and that the generated initial static displacement pulse may be viewed as a modulation-confined disturbance. A theoretical model for the generation of the acoustic modulation solitons evolved is developed and experimental evidence in samples of vitreous silica demonstrating the essential validity of the model is provided.

  19. Coherent atomic soliton molecules for matter-wave switching

    SciTech Connect

    Yin, Chenyun; Berloff, Natalia G.; Perez-Garcia, Victor M.; Novoa, David; Carpentier, Alicia V.; Michinel, Humberto

    2011-05-15

    We discuss the dynamics of interacting dark-bright two-dimensional vector solitons in multicomponent immiscible bulk Bose-Einstein condensates. We describe matter-wave molecules without a scalar counterpart that can be seen as bound states of vector objects. We also analyze the possibility of using these structures as building blocks for the design of matter-wave switchers.

  20. Soliton dynamics in proteins

    SciTech Connect

    Foerner, W.

    1996-12-31

    The mechanism for energy and signal transport in proteins is suggested by Davydov is discussed. This mechanism is based on a coupling of amide-I oscillators to acoustic phonons in a hydrogen bonded chain. Results as obtained with the usually used ansaetze are discussed. The quality of these states for an approximate solution of the time-dependent Schroedinger equation is investigated. It is found that the semiclassical ansatz is a poor approximation, while the more sophisticated {vert_bar}D{sub 1}> state seems to represent the exact dynamics quite well. Calculations at a temperature of 300K for one chain, as well as for three coupled ones (as they are present in an {alpha}-helix) are presented and discussed. From the calculations it is evident, that Davydov solitons are stable for reasonable parameter values at 300K only for special initial excitation at one terminal site of the chain, which has to be the one having a C=O group not directly coupled to the lattice. Since the model for temperature effects used was critisized from the theoretical point of view, we suggest an improved theory for temperature effects. Recent experimental findings, that also normal modes describing mainly N-H stretching vibrations are their coupling to the hydrogen bonds, instead of amide-I, should be considered are discussed.

  1. Accessible solitons of fractional dimension

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2016-05-01

    We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons.

  2. Quadratic spatial soliton interactions

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

  3. Pure-quartic solitons.

    PubMed

    Blanco-Redondo, Andrea; de Sterke, C Martijn; Martijn, de Sterke C; Sipe, J E; Krauss, Thomas F; Eggleton, Benjamin J; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758

  4. Pure-quartic solitons

    PubMed Central

    Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758

  5. Pure-quartic solitons

    NASA Astrophysics Data System (ADS)

    Blanco-Redondo, Andrea; Martijn, De Sterke C.; Sipe, J. E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers.

  6. Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide

    NASA Astrophysics Data System (ADS)

    Takeno, S.

    1986-01-01

    Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.

  7. Solitons in dusty plasmas with positive dust grains

    SciTech Connect

    Baluku, T. K.; Hellberg, M. A.; Mace, R. L.

    2008-03-15

    Although ''typical'' micrometer-sized dust grains in a space or laboratory plasma are often negatively charged because of collisions with the mobile electrons, there are environments in which grains may take on a positive charge. We consider a dusty plasma composed of electrons, positive ions and positive dust grains, and use the fluid dynamic paradigm to identify existence domains in parameter space for both dust-acoustic (DA) and dust-modified ion-acoustic (DIA) solitons. Only positive potential DA solitons are found. This represents an expected antisymmetry with the case of negative dust, where previously only negative solitons were reported. However, whereas for negative dust DIA solitons of either sign of potential may exist, we find that for the case of positive dust, DIA solitons are restricted to positive potentials only. The results for both positive and negative dust are consistent with an hypothesis that, in the absence of flows, the sign(s) of the soliton potential coincide(s) with the sign(s) of the species whose inertia is included in the calculation; i.e., the cold, supersonic species present in the plasma.

  8. Multipole plasmonic lattice solitons

    SciTech Connect

    Kou Yao; Ye Fangwei; Chen Xianfeng

    2011-09-15

    We theoretically demonstrate a variety of multipole plasmonic lattice solitons, including dipoles, quadrupoles, and necklaces, in two-dimensional metallic nanowire arrays with Kerr-type nonlinearities. Such solitons feature complex internal structures with an ultracompact mode size approaching or smaller than one wavelength. Their mode sizes and the stability characteristics are studied in detail within the framework of coupled mode theory. The conditions to form and stabilize these highly confined solitons are within the experimentally achievable range.

  9. Solitons in Granular Chains

    SciTech Connect

    Manciu, M.; Sen, S.; Hurd, A.J.

    1999-04-12

    The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = a{delta}{sup u}, u > 2, where {delta} is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n {le} 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing.

  10. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  11. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  12. Experimental observation of precursor solitons in a flowing complex plasma

    NASA Astrophysics Data System (ADS)

    Jaiswal, Surabhi; Bandyopadhyay, P.; Sen, A.

    2016-04-01

    The excitation of precursor solitons ahead of a rapidly moving object in a fluid, a spectacular phenomenon in hydrodynamics that has often been observed ahead of moving ships, has surprisingly not been investigated in plasmas where the fluid model holds good for low frequency excitations such as ion acoustic waves. In this Rapid Communication we report an experimental observation of precursor solitons in a flowing dusty plasma. The nonlinear solitary dust acoustic waves (DAWs) are excited by a supersonic mass flow of the dust particles over an electrostatic potential hill. In a frame where the fluid is stationary and the hill is moving the solitons propagate in the upstream direction as precursors while wake structures consisting of linear DAWs are seen to propagate in the downstream region. A theoretical explanation of these excitations based on the forced Korteweg-deVries model equation is provided and their practical implications in situations involving a charged object moving in a plasma are discussed.

  13. Experimental observation of precursor solitons in a flowing complex plasma.

    PubMed

    Jaiswal, Surabhi; Bandyopadhyay, P; Sen, A

    2016-04-01

    The excitation of precursor solitons ahead of a rapidly moving object in a fluid, a spectacular phenomenon in hydrodynamics that has often been observed ahead of moving ships, has surprisingly not been investigated in plasmas where the fluid model holds good for low frequency excitations such as ion acoustic waves. In this Rapid Communication we report an experimental observation of precursor solitons in a flowing dusty plasma. The nonlinear solitary dust acoustic waves (DAWs) are excited by a supersonic mass flow of the dust particles over an electrostatic potential hill. In a frame where the fluid is stationary and the hill is moving the solitons propagate in the upstream direction as precursors while wake structures consisting of linear DAWs are seen to propagate in the downstream region. A theoretical explanation of these excitations based on the forced Korteweg-deVries model equation is provided and their practical implications in situations involving a charged object moving in a plasma are discussed. PMID:27176247

  14. Semirelativity and Kink Solitons

    ERIC Educational Resources Information Center

    Nowak, Mariusz Karol

    2014-01-01

    It is hard to observe relativistic effects in everyday life. However, table experiments using a mechanical transmission line for solitons may be an efficient and simple way to show effects such as Lorentz contraction in a classroom. A kink soliton is a deformation of a lattice of several dozen or more pendulums placed on a wire and connected by a…

  15. Solitons in optomechanical arrays.

    PubMed

    Gan, Jing-Hui; Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Wu, Ying

    2016-06-15

    We show that optical solitons can be obtained with a one-dimensional optomechanical array that consists of a chain of periodically spaced identical optomechanical systems. Unlike conventional optical solitons, which originate from nonlinear polarization, the optical soliton here stems from a new mechanism, namely, phonon-photon interaction. Under proper conditions, the phonon-photon induced nonlinearity that refers to the optomechanical nonlinearity will exactly compensate the dispersion caused by photon hopping of adjacent optomechanical systems. Moreover, the solitons are capable of exhibiting very low group velocity, depending on the photon hopping rate, which may lead to many important applications, including all-optical switches and on-chip optical architecture. This work may extend the range of optomechanics and nonlinear optics and provide a new field to study soliton theory and develop corresponding applications. PMID:27304261

  16. Multicolor cavity soliton.

    PubMed

    Luo, Rui; Liang, Hanxiao; Lin, Qiang

    2016-07-25

    We show a new class of complex solitary wave that exists in a nonlinear optical cavity with appropriate dispersion characteristics. The cavity soliton consists of multiple soliton-like spectro-temporal components that exhibit distinctive colors but coincide in time and share a common phase, formed together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor cavity soliton shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which would be very useful for versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy. PMID:27464131

  17. Analytic study on the mixed-type solitons for a (2+1)-dimensional N-coupled nonlinear Schrödinger system in nonlinear optical-fiber communication

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Po; Tian, Bo; Sun, Wen-Rong; Liu, De-Yin

    2015-05-01

    Under investigation in this paper is the propagation and interaction of the solitons formed by the incoherently interacting optical beams in the bulk Kerr and saturable media in nonlinear optical fibers, which can be governed by a (2+1)-dimensional N-coupled nonlinear Schrödinger system. Via the symbolic computation and Hirota method, analytic mixed-type vector one- and two-soliton solutions for such a system are derived. The 2-bright-1-dark vector solitons are taken as an example to graphically illustrate the propagation and interaction of the mixed-type vector solitons. Through the analysis on the vector one solitons, the soliton amplitude and width are found to depend on the index of refraction: when the absolute value of the index of refraction increases, the bright soliton amplitude and dark soliton width become larger. Inelastic and elastic overtaking interactions between the bright two solitons, and elastic oblique interaction between the dark two solitons, are illustrated. We see that the bright soliton with a larger amplitude moves faster and overtakes the smaller, and that, increasing the absolute value of the index of refraction, we can obtain the dark soliton with a larger velocity. The soliton amplitudes change during the inelastic interaction, while keep invariant during the elastic interaction.

  18. Polarization instability of Raman solitons ejected during supercontinuum generation.

    PubMed

    Chao, Qing; Wagner, Kelvin H

    2015-12-28

    We numerically investigate polarization instability of soliton fission and the polarization dynamics of Raman solitons ejected during supercontinuum generation in a photonics crystal fiber using the coupled vector generalized nonlinear Schrödinger equations for both linear and circular birefringent fibers. The evolution of the state of polarizations of the ejected Raman soliton as representated on the Poincaré sphere is affected by both nonlinear and linear polarization rotations on the Poincaré sphere. The polarization dynamics reveal the presence of a polarization separatrix and the emergence of stable slow and unstable fast eigen-polarizations for the Raman solitons ejected in the supercontinuum generation process. Circularly birefringent fiber is investigated and found to simplify the nonlinear polarization dynamics. PMID:26832032

  19. Manakov spatial solitons

    NASA Astrophysics Data System (ADS)

    Kang, J. U.; Stegeman, G. I.; Aitchison, J. S.; Akhmediev, N.

    1996-12-01

    The Manakov soliton is a two-component soliton that was first considered by Manakov in the early 1970s.1 Based on the work of Zakharov and Shabat,2 Manakov found that the coupled nonlinear Schrodinger (CNSE) equations with special choice of the coefficients in front of nonlinear terms can be solved exactly. This system is integrable and solitons have therefore a number of special properties which might be useful in practice. In particular, for same total power, the soliton of a single nonlinear Schrodinger equation and the Manakov soliton behave similarly. There are certain conditions for the integrability of the CNSE. Namely, for the coupled set of equations with cubic nonlinearity, the ratio between the self-phase modulation (SPM) to the cross-phase modulation coefficients has to be equal to unity, and the SPM coefficients need to be equal for the two polarizations. Moreover, the energy exchange terms or four-wave mixing (FWM) terms must be zero. Physically, the Manakov soliton is a mutually trapped state of two orthogonally polarized beams where each component of the soliton experiences exactly the same index potential which is proportional to the total intensity of the beam. There are no crystal symmetries that a priori lead to a SPM/XPM ratio of unity. Thus, the Manakov soliton has not been observed experimentally prior to the work we reported.3 Based on our previous work, we found that in AlGaAs, for photon energies just below half the band gap, the conditions for integrability can be satisfied. This led to the first experimental observation of spatial Manakov solitons.

  20. Kerr-Newman Electron as Spinning Soliton

    NASA Astrophysics Data System (ADS)

    Burinskii, Alexander

    2015-10-01

    Measurable parameters of the electron indicate that its background should be described by the Kerr-Newman (KN) solution. The spin/mass ratio of the electron is extreme large, and the black hole horizons disappear, opening a topological defect of space-time - the Kerr singular ring of Compton size, which may be interpreted as a closed fundamental string of low energy string theory. The singular and two-sheeted structure of the corresponding Kerr space has to be regularised, and we consider the old problem of regularising the source of the KN solution. As a development of the earlier Keres-Israel-Hamity-López model, we describe the model of smooth and regular source forming a gravitating and relativistically rotating soliton based on the chiral field model and the Higgs mechanism of broken symmetry. The model reveals some new remarkable properties: (1) the soliton forms a relativistically rotating bubble of Compton radius, which is filled by the oscillating Higgs field in a pseudo-vacuum state; (2) the boundary of the bubble forms a domain wall which interpolates between the internal flat background and the external exact Kerr-Newman (KN) solution; (3) the phase transition is provided by a system of chiral fields; (4) the vector potential of the external the KN solution forms a closed Wilson loop which is quantised, giving rise to a quantised spin of the soliton; (5) the soliton is bordered by a closed string, which is a part of the general complex stringy structure.

  1. Gas dynamical approach to study dust acoustic solitary waves

    SciTech Connect

    Maitra, Sarit; Roychoudhury, Rajkumar

    2005-06-15

    Dust acoustic nonlinear waves are studied using gas dynamical approach. The structure equation for dust fluid has been obtained using the conservation laws for mass flux and momentum. The role of dust sonic point for the formation of soliton has been discussed. Conditions for the existence of soliton have been derived in terms of collective Mach number, taking into account the dust charge variation.

  2. Pulsed atomic soliton laser

    SciTech Connect

    Carr, L.D.; Brand, J.

    2004-09-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.

  3. Solitons and ionospheric modification

    NASA Technical Reports Server (NTRS)

    Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.; Weatherall, J. C.; Goldman, M. V.

    1982-01-01

    The possibility of Langmuir soliton formation and collapse during ionospheric modification is investigated. Parameters characterizing former facilities, existing facilities, and planned facilities are considered, using a combination of analytical and numerical techniques. At a spatial location corresponding to the exact classical reflection point of the modifier wave, the Langmuir wave evolution is found to be dominated by modulational instability followed by soliton formation and three-dimensional collapse. The earth's magnetic field is found to affect the shape of the collapsing soliton. These results provide an alternative explanation for some recent observations.

  4. Coherent soliton communication lines

    SciTech Connect

    Yushko, O. V. Redyuk, A. A.; Fedoruk, M. P.; Turitsyn, S. K.

    2014-11-15

    The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.

  5. Dissipative soliton protocols in semiconductor microcavities at finite temperatures

    NASA Astrophysics Data System (ADS)

    Karpov, D. V.; Savenko, I. G.; Flayac, H.; Rosanov, N. N.

    2015-08-01

    We consider exciton polaritons in a semiconductor microcavity with a saturable absorber in the growth direction of the heterostructure. This feature promotes additional nonlinear losses of the system with the emergence of bistability of the condensate particles number on the nonresonant (electrical or optical) excitation intensity. Furthermore, we demonstrate a new type of bright spatial dissipative exciton-polariton soliton which emerges in the equilibrium between the regions with different particle density. We develop protocols of soliton creation and destruction. The switch to a solitonlike behavior occurs if the cavity is exposed by a short strong laser pulse with certain energy and duration. We estimate the characteristic times of soliton switch on and off and the time of return to the initial cycle. In particular, we demonstrate surprising narrowing of the spatial profile of the soliton and its vanishing at certain temperature due to interaction of the system with the thermal bath of acoustic phonons. We also address the role of polariton-polariton interaction (Kerr-like nonlinearity) on formation of dissipative solitons and show that the soliton may exist both in its presence and its absence.

  6. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  7. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  8. Temporal dark polariton solitons

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Skryabin, Dmitry V.

    2016-04-01

    We predict that strong coupling between waveguide photons and excitons of quantum well embedded into waveguide results in the formation of hybrid dark and anti-dark light-matter solitons. Such temporal solitons exist due to interplay between repulsive excitonic nonlinearity and giant group velocity dispersion arising in the vicinity of excitonic resonance. Such fully conservative states do not require external pumping to counteract losses and form continuous families parameterized by the power-dependent phase shift and velocity of their motion. Dark solitons are stable in the considerable part of their existence domain, while anti-dark solitons are always unstable. Both families exist outside forbidden frequency gap of the linear system.

  9. Temporal dark polariton solitons.

    PubMed

    Kartashov, Yaroslav V; Skryabin, Dmitry V

    2016-04-15

    We predict that strong coupling between waveguide photons and excitons of quantum well embedded into waveguide results in the formation of hybrid-dark and antidark light-matter solitons. Such temporal solitons exist due to interplay between repulsive excitonic nonlinearity and giant group-velocity dispersion arising in the vicinity of excitonic resonance. Such fully conservative states do not require external pumping to counteract losses and form continuous families parameterized by the power-dependent phase shift and velocity of their motion. Dark solitons are stable in the considerable part of their existence domain, while antidark solitons are always unstable. Both families exist outside the forbidden frequency gap of the linear system. PMID:27082338

  10. Solitons in lossy fibers

    SciTech Connect

    Boehm, M.; Mitschke, F.

    2007-12-15

    We consider the evolution of fiber-optic solitons in the presence of dissipation. Even very low loss ultimately leads to their decay. We derive an explicit expression for the limit of adiabaticity, and discuss the evolution beyond this limit. In determining the soliton content of the optical pulse, we contrast earlier approaches using inverse scattering with a soliton-radiation beat method. It turns out that the evolution beyond adiabaticity is governed by uncertainty, which earlier published studies had missed. Somewhat in analogy to the uncertainty principle of quantum mechanics, we derive a soliton uncertainty relation. We also give simple relations for the evolution of the pulse width which reproduce numerical studies very well.

  11. Vortex stabilization by means of spatial solitons in nonlocal media

    NASA Astrophysics Data System (ADS)

    Izdebskaya, Yana; Krolikowski, Wieslaw; Smyth, Noel F.; Assanto, Gaetano

    2016-05-01

    We investigate how optical vortices, which tend to be azimuthally unstable in local nonlinear materials, can be stabilized by a copropagating coaxial spatial solitary wave in nonlocal, nonlinear media. We focus on the formation of nonlinear vortex-soliton vector beams in reorientational soft matter, namely nematic liquid crystals, and report on experimental results, as well as numerical simulations.

  12. Mathematical frontiers in optical solitons

    PubMed Central

    Bronski, Jared C.; Segev, Mordechai; Weinstein, Michael I.

    2001-01-01

    Solitons are localized concentrations of field energy, resulting from a balance of dispersive and nonlinear effects. They are ubiquitous in the natural sciences. In recent years optical solitons have arisen in new and exciting contexts that differ in many ways from the original context of coherent propagation in a uniform medium. We review recent developments in incoherent spatial solitons and in gap solitons in periodic structures. PMID:11687646

  13. Noncommuting Momenta of Topological Solitons

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Murayama, Hitoshi

    2014-05-01

    We show that momentum operators of a topological soliton may not commute among themselves when the soliton is associated with the second cohomology H2 of the target space. The commutation relation is proportional to the winding number, taking a constant value within each topological sector. The noncommutativity makes it impossible to specify the momentum of a topological soliton, and induces a Magnus force.

  14. Generation of transversal envelope soliton in polymeric and wooden rods.

    PubMed

    de Billy, M; Hladky-Hennion, A C

    2014-07-01

    This paper is concerned with the probing of the transversal envelope solitons propagation in circular waveguides when a set of requirements (non-linearity and dispersion) are fulfilled in the waveguide and balanced. The basic idea is to analyze the shape of an acoustic pulse after it has traveled one or few trips through samples constituted of a rod and two ended beads. The dispersive behavior is associated to the bounded medium (rod) and the contacts between the elements of the specimens are assumed being described by non-linear Hertz' law type. The experimental data are obviously material dependent and have pointed out the existence of common properties on the formation and propagation properties of the envelope solitons whatever is the material (polymers, carbon fibers and wood) of the rods and spheres. Peculiar behaviors were also observed for specific material (woods) probably caused by the anisotropy of this kind of rod material leading to a double envelope soliton. PMID:24576600

  15. Compressive and rarefactive dressed solitons in plasma with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Abdelwahed, H. G.; El-Shewy, E. K.; Zahran, M. A.; Elwakil, S. A.

    2016-02-01

    The study of dressed solitary ion waves in a collisionless unmagnetized plasma composed warm fluid of ion, nonthermal distributed positrons and electrons are discussed. Concerning nonlinear ion acoustic waves, a reductive perturbation method is applied to obtain the KdV equation in terms of first order potential. Our results exemplify that, if soliton amplitude enlarged, the shape of the wave sidetrack from KdV equation. In order to improve the soliton shape, the perturbed KdV equation is suggest. In particular, the effects of nonthermal positrons and ionic temperature on the electrostatic dressed rarefactive and compressive soliton structures are discussed.

  16. Multi-Soliton Solutions of the Generalized Sawada-Kotera Equation

    NASA Astrophysics Data System (ADS)

    Zuo, Da-Wei; Mo, Hui-Xia; Zhou, Hui-Ping

    2016-04-01

    Korteweg-de Vries (KdV)-type equations can describe the nonlinear phenomena in shallow water waves, stratified internal waves, and ion-acoustic waves in plasmas. In this article, the two-dimensional generalization of the Sawada-Kotera equation, one of the KdV-type equations, is discussed by virtue of the Bell polynomials and Hirota method. The results show that there exist multi-soliton solutions for such an equation. Relations between the direction of the soliton propagation and coordinate axes are shown. Elastic interaction with the multi-soliton solutions are analysed.

  17. Dynamical behavior of the soliton formation and propagation in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Das, G. C.; Sarma, J.; Gao, Yi-Tian; Uberoi, C.

    2000-06-01

    Despite many theoretical studies on soliton formation and its propagation in plasmas, no study with multicomponent magnetized plasma has derived the special nonlinear wave equation, called the Zakharov-Kuznetsov equation [V. E. Zakharov and E. A. Kuznetsov, Sov. Phys. JETP 39, 285 (1974)]. Thus, the main emphasis has been given to employing the hyperbolic-type method for finding the soliton features in relation to laboratory and space plasma environments. Where this method has been unsuccessful, an alternate method has been developed to yield the soliton propagation. The features of the nonlinear plasma-acoustic waves, which depend on the plasma composition, affect the coexistence of compressive and rarefactive solitary waves. Later, allowing for the higher order nonlinearity in the dynamics, one is led to further different solitary waves along with double layers. The main aim of the present study is to use a new formalism for finding the soliton propagation from the nonlinear wave equation with strong, as well as weak, nonlinearity. The coexistence of different nonlinear acoustic modes due to the interaction of multiple charges in plasma is shown. Moreover, the theoretical observations revealed many other soliton-like structures, which could be similar to the dip and hump solitons observed by the Freja Scientific Satellite and the collapsed solitons expected in the propagation of solar flares, as well as in the interplanetary space plasmas.

  18. Dark solitons at nonlinear interfaces.

    PubMed

    Sánchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S

    2010-05-01

    The refraction of dark solitons at a planar boundary separating two defocusing Kerr media is simulated and analyzed, for the first time (to our knowledge). Analysis is based on the nonlinear Helmholtz equation and is thus valid for any angle of incidence. A new law, governing refraction of black solitons, is combined with one describing bright soliton refraction to yield a generalized Snell's law whose validity is verified numerically. The complexity of gray soliton refraction is also analyzed, and illustrated by a change from external to internal refraction on varying the soliton contrast parameter. PMID:20436564

  19. Timing jitter of Raman solitons.

    PubMed

    Zhou, Gengji; Xin, Ming; Kaertner, Franz X; Chang, Guoqing

    2015-11-01

    We study the relative intensity noise (RIN) and timing jitter of a Raman soliton. We demonstrate that the RIN of an excitation pulse causes center-wavelength fluctuations of the resulting Raman soliton which translates by fiber dispersion into relative timing jitter (RTJ) between the Raman soliton and the excitation pulse. The Raman soliton's absolute timing jitter is dominated by the excitation pulse's timing jitter at low frequency and by the RTJ at high frequency. The experimental study reveals that RTJ can be significantly reduced by reducing the accumulated fiber dispersion (e.g., using less dispersive fibers with shorter length) experienced by the Raman soliton. PMID:26512530

  20. Solitons and chaos in plasma

    NASA Astrophysics Data System (ADS)

    Ichikawa, Yoshi H.

    1990-08-01

    The present discussion of the structure of soliton equations and dynamics of low-dimensional Hamiltonian nonlinear plasma systems emphasizes the universality of solitonic and chaotic concepts for other branches of physical research and engineering applications. Attention is given to the significance of the inverse-scattering transformation for the KdV equation in soliton-phenomena studies, as well as to the multidimensional behavior of solitons and their Alfvenic and optical-fiber types. An account is given of the development status of computational physics and integrable mapping methodologies applicable to solitonic plasma phenomena.

  1. Soliton driven angiogenesis

    PubMed Central

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-01-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process. PMID:27503562

  2. Soliton driven angiogenesis

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  3. Soliton driven angiogenesis.

    PubMed

    Bonilla, L L; Carretero, M; Terragni, F; Birnir, B

    2016-01-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process. PMID:27503562

  4. Interaction of fast magnetoacoustic solitons in dense plasmas

    SciTech Connect

    Jahangir, R.; Saleem, Khalid; Masood, W.; Siddiq, M.; Batool, Nazia

    2015-09-15

    One dimensional propagation of fast magnetoacoustic solitary waves in dense plasmas with degenerate electrons is investigated in this paper in the small amplitude limit. In this regard, Korteweg deVries equation is derived and discussed using the plasma parameters that are typically found in white dwarf stars. The interaction of fast magnetoacoustic solitons is explored by using the Hirota bilinear formalism, which admits multi soliton solutions. It is observed that the values of the propagation vectors determine the interaction of solitary waves. It is further noted that the amplitude of the respective solitary waves remain unchanged after the interaction; however, they do experience a phase shift.

  5. Classically spinning and isospinning solitons

    SciTech Connect

    Battye, Richard A.; Haberichter, Mareike

    2012-09-26

    We investigate classically spinning topological solitons in (2+1)- and (3+1)-dimensional models; more explicitely spinning sigma model solitons in 2+1 dimensions and Skyrme solitons in 2+1 and 3+1 dimensions. For example, such types of solitons can be used to describe quasiparticle excitations in ferromagnetic quantum Hall systems or to model spin and isospin states of nuclei. The standard way to obtain solitons with quantised spin and isospin is the semiclassical quantization procedure: One parametrizes the zero-mode space - the space of energy-degenerate soliton configurations generated from a single soliton by spatial translations and rotations in space and isospace - by collective coordinates which are then taken to be time-dependent. This gives rise to additional dynamical terms in the Hamiltonian which can then be quantized following semiclassical quantization rules. A simplification which is often made in the literature is to apply a simple adiabatic approximation to the (iso)rotational zero modes of the soliton by assuming that the soliton's shape is rotational frequency independent. Our numerical results on classically spinning arbitrarily deforming soliton solutions clearly show that soliton deformation cannot be ignored.

  6. Defect solitons in photonic lattices.

    PubMed

    Yang, Jianke; Chen, Zhigang

    2006-02-01

    Nonlinear defect modes (defect solitons) and their stability in one-dimensional photonic lattices with focusing saturable nonlinearity are investigated. It is shown that defect solitons bifurcate out from every infinitesimal linear defect mode. Low-power defect solitons are linearly stable in lower bandgaps but unstable in higher bandgaps. At higher powers, defect solitons become unstable in attractive defects, but can remain stable in repulsive defects. Furthermore, for high-power solitons in attractive defects, we found a type of Vakhitov-Kolokolov (VK) instability which is different from the usual VK instability based on the sign of the slope in the power curve. Lastly, we demonstrate that in each bandgap, in addition to defect solitons which bifurcate from linear defect modes, there is also an infinite family of other defect solitons which can be stable in certain parameter regimes. PMID:16605473

  7. Baryons as Solitons

    NASA Astrophysics Data System (ADS)

    Rajeev, Sarada Gangadharan

    In this dissertation we study the soliton models of baryons originally proposed by Skyrme. Baryons are interpreted in the naive quark model as bound states of three quarks. Here, we interpret them as solitonic bound states of mesons. This is natural in Quantum Chromodynamics, the theory of strong interactions. The low energy properties of chromodynamics are well accounted for by the chiral model. The Wess-Zumino anomaly plays a crucial role in this model. A derivation within the canonical formulation of the Wess-Zumino is given. It is shown that the anomaly leads to a modification of the current algebra. An operator that creates solitonic states out of the vacuum is constructed. It is shown that this operator is fermionic if the number of colors is odd. The Wess -Zumino anomaly is shown to be responsible for this fact. The anomaly is studied in detail in the simpler context of a two dimensional theory. The operator creating solitons is constructed and its equations of motion are found. This model has an infinite number of conserved charges satisfying a Kac-Moody algebra. A derivation of the Wess-Zumino anomaly starting from Quantum Chromodynamics is given. Further the Skyrme constant is calculated, within certain approximations. This enables us to calculate the mass of the soliton and it agrees with the baryon mass to 20%. The constants D and F that couple the baryons to mesons are also computed. They also agree to about 20%. Thus the identification of baryons as solitons of the chiral model is established.

  8. Noncommutative solitonic black hole

    NASA Astrophysics Data System (ADS)

    Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone

    2012-05-01

    We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  9. Cylindrical and spherical electron acoustic solitary waves with nonextensive hot electrons

    SciTech Connect

    Pakzad, Hamid Reza

    2011-08-15

    Nonlinear propagation of cylindrical and spherical electron-acoustic solitons in an unmagnetized plasma consisting cold electron fluid, hot electrons obeying a nonextensive distribution and stationary ions, are investigated. For this purpose, the standard reductive perturbation method is employed to derive the cylindrical/spherical Korteweg-de-Vries equation, which governs the dynamics of electron-acoustic solitons. The effects of nonplanar geometry and nonextensive hot electrons on the behavior of cylindrical and spherical electron acoustic solitons are also studied by numerical simulations.

  10. Evolution of nonlinear ion-acoustic solitary wave propagation in rotating plasma

    SciTech Connect

    Das, G. C.; Nag, Apratim

    2006-08-15

    A simple unmagnetized plasma rotating around an axis at an angle {theta} with the propagation direction of the acoustic mode has been taken. The nonlinear wave mode has been derived as an equivalent Sagdeev potential equation. A special procedure, known as the tanh method, has been developed to study the nonlinear wave propagation in plasma dynamics. Further, under small amplitude approximation, the nonlinear plasma acoustic mode has been exploited to study the evolution of soliton propagation in the plasma. The main emphasis has been given to the interaction of Coriolis force on the changes of coherent structure of the soliton. The solitary wave solution finds the different nature of solitons called compressive and rarefactive solitons as well as its explosions or collapses along with soliton dynamics and these have been showing exciting observations in exhibiting a narrow wave packet with the generation of high electric pressure and the growth of high energy which, in turn, yields the phenomena of radiating soliton in dynamics.

  11. Solitons in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Ustinov, A. V.

    1998-11-01

    Magnetic flux quanta in Josephson junctions, often called fluxons, in many cases behave as solitons. A review of recent experiments and modelling of fluxon dynamics in Josephson circuits is presented. Classic quasi-one-dimensional junctions, stacked junctions (Josephson superlattices), and discrete Josephson transmission lines (JTLs) are discussed. Applications of fluxon devices as high-frequency oscillators and digital circuits are also addressed.

  12. Solitons and ionospheric heating

    NASA Technical Reports Server (NTRS)

    Weatherall, J. C.; Goldman, M. V.; Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.

    1982-01-01

    It is noted that for parameters characterizing the Platteville ionospheric heating facility, the Langmuir wave evolution at the exact reflection point of the heater wave involves an oscillating two-stream instability followed by a collisionally damped three-dimensional soliton collapse. The result gives an alternative explanation for certain experimental observations.

  13. Soliton stability in some knot soliton models

    SciTech Connect

    Adam, C.; Sanchez-Guillen, J.; Wereszczynski, A.

    2007-02-15

    We study the issue of stability of static solitonlike solutions in some nonlinear field theories which allow for knotted field configurations. Concretely, we investigate the Aratyn-Ferreira-Zimerman model [Phys. Lett. B 456, 162 (1999); Phys. Rev. Lett. 83, 1723 (1999)], based on a Lagrangian quartic in first derivatives with infinitely many conserved currents, for which infinitely many soliton solutions are known analytically. For this model we find that sectors with different (integer) topological charges (Hopf index) are not separated by an infinite energy barrier. Further, if variations which change the topological charge are allowed, then the static solutions are not even critical points of the energy functional. We also explain why soliton solutions can exist at all, in spite of these facts. In addition, we briefly discuss the Nicole model [J. Phys. G 4, 1363 (1978)], which is based on a sigma-model-type Lagrangian. For the Nicole model we find that different topological sectors are separated by an infinite energy barrier.

  14. Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure.

    PubMed

    Zeng, Xianglong; Ashihara, Satoshi; Wang, Zijie; Wang, Tingyun; Chen, Yuping; Cha, Myoungsik

    2009-09-14

    We conducted a numerical study on the excitation of a two-colored temporal soliton in a segmented quasi-phase-matching (QPM) structure. The device has three parts: a periodic QPM grating for second-harmonic generation, a single domain for phase shift, and a periodic QPM grating for soliton evolution. The second harmonic pulse generated in the first grating works as a seed in the cascaded up-and-down conversions in the second grating. The numerical results showed that the second harmonic seeding enables the excitation of soliton pulses with an improved spatio-temporal intensity profile in a broad bandwidth of the wave-vector mismatch. PMID:19770904

  15. Soliton excitations and stability in a square lattice model of ferromagnetic spin system

    NASA Astrophysics Data System (ADS)

    Latha, M. M.; Anitha, T.

    2015-12-01

    We investigate the nature of nonlinear spin excitations in a square lattice model of ferromagnetic (FM) spin system with bilinear and biquadratic interactions. Using the coherent state ansatz combined with the Holstein-Primakoff (HP) bosonic representation of spin operators, the dynamics is found to be governed by a discrete nonlinear equation which possesses soliton solution. The modulational instability aspects of the soliton excitations are analysed for small perturbations in wave vectors.

  16. Topology of energy fluxes in vortex dissipative soliton structures

    NASA Astrophysics Data System (ADS)

    Rosanov, N. N.; Fedorov, S. V.

    2016-07-01

    We consider and compare two-dimensional dissipative vortex solitons and their complexes in wide-aperture lasers and in exciton–polariton lasers; there is an incoherent pump and saturable absorption in both schemes presented. Our emphasis is on the study of the soliton’s internal structure. It can be revealed by the topology of energy fluxes and related energetic characteristics, because they are of primary importance for dissipative solitons representing the balance of energy input and output within the domains of field localization. For electromagnetic radiation in a nonlinear medium, it is difficult to separate energy between the field and the medium. The situation is simpler for paraxial beams and media with fast response (negligible dispersion), where we present the characterization of weak and strong soliton coupling based on the topology of spatial distributions of the Poynting vector and its divergence. Finally, we analyze the effect of nonresonant defocusing Kerr-like nonlinearity on vortex soliton existence and present different scenarios of soliton structural decay for sufficiently strong Kerr nonlinearity.

  17. Qualitative theory of bright solitons: the soliton sketch

    NASA Astrophysics Data System (ADS)

    Snyder, A. W.; Mitchell, D. J.; Buryak, A.

    1996-06-01

    Using intuitive physics, we show how to read the stability and the qualitative characteristics of all self-guided (bounded) beams directly from the graph of refractive index versus intensity that characterizes any nonlinear medium. Our approach predicts new soliton classes. It reveals important differences between solitons of one and two transverse dimensions. It links the physical characteristics of solitons and their possible multistabilities directly with topological features of the material nonlinearity n(I) . The soliton sketch is introduced as a physical alternative to the usual bifurcation diagrams.

  18. Formation of quasiparallel Alfven solitons

    NASA Technical Reports Server (NTRS)

    Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.

    1992-01-01

    The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.

  19. Ultrafast nonlinear acoustics in crystals and nanostructures

    NASA Astrophysics Data System (ADS)

    van Capel, P. J. S.

    2008-09-01

    This research aims at experimentally monitoring nonlinear generation and propagation of picosecond coherent acoustic strain wave packets in solids. The experiments are performed by ultrafast pump-probe reflectometry and interferometry. At first, nonlinear strain generation in thin nickel and chromium films is characterized. At high pump fluences, the elevated electron and lattice temperatures in the absorption layer significantly modify thermal and mechanical material parameters, thereby increasing the strain amplitude superlinearly. Electron diffusion is suppressed by electron-electron collisions. The results are accurately described by a two-temperature model for fluences up to 80% of the damage threshold, above which nonthermal processes come into play. At room temperature, the high-amplitude strain waves generated in a thin chromium film and launched into the sapphire substrate, transform into an acoustic shock wave within tens of micrometer due to large atomic displacements and the nonparabolic interatomic potential. When lowering the temperature, thermal attenuation gradually decreases and lattice dispersion comes into play. At 20 K, propagation is undamped, thus leading to the formation of acoustic solitons. A maximum number of seven solitons is measured. By performing measurements on different sample thicknesses, the superlinear soliton velocity can be determined. Since the soliton velocity is intimately linked to its spatial width, a soliton width as short as two nanometer can be derived. The measured soliton velocities and volumes are in excellent agreement with numerical simulations of propagation, as well with the exact predictions by the Korteweg - De Vries equation. Following the demonstration of acoustic solitons, an experiment was devised in which these solitons are used to modulate nanostructures on ultrafast timescales. Modulation of exciton states inside a semiconductor within times shorter than the exciton lifetime leads to chirping, i

  20. Soliton Theory and Its Applications

    NASA Astrophysics Data System (ADS)

    Gu, Chaohao

    Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.

  1. Quantum theory of Manakov solitons

    SciTech Connect

    Rand, Darren; Prucnal, Paul R.; Steiglitz, Ken

    2005-05-15

    A fully quantum mechanical model of two-component Manakov solitons is developed in both the Heisenberg and Schroedinger representations, followed by an analytical, linearized quantum theory of Manakov solitons in the Heisenberg picture. This theory is used to analyze the vacuum-induced fluctuations of Manakov soliton propagation and collision. The vacuum fluctuations induce phase diffusion and dispersion in Manakov soliton propagation. Calculations of the position, polarization angle, and polarization state fluctuations show an increase in collision-induced noise with a decrease in the relative velocity between the two solitons, as expected because of an increase in the interaction length. Fluctuations in both the polarization angle and state are shown to be independent of propagation distance, opening up possibilities for communications, switching, and logic, exploiting these properties of Manakov solitons. Calculations of the phase noise reveal, surprisingly, that the collision-induced fluctuations can be reduced slightly below the level of fluctuations in the absence of collision, due to cross-correlation effects between the collision-induced phase and amplitude fluctuations of the soliton. The squeezing effect of Manakov solitons is also studied and proven, unexpectedly, to have the same theoretical optimum as scalar solitons.

  2. Dynamics of Dissipative Temporal Solitons

    NASA Astrophysics Data System (ADS)

    Peschel, U.; Michaelis, D.; Bakonyi, Z.; Onishchukov, G.; Lederer, F.

    The properties and the dynamics of localized structures, frequently termed solitary waves or solitons, define, to a large extent, the behavior of the relevant nonlinear system [1]. Thus, it is a crucial and fundamental issue of nonlinear dynamics to fully characterize these objects in various conservative and dissipative nonlinear environments. Apart from this fundamental point of view, solitons (henceforth we adopt this term, even for localized solutions of non-integrable systems) exhibit a remarkable potential for applications, particularly if optical systems are considered. Regarding the type of localization, one can distinguish between temporal and spatial solitons. Spatial solitons are self-confined beams, which are shape-invariant upon propagation. (For an overview, see [2, 3]). It can be anticipated that they could play a vital role in all-optical processing and logic, since we can use their complex collision behavior [4]. Temporal solitons, on the other hand, represent shapeinvariant (or breathing) pulses. It is now common belief that robust temporal solitons will play a major role as elementary units (bits) of information in future all-optical networks [5, 6]. Until now, the main emphasis has been on temporal and spatial soliton families in conservative systems, where energy is conserved. Recently, another class of solitons, which are characterized by a permanent energy exchange with their environment, has attracted much attention. These solitons are termed dissipative solitons or auto-solitons. They emerge as a result of a balance between linear (delocalization and losses) and nonlinear (self-phase modulation and gain/loss saturation) effects. Except for very few cases [7], they form zero-parameter families and their features are entirely fixed by the underlying optical system. Cavity solitons form a prominent type. They appear as spatially-localized transverse peaks in transmission or reflection, e.g. from a Fabry-Perot cavity. They rely strongly on the

  3. Quantum Decay of Dark Solitons

    SciTech Connect

    Gangardt, D. M.; Kamenev, A.

    2010-05-14

    Unless protected by the exact integrability, solitons are subject to dissipative forces, originating from a thermally fluctuating background. At low enough temperatures T background fluctuations should be considered as being quantized which enables us to calculate finite lifetime of the solitons {tau}{approx}T{sup -4}. We also find that the coherent nature of the quantum fluctuations leads to long-range interactions between the solitons mediated by the superradiation. Our results are of relevance to current experiments with ultracold atoms, while the approach may be extended to solitons in other media.

  4. Solitonization of a dispersive wave.

    PubMed

    Braud, F; Conforti, M; Cassez, A; Mussot, A; Kudlinski, A

    2016-04-01

    We report the observation of a nonlinear propagation scenario in which a dispersive wave is transformed into a fundamental soliton in an axially varying optical fiber. The dispersive wave is initially emitted in the normal dispersion region and the fiber properties change longitudinally so that the dispersion becomes anomalous at the dispersive wave wavelength, which allows it to be transformed into a soliton. The solitonic nature of the field is demonstrated by solving the direct Zakharov-Shabat scattering problem. Experimental characterization performed in spectral and temporal domains show evidence of the solitonization process in an axially varying photonic crystal fiber. PMID:27192249

  5. Biological soliton in multicellular movement

    NASA Astrophysics Data System (ADS)

    Kuwayama, Hidekazu; Ishida, Shuji

    2013-07-01

    Solitons have been observed in various physical phenomena. Here, we show that the distinct characteristics of solitons are present in the mass cell movement of non-chemotactic mutants of the cellular slime mould Dictyostelium discoideum. During starvation, D. discoideum forms multicellular structures that differentiate into spore or stalk cells and, eventually, a fruiting body. Non-chemotactic mutant cells do not form multicellular structures; however, they do undergo mass cell movement in the form of a pulsatile soliton-like structure (SLS). We also found that SLS induction is mediated by adhesive cell-cell interactions. These observations provide novel insights into the mechanisms of biological solitons in multicellular movement.

  6. Polarons and solitons in Jahn Teller systems

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2007-07-01

    Using a semiclassical continuum model of an electron in a deformable molecular crystal, some properties of multicomponent generalizations of the polaron - "vector polarons" - are elucidated. Analytical solutions for the case of two electronic bands coupled to two vibrational modes are given in detail. Within the model considered, the vector polaron can be classified by its wavefunction into several types and can have features that include: (1) a spatial variation in the electronic and vibrational character, and (2) low-energy internal degrees of freedom. For the case of electronic and vibrational degeneracy, local Jahn-Teller interactions can also lead to a novel spatiotemporal soliton, a long-lived excited state of the many-electron system stabilized by the conservation law resulting from degeneracy.

  7. Nonlinear Korteweg-de Vries equation for soliton propagation in relativistic electron-positron-ion plasma with thermal ions

    NASA Astrophysics Data System (ADS)

    Saeed, R.; Shah, Asif; Noaman-Ul-Haq, Muhammad

    2010-10-01

    The nonlinear propagation of ion-acoustic solitons in relativistic electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries equation has been derived by reductive perturbation technique. The effect of various plasma parameters on amplitude and structure of solitary wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that increase in the relativistic streaming factor causes the soliton amplitude to thrive and its width shrinks. The soliton amplitude and width decline as the ion to electron temperature ratio is increased. The increase in positron concentration results in reduction of soliton amplitude. The soliton amplitude enhances as the electron to positron temperature ratio is increased. Our results may have relevance in the understanding of astrophysical plasmas.

  8. Nonlinear Korteweg-de Vries equation for soliton propagation in relativistic electron-positron-ion plasma with thermal ions

    SciTech Connect

    Saeed, R.; Shah, Asif; Noaman-ul-Haq, Muhammad

    2010-10-15

    The nonlinear propagation of ion-acoustic solitons in relativistic electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries equation has been derived by reductive perturbation technique. The effect of various plasma parameters on amplitude and structure of solitary wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that increase in the relativistic streaming factor causes the soliton amplitude to thrive and its width shrinks. The soliton amplitude and width decline as the ion to electron temperature ratio is increased. The increase in positron concentration results in reduction of soliton amplitude. The soliton amplitude enhances as the electron to positron temperature ratio is increased. Our results may have relevance in the understanding of astrophysical plasmas.

  9. A proposed soliton mechanism in wind-wave surface generation and scattering

    NASA Astrophysics Data System (ADS)

    Middleton, David

    1986-12-01

    Initially, to account for observed discrepancies in acoustic backscatter strengths and Doppler shifts, and subsequently, to provide a plausible model of local wind-wave surface generation, a soliton mechanism has been proposed, which appears to play a critical role under the following operating conditions: small grazing angles, high frequencies, and moderate strong wind speeds, in bubble-free regimes. Earlier versions of the proposed soliton surface, which is postulated to be a part of the wind-generated surface drift layer, are extended in this study to include the effects of surface tension, as well as many physical and analytical features. Surface tension is a dominant factor, setting a minimum thickness, he-min, of 5.5 mm, to the effective drift layer or channel which supports the soliton ensemble. Layer thickness (7 to 8 mm) and soliton speeds (30 cm/s) appear typical at (mean) near-surface wind speeds U sub infinity 10 m/s. Key features of these solitons (or hydraulic bumps = one-sided waves), which comprise the high wavenumber components of the total surface, including the gravity-capillary structure on which the wind-generated soliton ensemble rides, are: (1) their nondispersive nature, (2) their independence, reflecting the fact that solitons can travel through one another without distortion; and (3) that they are (in the unidimensional models) limiting solutions of the Kortweg-de Vries equation.

  10. Baby Skyrmions stabilized by vector mesons

    SciTech Connect

    Foster, David; Sutcliffe, Paul

    2009-06-15

    Recent results suggest that multi-Skyrmions stabilized by {omega} mesons have very similar properties to those stabilized by the Skyrme term. In this paper we present the results of a detailed numerical investigation of a (2+1)-dimensional analogue of this situation. Namely, we compute solitons in an O(3) {sigma} model coupled to a massive vector meson and compare the results to baby Skyrmions, which are solitons in an O(3) {sigma} model including a Skyrme term. We find that multisolitons in the vector meson model are surprisingly similar to those in the baby Skyrme model, and we explain this correspondence using a simple derivative expansion.

  11. Soliton dispersion management in nonlinear optical fibers

    NASA Astrophysics Data System (ADS)

    Ganapathy, R.

    2012-12-01

    We consider the concept of quasisoliton propagation in a dispersion management fiber and study the soliton dynamics for soliton dispersion management case, soliton energy control case and guiding center soliton case. We also study the interaction scenario in detail for all the cases.

  12. Acoustic Solitary Waves and Sagdeev Potential Triple Roots

    SciTech Connect

    Hellberg, M. A.; Baluku, T. K.; Verheest, F.

    2010-12-14

    Both KdV theory and the standard pseudopotential theory require that solitons and double layers be explicitly super-acoustic, with the pseudopotential {psi}({phi},M) having a maximum at the origin. Recent studies of a variety of different three-component plasmas have shown that they may support finite amplitude solitons at the true acoustic speed of the plasma configuration, M{sub s}. These are associated with triple roots of the Sagdeev potential, and the usual soliton condition is replaced by {psi}''(0,M){<=}0. Sagdeev potentials for speeds marginally greater than M{sub s} then represent solitons of both polarities, one whose amplitude vanishes at M{sub s}(KdV-like), while the other is necessarily finite at M{sub s}('nonKdV-like'). Such coexistence regions have been observed to be linked to a critical plasma compositional parameter value for which {psi}'''(0,M{sub s}) = 0.

  13. Sparsifying preconditioner for soliton calculations

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Ying, Lexing

    2016-06-01

    We develop a robust and efficient method for soliton calculations for nonlinear Schrödinger equations. The method is based on the recently developed sparsifying preconditioner combined with Newton's iterative method. The performance of the method is demonstrated by numerical examples of gap solitons in the context of nonlinear optics.

  14. Primordial origin of nontopological solitons

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gelmini, Graciela B.; Gleiser, Marcelo; Kolb, Edward W.

    1988-01-01

    The formation of nontopological solitons in a second-order phase transition in the early universe is discussed. Ratios of dimensionless coupling constants in the Lagrangian determine their abundance and mass. For a large range of parameters, nontopological solitons can be cosmologically significant, contributing a significant fraction of the present mass density of the universe.

  15. Precursor solitons in a flowing complex plasma

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Pintu; Jaiswal, Surabhi; Sen, Abhijit

    2015-11-01

    We report the first experimental observation of precursor solitons in a flowing dusty plasma. The nonlinear solitary dust acoustic waves (DAWs) are excited by a supersonic mass flow of the dust particles passing over an electrostatic potential hill. In a frame where the fluid is stationary and the hill is moving the solitons propagate in the upstream direction while wake structures consisting of linear DAWs are seen to propagate in the downstream direction. The experiments have been carried out in a U-shaped Dusty Plasma Experimental (DPEx) device where kaolin particles are immersed in a DC discharge argon plasma to form the dusty plasma and a floating wire mounted on the cathode creates a potential hill. The dust flow is induced by sudden changes in the hill height and the solitary structures are seen only for supersonic flows and up to an upper limit of the flow. A theoretical model description of the phenomenon will be provided and some practical implications of such precursor excitations for a charged object moving in a plasma will be discussed.

  16. Effect of nonthermality of electrons on the speed and shape of ion-acoustic solitary waves in a warm plasma

    SciTech Connect

    Abdelwahed, H. G.; El-Shewy, E. K.

    2012-07-15

    Nonlinear ion-acoustic solitary waves in a warm collisionless plasma with nonthermal electrons are investigated by a direct analysis of the field equations. The Sagdeev's potential is obtained in terms of ion acoustic speed by simply solving an algebraic equation. It is found that the amplitude and width of the ion-acoustic solitons as well as the parametric regime where the solitons can exist are sensitive to the population of energetic non-thermal electrons. The soliton and double layer solutions are obtained as a small amplitude approximation.

  17. Thermophoresis of an antiferromagnetic soliton

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tchernyshyov, Oleg; Tserkovnyak, Yaroslav

    2015-07-01

    We study the dynamics of an antiferromagnetic soliton under a temperature gradient. To this end, we start by phenomenologically constructing the stochastic Landau-Lifshitz-Gilbert equation for an antiferromagnet with the aid of the fluctuation-dissipation theorem. We then derive the Langevin equation for the soliton's center of mass by the collective coordinate approach. An antiferromagentic soliton behaves as a classical massive particle immersed in a viscous medium. By considering a thermodynamic ensemble of solitons, we obtain the Fokker-Planck equation, from which we extract the average drift velocity of a soliton. The diffusion coefficient is inversely proportional to a small damping constant α , which can yield a drift velocity of tens of m/s under a temperature gradient of 1 K/mm for a domain wall in an easy-axis antiferromagnetic wire with α ˜10-4 .

  18. Gray solitons on the surface of water.

    PubMed

    Chabchoub, A; Kimmoun, O; Branger, H; Kharif, C; Hoffmann, N; Onorato, M; Akhmediev, N

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons. PMID:24580162

  19. Fully localized two-dimensional embedded solitons

    SciTech Connect

    Yang Jianke

    2010-11-15

    We report the prediction of fully localized two-dimensional embedded solitons. These solitons are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands (continuous spectrum) of the waveguide and thus are embedded solitons. These embedded solitons are fully localized along both spatial directions. In addition, they are fully stable under perturbations.

  20. Gray solitons on the surface of water

    NASA Astrophysics Data System (ADS)

    Chabchoub, A.; Kimmoun, O.; Branger, H.; Kharif, C.; Hoffmann, N.; Onorato, M.; Akhmediev, N.

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons.

  1. Solitons riding on solitons and the quantum Newton's cradle

    NASA Astrophysics Data System (ADS)

    Ma, Manjun; Navarro, R.; Carretero-González, R.

    2016-02-01

    The reduced dynamics for dark and bright soliton chains in the one-dimensional nonlinear Schrödinger equation is used to study the behavior of collective compression waves corresponding to Toda lattice solitons. We coin the term hypersoliton to describe such solitary waves riding on a chain of solitons. It is observed that in the case of dark soliton chains, the formulated reduction dynamics provides an accurate an robust evolution of traveling hypersolitons. As an application to Bose-Einstein condensates trapped in a standard harmonic potential, we study the case of a finite dark soliton chain confined at the center of the trap. When the central chain is hit by a dark soliton, the energy is transferred through the chain as a hypersoliton that, in turn, ejects a dark soliton on the other end of the chain that, as it returns from its excursion up the trap, hits the central chain repeating the process. This periodic evolution is an analog of the classical Newton's cradle.

  2. Solitons riding on solitons and the quantum Newton's cradle.

    PubMed

    Ma, Manjun; Navarro, R; Carretero-González, R

    2016-02-01

    The reduced dynamics for dark and bright soliton chains in the one-dimensional nonlinear Schrödinger equation is used to study the behavior of collective compression waves corresponding to Toda lattice solitons. We coin the term hypersoliton to describe such solitary waves riding on a chain of solitons. It is observed that in the case of dark soliton chains, the formulated reduction dynamics provides an accurate an robust evolution of traveling hypersolitons. As an application to Bose-Einstein condensates trapped in a standard harmonic potential, we study the case of a finite dark soliton chain confined at the center of the trap. When the central chain is hit by a dark soliton, the energy is transferred through the chain as a hypersoliton that, in turn, ejects a dark soliton on the other end of the chain that, as it returns from its excursion up the trap, hits the central chain repeating the process. This periodic evolution is an analog of the classical Newton's cradle. PMID:26986326

  3. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  4. Deceleration of the small solitons in the soliton lattice: KdV-type framework

    NASA Astrophysics Data System (ADS)

    Shurgalina, Ekaterina; Gorshkov, Konstantin; Talipova, Tatiana; Pelinovsky, Efim

    2016-04-01

    As it is known the solitary waves (solitons) in the KdV-systems move with speed which exceeds the speed of propagation of long linear waves (sound speed). Due to interaction between them, solitons do not lose their individuality (elastic interaction). Binary interaction of neigborough solitons is the major contribution in the dynamics of soliton gas. Taking into account the integrability of the classic and modified Korteweg-de Vries equations the process of the soliton interaction can be analyzed in the framework of the rigorous analytical two-soliton solutions. Main physical conclusion from this solution is the phase shift which is positive for large solitons and negative for small solitons. This fact influences the average velocity of individual soliton in the soliton lattice or soliton gas. We demonstrate that soliton of relative small amplitude moves in soliton gas in average in opposite (negative) direction, meanwhile a free soliton moves always in the right direction. Approximated analytical theory is created for the soliton motion in the periodic lattice of big solitons of the same amplitudes, and the critical amplitude of the small soliton changed its averaged speed is found. Numerical simulation is conducted for a statistical assembly of solitons with random amplitudes and phases. The application of developed theory to the long surface and internal waves is discussed.

  5. Effect of third-order dispersion on dark solitons

    NASA Astrophysics Data System (ADS)

    Afanasjev, Vsevolod V.; Kivshar, Yuri S.; Menyuk, Curtis R.

    1996-12-01

    Third-order dispersion has a detrimental effect on dark solitons, leading to resonant generation of growing soliton tails and soliton decay. This effect is shown to be much stronger than that for bright solitons.

  6. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  7. Multistable monochromatic laser solitons

    SciTech Connect

    Genevet, P.; Columbo, L.; Barland, S.; Giudici, M.; Gil, L.; Tredicce, J. R.

    2010-05-15

    We study the spectral properties of stationary laser solitons (LSs) generated in two broad-area vertical cavity surface emitting lasers coupled to each other in face-to-face configuration [P. Genevet et al., Phys. Rev. Lett. 101, 123905 (2008)]. We demonstrate experimentally that LS emission occurs on a single longitudinal mode frequency of the compound cavity. Multistability is reported among differently 'colored' LSs. We also develop a theoretical model beyond the single longitudinal mode approximation whose numerical simulation results are in good agreement with the experimental observations.

  8. Davydov solitons in polypeptides

    SciTech Connect

    Scott, A.

    1984-10-01

    The experimental evidence for self-trapping of amide-I (CO stretching) vibrational energy in crystalline acetanilide (a model protein) is reviewed and related to A. S. Davydov's theory of solitons as a mechanism for energy storage and transport in protein. Particular attention is paid to the construction of quantum states that contain N amide-I vibrational quanta. It is noted that the N = 2 state is almost exactly resonant with the free energy that is released upon hydrolysis of adenosine triphosphate. 30 references, 4 figures, 3 tables.

  9. Davydov Solitons in Polypeptides

    NASA Astrophysics Data System (ADS)

    Scott, A. C.

    1985-08-01

    The experimental evidence for self-trapping of amide-I (CO stretching) vibrational energy in crystalline acetanilide (a model protein) is reviewed and related to A. S. Davydov's theory of solitons as a mechanism for energy storage and transport in protein. Particular attention is paid to the construction of quantum states that contain N amide-I vibrational quanta. It is noted that the `N = 2' state is almost exactly resonant with the free energy that is released upon hydrolysis of adenosine triphosphate.

  10. Solitons in quadratic media

    NASA Astrophysics Data System (ADS)

    Colin, M.; Di Menza, L.; Saut, J. C.

    2016-03-01

    In this paper, we investigate the properties of solitonic structures arising in quadratic media. First, we recall the derivation of systems governing the interaction process for waves propagating in such media and we check the local and global well-posedness of the corresponding Cauchy problem. Then, we look for stationary states in the context of normal or anomalous dispersion regimes, that lead us to either elliptic or non-elliptic systems and we address the problem of orbital stability. Finally, some numerical experiments are carried out in order to compute localized states for several regimes and to study dynamic stability as well as long-time asymptotics.

  11. Bunching of temporal cavity solitons via forward Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Erkintalo, Miro; Luo, Kathy; Jang, Jae K.; Coen, Stéphane; Murdoch, Stuart G.

    2015-11-01

    We report on the experimental observation of bunching dynamics with temporal cavity solitons (CSs) in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrashort CSs with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal CSs to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new CS self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrashort pulses of light.

  12. Properties of dark solitons under SBS in focused beams

    NASA Astrophysics Data System (ADS)

    Bel'dyugin, Igor'M.; Erokhin, A. I.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.

    2012-12-01

    Using the method of four-wave probing of the waist of the laser beam focused into the bulk of a short active medium (L ll τc, where L is the length of the active medium, τ is the pulse duration, and c is the speed of light), we have studied the dynamics of the behaviour of a dark soliton, appearing upon a jump of the input Stokes signal phase by about π under SBS. The computer simulation has shown that when spontaneous noises with the gain increment Γ, exceeding the self-reflection threshold by 2 - 3 times, are generated, the dark soliton propagates along the interaction region for the time t ≈ T2Γth/2, where T2 is the the lifetime of acoustic phonons, and Γth = 25 - 30 is the stationary threshold gain increment.

  13. Helmholtz solitons at nonlinear interfaces.

    PubMed

    Sánchez-Curto, J; Chamorro-Posada, P; McDonald, G S

    2007-05-01

    Reflection and refraction of spatial solitons at dielectric interfaces, accommodating arbitrarily angles of incidence, is studied. Analysis is based on Helmholtz soliton theory, which eliminates the angular restriction associated with the paraxial approximation. A novel generalization of Snell's law is discovered that is valid for collimated light beams and the entire angular domain. Our new theoretical predictions are shown to be in excellent agreement with full numerical simulations. New qualitative features of soliton refraction and limitations of previous paraxial analyses are highlighted. PMID:17410257

  14. Compressive and rarefactive DIA solitons beyond the KdV limit

    SciTech Connect

    Mamun, A. A.; Deeba, F.

    2012-04-15

    The modified Gardner equation (MGE), showing the existence of compressive and rarefactive dust-ion-acoustic (DIA) solitons in a nonplanar dusty plasma (containing inertial ions, Boltzmann electrons, and negatively charged stationary dust) beyond the KdV Korteweg-de Vries (KdV) limit, is derived and numerically solved. The basic features of the compressive and rarefactive cylindrical and spherical DIA solitons, which are found to exist beyond the KdV limit, i.e., exist for {mu} {approx} 2/3 (where {mu} = Z{sub n}n{sub d0}/n{sub i0}, z{sub d} is the number of electrons residing onto the dust grain surface, n{sub d0}(n{sub i0}) is the dust (ion) number density at equilibrium, and {mu} {approx} 2/3 means that {mu} is not equal to 2/3, but it is around 2/3) are identified. These solitons (which can be referred to as DIA Gardner solitons (DIA-GSs)) are completely different from the KdV solitons because {mu} = 2/3 corresponds to the vanishing of the nonlinear coefficient of the KdV equation, and {mu} {approx} 2/3 corresponds to extremely large amplitude KdV solitons for which the validity of the reductive perturbation method breaks down. It is also shown that the properties of the nonplanar (cylindrical and spherical) DIA-GSs are significantly different from those of the one dimensional planar ones.

  15. Highly directional acoustic receivers.

    PubMed

    Cray, Benjamin A; Evora, Victor M; Nuttall, Albert H

    2003-03-01

    The theoretical directivity of a single combined acoustic receiver, a device that can measure many quantities of an acoustic field at a collocated point, is presented here. The formulation is developed using a Taylor series expansion of acoustic pressure about the origin of a Cartesian coordinate system. For example, the quantities measured by a second-order combined receiver, denoted a dyadic sensor, are acoustic pressure, the three orthogonal components of acoustic particle velocity, and the nine spatial gradients of the velocity vector. The power series expansion, which can be of any order, is cast into an expression that defines the directivity of a single receiving element. It is shown that a single highly directional dyadic sensor can have a directivity index of up to 9.5 dB. However, there is a price to pay with highly directive sensors; these sensors can be significantly more sensitive to nonacoustic noise sources. PMID:12656387

  16. Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Taflove, Allen

    1992-01-01

    The initial results for femtosecond electromagnetic soliton propagation and collision obtained from first principles, i.e., by a direct time integration of Maxwell's equations are reported. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit the modeling of 2D and 3D optical soliton propagation, scattering, and switching from the full-vector Maxwell's equations.

  17. Bernoulli, Euler, Riccati and Solitons

    SciTech Connect

    Rzadkowski, Grzegorz

    2009-09-09

    In this paper we present a theorem showing the reason of the connection between Bernoulli numbers and solitons, the solutions of the Korteweg-de Vries equation. The theorem involves Eulerian numbers and Riccati's differential equation.

  18. Longitudinal solitons in carbon nanotubes

    SciTech Connect

    Astakhova, T. Yu.; Gurin, O. D.; Menon, M.; Vinogradov, G. A.

    2001-07-15

    We present results on soliton excitations in carbon nanotubes (CNT's) using Brenner's many-body potential. Our numerical simulations demonstrate high soliton stability in (10,10) CNT's. The interactions of solitons and solitary excitation with CNT defect are found to be inelastic if the excitations and defects length scales are comparable, resulting in a substantial part of soliton energy being distributed inhomogeneously over the defect bonds. In these solitary-excitation--cap collisions the local energy of a few bonds in the cap can exceed the average energy by an order of magnitude and more. This phenomenon, denoted the ''Tsunami effect,'' can contribute dynamically to the recently proposed ''kinky chemistry.'' We also present results of changes in the local density of states and variations in the atomic partial charges estimated at different time instants of the solitary-excitation Tsunami at the nanotube cap.

  19. Bell's Theorem and Entangled Solitons

    NASA Astrophysics Data System (ADS)

    Rybakov, Yu. P.; Kamalov, T. F.

    2016-09-01

    Entangled solitons construction being introduced in the nonlinear spinor field model, the Einstein—Podolsky—Rosen (EPR) spin correlation is calculated and shown to coincide with the quantum mechanical one for the 1/2-spin particles.

  20. Hopf solitons and elastic rods

    SciTech Connect

    Harland, Derek; Sutcliffe, Paul; Speight, Martin

    2011-03-15

    Hopf solitons in the Skyrme-Faddeev model are stringlike topological solitons classified by the integer-valued Hopf charge. In this paper we introduce an approximate description of Hopf solitons in terms of elastic rods. The general form of the elastic rod energy is derived from the field theory energy and is found to be an extension of the classical Kirchhoff rod energy. Using a minimal extension of the Kirchhoff energy, it is shown that a simple elastic rod model can reproduce many of the qualitative features of Hopf solitons in the Skyrme-Faddeev model. Features that are captured by the model include the buckling of the charge three solution, the formation of links at charges five and six, and the minimal energy trefoil knot at charge seven.

  1. Bell's Theorem and Entangled Solitons

    NASA Astrophysics Data System (ADS)

    Rybakov, Yu. P.; Kamalov, T. F.

    2016-05-01

    Entangled solitons construction being introduced in the nonlinear spinor field model, the Einstein—Podolsky—Rosen (EPR) spin correlation is calculated and shown to coincide with the quantum mechanical one for the 1/2-spin particles.

  2. Vortex soliton motion and steering

    NASA Astrophysics Data System (ADS)

    Christou, Jason; Tikhonenko, Vladimir; Kivshar, Yuri S.; Luther-Davies, Barry

    1996-10-01

    Experimental demonstration of the steering of an optical vortex soliton by the superposition of a weak coherent background field is presented. A model to account for vortex motion is derived, and its validity is verified experimentally and numerically.

  3. Observation of dissipative superluminous solitons in a Brillouin fiber ring laser

    NASA Astrophysics Data System (ADS)

    Picholle, Eric; Montes, Carlos; Leycuras, Claude; Legrand, Olivier; Botineau, Jean

    1991-03-01

    It has been demonstrated that nonstationary stimulated Brillouin backscattering in a large-gain optical-fiber ring-cavity laser exhibits superluminous Stokes pulses of quasi-soliton type and partial self-induced transparency for the pump. Experimental data (confirmed by numerical simulation with the three-wave coherent model, taking acoustic-wave dynamics into account) indicate that this class of long transients occurs even with a CW-coupled pump wave. The contribution of the dissipative superluminous quasi-solitons to the stabilization of the Stokes output is demonstrated.

  4. Soliton structure in crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Eilbeck, J. C.; Lomdahl, P. S.; Scott, A. C.

    1984-10-01

    The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons.

  5. Soliton structure in crystalline acetanilide

    SciTech Connect

    Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.

    1984-10-15

    The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons.

  6. On magnetohydrodynamic solitons in jets

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1987-01-01

    Nonlinear solitary wave propagation in a compressible magnetic beam model of an extragalactic radio jet is examined and shown to lead to solitons of the Benjamin-Ono type. A number of similarities between such magnetic beam models of jets and models of solar photospheric flux tubes are pointed out and exploited. A single soliton has the appearance of a symmetric bulge on the jet which propagates faster than the jet's flow.

  7. Experimental investigation of the extraction of solitons at the initial stage of the soliton formation process.

    PubMed

    Bello-Jiménez, M; Kuzin, E A; Pottiez, O; Ibarra-Escamilla, B; Flores-Rosas, A; Durán-Sánchez, M

    2010-02-01

    We demonstrate the extraction of a single soliton from a bunch of solitons generated by the pulse breakup effect. The bunch of solitons was generated in a 500-m fiber pumped by 25-ps pulses. For the extraction of single soliton from the bunch we use a nonlinear optical loop mirror (NOLM). At its output we detected a pulse with full width at half-maximum (FWHM) of 0.99 ps whose autocorrelation trace corresponds to that of a soliton. Our results demonstrate that the suggested method can be useful for soliton generation, and also for investigations of the initial stage of the soliton formation process. PMID:20174037

  8. Baryons as solitons in effective chiral field theories

    NASA Astrophysics Data System (ADS)

    Holzwarth, G.

    This lecture comprises some recent developments concerning the description of baryons as topological solitons in effective chiral meson theories. In the first part one-loop corrections to the classical tree approximation are discussed. This involves renormalization of low-energy coupling constants and evaluation of the finite next-to-leading-order terms in the {1}/{N c} expansion. In contrast to the corresponding procedure in the meson sector the magnitude of the chiral gradients involved in the soliton profile requires that counter terms and finite loop contributions be calculated to all chiral orders. Recent results for various nucleon observables are presented. They show that the {1}/{N c} expansion essentially works as expected. In the second part electro-magnetic nucleon form factors (FFs) with relativistic corrections are evaluated in a chiral soliton model including vector mesons. The magnetic FF GMp is shown to agree well with new SLAC data for spacelike Q2 up to 30 (GeV/c) 2 if superconvergence is enforced. The electric FF GEp is dominated by a zero in the few (GeV/c) 2 region due to a low-lying zero in the non-relativistic electric FF in tree approximation. The third part describes how to extract the strong πNN form factor from chiral soliton models, taking due care of the local metric created by the presence of the soliton. When used in a one-boson-exchange model for the nucleon-nucleon (NN) interaction, deuteron properties and phase parameters of NN scattering are reproduced as well as in conventional NN models that apply a hard monopole form factor at the πNN vertex.

  9. A Counterpart of the Wadati-Konno-Ichikawa Soliton Hierarchy Associated with so(3,R)

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Xiu; Manukure, Solomon; Zheng, Hong-Chan

    2014-09-01

    A counterpart of the Wadati-Konno-Ichikawa (WKI) soliton hierarchy, associated with so(3;R), is presented through the zero curvature formulation. Its spectral matrix is defined by the same linear combination of basis vectors as the WKI one, and its Hamiltonian structures yielding Liouville integrability are furnished by the trace identity

  10. Geometric solitons of Hamiltonian flows on manifolds

    SciTech Connect

    Song, Chong; Sun, Xiaowei; Wang, Youde

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  11. Geometric solitons of Hamiltonian flows on manifolds

    NASA Astrophysics Data System (ADS)

    Song, Chong; Sun, Xiaowei; Wang, Youde

    2013-12-01

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  12. Alfven solitons in the solar wind

    NASA Technical Reports Server (NTRS)

    Ovenden, C.; Schwartz, S. J.

    1983-01-01

    A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described.

  13. Kummer solitons in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj

    2009-01-01

    We solve the three-dimensional (3D) time-dependent strongly nonlocal nonlinear Schrödinger equation (NNSE) in spherical coordinates, with the help of Kummer's functions. We obtain analytical solitary solutions, which we term the Kummer solitons. We compare analytical solutions with the numerical solutions of NNSE. We discuss higher-order Kummer spatial solitons, which can exist in various forms, such as the 3D vortex solitons and the multipole solitons.

  14. The Soliton-Soliton Interaction in the Chiral Dilaton Model

    NASA Astrophysics Data System (ADS)

    Mantovani-Sarti, Valentina; Park, Byung-Yoon; Vento, Vicente

    2013-10-01

    We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the π and σ fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.

  15. Vector Theory of Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Gan, W. S.

    So far, works on ultrasonic diffraction imaging are based on scalar theory of sound wave. This is not correct as sound has vector nature. But when sound propagates in solids, its vector nature has to be considered as polarization occurs and transverse wave as well as longitudinal wave will appear. Vector theory is especially needed when the obstacle size is smaller than the wavelength. We use the Smythe-Kirchhoff approach for the vector theory of diffraction. We derive the image formation theory based on the vector diffraction theory. The effect of polarization on acoustical imaging is discussed.

  16. Critical density of a soliton gas

    NASA Astrophysics Data System (ADS)

    El, G. A.

    2016-02-01

    We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the Korteweg-de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of sound in the soliton gas with Gaussian spectral distribution function.

  17. Spiraling multivortex solitons in nonlocal nonlinear media.

    PubMed

    Buccoliero, Daniel; Desyatnikov, Anton S; Krolikowski, Wieslaw; Kivshar, Yuri S

    2008-01-15

    We demonstrate the existence of a broad class of higher-order rotating spatial solitons in nonlocal nonlinear media. We employ the generalized Hermite-Laguerre-Gaussian ansatz for constructing multivortex soliton solutions and study numerically their dynamics and stability. We discuss in detail the tripole soliton carrying two spiraling phase dislocations, or self-trapped optical vortices. PMID:18197238

  18. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  19. Nonlinear ion acoustic waves in a quantum degenerate warm plasma with dust grains

    SciTech Connect

    Dubinov, A. E.; Kolotkov, D. Yu.; Sazonkin, M. A.

    2011-01-15

    A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli's pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.

  20. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    SciTech Connect

    Saleem, H.; Haque, Q.

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  1. A semi-analytic model for localized variable charge dust acoustic waves

    SciTech Connect

    Tribeche, Mouloud; Gougam, Leila Ait; Aoutou, Kamal

    2006-09-15

    A semi-analytic model for nonlinear variable charge dust acoustic waves is outlined. It is shown that rarefactive variable charge dust acoustic solitons involving cusped density humps can exist. The effects of dust dynamics as well as equilibrium dust charge on these nonlinear localized structures are briefly discussed.

  2. Arbitrary amplitude quantum dust ion-acoustic solitary waves

    SciTech Connect

    Tribeche, Mouloud; Ghebache, Siham; Aoutou, Kamel; Zerguini, Taha Houssine

    2008-03-15

    The one-dimensional quantum hydrodynamic model for a three-species quantum plasma is used to study the quantum counterpart of the well known dust ion-acoustic (DIA) wave. Two cases of physical interest are investigated, namely positive and negative dust charge. It is shown that only rarefactive solitary potentials associated with nonlinear quantum DIA (QDIA) waves involving electron density deeps can exist. The QDIA soliton experiences a spreading and the quantum effects tend to make it wider. Under certain conditions, the soliton enlarges and its pulse shape evolves into a broad central flat-bottomed (or table-bottomed) soliton as a limiting-amplitude member of the QDIA soliton family. Linear stability analysis as well as quasineutral solutions are succinctly outlined. The investigation could be of relevance to astrophysical quantum dusty plasmas.

  3. Bifurcations of solitons and their stability

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Dias, F.

    2011-10-01

    In spite of the huge progress in studies on solitary waves in the seventies and eighties of the XX century as well as their practical importance, the theory of solitons is far from being complete. Only in 1989, Longuet-Higgins in his numerical experiments discovered one-dimensional solitons for gravity-capillary waves in deep water. These solitons essentially differed from those in shallow water where the KDV equation could be used. Being localized, these solitons, unlike the KDV solitons, contain many oscillations in their shape. The number of oscillations was found to increase while approaching the maximal phase velocity for linear gravity-capillary waves and simultaneously the soliton amplitude was demonstrated to vanish. In fact, it was the first time ever that the bifurcation of solitons was observed. This review discusses bifurcations of solitons, both supercritical and subcritical, with applications to fluids and nonlinear optics as well. The main attention is paid to the universality of soliton behavior and stability of solitons while approaching supercritical bifurcations. For all physical models considered in this review, solitons are stationary points of the corresponding Hamiltonian for the fixed integrals of motion, i.e., the total momentum, number of quasi-particles, etc. Two approaches are used for the soliton stability analysis. The first method is based on the Lyapunov theory and another one is connected with the linear stability criterion of the Vakhitov-Kolokolov type. The Lyapunov stability proof is maintained by means of application of the integral majorized inequalities being sequences of the Sobolev embedding theorem. This allows one to demonstrate the boundedness of the Hamiltonians and show that solitons, as stationary points, which realize the minimum (or maximum) of the Hamiltonian, are stable in the Lyapunov sense. In the case of unstable solitons, the nonlinear stage of their instability near the bifurcation point results in the

  4. Gravitational radiation from primordial solitons and soliton-star binaries

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo

    1989-01-01

    The possibility that both the formation of nontopological solitons in a primordial second-order phase transition and binary systems of soliton stars could generate a stochastic gravitational-wave background is examined. The present contribution of gravitational radiation to the energy density of the universe from these processes is estimated for a number of different models. The detectability of such contributions from the timing measurements of the millisecond pulsar and spaceborne laser interferometry is briefly discussed and compared to other cosmological and local sources of background gravitational waves.

  5. Soliton dynamics in modulated Bessel photonic lattices

    SciTech Connect

    Ruelas, Adrian; Lopez-Aguayo, Servando; Gutierrez-Vega, Julio C.

    2010-12-15

    We address the existence and the controlled stability of two-dimensional solitons in modulated Bessel lattices (MBL) induced by a superposition of nondiffracting Bessel beams. We show that variation of the modulation parameter of the lattice and the initial transverse momentum of the soliton significantly modify the behavior of the solitons. We find that, under suitable and well-identified conditions, solitons propagating in the MBL exhibit six regimes of transverse mobility: stationary, oscillatory, rotating, unbounded or escape, transitional, and unstable. These results report propagating solitons that can develop these dynamics of transverse motion.

  6. Interface solitons in thermal nonlinear media

    SciTech Connect

    Ma Xuekai; Yang Zhenjun; Lu Daquan; Hu Wei

    2011-05-15

    We demonstrate the existence of fundamental and dipole interface solitons in one-dimensional thermal nonlinear media with a step in linear refractive index. Fundamental interface solitons are found to be always stable and the stability of dipole interface solitons depends on the difference in linear refractive index. The mass center of interface solitons always locates in the side with higher refractive index. The two intensity peaks of dipole interface solitons are unequal except under some specific conditions, which is different from their counterparts in uniform thermal nonlinear media.

  7. Internal wave solitons. [in stratified fluids

    NASA Technical Reports Server (NTRS)

    Meiss, J. D.; Pereira, N. R.

    1978-01-01

    Attention is given to the Benjamin-Ono equation for waves within a stratified fluid, i.e., internal waves. Numerical computations indicate soliton-like behavior since solitary waves pass through each other upon collision. In addition, two and three Lorentzian solitons are noted to pass through one another. An initial Lorentzian having an amplitude larger than soliton amplitude is observed to decay into solitons. The velocities of these solitons may be predicted by conservation laws. Future work will be directed toward determining exact solutions.

  8. Characteristics of ion acoustic solitary waves in a negative ion plasma with superthermal electrons

    SciTech Connect

    Rouhani, M. R.; Ebne Abbasi, Z.

    2012-11-15

    The behavior of ion acoustic solitons in a plasma including positive and negative ions and kappa distributed electrons is studied, using both small amplitude and arbitrary amplitude approaches. The existence regions of compressive and rarefactive solitons will depend on negative to positive ion density ratio ({nu}) and kappa parameter as well as positive to negative ion mass ratio (Q). The numerical analysis of Sagdeev potential shows that for a chosen plasma with fixed Q, the existence regime of compressive solitons is decreased (increased) by increasing density ratio (kappa parameter), while for rarefactive solitons these conditions are quite opposite. Additionally, the possibility of propagation of both compressive and rarefactive subsonic solitons is investigated. It is found that by increasing negative ions, the existence domains of subsonic solitons are decreased, so that in excess of negative ions subsonic solitons will not propagate even at the presence of superthermal electrons. Indeed, there is a critical negative ion density ratio for all values of kappa, above that only supersonic solitons are observed. Furthermore, in addition to the previous results based on Cairns-distributed electrons [R. A. Cairns et al., Geophys. Res. Lett. 22, 2709 (1995)], which predicted that both compressive and rarefactive solitons can coexist simultaneously, we have also found the regions of {nu} and {kappa} in which either positive or negative potentials are permitted (i.e., not together). This research will be helpful in understanding the properties of space and laboratory plasmas containing negative ions with energetic electrons.

  9. Introducing Vectors.

    ERIC Educational Resources Information Center

    Roche, John

    1997-01-01

    Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…

  10. Thermal diffusion of Boussinesq solitons.

    PubMed

    Arévalo, Edward; Mertens, Franz G

    2007-10-01

    We consider the problem of the soliton dynamics in the presence of an external noisy force for the Boussinesq type equations. A set of ordinary differential equations (ODEs) of the relevant coordinates of the system is derived. We show that for the improved Boussinesq (IBq) equation the set of ODEs has limiting cases leading to a set of ODEs which can be directly derived either from the ill-posed Boussinesq equation or from the Korteweg-de Vries (KdV) equation. The case of a soliton propagating in the presence of damping and thermal noise is considered for the IBq equation. A good agreement between theory and simulations is observed showing the strong robustness of these excitations. The results obtained here generalize previous results obtained in the frame of the KdV equation for lattice solitons in the monatomic chain of atoms. PMID:17995127

  11. Solitons and nonlinear wave equations

    SciTech Connect

    Dodd, Roger K.; Eilbeck, J. Chris; Gibbon, John D.; Morris, Hedley C.

    1982-01-01

    A discussion of the theory and applications of classical solitons is presented with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory. The subjects addressed include: solitary waves and solitons, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation, and the inverse method for the isospectral Schroedinger equation and the general solution of the solvable nonlinear equations. Also considered are: isolation of the Korteweg-de Vries equation in some physical examples, the Zakharov-Shabat/AKNS inverse method, kinks and the sine-Gordon equation, the nonlinear Schroedinger equation and wave resonance interactions, amplitude equations in unstable systems, and numerical studies of solitons. 45 references.

  12. Dark-dark solitons and modulational instability in miscible two-component Bose-Einstein condensates

    SciTech Connect

    Hoefer, M. A.; Chang, J. J.; Hamner, C.; Engels, P.

    2011-10-15

    We investigate the dynamics of two miscible superfluids experiencing fast counterflow in a narrow channel. The superfluids are formed by two distinguishable components of a trapped dilute-gas Bose-Einstein condensate (BEC). The onset of counterflow-induced modulational instability throughout the cloud is observed and shown to lead to the proliferation of dark-dark vector solitons. These solitons do not exist in single-component systems, exhibit intriguing beating dynamics, and can experience a transverse instability leading to vortex line structures. Experimental results and multidimensional numerical simulations are presented.

  13. Estimates of the prevalence of anomalous signal losses in the Yellow Sea derived from acoustic and oceanographic computer model simulations

    NASA Astrophysics Data System (ADS)

    Chin-Bing, Stanley A.; King, David B.; Warn-Varnas, Alex C.; Lamb, Kevin G.; Hawkins, James A.; Teixeira, Marvi

    2002-05-01

    The results from collocated oceanographic and acoustic simulations in a region of the Yellow Sea near the Shandong peninsula have been presented [Chin-Bing et al., J. Acoust. Soc. Am. 108, 2577 (2000)]. In that work, the tidal flow near the peninsula was used to initialize a 2.5-dimensional ocean model [K. G. Lamb, J. Geophys. Res. 99, 843-864 (1994)] that subsequently generated internal solitary waves (solitons). The validity of these soliton simulations was established by matching satellite imagery taken over the region. Acoustic propagation simulations through this soliton field produced results similar to the anomalous signal loss measured by Zhou, Zhang, and Rogers [J. Acoust. Soc. Am. 90, 2042-2054 (1991)]. Analysis of the acoustic interactions with the solitons also confirmed the hypothesis that the loss mechanism involved acoustic mode coupling. Recently we have attempted to estimate the prevalence of these anomalous signal losses in this region. These estimates were made from simulating acoustic effects over an 80 hour space-time evolution of soliton packets. Examples will be presented that suggest the conditions necessary for anomalous signal loss may be more prevalent than previously thought. [Work supported by ONR/NRL and by a High Performance Computing DoD grant.

  14. Phase structure of soliton molecules

    SciTech Connect

    Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Boehm, M.; Mitschke, F.

    2007-06-15

    Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E-fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.

  15. Phase structure of soliton molecules

    NASA Astrophysics Data System (ADS)

    Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Böhm, M.; Mitschke, F.

    2007-06-01

    Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E -fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.

  16. Fermionic Quantization of Hopf Solitons

    NASA Astrophysics Data System (ADS)

    Krusch, S.; Speight, J. M.

    2006-06-01

    In this paper we show how to quantize Hopf solitons using the Finkelstein-Rubinstein approach. Hopf solitons can be quantized as fermions if their Hopf charge is odd. Symmetries of classical minimal energy configurations induce loops in configuration space which give rise to constraints on the wave function. These constraints depend on whether the given loop is contractible. Our method is to exploit the relationship between the configuration spaces of the Faddeev-Hopf and Skyrme models provided by the Hopf fibration. We then use recent results in the Skyrme model to determine whether loops are contractible. We discuss possible quantum ground states up to Hopf charge Q=7.

  17. Negative mass solitons in gravity

    NASA Astrophysics Data System (ADS)

    Cebeci, Hakan; Sarıoǧlu, Özgür; Tekin, Bayram

    2006-03-01

    We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for only five dimensions. These solutions have negative masses compared to the global AdS or AdS/Zp spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-Reissner-Nordström metrics.

  18. Anomalous velocity enhancing of soliton, propagating in nonlinear PhC, due to its reflection from nonlinear ambient medium

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, T. M.

    2016-05-01

    We demonstrate a new possibility of a soliton velocity control at its propagation in a nonlinear layered structure (1D photonic crystal) which is placed in a nonlinear ambient medium. Nonlinear response of the ambient medium, as well as the PhC layers, is cubic. At the initial time moment, a soliton is spread over a few layers of PhC. Then, soliton propagates across the layered structure because of the initial wave-vector direction presence for the laser beam. The soliton reaches the PhC faces and reflects from them or passes through the face. As a nonlinear medium surrounds the PhC, the laser beam obtains additional impulse after interaction with this medium and accelerates (or slows down or stops near the PhC face). Nonlinear response of the ambient medium can be additionally created by another laser beam which shines near the PhC faces.

  19. PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren; Gao, Dong-Ning; Zhang, Jie; Duan, Wen-Shan; Yang, Lei

    2016-08-01

    The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably and oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.

  20. SOLITONS: Stimulated decay of N-soliton pulses and optimal separation of one-soliton components

    NASA Astrophysics Data System (ADS)

    Aleshkevich, Viktor A.; Vysloukh, Victor A.; Zhukarev, A. S.; Kartashev, Ya V.; Sinilo, P. V.

    2003-05-01

    The decay of an N-soliton optical pulse in optical fibres induced by the nonlinear interaction with a perturbing pulse is analysed numerically. The main attention is paid to the analysis of conditions under which the separation of soliton components occurs over a minimal distance. The analysis was performed by varying the carrier frequency of the perturbing pulse, its shift in time, and the phase difference. The numerical calculations are confirmed for the zero time shift by analytic calculations performed by the method of inverse scattering problem.

  1. Stability and bifurcation of quasiparallel Alfven solitons

    NASA Technical Reports Server (NTRS)

    Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.

    1992-01-01

    The inverse scattering transformation (IST) is used to study the one-parameter and two-parameter soliton families of the derivative nonlinear Schroedinger (DNLS) equation. The two-parameter soliton family is determined by the discrete complex eigenvalue spectrum of the Kaup-Newell scattering problem and the one-parameter soliton family corresponds to the discrete real eigenvalue spectrum. The structure of the IST is exploited to discuss the existence of discrete real eigenvalues and to prove their structural stability to perturbations of the initial conditions. Also, though the two-parameter soliton is structurally stable in general, it is shown that a perturbation of the initial conditions may change the two-parameter soliton into a degenerate soliton which, in turn, is structurally unstable. This degenerate, or double pole, soliton may bifurcate due to a perturbation of the initial conditions into a pair of one-parameter solitons. If the initial profile is on compact support, then this pair of one-parameter solitons must be compressive and rarefactive respectively. Finally, the Gelfand-Levitan equations appropriate for the double pole soliton are solved.

  2. Vibrational soliton: an experimental overview

    SciTech Connect

    Bigio, I.J.

    1986-03-08

    To date the most convincing evidence of vibrational solitons in biopolymers has been found in two very disparate systems: Davydov-like excitations in hydrogen-bonded linear chains (acetanilide and N-methylacetamide) which are not biopolymers but plausible structural paradigms for biopolymers, and longitudinal accoustic modes of possibly nonlinear character in biologically viable DNA. 17 refs., 4 figs.

  3. Soliton molecules: Experiments and optimization

    SciTech Connect

    Mitschke, Fedor

    2014-10-06

    Stable compound states of several fiber-optic solitons have recently been demonstrated. In the first experiment their shape was approximated, for want of a better description, by a sum of Gaussians. Here we discuss an optimization strategy which helps to find preferable shapes so that the generation of radiative background is reduced.

  4. OPTICAL SOLITONS: Optical solitons appearing during propagation of whispering-gallery waves

    NASA Astrophysics Data System (ADS)

    Torchigin, V. P.; Torchigin, S. V.

    2003-10-01

    The properties of solitons appearing during the propagation of whispering-gallery waves in a homogeneous glass cylinder are considered. It is shown that such solitons can be used for the light frequency conversion.

  5. Acoustic nonlinear periodic waves in pair-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mahmood, Shahzad; Kaladze, Tamaz; Ur-Rehman, Hafeez

    2013-09-01

    Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of same mass and oppositely charged ion species with different temperatures. Using reductive perturbation method and appropriate boundary conditions, the Korteweg-de Vries (KdV) equation is derived. The analytical solutions of both cnoidal wave and soliton solutions are discussed in detail. The phase plane plots of cnoidal and soliton structures are shown. It is found that both compressive and rarefactive cnoidal wave and soliton structures are formed depending on the temperature ratio of positive and negative ions in pair-ion plasmas. In the special case, it is revealed that the amplitude of soliton may become larger than it is allowed by the nonlinear stationary wave theory which is equal to the quantum tunneling by particle through a potential barrier effect. The serious flaws in the earlier published results by Yadav et al., [PRE 52, 3045 (1995)] and Chawla and Misra [Phys. Plasmas 17, 102315 (2010)] of studying ion acoustic nonlinear periodic waves are also pointed out.

  6. Making beam splitters with dark soliton collisions

    SciTech Connect

    Steiglitz, Ken

    2010-10-15

    We show with numerical simulations that for certain simple choices of parameters, the waveguides induced by colliding dark solitons in a Kerr medium yield a complete family of beam splitters for trapped linear waves, ranging from total transmission to total deflection. The way energy is transferred from one waveguide to another is similar to that of a directional coupler, but no special fabrication is required. Dark soliton beam splitters offer potential advantages over their bright soliton counterparts: Their transfer characteristics do not depend on the relative phase or speed of the colliding solitons; dark solitons are generally more robust than bright solitons; and the probe peaks at nulls of the pump, enhancing the signal-to-noise ratio for probe detection. The last factor is especially important for possible application to quantum information processing.

  7. On the generation of large amplitude spiky solitons by ultralow frequency earthquake emission in the Van Allen radiation belt

    SciTech Connect

    Mofiz, U. A.

    2006-08-15

    The parametric coupling between earthquake emitted circularly polarized electromagnetic radiation and ponderomotively driven ion-acoustic perturbations in the Van Allen radiation belt is considered. A cubic nonlinear Schroedinger equation for the modulated radiation envelope is derived, and then solved analytically. For ultralow frequency earthquake emissions large amplitude spiky supersonic bright solitons or subsonic dark solitons are found to be generated in the Van Allen radiation belt, detection of which can be a tool for the prediction of a massive earthquake may be followed later.

  8. Solitons in the midst of chaos

    SciTech Connect

    Seghete, Vlad; Menyuk, Curtis R.; Marks, Brian S.

    2007-10-15

    A system of coupled nonlinear Schroedinger equations describes pulse propagation in weakly birefringent optical fibers. Soliton solutions of this system are found numerically through the shooting method. We employ Poincare surface of section plots - a standard dynamical systems approach - to analyze the phase space behavior of these solutions and neighboring trajectories. Chaotic behavior around the solitons is apparent and suggests dynamical instability. A Lyapunov stability analysis confirms this result. Thus, solitons exist in the midst of chaos.

  9. Critical density of a soliton gas.

    PubMed

    El, G A

    2016-02-01

    We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the Korteweg-de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of sound in the soliton gas with Gaussian spectral distribution function. PMID:26931586

  10. Stationary nonlinear Alfven waves and solitons

    NASA Technical Reports Server (NTRS)

    Hada, T.; Kennel, C. F.; Buti, B.

    1989-01-01

    Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.

  11. Observation of noise-like solitons

    NASA Astrophysics Data System (ADS)

    Gong, Yandong; Shum, Ping; Tang, M.; Tang, Ding Y.; Lu, C.; Guo, Xin; Qi, Z. W.; Lin, Feng

    2004-05-01

    Noise-like ultra-short soliton pulses train of 72fs without CW components are observed from Figure-8 passively mode locked fiber laser; noise-like bound states of asymmetrical solitons train with pulse width of 103fs and separation of 585.5fs are also observed. The bound soliton separation and pulsewidth keep unchanged even after 1.2Km Single Mode Fiber transmission.

  12. Spin-electron acoustic waves: Linear and nonlinear regimes, and applications

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel

    2015-11-01

    Considering the spin-up and spin-down electrons as two different fluids we find corresponding hydrodynamic and kinetic equations from the Pauli equation. We find different pressure the spin-up and spin-down electrons due to different concentrations of electrons in the magnetized electron gas. This difference leads to existence of new branches of linear longitudinal waves propagating with small damping. These waves are called the spin-electron acoustic waves (SEAWs) due to linear dispersion dependence at small wave vectors. We obtain two waves at oblique propagation and one wave at propagation parallel or perpendicular to the external magnetic field. Dispersion dependences of these waves are calculated. Contribution of the Coulomb exchange interaction is included in the model and spectrums. Area of existence of nonlinear SEAWs appearing as a spin-electron acoustic soliton is found for the regime of wave propagation parallel to the external magnetic field. It is obtained that the SEAWs lead to formation of the Cooper pairs. This application of our results to the superconductivity phenomenon reveals in a model of the high-temperature superconductivity with the transition temperatures up to 300 K.

  13. Soliton splitting in quenched classical integrable systems

    NASA Astrophysics Data System (ADS)

    Gamayun, O.; Semenyakin, M.

    2016-08-01

    We take a soliton solution of a classical non-linear integrable equation and quench (suddenly change) its non-linearity parameter. For that we multiply the amplitude or the width of a soliton by a numerical factor η and take the obtained profile as a new initial condition. We find the values of η for which the post-quench solution consists of only a finite number of solitons. The parameters of these solitons are found explicitly. Our approach is based on solving the direct scattering problem analytically. We demonstrate how it works for Korteweg–de Vries, sine-Gordon and non-linear Schrödinger integrable equations.

  14. Traveling dark solitons in superfluid Fermi gases

    SciTech Connect

    Liao Renyuan; Brand, Joachim

    2011-04-15

    Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

  15. Luminescence-induced photorefractive spatial solitons

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Alonzo, M.; Devaux, F.; Toncelli, A.; Argiolas, N.; Bazzan, M.; Sada, C.; Chauvet, M.

    2010-03-01

    We report the observation of spatial confinement of a pump beam into a photorefractive solitonic channel induced by luminescence [luminescence induced spatial soliton (LISS)]. Trapped beams have been obtained in erbium doped lithium niobate crystals at concentrations as high as 0.7 mol % of erbium. By pumping at 980 nm, erbium ions emit photons at 550 nm by two-step absorption, wavelength which can be absorbed by lithium niobate and originates the photorefractive effect. The luminescence at 550 nm generates at the same time the solitonic channel and the background illumination reaching a steady-state soliton regime.

  16. Discrete surface solitons in two dimensions

    SciTech Connect

    Susanto, H.; Kevrekidis, P. G.; Malomed, B. A.; Carretero-Gonzalez, R.; Frantzeskakis, D. J.

    2007-05-15

    We investigate fundamental localized modes in two-dimensional lattices with an edge (surface). The interaction with the edge expands the stability area for fundamental solitons, and induces a difference between dipoles oriented perpendicular and parallel to the surface. On the contrary, lattice vortex solitons cannot exist too close to the border. We also show, analytically and numerically, that the edge supports a species of localized patterns, which exists too but is unstable in the uniform lattice, namely, a horseshoe-shaped soliton, whose ''skeleton'' consists of three lattice sites. Unstable horseshoes transform themselves into a pair of ordinary solitons.

  17. Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.

    2015-09-01

    This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.

  18. Parvulescu Revisited: Small Tank Acoustics for Bioacousticians.

    PubMed

    Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D

    2016-01-01

    Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others. PMID:26611052

  19. Small amplitude solitons in a warm plasma with smaller and higher order relativistic effects

    SciTech Connect

    Kalita, B. C.; Das, R.

    2007-07-15

    Solitons have been investigated in a warm plasma through the Korteweg-de Vries (KdV) equation, considering a smaller relativistic effect for {gamma}{approx_equal}O(v{sup 2}/c{sup 2}) and {gamma}{sub e}{approx_equal}O(u{sup 2}/c{sup 2}) and higher relativistic effects for {gamma}{approx_equal}O(v{sup 4}/c{sup 4}) and {gamma}{sub e}{approx_equal}O(u{sup 4/}c{sup 4}). Compressive fast ion-acoustic solitons are observed to exist in the entire range (u{sub 0}-v{sub 0}) subject to a suitable mathematical condition satisfied by the initial streaming velocities u{sub 0},v{sub 0} of the electrons and the ions, respectively, electron to ion mass ratio Q(=m{sub e}/m{sub i}) and ion to electron temperature ratio {sigma}(=T{sub i}/T{sub e}). Further, rarefactive solitons of pretty small amplitudes are observed in the small upper range of |u{sub 0}-v{sub 0}| for higher order relativistic effect which are found to change parabolically. It is essentially important to report in our model of plasma, that the higher order relativistic effect slows down the soliton speed to V{<=}0.10 for all temperature ratios {sigma} for small amplitude waves. On the other hand, the smaller order relativistic effect permits the soliton to exist even at a relatively much higher speed V<0.30. Solitons of high (negligible) amplitudes are found to generate at the smaller (greater) difference of initial streamings (u{sub 0}-v{sub 0}) corresponding to both the relativistic effects.

  20. Integrable model for density-modulated quantum condensates: Solitons passing through a soliton lattice

    NASA Astrophysics Data System (ADS)

    Takahashi, Daisuke A.

    2016-06-01

    An integrable model possessing inhomogeneous ground states is proposed as an effective model of nonuniform quantum condensates such as supersolids and Fulde-Ferrell-Larkin-Ovchinnikov superfluids. The model is a higher-order analog of the nonlinear Schrödinger equation. We derive an n -soliton solution via the inverse scattering theory with elliptic-functional background and reveal various kinds of soliton dynamics such as dark soliton billiards, dislocations, gray solitons, and envelope solitons. We also provide the exact bosonic and fermionic quasiparticle eigenstates and show their tunneling phenomena. The solutions are expressed by a determinant of theta functions.

  1. Integrable model for density-modulated quantum condensates: Solitons passing through a soliton lattice.

    PubMed

    Takahashi, Daisuke A

    2016-06-01

    An integrable model possessing inhomogeneous ground states is proposed as an effective model of nonuniform quantum condensates such as supersolids and Fulde-Ferrell-Larkin-Ovchinnikov superfluids. The model is a higher-order analog of the nonlinear Schrödinger equation. We derive an n-soliton solution via the inverse scattering theory with elliptic-functional background and reveal various kinds of soliton dynamics such as dark soliton billiards, dislocations, gray solitons, and envelope solitons. We also provide the exact bosonic and fermionic quasiparticle eigenstates and show their tunneling phenomena. The solutions are expressed by a determinant of theta functions. PMID:27415270

  2. Effect of nonadiabaticity of dust charge variation on dust acoustic waves: generation of dust acoustic shock waves.

    PubMed

    Gupta, M R; Sarkar, S; Ghosh, S; Debnath, M; Khan, M

    2001-04-01

    The effect of nonadiabaticity of dust charge variation arising due to small nonzero values of tau(ch)/tau(d) has been studied where tau(ch) and tau(d) are the dust charging and dust hydrodynamical time scales on the nonlinear propagation of dust acoustic waves. Analytical investigation shows that the propagation of a small amplitude wave is governed by a Korteweg-de Vries (KdV) Burger equation. Notwithstanding the soliton decay, the "soliton mass" is conserved, but the dissipative term leads to the development of a noise tail. Nonadiabaticity generated dissipative effect causes the generation of a dust acoustic shock wave having oscillatory behavior on the downstream side. Numerical investigations reveal that the propagation of a large amplitude dust acoustic shock wave with dust density enhancement may occur only for Mach numbers lying between a minimum and a maximum value whose dependence on the dusty plasma parameters is presented. PMID:11308955

  3. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  4. Topological solitons in optical oscillators

    NASA Astrophysics Data System (ADS)

    Yaparov, V. V.; Taranenko, V. B.

    2016-07-01

    We present an overview of theoretical and experimental works on self-sustaining localized structures—spatial solitons—which can be formed in optical bistable oscillators with laser and/or parametric gain. The main attention is paid to the existence and dynamical properties of spatial solitons containing phase and polarization topological defects including vortices, points of circular polarizations and lines of linear polarization, domain walls and composed domain walls with Néel point topological defects.

  5. Coupled backward- and forward-propagating solitons in a composite right- and left-handed transmission line.

    PubMed

    Veldes, G P; Cuevas, J; Kevrekidis, P G; Frantzeskakis, D J

    2013-07-01

    We study the coupling between backward- and forward-propagating wave modes, with the same group velocity, in a composite right- and left-handed nonlinear transmission line. Using an asymptotic multiscale expansion technique, we derive a system of two coupled nonlinear Schrödinger equations governing the evolution of the envelopes of these modes. We show that this system supports a variety of backward- and forward-propagating vector solitons of the bright-bright, bright-dark, and dark-bright type. Performing systematic numerical simulations in the framework of the original lattice that models the transmission line, we study the propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons exist, but differ on their robustness: Only bright-bright solitons propagate undistorted for long times, while the other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in very good agreement with the results of the simulations, at least up to times of the order of the solitons' lifetimes. PMID:23944572

  6. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  7. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  8. SOLITONS: Optimal control of optical soliton parameters: Part 1. The Lax representation in the problem of soliton management

    NASA Astrophysics Data System (ADS)

    Serkin, Vladimir N.; Belyaeva, T. L.

    2001-11-01

    The existence of the Lax representation for a model of soliton management under certain conditions is shown, which proves a complete integrability of the model. The exact analytic solutions are obtained for the problem of the optimal control of parameters of Schrodinger solitons in nonconservative systems with the group velocity dispersion, nonlinear refractive index, and gain (absorption coefficient) varying over the length. The examples demonstrating the non-trivial amplification dynamics of optical solitons, which are important from practical point of view, are considered. The exact analytic solutions are obtained for problems of the optimal amplification of solitons in optical fibres with monotonically decreasing dispersion and of Raman pumping of solitons in fibreoptic communication systems.

  9. Decoupled polarization dynamics of incoherent waves and bimodal spectral incoherent solitons.

    PubMed

    Fusaro, A; Garnier, J; Michel, C; Xu, G; Fatome, J; Wright, L G; Wise, F W; Picozzi, A

    2016-09-01

    We consider the propagation of strongly incoherent waves in optical fibers in the framework of the vector nonlinear Schrödinger equation (VNLSE) accounting for the Raman effect. On the basis of the wave turbulence theory, we derive a kinetic equation that greatly simplifies the VNLSE and provides deep physical insight into incoherent wave dynamics. When applied to the study of polarization effects, the theory unexpectedly reveals that the linear polarization components of the incoherent wave evolve independently from each other, even in the presence of weak fiber birefringence. When applied to light propagation in bimodal fibers, the theory reveals that the incoherent modal components can be strongly coupled. After a complex transient, the modal components self-organize into a vector spectral incoherent soliton: The two solitons self-trap and propagate with a common velocity in frequency space. PMID:27607955

  10. Soliton solutions of coupled Maxwell-Bloch equations

    NASA Astrophysics Data System (ADS)

    Chakravarty, S.

    2016-03-01

    In this paper we study the soliton solutions of the coupled Maxwell-Bloch equations which describe pulse propagation in an active optical medium with coherent three-level atomic transitions and inhomogeneous broadening. The soliton solutions and polarization shifts due to soliton interactions are investigated. An infinite set of conservation laws as well as the soliton trace formulae are derived.

  11. Dispersion-tailored active-fiber solitons

    NASA Astrophysics Data System (ADS)

    van Tartwijk, Guido H. M.; Essiambre, René-Jean; Agrawal, Govind P.

    1996-12-01

    We show analytically that tailoring the fiber dispersion appropriately can cause optical solitons to propagate unperturbed, without emission of dispersive waves, in a distributed-gain fiber amplifier with a nonuniform gain profile. We apply our scheme to a bidirectionally pumped fiber amplifier and discuss the importance of higher-order nonlinear and dispersive effects for short solitons.

  12. Solitons supported by complex PT-symmetric Gaussian potentials

    SciTech Connect

    Hu Sumei; Ma Xuekai; Lu Daquan; Yang Zhenjun; Zheng Yizhou; Hu Wei

    2011-10-15

    The existence and stability of fundamental, dipole, and tripole solitons in Kerr nonlinear media with parity-time-symmetric Gaussian complex potentials are reported. Fundamental solitons are stable not only in deep potentials but also in shallow potentials. Dipole and tripole solitons are stable only in deep potentials, and tripole solitons are stable in deeper potentials than for dipole solitons. The stable regions of solitons increase with increasing potential depth. The power of solitons increases with increasing propagation constant or decreasing modulation depth of the potentials.

  13. Solitons supported by complex PT-symmetric Gaussian potentials

    NASA Astrophysics Data System (ADS)

    Hu, Sumei; Ma, Xuekai; Lu, Daquan; Yang, Zhenjun; Zheng, Yizhou; Hu, Wei

    2011-10-01

    The existence and stability of fundamental, dipole, and tripole solitons in Kerr nonlinear media with parity-time-symmetric Gaussian complex potentials are reported. Fundamental solitons are stable not only in deep potentials but also in shallow potentials. Dipole and tripole solitons are stable only in deep potentials, and tripole solitons are stable in deeper potentials than for dipole solitons. The stable regions of solitons increase with increasing potential depth. The power of solitons increases with increasing propagation constant or decreasing modulation depth of the potentials.

  14. Solitonic optical waveguides in PR crystals

    NASA Astrophysics Data System (ADS)

    Klotz, Matthew Jason

    This dissertation describes a new technique for creating permanent, two-dimensional optical circuitry in bulk ferroelectric photorefractive crystals. This method utilizes steady state photorefractive screening spatial solitons to produce a localized space charge field capable of modulating the spontaneous polarization of the ferroelectric crystal. This localized change in the spontaneous polarization results in a permanent index change within the material that is capable of guiding optical waves. Individual waveguides were formed in the crystal by fixing single screening solitons. The waveguides were found to be identical in size to the soliton responsible for their formation and were observed to efficiently guide light for periods of continuous illumination in excess of 12 hours without degradation. In addition, arrays of waveguides were formed using binary optics to form several solitons in the material at the same time. It was determined that waveguides formed by extraordinarily polarized solitons were single mode and that those formed by ordinarily polarized solitons were multimode, due to the difference in the magnitude of the nonlinear optical properties of the crystal for the different polarization states. Thus the size and mode guiding properties of the fixed waveguides can be controlled by changing the input solitons properties. In addition to single waveguides formed by a single screening soliton, coherent collisions of two screening solitons were used to form a permanent y-junction in the crystal. The screening soliton collision results in two initially independent solitons fusing into a single soliton. After fixing, the resulting waveguide structure allows signals from two distinct inputs to be combined into a single output. It was demonstrated that this fixed structure was bidirectional, i.e. that light sent into the output would exit the original input branches with an even division of power. Again, the size and mode guiding properties were found to

  15. Theory of the Jahn-Teller Soliton

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis

    2006-03-01

    It is demonstrated that under common conditions a molecular solid subject to Jahn-Teller interactions supports stable Q- ball-like non-topological solitons. Such solitons represent a localized lump of excess electric charge in periodic motion accompanied by a time-dependent shape distortion of a set of adjacent molecules. The motion of the distortion can correspond to a true rotation or to a pseudo-rotation about the symmetric shape configuration. These solitons are stable for Jahn-Teller coupling strengths below a critical value; however, as the Jahn- Teller coupling approaches this critical value, the size of the soliton diverges signaling an incipient structural phase transition. The soliton phase mimics features commonly attributed to phase separation in complex solids.

  16. Optical fiber solitons, their properties and uses

    NASA Astrophysics Data System (ADS)

    Haus, Hermann A.

    1993-07-01

    The history and mathematical formulation of the solitons are briefly reviewed. Solitons of the nonlinear Schroedinger equation are studied in greater detail because they describe nonlinear pulse propagation on dispersive optical fibers. The proposal by A. Hasegawa and the experiments of L.F. Mollenauer on long distance soliton propagation for use in repeaterless transoceanic fiber transmission cables are described. In 1986, limitations on the distance that can be spanned by a repeaterless link for a given bit-rate were shown to exist. It has been shown recently that by proper design these limitations can be overcome, so that newer transoceanic cable designs are likely to utilize solitons. The special properties of solitons make them particularly suited for all optical switching and logic operations. Some recent experiments with such switches are described.

  17. Quantum Bright Soliton in a Disorder Potential

    NASA Astrophysics Data System (ADS)

    Sacha, K.; Delande, D.; Zakrzewski, J.

    2009-11-01

    At very low temperature, a quasi-one-dimensional ensemble of atoms with attractive interactions tend to form a bright soliton. When exposed to a sufficiently weak external potential, the shape of the soliton is not modified, but its external motion is affected. We develop in detail the Bogoliubov approach for the problem, treating, in a non-perturbative way, the motion of the center of mass of the soliton. Quantization of this motion allows us to discuss its long time properties. In particular, in the presence of a disordered potential, the quantum motion of the center of mass of a bright soliton may exhibit Anderson localization, on a localization length which may be much larger than the soliton size and could be observed experimentally.

  18. Interactions of spatial solitons with fused couplers

    NASA Astrophysics Data System (ADS)

    Harel, Alon; Malomed, Boris A.

    2014-04-01

    We study dynamical and stationary states of solitons in dual-core waveguides which are locally coupled (fused) at one or several short segments. The model applies to planar optical waveguides, and to Bose-Einstein condensate in dual traps. Collisions of an incident soliton with single and double locally fused couplers are investigated by means of systematic simulations and several analytical methods (quasilinear, fast-soliton, and adiabatic approximations). Excitation dynamics of a soliton trapped by a local coupler is studied by means of the variational approximation, and verified by simulations. Shuttle motion of a soliton trapped in a cavity between two local couplers, and in a finite array of couplers, is studied too.

  19. Fiber laser vector hydrophone: theory and experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Zhang, Faxiang; Ma, Rui; He, Jun; Li, Fang; Liu, Yuliang

    2011-05-01

    A novel fiber laser vector hydrophone (FLVH) based on accelerometers is presented. Three fiber laser accelerometers (FLA), perpendicular to each other, are used to detect the acoustic induced particle acceleration. Theoretical analyses of the acoustic sensitivity and the natural frequency are given. Experiment shows a sensitivity of 0.1 pm/Pa@100 Hz is achieved, which results in a minimum detectable acoustic signal of 100 μPa/@Hz@100 Hz. Field demonstration shows that the proposed vector hydrophone has good directivity.

  20. Assumptions and ambiguities in nonplanar acoustic soliton theory

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.

    2014-02-15

    There have been many recent theoretical investigations of the nonlinear evolution of electrostatic modes with cylindrical or spherical symmetry. Through a reductive perturbation analysis based on a quasiplanar stretching, a modified form of the Korteweg-de Vries or related equation is derived, containing an additional term which is linear in the electrostatic potential and singular at time t = 0. Unfortunately, these analyses contain several restrictive assumptions and ambiguities which are normally neither properly explained nor discussed, and severely limit the applicability of the technique. Most glaring are the use of plane-wave stretchings, the assumption that shape-preserving cylindrical modes can exist and that, although time is homogeneous, the origin of time (which can be chosen arbitrarily) needs to be avoided. Hence, only in the domain where the nonlinear modes are quasiplanar, far from the axis of cylindrical or from the origin of spherical symmetry can acceptable but unexciting results be obtained. Nonplanar nonlinear modes are clearly an interesting topic of research, as some of these phenomena have been observed in experiments. However, it is argued that a proper study of such modes needs numerical simulations rather than ill-suited analytical approximations.

  1. Bifurcations of diffusive soliton solutions to Kuznetsov's equation

    NASA Astrophysics Data System (ADS)

    Jordan, Pedro M.

    2003-04-01

    Exact traveling wave solutions are determined for Kuznetsov's equation, a nonlinear PDE of 3rd order which describes finite amplitude acoustic disturbances in thermoviscous Newtonian fluids. Specifically, it is shown that traveling wave solutions exist, and assume the form of diffusive solitons, if and only if the Mach number is less than or equal to a bifurcation value. It is also shown that the wave speed v is always supersonic, that Max[v] occurs at the bifurcation value of the Mach number, and that a shock develops as the Reynolds number tends to infinity. Finally, special cases and asymptotic results are listed, a relationship to Burgers' equation is noted, and 3-D bifurcation diagrams are given.

  2. Auroral electrostatic solitons and supersolitons in a magnetized nonthermal plasma

    SciTech Connect

    Rufai, O. R.

    2015-05-15

    Exploiting the spacecraft measurements in the auroral region, finite amplitude nonlinear low frequency electrostatic solitons and supersolitons in a magnetized plasma consisting of cold ions fluid, Boltzmann protons, and nonthermal hot electrons are studied by applying a pseudo-potential technique. The localized solution of the nonlinear structures is obtained through the charge neutrality condition. Further numerical investigation shows the existence of supersoliton solutions at supersonic Mach numbers regime. The amplitude of ion-acoustic structures decreased with an increase in nonthermal electrons and ion density ratio. For the plasma parameters relevant to the auroral zone of the Earth's magnetosphere, the electric field amplitude of supersolitons is found to be about 9 mV/m, which is in agreement with satellite observations.

  3. Extraction of a single soliton from a bunch of solitons generated by pulse breakup

    NASA Astrophysics Data System (ADS)

    Bello-Jimenez, Miguel A.; Kuzin, Evgeny A.; Pottiez, Olivier; Ibarra-Escamilla, Baldemar; Flores-Rosas, Ariel; Duran-Sanchez, Manuel

    2010-02-01

    Pulses propagating in the fiber with anomalous dispersion are broken up to the bunch of soliton. The extraction of an individual soliton from the bunch can be used for soliton generation and also for investigation of the process of the soliton formation. In this work we experimentally demonstrate that the NOLM allows extraction of an individual soliton. Earlier we have shown numerically that the NOLM has high transmission for the solitons with a range of durations while solitons with shorter and longer durations are rejected. The range of the durations with high transmission depends on the NOLM length and also can be moved by amplification of solitons before entering to the NOLM. In the experiment we launched 25-ps pulses with about 10 W of power to the 500-m single mode fiber with dispersion equal to 20 ps/nm-km. As a result of the pulse breakup, a bunch of solitons is formed at the fiber output. The resulting solitons are launched to the EDFA and then to the NOLM made from the 40-m of the same fiber. The NOLM parameters are adjusted to transmit the highest soliton in the bunch (about 50 W of power and 1 ps of duration according to theoretical estimations). In the experiment we detected at the NOLM output a single pulse with duration of 1.46 ps and autocorrelation function similar to that of the soliton. When a 1-km fiber was attached to the NOLM at the fiber output we detected a soliton with duration of 0.9 ps.

  4. On the propagation of hypersonic solitons in a strained paramagnetic crystal

    SciTech Connect

    Sazonov, S. V.

    2013-11-15

    Nonlinear dynamics of a subnanosecond transverse elastic pulse in a low-temperature paramagnetic crystal placed into a magnetic field and statically strained in the same direction is investigated. Paramagnetic impurities implanted into the crystal have an effective spin of 3/2, and the pulse propagates at right angles to the magnetic field. In the general case, the structure of the pulse is such that the approximation of slowly varying envelopes, which is standard for quasi-monochromatic signals, is inapplicable. Under certain conditions, the pulse propagation in the 1D case is described by the Konno-Kameyama-Sanuki integrable wave equation for strain, which is transformed into the Hirota equation for the envelope of the given strain in the quasi-monochromatic limit. The effect of transverse perturbations on extremely short and quasi-monochromatic solitons is studied in detail. The conditions and features of self-focusing and defocusing of acoustic solitons in the form of extremely short pulses and envelope solitons are revealed. The propagation of an extremely short “half-wave” hypersonic pulse in the “acoustic bullet” regime in the medium with a quasiequilibrium population of quantum sublevels of effective spins is predicted.

  5. Electrostatic soliton and double layer structures in unmagnetized degenerate pair plasmas

    SciTech Connect

    Mahmood, S.; Khan, S. A.; Ur-Rehman, H.

    2010-11-15

    The acoustic solitons and double layers are studied in unmagnetized quantum electron-positron plasmas in the presence of stationary ions. The quantum hydrodynamic model is employed and reductive perturbation method is used to derive the Korteweg-de Vries (KdV) and extended KdV equations for solitons and double layers, respectively. It is found that in the linear limit both slow acoustic and fast Langmuir waves can propagate in such type of quantum plasmas like in classical pair-ion or pair plasmas. The amplitude and width of the electrostatic solitons are found to be decreasing with the increase in concentration of positrons (or decrease in the concentration of ions) in degenerate electron-positron-ion plasmas. It is found that only rarefactive double layer can exist in such plasmas which depend on various parameters. The dependence of double layer structure on ion concentration and quantum diffraction effects of electrons and positrons are also discussed. The results are also elaborated graphically by considering dense plasma parameters in the outer layers of astrophysical objects such as white dwarfs and neutron stars.

  6. Soliton solutions and chaotic motions of the Zakharov equations for the Langmuir wave in the plasma

    SciTech Connect

    Zhen, Hui-Ling; Tian, Bo Wang, Yu-Feng; Liu, De-Yin

    2015-03-15

    For the interaction between the high-frequency Langmuir waves and low-frequency ion-acoustic waves in the plasma, the Zakharov equations are studied in this paper. Via the Hirota method, we obtain the soliton solutions, based on which the soliton propagation is presented. It is found that with λ increasing, the amplitude of u decreases, whereas that of v remains unchanged, where λ is the ion-acoustic speed, u is the slowly-varying envelope of the Langmuir wave, and v is the fluctuation of the equilibrium ion density. Both the head-on and bound-state interactions between the two solitons are displayed. We observe that with λ decreasing, the interaction period of u decreases, while that of v keeps unchanged. It is found that the Zakharov equations cannot admit any chaotic motions. With the external perturbations taken into consideration, the perturbed Zakharov equations are studied for us to see the associated chaotic motions. Both the weak and developed chaotic motions are investigated, and the difference between them roots in the relative magnitude of the nonlinearities and perturbations. The chaotic motions are weakened with λ increasing, or else, strengthened. Periodic motion appears when the nonlinear terms and external perturbations are balanced. With such a balance kept, one period increases with λ increasing.

  7. Acceleration of soliton by nonlinear Landau damping of dust-helical waves

    SciTech Connect

    Ehsan, Zahida; Tsintsadze, Nodar L.; Vranjes, J.; Poedts, S.

    2009-05-15

    The problem of nonlinear Landau damping of helicon waves in dusty plasma in particular emphasis to the acceleration of soliton is presented here. This in the framework of a collisionless, anisotropic homogeneous dusty plasma in one dimension, can be well described by two coupled dynamical equations of the generalized Zakharov type, with one extra nonlocal term coming from Landau damping. Nonlinear-nonlocal term gives rise to essential contributions relative to the local term. Then under different conditions, kinetic nonlinear Schroedinger equation is constructed and nonlinear decrement is obtained for two cases. It is noticed that the time dependant term in the ponderomotive force plays a significant role for this kind of damping. Additionally, it is shown that nonlinear Landau damping leads to the amplitude modulation of dust helicon waves, further modulational instability, and maximal growth rate is obtained when the group velocity of the helicon wave reaches the dust-acoustic speed. It is demonstrated that how the nonlinear Landau damping leads to the acceleration of soliton, which is eventually slowed down after transferring some of its energy to the wave. Emission of dust-acoustic wave by accelerated soliton is discussed briefly.

  8. Soliton transmission in optical fibers with loss and saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    Aicklen, Gregory H.; Tamil, Lakshman S.

    1996-09-01

    Optical solitons propagating in media exhibiting saturable nonlinearity offer advantages over Kerr-medium solitons for transmission over large distances through optical fibers with loss. Soliton pulses in saturable media offer greater energy for a given peak power, and upper-branch solitons decrease in width with distance traveled. These properties result in pulses that remain distinct and detectable for greater distances than Kerr-medium solitons do with the same peak power. .

  9. Small amplitude electron acoustic solitary waves in a magnetized superthermal plasma

    NASA Astrophysics Data System (ADS)

    Devanandhan, S.; Singh, S. V.; Lakhina, G. S.; Bharuthram, R.

    2015-05-01

    The propagation of electron acoustic solitary waves in a magnetized plasma consisting of fluid cold electrons, electron beam and superthermal hot electrons (obeying kappa velocity distribution function) and ion is investigated in a small amplitude limit using reductive perturbation theory. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation governing the dynamics of electron acoustic solitary waves is derived. The solution of the KdV-ZK equation predicts the existence of negative potential solitary structures. The new results are: (1) increase of either the beam speed or temperature of beam electrons tends to reduce both the amplitude and width of the electron acoustic solitons, (2) the inclusion of beam speed and temperature pushes the allowed Mach number regime upwards and (3) the soliton width maximizes at certain angle of propagation (αm) and then decreases for α >αm . In addition, increasing the superthermality of the hot electrons also results in reduction of soliton amplitude and width. For auroral plasma parameters observed by Viking, the obliquely propagating electron-acoustic solitary waves have electric field amplitudes in the range (7.8-45) mV/m and pulse widths (0.29-0.44) ms. The Fourier transform of these electron acoustic solitons would result in a broadband frequency spectra with peaks near 2.3-3.5 kHz, thus providing a possible explanation of the broadband electrostatic noise observed during the Burst a.

  10. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1985-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have derived a theory, and tested it on tissues, for predicting the composition of composite materials using mixture rules, such as the one we derived for the nonlinear parameter two years ago; (2) We have published one article and another is in review on our use of modulated acoustic radiation pressure on levitated drops to characterize interfaces with and without surfactants. We have begun to study in a systematic way the nonlinear dynamics of drops, including drop fission: (3) we have improved apparatus for 30 MHz ultrasonic scattering from microparticles (approx. micron size), which should allow us to discriminate between different microparticles in a liquid; (4) We have begun to study the nonlinear mechanics of hydrodynamic solitons in cylindrical (2-d) geometry; and (5) We have been studying the use of acoustic levitation for transducer calibration.

  11. Soliton turbulence in shallow water ocean surface waves.

    PubMed

    Costa, Andrea; Osborne, Alfred R; Resio, Donald T; Alessio, Silvia; Chrivì, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E

    2014-09-01

    We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described theoretically by the soliton limit of the Korteweg-deVries equation, a completely integrable soliton system: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic-quasiperiodic boundary conditions the ergodic solutions of Korteweg-deVries are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as ∼ω-1. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ∼ω-1 region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian. PMID:25238388

  12. Soliton Turbulence in Shallow Water Ocean Surface Waves

    NASA Astrophysics Data System (ADS)

    Costa, Andrea; Osborne, Alfred R.; Resio, Donald T.; Alessio, Silvia; Chrivı, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E.

    2014-09-01

    We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described theoretically by the soliton limit of the Korteweg-deVries equation, a completely integrable soliton system: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic-quasiperiodic boundary conditions the ergodic solutions of Korteweg-deVries are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as ˜ω-1. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ˜ω-1 region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.

  13. Diode-Pumped Soliton and Non-Soliton Mode-Locked Yb:GYSO Lasers

    NASA Astrophysics Data System (ADS)

    He, Jin-Ping; Liang, Xiao-Yan; Li, Jin-Feng; Zheng, Li-He; Su, Liang-Bi; Xu, Jun

    2011-08-01

    Diode-pumped soliton and non-soliton mode-locked Yb:(Gd1-x Yx)2SiO5(x = 0.5) lasers are demonstrated. Pulses as short as 1.4 ps are generated for the soliton mode-locked operation, with a pair of SF10 prisms as the negative dispersion elements. The central wavelength is 1056 nm and the repetition rate is 48 MHz. For the non-soliton mode locking, the output power could achieve ~1.2 W, and the pulse width is about 20 ps. The critical pulse energy in the soliton-mode locked operation against the Q-switched mode locking is much lower than the critical pulse energy in the non-soliton mode-locked operation.

  14. Optical solitons in liquid crystals

    SciTech Connect

    Yung, Y.S.; Lam, L.; Los Alamos National Lab., NM )

    1989-01-01

    In this paper, we will discuss theoretically the possible existence of optical solitons in the isotropic liquid and in the nematic phase. For the same compound, when heated, the nematic phase will go through a first order transition at temperature T{sub c} to the isotropic liquid phase. As temperature increases from below T{sub c}, the orientation order parameter, Q, decreases, drops to zero abruptly at T{sub c} and remains zero for T > T{sub c}. 10 refs., 1 fig.

  15. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  16. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  17. Solitons of axion-dilaton gravity

    SciTech Connect

    Bakas, I. |

    1996-11-01

    We use soliton techniques of the two-dimensional reduced {beta}-function equations to obtain nontrivial string backgrounds from flat space. These solutions are characterized by two integers ({ital n},{ital m}) referring to the soliton numbers of the metric and axion-dilaton sectors, respectively. We show that the Nappi-Witten universe associated with the SL(2){times}SU(2)/SO(1,1){times}U(1) CFT coset arises as a (1,1) soliton in this fashion for certain values of the moduli parameters, while for other values of the soliton moduli we arrive at the SL(2)/SO(1,1){times}SO(1,1){sup 2} background. Ordinary four-dimensional black holes arise as two-dimensional (2,0) solitons, while the Euclidean wormhole background is described as a (0,2) soliton on flat space. The soliton transformations correspond to specific elements of the string Geroch group. These could be used as a starting point for exploring the role of {ital U} dualities in string compactifications to two dimensions. {copyright} {ital 1996 The American Physical Society.}

  18. Supersymmetric Structure of two Families of Solitons

    NASA Astrophysics Data System (ADS)

    Koller, Andrew; Olshanii, Maxim

    2012-02-01

    Solitons have generated considerable interest in the cold atoms and condensed matter communities. We demonstrate that two families of n-soliton solutions (with n an integer) -- one for the attractive nonlinear Schr"odinger (NLS) equation, and one for the sine-Gordon (sG) equation -- originate from a quantum-mechanical supersymmetric (QM-SUSY) chain connecting a set of reflectionless operators Hn. The families consist of breather-type solitons for NLSootnotetextD. Schrader, IEEE J. Quantum Electron. 31, 2221 (1995). and multi-(anti)kink solitons with specific velocities for sG. The operators Hn, which we refer to as Akulin`s HamiltoniansootnotetextV. M. Akulin, Coherent Dynamics of Complex Quantum Systems (Springer, Heidelberg, 2006)., form reflectionless direct-scattering initial conditions for the inverse scattering method. Such a QM-SUSY chain is analogous to the known connection between QM-SUSY chains of P"oschl-Teller potentials and solitons of the Korteweg-de Vries (KdV) equationootnotetextSukumar, J. Phys. A 19, 2297 (1986). The existence of QM-SUSY chains connecting soliton solutions, now for three different integrable nonlinear equations, sheds light on the underlying mechanisms responsible for soliton generation.

  19. Transition of ion-acoustic perturbations in multicomponent plasma with negative ions

    SciTech Connect

    Sharma, Sumita Kumari; Devi, Kavita; Adhikary, Nirab Chandra; Bailung, Heremba

    2008-08-15

    Evolution of ion-acoustic compressive (positive) and rarefactive (negative) perturbations in a multicomponent plasma with negative ions has been investigated in a double plasma device. Transition of compressive solitons in electron-positive ion plasma, into a dispersing train of oscillations in a multicomponent plasma, when the negative ion concentration r exceeds a critical value r{sub c}, has been observed. On the other hand, an initial rarefactive perturbation initially evolves into a dispersing train of oscillations in electron-positive ion plasma and transforms into rarefactive solitons in a multicomponent plasma when the negative ion concentration is higher than the critical value. The Mach velocity and width of the compressive and rarefactive solitons are measured. The compressive solitons in the range 0solitons in the range r>r{sub c} have different characteristics than the Korteweg-de Vries (KdV) solitons at r=0 and modified KdV solitons at r=r{sub c}. A nonlinear differential equation having two terms to account for the lower and higher order nonlinearity has been used to explain the observed results.

  20. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  1. Evolution of higher order nonlinear equation for the dust ion-acoustic waves in nonextensive plasma

    SciTech Connect

    Yasmin, S.; Asaduzzaman, M.; Mamun, A. A.

    2012-10-15

    There are three different types of nonlinear equations, namely, Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed modified K-dV (mixed mK-dV) equations, for the nonlinear propagation of the dust ion-acoustic (DIA) waves. The effects of electron nonextensivity on DIA solitary waves propagating in a dusty plasma (containing negatively charged stationary dust, inertial ions, and nonextensive q distributed electrons) are examined by solving these nonlinear equations. The basic features of mixed mK-dV (higher order nonlinear equation) solitons are found to exist beyond the K-dV limit. The properties of mK-dV solitons are compared with those of mixed mK-dV solitons. It is found that both positive and negative solitons are obtained depending on the q (nonextensive parameter).

  2. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...

  3. SOLITONS AND OPTICAL FIBERS: On the problem of ideal amplification of optical solitons

    NASA Astrophysics Data System (ADS)

    Melo Melchor, G.; Agüero Granados, M.; Corro, G. H.

    2002-11-01

    The new possibilities of almost ideal amplification of optical solitons during the incoherent interaction of light pulses with a resonantly amplifying medium are considered. The mechanism of two-photon amplification of optical solitons with an optimal frequency-modulation law is proposed. It is shown that the entirely ideal amplification of solitons cannot be achieved because the law of phase modulation of radiation differs from a parabolic law. The possibility of using the phase cross modulation to produce the required initial phase of amplified solitons is studied.

  4. Rarefaction solitons initiated by sheath instability

    SciTech Connect

    Levko, Dmitry

    2015-09-15

    The instability of the cathode sheath initiated by the cold energetic electron beam is studied by the one-dimensional fluid model. Numerical simulations show the generation of travelling rarefaction solitons at the cathode. It is obtained that the parameters of these solitons strongly depend on the parameters of electron beam. The “stretched” variables are derived using the small-amplitude analysis. These variables are used in order to obtain the Korteweg-de Vries equation describing the propagation of the rarefaction solitons through the plasma with cold energetic electron beam.

  5. Solitons for optical time-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Levanon, Amikam; Friberg, Stephen R.; Fujii, Yoichi

    1996-06-01

    We describe the propagation of solitons in an optical time-domain reflectometry geometry. Intense nonsolitons usually broaden nonlinearly as they propagate out to a scatterer and broaden linearly as they return to their origin. In contrast, solitons propagate with a fixed pulse width or narrow on their way out to the scatterer. Returning, they broaden or narrow depending on their chirp at the scattering point. For a fixed return-pulse timing resolution we find 2.6 times or more energy can be launched when solitons are used than for normal dispersion pulses.

  6. The linear perspective to soliton dynamics

    NASA Astrophysics Data System (ADS)

    Snyder, Allan W.

    1996-12-01

    Unlike linear waves, solitons create their own channel as they travel in a uniform medium, remaining localized and preserving their shape.1 Whereas linear waves always pass through one another, solitons can be dramatically altered by collisions. They can annihilate one another, fuse, or create multiple solitons.2 These phenomena turn out to be important to the emerging technology of light guiding light and light written circuitry.3-4 To pursue this technology, we need to understand how such waves interact in an arbitrary nonlinear medium.

  7. Soliton bound states in semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Viktorov, Evgeny A.; Butkus, Mantas; Erneux, Thomas; Hamilton, Craig J.; Malcolm, Graeme P. A.; Rafailov, Edik U.

    2014-05-01

    We report what we believe is the first demonstration of a temporal soliton bound state in semiconductor disk laser. The laser was passively mode-locked using a quantum dot based semiconductor saturable absorber mirror (QD-SESAM). Two mode-locking regimes were observed where the laser would emit single or closely spaced double pulses (soliton bound state regime) per cavity round-trip. The pulses in soliton bound state regime were spaced by discrete, fixed time duration. We use a system of delay differential equations to model the dynamics of our device.

  8. Tau Functions and Virasoro Actions for soliton Hierarchies

    NASA Astrophysics Data System (ADS)

    Terng, Chuu-Lian; Uhlenbeck, Karen

    2016-02-01

    There is a general method for constructing a soliton hierarchy from a splitting {{L_{±}}} of a loop group as positive and negative sub-groups together with a commuting linearly independent sequence in the positive Lie algebra {{L}+}. Many known soliton hierarchies can be constructed this way. The formal inverse scattering associates to each f in the negative subgroup {L_-} a solution {uf} of the hierarchy. When there is a 2 co-cycle of the Lie algebra that vanishes on both sub-algebras, Wilson constructed a tau function {τf} for each element {f in L_-}. In this paper, we give integral formulas for variations of {lnτf} and second partials of {lnτf}, discuss whether we can recover solutions {uf} from {τf}, and give a general construction of actions of the positive half of the Virasoro algebra on tau functions. We write down formulas relating tau functions and formal inverse scattering solutions and the Virasoro vector fields for the {GL(n,{C})}-hierarchy.

  9. Weak and strong interactions between dark solitons and dispersive waves.

    PubMed

    Oreshnikov, I; Driben, R; Yulin, A V

    2015-11-01

    The effect of mutual interactions between dark solitons and dispersive waves is investigated numerically and analytically. The condition of the resonant scattering of dispersive waves on dark solitons is derived and compared against the results of the numerical simulations. It is shown that the interaction with intense dispersive waves affects the dynamics of the solitons by accelerating, decelerating, or destroying them. It is also demonstrated that two dark solitons can form a cavity for dispersive waves bouncing between the two dark solitons. The differences of the resonant scattering of the dispersive waves on dark and bright solitons are discussed. In particular, we demonstrate that two dark solitons and a dispersive wave bouncing in between them create a solitonic cavity with convex "mirrors," unlike the concave "mirror" in the case of bright solitons. PMID:26512471

  10. Spatial Patterns of Dissipative Polariton Solitons in Semiconductor Microcavities.

    PubMed

    Chana, J K; Sich, M; Fras, F; Gorbach, A V; Skryabin, D V; Cancellieri, E; Cerda-Méndez, E A; Biermann, K; Hey, R; Santos, P V; Skolnick, M S; Krizhanovskii, D N

    2015-12-18

    We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energy-momentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts. PMID:26722931

  11. SOLITONS: Optimal control of optical soliton parameters: Part 2. Concept of nonlinear Bloch waves in the problem of soliton management

    NASA Astrophysics Data System (ADS)

    Serkin, Vladimir N.; Belyaeva, T. L.

    2001-11-01

    It is shown that optical solitons in nonlinear fibre-optic communication systems and soliton lasers can be represented as nonlinear Bloch waves in periodic structures. The Bloch theorem is proved for solitons of the nonlinear Schrodinger equation in systems with the dispersion, the nonlinearity, and the gain (absorption coefficient) periodically changing over the length. The dynamics of formation and interaction, as well as stability of the coupled states of nonlinear Bloch waves are investigated. It is shown that soliton Bloch waves exist only under certain self-matching conditions for the basic parameters of the system and reveal a structural instability with respect to the mismatch between the periods of spatial modulation of the dispersion, nonlinearity or gain.

  12. Ion acoustic shock and solitary waves in highly relativistic plasmas with nonextensive electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2016-01-01

    The Korteweg-de Vries Burgers (KdVB) -like equation is derived to study the characteristics of nonlinear propagation of ion acoustic solitions in a highly relativistic plasma containing relativistic ions and nonextensive distribution of electrons and positrons using the well known reductive perturbation technique. The KdVB-like equation is solved employing the Bernoulli's equation method taking unperturbed positron to electron concentration ratio, electron to positron temperature ratio, strength of nonextensivity, ion kinematic viscosity, and highly relativistic streaming factor. It is found that these parameters significantly modify the structures of the solitonic excitation. The ion acoustic shock profiles are observed due to the influence of ion kinematic viscosity. In the absence of dissipative term to the KdVB equation, compressive and rarefactive solitons are observed in case of superthermality, but only compressive solitons are found for the case of subthermality.

  13. Oxygen acoustic solitary waves in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Qian, S.; Lotko, W.; Hudson, M. K.

    1989-01-01

    Ion-acoustic solitary waves in a magnetized plasma containing an arbitrary mixture of H(+) and O(+) ions are studied. A nonlinear wave equation has been derived from the Poisson-Vlasov equations, including a uniform magnetic field and dissipation due to reflected electrons. When dissipation is ignored, the equation has soliton solutions associated with both oxygen and hydrogen acoustic modes, which can be either rarefactive or compressive depending on the ion concentrations and the electron/ion temperature ratio and, more weakly, on the bulk drifts of the species. If electron reflection is included, the solitary wave can be intensified. Under somewhat restrictive conditions the oxygen solitary wave is rarefactive and propagates with a velocity comparable to that observed by the Viking satellite. The three-dimensional solitons obey a relation of scales parallel to the magnetic field and in the transverse direction. Computer simulations of one-dimensional versions of the nonlinear wave equation are presented.

  14. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  15. Interaction of high-order solitons with external dispersive waves.

    PubMed

    Oreshnikov, I; Driben, R; Yulin, A V

    2015-12-01

    The effect of mutual interaction between second-order soliton and dispersive waves (DWs) is investigated. It is predicted analytically and confirmed numerically that DWs (both transmitted and reflected components) become polychromatic after interaction with the soliton. Collision with DWs of considerable intensity can lead to acceleration/deceleration and central frequency shift of the soliton, while still preserving the soliton's oscillating structure. Two second-order solitons with resonant DWs trapped between them can form an effective solitonic cavity with "flat" or "concave mirrors," depending on the intensity of the input. PMID:26625049

  16. Soliton collisions in soft magnetic nanotube with uniaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Usov, N. A.

    2016-05-01

    The structure of stable magnetic solitons of various orders in soft magnetic nanotube with uniaxial magnetic anisotropy has been studied using numerical simulation. Solitons of even order are immobile in axially applied magnetic field. Odd solitons show decreased mobility with respect to that of head-to head domain wall. Solitons of various orders can participate in nanotube magnetization reversal process. Various coalescence and decomposition processes in soliton assembly are considered. It is shown that the general magnetization state of magnetic nanotube consists of chains of magnetic solitons of various orders.

  17. Successive soliton explosions in an ultrafast fiber laser.

    PubMed

    Liu, Meng; Luo, Ai-Ping; Yan, Yu-Rong; Hu, Song; Liu, Yi-Chen; Cui, Hu; Luo, Zhi-Chao; Xu, Wen-Cheng

    2016-03-15

    Soliton explosions, as one of the most fascinating nonlinear phenomena in dissipative systems, have been investigated in different branches of physics, including the ultrafast laser community. Herein, we reported on the soliton dynamics of an ultrafast fiber laser from steady state to soliton explosions, and to huge explosions by simply adjusting the pump power level. In particular, the huge soliton explosions show that the exploding behavior could operate in a sustained, but periodic, mode from one explosion to another, which we term as "successive soliton explosions." The experimental results will prove to be fruitful to the various communities interested in soliton explosions. PMID:26977664

  18. Dark solitons in laser radiation build-up dynamics.

    PubMed

    Woodward, R I; Kelleher, E J R

    2016-03-01

    We reveal the existence of slowly decaying dark solitons in the radiation build-up dynamics of bright pulses in all-normal dispersion mode-locked fiber lasers, numerically modeled in the framework of a generalized nonlinear Schrödinger equation. The evolution of noise perturbations to quasistationary dark solitons is examined, and the significance of background shape and soliton-soliton collisions on the eventual soliton decay is established. We demonstrate the role of a restoring force in extending soliton interactions in conservative systems to include the effects of dissipation, as encountered in laser cavities, and generalize our observations to other nonlinear systems. PMID:27078358

  19. Dust-acoustic supersolitons in a three-species dusty plasma with kappa distributions†

    NASA Astrophysics Data System (ADS)

    Hellberg, M. A.; Baluku, T. K.; Verheest, F.; Kourakis, I.; Kourakis

    2013-12-01

    Supersolitons are a form of soliton characterised, inter alia, by additional local extrema superimposed on the usual bipolar electric field signature. Previous studies of supersolitons supported by three-component plasmas have dealt with ion-acoustic structures. An analogous problem is now considered, namely, dust-acoustic supersolitons in a plasma composed of fluid negative dust grains and two kappa-distributed positive ion species. Calculations illustrating some supersoliton characteristics are presented.

  20. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  1. Coexistence of a self-induced transparency soliton and a Bragg soliton.

    PubMed

    Tseng, Hong-Yih; Chi, Sien

    2002-11-01

    We theoretically show that a self-induced transparency (SIT) soliton and a Bragg soliton can coexist in a nonlinear photonic band gap (PBG) medium doped uniformly with inhomogeneous-broadening two-level atoms. The Maxwell-Bloch equations for the pulse propagating through such a uniformly doped PBG structure are derived first and further reduced to an effective nonlinear Schrödinger equation. This model describes an equivalent physical mechanism for a Bragg-soliton propagation resulting from the effective quadratic dispersion balancing with the effective third-order nonlinearity. Because the resonant atoms are taken into account, the original band gap can be shifted both by the dopants and the instantaneous nonlinearity response originating from an intense optical pulse. As a result, even if a SIT soliton with its central frequency deep inside the original forbidden band, it still can propagate through the resonant PBG medium as long as this SIT soliton satisfies the effective Bragg-soliton propagation. An approximate soliton solution describing such coexistence is found. We also show that the pulse width and group velocity of this soliton solution can be uniquely determined for given material parameters, atomic transition frequency, and input central frequency of the soliton. The numerical examples of the SIT soliton in a one-dimensional As2S3-based PBG structure doped uniformly with Lorentzian line-shape resonant atoms are shown. It is found that a SIT soliton with approximately 100-ps width in such a resonant PBG structure can travel with the velocity being two orders of magnitude slower than the light speed in an unprocessed host medium. PMID:12513622

  2. Computational modeling of femtosecond optical solitons from Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Taflove, Allen; Joseph, Rose M.; Hagness, Susan C.

    1992-01-01

    An algorithm is developed that permits the direct time integration of full-vector nonlinear Maxwell's equations. This capability permits the modeling of both linear and nonlinear instantaneous and dispersive effects in the electric polarization in material media. The modeling of the optical carrier is retained. The fundamental innovation is to notice that it is possible to treat the linear and nonlinear convolution integrals, which describe the dispersion, as new dependent variables. A coupled system of nonlinear second-order ordinary differential equations can then be derived for the linear and nonlinear convolution integrals, by differentiating them in the time domain. These equations, together with Maxwell's equations, are solved to determine the electromagnetic fields in nonlinear dispersive media. Results are presented of calculations in one dimension of the propagation and collision of femtosecond electromagnetic solitons that retain the optical carrier, taking into account as the Kerr and Raman interactions.

  3. Clustering of solitons in weakly correlated wavefronts

    PubMed Central

    Chen, Zhigang; Sears, Suzanne M.; Martin, Hector; Christodoulides, Demetrios N.; Segev, Mordechai

    2002-01-01

    We demonstrate theoretically and experimentally the spontaneous clustering of solitons in partially coherent wavefronts during the final stages of pattern formation initiated by modulation instability and noise. PMID:16578870

  4. Nonlinear Dynamics: Maps, Integrators and Solitons

    SciTech Connect

    Parsa, Z.

    1998-10-01

    For many physical systems of interest in various disciplines, the solution to nonlinear differential equations describing the physical systems can be generated using maps, symplectic integrators and solitons. We discuss these methods and apply them for various examples.

  5. Two-dimensional dissipative gap solitons

    SciTech Connect

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2009-08-15

    We introduce a model which integrates the complex Ginzburg-Landau equation in two dimensions (2Ds) with the linear-cubic-quintic combination of loss and gain terms, self-defocusing nonlinearity, and a periodic potential. In this system, stable 2D dissipative gap solitons (DGSs) are constructed, both fundamental and vortical ones. The soliton families belong to the first finite band gap of the system's linear spectrum. The solutions are obtained in a numerical form and also by means of an analytical approximation, which combines the variational description of the shape of the fundamental and vortical solitons and the balance equation for their total power. The analytical results agree with numerical findings. The model may be implemented as a laser medium in a bulk self-defocusing optical waveguide equipped with a transverse 2D grating, the predicted DGSs representing spatial solitons in this setting.

  6. Soliton production with nonlinear homogeneous lines

    SciTech Connect

    Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; Petney, Sharon Joy Victor; Dudley, Evan C.; Youngman, Kevin; Penner, Tim Dwight; Fang, Lu; Myers, Katherine M.

    2015-11-24

    Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated output voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.

  7. Soliton production with nonlinear homogeneous lines

    DOE PAGESBeta

    Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; Petney, Sharon Joy Victor; Dudley, Evan C.; Youngman, Kevin; Penner, Tim Dwight; Fang, Lu; Myers, Katherine M.

    2015-11-24

    Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less

  8. Soliton solutions of the Hirota's system

    NASA Astrophysics Data System (ADS)

    Yesmakhanova, Kuralay; Shaikhova, Gaukhar; Bekova, Guldana

    2016-08-01

    It is well known that nonlinear integrable systems have attracted a lot of attention among researchers. This fascinating subject of nonlinear science has branched out in almost all areas of technology and science. In nonlinear science soliton solutions play an important role. There are many ways to obtain soliton solutions of the nonlinear evolution equations, such as the Painleve analysis, the Hirota's bilinear method, Darboux transformation (DT) and so on. Among the various methods, the DT has been proved very successful in driving different kinds of solutions for many of the integrable equations from a trivial seed. In this work, we focus on the construction soliton solutions for the 2+1-dimensional Hirota's system, which is modified nonlinear Schrödinger equations. One-soliton solutions are obtained by means of the one-fold Darboux transformation for the 2+1-dimensional Hirota's system.

  9. Cascaded generation of coherent Raman dissipative solitons.

    PubMed

    Kharenko, Denis S; Bednyakova, Anastasia E; Podivilov, Evgeniy V; Fedoruk, Mikhail P; Apolonski, Alexander; Babin, Sergey A

    2016-01-01

    The cascaded generation of a conventional dissipative soliton (at 1020 nm) together with Raman dissipative solitons of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity is demonstrated experimentally and numerically. With sinusoidal (soft) spectral filtering, the generated solitons are mutually coherent at a high degree and compressible down to 300 fs. Numerical simulation shows that an even higher degree of coherence and shorter pulses could be achieved with step-like (hard) spectral filtering. The approach can be extended toward a high-order coherent Raman dissipative soliton source offering numerous applications such as frequency comb generation, pulse synthesis, biomedical imaging, and the generation of a coherent mid-infrared supercontinuum. PMID:26696187

  10. Dark solitons on the surface of water

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin

    2014-05-01

    The nonlinear Schrödinger equation (NLS) models the evolution dynamics in time and space of weakly nonlinear water wave trains in finite or infinite depth. In the defocusing regime (finite depth), the NLS admits a family of soliton solutions, which describe the strong depression of wave envelopes. These solitons are referred to dark solitons and have been already observed in optics and in Bose-Einstein condensates. We present experimental results on gray and black solitons, propagating in a wave flume. Furthermore, we analyze the data and discuss the discrepancies observed with respect to theoretical predictions. The results prove that in the case of weak-nonlinearity of the waves, the NLS describes well the dynamics of nonlinear wave packets in finite depth.

  11. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-12-31

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  12. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-01-01

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  13. Nonextensive dust-acoustic solitary waves

    SciTech Connect

    Tribeche, M.; Merriche, A.

    2011-03-15

    The seminal paper of Mamun et al. [Phys. Plasmas 3, 702 (1996)] is revisited within the theoretical framework of the Tsallis statistical mechanics. The nonextensivity may originate from the correlation or long-range interactions in the dusty plasma. It is found that depending on whether the nonextensive parameter q is positive or negative, the dust-acoustic (DA) soliton exhibits compression for q<0 and rarefaction for q>0. The lower limit of the Mach number for the existence of DA solitary waves is greater (smaller) than its Maxwellian counterpart in the case of superextensivity (subextensivity).

  14. Acoustic neuromodulation from a basic science prospective.

    PubMed

    Sassaroli, Elisabetta; Vykhodtseva, Natalia

    2016-01-01

    We present here biophysical models to gain deeper insights into how an acoustic stimulus might influence or modulate neuronal activity. There is clear evidence that neural activity is not only associated with electrical and chemical changes but that an electro-mechanical coupling is also involved. Currently, there is no theory that unifies the electrical, chemical, and mechanical aspects of neuronal activity. Here, we discuss biophysical models and hypotheses that can explain some of the mechanical aspects associated with neuronal activity: the soliton model, the neuronal intramembrane cavitation excitation model, and the flexoelectricity hypothesis. We analyze these models and discuss their implications on stimulation and modulation of neuronal activity by ultrasound. PMID:27213044

  15. Nonlocal soliton scattering in random potentials

    NASA Astrophysics Data System (ADS)

    Piccardi, Armando; Residori, Stefania; Assanto, Gaetano

    2016-07-01

    We experimentally investigate the transport behaviour of nonlocal spatial optical solitons when launched in and interacting with propagation-invariant random potentials. The solitons are generated in nematic liquid crystals; the randomness is created by suitably engineered illumination of planar voltage-biased cells equipped with a photosensitive wall. We find that the fluctuations follow a super-diffusive trend, with the mean square displacement lowering for decreasing spatial correlation of the noise.

  16. Spatial Kerr soliton collisions at arbitrary angles.

    PubMed

    Chamorro-Posada, P; McDonald, G S

    2006-09-01

    The theory of spatial Kerr solitons is extended to colliding beams that are neither almost-exactly copropagating nor almost-exactly counterpropagating. Our new Helmholtz formalism yields results that are consistent with the inherent symmetry of the collision process and that are not predicted by existing paraxial descriptions. Full numerical and approximate analytical results are presented. These show excellent agreement. In particular, Kerr solitons are found to be remarkably robust under nonparaxial collisions. PMID:17025766

  17. Stationary dissipative solitons of Model G

    NASA Astrophysics Data System (ADS)

    Pulver, Matthew; LaViolette, Paul A.

    2013-07-01

    Model G, the earliest reaction-diffusion system proposed to support the existence of solitons is shown to do so under distant steady-state boundary conditions. Subatomic particle physics phenomenology, including multi-particle bonding, movement in concentration gradients, and a particle structure matching Kelly's charge distribution model of the nucleon, are observed. Lastly, it is shown how a three-variable reversible Brusselator, a close relative of Model G, can also support solitons.

  18. Plasmonic lattice solitons in metallic nanowire materials

    NASA Astrophysics Data System (ADS)

    Swami, O. P.; Kumar, Vijendra; Nagar, A. K.

    2016-05-01

    In this paper, we demonstrate theoretically that the plasmonic lattice solitons (PLSs) are formed in array of metallic nanowires embedded in Kerr-type material. The strong nonlinearity at metal surface, combined with the tight confinement of the guiding modes of the metallic nanowires, provide the main physical mechanism for balancing the creation of plasmonic lattice solitons and wave diffraction. We show that the PLSs are satisfied in a verity of plasmonic systems, which have important applications in nanophotonics and subwavelength optics.

  19. Magnetohydrodynamic solitons and radio knots in jets

    NASA Technical Reports Server (NTRS)

    Fiedler, R.

    1986-01-01

    Weakly nonlinear surface waves are examined in the context of the beam model for jetlike radio sources. By introducing a finite scale length, viz. the beam radius, geometrical dispersion can act to balance nonlinear wave growth and thereby produce solitons, localized wave packets of stable waveform. A method for obtaining a soliton equation from the MHD equations is presented and then applied to radio knots in jets.

  20. Weakly relativistic electromagnetic solitons in warm plasmas

    NASA Astrophysics Data System (ADS)

    Sundar, Sita

    2016-06-01

    For slowly propagating electromagnetic solitons, validity of the cold plasma model is addressed using a more realistic model involving effects arising due to temperature as well as ion dynamics. Small amplitude single peak structures which are quasineutral are studied, and different regions of existence of bright and dark classes of solitons are delineated. Influence of temperature on spectral characteristics of the solitary structures is presented.

  1. Exact kink solitons in Skyrme crystals

    NASA Astrophysics Data System (ADS)

    Chen, Shouxin; Li, Yijun; Yang, Yisong

    2014-01-01

    We present an explicit integration of the kink soliton equation obtained in a recent interesting study of the classical Skyrme model where the field configurations are of a generalized hedgehog form which is of a domain-wall type. We also show that in such a reduced one-dimensional setting the first-order and second-order equations are equivalent. Consequently, in such a context, all finite-energy solitons are Bogomolnyi-Prasad-Sommerfield type and precisely known.

  2. Nonlinear propagation of small-amplitude modified electron acoustic solitary waves and double layer in semirelativistic plasmas

    SciTech Connect

    Sah, O.P.; Goswami, K.S. )

    1994-10-01

    Considering an unmagnetized plasma consisting of relativistic drifting electrons and nondrifting thermal ions and by using reductive perturbation method, a usual Korteweg--de Vries (KdV) equation and a generalized form of KdV equation are derived. It is found that while the former governs the dynamics of a small-amplitude rarefactive modified electron acoustic (MEA) soliton, the latter governs the dynamics of a weak compressive modified electron acoustic double layer. The influences of relativistic effect on the propagation of such a soliton and double layer are examined. The relevance of this investigation to space plasma is pointed out.

  3. Orbital Instability of the Peregrine Soliton

    NASA Astrophysics Data System (ADS)

    Van Gorder, Robert A.

    2014-05-01

    The Peregrine soliton is one possible model of a rogue wave. Importantly, this type of soliton corresponds nicely to rogue waves recently observed experimentally in a water tank [A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011)] and in optical fiber [B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010)]. Starting with a family of Peregrine solitons indexed by their spectral parameter, we analytically demonstrate a type of instability in the Peregrine soliton through a concise orbital stability analysis. This analysis is completely analytical, and to verify the approach we also discuss a numerical linear instability analysis. We give the growth/decay rate for these solitons as a function of the initial amplitude, which for each soliton shall depend on the spectral parameter.

  4. Influence of generalized external potentials on nonlinear tunneling of nonautonomous solitons: Soliton management

    NASA Astrophysics Data System (ADS)

    Mahalingam, A.; Mani Rajan, M. S.

    2015-10-01

    Soliton control and management using generalized external potentials in an inhomogeneous fiber to the design of high speed optical devices and ultrahigh capacity transmission systems are investigated based on solving the variable-coefficient generalized nonautonomous nonlinear Schrödinger equation with the help of symbolic computation. We construct Lax pair for GNLS equation by means of AKNS method and two soliton solutions are obtained by virtue of the Darboux transformation. With symbolic computation, we manipulate the control parameters and external potentials to investigate the propagation behaviors of nonautonomous solitons. Moreover, the main evolution features of obtained two soliton solutions are exposed by some interesting figures through computer simulation. Especially, we analyze the influence of external potentials such as periodic, exponential and parabolic potential on soliton propagation. Finally, soliton propagation under the absence (vanishing) of external potential is also discussed. Obtained results confirmed that external potentials has strong influence on the soliton dynamics. Our results might provide a new method to achieve the soliton pulse compression while they passing through the potential barrier or well under the influence of external potentials.

  5. SOLITONS: Dark photovoltaic spatial solitons in a planar waveguide obtained by proton implantation in lithium niobate

    NASA Astrophysics Data System (ADS)

    Kruglov, V. G.; Shandarov, V. M.; Tan, Ya; Chen, F.; Kip, D.

    2008-11-01

    A photovoltaic dark spatial soliton is generated in a planar waveguide produced by the implantation of protons into a copper-doped lithium niobate crystal. Stationary soliton regimes are achieved at powers 90 and 30 μW at wavelengths 633 and 532 nm, respectively.

  6. Coupled backward- and forward-propagating solitons in a composite right- and left-handed transmission line

    NASA Astrophysics Data System (ADS)

    Veldes, G. P.; Cuevas, J.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2013-07-01

    We study the coupling between backward- and forward-propagating wave modes, with the same group velocity, in a composite right- and left-handed nonlinear transmission line. Using an asymptotic multiscale expansion technique, we derive a system of two coupled nonlinear Schrödinger equations governing the evolution of the envelopes of these modes. We show that this system supports a variety of backward- and forward-propagating vector solitons of the bright-bright, bright-dark, and dark-bright type. Performing systematic numerical simulations in the framework of the original lattice that models the transmission line, we study the propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons exist, but differ on their robustness: Only bright-bright solitons propagate undistorted for long times, while the other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in very good agreement with the results of the simulations, at least up to times of the order of the solitons’ lifetimes.

  7. Radiating subdispersive fractional optical solitons.

    PubMed

    Fujioka, J; Espinosa, A; Rodríguez, R F; Malomed, B A

    2014-09-01

    It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy. PMID:25273201

  8. Radiating subdispersive fractional optical solitons

    NASA Astrophysics Data System (ADS)

    Fujioka, J.; Espinosa, A.; Rodríguez, R. F.; Malomed, B. A.

    2014-09-01

    It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy.

  9. Radiating subdispersive fractional optical solitons

    SciTech Connect

    Fujioka, J. Espinosa, A.; Rodríguez, R. F.; Malomed, B. A.

    2014-09-01

    It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy.

  10. Chladni Solitons and the Onset of the Snaking Instability for Dark Solitons in Confined Superfluids

    NASA Astrophysics Data System (ADS)

    Muñoz Mateo, A.; Brand, J.

    2014-12-01

    Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ , and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.

  11. Soliton-guided phase shifter and beam splitter

    SciTech Connect

    Steiglitz, Ken

    2010-03-15

    We propose, analyze, and study numerically a phase shifter for light wave packets trapped by Kerr solitons in a nonlinear medium. We also study numerically a previously proposed soliton-guided nonpolarizing beam splitter.

  12. Vector Video

    NASA Astrophysics Data System (ADS)

    Taylor, David P.

    2001-01-01

    Vector addition is an important skill for introductory physics students to master. For years, I have used a fun example to introduce vector addition in my introductory physics classes based on one with which my high school physics teacher piqued my interest many years ago.

  13. Optical spatial solitons: historical overview and recent advances

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Segev, Mordechai; Christodoulides, Demetrios N.

    2012-08-01

    Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research and discoveries in nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal domains, it is now fair to say that much soliton research has been mainly driven by the work on optical spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic systems are fundamentally one-dimensional entities, the high dimensionality associated with their spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media. As such, the discoveries of optical spatial solitons in different systems and associated new phenomena have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and discrete spatial solitons in optical periodic media not only led to advances in our understanding of fundamental processes in nonlinear optics and photonics, but also had a

  14. Optical spatial solitons: historical overview and recent advances.

    PubMed

    Chen, Zhigang; Segev, Mordechai; Christodoulides, Demetrios N

    2012-08-01

    Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research and discoveries in nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal domains, it is now fair to say that much soliton research has been mainly driven by the work on optical spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic systems are fundamentally one-dimensional entities, the high dimensionality associated with their spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media. As such, the discoveries of optical spatial solitons in different systems and associated new phenomena have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and discrete spatial solitons in optical periodic media not only led to advances in our understanding of fundamental processes in nonlinear optics and photonics, but also had a

  15. Effect of ion temperature on ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution

    SciTech Connect

    Roy, Kaushik; Saha, Taraknath; Chatterjee, Prasanta

    2012-10-15

    The effect of ion temperature on the existence of arbitrary amplitude ion-acoustic solitary waves is studied in a two component plasma in presence of a q-nonextensive velocity distributed electrons by using Sagdeev's pseudo potential technique. The range of relevent parameters for which solitons may exist is discussed. It is observed that both q, the nonextensive parameter and the ion temperature {sigma}, play significant roles in the formation and existence of solitons.

  16. Discrete quadratic solitons with competing second-harmonic components

    SciTech Connect

    Setzpfandt, Frank; Pertsch, Thomas; Sukhorukov, Andrey A.

    2011-11-15

    We describe families of discrete solitons in quadratic waveguide arrays supported by competing cascaded nonlinear interactions between one fundamental and two second-harmonic modes. We characterize the existence, stability, and excitation dynamics of these solitons and show that their features may resemble those of solitons in saturable media. Our results also demonstrate that a power threshold may appear for soliton formation, leading to a suppression of beam self-focusing which explains recent experimental observations.

  17. Magnetic solitons in a binary Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Qu, Chunlei; Pitaevskii, Lev; Stringari, Sandro

    2016-05-01

    Solitons, the fascinating topological excitations of nonlinear systems, have drawn a considerable research interest in many physical branches. Here I will talk about a magnetic soliton solution to a two-component repulsive Bose gas. The properties of the soliton, including the wave function, the energy and the effective mass, will be presented. I will also discuss the oscillation behaviour of the magnetic solitons in a harmonic trap.

  18. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  19. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  20. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  1. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  2. BOOK REVIEW: Solitons, Instantons, and Twistors Solitons, Instantons, and Twistors

    NASA Astrophysics Data System (ADS)

    Witt, Donald M.

    2011-04-01

    Solitons and instantons play important roles both in pure and applied mathematics as well as in theoretical physics where they are related to the topological structure of the vacuum. Twistors are a useful tool for solving nonlinear differential equations and are useful for the study of the antiself-dual Yang-Mills equations and the Einstein equations. Many books and more advanced monographs have been written on these topics. However, this new book by Maciej Dunajski is a complete first introduction to all of the topics in the title. Moreover, it covers them in a very unique way, through integrable systems. The approach taken in this book is that of mathematical physics à la field theory. The book starts by giving an introduction to integrable systems of ordinary and partial differential equations and proceeds from there. Gauge theories are not covered until chapter 6 which means the reader learning the material for the first time can build up confidence with simpler models of solitons and instantons before encountering them in gauge theories. The book also has an extremely clear introduction to twistor theory useful to both mathematicians and physicists. In particular, the twistor theory presentation may be of interest to string theorists wanting understand twistors. There are many useful connections to research into general relativity. Chapter 9 on gravitational instantons is great treatment useful to anyone doing research in classical or quantum gravity. There is also a nice discussion of Kaluza-Klein monopoles. The three appendices A-C cover the necessary background material of basic differential geometry, complex manifolds, and partial differential equations needed to fully understand the subject. The reader who has some level of expertise in any of the topics covered can jump right into that material without necessarily reading all of the earlier chapters because of the extremely clear writing style of the author. This makes the book an excellent reference on

  3. Regimes of operation states in passively mode-locked fiber soliton ring laser

    NASA Astrophysics Data System (ADS)

    Gong, Y. D.; Shum, P.; Tang, D. Y.; Lu, C.; Guo, X.; Paulose, V.; Man, W. S.; Tam, H. Y.

    2004-06-01

    The principal of passively mode-locked fiber soliton ring lasers is summarized, including its three output operation states: normal soliton, bound-solitons and noise-like pulse. The experimental results of the passively mode-locked fiber soliton ring lasers developed by us are given. Bound-solitons with different discrete separations and three-bound-solitons state have been observed in our fiber laser for the first time. The relationship among three operation states in fiber soliton laser is analyzed.

  4. Parametric amplification of soliton steering in optical lattices.

    PubMed

    Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A

    2004-05-15

    We report on the effect of parametric amplification of spatial soliton swinging in Kerr-type nonlinear media with longitudinal and transverse periodic modulation of the linear refractive index. The parameter areas are found where the soliton center motion is analogous to the motion of a parametrically driven pendulum. This effect has potential applications for controllable soliton steering. PMID:15181999

  5. Two-dimensional multipole solitons in nonlocal nonlinear media.

    PubMed

    Rotschild, Carmel; Segev, Mordechai; Xu, Zhiyong; Kartashov, Yaroslav V; Torner, Lluis; Cohen, Oren

    2006-11-15

    We present the experimental observation of scalar multipole solitons in highly nonlocal nonlinear media, including dipole, tripole, quadrupole, and necklace-type solitons, organized as arrays of out-of-phase bright spots. These complex solitons are metastable, but with a large parameters range where the instability is weak, permitting their experimental observation. PMID:17072407

  6. Adjusting the detection window to improve the soliton communication system

    NASA Astrophysics Data System (ADS)

    Chi, Sien; Kao, Chuan-Yuan; Dung, Jeng-Cherng; Wen, Senfar

    2000-12-01

    The improvements of the Q factors of 10-Gb/s soliton systems detected by adjusting detection window are studied. We have found that the optimal width of the detection window depends on the noise-induced timing jitter, noise-induced soliton energy fluctuation, amplifier noise, dispersive wave, and soliton pulse width.

  7. Soliton interaction and bound states in amplified-damped fiber

    NASA Astrophysics Data System (ADS)

    Afanasjev, V. V.; Akhmediev, N.

    1995-10-01

    It is shown that the soliton interaction can be significantly reduced in a system with ultimately stable soliton propagation. Moreover, under the action of strong filtering and nonlinear gain the soliton interaction can change sign from attraction to repulsion and vice versa. The formation of in-phase and out-of-phase bound states is also demonstrated.

  8. A new class of non-topological solitons

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Lynn, Bryan W.

    1989-01-01

    A class of non-topological solitons was constructed in renormalizable scalar field theories with nonlinear self-interactions. For large charge Q, the soliton mass increases linearly with Q, i.e., the soliton mass density is approximately independent of charge. Such objects could be naturally produced in a phase transition in the early universe or in the decay of superconducting cosmic strings.

  9. Relativistic and non-relativistic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  10. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  11. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  12. A harmonically mode-locked dark soliton and bright–dark soliton pair ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Lv, Zhiguo; Teng, Hao; Fang, Shaobo; Jia, Haotian; Wang, Lina; Wang, Junli; Wei, Zhiyi

    2016-06-01

    We report on an experimental study of a dark soliton and bright–dark soliton pair, harmonically mode-locked, all normal dispersion (ANDi) ytterbium fiber laser with a long cavity length. Mode-locked output up to the fourth harmonic with respect to the fundamental repetition rate has been realized. To the best of our knowledge, this the first such demonstration so far in ANDi mode-locked ytterbium fiber lasers with a birefringence filter as spectral modulation component. The experimentally recorded mode-locked spectrum shows that the generation of a dark soliton is always accompanied by strong continuous-wave emission. Furthermore, by changing the pump power, the fundamental bright–dark soliton pair mode-locked operation can be evolved into the state of the second order bright soliton coexisting with the fundamental dark soliton. Additionally, bright–dark soliton pairs, which are symmetric relative to the vertical coordinate, can be interconverted by rotating waveplates in a fixed maximum pump power condition. The generation of the dark pulse is probably due to the large normal dispersion introduced in the ring cavity except for the nonlinearity.

  13. Polychromatic solitons in a quadratic medium.

    PubMed

    Towers, I N; Malomed, B A

    2002-10-01

    We introduce the simplest model to describe parametric interactions in a quadratically nonlinear optical medium with the fundamental harmonic containing two components with (slightly) different carrier frequencies [which is a direct analog of wavelength-division multiplexed models, well known in media with cubic nonlinearity]. The model takes a closed form with three different second-harmonic components, and it is formulated in the spatial domain. We demonstrate that the model supports both polychromatic solitons (PCSs), with all the components present in them, and two types of mutually orthogonal simple solitons, both types being stable in a broad parametric region. An essential peculiarity of PCS is that its power is much smaller than that of a simple (usual) soliton (taken at the same values of control parameters), which may be an advantage for experimental generation of PCSs. Collisions between the orthogonal simple solitons are simulated in detail, leading to the conclusion that the collisions are strongly inelastic, converting the simple solitons into polychromatic ones, and generating one or two additional PCSs. A collision velocity at which the inelastic effects are strongest is identified, and it is demonstrated that the collision may be used as a basis to design a simple all-optical XOR logic gate. PMID:12443362

  14. Laboratory realization of KP-solitons

    NASA Astrophysics Data System (ADS)

    Yeh, Harry; Li, Wenwen

    2014-03-01

    Kodama and his colleagues presented a classification theorem for exact soliton solutions of the quasi-two-dimensional Kadomtsev-Petviashvili (KP) equation. The classification theorem is related to non-negative Grassmann manifold, Gr(N, M) that is parameterized by a unique chord diagram based on the derangement of the permutation group. The cord diagram can infer the asymptotic behavior of the solution with arbitrary number of line solitons. Here we present the realization of a variety of the KP soliton formations in the laboratory environment. The experiments are performed in a water tank designed and constructed for precision experiments for long waves. The tank is equipped with a directional-wave maker, capable of generating arbitrary-shaped multi-dimensional waves. Temporal and spatial variations of water-surface profiles are captured using the Laser Induces Fluorescent method - a nonintrusive optical measurement technique with sub-millimeter precision. The experiments yield accurate anatomy of the KP soliton formations and their evolution behaviors. Physical interpretations are discussed for a variety of KP soliton formations predicted by the classification theorem.

  15. Nonlinear waves and solitons in molecular clouds

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Fatuzzo, Marco

    1993-01-01

    We begin a study of nonlinear wave phenomena in molecular clouds. These clouds exhibit highly nonlinear structure that is often described in terms of 'clumps' and 'filaments' which are bouncing around, twisting, and colliding within the cloud. These clouds are important because they ultimately produce the initial conditions for the star formation process. Our motivation is to explore the possibility that solitons (i.e., spatially localized, single-hump wave entities which often exhibit remarkable stability) can live in these molecular clouds and produce their observed structure. In this paper we focus on the case of one spatial dimension, and we show that a rich variety of nonlinear waves can exist in molecular cloud fluid systems (where self-gravity is included). We show that in the absence of magnetic fields no true soliton solutions are allowed, although highly nonlinear waves (whose crests become widely spaced and thus soliton-like) do exist. For clouds with embedded magnetic fields, we derive a model equation which describes the behavior of wave phenomena; this model equation allows solutions which correspond to nonlinear waves, solitons, and topological solitons. We briefly consider the stability of these wave entities and discuss the possible role they play in molecular cloud dynamics.

  16. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  17. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  18. Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media

    PubMed Central

    Shen, Ming; Gao, Jinsong; Ge, Lijuan

    2015-01-01

    We investigate the spatially optical solitons shedding from Airy beams and anomalous interactions of Airy beams in nonlocal nonlinear media by means of direct numerical simulations. Numerical results show that nonlocality has profound effects on the propagation dynamics of the solitons shedding from the Airy beam. It is also shown that the strong nonlocality can support periodic intensity distribution of Airy beams with opposite bending directions. Nonlocality also provides a long-range attractive force between Airy beams, leading to the formation of stable bound states of both in-phase and out-of-phase breathing Airy solitons which always repel in local media. PMID:25900878

  19. Motion of soliton center of interactional solitons in nonlinear media with an exponential nonlocal response

    NASA Astrophysics Data System (ADS)

    Dai, Zhiping; Yang, Zhenjun; Ling, Xiaohui; Zhang, Shumin; Pang, Zhaoguang; Li, Jianxing

    2016-05-01

    The motion of two interactional solitons is investigated in nonlinear media with an exponential nonlocal response. A differential equation describing the motion trajectories of soliton center is proposed. Some numerical simulations are performed to illustrate the characteristics of the motion trajectories. The results show that the trajectories always oscillate periodically. However, if the two solitons are launched with a relative inclined angle which is larger than a critical value, they do not collide any more but diverge from each other. The critical angle is also given.

  20. Nonlinear dust acoustic waves in a charge varying dusty plasma with suprathermal electrons

    SciTech Connect

    Tribeche, Mouloud; Bacha, Mustapha

    2010-07-15

    Arbitrary amplitude dust acoustic waves in a dusty plasma with a high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from the Boltzmann distribution on the dust acoustic soliton are then considered. The dust charge variation makes the dust acoustic soliton more spiky. The dust grain surface collects less electrons as the latter evolves far away from their thermodynamic equilibrium. The dust accumulation caused by a balance of the electrostatic forces acting on the dust grains is more effective for lower values of the electron spectral index. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. Our results may explain the strong spiky waveforms observed in auroral plasmas.

  1. Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution

    SciTech Connect

    Younsi, Smain; Tribeche, Mouloud

    2008-07-15

    Large amplitude as well as weakly nonlinear dust acoustic waves in a mixed nonthermal high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from Boltzmann distribution on the large amplitude dust acoustic soliton are then considered. The dust charge variation leads to an additional enlargement of the dust acoustic soliton, which is more pronounced as the electrons evolve far away from Maxwell-Boltzmann distribution. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. The results complement and provide new insights into our previously published results on this problem [K. Aoutou, M. Tribeche, and T. H. Zerguini, Phys. Plasmas 15, 013702 (2008)].

  2. Gravitational solitons in Levi-Cività spacetime

    NASA Astrophysics Data System (ADS)

    Igata, Takahisa; Tomizawa, Shinya

    2015-06-01

    Applying the Pomeransky inverse scattering method to the four-dimensional vacuum Einstein equation and using the Levi-Cività solution for a seed, we construct a cylindrically symmetric single-soliton solution. Although the Levi-Cività spacetime generally includes singularities on its axis of symmetry, it is shown that for the obtained single-soliton solution, such singularities can be removed by choice of certain special parameters. This single-soliton solution describes propagation of nonlinear cylindrical gravitational shock wave pulses rather than solitonic waves. By analyzing wave amplitudes and time dependence of polarization angles, we provide a physical description of the single-soliton solution.

  3. Black and gray Helmholtz-Kerr soliton refraction

    SciTech Connect

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    2011-01-15

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.

  4. Dispersion and nonlinear management for femtosecond optical solitons

    NASA Astrophysics Data System (ADS)

    Porsezian, K.; Hasegawa, A.; Serkin, V. N.; Belyaeva, T. L.; Ganapathy, R.

    2007-02-01

    We consider the concept of femtosecond propagation for optical solitons in a dispersion management fiber and study the optimal amplification of optical solitons through dispersion wells and barriers and also for the dispersion tailored profile case. For the former, we observed periodic soliton trapping for the in-phase injection case when their respective velocities were equal and opposite with their amplitudes being unequal and no soliton trapping for the off-phase injection case when the two pulses are having a phase difference of π. For the latter, we observed an enormous amplification of the soliton pulses which is one of our main results in this Letter.

  5. 280  GHz dark soliton fiber laser.

    PubMed

    Song, Y F; Guo, J; Zhao, L M; Shen, D Y; Tang, D Y

    2014-06-15

    We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as ∼280  GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser. PMID:24978517

  6. Quasi-periodic transformations of nonlocal spatial solitons.

    PubMed

    Buccoliero, Daniel; Desyatnikov, Anton S

    2009-06-01

    We study quasi-periodic transformations between nonlocal spatial solitons of different symmetries triggered by modulational instability and resembling a self-induced mode converter. Transformation dynamics of solitons with zero angular momentum, e.g. the quadrupole-type soliton, reveal the equidistant spectrum of spatial field oscillations typical for the breather-type solutions. In contrast, the transformations of nonlocal solitons carrying orbital angular momentum, such as 2x3 soliton matrix, are accompanied by their spiralling and corresponding spectra of field oscillations show mixing of three characteristic spatial frequencies. PMID:19506609

  7. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  8. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  9. Two dimensional gap solitons in self-defocusing media with PT-symmetric superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Hongcheng; Christodoulides, D. N.

    2016-09-01

    A theory is presented to study the existence and stability properties of fundamental solitons, multi-peaked gap solitons and vortex solitons in self-defocusing media with PT-symmetric superlattice. In the first gap of the superlattice potential, fundamental, dipole, and in-phase quadruple solitons can exist stably within a wide parameter region, while in-phase two-peaked solitons, out-of-phase quadruple solitons and vortex solitons are always unstable. Compared with simple-lattice solitons in similar potentials, the gap solitons in superlattice have a wider stable range than those in simple-lattice.

  10. A spin dynamics approach to solitonics.

    PubMed

    Koumpouras, Konstantinos; Bergman, Anders; Eriksson, Olle; Yudin, Dmitry

    2016-01-01

    In magnetic materials a variety of non-collinear ground state configurations may emerge as a result of competition among exchange, anisotropy, and dipole-dipole interaction, yielding magnetic states far more complex than those of homogenous ferromagnets. Of particular interest in this study are particle-like configurations. These particle-like states, e.g., magnetic solitons, skyrmions, or domain walls, form a spatially localised clot of magnetic energy. In this paper we address topologically protected magnetic solitons and explore concepts that potentially might be relevant for logical operations and/or information storage in the rapidly advancing filed of solitonics (and skyrmionics). An ability to easily create, address, and manipulate such structures is among the prerequisite forming a basis of "-onics technology", and is investigated in detail here using numerical and analytical tools. PMID:27156906

  11. A spin dynamics approach to solitonics

    PubMed Central

    Koumpouras, Konstantinos; Bergman, Anders; Eriksson, Olle; Yudin, Dmitry

    2016-01-01

    In magnetic materials a variety of non-collinear ground state configurations may emerge as a result of competition among exchange, anisotropy, and dipole-dipole interaction, yielding magnetic states far more complex than those of homogenous ferromagnets. Of particular interest in this study are particle-like configurations. These particle-like states, e.g., magnetic solitons, skyrmions, or domain walls, form a spatially localised clot of magnetic energy. In this paper we address topologically protected magnetic solitons and explore concepts that potentially might be relevant for logical operations and/or information storage in the rapidly advancing filed of solitonics (and skyrmionics). An ability to easily create, address, and manipulate such structures is among the prerequisite forming a basis of “-onics technology”, and is investigated in detail here using numerical and analytical tools. PMID:27156906

  12. Solitonic axion condensates modeling dark matter halos

    SciTech Connect

    Castañeda Valle, David Mielke, Eckehard W.

    2013-09-15

    Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.

  13. Conserved momenta of a ferromagnetic soliton

    NASA Astrophysics Data System (ADS)

    Tchernyshyov, Oleg

    2015-12-01

    Linear and angular momenta of a soliton in a ferromagnet are commonly derived through the application of Noether's theorem. We show that these quantities exhibit unphysical behavior: they depend on the choice of a gauge potential in the spin Lagrangian and can be made arbitrary. To resolve this problem, we exploit a similarity between the dynamics of a ferromagnetic soliton and that of a charged particle in a magnetic field. For the latter, canonical momentum is also gauge-dependent and thus unphysical; the physical momentum is the generator of magnetic translations, a symmetry combining physical translations with gauge transformations. We use this analogy to unambiguously define conserved momenta for ferromagnetic solitons. General considerations are illustrated on simple models of a domain wall in a ferromagnetic chain and of a vortex in a thin film.

  14. Capillary solitons on a levitated medium.

    PubMed

    Perrard, S; Deike, L; Duchêne, C; Pham, C-T

    2015-07-01

    A water cylinder deposited on a heated channel levitates on its own generated vapor film owing to the Leidenfrost effect. This experimental setup permits the study of the one-dimensional propagation of surface waves in a free-to-move liquid system. We report the observation of gravity-capillary waves under a dramatic reduction of gravity (up to a factor 30), leading to capillary waves at the centimeter scale. The generated nonlinear structures propagate without deformation and undergo mutual collisions and reflections at the boundaries of the domain. They are identified as Korteweg-de Vries solitons with negative amplitude and subsonic velocity. The typical width and amplitude-dependent velocities are in excellent agreement with theoretical predictions based on a generalized Korteweg-de Vries equation adapted to any substrate geometry. When multiple solitons are present, they interact and form a soliton turbulencelike spectrum. PMID:26274114

  15. A spin dynamics approach to solitonics

    NASA Astrophysics Data System (ADS)

    Koumpouras, Konstantinos; Bergman, Anders; Eriksson, Olle; Yudin, Dmitry

    2016-05-01

    In magnetic materials a variety of non-collinear ground state configurations may emerge as a result of competition among exchange, anisotropy, and dipole-dipole interaction, yielding magnetic states far more complex than those of homogenous ferromagnets. Of particular interest in this study are particle-like configurations. These particle-like states, e.g., magnetic solitons, skyrmions, or domain walls, form a spatially localised clot of magnetic energy. In this paper we address topologically protected magnetic solitons and explore concepts that potentially might be relevant for logical operations and/or information storage in the rapidly advancing filed of solitonics (and skyrmionics). An ability to easily create, address, and manipulate such structures is among the prerequisite forming a basis of “-onics technology”, and is investigated in detail here using numerical and analytical tools.

  16. Bright solitonic matter-wave interferometer.

    PubMed

    McDonald, G D; Kuhn, C C N; Hardman, K S; Bennetts, S; Everitt, P J; Altin, P A; Debs, J E; Close, J D; Robins, N P

    2014-07-01

    We present the first realization of a solitonic atom interferometer. A Bose-Einstein condensate of 1×10(4) atoms of rubidium-85 is loaded into a horizontal optical waveguide. Through the use of a Feshbach resonance, the s-wave scattering length of the 85Rb atoms is tuned to a small negative value. This attractive atomic interaction then balances the inherent matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder interferometer is constructed by driving Bragg transitions with the use of an optical lattice colinear with the waveguide. Matter-wave propagation and interferometric fringe visibility are compared across a range of s-wave scattering values including repulsive, attractive and noninteracting values. The solitonic matter wave is found to significantly increase fringe visibility even compared with a noninteracting cloud. PMID:25032924

  17. Development of an accelerometer-based underwater acoustic intensity sensor

    NASA Astrophysics Data System (ADS)

    Kim, Kang; Gabrielson, Thomas B.; Lauchle, Gerald C.

    2004-12-01

    An underwater acoustic intensity sensor is described. This sensor derives acoustic intensity from simultaneous, co-located measurement of the acoustic pressure and one component of the acoustic particle acceleration vector. The sensor consists of a pressure transducer in the form of a hollow piezoceramic cylinder and a pair of miniature accelerometers mounted inside the cylinder. Since this sensor derives acoustic intensity from measurement of acoustic pressure and acoustic particle acceleration, it is called a p-a intensity probe. The sensor is ballasted to be nearly neutrally buoyant. It is desirable for the accelerometers to measure only the rigid body motion of the assembled probe and for the effective centers of the pressure sensor and accelerometer to be coincident. This is achieved by symmetric disposition of a pair of accelerometers inside the ceramic cylinder. The response of the intensity probe is determined by comparison with a reference hydrophone in a predominantly reactive acoustic field. .

  18. Soliton models for thick branes

    NASA Astrophysics Data System (ADS)

    Peyravi, Marzieh; Riazi, Nematollah; Lobo, Francisco S. N.

    2016-05-01

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ 4 and φ 6 scalar fields, which have broken Z2 symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w^2 term in the expansion of the potential for the resulting Schrödinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ ^4 brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ ^6 branes.

  19. Line Soliton Interactions of the Kadomtsev-Petviashvili Equation

    SciTech Connect

    Biondini, Gino

    2007-08-10

    We study soliton solutions of the Kadomtsev-Petviashvili II equation (-4u{sub t}+6uu{sub x}+3u{sub xxx}){sub x}+u{sub yy}=0 in terms of the amplitudes and directions of the interacting solitons. In particular, we classify elastic N-soliton solutions, namely, solutions for which the number, directions, and amplitudes of the N asymptotic line solitons as y{yields}{infinity} coincide with those of the N asymptotic line solitons as y{yields}-{infinity}. We also show that the (2N-1){exclamation_point}{exclamation_point} types of solutions are uniquely characterized in terms of the individual soliton parameters, and we calculate the soliton position shifts arising from the interactions.

  20. Snakelike nonautonomous solitons in a graded-index grating waveguide

    SciTech Connect

    Yang Zhanying; Zhao Lichen; Zhang Tao; Li Yuhang; Yue Ruihong

    2010-04-15

    We present a series of analytical solutions which describe nonautonomous solitons in a planar waveguide with an additional periodical structure, that is, a long-period grating. The explicit functions which describe the evolution of the width, peak, and trajectory of the soliton's wave center are presented exactly. The gain parameter has no effects on the motion of the soliton's wave center or its width; it affects just the evolution of the soliton's peak. The grating term affects the motion of the soliton's wave center without changing its shape. The evolution of the soliton under the propagation-distance-dependent gain term is investigated too. It is reported that an arbitrary additional structure can be added on the graded-index waveguide to control the motion of the soliton without affecting its shape.