Science.gov

Sample records for acoustic voice analysis

  1. Voice-over: perceptual and acoustic analysis of vocal features.

    PubMed

    Medrado, Reny; Ferreira, Leslie Piccolotto; Behlau, Mara

    2005-09-01

    Voice-overs are professional voice users who use their voices to market products in the electronic media. The purposes of this study were to (1) analyze voice-overed and non-overed productions of an advertising text in two groups consisting of 10 male professional voice-overs and 10 male non-voice-overs; and (2) determine specific acoustic features of voice-over productions in both groups. A naïve group of listeners were engaged for the perceptual analysis of the recorded advertising text. The voice-overed production samples from both groups were submitted for analysis of acoustic and temporal features. The following parameters were analyzed: (1) the total text length, (2) the length of the three emphatic pauses, (3) values of the mean, (4) minimum, (5) maximum fundamental frequency, and (6) the semitone range. The majority of voice-overs and non-voice-overs were correctly identified by the listeners in both productions. However voice-overs were more consistently correctly identified than non-voice-overs. The total text length was greater for voice-overs. The pause time distribution was statistically more homogeneous for the voice-overs. The acoustic analysis indicated that the voice-overs had lower values of mean, minimum, and maximum fundamental frequency and a greater range of semitones. The voice-overs carry the voice-overed production features to their non-voice-overed production. PMID:16102662

  2. Acoustic Analysis Before and After Voice Therapy for Laryngeal Pathology.

    PubMed

    Chhetri, S S; Gautam, R

    2015-01-01

    Background Voice problems caused by pathologies in vocal folds are well known. Some types of laryngeal pathologies have certain acoustic characteristics. Objective evaluation helps characterize the voice and voice problems providing supporting evidences, severity of disorders. It helps assess the response to the treatment and measures the outcomes. Objective The objective of the study is to determine the effectiveness of the voice therapy and quantify the results objectively by voice parameters. Method Study includes 61 patients who presented with different types of laryngeal pathologies. Acoustic analyses and voice assessment was done with Dr. Speech ver 4 (Tiger DRS Inc.). Acoustic parameters including fundamental frequency, jitters, shimmers, Harmonic to noise ratio (HNR), Normalized noise energy (NNE) were analyzed before and after voice therapy. Result Bilateral vocal nodules were the most common pathologies comprising 44.26%. All acoustic parameters showed a significant difference after the therapy (p<0.05) except for NNE. Dysphonia due to vocal fold polyp showed no improvement even after voice therapy (p>0.05). Conclusion Acoustic analysis provides an objective, recordable data regarding the voice parameters and its pathologies. Though, few pathology require alternative therapy rather than voice therapy, overall it has a good effect on glottic closure. As the voice therapy can improve the different indices of voice, it can be viewed as imperative part of treatment and to monitor progression. PMID:27423282

  3. Feigned Depression and Feigned Sleepiness: A Voice Acoustical Analysis

    ERIC Educational Resources Information Center

    Reilly, Nicole; Cannizzaro, Michael S.; Harel, Brian T.; Snyder, Peter J.

    2004-01-01

    We sought to profile the voice acoustical correlates of simulated, or feigned depression by neurologically and psychiatrically healthy control subjects. We also sought to identify the voice acoustical correlates of feigned sleepiness for these same subjects. Twenty-two participants were asked to speak freely about a cartoon, to count from 1 to 10,…

  4. Outcome analysis of benign vocal cord lesions by videostroboscopy, acoustic analysis and voice handicap index.

    PubMed

    Thomas, George; Mathews, Suma Susan; Chrysolyte, Shipra B; Rupa, V

    2007-12-01

    Benign vocal cord lesions affect vibratory vocal fold function resulting in significant dysphonia. A prospective study of 30 patients with benign vocal fold lesions was undertaken at our centre to compare the pre and post operative voice using videostroboscopy, voice analysis and voice handicap index. The vibratory pattern of the cord improved as evidenced by the stroboscopic parameters-symmetry, mucosal wave and glottic closure (p<0.05). Voice analysis showed a trend towards normalcy but the values obtained did not attain statistical significance. Voice handicap index showed a reduction in the total and the subscales scores. Videostroboscopy along with acoustic analysis and voice handicap index are useful tools in the objective and subjective assessment of the effectiveness of treatment in patients with benign vocal cord lesions. Their routine use in a voice clinic is recommended.

  5. Acoustic Analysis of Voice in Dysarthria following Stroke

    ERIC Educational Resources Information Center

    Wang, Yu-Tsai; Kent, Ray D.; Kent, Jane Finley; Duffy, Joseph R.; Thomas, Jack E.

    2009-01-01

    Although perceptual studies indicate the likelihood of voice disorders in persons with stroke, there have been few objective instrumental studies of voice dysfunction in dysarthria following stroke. This study reports automatic analysis of sustained vowel phonation for 61 speakers with stroke. The results show: (1) men with stroke and healthy…

  6. Acoustic Analysis of the Tremulous Voice: Assessing the Utility of the Correlation Dimension and Perturbation Parameters

    ERIC Educational Resources Information Center

    Shao, Jun; MacCallum, Julia K.; Zhang, Yu; Sprecher, Alicia; Jiang, Jack J.

    2010-01-01

    Acoustic analysis may provide a useful means to quantitatively characterize the tremulous voice. Signals were obtained from 25 subjects with diagnoses of either Parkinson's disease or vocal polyps exhibiting vocal tremor. These were compared to signals from 24 subjects with normal voices. Signals were analyzed via correlation dimension and several…

  7. [Application of acoustic analysis of the voice to diagnosis and treatment of functional dysphonia].

    PubMed

    Chernobel'skiĭ, S I

    2009-01-01

    Acoustic analysis of the voice was used to facilitate diagnosis and to objectively evaluate results of the treatment of psychogenic dysphonia (PD) in 20 women. The control group comprised 20 women showing no signs of laryngeal pathology. The following parameters were measure: jitter, shimmer, signal to noise ratio, and response in the voicing test. Other methods applied included laryngoscopy, videolaryngoscopy, and laryngostroboscopy. It was shown that hoarseness in patients with PD results from the disturbances of mechanisms controlling stability of phonation. This observation is confirmed by the results of the acoustic test. It is concluded that dysphonia confirmed in the acoustic test in the absence of organic changes in the larynx is caused by psychogenic factors. Acoustic analysis of the voice is indicated to objectively evaluate results of the treatment of psychogenic dysphonia.

  8. Effects of Low-pass Filtering on Acoustic Analysis of Voice

    PubMed Central

    MacCallum, Julia K.; Olszewski, Aleksandra E.; Zhang, Yu; Jiang, Jack J.

    2010-01-01

    Objective/Hypothesis Low-pass filtering is often applied to eliminate effects of environmental noise when preparing voice recordings for acoustic analysis. This study tested the effects of low-pass filter cutoff frequency on the results of acoustic voice analysis, with a particular interest in the effects of low cutoff frequencies on nonlinear dynamic parameters. Study Design A crossover randomized controlled trial was performed using voice recordings of sustained vowel phonation obtained from the Disordered Voice Database. Methods A second-order Butterworth filter was applied to the voices at cutoff frequencies ranging from 5000 to 40Hz. Percent jitter, percent shimmer, fundamental frequency (F0), signal-to-noise ratio (SNR), D2, and K2 were calculated for each signal. Results Traditional acoustic parameters were validly measured at cutoff frequencies as low as 300Hz. SNR and percent shimmer were improved by cutoff frequencies of 300Hz or higher; F0 and percent jitter were unaffected by filtering at these frequencies. D2 and K2 were measured stably for signals filtered at cutoff frequencies as low as 100Hz. Conclusion To ensure accuracy in acoustic voice analysis, setting the cutoff frequency of a low-pass filter at least one octave above the fundamental frequency (minimum of 300Hz) is recommended. Nonlinear dynamic measures of correlation dimension (D2) and second-order entropy (K2) proved more robust and maintained accuracy at lower frequencies. PMID:20346621

  9. [Comparison of the results of acoustic analysis of the voice recorded by different methods].

    PubMed

    Chernobel'skiĭ, S I

    2014-01-01

    This study was carried out with the purpose of estimating the possibility of the acoustic analysis of the voice recorded with the use of a handsfree telephone. The voices of 40 subjects were analysed with the help of the special software program. The recordings obtained with the help of the handsfree telephone and over a usual microphone were compared. The following parameters were determined: the frequency of the fundamental speech tone when reading a text and jitter, shimmer and the signal to noise (S/N) ratio when phonating the letter "a". Statistical analysis of the data obtained failed to reveal the significant difference between the values of the parameters of interest, such as the main the frequency, jitter, shimmer, and the S/N ratio, in both modes of recording (p>0.05).The results of the study confirm the possibility of acoustic analysis of the voice over the telephone.

  10. Acoustical analysis of trained and untrained singers onsite before and after prolonged voice use

    NASA Astrophysics Data System (ADS)

    Jackson, Christophe E.

    Controlled acoustic environments are important in voice research. Recording environment affects the quality of voice recordings. While sound booths and anechoic chambers are examples of controlled acoustic environments widely used in research, they are both costly and not portable. The long-term goal of this project is to compare the voice usage and efficiency of trained and untrained singers onsite immediately before and after vocal performance. The specific goal of this project is the further of development a Portable Sound Booth (PSB) and standardization of onsite voice recording procedures under controlled conditions. We hypothesized that the simple and controlled acoustic environment provided by the PSB would enable consistent reliable onsite voice recordings and the immediate differences as a consequence of voice usage were measurable. Research has suggested that it would be possible to conduct onsite voice recordings. Proof of concept research titled "Construction and Characterization of a Portable Sound Booth for Onsite Measurement" was conducted before initiating the full research effort. Preliminary findings revealed that: (1) it was possible to make high-quality voice recordings onsite, (2) the use of a Portable Sound Booth (PSB) required further acoustic characterization of its inherent acoustic properties, and (3) testable differences before and after performance were evident. The specific aims were to (1) develop and refine onsite objective voice measurements in the PSB and (2) evaluate use of the PSB to measure voice quality changes before and after voice usage.

  11. Acoustic analysis of the tremulous voice: assessing the utility of the correlation dimension and perturbation parameters

    PubMed Central

    MacCallum, Julia K.; Zhang, Yu; Jiang, Jack J.

    2009-01-01

    Acoustic analysis may provide a useful means to quantitatively characterize the tremulous voice. Signals were obtained from 25 subjects with diagnoses of either Parkinson's disease or vocal polyps exhibiting vocal tremor. These were compared to signals from 24 subjects with normal voices. Signals were analyzed via correlation dimension and several parameters from the Multi-Dimensional Voice Program (MDVP): percent jitter, percent shimmer, amplitude tremor intensity index (ATRI), frequency tremor intensity index (FTRI), amplitude tremor frequency (Fatr), and fundamental frequency tremor frequency (Fftr). No significant difference was found between the tremor and control groups for ATRI and Fatr. Percent jitter, percent shimmer, FTRI, Fftr, and correlation dimension values were found to be significantly higher in the tremor group than in the control group. We conclude that these parameters may have utility for the clinical quantification of tremor severity and treatment effects. PMID:19909966

  12. Acoustic Analysis of the Voiced-Voiceless Distinction in Dutch Tracheoesophageal Speech

    ERIC Educational Resources Information Center

    Jongmans, Petra; Wempe, Ton G.; van Tinteren, Harm; Hilgers, Frans J. M.; Pols, Louis C. W.; van As-Brooks, Corina J.

    2010-01-01

    Purpose: Confusions between voiced and voiceless plosives and voiced and voiceless fricatives are common in Dutch tracheoesophageal (TE) speech. This study investigates (a) which acoustic measures are found to convey a correct voicing contrast in TE speech and (b) whether different measures are found in TE speech than in normal laryngeal (NL)…

  13. The Belt voice: Acoustical measurements and esthetic correlates

    NASA Astrophysics Data System (ADS)

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  14. The Acoustic Voice Quality Index: Toward Improved Treatment Outcomes Assessment in Voice Disorders

    ERIC Educational Resources Information Center

    Maryn, Youri; De Bodt, Marc; Roy, Nelson

    2010-01-01

    Voice practitioners require an objective index of dysphonia severity as a means to reliably track treatment outcomes. To ensure ecological validity however, such a measure should survey both sustained vowels and continuous speech. In an earlier study, a multivariate acoustic model referred to as the Acoustic Voice Quality Index (AVQI), consisting…

  15. Associations between voice ergonomic risk factors and acoustic features of the voice.

    PubMed

    Rantala, Leena M; Hakala, Suvi; Holmqvist, Sofia; Sala, Eeva

    2015-10-01

    The associations between voice ergonomic risk factors in 40 classrooms and the acoustic parameters of 40 schoolteachers' voices were investigated. The risk factors assessed were connected to participants' working practices, working postures, and the indoor air quality in their workplaces. The teachers recorded spontaneous speech and sustained /a/ before and after a working day. Fundamental frequency, sound pressure level, the slope of the spectrum, perturbation, and harmonic-to-noise ratio were analysed. The results showed that the more the voice ergonomic risk factors were involved, the louder the teachers' voices became. Working practices correlated most often with the acoustic parameters; associations were found especially before a working day. The results suggest that a risky voice ergonomic environment affects voice production. PMID:24007529

  16. Associations between voice ergonomic risk factors and acoustic features of the voice.

    PubMed

    Rantala, Leena M; Hakala, Suvi; Holmqvist, Sofia; Sala, Eeva

    2015-10-01

    The associations between voice ergonomic risk factors in 40 classrooms and the acoustic parameters of 40 schoolteachers' voices were investigated. The risk factors assessed were connected to participants' working practices, working postures, and the indoor air quality in their workplaces. The teachers recorded spontaneous speech and sustained /a/ before and after a working day. Fundamental frequency, sound pressure level, the slope of the spectrum, perturbation, and harmonic-to-noise ratio were analysed. The results showed that the more the voice ergonomic risk factors were involved, the louder the teachers' voices became. Working practices correlated most often with the acoustic parameters; associations were found especially before a working day. The results suggest that a risky voice ergonomic environment affects voice production.

  17. [Presbiphonia. Age-related changes in the acoustic voice characteristics].

    PubMed

    Shilenkova, V V; Bestolkova, O S

    2013-01-01

    The objective of the present study was the comparative analysis of acoustic parameters of the voice in the subjects of different age groups. The phonetographic analysis involved 85 relatively healthy subjects (40 men and 45 women) divided into two age-matched groups. Group 1 included mature adults at the age of 43-59 years (n=43), group 2 was comprised of the aged and elderly persons (60-85 years, n=42). It was shown that the frequency of the primary tone decreases with age not only in women but also in men even though the decrease is less pronounced in the latter group. The process of ageing is accompanied by the narrowing of the frequency and dynamic range of the voice, the increase of Jitter, and the decrease in the strength of the voice. As a result, the dyshonia severity index (DSI) shifts toward negative values. These changes are more pronounced in women compared with men. Age-specific negative dynamics of maximum phonation time was not documented.

  18. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  19. Accuracy and variability of acoustic measures of voicing onset

    NASA Astrophysics Data System (ADS)

    Francis, Alexander L.; Ciocca, Valter; Ching Yu, Jojo Man

    2003-02-01

    Five commonly used methods for determining the onset of voicing of syllable-initial stop consonants were compared. The speech and glottal activity of 16 native speakers of Cantonese with normal voice quality were investigated during the production of consonant vowel (CV) syllables in Cantonese. Syllables consisted of the initial consonants /ph/, /th/, /kh/, /p/, /t/, and /k/ followed by the vowel /a/. All syllables had a high level tone, and were all real words in Cantonese. Measurements of voicing onset were made based on the onset of periodicity in the acoustic waveform, and on spectrographic measures of the onset of a voicing bar (f0), the onset of the first formant (F1), second formant (F2), and third formant (F3). These measurements were then compared against the onset of glottal opening as determined by electroglottography. Both accuracy and variability of each measure were calculated. Results suggest that the presence of aspiration in a syllable decreased the accuracy and increased the variability of spectrogram-based measurements, but did not strongly affect measurements made from the acoustic waveform. Overall, the acoustic waveform provided the most accurate estimate of voicing onset; measurements made from the amplitude waveform were also the least variable of the five measures. These results can be explained as a consequence of differences in spectral tilt of the voicing source in breathy versus modal phonation.

  20. Acoustic and phonatory characterization of the Fado voice.

    PubMed

    Mendes, Ana P; Rodrigues, Aira F; Guerreiro, David Michael

    2013-09-01

    Fado is a Portuguese musical genre, instrumentally accompanied by a Portuguese and an acoustic guitar. Fado singers' voice is perceptually characterized by a low pitch, hoarse, and strained voice. The present research study sketches the acoustic and phonatory profile of the Fado singers' voice. Fifteen Fado singers produced spoken and sung phonatory tasks. For the spoken voice measures, the maximum phonation time and s/z ratio of Fado singers were near the inefficient physiological threshold. Fundamental frequency was higher than that found in nonsingers and lower than that found in Western Classical singers. Jitter and shimmer mean values were higher compared with nonsingers. Harmonic-to-noise ratio (HNR) was similar to the mean values for nonsingers. For the sung voice, jitter was higher compared with Country, Musical Theater, Soul, Jazz, and Western Classical singers and lower than Pop singers. Shimmer mean values were lower than Country, Musical Theater, Pop, Soul, and Jazz singers and higher than Western Classical singers. HNR was similar for Western Classical singers. Maximum phonational frequency range of Fado singers indicated that male and female subjects had a lower range compared with Western Classical singers. Additionally, Fado singers produced vibrato, but singer's formant was rarely produced. These sung voice characteristics could be related with life habits, less/lack of singing training, or could be just a Fado voice characteristic. PMID:23591453

  1. The Aging Female Voice: Acoustic and Respiratory Data

    ERIC Educational Resources Information Center

    Awan, Shaheen N.

    2006-01-01

    The purpose of this study was to extend understanding of the effects of aging on the female voice by obtaining measures of both acoustic and respiratory-based performance in groups of 18-30, 40-49, 50-59, 60-69, and 70-79-year-old subjects. Acoustic measures of speaking fundamental frequency (SFF), pitch sigma, jitter, shimmer, and signal-to-noise…

  2. Integrated Software for Analysis and Synthesis of Voice Quality

    PubMed Central

    Kreiman, Jody; Antoñanzas-Barroso, Norma; Gerratt, Bruce R.

    2013-01-01

    Voice quality is an important perceptual cue in many disciplines, but knowledge of its nature is limited by a poor understanding of the relevant psychoacoustics. This article (aimed at researchers studying voice, speech, and vocal behavior) describes the UCLA voice synthesizer, software for voice analysis and synthesis designed to test hypotheses about the relationship between acoustic parameters and voice quality perception. The synthesizer provides experimenters with a useful tool for creating and modeling voice signals. In particular, it offers an integrated approach to voice analysis and synthesis, and allows easy, precise, spectral-domain manipulations of the harmonic voice source. The synthesizer operates in near real-time, using a parsimonious set of acoustic parameters for the voice source and vocal tract that a user can modify to accurately copy the quality of most normal and pathological voices. The software, user’s manual, and audio files may be downloaded from http://mc.psychonomic-journals.org/content/supplemental. Future updates may be downloaded from www.surgery.medsch.ucla.edu/glottalaffairs/. PMID:21139170

  3. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations

    PubMed Central

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.

    2015-01-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise. PMID:26723357

  4. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations.

    PubMed

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J

    2015-12-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise.

  5. The acoustic interaction of voices in ensemble: An inquiry into the phenomenon of voice matching and the perception of unaltered vocal process

    NASA Astrophysics Data System (ADS)

    Woodruff, Neal Wayne

    It was the purpose of this study to examine and quantify the acoustic interaction of voices in ensemble, with specific consideration to the differences between placement (how voices respond to adjacent voices) and spacing (how voices respond to differences in the space between adjacent voices). This study, further, investigated whether there was any discernible acoustic phenomenon that delineated or defined when a vocal match was made, or if a vocal match was merely a matter of conductor preference. The acoustic data, further, were to be compared with the blend preferences of choral directors and voice teachers, and the preferences of the individual singers used. Information was collected concerning the acoustic appearance of choral blend. A reductionist approach regarding the variables for the study permitted detailed, quantifiable data pertinent to these aims. Two groups of three male singers were formed. Both groups were recorded in each possible solo, duet, and trio formation. The results were acoustically analyzed, anonymously considered by choral directors and voice teachers, and considered by the individual singers; the combination of acoustic analysis, auditor preference, and singer preference revealed specific trends with regard to both blend and vocal function. For Group 1, the combination of placement and lateral spacing provided the best alliance of acoustic analysis and auditor/singer preference, at a rate of 54% for placement/lateral spacing and 46% for placement/close spacing. Attention to acoustic placement alone was shown to be superior to spacing alone, and the combination of acoustic placement and spacing was only slightly more successful than placement alone. For Group 2, acoustic placement alone provided the best alliance of acoustic analysis and auditor/singer preference, at a rate of 50% each for close and lateral spacing. Attention to acoustic placement alone was shown to be superior to spacing alone, and the combination of acoustic

  6. What makes a voice masculine: physiological and acoustical correlates of women's ratings of men's vocal masculinity.

    PubMed

    Cartei, Valentina; Bond, Rod; Reby, David

    2014-09-01

    Men's voices contain acoustic cues to body size and hormonal status, which have been found to affect women's ratings of speaker size, masculinity and attractiveness. However, the extent to which these voice parameters mediate the relationship between speakers' fitness-related features and listener's judgments of their masculinity has not yet been investigated. We audio-recorded 37 adult heterosexual males performing a range of speech tasks and asked 20 adult heterosexual female listeners to rate speakers' masculinity on the basis of their voices only. We then used a two-level (speaker within listener) path analysis to examine the relationships between the physiological (testosterone, height), acoustic (fundamental frequency or F0, and resonances or ΔF) and perceptual dimensions (listeners' ratings) of speakers' masculinity. Overall, results revealed that male speakers who were taller and had higher salivary testosterone levels also had lower F0 and ΔF, and were in turn rated as more masculine. The relationship between testosterone and perceived masculinity was essentially mediated by F0, while that of height and perceived masculinity was partially mediated by both F0 and ΔF. These observations confirm that women listeners attend to sexually dimorphic voice cues to assess the masculinity of unseen male speakers. In turn, variation in these voice features correlate with speakers' variation in stature and hormonal status, highlighting the interdependence of these physiological, acoustic and perceptual dimensions.

  7. Birth Control Pills and Nonprofessional Voice: Acoustic Analyses

    ERIC Educational Resources Information Center

    Amir, Ofer; Biron-Shental, Tal; Shabtai, Esther

    2006-01-01

    Purpose: Two studies are presented here. Study 1 was aimed at evaluating whether the voice characteristics of women who use birth control pills that contain different progestins differ from the voice characteristics of a control group. Study 2 presents a meta-analysis that combined the results of Study 1 with those from 3 recent studies that…

  8. Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology

    PubMed Central

    Mundt, James C.; Snyder, Peter J.; Cannizzaro, Michael S.; Chappie, Kara; Geralts, Dayna S.

    2011-01-01

    Efforts to develop more effective depression treatments are limited by assessment methods that rely on patient-reported or clinician judgments of symptom severity. Depression also affects speech. Research suggests several objective voice acoustic measures affected by depression can be obtained reliably over the telephone. Thirty-five physician-referred patients beginning treatment for depression were assessed weekly, using standard depression severity measures, during a six-week observational study. Speech samples were also obtained over the telephone each week using an IVR system to automate data collection. Several voice acoustic measures correlated significantly with depression severity. Patients responding to treatment had significantly greater pitch variability, paused less while speaking, and spoke faster than at baseline. Patients not responding to treatment did not show similar changes. Telephone standardization for obtaining voice data was identified as a critical factor influencing the reliability and quality of speech data. This study replicates and extends previous research with a larger sample of patients assessing clinical change associated with treatment. The feasibility of obtaining voice acoustic measures reflecting depression severity and response to treatment using computer-automated telephone data collection techniques is also established. Insight and guidance for future research needs are also identified. PMID:21253440

  9. The effect of cochlear implantation and post-operative rehabilitation on acoustic voice analysis in post-lingual hearing impaired adults.

    PubMed

    Hassan, Sabah M; Malki, Khalid H; Mesallam, Tamer A; Farahat, Mohamad; Bukhari, Manal; Murry, Thomas

    2011-10-01

    Post-lingual deaf adults can develop some vocal abnormalities similar to those developed in pre-lingual deaf individuals. The aim of this work was to study the effect of cochlear implantation followed by post-operative rehabilitation on voice acoustics in post-lingual hearing impaired adults with different durations of hearing loss. The study included 35 post-lingual hearing impaired adults who underwent cochlear implantation. Patients were divided into two groups according to the duration of their hearing loss. Each group was further divided into two subgroups according to whether they received auditory rehabilitation or not. Using the Multi-Dimensional Voice Program (MDVP) parameters, comparisons were made between each subgroup of patients and the normal MDVP Saudi database, and between subgroups of patients. Most of the patients in the two groups reported significant improvement in their MDVP results post-implantation. Further, significantly deviant MDVP parameters were reported in the group of patients with longer duration of hearing loss. Patients who received rehabilitation significantly improved more than those who did not. In conclusion, it appears that cochlear implantation improves the auditory control of voice production in post-lingual deaf adults. Also, it is obvious that cochlear implantation at an early stage of hearing loss gives better results on voice control, especially if augmented with auditory rehabilitation. PMID:21331786

  10. Voice stress analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Haddad, Darren M.; Ratley, Roy J.

    2001-02-01

    Voice Stress Analysis (VSA) systems are marketed as computer-based systems capable of measuring stress in a person's voice as an indicator of deception. They are advertised as being less expensive, easier to use, less invasive in use, and less constrained in their operation then polygraph technology. The National Institute of Justice have asked the Air Force Research Laboratory for assistance in evaluating voice stress analysis technology. Law enforcement officials have also been asking questions about this technology. If VSA technology proves to be effective, its value for military and law enforcement application is tremendous.

  11. An acoustical study of the voicing distinction in Dutch plosives

    NASA Astrophysics Data System (ADS)

    van Alphen, Petra M.

    2002-05-01

    Dutch has two voiced plosives, namely /b/ and /d/. They are said to have a negative VOT (i.e., are prevoiced), while the voiceless plosives /p/ and /t/ have a small, positive VOT. A production study was designed to investigate two questions. First, how does prevoicing vary in spoken Dutch? Second, what other cues in the acoustic signal might contribute to the perceptual distinction between voiced and voiceless plosives? Ten subjects were asked to produce a list of monosyllabic words which were chosen to study the following factors: place of articulation (labial versus alveolar), following phoneme (vowel versus consonant), lexical status of the carrier stimulus (word versus nonword), and lexical competitor environment of the carrier stimulus. Results will be reported on the relative contribution of various durational, spectral, and energy measures to the voiced-voiceless distinction. The data showed that 25% of all tokens were produced without prevoicing. The prevoicing of the voiced plosive was omitted more often when the plosive was followed by a consonant than when it was followed by a vowel. Although both spectral and energy cues signal the voicing distinction, and although prevoicing is often omitted, VOT appears to be the primary cue to this distinction.

  12. Acoustic sensors in the helmet detect voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-09-01

    The Army Research Laboratory has developed body-contacting acoustic sensors that detect diverse physiological sounds such as heartbeats and breaths, high quality speech, and activity. These sensors use an acoustic impedance-matching gel contained in a soft, compliant pad to enhance the body borne sounds, yet significantly repel airborne noises due to an acoustic impedance mismatch. The signals from such a sensor can be used as a microphone with embedded physiology, or a dedicated digital signal processor can process packetized data to separate physiological parameters from voice, and log parameter trends for performance surveillance. Acoustic sensors were placed inside soldier helmets to monitor voice, physiology, activity, and situational awareness clues such as bullet shockwaves from sniper activity and explosions. The sensors were also incorporated into firefighter breathing masks, neck and wrist straps, and other protective equipment. Heart rate, breath rate, blood pressure, voice and activity can be derived from these sensors (reports at www.arl.army.mil/acoustics). Having numerous sensors at various locations provides a means for array processing to reduce motion artifacts, calculate pulse transit time for passive blood pressure measurement, and the origin of blunt/penetrating traumas such as ballistic wounding. These types of sensors give us the ability to monitor soldiers and civilian emergency first-responders in demanding environments, and provide vital signs information to assess their health status and how that person is interacting with the environment and mission at hand. The Objective Force Warrior, Scorpion, Land Warrior, Warrior Medic, and other military and civilian programs can potentially benefit from these sensors.

  13. Comparison of Acoustic and Stroboscopic Findings and Voice Handicap Index between Allergic Rhinitis Patients and Controls

    PubMed Central

    Koç, Eltaf Ayça Özbal; Koç, Bülent; Erbek, Selim

    2014-01-01

    Background: In our experience Allergic Rhinitis (AR) patients suffer from voice problems more than health subjects. Aims: To investigate the acoustic analysis of voice, stroscopic findings of larynx and Voice Handicap Index scores in allergic rhinitis patients compared with healthy controls. Study Design: Case-control study. Methods: Thirty adult patients diagnosed with perennial allergic rhinitis were compared with 30 age- and sex-matched healthy controls without allergy. All assessments were performed in the speech physiology laboratory and the testing sequence was as follows: 1. Voice Handicap Index (VHI) questionnaire, 2. Laryngovideostroboscopy, 3. Acoustic analyses. Results: No difference was observed between the allergic rhinitis and control groups regarding mean Maximum Phonation Time (MPT) values, Fo values, and stroboscopic assessment (p>0.05). On the other hand, mean VHI score (p=0.001) and s/z ratio (p=0.011) were significantly higher in the allergic rhinitis group than in controls. Conclusion: Our findings suggest that the presence of allergies could have effects on laryngeal dysfunction and voice-related quality of life. PMID:25667789

  14. Physiological and acoustic characteristics of the male music theatre voice.

    PubMed

    Bourne, Tracy; Garnier, Maëva; Samson, Adeline

    2016-07-01

    Six male music theatre singers were recorded in three different voice qualities: legit and two types of belt ("chesty" and "twangy"), on two vowels ([e] and [ɔ]), at four increasing pitches in the upper limit of each singer's belt range (∼250-440 Hz). The audio signal, the electroglottographic (EGG) signal, and the vocal tract impedance were all measured simultaneously. Voice samples were analyzed and then evaluated perceptually by 16 expert listeners. The three qualities were produced with significant differences at the physiological, acoustical, and perceptual levels: Singers produced belt qualities with a higher EGG contact quotient (CQEGG) and greater contacting speed quotient (Qcs), greater sound pressure level (SPL), and energy above 1 kHz (alpha ratio), and with higher frequencies of the first two vocal tract resonances (fR1, fR2), especially in the upper pitch range when compared to legit. Singers produced the chesty belt quality with higher CQEGG, Qcs, and SPL values and lower alpha ratios over the whole belt range, and with higher fR1 at the higher pitch range when compared to twangy belt. Consistent tuning of fR1 to the second voice harmonic (2f0) was observed in all three qualities and for both vowels. Expert listeners tended to identify all qualities based on the same acoustical and physiological variations as those observed in the singers' intended qualities. PMID:27475183

  15. Acoustic cues for the recognition of self-voice and other-voice

    PubMed Central

    Xu, Mingdi; Homae, Fumitaka; Hashimoto, Ryu-ichiro; Hagiwara, Hiroko

    2013-01-01

    Self-recognition, being indispensable for successful social communication, has become a major focus in current social neuroscience. The physical aspects of the self are most typically manifested in the face and voice. Compared with the wealth of studies on self-face recognition, self-voice recognition (SVR) has not gained much attention. Converging evidence has suggested that the fundamental frequency (F0) and formant structures serve as the key acoustic cues for other-voice recognition (OVR). However, little is known about which, and how, acoustic cues are utilized for SVR as opposed to OVR. To address this question, we independently manipulated the F0 and formant information of recorded voices and investigated their contributions to SVR and OVR. Japanese participants were presented with recorded vocal stimuli and were asked to identify the speaker—either themselves or one of their peers. Six groups of 5 peers of the same sex participated in the study. Under conditions where the formant information was fully preserved and where only the frequencies lower than the third formant (F3) were retained, accuracies of SVR deteriorated significantly with the modulation of the F0, and the results were comparable for OVR. By contrast, under a condition where only the frequencies higher than F3 were retained, the accuracy of SVR was significantly higher than that of OVR throughout the range of F0 modulations, and the F0 scarcely affected the accuracies of SVR and OVR. Our results indicate that while both F0 and formant information are involved in SVR, as well as in OVR, the advantage of SVR is manifested only when major formant information for speech intelligibility is absent. These findings imply the robustness of self-voice representation, possibly by virtue of auditory familiarity and other factors such as its association with motor/articulatory representation. PMID:24133475

  16. Copying hierarchical leaders’ voices? Acoustic plasticity in female Japanese macaques

    PubMed Central

    Lemasson, Alban; Jubin, Ronan; Masataka, Nobuo; Arlet, Malgorzata

    2016-01-01

    It has been historically claimed that call production in nonhuman primates has been shaped by genetic factors, although, recently socially-guided plasticity and cortical control during vocal exchanges have been observed. In humans, context-dependent vocal convergence with relatives, friends or leaders’ voices can be found. Comparative studies with monkeys and apes presenting tolerant social organizations have demonstrated that affiliative bonding is the determining factor of convergence. We tested whether vocal copying could also exist in a primate species with a despotic social organization. We compared the degree of inter-individual similarity of contact calls in two groups of Japanese macaques as a function of age, dominance rank, maternal kin and affiliative bonds. We found a positive relationship between dyadic acoustic similarity and female rank differences. Since most call exchanges were initiated by dominant females and since this species is known for the ability of responders to acoustically match initiators’ calls, we conclude that high social status may motivate vocal convergence in this despotic society. Accordingly, intra-individual comparisons showed that isolated calls were more stereotyped than exchanged calls, and that dominants had more stereotyped voices than subordinates. This opens new lines of research with regard to social motivation guiding acoustic plasticity in primates. PMID:26880673

  17. Influence of data acquisition environment on accuracy of acoustic voice quality measurements.

    PubMed

    Deliyski, Dimitar D; Evans, Maegan K; Shaw, Heather S

    2005-06-01

    Accuracy of acoustic voice analysis is influenced by the quality of recording. Lately, articles have suggested that soundcards perform equivalently to specialized professional-grade data acquisition (DA) systems. The purpose of this study was to investigate the influence of DA environment (DA system and microphone) on acoustic voice quality measurement (VQM) while balancing for gender, age, intersubject and intrasubject variability, and analysis software. More specifically, the relative performance of different hardware environments and the relationship between their technical characteristics and VQM performance was investigated. The discretization error and the effective dynamic range of the different DA environments were measured. We used 3 software systems to record and measure separately 2000 acoustic samples of sustained phonation for fundamental frequency, jitter, and shimmer. Analyses of variance (ANOVA) were performed with these parameters as the dependent variables. The results of the study suggested that professional-grade DA hardware is strongly recommended to provide accurate and valid voice assessment. The fundamental frequency measurement differences across DA environments were highly correlated to the discretization error (r=1.00), whereas jitter and shimmer were highly correlated to the effective dynamic range of the DA environments (r=-0.68 and r=-0.86, respectively).

  18. Processing of Voiced and Unvoiced Acoustic Stimuli in Musicians

    PubMed Central

    Ott, Cyrill Guy Martin; Langer, Nicolas; Oechslin, Mathias S.; Meyer, Martin; Jäncke, Lutz

    2011-01-01

    Past research has shown that musical training induces changes in the processing of supra-segmental aspects of speech, such as pitch and prosody. The aim of the present study was to determine whether musical expertise also leads to an altered neurophysiological processing of sub-segmental information available in the speech signal, in particular the voice-onset-time. Using high-density EEG-recordings we analyzed the neurophysiological responses to voiced and unvoiced consonant-vowel-syllables and noise-analogs in 26 German speaking adult musicians and non-musicians. From the EEG the N1 amplitude of the event-related potential and two microstates from the topographical EEG analysis (one around the N1 amplitude and one immediately preceding the N1 microstate) were calculated to the different stimuli. Similar to earlier studies the N1 amplitude was different to voiced and unvoiced stimuli in non-musicians with larger amplitudes to voiced stimuli. The more refined microstate analysis revealed that the microstate within the N1 time window was shorter to unvoiced stimuli in non-musicians. For musicians there was no difference for the N1 amplitudes and the corresponding microstates between voiced and unvoiced stimuli. In addition, there was a longer very early microstate preceding the microstate at the N1 time window to non-speech stimuli only in musicians. Taken together, our findings suggest that musicians process unvoiced stimuli (irrespective whether these stimuli are speech or non-speech stimuli) differently than controls. We propose that musicians utilize the same network to analyze unvoiced stimuli as for the analysis of voiced stimuli. As a further explanation it is also possible that musicians devote more neurophysiological resources into the analysis of unvoiced segments. PMID:21922011

  19. Voice stress analysis

    NASA Technical Reports Server (NTRS)

    Brenner, Malcolm; Shipp, Thomas

    1988-01-01

    In a study of the validity of eight candidate voice measures (fundamental frequency, amplitude, speech rate, frequency jitter, amplitude shimmer, Psychological Stress Evaluator scores, energy distribution, and the derived measure of the above measures) for determining psychological stress, 17 males age 21 to 35 were subjected to a tracking task on a microcomputer CRT while parameters of vocal production as well as heart rate were measured. Findings confirm those of earlier studies that increases in fundamental frequency, amplitude, and speech rate are found in speakers involved in extreme levels of stress. In addition, it was found that the same changes appear to occur in a regular fashion within a more subtle level of stress that may be characteristic, for example, of routine flying situations. None of the individual speech measures performed as robustly as did heart rate.

  20. Office-based system for voice analysis.

    PubMed

    Berke, G S; Hanson, D G; Trapp, T K; Moore, D M; Gerratt, B R; Natividad, M

    1989-01-01

    There has been recent growing interest in the analysis of various electronically recorded signals as potential tools for objective assessment of vocal dysfunction. In the past, analysis of such signals required an expensive multitrack FM recorder, mainframe computer system, customized software, and significant time commitment. This report describes an adaptation of commercially available components that allow digital recording of multiple electronic signals, storage of data, and subsequent signal analysis using an inexpensive personal microcomputer system. Commercially available software for manipulation and examination signals is discussed as adapted for examination of glottographic and acoustic signals. The relatively inexpensive availability of similar computer systems will, hopefully, encourage assessment of the clinical applications of objective techniques of voice quality.

  1. Analysis of factors influencing voice quality and therapeutic approaches in vocal polyp patients.

    PubMed

    Cho, Kwang Jae; Nam, Inn Chul; Hwang, Yeon Shin; Shim, Mi Ran; Park, Jun Ook; Cho, Jung Hae; Joo, Young Hoon; Kim, Min Sik; Sun, Dong Il

    2011-09-01

    The task of the present study was to investigate the relationship between parameters and factors predictive of voice quality and to suggest treatment guidelines for patients suffering from vocal polyps. In total, 158 patients diagnosed with vocal polyps and who received voice therapy were enrolled. Clinicomorphological factors such as size, location, color, and type of the polyp were evaluated. Perceptive and acoustic voice evaluation was conducted and the relationship of these voice parameters with clinicomorphological factors was analyzed. Additionally, factors favorable for voice therapy were investigated. GRBAS scale grade was closely related to acoustic parameters, such as jitter and shimmer. Univariate analysis showed the size of the polyp, the color of the vocal fold, a history of voice abuse, associated muscle tension dysphonia (MTD), and opposing reactive scar affected voice quality. In multivariate analysis, only the size of the polyp was associated with voice quality. The patients in whom the voice quality improved with voice therapy initially had smaller polyps and whitish-colored vocal folds. Results of the present study indicate that although the most influential factor on voice quality in vocal polyp patients was the size, several other factors should be considered in evaluating and treating vocal polyps. The size of the polyp and the color of the vocal fold are indicative of success or failure in voice therapy.

  2. The source-filter theory of whistle-like calls in marmosets: Acoustic analysis and simulation of helium-modulated voices.

    PubMed

    Koda, Hiroki; Tokuda, Isao T; Wakita, Masumi; Ito, Tsuyoshi; Nishimura, Takeshi

    2015-06-01

    Whistle-like high-pitched "phee" calls are often used as long-distance vocal advertisements by small-bodied marmosets and tamarins in the dense forests of South America. While the source-filter theory proposes that vibration of the vocal fold is modified independently from the resonance of the supralaryngeal vocal tract (SVT) in human speech, a source-filter coupling that constrains the vibration frequency to SVT resonance effectively produces loud tonal sounds in some musical instruments. Here, a combined approach of acoustic analyses and simulation with helium-modulated voices was used to show that phee calls are produced principally with the same mechanism as in human speech. The animal keeps the fundamental frequency (f0) close to the first formant (F1) of the SVT, to amplify f0. Although f0 and F1 are primarily independent, the degree of their tuning can be strengthened further by a flexible source-filter interaction, the variable strength of which depends upon the cross-sectional area of the laryngeal cavity. The results highlight the evolutionary antiquity and universality of the source-filter model in primates, but the study can also explore the diversification of vocal physiology, including source-filter interaction and its anatomical basis in non-human primates.

  3. Remote Capture of Human Voice Acoustical Data by Telephone: A Methods Study

    ERIC Educational Resources Information Center

    Cannizzaro, Michael S.; Reilly, Nicole; Mundt, James C.; Snyder, Peter J.

    2005-01-01

    In this pilot study we sought to determine the reliability and validity of collecting speech and voice acoustical data via telephone transmission for possible future use in large clinical trials. Simultaneous recordings of each participant's speech and voice were made at the point of participation, the local recording (LR), and over a telephone…

  4. Perceptual and acoustic study of professionally trained versus untrained voices.

    PubMed

    Brown, W S; Rothman, H B; Sapienza, C M

    2000-09-01

    Acoustic and perceptual analyses were completed to determine the effect of vocal training on professional singers when speaking and singing. Twenty professional singers and 20 nonsingers, acting as the control, were recorded while sustaining a vowel, reading a modified Rainbow Passage, and singing "America the Beautiful." Acoustic measures included fundamental frequency, duration, percent jitter, percent shimmer, noise-to-harmonic ratio, and determination of the presence or absence of both vibrato and the singer's formant. Results indicated that, whereas certain acoustic parameters differentiated singers from nonsingers within sex, no consistently significant trends were found across males and females for either speaking or singing. The most consistent differences were the presence or absence of the singer's vibrato and formant in the singers versus the nonsingers, respectively. Perceptual analysis indicated that singers could be correctly identified with greater frequency than by chance alone from their singing, but not their speaking utterances. PMID:11021498

  5. Age- and sex-related variations in vocal-tract morphology and voice acoustics during adolescence.

    PubMed

    Markova, Diana; Richer, Louis; Pangelinan, Melissa; Schwartz, Deborah H; Leonard, Gabriel; Perron, Michel; Pike, G Bruce; Veillette, Suzanne; Chakravarty, M Mallar; Pausova, Zdenka; Paus, Tomáš

    2016-05-01

    Distinct differences in the human voice emerge during adolescence, with males producing deeper and more resonant voices than females by the end of sexual maturation. Using magnetic resonance images of heads and voice recordings obtained in 532 typically developing adolescents, we investigate what might be the drivers of this change in voice, and the subjective judgment of the voice "maleness" and "femaleness". We show clear sex differences in the morphology of voice-related structures during adolescence, with males displaying strong associations between age (and puberty) and both vocal-fold and vocal-tract length; this was not the case in female adolescents. At the same time, males (compared with females) display stronger associations between age (and puberty) with both fundamental frequency and formant position. In males, vocal morphology was a mediator in the relationship between bioavailable testosterone and acoustic indices. Subjective judgment of the voice sex could be predicted by the morphological and acoustic parameters in males only: the length of vocal folds and its acoustic counterpart, fundamental frequency, is a larger predictor of subjective "maleness" of a voice than vocal-tract length and formant position.

  6. Age- and sex-related variations in vocal-tract morphology and voice acoustics during adolescence.

    PubMed

    Markova, Diana; Richer, Louis; Pangelinan, Melissa; Schwartz, Deborah H; Leonard, Gabriel; Perron, Michel; Pike, G Bruce; Veillette, Suzanne; Chakravarty, M Mallar; Pausova, Zdenka; Paus, Tomáš

    2016-05-01

    Distinct differences in the human voice emerge during adolescence, with males producing deeper and more resonant voices than females by the end of sexual maturation. Using magnetic resonance images of heads and voice recordings obtained in 532 typically developing adolescents, we investigate what might be the drivers of this change in voice, and the subjective judgment of the voice "maleness" and "femaleness". We show clear sex differences in the morphology of voice-related structures during adolescence, with males displaying strong associations between age (and puberty) and both vocal-fold and vocal-tract length; this was not the case in female adolescents. At the same time, males (compared with females) display stronger associations between age (and puberty) with both fundamental frequency and formant position. In males, vocal morphology was a mediator in the relationship between bioavailable testosterone and acoustic indices. Subjective judgment of the voice sex could be predicted by the morphological and acoustic parameters in males only: the length of vocal folds and its acoustic counterpart, fundamental frequency, is a larger predictor of subjective "maleness" of a voice than vocal-tract length and formant position. PMID:27062936

  7. Flow-Structure-Acoustic Interaction Computational Modeling of Voice Production inside an Entire Airway

    NASA Astrophysics Data System (ADS)

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2015-11-01

    Human voice quality is directly determined by the interplay of dynamic behavior of glottal flow, vibratory characteristics of VFs and acoustic characteristics of upper airway. These multiphysics constituents are tightly coupled together and precisely coordinate to produce understandable sound. Despite many years' research effort, the direct relationships among the detailed flow features, VF vibration and aeroacoustics still remains elusive. This study utilizes a first-principle based, flow-structure-acoustics interaction computational modeling approach to study the process of voice production inside an entire human airway. In the current approach, a sharp interface immersed boundary method based incompressible flow solver is utilized to model the glottal flow; A finite element based solid mechanics solver is utilized to model the vocal vibration; A high-order immersed boundary method based acoustics solver is utilized to directly compute sound. These three solvers are fully coupled to mimic the complex flow-structure-acoustic interaction during voice production. The geometry of airway is reconstructed based on the in-vivo MRI measurement reported by Story et al. (1995) and a three-layer continuum based vocal fold model is taken from Titze and Talkin (1979). Results from these simulations will be presented and further analyzed to get new insight into the complex flow-structure-acoustic interaction during voice production. This study is expected to improve the understanding of fundamental physical mechanism of voice production and to help to build direct cause-effect relationship between biomechanics and voice sound.

  8. Outcomes Measurement in Voice Disorders: Application of an Acoustic Index of Dysphonia Severity

    ERIC Educational Resources Information Center

    Awan, Shaheen N.; Roy, Nelson

    2009-01-01

    Purpose: The purpose of this experiment was to assess the ability of an acoustic model composed of both time-based and spectral-based measures to track change following voice disorder treatment and to serve as a possible treatment outcomes measure. Method: A weighted, four-factor acoustic algorithm consisting of shimmer, pitch sigma, the ratio of…

  9. Acoustic interpretation of the voice range profile (phonetogram).

    PubMed

    Titze, I R

    1992-02-01

    The voice range profile (VRP) is a display of vocal intensity range versus fundamental frequency (F0). Past measurements have shown that the intensity range is reduced at the extremes of the F0 range, that there is a gradual upward tilt of the high- and low-intensity boundaries with increasing F0, and that a ripple exists at the boundaries. The intensity ripple, which results from tuning of source harmonics to the formants, is more noticeable at the upper boundary than the lower boundary because higher harmonics are not energized as effectively near phonation threshold as at maximum lung pressure. The gradual tilt of the intensity boundaries results from more effective transmission and radiation of acoustic energy at higher fundamental frequencies. This depends on the spectral distribution of the source power, however, At low F0, a smaller spectral slope (more harmonic energy) produces greater intensity. At high F0, on the other hand, a shift of energy toward the fundamental results in greater intensity. This dependence of intensity on spectral distribution of source power seems to explain the reduced intensity range at higher F0. An unrelated problem of reduced intensity range at low F0 stems from the inherent difficulty of keeping F0 from rising when subglottal pressure is increased.

  10. Resonant voice: spectral and nasendoscopic analysis.

    PubMed

    Smith, Cara G; Finnegan, Eileen M; Karnell, Michael P

    2005-12-01

    Although resonant voice therapy is a widely used therapeutic approach, little is known about what characterizes resonant voice and how it is physiologically produced. The purpose of this study was to test the hypothesis that resonant voice is produced by narrowing the laryngeal vestibule and is characterized by first formant tuning and more ample harmonics. Videonasendoscopic recordings of the laryngeal vestibule were made during nonresonant and resonant productions of /i/ in six subjects. Spectrums of the two voice types were also obtained. Spectral analysis showed that first formant tuning was exhibited during resonant voice productions and that the degree of harmonic enhancement in the range of 2.0 to 3.5 kHz was related to voice quality: nonresonant voice had the least amount of energy in this range, whereas a resonant-relaxed voice had more energy, and a resonant-bright voice had the greatest amount of energy. Visual-perceptual judgments of the videoendoscopic data indicated that laryngeal vestibule constriction was not consistently associated with resonant voice production. PMID:16301106

  11. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  12. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  13. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  14. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  15. Real time analysis of voiced sounds

    NASA Technical Reports Server (NTRS)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  16. Voices of athletes reveal only modest acoustic correlates of stature

    NASA Astrophysics Data System (ADS)

    Owren, Michael J.; Anderson, John D.

    2005-04-01

    Recent studies of acoustic cues to body-size in nonhuman primate and human vocalizations have produced results varying from very strong relationships between formant frequencies and length/weight in rhesus monkeys to weak correlations between formants and stature in humans. The current work attempted to address these discrepancies by compiling a database of naturally occurring speech with a large number of vocalizers of maximally varying size. To that end, fundamental frequency (F0) and formant frequencies were measured in both running speech and filled pauses (i.e., ``ah'' and ``um'') produced by male athletes during televised same-day interviews. Multiple-regression analysis of data from 100 male athletes showed that these acoustic measures accounted for at most 17% of variance in height over a 37-cm range. Analyses of filled speech pauses produced by a subset of 48 athletes could account for up to 36%. These outcomes fall within the range of previously reported outcomes, indicating that while speech acoustics are correlated with body-size in human adult males, the cues provided are quite modest.

  17. Changes in Acoustic Characteristics of the Voice across the Life Span: Measures from Individuals 4-93 Years of Age

    ERIC Educational Resources Information Center

    Stathopoulos, Elaine T.; Huber, Jessica E.; Sussman, Joan E.

    2011-01-01

    Purpose: The purpose of the present investigation was to examine acoustic voice changes across the life span. Previous voice production investigations used small numbers of participants, had limited age ranges, and produced contradictory results. Method: Voice recordings were made from 192 male and female participants 4-93 years of age. Acoustic…

  18. School cafeteria noise-The impact of room acoustics and speech intelligibility on children's voice levels

    NASA Astrophysics Data System (ADS)

    Bridger, Joseph F.

    2002-05-01

    The impact of room acoustics and speech intelligibility conditions of different school cafeterias on the voice levels of children is examined. Methods of evaluating cafeteria designs and predicting noise levels are discussed. Children are shown to modify their voice levels with changes in speech intelligibility like adults. Reverberation and signal to noise ratio are the important acoustical factors affecting speech intelligibility. Children have much more difficulty than adults in conditions where noise and reverberation are present. To evaluate the relationship of voice level and speech intelligibility, a database of real sound levels and room acoustics data was generated from measurements and data recorded during visits to a variety of existing cafeterias under different occupancy conditions. The effects of speech intelligibility and room acoustics on childrens voice levels are demonstrated. A new method is presented for predicting speech intelligibility conditions and resulting noise levels for the design of new cafeterias and renovation of existing facilities. Measurements are provided for an existing school cafeteria before and after new room acoustics treatments were added. This will be helpful for acousticians, architects, school systems, regulatory agencies, and Parent Teacher Associations to create less noisy cafeteria environments.

  19. Perception of recorded singing voice quality and expertise: cognitive linguistics and acoustic approaches.

    PubMed

    Morange, Séverine; Dubois, Danièle; Fontaine, Jean-Marc

    2010-07-01

    The objective of the present pluridisciplinary study was to contribute to determine how a diversity of audience differently appreciates several versions resulting from different "restoration" treatments of one single original lyrical recording. We present here a joint analysis coupling psychological and linguistic analyses with acoustic descriptions on a unique research object: a Caruso's piece of song diversely remastered on commercial CDs. Thirty-two subjects were selected contrasted on age ("younger than 30 years" and "older than 60 years") related with their different experience of earlier technical recording devices (rendering through devices such as radio, 78rpm records, CD...) and on expertise concerning musical acoustics (acousticians and/or musicians vs ordinary music lovers). Eleven excerpts of reediting of an opera record interpreted by Caruso were selected from what could found on the market. The listening protocol involved a free categorization task and the selection of excerpts on preference judgments. Each task involved subjects' free commentaries about their choices as a joint output from psychological processing. A cluster analysis scaffold by a psycholinguistic processing of the verbal comments of the categories allowed to identify both commonalities and differences in groupings excerpts by the different groups of the subjects, along a diversity of criteria, varying according to age and expertise. Each excerpt can therefore be characterized both according to psychological and to acoustic criteria. This study has enabled us to develop the idea that a lyric voice is a multifaced object (cultural, esthetic, technical, physical), acoustic parameters being linked to the various sensory experiences and expertises of appraisers. Such pluridisciplinary research and the coupling of the correlated multiplicity of methodologies we developed acknowledge for a better understanding of listening practices and music-lover assessments here concerned with a

  20. Perception of recorded singing voice quality and expertise: cognitive linguistics and acoustic approaches.

    PubMed

    Morange, Séverine; Dubois, Danièle; Fontaine, Jean-Marc

    2010-07-01

    The objective of the present pluridisciplinary study was to contribute to determine how a diversity of audience differently appreciates several versions resulting from different "restoration" treatments of one single original lyrical recording. We present here a joint analysis coupling psychological and linguistic analyses with acoustic descriptions on a unique research object: a Caruso's piece of song diversely remastered on commercial CDs. Thirty-two subjects were selected contrasted on age ("younger than 30 years" and "older than 60 years") related with their different experience of earlier technical recording devices (rendering through devices such as radio, 78rpm records, CD...) and on expertise concerning musical acoustics (acousticians and/or musicians vs ordinary music lovers). Eleven excerpts of reediting of an opera record interpreted by Caruso were selected from what could found on the market. The listening protocol involved a free categorization task and the selection of excerpts on preference judgments. Each task involved subjects' free commentaries about their choices as a joint output from psychological processing. A cluster analysis scaffold by a psycholinguistic processing of the verbal comments of the categories allowed to identify both commonalities and differences in groupings excerpts by the different groups of the subjects, along a diversity of criteria, varying according to age and expertise. Each excerpt can therefore be characterized both according to psychological and to acoustic criteria. This study has enabled us to develop the idea that a lyric voice is a multifaced object (cultural, esthetic, technical, physical), acoustic parameters being linked to the various sensory experiences and expertises of appraisers. Such pluridisciplinary research and the coupling of the correlated multiplicity of methodologies we developed acknowledge for a better understanding of listening practices and music-lover assessments here concerned with a

  1. Effects of vocal training on the acoustic parameters of the singing voice.

    PubMed

    Mendes, Ana P; Rothman, Howard B; Sapienza, Christine; Brown, W S

    2003-12-01

    Vocal training (VT) has, in part, been associated with the distinctions in the physiological, acoustic, and perceptual parameters found in singers' voices versus the voices of nonsingers. This study provides information on the changes in the singing voice as a function of VT over time. Fourteen college voice majors (12 females and 2 males; age range, 17-20 years) were recorded while singing, once a semester, for four consecutive semesters. Acoustic measures included fundamental frequency (F0) and sound pressure level (SPL) of the 10% and 90% levels of the maximum phonational frequency range (MPFR), vibrato pulses per second, vibrato amplitude variation, and the presence of the singer's formant. Results indicated that VT had a significant effect on the MPFR. F0 and SPL of the 90% level of the MPFR and the 90-10% range increased significantly as VT progressed. However, no vibrato or singers' formant differences were detected as a function of training. This longitudinal study not only validates previous cross-sectional research, ie, that VT has a significant effect on the singing voice, but also it demonstrates that these effects can be acoustically detected by the fourth semester of college vocal training. PMID:14740934

  2. Fundamental frequency and voice perturbation measures in smokers and non-smokers: An acoustic and perceptual study

    NASA Astrophysics Data System (ADS)

    Freeman, Allison

    This research examined the fundamental frequency and perturbation (jitter % and shimmer %) measures in young adult (20-30 year-old) and middle-aged adult (40-55 year-old) smokers and non-smokers; there were 36 smokers and 36 non-smokers. Acoustic analysis was carried out utilizing one task: production of sustained /a/. These voice samples were analyzed utilizing Multi-Dimensional Voice Program (MDVP) software, which provided values for fundamental frequency, jitter %, and shimmer %.These values were analyzed for trends regarding smoking status, age, and gender. Statistical significance was found regarding the fundamental frequency, jitter %, and shimmer % for smokers as compared to non-smokers; smokers were found to have significantly lower fundamental frequency values, and significantly higher jitter % and shimmer % values. Statistical significance was not found regarding fundamental frequency, jitter %, and shimmer % for age group comparisons. With regard to gender, statistical significance was found regarding fundamental frequency; females were found to have statistically higher fundamental frequencies as compared to males. However, the relationships between gender and jitter % and shimmer % lacked statistical significance. These results indicate that smoking negatively affects voice quality. This study also examined the ability of untrained listeners to identify smokers and non-smokers based on their voices. Results of this voice perception task suggest that listeners are not accurately able to identify smokers and non-smokers, as statistical significance was not reached. However, despite a lack of significance, trends in data suggest that listeners are able to utilize voice quality to identify smokers and non-smokers.

  3. Acoustic Correlates of Fatigue in Laryngeal Muscles: Findings for a Criterion-Based Prevention of Acquired Voice Pathologies

    ERIC Educational Resources Information Center

    Boucher, Victor J.

    2008-01-01

    Purpose: The objective was to identify acoustic correlates of laryngeal muscle fatigue in conditions of vocal effort. Method: In a previous study, a technique of electromyography (EMG) served to define physiological signs of "voice fatigue" in laryngeal muscles involved in voicing. These signs correspond to spectral changes in contraction…

  4. Acoustic analysis of speech under stress.

    PubMed

    Sondhi, Savita; Khan, Munna; Vijay, Ritu; Salhan, Ashok K; Chouhan, Satish

    2015-01-01

    When a person is emotionally charged, stress could be discerned in his voice. This paper presents a simplified and a non-invasive approach to detect psycho-physiological stress by monitoring the acoustic modifications during a stressful conversation. Voice database consists of audio clips from eight different popular FM broadcasts wherein the host of the show vexes the subjects who are otherwise unaware of the charade. The audio clips are obtained from real-life stressful conversations (no simulated emotions). Analysis is done using PRAAT software to evaluate mean fundamental frequency (F0) and formant frequencies (F1, F2, F3, F4) both in neutral and stressed state. Results suggest that F0 increases with stress; however, formant frequency decreases with stress. Comparison of Fourier and chirp spectra of short vowel segment shows that for relaxed speech, the two spectra are similar; however, for stressed speech, they differ in the high frequency range due to increased pitch modulation. PMID:26558301

  5. Voice Stress Analysis: Use of Telephone Recordings.

    ERIC Educational Resources Information Center

    Waln, Ronald F.; Downey, Ronald G.

    The ability to detect lying is an important skill. While the polygraph is the most common mechanical method used for lie detection, other electronic-based methods have also been developed. One such method, the analysis of voice stress patterns, is based on the assumption that lying is a stressful activity which reduces involuntary frequency…

  6. Unique gel-coupled acoustic sensor array monitors human voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael

    2002-11-01

    The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. The Army Research Laboratory's gel-coupled acoustic physiological monitoring sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. Acoustic signal processing detects physiological events such as heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. Acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that sometimes obscure meaningful physiology. A noise-canceling sensor array configuration helps remove motion noise by using two acoustic sensors on the front sides of the neck and 2 additional acoustic sensors on each wrist. The motion noise detected on all 4 sensors will be dissimilar and out of phase, yet the physiology on all 4 sensors is covariant. Pulse wave transit time between neck and wrist will indicate systolic blood pressure. Data from a firefighter experiment will be presented.

  7. Imagination in harmony with science: Spectral analysis as a practical pedagogic tool in the voice studio

    NASA Astrophysics Data System (ADS)

    Rundus, Katharin Elaine

    Traditionally, voice teachers have relied on intuition and imagination to impart technical information to their students. Spectral analysis, generated on a personal computer, is now available, affordable and accessible to the twenty-first century voice teacher. These programs provide several acoustical functions using frequency, intensity and time to provide technical information about the human singing voice. This paper advocates the use of this technology as a supplemental and supporting strategy in addition to the traditional pedagogic modes of metaphor and intuition. To begin, the paper examines the acoustical principles that reflect beautiful singing and are necessary to an understanding of spectral analysis. Several figures are used that graphically explain the source-filter theory of vowels and how it is affected by the constant manipulation of a closed-open tube like the human vocal tract. Nine functions of Real Analysis (a spectral analysis program in real time manufactured by Tiger DRS, Inc.) are then examined and explained in relation to the singing voice. The paper goes on to outline a systematic vocal pedagogy in eight parts that can be used in harmony with spectral analysis, portrayed in an octagonal spiral figure. In the fourth chapter, this systematic vocal pedagogy is then integrated with spectral analysis to suggest a holistic and artistic method to use this technology. In a table format, several singing behaviors are identified, both negative and positive; training solutions using Real Analysis functions are outlined for each behavior. The paper concludes by pointing out that this technology is valuable because it teaches teachers about their own voice in a scientific manner and allows them to share this quantifiable information with their students. Furthermore, twenty-first century students are accepting of and eager for new technologies as they learn about their voices. This new technology does not change the traditional goals of voice training

  8. Relation of Selected Acoustical Parameters and Perceptual Ratings to Voice Quality of Down Syndrome Children.

    ERIC Educational Resources Information Center

    Pentz, Arthur L., Jr.; Gilbert, Harvey R.

    1983-01-01

    Analysis of the voice quality of 14 7- to 10-year-old Down's syndrome children revealed significantly greater frequency and amplitude perturbations and spectral noise-to-harmonic component ratios compared to ratings for nonretarded subjects. (Author/CL)

  9. The Voice of Emotion: Acoustic Properties of Six Emotional Expressions.

    NASA Astrophysics Data System (ADS)

    Baldwin, Carol May

    Studies in the perceptual identification of emotional states suggested that listeners seemed to depend on a limited set of vocal cues to distinguish among emotions. Linguistics and speech science literatures have indicated that this small set of cues included intensity, fundamental frequency, and temporal properties such as speech rate and duration. Little research has been done, however, to validate these cues in the production of emotional speech, or to determine if specific dimensions of each cue are associated with the production of a particular emotion for a variety of speakers. This study addressed deficiencies in understanding of the acoustical properties of duration and intensity as components of emotional speech by means of speech science instrumentation. Acoustic data were conveyed in a brief sentence spoken by twelve English speaking adult male and female subjects, half with dramatic training, and half without such training. Simulated expressions included: happiness, surprise, sadness, fear, anger, and disgust. The study demonstrated that the acoustic property of mean intensity served as an important cue for a vocal taxonomy. Overall duration was rejected as an element for a general taxonomy due to interactions involving gender and role. Findings suggested a gender-related taxonomy, however, based on differences in the ways in which men and women use the duration cue in their emotional expressions. Results also indicated that speaker training may influence greater use of the duration cue in expressions of emotion, particularly for male actors. Discussion of these results provided linkages to (1) practical management of emotional interactions in clinical and interpersonal environments, (2) implications for differences in the ways in which males and females may be socialized to express emotions, and (3) guidelines for future perceptual studies of emotional sensitivity.

  10. Flow-structure-acoustic interaction in a human voice model.

    PubMed

    Becker, Stefan; Kniesburges, Stefan; Müller, Stefan; Delgado, Antonio; Link, Gerhard; Kaltenbacher, Manfred; Döllinger, Michael

    2009-03-01

    For the investigation of the physical processes of human phonation, inhomogeneous synthetic vocal folds were developed to represent the full fluid-structure-acoustic coupling. They consisted of polyurethane rubber with a stiffness in the range of human vocal folds and were mounted in a channel, shaped like the vocal tract in the supraglottal region. This test facility permitted extensive observations of flow-induced vocal fold vibrations, the periodic flow field, and the acoustic signals in the far field of the channel. Detailed measurements were performed applying particle-image velocimetry, a laser-scanning vibrometer, a microphone, unsteady pressure sensors, and a hot-wire probe, with the aim of identifying the physical mechanisms in human phonation. The results support the existence of the Coanda effect during phonation, with the flow attaching to one vocal fold and separating from the other. This behavior is not linked to one vocal fold and changes stochastically from cycle to cycle. The oscillating flow field generates a tonal sound. The broadband noise is presumed to be caused by the interaction of the asymmetric flow with the downstream-facing surfaces of the vocal folds, analogous to trailing-edge noise. PMID:19275292

  11. Learning [Voice

    ERIC Educational Resources Information Center

    Tauberer, Joshua Ian

    2010-01-01

    The [voice] distinction between homorganic stops and fricatives is made by a number of acoustic correlates including voicing, segment duration, and preceding vowel duration. The present work looks at [voice] from a number of multidimensional perspectives. This dissertation's focus is a corpus study of the phonetic realization of [voice] in two…

  12. Self, Voices and Embodiment: A Phenomenological Analysis

    PubMed Central

    Rosen, C; Jones, N; Chase, KA; Grossman, LS; Gin, H; Sharma, RP

    2016-01-01

    Objective The primary aim of this study was to examine first-person phenomenological descriptions of the relationship between the self and Auditory Verbal Hallucinations (AVHs). Complex AVHs are frequently described as entities with clear interpersonal characteristics. Strikingly, investigations of first-person (subjective) descriptions of the phenomenology of the relationship are virtually absent from the literature. Method Twenty participants with psychosis and actively experiencing AVHs were recruited from the University of Illinois at Chicago. A mixed-methods design involving qualitative and quantitative components was utilized. Following a priority-sequence model of complementarity, quantitative analyses were used to test elements of emergent qualitative themes. Results The qualitative analysis identified three foundational constructs in the relationship between self and voices: ‘understanding of origin,’ ‘distinct interpersonal identities,’ and ‘locus of control.’ Quantitative analyses further supported identified links of these constructs. Subjects experienced their AVHs as having identities distinct from self and actively engaged with their AVHs experienced a greater sense of autonomy and control over AVHs. Discussion Given the clinical importance of AVHs and emerging strategies targeting the relationship between the hearer and voices, our findings highlight the importance of these relational constructs in improvement and innovation of clinical interventions. Our analyses also underscore the value of detailed voice assessments such as those provided by the Maastricht Interview are needed in the evaluation process. Subjects narratives shows that the relational phenomena between hearer and AVH(s) is dynamic, and can be influenced and changed through the hearers’ engagement, conversation, and negotiation with their voices. PMID:27099869

  13. Elephants can determine ethnicity, gender, and age from acoustic cues in human voices.

    PubMed

    McComb, Karen; Shannon, Graeme; Sayialel, Katito N; Moss, Cynthia

    2014-04-01

    Animals can accrue direct fitness benefits by accurately classifying predatory threat according to the species of predator and the magnitude of risk associated with an encounter. Human predators present a particularly interesting cognitive challenge, as it is typically the case that different human subgroups pose radically different levels of danger to animals living around them. Although a number of prey species have proved able to discriminate between certain human categories on the basis of visual and olfactory cues, vocalizations potentially provide a much richer source of information. We now use controlled playback experiments to investigate whether family groups of free-ranging African elephants (Loxodonta africana) in Amboseli National Park, Kenya can use acoustic characteristics of speech to make functionally relevant distinctions between human subcategories differing not only in ethnicity but also in sex and age. Our results demonstrate that elephants can reliably discriminate between two different ethnic groups that differ in the level of threat they represent, significantly increasing their probability of defensive bunching and investigative smelling following playbacks of Maasai voices. Moreover, these responses were specific to the sex and age of Maasai presented, with the voices of Maasai women and boys, subcategories that would generally pose little threat, significantly less likely to produce these behavioral responses. Considering the long history and often pervasive predatory threat associated with humans across the globe, it is likely that abilities to precisely identify dangerous subcategories of humans on the basis of subtle voice characteristics could have been selected for in other cognitively advanced animal species.

  14. Elephants can determine ethnicity, gender, and age from acoustic cues in human voices.

    PubMed

    McComb, Karen; Shannon, Graeme; Sayialel, Katito N; Moss, Cynthia

    2014-04-01

    Animals can accrue direct fitness benefits by accurately classifying predatory threat according to the species of predator and the magnitude of risk associated with an encounter. Human predators present a particularly interesting cognitive challenge, as it is typically the case that different human subgroups pose radically different levels of danger to animals living around them. Although a number of prey species have proved able to discriminate between certain human categories on the basis of visual and olfactory cues, vocalizations potentially provide a much richer source of information. We now use controlled playback experiments to investigate whether family groups of free-ranging African elephants (Loxodonta africana) in Amboseli National Park, Kenya can use acoustic characteristics of speech to make functionally relevant distinctions between human subcategories differing not only in ethnicity but also in sex and age. Our results demonstrate that elephants can reliably discriminate between two different ethnic groups that differ in the level of threat they represent, significantly increasing their probability of defensive bunching and investigative smelling following playbacks of Maasai voices. Moreover, these responses were specific to the sex and age of Maasai presented, with the voices of Maasai women and boys, subcategories that would generally pose little threat, significantly less likely to produce these behavioral responses. Considering the long history and often pervasive predatory threat associated with humans across the globe, it is likely that abilities to precisely identify dangerous subcategories of humans on the basis of subtle voice characteristics could have been selected for in other cognitively advanced animal species. PMID:24616492

  15. Elephants can determine ethnicity, gender, and age from acoustic cues in human voices

    PubMed Central

    McComb, Karen; Shannon, Graeme; Sayialel, Katito N.; Moss, Cynthia

    2014-01-01

    Animals can accrue direct fitness benefits by accurately classifying predatory threat according to the species of predator and the magnitude of risk associated with an encounter. Human predators present a particularly interesting cognitive challenge, as it is typically the case that different human subgroups pose radically different levels of danger to animals living around them. Although a number of prey species have proved able to discriminate between certain human categories on the basis of visual and olfactory cues, vocalizations potentially provide a much richer source of information. We now use controlled playback experiments to investigate whether family groups of free-ranging African elephants (Loxodonta africana) in Amboseli National Park, Kenya can use acoustic characteristics of speech to make functionally relevant distinctions between human subcategories differing not only in ethnicity but also in sex and age. Our results demonstrate that elephants can reliably discriminate between two different ethnic groups that differ in the level of threat they represent, significantly increasing their probability of defensive bunching and investigative smelling following playbacks of Maasai voices. Moreover, these responses were specific to the sex and age of Maasai presented, with the voices of Maasai women and boys, subcategories that would generally pose little threat, significantly less likely to produce these behavioral responses. Considering the long history and often pervasive predatory threat associated with humans across the globe, it is likely that abilities to precisely identify dangerous subcategories of humans on the basis of subtle voice characteristics could have been selected for in other cognitively advanced animal species. PMID:24616492

  16. Contemporary review: Impact of primary neopharyngoplasty on acoustic characteristics of alaryngeal tracheoesophageal voice.

    PubMed

    Albirmawy, Osama A; Elsheikh, Mohamed N; Silver, Carl E; Rinaldo, Alessandra; Ferlito, Alfio

    2012-02-01

    The physiology of the vibratory mechanism in alaryngeal tracheoesophageal speech depends on several factors. The structure and resulting function of the neoglottis (or neopharynx) varies from patient to patient depending on the individual details of the surgical procedure performed, as well as the patient's anatomy. In general, the vibratory segment is a blending of the pharyngeal constrictor muscles, cricopharyngeus, and upper circular fibers of the esophagus. Limited ability to visualize dynamically these three-dimensional structures during rapid events of voice and speech production impedes complete understanding of the vibratory function of the neopharynx. Acoustic studies have elucidated some general characteristics of the pharyngoesophagus and neoglottic vibratory mechanism in the laryngectomized population. A critical degree of tonicity is necessary for apposition of mucosal surfaces in the production of tracheoesophageal voice. Deficiencies in the vibratory segment can usually be managed with various surgical procedures (neopharyngoplasty), resulting in reduced intraesophageal pressure and corresponding increase in fluent, intelligible, effortless speech. The acoustic measures, when correlated with neopharyngoplasty variables, produce many significant associations. Some of them are paramount and deserve further attention. PMID:22258890

  17. Effects of nasalance on the acoustical properties of the tenor passaggio and the head voice

    NASA Astrophysics Data System (ADS)

    Perna, Nicholas Kevin

    This study aims to measure the effect that nasality has on the acoustical properties of the tenor passaggio and head voice. Not to be confused with forward resonance, nasality here will be defined as nasalance, the reading of a Nasometer, or the percentage of nasal and oral airflow during phonation. A previous study by Peer Birch et al. has shown that professional tenors used higher percentages of nasalance through their passaggio. They hypothesized that tenors used nasalance to make slight timbral adjustments as they ascended through passaggio. Other well respected authors including Richard Miller and William McIver have claimed that teaching registration issues is the most important component of training young tenors. It seemed logical to measure the acoustic effects of nasalance on the tenor passaggio and head voice. Eight professional operatic tenors participated as subjects performing numerous vocal exercises that demonstrated various registration events. These examples were recorded and analyzed using a Nasometer and Voce Vista Pro Software. Tenors did generally show an increase of nasalance during an ascending B-flat major scale on the vowels [i] and [u]. Perhaps the most revealing result was that six of seven tenors showed at least a 5-10% increase in nasalance on the note after their primary register transition on the vowel of [a]. It is suggested that this phenomenon receive further empirical scrutiny, because, if true, pedagogues could use nasalance as a tool for helping a young tenor ascend through his passaggio.

  18. Comparisons among aerodynamic, electroglottographic, and acoustic spectral measures of female voice.

    PubMed

    Holmberg, E B; Hillman, R E; Perkell, J S; Guiod, P C; Goldman, S L

    1995-12-01

    This study examines measures of the glottal airflow waveform, the electroglottographic signal (EGG), amplitude differences between peaks in the acoustic spectrum, and observations of the spectral energy content of the third formant (F3), in terms of how they relate to one another. Twenty females with normal voices served as subjects. Both group and individual data were studied. Measurements were made for the vowel in two speech tasks: strings of the syllable /pae/and sustained phonation of /ae/, which were produced at two levels of vocal effort: comfortable and loud voice. The main results were: 1. Significant differences in parameter values between /pae/and/ae/were related to significant differences in the sound pressure level (SPL). 2. An "adduction quotient," measured from the glottal waveform at a 30% criterion, was sensitive enough to differentiate between waveforms reflecting abrupt versus gradual vocal fold closing movements. 3. DC flow showed weak or nonsignificant relationships with acoustic measures. 4. The spectral content in the third formant (F3) in comfortable loudness typically consisted of a mix of noise and harmonic energy. In loud voice, the F3 spectral content typically consisted of harmonic energy. 5. Significant differences were found in all measures between tokens with F3 harmonic energy and tokens with F3 noise, independent of loudness condition. 6. Strong relationships between flow- and EGG-adduction quotients suggested that these signals can be used to complement each other. 7. The amplitude difference between spectral peaks of the first and third formant (F1-F3) was found to add information about abruptness of airflow decrease (flow declination) that may be lost in the glottal waveform signal due to low-pass filtering. The results are discussed in terms of how an integrated use of these measures can contribute to a better understanding of the normal vocal mechanism and help to improve methods for evaluating vocal function. PMID:8747815

  19. The acoustic and perceptual differences to the non-singer's singing voice before and after a singing vocal warm-up

    NASA Astrophysics Data System (ADS)

    DeRosa, Angela

    The present study analyzed the acoustic and perceptual differences in non-singer's singing voice before and after a vocal warm-up. Experiments were conducted with 12 females who had no singing experience and considered themselves to be non-singers. Participants were recorded performing 3 tasks: a musical scale stretching to their most comfortable high and low pitches, sustained productions of the vowels /a/ and /i/, and singing performance of the "Star Spangled Banner." Participants were recorded performing these three tasks before a vocal warm-up, after a vocal warm-up, and then again 2-3 weeks later after 2-3 weeks of practice. Acoustical analysis consisted of formant frequency analysis, singer's formant/singing power ratio analysis, maximum phonation frequency range analysis, and an analysis of jitter, noise to harmonic ratio (NHR), relative average perturbation (RAP), and voice turbulence index (VTI). A perceptual analysis was also conducted with 12 listeners rating comparison performances of before vs. after the vocal warm-up, before vs. after the second vocal warm-up, and after both vocal warm-ups. There were no significant findings for the formant frequency analysis of the vowel /a/, but there was significance for the 1st formant frequency analysis of the vowel /i/. Singer's formant analyzed via Singing Power Ratio analysis showed significance only for the vowel /i/. Maximum phonation frequency range analysis showed a significant increase after the vocal warm-ups. There were no significant findings for the acoustic measures of jitter, NHR, RAP, and VTI. Perceptual analysis showed a significant difference after a vocal warm-up. The results indicate that a singing vocal warm-up can have a significant positive influence on the singing voice of non-singers.

  20. Voice outcomes after laser surgery vs. radiotherapy of early glottic carcinoma: a meta-analysis

    PubMed Central

    Du, Guangyuan; Liu, Chuan; Yu, Wenbin; Li, Juan; Li, Wei; Wang, Chengyuan; Zhu, Jiang

    2015-01-01

    Background: Radiotherapy and laser resection are established treatment modalities for early glottic carcinoma. To date, there is no confirmed conclusion which treatment is better for early glottic cancer. The objective of this study was to conduct a meta-analysis to compare the voice outcomes after laser resection (LS) and radiotherapy (RT) of Tis-T1N0M0 glottic carcinoma. Methods: we searched the relevant electronic studies and performed a meta-analysis based on 13 published studies. The Chi-square based I2-statistic test was performed to evaluate possible heterogeneity across the studies. Additionally, random-effects models were used to calculate mean differences with 95% confidence intervals (CIs). Results: Overall, a total of 13 published studies were included in our study, with 368 patients in the RT group and 440 patients in the LS group, respectively. No significant differences in Voice Handicap Index (VHI), jitter and shimmer were found between RT and endoscopic LS among patients with Tis-T1N0M0 glottic carcinoma and T1aN0M0 laryngeal cancer. However, the acoustic voice analysis parameters of Fo values were significantly lower in RT group than that in LS group. Conclusion: The results from this meta-analysis support that the LS has more advantages than RT in terms of voice quality. However, more studies on voice outcome need to validate our findings. PMID:26770313

  1. Effect of Septoplasty on Cepstral Analysis of Voice.

    PubMed

    Thejaswi, D; Alfred, Rezwin M; D'Souza, Florida P

    2016-09-01

    Resonance change is a common clinical symptom in individuals with deviated nasal septum. Often this anatomical deficit is surgically treated by septoplasty. Therefore monitoring resonance changes using acoustical tools is vital. Hence, the study investigated cepstral measure differences in subjects with deviated nasal septum compared to normals. A case-control study design involving 20 subjects within 18-40 years divided into Group I of 10 subjects with deviated nasal septum (DNS) and Group II of 10 normal subjects participated. All the subjects sustained nasalized vowel /ã/ at 10 cm mouth-microphone distance for minimum of 5 seconds. For Group I, voice sample was recorded in 2 conditions, 2 days pre-septoplasty and 1 month post-septoplasty. Cepstral peak prominence (CPP) and smooth cepstral peak prominence (CPPS) values was extracted using the Hillenbrand algorithm. Mean values revealed increased CPP and CPPS measure post-septoplasty when compared to pre-septoplasty. ANOVA showed statistically significant difference only for CPPS at p = 0.00. The higher cepstral values of post-septoplasty is due to widened nasal passage that leads to increased nasal volume, decreased acoustic damping and increased nasal patency. These changes in supraglottic chambers will result in a better acoustic space for good resonance. However, the CPPS values were not similar to normal subjects because of scarring or incomplete recovery of the outer mucosal layer of the nasal tract. Thus, we can conclude that cepstral analysis is a sensitive tool to detect resonance changes in the nasal patency. PMID:27508128

  2. Effect of Septoplasty on Cepstral Analysis of Voice.

    PubMed

    Thejaswi, D; Alfred, Rezwin M; D'Souza, Florida P

    2016-09-01

    Resonance change is a common clinical symptom in individuals with deviated nasal septum. Often this anatomical deficit is surgically treated by septoplasty. Therefore monitoring resonance changes using acoustical tools is vital. Hence, the study investigated cepstral measure differences in subjects with deviated nasal septum compared to normals. A case-control study design involving 20 subjects within 18-40 years divided into Group I of 10 subjects with deviated nasal septum (DNS) and Group II of 10 normal subjects participated. All the subjects sustained nasalized vowel /ã/ at 10 cm mouth-microphone distance for minimum of 5 seconds. For Group I, voice sample was recorded in 2 conditions, 2 days pre-septoplasty and 1 month post-septoplasty. Cepstral peak prominence (CPP) and smooth cepstral peak prominence (CPPS) values was extracted using the Hillenbrand algorithm. Mean values revealed increased CPP and CPPS measure post-septoplasty when compared to pre-septoplasty. ANOVA showed statistically significant difference only for CPPS at p = 0.00. The higher cepstral values of post-septoplasty is due to widened nasal passage that leads to increased nasal volume, decreased acoustic damping and increased nasal patency. These changes in supraglottic chambers will result in a better acoustic space for good resonance. However, the CPPS values were not similar to normal subjects because of scarring or incomplete recovery of the outer mucosal layer of the nasal tract. Thus, we can conclude that cepstral analysis is a sensitive tool to detect resonance changes in the nasal patency.

  3. Relating objective measurements to expert evaluation of voice quality in Western classical singing: critical perceptual parameters.

    PubMed

    Ekholm, E; Papagiannis, G C; Chagnon, F P

    1998-06-01

    Communication between voice pedagogues and voice scientists is often impeded by reliance on colorful and sometimes seemingly contradictory descriptions of vocal production and voice quality. A recent study identified perceptual criteria which are generally used by voice experts for the assessment of voice quality in classical singing. In the present study, performances by singers of various voice types and levels of accomplishment were rated by panels of expert voice teachers according to four perceptual criteria: "resonance/ring," "color/warmth," "clarity/focus," and "appropriate vibrato." Subjective ratings were related to objective measurements taken from acoustic analysis of the voice signal. Possible acoustic correlates of critical perceptual parameters influencing judgments of voice quality were thus identified. Results could help bridge the terminology gap between vocal artists and scientists, and help to promote understanding of the way in which acoustic stimuli influence perception of voice quality. PMID:9649074

  4. [Use of self-organizing neural networks (Kohonen maps) for classification of voice acoustic signals exemplified by the infant voice with and without time-delayed auditory feedback].

    PubMed

    Schönweiler, R; Kaese, S; Möller, S; Rinscheid, A; Ptok, M

    1996-04-01

    Subjective and auditory assessment of the voice is now more commonly being replaced by objective voice analysis. Because of the amount of data available from computer-aided voice analysis, subjective selection and interpretation of single data sets remain a matter of experience of the individual investigator. Since neuronal networks are widely used in telecommunication and speech recognition, we applied self-organizing Kohonen networks to classify voice patterns. In the phase of "learning," the Kohonen map is adapted to patterns of the primary signals obtained. If, in the phase of using the map, the input signal hits the field of the primary signals, it will resemble them closely. In this study, we recorded newborn and young infant cries using a DAT recorder and a high-quality microphone. The cries were elicited by wearing uncomfortable headphones ("cries of discomfort"). Spectrographic characteristics of the cries were classified by 20-step bark spectra and then applied to the neuronal networks. It was possible to recognize similarities of different cries of the same children and interindividual differences, as well as cries of children with profound hearing loss. In addition, delayed auditory feedback at 80 dB SL was presented to 27 children via headphone using a three-headed tape-recorder as a model for induced individual cry changes. However, it was not possible to classify short-term changes as in a delayed feedback procedure. Nevertheless, neuronal networks may be helpful as an additional tool in spectrographic voice analysis.

  5. Cue-specific effects of categorization training on the relative weighting of acoustic cues to consonant voicing in English.

    PubMed

    Francis, Alexander L; Kaganovich, Natalya; Driscoll-Huber, Courtney

    2008-08-01

    In English, voiced and voiceless syllable-initial stop consonants differ in both fundamental frequency at the onset of voicing (onset F0) and voice onset time (VOT). Although both correlates, alone, can cue the voicing contrast, listeners weight VOT more heavily when both are available. Such differential weighting may arise from differences in the perceptual distance between voicing categories along the VOT versus onset F0 dimensions, or it may arise from a bias to pay more attention to VOT than to onset F0. The present experiment examines listeners' use of these two cues when classifying stimuli in which perceptual distance was artificially equated along the two dimensions. Listeners were also trained to categorize stimuli based on one cue at the expense of another. Equating perceptual distance eliminated the expected bias toward VOT before training, but successfully learning to base decisions more on VOT and less on onset F0 was easier than vice versa. Perceptual distance along both dimensions increased for both groups after training, but only VOT-trained listeners showed a decrease in Garner interference. Results lend qualified support to an attentional model of phonetic learning in which learning involves strategic redeployment of selective attention across integral acoustic cues. PMID:18681610

  6. Analysis of Measured and Simulated Supraglottal Acoustic Waves.

    PubMed

    Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A

    2016-09-01

    To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. PMID:26377510

  7. Voice measures of workload in the advanced flight deck

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray; Odonnell, Richard

    1989-01-01

    Voice samples were obtained from 14 male subjects under high and low workload conditions. Acoustical analysis of the voice suggested that high workload conditions can be revealed by their effects on the voice over time. Aircrews in the advanced flight deck will be voicing short, imperative sentences repeatedly. A drop in the energy of the voice, as reflected by reductions in amplitude and frequency over time, and the failure to achieve old amplitude and frequency levels after rest periods, can signal that the workload demands of the situation are straining the speaker. This kind of measurement would be relatively unaffected by individual differences in acoustical measures.

  8. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2002-01-01

    Low power EM waves are used to detect motions of vocal tract tissues of the human speech system before, during, and after voiced speech. A voiced excitation function is derived. The excitation function provides speech production information to enhance speech characterization and to enable noise removal from human speech.

  9. The effect of choir formation on the acoustical attributes of the singing voice

    NASA Astrophysics Data System (ADS)

    Atkinson, Debra Sue

    Research shows that many things can influence choral tone and choral blend. Some of these are vowel uniformity, vibrato, choral formation, strategic placement of singers, and spacing between singers. This study sought to determine the effect that changes in choral formation and spacing between singers would have on four randomly selected voices of an ensemble as revealed through long-term average spectra (LTAS) of the individual singers. All members of the ensemble were given the opportunity to express their preferences for each of the choral formations and the four randomly selected choristers were asked specific questions regarding the differences between choral singing and solo singing. The results indicated that experienced singers preferred singing in a mixed-spread choral formation. However, the graphs of the choral excerpts as compared to the solo recordings revealed that the choral graphs for the soprano and bass were very similar to the graphs of their solos, but the graphs of the tenor and the alto were different from their solo graphs. It is obvious from the results of this study that the four selected singers did sing with slightly different techniques in the choral formations than they did while singing their solos. The members of this ensemble were accustomed to singing in many different formations. Therefore, it was easy for them to consciously think about how they sang in each of the four formations (mixed-close, mixed-spread, sectional-close, and sectional-spread) and answer the questionnaire accordingly. This would not be as easy for a group that never changed choral formations. Therefore, the results of this study cannot be generalized to choirs who only sing in sectional formation. As researchers learn more about choral acoustics and the effects of choral singing on the voice, choral conductors will be able to make better decisions about the methods used to achieve their desired choral blend. It is up to the choral conductors to glean the

  10. Double Fourier analysis for Emotion Identification in Voiced Speech

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.

    2016-04-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.

  11. [The acoustic changes of the voice in the singing boys during the permutation period].

    PubMed

    Chernobel'sky, S I

    2016-01-01

    The present study was based on the assumption that the determination of the fundamental frequency (Fo) of the speech by means of computer-assisted acoustic analysis makes it possible to detect the onset of vocal mutation in the singing boys. A total of 30 singing boys were available for the examination. They were allocated to two groups. Group 1 was comprised of 15 boys at the age between 11 years 10 months and 12 years 4 months. Group 2 consisted of 15 boys aged between 12 years 10 months and 13 years 2 months. All the participants of the study underwent an acoustic test in combination with indirect laryngoscopy. It was shown that fundamental frequency of the speech in the boys of group 2 was significantly lower than in group 1. The difference amounted to two half-tones and could be regarded as the onset of vocal pre-mutation. It is concluded that the acoustic analysis of the speech should be employed to determine the time of vocal pre-mutation in the singing boys. The singing teachers can use this method all by themselves. PMID:27213658

  12. Comment on "Increase in voice level and speaker comfort in lecture rooms" [J. Acoust. Soc. Am. 125, 2072-2082 (2009)] (L).

    PubMed

    Pelegrín-García, David

    2011-03-01

    Recently, a paper written by Brunskog Gade, Payá-Ballester and Reig-Calbo, "Increase in voice level and speaker comfort in lecture rooms" [J. Acoust. Soc. Am. 125, 2072-2082 (2009)] related teachers' variation in vocal intensity during lecturing to the room acoustic conditions, introducing an objective parameter called "room gain" to describe these variations. In a failed attempt to replicate the objective measurements by Brunskog et al., a simplified and improved method for the calculation of room gain is proposed, in addition with an alternative magnitude called "voice support." The measured parameters are consistent with those of other studies and are used here to build two empirical models relating the voice power levels measured by Brunskog et al., to the room gain and the voice support.

  13. A system for analysis and classification of voice communications

    NASA Technical Reports Server (NTRS)

    Older, H. J.; Jenney, L. L.; Garland, L.

    1973-01-01

    A method for analysis and classification of verbal communications typically associated with manned space missions or simulations was developed. The study was carried out in two phases. Phase 1 was devoted to identification of crew tasks and activities which require voice communication for accomplishment or reporting. Phase 2 entailed development of a message classification system and a preliminary test of its feasibility. The classification system permits voice communications to be analyzed to three progressively more specific levels of detail and to be described in terms of message content, purpose, and the participants in the information exchange. A coding technique was devised to allow messages to be recorded by an eight-digit number.

  14. A Conjoint Analysis of Voice Over IP Attributes.

    ERIC Educational Resources Information Center

    Zubey, Michael L.; Wagner, William; Otto, James R.

    2002-01-01

    Managers need to understand the tradeoffs associated with voice over Internet protocol (VoIP) networks as compared to the Public Switched Telephone Network (PSTN). This article measures the preference structures between IP telephony and PSTN services using conjoint analysis. The purpose is to suggest VoIP technology attributes that best meet…

  15. Acoustic analysis of trill sounds.

    PubMed

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed. PMID:22501086

  16. Role of the Internal Superior Laryngeal Nerve in the Motor Responses of Vocal Cords and the Related Voice Acoustic Changes

    PubMed Central

    Seifpanahi, Sadegh; Izadi, Farzad; Jamshidi, Ali-Ashraf; Torabinezhad, Farhad; Sarrafzadeh, Javad; Mohammadi, Siavash

    2016-01-01

    Background: Repeated efforts by researchers to impose voice changes by laryngeal surface electrical stimulation (SES) have come to no avail. This present pre-experimental study employed a novel method for SES application so as to evoke the motor potential of the internal superior laryngeal nerve (ISLN) and create voice changes. Methods: Thirty-two normal individuals (22 females and 10 males) participated in this study. The subjects were selected from the students of Iran University of Medical Sciences in 2014. Two monopolar active electrodes were placed on the thyrohyoid space at the location of the ISLN entrance to the larynx and 1 dispersive electrode was positioned on the back of the neck. A current with special programmed parameters was applied to stimulate the ISLN via the active electrodes and simultaneously the resultant acoustic changes were evaluated. All the means of the acoustic parameters during SES and rest periods were compared using the paired t-test. Results: The findings indicated significant changes (P=0.00) in most of the acoustic parameters during SES presentation compared to them at rest. The mean of fundamental frequency standard deviation (SD F0) at rest was 1.54 (SD=0.55) versus 4.15 (SD=3.00) for the SES period. The other investigated parameters comprised fundamental frequency (F0), minimum F0, jitter, shimmer, harmonic-to-noise ratio (HNR), mean intensity, and minimum intensity. Conclusion: These findings demonstrated significant changes in most of the important acoustic features, suggesting that the stimulation of the ISLN via SES could induce motor changes in the vocal folds. The clinical applicability of the method utilized in the current study in patients with vocal fold paralysis requires further research. PMID:27582586

  17. VoICE: A semi-automated pipeline for standardizing vocal analysis across models

    PubMed Central

    Burkett, Zachary D.; Day, Nancy F.; Peñagarikano, Olga; Geschwind, Daniel H.; White, Stephanie A.

    2015-01-01

    The study of vocal communication in animal models provides key insight to the neurogenetic basis for speech and communication disorders. Current methods for vocal analysis suffer from a lack of standardization, creating ambiguity in cross-laboratory and cross-species comparisons. Here, we present VoICE (Vocal Inventory Clustering Engine), an approach to grouping vocal elements by creating a high dimensionality dataset through scoring spectral similarity between all vocalizations within a recording session. This dataset is then subjected to hierarchical clustering, generating a dendrogram that is pruned into meaningful vocalization “types” by an automated algorithm. When applied to birdsong, a key model for vocal learning, VoICE captures the known deterioration in acoustic properties that follows deafening, including altered sequencing. In a mammalian neurodevelopmental model, we uncover a reduced vocal repertoire of mice lacking the autism susceptibility gene, Cntnap2. VoICE will be useful to the scientific community as it can standardize vocalization analyses across species and laboratories. PMID:26018425

  18. Effects of a music therapy voice protocol on speech intelligibility, vocal acoustic measures, and mood of individuals with Parkinson's disease.

    PubMed

    Haneishi, E

    2001-01-01

    This study examined the effects of a Music Therapy Voice Protocol (MTVP) on speech intelligibility, vocal intensity, maximum vocal range, maximum duration of sustained vowel phonation, vocal fundamental frequency, vocal fundamental frequency variability, and mood of individuals with Parkinson's disease. Four female patients, who demonstrated voice and speech problems, served as their own controls and participated in baseline assessment (study pretest), a series of MTVP sessions involving vocal and singing exercises, and final evaluation (study posttest). In study pre and posttests, data for speech intelligibility and all acoustic variables were collected. Statistically significant increases were found in speech intelligibility, as rated by caregivers, and in vocal intensity from study pretest to posttest as the results of paired samples t-tests. In addition, before and after each MTVP session (session pre and posttests), self-rated mood scores and selected acoustic variables were collected. No significant differences were found in any of the variables from the session pretests to posttests, across the entire treatment period, or their interactions as the results of two-way ANOVAs with repeated measures. Although not significant, the mean of mood scores in session posttests (M = 8.69) was higher than that in session pretests (M = 7.93). PMID:11796078

  19. Is There an Ironic Tone of Voice?

    ERIC Educational Resources Information Center

    Bryant, Gregory A.; Fox Tree, Jean E.

    2005-01-01

    Research on nonverbal vocal cues and verbal irony has often relied on the concept of an "ironic tone of voice". Here we provide acoustic analysis and experimental evidence that this notion is oversimplified and misguided. Acoustic analyses of spontaneous ironic speech extracted from talk radio shows, both ambiguous and unambiguous in written form,…

  20. Atmospheric effects on voice command intelligibility from acoustic hail and warning devices.

    PubMed

    Bostron, Jason H; Brungart, Timothy A; Barnard, Andrew R; McDevitt, Timothy E

    2011-04-01

    Voice command sound pressure levels (SPLs) were recorded at distances up to 1500 m. Received SPLs were related to the meteorological condition during sound propagation and compared with the outdoor sound propagation standard ISO 9613-2. Intelligibility of received signals was calculated using ANSI S3.5. Intelligibility results for the present voice command indicate that meteorological condition imposes little to no effect on intelligibility when the signal-to-noise ratio (SNR) is low (<-9 dB) or high (>0 dB). In these two cases the signal is firmly unintelligible or intelligible, respectively. However, at moderate SNRs, variations in received SPL can cause a fully intelligible voice command to become unintelligible, depending on the meteorological condition along the sound propagation path. These changes in voice command intelligibility often occur on time scales as short as minutes during upward refracting conditions, typically found above ground during the day or upwind of a sound source. Reliably predicting the intelligibility of a voice command in a moderate SNR environment can be challenging due to the inherent variability imposed by sound propagation through the atmosphere.

  1. Voice Dysfunction in Dysarthria: Application of the Multi-Dimensional Voice Program.

    ERIC Educational Resources Information Center

    Kent, R. D.; Vorperian, H. K.; Kent, J. F.; Duffy, J. R.

    2003-01-01

    Part 1 of this paper recommends procedures and standards for the acoustic analysis of voice in individuals with dysarthria. In Part 2, acoustic data are reviewed for dysarthria associated with Parkinson disease (PD), cerebellar disease, amytrophic lateral sclerosis, traumatic brain injury, unilateral hemispheric stroke, and essential tremor.…

  2. Objective analysis of the singing voice as a training aid.

    PubMed

    Sangiorgi, T; Manfredi, C; Bruscaglioni, P

    2005-01-01

    A new tool for robust tracking of fundamental frequency is proposed, along with an objective measure of main singing voice parameters, such as vibrato rate, vibrato extent, and vocal intonation. High-resolution Power Spectral Density estimation is implemented, based on AutoRegressive models of suitable order, allowing reliable formant tracking also in vocalizations characterized by highly varying values. The proposed techniques are applied to about 1000 vocalizations, coming from both professional and non-professional singers, and show better performance as compared to classical Fourier-based approaches. If properly implemented, and with a user-friendly interface, the new tool would allow real-time analysis of singing voice. Hence, it could be of help in giving non-professional singers and singing teachers reliable measures of possible improvements during and after training. PMID:16287654

  3. Vibro-acoustic analysis of composite plates

    NASA Astrophysics Data System (ADS)

    Sarigül, A. S.; Karagözlü, E.

    2014-03-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.

  4. Factors affecting the quality of sound recording for speech and voice analysis.

    PubMed

    Vogel, Adam P; Morgan, Angela T

    2009-01-01

    The importance and utility of objective evidence-based measurement of the voice is well documented. Therefore, greater consideration needs to be given to the factors that influence the quality of voice and speech recordings. This manuscript aims to bring together the many features that affect acoustically acquired voice and speech. Specifically, the paper considers the practical requirements of individual speech acquisition configurations through examining issues relating to hardware, software and microphone selection, the impact of environmental noise, analogue to digital conversion and file format as well as the acoustic measures resulting from varying levels of signal integrity. The type of recording environment required by a user is often dictated by a variety of clinical and experimental needs, including: the acoustic measures being investigated; portability of equipment; an individual's budget; and the expertise of the user. As the quality of recorded signals is influenced by many factors, awareness of these issues is essential. This paper aims to highlight the importance of these methodological considerations to those previously uninitiated with voice and speech acoustics. With current technology, the highest quality recording would be made using a stand-alone hard disc recorder, an independent mixer to attenuate the incoming signal, and insulated wiring combined with a high quality microphone in an anechoic chamber or sound treated room.

  5. Acoustic Gaits: Gait Analysis With Footstep Sounds.

    PubMed

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred

    2015-08-01

    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured.

  6. Voice communication research evaluation system

    NASA Astrophysics Data System (ADS)

    McKinley, R. L.

    1980-05-01

    Aircraft voice communications may be degraded by a variety of sources such as electrical and/or acoustical noise, radio interference, jamming and various other forms of distraction. The Voice Communication Research and Evaluation System, located in the Biodynamics and Bioengineering Division of the Aerospace Medical Research Laboratory, has been developed for the comprehensive analysis and enhancement of operational voice communication. The basic system is comprised of a multi-station voice communication network consisting of the USAF standard aircraft intercommunication system, a standard A-19 diluter-demand oxygen regulation system and an on line computer data collection and data analysis system that displays results in real time. The system is housed in a large reverberation chamber containing a programmable sound source capable of reproducing the spectrum and level of any AF operational noise environment. Standardized voice communication effectiveness test materials are used to assess the performance of any aspect of the total voice communication link, however, emphasis is usually placed upon the performance of the aircrew members. This paper will descibe the salient features of this unique system and provide examples of its application to voice communication problems.

  7. Effects of Intensive Voice Treatment (the Lee Silverman Voice Treatment [LSVT]) on Vowel Articulation in Dysarthric Individuals with Idiopathic Parkinson Disease: Acoustic and Perceptual Findings

    ERIC Educational Resources Information Center

    Sapir, Shimon; Spielman, Jennifer L.; Ramig, Lorraine O.; Story, Brad H.; Fox, Cynthia

    2007-01-01

    Purpose: To evaluate the effects of intensive voice treatment targeting vocal loudness (the Lee Silverman Voice Treatment [LSVT]) on vowel articulation in dysarthric individuals with idiopathic Parkinson's disease (PD). Method: A group of individuals with PD receiving LSVT (n = 14) was compared to a group of individuals with PD not receiving LSVT…

  8. Objective voice and speech analysis of persons with chronic hoarseness by prosodic analysis of speech samples.

    PubMed

    Haderlein, Tino; Döllinger, Michael; Matoušek, Václav; Nöth, Elmar

    2016-10-01

    Automatic voice assessment is often performed using sustained vowels. In contrast, speech analysis of read-out texts can be applied to voice and speech assessment. Automatic speech recognition and prosodic analysis were used to find regression formulae between automatic and perceptual assessment of four voice and four speech criteria. The regression was trained with 21 men and 62 women (average age 49.2 years) and tested with another set of 24 men and 49 women (48.3 years), all suffering from chronic hoarseness. They read the text 'Der Nordwind und die Sonne' ('The North Wind and the Sun'). Five voice and speech therapists evaluated the data on 5-point Likert scales. Ten prosodic and recognition accuracy measures (features) were identified which describe all the examined criteria. Inter-rater correlation within the expert group was between r = 0.63 for the criterion 'match of breath and sense units' and r = 0.87 for the overall voice quality. Human-machine correlation was between r = 0.40 for the match of breath and sense units and r = 0.82 for intelligibility. The perceptual ratings of different criteria were highly correlated with each other. Likewise, the feature sets modeling the criteria were very similar. The automatic method is suitable for assessing chronic hoarseness in general and for subgroups of functional and organic dysphonia. In its current version, it is almost as reliable as a randomly picked rater from a group of voice and speech therapists.

  9. Phonation Types in Marathi: An Acoustic Investigation

    ERIC Educational Resources Information Center

    Berkson, Kelly Harper

    2013-01-01

    This dissertation presents a comprehensive instrumental acoustic analysis of phonation type distinctions in Marathi, an Indic language with numerous breathy voiced sonorants and obstruents. Important new facts about breathy voiced sonorants, which are crosslinguistically rare, are established: male and female speakers cue breathy phonation in…

  10. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  11. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  12. Measures of voiced frication for automatic classification

    NASA Astrophysics Data System (ADS)

    Jackson, Philip J. B.; Jesus, Luis M. T.; Shadle, Christine H.; Pincas, Jonathan

    2001-05-01

    As an approach to understanding the characteristics of the acoustic sources in voiced fricatives, it seems apt to draw on knowledge of vowels and voiceless fricatives, which have been relatively well studied. However, the presence of both phonation and frication in these mixed-source sounds offers the possibility of mutual interaction effects, with variations across place of articulation. This paper examines the acoustic and articulatory consequences of these interactions and explores automatic techniques for finding parametric and statistical descriptions of these phenomena. A reliable and consistent set of such acoustic cues could be used for phonetic classification or speech recognition. Following work on devoicing of European Portuguese voiced fricatives [Jesus and Shadle, in Mamede et al. (eds.) (Springer-Verlag, Berlin, 2003), pp. 1-8]. and the modulating effect of voicing on frication [Jackson and Shadle, J. Acoust. Soc. Am. 108, 1421-1434 (2000)], the present study focuses on three types of information: (i) sequences and durations of acoustic events in VC transitions, (ii) temporal, spectral and modulation measures from the periodic and aperiodic components of the acoustic signal, and (iii) voicing activity derived from simultaneous EGG data. Analysis of interactions observed in British/American English and European Portuguese speech corpora will be compared, and the principal findings discussed.

  13. Acoustic Speech Analysis Of Wayang Golek Puppeteer

    NASA Astrophysics Data System (ADS)

    Hakim, Faisal Abdul; Mandasari, Miranti Indar; Sarwono, Joko

    2010-12-01

    Active disguising speech is one problem to be taken into account in forensic speaker verification or identification processes. The verification processes are usually carried out by comparison between unknown samples and known samples. Active disguising can be occurred on both samples. To simulate the condition of speech disguising, voices of Wayang Golek Puppeteer were used. It is assumed that wayang golek puppeteer is a master of disguise. He can manipulate his voice into many different types of character's voices. This paper discusses the speech characteristics of 2 puppeteers. Comparison was made between the voices of puppeteer's habitual voice with his manipulated voice.

  14. Voice estimation in patients after reconstructive subtotal laryngectomy

    PubMed Central

    2011-01-01

    Background Treatment of laryngeal cancers, may include surgery, radiotherapy, chemotherapy, or a combination. Total laryngectomy (TL) has been the standard surgical treatment. Partial laryngectomy procedures were performed, their advantage over TL is preservation of laryngeal functions. Methods The investigation was carried out on a group of 20 patients (3 female and 17 male), who underwent surgery according the techniques mentioned above. The methods of investigation were based on perceptual voice estimation (GRBAS), videolaryngostroboscopy, acoustic voice analysis, aerodynamic measure maximum phonation time, voice self-assessment (VHI). Results and Conclusions The perceptual voice estimation revealed a good phonation result in only 3 cases after using surgery with the Calearo method as well as the best results of MPT. The VHI reflected severe voice handicap in 2 patients (26 to 40 points). No statistically significant differences were observed between the values of the acoustic parameters in MDVP analysis after following operation -CHEP, Calearo, Sedlacek. PMID:22029703

  15. Vibro-acoustic analysis of the acoustic-structure interaction of flexible structure due to acoustic excitation

    NASA Astrophysics Data System (ADS)

    Djojodihardjo, Harijono

    2015-03-01

    The application of BE-FE acoustic-structure interaction on a structure subject to acoustic load is elaborated using the boundary element-finite element acoustic structural coupling and the utilization of the computational scheme developed earlier. The plausibility of the numerical treatment is investigated and validated through application to generic cases. The analysis carried out in the work is intended to serve as a baseline in the analysis of acoustic structure interaction for lightweight structures. Results obtained thus far exhibit the robustness of the method developed.

  16. Spectral Analysis of the Voice in Down Syndrome

    ERIC Educational Resources Information Center

    Albertini, G.; Bonassi, S.; Dall'Armi, V.; Giachetti, I.; Giaquinto, S.; Mignano, M.

    2010-01-01

    The voice quality of individuals with Down Syndrome (DS) is generally described as husky, monotonous and raucous. On the other hand, the voice of DS children is characterized by breathiness, roughness, and nasality and is typically low pitched. However, research on phonation and intonation in these participants is limited. The present study was…

  17. Acoustic echo cancellation for full-duplex voice transmission on fading channels

    NASA Astrophysics Data System (ADS)

    Park, Sangil; Messer, Dion D.

    This paper discusses the implementation of an adaptive acoustic echo canceler for a hands-free cellular phone operating on a fading channel. The adaptive lattice structure, which is particularly known for faster convergence relative to the conventional tapped-delay-line (TDL) structure, is used in the initialization stage. After convergence, the lattice coefficients are converted into the coefficients for the TDL structure which can accommodate a larger number of taps in real-time operation due to its computational simplicity. The conversion method of the TDL coefficients from the lattice coefficients is derived and the DSP56001 assembly code for the lattice and TDL structure is included, as well as simulation results and the schematic diagram for the hardware implementation.

  18. Acoustic analysis of anisotropic poroelastic multilayered systems

    NASA Astrophysics Data System (ADS)

    Parra Martinez, Juan Pablo; Dazel, Olivier; Göransson, Peter; Cuenca, Jacques

    2016-02-01

    The proposed method allows for an extended analysis of the wave analysis, internal powers, and acoustic performance of anisotropic poroelastic media within semi-infinite multilayered systems under arbitrary excitation. Based on a plane wave expansion, the solution is derived from a first order partial derivative as proposed by Stroh. This allows for an in-depth analysis of the mechanisms controlling the acoustic behaviour in terms of internal powers and wave properties in the media. In particular, the proposed approach is used to highlight the influence of the phenomena intrinsic to anisotropic poroelastic media, such as compression-shear coupling related to the material alignment, the frequency shift of the fundamental resonance, or the appearance of particular geometrical coincidences in multilayered systems with such materials.

  19. Evaluation of voice pathology based on the estimation of vocal fold biomechanical parameters.

    PubMed

    Gómez-Vilda, P; Fernández-Baillo, R; Nieto, A; Díaz, F; Fernández-Camacho, F J; Rodellar, V; Alvarez, A; Martínez, R

    2007-07-01

    Voice disorders are a source of increasing concern as normal voice quality is a social demand for at least one third of the population in developed countries in cases where voice is an essential resource in professional exercise. In addition, the growing exposure to certain pathogenic factors such as smoking, alcohol abuse, air pollution, and acoustic contamination, and other problems such as gastro-esopharyngeal reflux or allergy as well as aging, aggravate voice disorders. Voice pathologies justify the assignment of larger resources to prevention policies, early detection, and less aggressive treatments. Traditional pathology detection relies on perceptive evaluation methods (GRABS), acoustic analysis, and visual inspection (indirect laryngoscopy, and modern fibro-endo-stroboscopy). This article describes a method for voice pathology detection based on the noninvasive estimation of vocal cord biomechanical parameters derived from voice using specific signal processing methods. Preliminary results using records from patients showing four frequent causes of voice pathology (nodules, polyps, chronic laryngitis, and Reinke's edema) are given. The results show that the alteration (distortion, unbalance, or deviation) of cord biomechanical parameters may serve as an indicator of pathology. Statistical methods based on hierarchical clustering and principal component analysis reveal that combining biomechanical estimates with classic perturbation parameters increases the accuracy of acoustic analysis, improving the detection of voice pathology. This research could open new possibilities for noninvasive screening of vocal fold pathologies and could be used in the implantation of e-health voice care services. PMID:16549321

  20. Evaluation of voice pathology based on the estimation of vocal fold biomechanical parameters.

    PubMed

    Gómez-Vilda, P; Fernández-Baillo, R; Nieto, A; Díaz, F; Fernández-Camacho, F J; Rodellar, V; Alvarez, A; Martínez, R

    2007-07-01

    Voice disorders are a source of increasing concern as normal voice quality is a social demand for at least one third of the population in developed countries in cases where voice is an essential resource in professional exercise. In addition, the growing exposure to certain pathogenic factors such as smoking, alcohol abuse, air pollution, and acoustic contamination, and other problems such as gastro-esopharyngeal reflux or allergy as well as aging, aggravate voice disorders. Voice pathologies justify the assignment of larger resources to prevention policies, early detection, and less aggressive treatments. Traditional pathology detection relies on perceptive evaluation methods (GRABS), acoustic analysis, and visual inspection (indirect laryngoscopy, and modern fibro-endo-stroboscopy). This article describes a method for voice pathology detection based on the noninvasive estimation of vocal cord biomechanical parameters derived from voice using specific signal processing methods. Preliminary results using records from patients showing four frequent causes of voice pathology (nodules, polyps, chronic laryngitis, and Reinke's edema) are given. The results show that the alteration (distortion, unbalance, or deviation) of cord biomechanical parameters may serve as an indicator of pathology. Statistical methods based on hierarchical clustering and principal component analysis reveal that combining biomechanical estimates with classic perturbation parameters increases the accuracy of acoustic analysis, improving the detection of voice pathology. This research could open new possibilities for noninvasive screening of vocal fold pathologies and could be used in the implantation of e-health voice care services.

  1. Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: The role of vocalizer body size and voice-acoustic allometry

    NASA Astrophysics Data System (ADS)

    Rendall, Drew; Kollias, Sophie; Ney, Christina; Lloyd, Peter

    2005-02-01

    Key voice features-fundamental frequency (F0) and formant frequencies-can vary extensively between individuals. Much of the variation can be traced to differences in the size of the larynx and vocal-tract cavities, but whether these differences in turn simply reflect differences in speaker body size (i.e., neutral vocal allometry) remains unclear. Quantitative analyses were therefore undertaken to test the relationship between speaker body size and voice F0 and formant frequencies for human vowels. To test the taxonomic generality of the relationships, the same analyses were conducted on the vowel-like grunts of baboons, whose phylogenetic proximity to humans and similar vocal production biology and voice acoustic patterns recommend them for such comparative research. For adults of both species, males were larger than females and had lower mean voice F0 and formant frequencies. However, beyond this, F0 variation did not track body-size variation between the sexes in either species, nor within sexes in humans. In humans, formant variation correlated significantly with speaker height but only in males and not in females. Implications for general vocal allometry are discussed as are implications for speech origins theories, and challenges to them, related to laryngeal position and vocal tract length. .

  2. Neural mechanisms for voice recognition.

    PubMed

    Andics, Attila; McQueen, James M; Petersson, Karl Magnus; Gál, Viktor; Rudas, Gábor; Vidnyánszky, Zoltán

    2010-10-01

    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The pre-defined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible 'mean voice' representations. PMID:20553895

  3. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks

    PubMed Central

    Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-01-01

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375

  4. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  5. The Role of Pitch and Timbre in Voice Gender Categorization

    PubMed Central

    Pernet, Cyril R.; Belin, Pascal

    2012-01-01

    Voice gender perception can be thought of as a mixture of low-level perceptual feature extraction and higher-level cognitive processes. Although it seems apparent that voice gender perception would rely on low-level pitch analysis, many lines of research suggest that this is not the case. Indeed, voice gender perception has been shown to rely on timbre perception and to be categorical, i.e., to depend on accessing a gender model or representation. Here, we used a unique combination of acoustic stimulus manipulation and mathematical modeling of human categorization performances to determine the relative contribution of pitch and timbre to this process. Contrary to the idea that voice gender perception relies on timber only, we demonstrate that voice gender categorization can be performed using pitch only but more importantly that pitch is used only when timber information is ambiguous (i.e., for more androgynous voices). PMID:22347205

  6. Performance of wavelet analysis and neural networks for pathological voices identification

    NASA Astrophysics Data System (ADS)

    Salhi, Lotfi; Talbi, Mourad; Abid, Sabeur; Cherif, Adnane

    2011-09-01

    Within the medical environment, diverse techniques exist to assess the state of the voice of the patient. The inspection technique is inconvenient for a number of reasons, such as its high cost, the duration of the inspection, and above all, the fact that it is an invasive technique. This study focuses on a robust, rapid and accurate system for automatic identification of pathological voices. This system employs non-invasive, non-expensive and fully automated method based on hybrid approach: wavelet transform analysis and neural network classifier. First, we present the results obtained in our previous study while using classic feature parameters. These results allow visual identification of pathological voices. Second, quantified parameters drifting from the wavelet analysis are proposed to characterise the speech sample. On the other hand, a system of multilayer neural networks (MNNs) has been developed which carries out the automatic detection of pathological voices. The developed method was evaluated using voice database composed of recorded voice samples (continuous speech) from normophonic or dysphonic speakers. The dysphonic speakers were patients of a National Hospital 'RABTA' of Tunis Tunisia and a University Hospital in Brussels, Belgium. Experimental results indicate a success rate ranging between 75% and 98.61% for discrimination of normal and pathological voices using the proposed parameters and neural network classifier. We also compared the average classification rate based on the MNN, Gaussian mixture model and support vector machines.

  7. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  8. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    PubMed Central

    Zhang, Yu; Jiang, Jack J.

    2009-01-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases. PMID:22505778

  9. Two parametric voice source models and their asymptotic analysis

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.; Sorokin, V. N.

    2014-05-01

    The paper studies the asymptotic behavior of the function for the area of the glottis near moments of its opening and closing for two mathematical voice source models. It is shown that in the first model, the asymptotics of the area function obeys a power law with an exponent of no less that 1. Detailed analysis makes it possible to refine these limits depending on the relative sizes of the intervals of a closed and open glottis. This work also studies another parametric model of the area of the glottis, which is based on a simplified physical-geometrical representation of vocal-fold vibration processes. This is a special variant of the well-known two-mass model and contains five parameters: the period of the main tone, equivalent masses on the lower and upper edge of vocal folds, the coefficient of elastic resistance of the lower vocal fold, and the delay time between openings of the upper and lower folds. It is established that the asymptotics of the obtained function for the area of the glottis obey a power law with an exponent of 1 both for opening and closing.

  10. Voice analysis as an objective state marker in bipolar disorder.

    PubMed

    Faurholt-Jepsen, M; Busk, J; Frost, M; Vinberg, M; Christensen, E M; Winther, O; Bardram, J E; Kessing, L V

    2016-01-01

    Changes in speech have been suggested as sensitive and valid measures of depression and mania in bipolar disorder. The present study aimed at investigating (1) voice features collected during phone calls as objective markers of affective states in bipolar disorder and (2) if combining voice features with automatically generated objective smartphone data on behavioral activities (for example, number of text messages and phone calls per day) and electronic self-monitored data (mood) on illness activity would increase the accuracy as a marker of affective states. Using smartphones, voice features, automatically generated objective smartphone data on behavioral activities and electronic self-monitored data were collected from 28 outpatients with bipolar disorder in naturalistic settings on a daily basis during a period of 12 weeks. Depressive and manic symptoms were assessed using the Hamilton Depression Rating Scale 17-item and the Young Mania Rating Scale, respectively, by a researcher blinded to smartphone data. Data were analyzed using random forest algorithms. Affective states were classified using voice features extracted during everyday life phone calls. Voice features were found to be more accurate, sensitive and specific in the classification of manic or mixed states with an area under the curve (AUC)=0.89 compared with an AUC=0.78 for the classification of depressive states. Combining voice features with automatically generated objective smartphone data on behavioral activities and electronic self-monitored data increased the accuracy, sensitivity and specificity of classification of affective states slightly. Voice features collected in naturalistic settings using smartphones may be used as objective state markers in patients with bipolar disorder. PMID:27434490

  11. Voice analysis as an objective state marker in bipolar disorder.

    PubMed

    Faurholt-Jepsen, M; Busk, J; Frost, M; Vinberg, M; Christensen, E M; Winther, O; Bardram, J E; Kessing, L V

    2016-07-19

    Changes in speech have been suggested as sensitive and valid measures of depression and mania in bipolar disorder. The present study aimed at investigating (1) voice features collected during phone calls as objective markers of affective states in bipolar disorder and (2) if combining voice features with automatically generated objective smartphone data on behavioral activities (for example, number of text messages and phone calls per day) and electronic self-monitored data (mood) on illness activity would increase the accuracy as a marker of affective states. Using smartphones, voice features, automatically generated objective smartphone data on behavioral activities and electronic self-monitored data were collected from 28 outpatients with bipolar disorder in naturalistic settings on a daily basis during a period of 12 weeks. Depressive and manic symptoms were assessed using the Hamilton Depression Rating Scale 17-item and the Young Mania Rating Scale, respectively, by a researcher blinded to smartphone data. Data were analyzed using random forest algorithms. Affective states were classified using voice features extracted during everyday life phone calls. Voice features were found to be more accurate, sensitive and specific in the classification of manic or mixed states with an area under the curve (AUC)=0.89 compared with an AUC=0.78 for the classification of depressive states. Combining voice features with automatically generated objective smartphone data on behavioral activities and electronic self-monitored data increased the accuracy, sensitivity and specificity of classification of affective states slightly. Voice features collected in naturalistic settings using smartphones may be used as objective state markers in patients with bipolar disorder.

  12. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640

  13. Acoustic attenuation analysis program for ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Kunze, R. K., Jr.

    1972-01-01

    A computerized acoustic attenuation prediction procedure has been developed to evaluate acoustically lined ducts for various geometric and environmental parameters. The analysis procedure is based on solutions to the acoustic wave equation, assuming uniform airflow on a duct cross section, combined with appropriate mathematical lining impedance models. The impedance models included in the analysis procedure are representative of either perforated sheet or porous polyimide impregnated fiberglass facing sheet coupled with a cellular backing space. Advantages and limitations of the analysis procedure are reviewed.

  14. Giving Voice to Emotion: Voice Analysis Technology Uncovering Mental States is Playing a Growing Role in Medicine, Business, and Law Enforcement.

    PubMed

    Allen, Summer

    2016-01-01

    It's tough to imagine anything more frustrating than interacting with a call center. Generally, people don't reach out to call centers when they?re happy-they're usually trying to get help with a problem or gearing up to do battle over a billing error. Add in an automatic phone tree, and you have a recipe for annoyance. But what if that robotic voice offering you a smorgasbord of numbered choices could tell that you were frustrated and then funnel you to an actual human being? This type of voice analysis technology exists, and it's just one example of the many ways that computers can use your voice to extract information about your mental and emotional state-including information you may not think of as being accessible through your voice alone. PMID:27187541

  15. Giving Voice to Emotion: Voice Analysis Technology Uncovering Mental States is Playing a Growing Role in Medicine, Business, and Law Enforcement.

    PubMed

    Allen, Summer

    2016-01-01

    It's tough to imagine anything more frustrating than interacting with a call center. Generally, people don't reach out to call centers when they?re happy-they're usually trying to get help with a problem or gearing up to do battle over a billing error. Add in an automatic phone tree, and you have a recipe for annoyance. But what if that robotic voice offering you a smorgasbord of numbered choices could tell that you were frustrated and then funnel you to an actual human being? This type of voice analysis technology exists, and it's just one example of the many ways that computers can use your voice to extract information about your mental and emotional state-including information you may not think of as being accessible through your voice alone.

  16. Acoustical analysis of gear housing vibration

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.; Oswald, Fred B.

    1991-01-01

    The modal and acoustical analysis of the NASA gear-noise rig is described. Experimental modal analysis techniques were used to determine the modes of vibration of the transmission housing. The resulting modal data were then used in a boundary element method (BEM) analysis to calculate the sound pressure and sound intensity on the surface of the housing as well as the radiation efficiency of each mode. The radiation efficiencies of the transmission housing modes are compared with theoretical results for finite, baffled plates. A method that uses the measured mode shapes and the BEM to predict the effect of simple structural changes on the sound radiation efficiency of the modes of vibration is also described.

  17. Particle analysis in an acoustic cytometer

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  18. Using Innovative Acoustic Analysis to Predict the Postoperative Outcomes of Unilateral Vocal Fold Paralysis

    PubMed Central

    Tsou, Yung-An; Chen, Wei-Chen; Ke, Hsiang-Chun; Lin, Wen-Yang; Yang, Hsing-Rong; Shie, Dung-Yun; Tsai, Ming-Hsui

    2016-01-01

    Objective. Autologous fat injection laryngoplasty is ineffective for some patients with iatrogenic vocal fold paralysis, and additional laryngeal framework surgery is often required. An acoustically measurable outcome predictor for lipoinjection laryngoplasty would assist phonosurgeons in formulating treatment strategies. Methods. Seventeen thyroid surgery patients with unilateral vocal fold paralysis participated in this study. All subjects underwent lipoinjection laryngoplasty to treat postsurgery vocal hoarseness. After treatment, patients were assigned to success and failure groups on the basis of voice improvement. Linear prediction analysis was used to construct a new voice quality indicator, the number of irregular peaks (NIrrP). It compared with the measures used in the Multi-Dimensional Voice Program (MDVP), such as jitter (frequency perturbation) and shimmer (perturbation of amplitude). Results. By comparing the [i] vowel produced by patients before the lipoinjection laryngoplasty (AUC = 0.98, 95% CI = 0.78–0.99), NIrrP was shown to be a more accurate predictor of long-term surgical outcomes than jitter (AUC = 0.73, 95% CI = 0.47–0.91) and shimmer (AUC = 0.63, 95% CI = 0.37–0.85), as identified by the receiver operating characteristic curve. Conclusions. NIrrP measured using the LP model could be a more accurate outcome predictor than the parameters used in the MDVP. PMID:27738634

  19. Modal analysis and intensity of acoustic radiation of the kettledrum.

    PubMed

    Tronchin, Lamberto

    2005-02-01

    The acoustical features of kettledrums have been analyzed by means of modal analysis and acoustic radiation (p/v ratio) measurements. Modal analysis of two different kettledrums was undertaken, exciting the system both by a hammer and a shaker. Up to 15 vibrational modes were clearly identified. Acoustic radiation was studied using two ways. Based on previous experiments of other researchers, a new parameter, called intensity of acoustic radiation (IAR), has been defined and measured. Results show a strict relationship between IAR and the frequency response function (FRF, which is the v/F ratio), and IAR also strongly relates the modal pattern to acoustic radiation. Finally, IAR is proposed for vibro-acoustical characterization of kettledrums and other musical instruments such as strings, pianos, and harpsichords. PMID:15759711

  20. A local vector coding for high-quality voice analysis/synthesis

    NASA Astrophysics Data System (ADS)

    Ito, Masashi; Yano, Masafumi

    2005-09-01

    Line-type spectrum is observed in frequency responses for voiced sound. The spectrum can be characterized by physical parameters: instantaneous amplitude, frequency, and phase for each component. It is difficult to estimate these parameters for natural utterances accurately by power spectrogram because the sound is usually unstationary. A new method, termed local vector coding (LVC), has been proposed to analyze these sounds. LVC assumes that the time-varying parameters for the input sound can be approximated by simple quadratic functions in a short analysis window. Utilizing the phase responses, LVC can estimate not only instantaneous amplitude and frequency for each component of the input but also their time derivatives. The validity of LVC method is examined by using naturally uttered voiced speech. The averaged estimation errors, defined by the differences between the input and resynthesized signals, are lower than 30 dB of the input energy. It indicates that LVC method is very useful for analyzing natural sounds. In addition, since the parameters of each component obtained by LVC method characterize the vowel quality, any kind of voice can be synthesized/transformed by changing each parameter independently, such as a voice of a male adult to a female voice.

  1. Multiple levels of linguistic and paralinguistic features contribute to voice recognition

    PubMed Central

    Mary Zarate, Jean; Tian, Xing; Woods, Kevin J. P.; Poeppel, David

    2015-01-01

    Voice or speaker recognition is critical in a wide variety of social contexts. In this study, we investigated the contributions of acoustic, phonological, lexical, and semantic information toward voice recognition. Native English speaking participants were trained to recognize five speakers in five conditions: non-speech, Mandarin, German, pseudo-English, and English. We showed that voice recognition significantly improved as more information became available, from purely acoustic features in non-speech to additional phonological information varying in familiarity. Moreover, we found that the recognition performance is transferable between training and testing in phonologically familiar conditions (German, pseudo-English, and English), but not in unfamiliar (Mandarin) or non-speech conditions. These results provide evidence suggesting that bottom-up acoustic analysis and top-down influence from phonological processing collaboratively govern voice recognition. PMID:26088739

  2. New standard measures for clinical voice analysis include high speed films

    NASA Astrophysics Data System (ADS)

    Pedersen, Mette; Munch, Kasper

    2012-02-01

    In the clinical work with patients in a medical voice clinic it is important to have a normal updated reference for the data used. Several new parameters have to be correlated to older traditional measures. The older ones are stroboscopy, eventually coordinated with electroglottography (EGG), the Multi- Dimensional-Voice Program and airflow rates. Long Time Averaged Spectrograms (LTAS) and phonetograms (voice profiles) are calculating the range and dynamics of tones of the patients. High-speed films, updated airflow measures as well as area calculations of phonotograms add information to the understanding of the glottis closure in single movements of the vocal cords. A multivariate analysis was made to study the connection between the measures. This information can be used in many connections, also in the otolaryngological clinic.

  3. Ambient noise analysis of underwater acoustic data

    NASA Astrophysics Data System (ADS)

    Snyder, Mark A.; Orlin, Pete; Schulte, Annette; Newcomb, Joal

    2003-04-01

    The Littoral Acoustic Demonstration Center (LADC) deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summers of 2001 and 2002. The buoys recorded frequencies up to 5859 Hz continuously for 36 days in 2001 and for 72 days in 2002. The acoustic signals recorded include sperm whale vocalizations, seismic airguns, and shipping traffic. The variability of the ambient noise is analyzed using spectrograms, time series, and statistical measurements. Variations in ambient noise before, during, and after tropical storm/hurricane passage are also investigated.

  4. Voice Source Characteristics of Male and Female Speakers of French.

    ERIC Educational Resources Information Center

    Temple, Rosalind A. M.

    1996-01-01

    A study investigated the realization of voicing contrasts ("breathiness") in plosive consonants produced by young French adults, particularly as they differ in males and females. Data came from acoustic analysis of recordings of nine informants reading lists of monosyllabic words with initial plosive consonants in isolation and in the content,…

  5. [The correlation between subjective and objective voice evaluation in organic and functional larynx disorders].

    PubMed

    Wiskirska-Woźnica, Bozena; Pruszewicz, Antoni; Obrebowski, Andrzej; Swidziński, Piotr

    2003-01-01

    The aim of this research is to develop and introduce into phoniatric diagnostic procedures the complex methodology of vocal function assessment, on the basis of comparison of subjective and objective voice estimation. The set of complex voice evaluation ought to include perceptual examination of the voice quality with quantitative GRBAS scale as a subjective method, vocal folds vibrations in videostroboscopy as a quasi-objective method and acoustic voice estimation in Multi Dimensional Voice Program (MDVP) as an objective method. The basic assumption of this report is to prove correlation existence for vocal folds vibration quality in videostroboscopy, parameters describing acoustic wave generating by vibration system in larynx (MDVP) and perceptual subjective voice assessment (GRBAS scale) in organic and functional voice disorders. Research was conducted on 100 subjects (65 with organic and 35 with functional voice disorder), aged 7-74 years randomly chosen from population of patients treated at the Department of Phoniatrics and Audiology, Karol Marcinkowski University School of Medical Sciences in Poznań in 1996-2001 and 60 subjects as a control group without any voice disorders according to phoniatric examination. The research methodology include perceptual voice evaluation based on Japanese (Hirano) GRBAS scale adapted to Polish language, in scale 0 to 3 as well as the vibrations of vocal folds in videostroboscopy with attempt at quantification (scale 1 to 3) of selected measure and for acoustic analysis of Multi Dimensional Voice Program (MDVP) for 17 estimated parameters. Due to results and statistic analysis the own, new scale of dysphonia severity was introduced.

  6. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  7. Comparison of subjective and objective tools in transoral laser cordectomy for early glottic cancer: importance of voice handicap index.

    PubMed

    Stomeo, F; Tosin, E; Morolli, F; Bianchini, C; Ciorba, A; Pastore, A; Pelucchi, S

    2013-01-01

    Several studies in recent years have already reported good oncologic results with laser microsurgery in the treatment of early glottic carcinoma. We conducted a longitudinal voice evaluation, in patients with early glottic cancer who underwent transoral laser cordectomy, in order to assess the voice quality outcome and its relationship with objective and subjective (voice handicap index questionnaire and GIRBAS scale) means. Twenty-four previously untreated patients underwent transoral laser cordectomy for early glottic cancer. All patients underwent subjective and objective voice assessment according to the multidimensional voice protocol recommended by the European Laryngological Society including acoustic, perceptual and stroboscopic analysis combined to patient self assessment of voice (voice handicap index-VHI). These evaluations were performed before treatment and 6 months after the treatment. Vocal fold healing was complete in all cases by 6 months following surgery. Main voice parameters (subjective and objective) resulted improved at the 6-month control after surgery. In particular, voice handicap index (VHI) and GIRBAS scale resulted reliable for voice assessment and for the postoperative follow-up. In conclusion, VHI, GIRBAS, multidimensional voice program (MDVP) and spectroacoustic parameters showed a close trend in the present study, and this confirms the validity of the voice analysis performed by each tool.

  8. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  9. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  10. Speech masking and cancelling and voice obscuration

    DOEpatents

    Holzrichter, John F.

    2013-09-10

    A non-acoustic sensor is used to measure a user's speech and then broadcasts an obscuring acoustic signal diminishing the user's vocal acoustic output intensity and/or distorting the voice sounds making them unintelligible to persons nearby. The non-acoustic sensor is positioned proximate or contacting a user's neck or head skin tissue for sensing speech production information.

  11. Is there an ironic tone of voice?

    PubMed

    Bryant, Gregory A; Fox Tree, Jean E

    2005-01-01

    Research on nonverbal vocal cues and verbal irony has often relied on the concept of an ironic tone of voice. Here we provide acoustic analysis and experimental evidence that this notion is oversimplified and misguided. Acoustic analyses of spontaneous ironic speech extracted from talk radio shows, both ambiguous and unambiguous in written form, revealed only a difference in amplitude variability compared to matched nonironic speech from the same sources, and that was only among the most clear-cut items. In a series of experiments, participants rated content-filtered versions of the same ironic and nonironic utterances on a range of affective and linguistic dimensions. Listeners did not rely on any set of vocal cues to identify verbal irony that was separate from other emotional and linguistic judgments. We conclude that there is no particular ironic tone of voice and that listeners interpret verbal irony by combining a variety of cues, including information outside of the linguistic context.

  12. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  13. The interaction of tone with voicing and foot structure: evidence from Kera phonetics and phonology

    NASA Astrophysics Data System (ADS)

    Pearce, Mary Dorothy

    This thesis uses acoustic measurements as a basis for the phonological analysis of the interaction of tone with voicing and foot structure in Kera (a Chadic language). In both tone spreading and vowel harmony, the iambic foot acts as a domain for spreading. Further evidence for the foot comes from measurements of duration, intensity and vowel quality. Kera is unusual in combining a tone system with a partially independent metrical system based on iambs. In words containing more than one foot, the foot is the tone bearing unit (TBU), but in shorter words, the TBU is the syllable. In perception and production experiments, results show that Kera speakers, unlike English and French, use the fundamental frequency as the principle cue to 'Voicing" contrast. Voice onset time (VOT) has only a minor role. Historically, tones probably developed from voicing through a process of tonogenesis, but synchronically, the feature voice is no longer contrastive and VOT is used in an enhancing role. Some linguists have claimed that Kera is a key example for their controversial theory of long-distance voicing spread. But as voice is not part of Kera phonology, this thesis gives counter-evidence to the voice spreading claim. An important finding from the experiments is that the phonological grammars are different between village women, men moving to town and town men. These differences are attributed to French contact. The interaction between Kera tone and voicing and contact with French have produced changes from a 2-way voicing contrast, through a 3-way tonal contrast, to a 2-way voicing contrast plus another contrast with short VOT. These diachronic and synchronic tone/voicing facts are analysed using laryngeal features and Optimality Theory. This thesis provides a body of new data, detailed acoustic measurements, and an analysis incorporating current theoretical issues in phonology, which make it of interest to Africanists and theoreticians alike.

  14. Analysis of modal and creaky voice quality variations

    NASA Astrophysics Data System (ADS)

    Shetye, Avanti S.; Espy-Wilson, Carol Y.

    2005-09-01

    Voice quality, as a major vehicle of information about physical, phonological, and social characteristics of the speaker, has a vital semiotic role to play in spoken interaction [Laver (1968), Laver and Trudgill (1979)]. In the past couple of years, our lab developed an Aperiodicity/Periodicity/Pitch (APP) detector that produces a spectro-temporal profile of the periodic and aperiodic regions of the speech waveform [Deshmukh et al. (in press)]. To do so, the speech signal is passed through a 60-channel gamma tone auditory filterbank. The distribution of the dips occurring in the average magnitude difference function (AMDF) computed from each channel envelope is analyzed to determine periodicity and aperiodicity. Presently, the APP detector classifies both turbulent noise and irregular vocal fold vibration (creakiness) as aperiodic. In this work, we are investigating the detailed characteristics of the AMDF waveform when speech is creaky. This information is presently being used to distinguish aperiodicity due to turbulence from aperiodicity due to creakiness. We will present results from the refined APP detector using various male and female utterances from the TIMIT database.

  15. A Spectral Analysis Approach for Acoustic Radiation from Composite Panels

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Singh, Mahendra P.; Mei, Chuh

    2004-01-01

    A method is developed to predict the vibration response of a composite panel and the resulting far-field acoustic radiation due to acoustic excitation. The acoustic excitation is assumed to consist of obliquely incident plane waves. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. The approach can easily include other effects such as shape memory alloy (SMA) ber reinforcement, large detection thermal postbuckling, and non-symmetric SMA distribution or lamination. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Results for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement. The mechanisms for further transmission loss improvement are identified and discussed.

  16. Objective and Subjective Voice Examination in Korean Medicine

    PubMed Central

    Yu, Junsang

    2014-01-01

    Objectives: When a person speaks, voice problems usually include pain or discomfort and/or difficulties in terms of the pitch, the loudness and the quality of the voice. When patients with voice problems induced by stroke, Parkinson’s disease, and systemic diseases involving the voice are examined, generally, of the Four Diagnoses (四診), a Diagnosis of Hearing can be used in current Korean medicine. The effects of acupuncture and herb medicine on voice problems have been reported for over 20 years. However, when it comes to improvements, objective and subjective evaluation methods need to be explained. Methods: Subjective methods for evaluating voice were studied through a literature search of old medicinal books containing Korean medicine diagnostics, and an objective evaluation method using Praat software is presented. Results: Korean medicine doctors analyze the patient’s voice in clinical settings unconsciously on a daily basis. However, most voice diagnoses depend on the doctor’s subjective evaluation. Voice qualities can be evaluated by using the Eight Principles (八綱), including Yin-Yang; the Five Elements (Phases); the Grade, Roughness, Breathy, Asthenic, Strained (GRBAS) score, and the Visual Analogue Scale (VAS) as subjective methods, and an acoustic analysis using the Praat program can be used as an objective method. Conclusion: A more complete voice examination can be achieved by using subjective and objective methods at the same time. For an objective explanation and management of patient’s voice problems or systemic disorders, an objective method should be used in Korean medicine, which already has many subjective diagnostic methods. More research needs to be conducted, and more clinical evidence needs to be collected in the future. PMID:25780710

  17. Assessment of Severe Apnoea through Voice Analysis, Automatic Speech, and Speaker Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Fernández Pozo, Rubén; Blanco Murillo, Jose Luis; Hernández Gómez, Luis; López Gonzalo, Eduardo; Alcázar Ramírez, José; Toledano, Doroteo T.

    2009-12-01

    This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.

  18. Preliminary voice and speech analysis following fetal dopamine transplants in 5 individuals with Parkinson disease.

    PubMed

    Baker, K K; Ramig, L O; Johnson, A B; Freed, C R

    1997-06-01

    A surgical procedure involving transplantation of fetal dopamine cells into the striatum of persons with advanced Parkinson disease (PD) has recently been performed in an attempt to alleviate Parkinsonian and drug-dose related symptoms (e.g., the "on-off" phenomena). Improvements in limb motor and neurological function, as well as less severe and shorter on-off episodes have been reported following fetal cell transplant (FCT) surgery. Acoustic, electroglottographic, and perceptual measures were analyzed pre- and post-surgery to determine if phonotory and articulatory function were affected by this relatively new form of treatment. In addition, speech and motor exam measures were compared to determine if similar directional changes across motor systems were apparent. Findings suggest that FCT surgery did not systematically influence voice and speech production. Also, it appears that FCT surgery may differentially affect phonatory, articulatory, and limb motor systems. Findings are discussed relative to these differential effects.

  19. LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor

    NASA Astrophysics Data System (ADS)

    Hernández, Ignacio; Staffelbach, Gabriel; Poinsot, Thierry; Román Casado, Juan C.; Kok, Jim B. W.

    2013-01-01

    Numerical simulations were performed using Large Eddy Simulation (LES) and acoustic analysis tools to study thermo-acoustic instabilities in a methane/air academic burner installed at the University of Twente (The Netherlands). It operates under fuel-lean partially premixed conditions at atmospheric pressure, and was built to study thermo-acoustic instabilities in conditions representative of gas turbine Lean Premixed systems: gaseous fuel is injected upstream of the combustor and has a limited time to mix with air. Even though the objective is to burn in a premixed mode, the actual regime corresponds to a partially premixed flame where strong equivalence ratio variations are created especially during combustion instabilities. Capturing these modes with LES is a challenge: here, simulations for both stable and unstable regimes are performed. In the unstable case, the limit cycle oscillations (LCO) are characterized and compared to experimental results. Reasonable agreement is found between simulations and experiments.

  20. Dimensional analysis of acoustically propagated signals

    NASA Technical Reports Server (NTRS)

    Hansen, Scott D.; Thomson, Dennis W.

    1993-01-01

    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  1. Acoustic Analysis of a Mechanical Circulatory Support

    PubMed Central

    Hubbert, Laila; Sundbom, Per; Loebe, Matthias; Peterzén, Bengt; Granfeldt, Hans; Ahn, Henrik

    2014-01-01

    Mechanical circulatory support technology is continually improving. However, adverse complications do occur with devastating consequences, for example, pump thrombosis that may develop in several parts of the pump system. The aim of this study was to design an experimental clot/thrombosis model to register and analyze acoustic signals from the left ventricular assist device (LVAD) HeartMate II (HMII) (Thoratec Corporation, Inc., Pleasanton, CA, USA) and detect changes in sound signals correlating to clots in the inflow, outflow, and pump housing. Using modern telecom techniques, it was possible to register and analyze the HMII pump-specific acoustic fingerprint in an experimental model of LVAD support using a mock loop. Increase in pump speed significantly (P < 0.005) changed the acoustic fingerprint at certain frequency (0–23 000 Hz) intervals (regions: R1–3 and peaks: P1,3–4). When the ball valves connected to the tubing were narrowed sequentially by ∼50% of the inner diameter (to mimic clot in the out- and inflow tubing), the frequency spectrum changed significantly (P < 0.005) in P1 and P2 and R1 when the outflow tubing was narrowed. This change was not seen to the same extent when the lumen of the ball valve connected to the inflow tube was narrowed by ∼50%. More significant (P < 0.005) acoustic changes were detected in P1 and P2 and R1 and R3, with the largest dB figs. in the lower frequency ranges in R1 and P2, when artificial clots and blood clots passed through the pump system. At higher frequencies, a significant change in dB figs. in R3 and P4 was detected when clots passed through the pump system. Acoustic monitoring of pump sounds may become a valuable tool in LVAD surveillance. PMID:24372095

  2. Assessment of dysphonia due to benign vocal fold lesions by acoustic and aerodynamic indices: a multivariate analysis.

    PubMed

    Cantarella, Giovanna; Baracca, Giovanna; Pignataro, Lorenzo; Forti, Stella

    2011-04-01

    The goal was to identify acoustic and aerodynamic indices that allow the discrimination of a benign organic dysphonic voice from a normal voice. Fifty-three patients affected by dysphonia caused by vocal folds benign lesions, and a control group were subjected to maximum phonation time (MPT) measurements, GRB perceptual evaluations and acoustic/aerodynamic tests. All analyzed variables except the airflow variation coefficient were significantly different between the two groups. The unique significant factors in the discrimination between healthy and dysphonic subjects were the aerodynamic indices of MPT and Glottal efficiency index, and the acoustic index Shimmer. These results show that a combination of three parameters can discriminate a voice deviance and highlight the importance of a multidimensional assessment for objective voice evaluation.

  3. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.

    PubMed

    Godino-Llorente, J I; Gómez-Vilda, P

    2004-02-01

    It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.

  4. Perceptual evaluation of pathological voice quality: a comparative analysis between the RASATI and GRBASI scales.

    PubMed

    Yamauchi, Emi Juliana; Imaizumi, Satoshi; Maruyama, Hagino; Haji, Tomoyuki

    2010-10-01

    To provide mutual understanding between different evaluation scales for pathological voice quality, comparative analyses between the GRBASI and the RASATI systems were conducted. A total of 100 voice samples were rated by experienced Brazilian and Japanese listeners. Analysis by factor analysis with varimax rotation identified significant interrelations between the scales, with asthenia, instability, and roughness as the common factors. Grade-of-hoarseness, only included in GRBASI, corresponds to a combination of roughness, breathiness, and instability. Harshness, included only in RASATI, can be predicted by breathiness with strain in the GRBASI scale. Roughness is found to be the most consistent factor and the easiest to identify by evaluators with different linguistic background. PMID:19883167

  5. [Voice disturbances in young children with gastroesophageal reflux disease].

    PubMed

    Viaz'menov, E O; Radtsig, E Iu; Bogomil'skiĭ, M R; Vodolazov, S Iu; Poliudov, S A; Myzin, A V

    2010-01-01

    The objective of the present work was to study voice disturbances in young children with gastroesophageal reflux disease. Diagnostic algorithm included direct transnasal examination of the larynx using an Olympus fibroscope (Japan), fibrogastroduodenoscopy, 24-hour potentiometry, biopsy of oesophageal mucosa, and acoustic analysis of the voice. A total of 26 children at the age from 8 months to 3 years with voice disturbances were examined, including 12 children below one year, 5 between 1 and 2 years, and 9 between 2 and 3 years. The main signs of laryngoesophageal reflux were dysphonia, oedema, hyperemia, and altered light reflex of mucous membrane of arytenoid cartilages, interarytenoid space, and vocal cords. It is concluded that voice disturbances are the most common symptoms of laryngoesophageal reflux in young children which necessitates the earliest possible endoscopic study of the larynx in all cases of dysphonia. PMID:20517277

  6. Effect of testosterone therapy on the female voice

    PubMed Central

    Glaser, R.; York, A.; Dimitrakakis, C.

    2016-01-01

    Abstract Objectives This prospective study was designed to investigate the effect of testosterone, delivered by subcutaneous implants, on the female voice. Methods Ten women who had opted for testosterone therapy were recruited for voice analysis. Voices were recorded prior to treatment and at 3 months, 6 months, and 12 months while on testosterone therapy. Acoustic samples were collected with subjects reading a sentence, reading a paragraph, and participating in a conversation. Significant changes in the voice over time were investigated using a repeated-measures analysis of variance with the fundamental frequency (F 0) as a response variable. Demographic variables associated with characteristics of the voice were assessed. Results There were no significant differences in average F 0 related to smoking history, menopausal status, weight, or body mass index. There was no difference in average fundamental speaking frequency (sentence, paragraph, conversation) between the pre-treatment group and any post-treatment group at 3 and 12 months. There was an increase in sentence speech F 0 at 6 months. Two of three patients with lower than expected F 0 at baseline improved on testosterone therapy. Conclusion Therapeutic levels of testosterone, delivered by subcutaneous implant, had no adverse affect on the female voice including lowering or deepening of the voice. PMID:26857354

  7. High-resolution frequency analysis as applied to the singing voice.

    PubMed

    Morsomme, D; Remacle, M; Millet, B

    1993-01-01

    We have applied high-resolution vocal frequent analysis to a population of singing voices. Two important elements have become apparent: (1) Confirmation that the singing formant originates in the resonators. This is observed especially on a low fundamental, and it is acquired through technical skill and experience. (2) Observation of the vibrato, which, isolated from the clinical study, regarding only its graphic presentation, could have been interpreted as 'abnormal'. PMID:8253452

  8. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  9. Early Detection of Severe Apnoea through Voice Analysis and Automatic Speaker Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Fernández, Ruben; Blanco, Jose Luis; Díaz, David; Hernández, Luis A.; López, Eduardo; Alcázar, José

    This study is part of an on-going collaborative effort between the medical and the signal processing communities to promote research on applying voice analysis and Automatic Speaker Recognition techniques (ASR) for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based diagnosis could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we present and discuss the possibilities of using generative Gaussian Mixture Models (GMMs), generally used in ASR systems, to model distinctive apnoea voice characteristics (i.e. abnormal nasalization). Finally, we present experimental findings regarding the discriminative power of speaker recognition techniques applied to severe apnoea detection. We have achieved an 81.25 % correct classification rate, which is very promising and underpins the interest in this line of inquiry.

  10. Similarity analysis of voice signals using wavelets with dynamic time warping

    NASA Astrophysics Data System (ADS)

    Tashakkori, Rahman; Bowers, Courtney

    2003-04-01

    Accurately recognizing speech is a difficult task. Differences in gender, accent, pace, tone, as well as defects in the recording equipment and environmental noise can disturb a voice signal. Speech recognition systems are commonly studied and implemented by companies trying to alleviate problems, such as illness or injury, or to increase overall efficiency. This research uses wavelet analysis with several traditional methods to study similarities among sound signals. Through a series of seven steps, a similarity analysis of some voice signals from the same speaker as well as from different speakers is performed. The efficiency of four different wavelets (Haar, db2, db4 and Discrete Morlet), different correlation methods developed previously or in this research, and two different Dynamic Time Warping methods are studied in this research. Through several experiments, it will be shown that these techniques produce excellent results for signals by the same speaker. Based on the limited number of cases studied in this research, some evidence will be presented that suggests the proposed methods on this research are more effective for recognizing male voice files than those of females.

  11. Atypical mismatch negativity in response to emotional voices in people with autism spectrum conditions.

    PubMed

    Fan, Yang-Teng; Cheng, Yawei

    2014-01-01

    Autism Spectrum Conditions (ASC) are characterized by heterogeneous impairments of social reciprocity and sensory processing. Voices, similar to faces, convey socially relevant information. Whether voice processing is selectively impaired remains undetermined. This study involved recording mismatch negativity (MMN) while presenting emotionally spoken syllables dada and acoustically matched nonvocal sounds to 20 subjects with ASC and 20 healthy matched controls. The people with ASC exhibited no MMN response to emotional syllables and reduced MMN to nonvocal sounds, indicating general impairments of affective voice and acoustic discrimination. Weaker angry MMN amplitudes were associated with more autistic traits. Receiver operator characteristic analysis revealed that angry MMN amplitudes yielded a value of 0.88 (p<.001). The results suggest that people with ASC may process emotional voices in an atypical fashion already at the automatic stage. This processing abnormality can facilitate diagnosing ASC and enable social deficits in people with ASC to be predicted. PMID:25036143

  12. Eigenmode analysis of geodesic acoustic modes

    SciTech Connect

    Gao Zhe; Itoh, K.; Sanuki, H.; Dong, J. Q.

    2008-07-15

    Geodesic acoustic modes (GAMs) are studied as plasma eigenmodes when an electrostatic potential nearly constant around a magnetic surface is applied to collisionless toroidal plasmas. Besides the standard GAM, a branch of low frequency mode and an infinite series of ion sound wavelike modes are identified. Eigenfrequencies of these modes are obtained analytically and numerically from a linear gyrokinetic model. The finite gyroradius effect is found to enhance the collisionless damping of the standard GAM, while this enhancement is not monotonic as the safety factor varies. Moreover, additional damping due to higher-harmonic resonances becomes important when the safety factor increases. The mode structure of the GAM is also discussed.

  13. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. PMID:15957758

  14. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria.

  15. Acoustic analysis in Mudejar-Gothic churches: Experimental results

    NASA Astrophysics Data System (ADS)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  16. [Endoscopic diagnostics of voice disorders in breastfed and young children].

    PubMed

    2011-01-01

    The objective of the present work was to study the prevalence, etiology, and semiotics of lesions in the acoustic apparatus. The secondary objectives were to estimate the informative and diagnostic value of various methods for the assessment of the state of the vocal apparatus (rigid endoscopy, fibroscopy, stroboscopy, and acoustic analysis of the voice) and to evaluate the prospects for their use in clinical practice. Moreover, the study was aimed at the development of an optimal therapeutic and diagnostic algorithm for the breastfeeding and young children suffering voice disturbances. The study included a total of 188 children aged from 4 days to 3 years presenting with the altered quality of voice who were examined using the clinical and instrumental methods for the estimation of the state of the larynx (rigid endoscopy, fibroscopy, and acoustic analysis of the voice) in combination with the modern computer-assisted technologies for the recording and processing of video images. It was found that disturbances of vocalization formation in the overwhelming majority of breastfeeding and young children (95.7%) can be attributed to dysphonia. Laryngeal pathology is most frequently diagnosed during the first year of life (28.2%). The leading cause of laryngeal lesions is inflammatory diseases (56.4%) followed by congenital malformations (25%).

  17. Voice following radiotherapy.

    PubMed

    Stoicheff, M L

    1975-04-01

    This study was undertaken to provide information on the voice of patients following radiotherapy for glottic cancer. Part I presents findings from questionnaires returned by 227 of 235 patients successfully irradiated for glottic cancer from 1960 through 1971. Part II presents preliminary findings on the speaking fundamental frequencies of 22 irradiated patients. Normal to near-normal voice was reported by 83 percent of the 227 patients; however, 80 percent did indicate persisting vocal difficulties such as fatiguing of voice with much usage, inability to sing, reduced loudness, hoarse voice quality and inability to shout. Amount of talking during treatments appeared to affect length of time for voice to recover following treatments in those cases where it took from nine to 26 weeks; also, with increasing years since treatment, patients rated their voices more favorably. Smoking habits following treatments improved significantly with only 27 percent smoking heavily as compared with 65 percent prior to radiation therapy. No correlation was found between smoking (during or after treatments) and vocal ratings or between smoking and length of time for voice to recover. There was no relationship found between reported vocal ratings and stage of the disease. Data on mean speaking fundamental frequency seem to indicate a trend toward lower frequencies in irradiated patients as compared with normals. A trend was also noted in both irradidated and control groups for lower speaking fundamental frequencies in heavy smokers compared with non-smokers or previous smokers. These trends would indicate some vocal cord thickening or edema in irradiated patients and in heavy smokers. It is suggested that the study of irradiated patients' voices before, during and following treatments by means of audio, aerodynamic and acoustic instrumentation would yield additional information of diagnostic value on recovery of laryngeal function. It is also suggested that the voice pathologist could

  18. Perturbation analysis of electromagnetic geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Ren, Haijun

    2014-06-01

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δBθ, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξθ. The parallel perturbation of magnetic field, δB∥, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δBθ to the leading order. The radial displacement ξr is of order O(βɛξθ) but plays a significant role in determining δB∥, where β is the plasma/magnetic pressure ratio and ɛ is the inverse aspect ratio.

  19. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  20. Photo-acoustic analysis of dental materials and tissue

    NASA Astrophysics Data System (ADS)

    Jeleva, Pavlina Jetchkova

    2005-11-01

    The goal of the presented study is the investigation of the feasibility of using optically generated acoustic waves for analysis of dental material below laser-ablation threshold. The temperature rise of dental material and tissue has been modeled analytically and numerically, and measured experimentally. Following interactions with nano- and femto-second laser radiation the temperature rises at a rate of typically 1°C per J/cm 2, along with the generation of an acoustical wave. The results from the models agree with the experiment. The acoustic measurements show differences in the acoustic signal strength and the frequency spectrum when the canal in the porcelain phantom is empty or filled with intralipid solution. The photo-acoustic technique is found to be suitable for detection of liquids under a layer of dental porcelain material, consequently it can be the basis for building an imaging tool for dental diagnostic applications. By generating sound waves in the pulp, one would be able to evaluate it's state and the overall health of the tooth. This is of vital importance for diagnosing initial-stage inflammation.

  1. Analysis of the development and possibilities of the acoustic emission method

    NASA Astrophysics Data System (ADS)

    Malecki, Ignacy

    The phenomenon of acoustic emission has been known for ages, but its practical use only dates back to the early 1960's to 'microseismic observations,' or farther back to the analysis of the acoustic emission generated by metals under stress. Discussed is the expansion of the measurement range by the detection of high frequency acoustic emission signals, the generation of acoustic emission by dislocation movements in metals and the brittle fracture of ceramics, the effect of material fatigue on acoustic emission activity, promising new applications in mining and construction, and efforts to improve acoustic emission transducers. A comparative analysis of trends in the development of acoustic emission techniques over the last 25 years and conclusions concerning the directions of future research are given. A description of ways to improve acoustic emission techniques which primarily focuses on electronic acoustic emission signal processing, extraction, and separation is presented. Phases of acoustic emission activity under conditions of rising stress, the 'life span' and fatigue of a material determined by means of acoustic emission, classification of acoustic emission sources, and analysis of the possibilities of acoustic emission for raw materials, processed materials, mechanical engineering, electronics, power generation, construction, and chemicals and for diagnosing motor vehicles and engineering systems are discussed. The authors also discuss the possibility of using acoustic emission in biology and medicine and the possible applications of acoustic emissions for basic research in physics and chemistry.

  2. Voice Disorders in Mucosal Leishmaniasis

    PubMed Central

    Ruas, Ana Cristina Nunes; Lucena, Márcia Mendonça; da Costa, Ananda Dutra; Vieira, Jéssica Rafael; de Araújo-Melo, Maria Helena; Terceiro, Benivaldo Ramos Ferreira; de Sousa Torraca, Tania Salgado; de Oliveira Schubach, Armando; Valete-Rosalino, Claudia Maria

    2014-01-01

    Introduction Leishmaniasis is considered as one of the six most important infectious diseases because of its high detection coefficient and ability to produce deformities. In most cases, mucosal leishmaniasis (ML) occurs as a consequence of cutaneous leishmaniasis. If left untreated, mucosal lesions can leave sequelae, interfering in the swallowing, breathing, voice and speech processes and requiring rehabilitation. Objective To describe the anatomical characteristics and voice quality of ML patients. Materials and Methods A descriptive transversal study was conducted in a cohort of ML patients treated at the Laboratory for Leishmaniasis Surveillance of the Evandro Chagas National Institute of Infectious Diseases - Fiocruz, between 2010 and 2013. The patients were submitted to otorhinolaryngologic clinical examination by endoscopy of the upper airways and digestive tract and to speech-language assessment through directed anamnesis, auditory perception, phonation times and vocal acoustic analysis. The variables of interest were epidemiologic (sex and age) and clinic (lesion location, associated symptoms and voice quality. Results 26 patients under ML treatment and monitored by speech therapists were studied. 21 (81%) were male and five (19%) female, with ages ranging from 15 to 78 years (54.5+15.0 years). The lesions were distributed in the following structures 88.5% nasal, 38.5% oral, 34.6% pharyngeal and 19.2% laryngeal, with some patients presenting lesions in more than one anatomic site. The main complaint was nasal obstruction (73.1%), followed by dysphonia (38.5%), odynophagia (30.8%) and dysphagia (26.9%). 23 patients (84.6%) presented voice quality perturbations. Dysphonia was significantly associated to lesions in the larynx, pharynx and oral cavity. Conclusion We observed that vocal quality perturbations are frequent in patients with mucosal leishmaniasis, even without laryngeal lesions; they are probably associated to disorders of some resonance

  3. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  4. Automatic Evaluation of Voice Quality Using Text-Based Laryngograph Measurements and Prosodic Analysis.

    PubMed

    Haderlein, Tino; Schwemmle, Cornelia; Döllinger, Michael; Matoušek, Václav; Ptok, Martin; Nöth, Elmar

    2015-01-01

    Due to low intra- and interrater reliability, perceptual voice evaluation should be supported by objective, automatic methods. In this study, text-based, computer-aided prosodic analysis and measurements of connected speech were combined in order to model perceptual evaluation of the German Roughness-Breathiness-Hoarseness (RBH) scheme. 58 connected speech samples (43 women and 15 men; 48.7 ± 17.8 years) containing the German version of the text "The North Wind and the Sun" were evaluated perceptually by 19 speech and voice therapy students according to the RBH scale. For the human-machine correlation, Support Vector Regression with measurements of the vocal fold cycle irregularities (CFx) and the closed phases of vocal fold vibration (CQx) of the Laryngograph and 33 features from a prosodic analysis module were used to model the listeners' ratings. The best human-machine results for roughness were obtained from a combination of six prosodic features and CFx (r = 0.71, ρ = 0.57). These correlations were approximately the same as the interrater agreement among human raters (r = 0.65, ρ = 0.61). CQx was one of the substantial features of the hoarseness model. For hoarseness and breathiness, the human-machine agreement was substantially lower. Nevertheless, the automatic analysis method can serve as the basis for a meaningful objective support for perceptual analysis.

  5. Automatic Evaluation of Voice Quality Using Text-Based Laryngograph Measurements and Prosodic Analysis

    PubMed Central

    Haderlein, Tino; Schwemmle, Cornelia; Döllinger, Michael; Matoušek, Václav; Ptok, Martin; Nöth, Elmar

    2015-01-01

    Due to low intra- and interrater reliability, perceptual voice evaluation should be supported by objective, automatic methods. In this study, text-based, computer-aided prosodic analysis and measurements of connected speech were combined in order to model perceptual evaluation of the German Roughness-Breathiness-Hoarseness (RBH) scheme. 58 connected speech samples (43 women and 15 men; 48.7 ± 17.8 years) containing the German version of the text “The North Wind and the Sun” were evaluated perceptually by 19 speech and voice therapy students according to the RBH scale. For the human-machine correlation, Support Vector Regression with measurements of the vocal fold cycle irregularities (CFx) and the closed phases of vocal fold vibration (CQx) of the Laryngograph and 33 features from a prosodic analysis module were used to model the listeners' ratings. The best human-machine results for roughness were obtained from a combination of six prosodic features and CFx (r = 0.71, ρ = 0.57). These correlations were approximately the same as the interrater agreement among human raters (r = 0.65, ρ = 0.61). CQx was one of the substantial features of the hoarseness model. For hoarseness and breathiness, the human-machine agreement was substantially lower. Nevertheless, the automatic analysis method can serve as the basis for a meaningful objective support for perceptual analysis. PMID:26136813

  6. Acoustic Emission Analysis of Prestressed Concrete Structures

    NASA Astrophysics Data System (ADS)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  7. Structure analysis using acoustically levitated droplets.

    PubMed

    Leiterer, J; Delissen, F; Emmerling, F; Thünemann, A F; Panne, U

    2008-06-01

    Synchrotron diffraction with a micrometer-sized X-ray beam permits the efficient characterization of micrometer-sized samples, even in time-resolved experiments, which is important because often the amount of sample available is small and/or the sample is expensive. In this context, we will present acoustic levitation as a useful sample handling method for small solid and liquid samples, which are suspended in a gaseous environment (air) by means of a stationary ultrasonic field. A study of agglomeration and crystallization processes in situ was performed by continuously increasing the concentration of the samples by evaporating the solvent. Absorption and contamination processes on the sample container walls were suppressed strongly by this procedure, and parasitic scattering such as that observed when using glass capillaries was also absent. The samples investigated were either dissolved or dispersed in water droplets with diameters in the range of 1 micrometer to 2 millimeters. Initial results from time-resolved synchrotron small- and wide-angle X-ray scattering measurements of ascorbic acid, acetylsalicylic acid, apoferritin, and colloidal gold are presented. PMID:18373085

  8. Applications of ripple analysis in hydro-acoustics

    NASA Astrophysics Data System (ADS)

    Leducq, D.; Schlegel, R.

    Software developed for ripple analysis in hydro-acoustic applications is described. Noise and vibration analysis using this software is shown to be particularly effective. The importance of post treatment of the data in order to obtain dependable results is stressed. Examples are presented of the use of the ripple analysis software in measuring the noise and vibration produced by a pump. The software is used in the analysis of cavitation noise. Cavitation noise frequency graphs are presented to illustrate the experimented results. The advantages of the ripple analysis techniques in obtaining a better understanding of the underlying physics of the processes studied are stressed.

  9. Acoustic response analysis of large light space structures

    NASA Astrophysics Data System (ADS)

    Defosse, H.; Mercier, F.

    1989-10-01

    The dynamic behavior of large lightweight aerospace structures under reverberant acoustic excitation is investigated. A review of the modal superposition theory is presented, along with an improved analysis method of air mass and acoustic radiation damping effects. An efficient postprocessor uses classic finite element codes to compute structural responses up to medium frequencies. Experiments performed on a honeycomb panel demonstrate the importance of two factors for the accurate analysis of the vibroacoustic responses of such aerospace structures: specifically, it is shown that the low frequency response calculations should include correlation characteristics of the excitation pressure field, and the test data processing should include pressure cross spectra calculations. Theoretical and analytical results are compared to assess air effects on a rigid circular plate. Dynamic analysis of large lightweight aerospace structures under a vacuum hypothesis may lead to a significant overestimation of predicted levels.

  10. Every Voice

    ERIC Educational Resources Information Center

    Patrick, Penny

    2008-01-01

    This article discusses how the author develops an approach that allows her students, who are part of the marginalized population, to learn the power of their own voices--not just their writing voices, but their oral voices as well. The author calls it "TWIST": Thoughts, Writing folder, Inquiring mind, Supplies, and Teamwork. It is where students…

  11. Perceptual centres in speech - an acoustic analysis

    NASA Astrophysics Data System (ADS)

    Scott, Sophie Kerttu

    Perceptual centres, or P-centres, represent the perceptual moments of occurrence of acoustic signals - the 'beat' of a sound. P-centres underlie the perception and production of rhythm in perceptually regular speech sequences. P-centres have been modelled both in speech and non speech (music) domains. The three aims of this thesis were toatest out current P-centre models to determine which best accounted for the experimental data bto identify a candidate parameter to map P-centres onto (a local approach) as opposed to the previous global models which rely upon the whole signal to determine the P-centre the final aim was to develop a model of P-centre location which could be applied to speech and non speech signals. The first aim was investigated by a series of experiments in which a) speech from different speakers was investigated to determine whether different models could account for variation between speakers b) whether rendering the amplitude time plot of a speech signal affects the P-centre of the signal c) whether increasing the amplitude at the offset of a speech signal alters P-centres in the production and perception of speech. The second aim was carried out by a) manipulating the rise time of different speech signals to determine whether the P-centre was affected, and whether the type of speech sound ramped affected the P-centre shift b) manipulating the rise time and decay time of a synthetic vowel to determine whether the onset alteration was had more affect on P-centre than the offset manipulation c) and whether the duration of a vowel affected the P-centre, if other attributes (amplitude, spectral contents) were held constant. The third aim - modelling P-centres - was based on these results. The Frequency dependent Amplitude Increase Model of P-centre location (FAIM) was developed using a modelling protocol, the APU GammaTone Filterbank and the speech from different speakers. The P-centres of the stimuli corpus were highly predicted by attributes of

  12. Acoustical Characteristics of Mastication Sounds: Application of Speech Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Brochetti, Denise

    Food scientists have used acoustical methods to study characteristics of mastication sounds in relation to food texture. However, a model for analysis of the sounds has not been identified, and reliability of the methods has not been reported. Therefore, speech analysis techniques were applied to mastication sounds, and variation in measures of the sounds was examined. To meet these objectives, two experiments were conducted. In the first experiment, a digital sound spectrograph generated waveforms and wideband spectrograms of sounds by 3 adult subjects (1 male, 2 females) for initial chews of food samples differing in hardness and fracturability. Acoustical characteristics were described and compared. For all sounds, formants appeared in the spectrograms, and energy occurred across a 0 to 8000-Hz range of frequencies. Bursts characterized waveforms for peanut, almond, raw carrot, ginger snap, and hard candy. Duration and amplitude of the sounds varied with the subjects. In the second experiment, the spectrograph was used to measure the duration, amplitude, and formants of sounds for the initial 2 chews of cylindrical food samples (raw carrot, teething toast) differing in diameter (1.27, 1.90, 2.54 cm). Six adult subjects (3 males, 3 females) having normal occlusions and temporomandibular joints chewed the samples between the molar teeth and with the mouth open. Ten repetitions per subject were examined for each food sample. Analysis of estimates of variation indicated an inconsistent intrasubject variation in the acoustical measures. Food type and sample diameter also affected the estimates, indicating the variable nature of mastication. Generally, intrasubject variation was greater than intersubject variation. Analysis of ranks of the data indicated that the effect of sample diameter on the acoustical measures was inconsistent and depended on the subject and type of food. If inferences are to be made concerning food texture from acoustical measures of mastication

  13. Post-laryngectomy voice rehabilitation with voice prosthesis: 15 years experience of the ENT Clinic of University of Catania. Retrospective data analysis and literature review.

    PubMed

    Serra, A; Di Mauro, P; Spataro, D; Maiolino, L; Cocuzza, S

    2015-12-01

    This study reports our 15-year experience, in Sicily, with the use of voice prostheses, analysing the different variables that have influenced the success or failure of speech rehabilitation. The retrospective clinical analysis was carried out by reviewing the clinical histories of 95 patients with laryngeal cancer, in whom a voice prosthesis had been placed by trachea-oesophageal puncture between 1998 and 2013. Age, type of tumour, type of surgery, use of prior radiation therapy, type of puncture, prosthesis used and its duration, number of replacements, complications and causes for prosthetic success or failure were analysed. The results showed a mean of Harrison-Robillard-Schultz (HRS) TEP rating scale of 11.8 in primary TEP and 12.6 in secondary TEP (P =0.613). PORT did not affect overall rehabilitation success. In these patients, the mean HRS rating scale was 11.2, with long-term success of 85% (P =0.582). In patients over 70 years old, long-term success was 82.5%, with 78% in primary and 86% in secondary TEP, the mean HRS was 11.2 in primary and 12 in secondary TEP (P =0.648). In total, long-term success was 87.5%, with 84% in primary and 91% in secondary TEP. The results obtained by retrospective analysis of 15 years of prosthetic rehabilitation in the Sicilian territory highlighted standard rehabilitation, in terms of intra and postoperative complications, fistula related pathology and overall success. PMID:26900247

  14. Post-laryngectomy voice rehabilitation with voice prosthesis: 15 years experience of the ENT Clinic of University of Catania. Retrospective data analysis and literature review.

    PubMed

    Serra, A; Di Mauro, P; Spataro, D; Maiolino, L; Cocuzza, S

    2015-12-01

    This study reports our 15-year experience, in Sicily, with the use of voice prostheses, analysing the different variables that have influenced the success or failure of speech rehabilitation. The retrospective clinical analysis was carried out by reviewing the clinical histories of 95 patients with laryngeal cancer, in whom a voice prosthesis had been placed by trachea-oesophageal puncture between 1998 and 2013. Age, type of tumour, type of surgery, use of prior radiation therapy, type of puncture, prosthesis used and its duration, number of replacements, complications and causes for prosthetic success or failure were analysed. The results showed a mean of Harrison-Robillard-Schultz (HRS) TEP rating scale of 11.8 in primary TEP and 12.6 in secondary TEP (P =0.613). PORT did not affect overall rehabilitation success. In these patients, the mean HRS rating scale was 11.2, with long-term success of 85% (P =0.582). In patients over 70 years old, long-term success was 82.5%, with 78% in primary and 86% in secondary TEP, the mean HRS was 11.2 in primary and 12 in secondary TEP (P =0.648). In total, long-term success was 87.5%, with 84% in primary and 91% in secondary TEP. The results obtained by retrospective analysis of 15 years of prosthetic rehabilitation in the Sicilian territory highlighted standard rehabilitation, in terms of intra and postoperative complications, fistula related pathology and overall success.

  15. Acoustical and functional analysis of Mountain lion (Puma concolor) vocalizations

    NASA Astrophysics Data System (ADS)

    Potter, Jacquelyn

    2002-05-01

    A 2-year study resulted in acoustic analysis of the structure of over 900 mountain lion vocalizations recorded in a seminatural setting at Wildlife Prairie Park near Peoria, Illinois. A vocal repertoire was obtained by describing quantitative variables about the sounds, i.e., frequency of the dominant part of the sound (beginning, ending, maximum, and minimum), duration, and number of components. Other variables described the tonal, harmonic, and wideband qualities of the sounds. Behavioral data were collected during the same period. Further analysis of both acoustic and behavioral data was completed to develop a correlation matrix between vocalizations and behavior. This study also looked at the effects of seasons on vocal behavior. Correlations were found between vocalization types and rates of usage with specific behaviors. Vocalization type and the usage rate also varied by season.

  16. Mean-based neural coding of voices.

    PubMed

    Andics, Attila; McQueen, James M; Petersson, Karl Magnus

    2013-10-01

    The social significance of recognizing the person who talks to us is obvious, but the neural mechanisms that mediate talker identification are unclear. Regions along the bilateral superior temporal sulcus (STS) and the inferior frontal cortex (IFC) of the human brain are selective for voices, and they are sensitive to rapid voice changes. Although it has been proposed that voice recognition is supported by prototype-centered voice representations, the involvement of these category-selective cortical regions in the neural coding of such "mean voices" has not previously been demonstrated. Using fMRI in combination with a voice identity learning paradigm, we show that voice-selective regions are involved in the mean-based coding of voice identities. Voice typicality is encoded on a supra-individual level in the right STS along a stimulus-dependent, identity-independent (i.e., voice-acoustic) dimension, and on an intra-individual level in the right IFC along a stimulus-independent, identity-dependent (i.e., voice identity) dimension. Voice recognition therefore entails at least two anatomically separable stages, each characterized by neural mechanisms that reference the central tendencies of voice categories. PMID:23664949

  17. Wavenumber transform analysis for acoustic black hole design.

    PubMed

    Feurtado, Philip A; Conlon, Stephen C

    2016-07-01

    Acoustic black holes (ABHs) are effective, passive, lightweight vibration absorbers that have been developed and shown to effectively reduce the structural vibration and radiated sound of beam and plate structures. ABHs employ a local thickness change that reduces the speed of bending waves and increases the transverse vibration amplitude. The vibrational energy can then be effectively focused and dissipated by material losses or through conventional viscoelastic damping treatments. In this work, the measured vibratory response of embedded ABH plates was transformed into the wavenumber domain in order to investigate the use of wavenumber analysis for characterizing, designing, and optimizing practical ABH systems. The results showed that wavenumber transform analysis can be used to simultaneously visualize multiple aspects of ABH performance including changes in bending wave speed, transverse vibration amplitude, and energy dissipation. The analysis was also used to investigate the structural acoustic coupling of the ABH system and determine the radiation efficiency of the embedded ABH plates compared to a uniform plate. The results demonstrated that the ABH effect results in acoustic decoupling as well as vibration reduction. The wavenumber transform based methods and results will be useful for implementing ABHs into real world structures. PMID:27475193

  18. Wavenumber transform analysis for acoustic black hole design.

    PubMed

    Feurtado, Philip A; Conlon, Stephen C

    2016-07-01

    Acoustic black holes (ABHs) are effective, passive, lightweight vibration absorbers that have been developed and shown to effectively reduce the structural vibration and radiated sound of beam and plate structures. ABHs employ a local thickness change that reduces the speed of bending waves and increases the transverse vibration amplitude. The vibrational energy can then be effectively focused and dissipated by material losses or through conventional viscoelastic damping treatments. In this work, the measured vibratory response of embedded ABH plates was transformed into the wavenumber domain in order to investigate the use of wavenumber analysis for characterizing, designing, and optimizing practical ABH systems. The results showed that wavenumber transform analysis can be used to simultaneously visualize multiple aspects of ABH performance including changes in bending wave speed, transverse vibration amplitude, and energy dissipation. The analysis was also used to investigate the structural acoustic coupling of the ABH system and determine the radiation efficiency of the embedded ABH plates compared to a uniform plate. The results demonstrated that the ABH effect results in acoustic decoupling as well as vibration reduction. The wavenumber transform based methods and results will be useful for implementing ABHs into real world structures.

  19. Validity and reliability of a voice-recognition game analysis system for field sports.

    PubMed

    Schokman, P; Le Rossignol, P F; Sparrow, W A

    2002-12-01

    The purpose of this study was to assess the ability of observers to use voice-recognition analysis to accurately classify gait transitions and quantify gait durations typical of team games. Inter-rater and intra-rater reliability was also determined. Four males were filmed performing pre-determined gait protocols. each comprising different sequences of walking, jogging, running and sprinting. Two operators independently classified gait transitions and the time spent in each gait was determined by the voice recognition system. All gait modes as measured by trained observers demonstrated statistically significant correlations (p < 0.01) to pre-determined measurement criteria. The mean absolute error for all gait transitions was less than half a second (0.32-0.36 s) with the maximum percentage error being approximately 4% for the walk, jog and run gaits and 10% for sprinting. Gait classification error was low at 1.9%. The intra-rater and inter-rater reliability was consistently high ranging from r = 0.87 to 0.99. In conclusion, observers using voicerecognition software provided valid measures of time spent in each of the four gait categories with 90% or better accuracy achieved.

  20. Comparison of voice acquisition methodologies in speech research.

    PubMed

    Vogel, Adam P; Maruff, Paul

    2008-11-01

    The use of voice acoustic techniques has the potential to extend beyond work devoted purely to speech or vocal pathology. For this to occur, however, researchers and clinicians will require acquisition technologies that provide fast, accurate, and cost-effective methods for recording data. Therefore, the present study aimed to compare industry-standard techniques for acquiring high-quality acoustic signals (e.g., hard drive and solid-state recorder) with widely available and easy-to-use, computer-based (standard laptop) data-acquisition methods. Speech samples were simultaneously acquired from 15 healthy controls using all three methods and were analyzed using identical analysis techniques. Data from all three acquisition methods were directly compared using a variety of acoustic correlates. The results suggested that selected acoustic measures (e.g., f 0, noise-to-harmonic ratio, number of pauses) were accurately obtained using all three methods; however, minimum recording standards were required for widely used measures of perturbation.

  1. [Analysis of voice diseases in patients treated in the Podlaski region].

    PubMed

    Kosztyła-Hojna, Bozena; Rogowski, Marek; Ruczaj, Jerzy; Pepiński, Witold

    2004-05-01

    Analysis of professional dysphonia in 309 patients treated in Phoniatric Outpatient Clinic of the (chair and) Department of Otolaryngology AM in Bialystok was performed. The teachers of primary and lower secondary schools were the majority of the patients. The teachers were compared with the 65 patients of other occupations. Additional harmful factors were excluded in both groups. In all patients' otolaryngologic, phoniatric and videostroboscopic examinations were completed. The analysis paid attention to functional and organic dysphonias. In the group of voice workers there were found early functional laryngeal disorders, which were progressive with the period of work. In other patients organic disorders were more common and occurred earlier than functional ones. The degree of dysphonia depended on laryngeal pathology, especially in case of functional dysphonia.

  2. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  3. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    NASA Astrophysics Data System (ADS)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  4. Acoustic Emission Analysis of Shuttle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Lane, John; Hooker, Jeffery; Immer, Christopher; Walker, James

    2004-01-01

    Acoustic emission (AE) signals generated from projectile impacts on reinforced and advanced carbon/carbon (RCC and ACC) panels, fired from a compressed-gas gun, identify the type and severity of damage sustained by the target. This type of testing is vital in providing the required "return to flight" (RTF) data needed to ensure continued and safe operation of NASA's Space Shuttle fleet. The gas gun at Kennedy Space Center is capable of propelling 12-inch by 3-inch cylinders of external tank (ET) foam at exit velocities exceeding 1,000 feet per second. Conventional AE analysis techniques require time domain processing of impulse data, along with amplitude distribution analysis. It is well known that identical source excitations can produce a wide range of AE signals amplitudes. In order to satisfy RTF goals, it is necessary to identify impact energy levels above and below damage thresholds. Spectral analysis techniques involving joint time frequency analysis (JTFA) are used to reinforce time domain AE analysis. JTFA analysis of the AE signals consists of short-time Fourier transforms (STFT) and the Huang-Hilbert transform (HHT). The HHT provides a very good measure of the instantaneous frequency of impulse events dominated by a single component. Identifying failure modes and cracking of fibers from flexural and/or extensional mode acoustic signals will help support in-flight as well as postflight impact analysis.

  5. Acoustic correlates of Georgian stops

    NASA Astrophysics Data System (ADS)

    Wysocki, Tamra M.

    2003-04-01

    This paper presents results from an acoustic analysis of Georgian stops. Georgian is a South Caucasian language and has a three-way opposition among voiced, voiceless aspirated, and ejective stops for three places of articulation: bilabial, dental, and velar. Tokens consist of initial and medial stops in isolated words produced by two male and two female native Georgian speakers. Closure duration, VOT, and burst amplitude were measured using waveforms, spectrograms, and FFTs. The voice quality of adjacent vowels was examined for possible consonantal effects (e.g., creaky voicing adjacent to ejectives). Additional observations included noise characteristics during closure and following oral release. Results show much variation in the realizations of stops both within and across speakers. While a general trend exists for VOT and burst amplitude to differentiate initial voiced and voiceless stops, values of voiceless aspirated and ejective stops overlap. In intervocalic stops, VOT and burst amplitude are more variable. Closure duration remains fairly stable across the three stop categories. Noise quality following oral release and, to some extent, voice quality of a following vowel more consistently distinguish the three stop types in both positions than do the quantitative measures. These characteristics are further discussed in relation to similar cross-linguistic studies.

  6. Damage Detection and Analysis in CFRPs Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis Laron

    Real time monitoring of damage is an important aspect of life management of critical structures. Acoustic emission (AE) techniques allow for measurement and assessment of damage in real time. Acoustic emission parameters such as signal amplitude and duration were monitored during the loading sequences. Criteria that can indicate the onset of critical damage to the structure were developed. Tracking the damage as it happens gives a better analysis of the failure evolution that will allow for a more accurate determination of structural life. The main challenge is distinguishing between legitimate damage signals and "false positives" which are unrelated to damage growth. Such false positives can be related to electrical noise, friction, or mechanical vibrations. This research focuses on monitoring signals of damage growth in carbon fiber reinforced polymers (CFRPs) and separating the relevant signals from the false ones. In this Dissertation, acoustic emission signals from CFRP specimens were experimentally recorded and analyzed. The objectives of this work are: (1) perform static and fatigue loading of CFRP composite specimens and measure the associated AE signals, (2) accurately determine the AE parameters (energy, frequency, duration, etc.) of signals generated during failure of such specimens, (3) use fiber optic sensors to monitor the strain distribution of the damage zone and relate these changes in strain measurements to AE data.

  7. Voice rehabilitation with tragal cartilage and perichondrium after vertical partial laryngectomy for glottic cancer

    PubMed Central

    Chirilă, Magdalena; Ţiple, Cristina; Dinescu, Florina Veronica; Mureşan, Rodica; Bolboacă, Sorana D.

    2015-01-01

    Background: The goal of the study is to test medialization of the neocord after oncological surgery for glottic cancer, using autologous tragal cartilage and perichondrium by the direct approach. Materials and Methods: Sixteen patients underwent comprehensive assessment including auditory perceptual assessment, videostrobolaryngoscopy, and acoustic voice analysis. The cartilage graft was inserted into a pocket created in the tyroarytenoid — lateral cricoarytenoid muscle complex or the excavated musculomembranous part of the neocord, and fixed by placing the perichondrium by the direct approach. The patients were evaluated preoperatively, and at 14 days, 60 days, and 6 months later. Results: Improvement of voice and breathiness was correlated with the increase of closed quotient and harmonic-to-noise ratio; the acoustic voice parameters studied showed significant differences between preoperative and postoperative voices, and these objective measurements of voice changes provided accurate and documentary evidence of the results of surgical treatment. Conclusion: This method may be considered a safe and efficient phonosurgical procedure for voice restoration. PMID:26109985

  8. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    NASA Astrophysics Data System (ADS)

    Emokpae, Lloyd

    -of-sight (LOS) and NLOS links by utilizing directional antennas, which will boost the signal-to-noise ratio (SNR) at the receiver while promoting NLOS usage. In our model, we employ a directional underwater acoustic antenna composed of an array of hydrophones that can be summed up at various phases and amplitudes resulting in a beam-former. We have also adopted a practical multimodal directional transducer concept which generates both directional and omni-directional beam patterns by combining the fundamental vibration modes of a cylindrical acoustic radiator. This allows the transducer to be electrically controlled and steered by simply adjusting the electrical voltage weights. A prototype acoustic modem is then developed to utilize the multimodal directional transducer for both LOS and NLOS communication. The acoustic modem has also been used as a platform for empirically validating our SBR communication model in a tank and with empirical data. Networking protocols have been developed to exploit the SBR communication model. These protocols include node discovery and localization, directional medium access control (D-MAC) and geographical routing. In node discovery and localization, each node will utilize SBR-based range measurements to its neighbors to determine their relative position. The D-MAC protocol utilizes directional antennas to increase the network throughput due to the spatial efficiency of the antenna model. In the proposed reflection-enabled directional MAC protocol (RED-MAC), each source node will be able to determine if an obstacle is blocking the LOS link to the destination and switch to the best NLOS link by utilizing surface/bottom reflections. Finally, we have developed a geographical routing algorithm which aims to establish the best stable route from a source node to a destination node. The optimized route is selected to achieve maximum network throughput. Extensive analysis of the network throughput when utilizing directional antennas is also presented

  9. Adductor spasmodic dysphonia: Relationships between acoustic indices and perceptual judgments

    NASA Astrophysics Data System (ADS)

    Cannito, Michael P.; Sapienza, Christine M.; Woodson, Gayle; Murry, Thomas

    2003-04-01

    This study investigated relationships between acoustical indices of spasmodic dysphonia and perceptual scaling judgments of voice attributes made by expert listeners. Audio-recordings of The Rainbow Passage were obtained from thirty one speakers with spasmodic dysphonia before and after a BOTOX injection of the vocal folds. Six temporal acoustic measures were obtained across 15 words excerpted from each reading sample, including both frequency of occurrence and percent time for (1) aperiodic phonation, (2) phonation breaks, and (3) fundamental frequency shifts. Visual analog scaling judgments were also obtained from six voice experts using an interactive computer interface to quantify four voice attributes (i.e., overall quality, roughness, brokenness, breathiness) in a carefully psychoacoustically controlled environment, using the same reading passages as stimuli. Number and percent aperiodicity and phonation breaks correlated significanly with perceived overall voice quality, roughness, and brokenness before and after the BOTOX injection. Breathiness was correlated with aperidocity only prior to injection, while roughness also correlated with frequency shifts following injection. Factor analysis reduced perceived attributes to two principal components: glottal squeezing and breathiness. The acoustic measures demonstrated a strong regression relationship with perceived glottal squeezing, but no regression relationship with breathiness was observed. Implications for an analysis of pathologic voices will be discussed.

  10. Signature analysis of acoustic emission from graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Henneke, E. G., II

    1977-01-01

    Acoustic emissions were monitored for crack extension across and parallel to the fibers in a single ply and multiply laminates of graphite epoxy composites. Spectrum analysis was performed on the transient signal to ascertain if the fracture mode can be characterized by a particular spectral pattern. The specimens were loaded to failure quasistatically in a tensile machine. Visual observations were made via either an optical microscope or a television camera. The results indicate that several types of characteristics in the time and frequency domain correspond to different types of failure.

  11. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  12. Spectral analysis methods for vehicle interior vibro-acoustics identification

    NASA Astrophysics Data System (ADS)

    Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal

    2009-02-01

    Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.

  13. Preliminary considerations on the application of the voice handicap index to paediatric dysphonia.

    PubMed

    Schindler, A; Capaccio, P; Maruzzi, P; Ginocchio, D; Bottero, A; Otraviani, F

    2007-02-01

    Dysphonia is a common paediatric condition. Adult voices are usually evaluated using a set of minimal basic measurements including: endoscopic examination, aerodynamics, perception, acoustics, and self-assessment by the patient. The Voice Handicap Index is the most widely used self-assessment tool, but its use in the paediatric setting has never been reported. Aim of this study was to report Voice Handicap Index ratings in a group of dysphonic children, multi-modally assessed before and after voice therapy. The study involved 28 children (16 female, 12 male, mean age 10.9 years (range 6-12)) presenting chronic hoarseness due to vocal fold nodules (18 cases), unilateral localised oedema (6 cases) or recurrent laryngeal paralysis (4 cases). All received voice therapy for 5-6 months, and underwent voice assessments based on video-endoscopy ratings (size of nodule/ oedema or glottic closure in the case of recurrent laryngeal paralysis), maximum phonation time, GIRBAS scale, spectrograms and a perturbation analysis. All patients also completed the Voice Handicap Index. Aerodynamic, acoustic, perceptual and self-assessment data, before and after voice therapy, were compared using Wilcoxon's test and Student's t test. Correlations between the Voice Handicap Index domains were measured by means of Pearson's correlation coefficient. Post-treatment measurements showed that the nodules/oedema had decreased in size in 18 children following therapy, and two subjects with recurrent laryngeal paralysis showed improved glottic closure. Mean maximum phonation time increased slightly, but the difference was not significant. There was a general reduction in perceptual severity, but this was only significant for parameters G, B and A. Spectrographic analysis showed no significant improvement and, although the mean perturbation analysis values improved, only the difference in jitter values was significant (p = 0.016). Voice Handicap Index was applicable in all cases, and showed a clear

  14. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Li, H. B.; Zhang, W.; Wu, Z. Q.; Liu, B. R.

    2016-09-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure

  15. Filterbank-based independent component analysis for acoustic mixtures

    NASA Astrophysics Data System (ADS)

    Park, Hyung-Min

    2011-06-01

    Independent component analysis (ICA) for acoustic mixtures has been a challenging problem due to very complex reverberation involved in real-world mixing environments. In an effort to overcome disadvantages of the conventional time domain and frequency domain approaches, this paper describes filterbank-based independent component analysis for acoustic mixtures. In this approach, input signals are split into subband signals and decimated. A simplified network performs ICA on the decimated signals, and finally independent components are synthesized. First, a uniform filterbank is employed in the approach for basic and simple derivation and implementation. The uniform-filterbank-based approach achieves better separation performance than the frequency domain approach and gives faster convergence speed with less computational complexity than the time domain approach. Since most of natural signals have exponentially or more steeply decreasing energy as the frequency increases, the spectral characteristics of natural signals introduce a Bark-scale filterbank which divides low frequency region minutely and high frequency region widely. The Bark-scale-filterbank-based approach shows faster convergence speed than the uniform-filterbank-based one because it has more whitened inputs in low frequency subbands. It also improves separation performance as it has enough data to train adaptive parameters exactly in high frequency subbands.

  16. Comparing Voice Self-Assessment with Auditory Perceptual Analysis in Patients with Multiple Sclerosis

    PubMed Central

    Bauer, Vladimir; Aleric, Zorica; Jancic, Ervin

    2014-01-01

    Introduction Disordered voice quality could be a symptom of multiple sclerosis (MS). The impact of MS on voice-related quality of life is still controversial. Objectives The aim of this study was to compare the results of voice self-assessment with the results of expert perceptual assessment in patients with MS. Methods The research included 38 patients with relapse-remitting MS (23 women and 15 men; ages 21 to 83, mean = 44). All participants filled out a Voice Handicap Index (VHI), and their voice sample was analyzed by speech and language professionals using the Grade Roughness Breathiness Asthenia Strain scale (GRBAS). Results The patients with MS had significantly higher VHI than control group participants (mean value 16.68 ± 16.2 compared with 5.29 ± 5.5, p = 0.0001). The study established a notable level of dysphonia in 55%, roughness and breathiness in 66%, asthenia in 34%, and strain in 55% of the vocal samples. A significant correlation was established between VHI and GRBAS scores (r = 0.3693, p = 0.0225), and VHI and asthenia and strain components (r = 0.4037 and 0.3775, p = 0.012 and 0.0195, respectively). The female group showed positive and significant correlation between claims for self-assessing one's voice (pVHI) and overall GRBAS scores, and between pVHI and grade, roughness, asthenia, and strain components. No significant correlation was found for male patients (p > 0.05). Conclusion A significant number of patients with MS experienced voice problems. The VHI is a good and effective tool to assess patient self-perception of voice quality, but it may not reflect the severity of dysphonia as perceived by voice and speech professionals. PMID:25992162

  17. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  18. Applying FSL to the FIAC data: model-based and model-free analysis of voice and sentence repetition priming.

    PubMed

    Beckmann, Christian F; Jenkinson, Mark; Woolrich, Mark W; Behrens, Timothy E J; Flitney, David E; Devlin, Joseph T; Smith, Stephen M

    2006-05-01

    This article presents results obtained from applying various tools from FSL (FMRIB Software Library) to data from the repetition priming experiment used for the HBM'05 Functional Image Analysis Contest. We present analyses from the model-based General Linear Model (GLM) tool (FEAT) and from the model-free independent component analysis tool (MELODIC). We also discuss the application of tools for the correction of image distortions prior to the statistical analysis and the utility of recent advances in functional magnetic resonance imaging (FMRI) time series modeling and inference such as the use of optimal constrained HRF basis function modeling and mixture modeling inference. The combination of hemodynamic response function (HRF) and mixture modeling, in particular, revealed that both sentence content and speaker voice priming effects occurred bilaterally along the length of the superior temporal sulcus (STS). These results suggest that both are processed in a single underlying system without any significant asymmetries for content vs. voice processing. PMID:16565953

  19. Voice measures of workload in the advanced flight deck: Additional studies

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray

    1989-01-01

    These studies investigated acoustical analysis of the voice as a measure of workload in individual operators. In the first study, voice samples were recorded from a single operator during high, medium, and low workload conditions. Mean amplitude, frequency, syllable duration, and emphasis all tended to increase as workload increased. In the second study, NASA test pilots performed a laboratory task, and used a flight simulator under differing work conditions. For two of the pilots, high workload in the simulator brought about greater amplitude, peak duration, and stress. In both the laboratory and simulator tasks, high workload tended to be associated with more statistically significant drop-offs in the acoustical measures than were lower workload levels. There was a great deal of intra-subject variability in the acoustical measures. The results suggested that in individual operators, increased workload might be revealed by high initial amplitude and frequency, followed by rapid drop-offs over time.

  20. Instrumental Dimensioning of Normal and Pathological Phonation Using Acoustic Measurements

    ERIC Educational Resources Information Center

    Putzer, Manfred; Barry, William J.

    2008-01-01

    The present study deals with the dimensions of normal and pathological phonation. Separation of normal voices from pathological voices is tested under different aspects. Using a new parametrization of voice-quality properties in the acoustic signal, the vowel productions of 534 speakers (267 M, 267 F) without any reported voice pathology and the…

  1. Acoustic streaming jets: A scaling and dimensional analysis

    SciTech Connect

    Botton, V. Henry, D.; Millet, S.; Ben-Hadid, H.; Garandet, J. P.

    2015-10-28

    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  2. Coefficient of variation spectral analysis: An application to underwater acoustics

    NASA Astrophysics Data System (ADS)

    Herstein, P. D.; Laplante, R. F.

    1983-05-01

    Acoustic noise in the ocean is often described in terms of its power spectral density. Just as in other media, this noise consists of both narrowband and broadband frequency components. A major problem in the analysis of power spectral density measurements is distinguishing between narrowband spectral components of interest and contaminating narrowband components. In this paper, the use of coefficient of variation (Cv) spectrum is examined as an adjunct to the conventional power spectrum to distinguish narrowband components of interest from contaminating components. The theory of the Cv is presented. Coefficients for several classical input distributions are developed. It is shown that Cv spectra can be easily implemented as an adjunct procedure during the computation of the ensemble of averaged power spectra. Power and Cv spectra derived from actual at-sea sonobuoy measurements of deep ocean ambient noise separate narrowband components from narrowband lines of interest in the ensemble of averaged power spectra, these acoustic components of interest can be distinguished in the Cv spectra.

  3. An analysis of the acoustic input impedance of the ear.

    PubMed

    Withnell, Robert H; Gowdy, Lauren E

    2013-10-01

    Ear canal acoustics was examined using a one-dimensional lossy transmission line with a distributed load impedance to model the ear. The acoustic input impedance of the ear was derived from sound pressure measurements in the ear canal of healthy human ears. A nonlinear least squares fit of the model to data generated estimates for ear canal radius, ear canal length, and quantified the resistance that would produce transmission losses. Derivation of ear canal radius has application to quantifying the impedance mismatch at the eardrum between the ear canal and the middle ear. The length of the ear canal was found, in general, to be longer than the length derived from the one-quarter wavelength standing wave frequency, consistent with the middle ear being mass-controlled at the standing wave frequency. Viscothermal losses in the ear canal, in some cases, may exceed that attributable to a smooth rigid wall. Resistance in the middle ear was found to contribute significantly to the total resistance. In effect, this analysis "reverse engineers" physical parameters of the ear from sound pressure measurements in the ear canal.

  4. Voice - How humans communicate?

    PubMed

    Tiwari, Manjul; Tiwari, Maneesha

    2012-01-01

    Voices are important things for humans. They are the medium through which we do a lot of communicating with the outside world: our ideas, of course, and also our emotions and our personality. The voice is the very emblem of the speaker, indelibly woven into the fabric of speech. In this sense, each of our utterances of spoken language carries not only its own message but also, through accent, tone of voice and habitual voice quality it is at the same time an audible declaration of our membership of particular social regional groups, of our individual physical and psychological identity, and of our momentary mood. Voices are also one of the media through which we (successfully, most of the time) recognize other humans who are important to us-members of our family, media personalities, our friends, and enemies. Although evidence from DNA analysis is potentially vastly more eloquent in its power than evidence from voices, DNA cannot talk. It cannot be recorded planning, carrying out or confessing to a crime. It cannot be so apparently directly incriminating. As will quickly become evident, voices are extremely complex things, and some of the inherent limitations of the forensic-phonetic method are in part a consequence of the interaction between their complexity and the real world in which they are used. It is one of the aims of this article to explain how this comes about. This subject have unsolved questions, but there is no direct way to present the information that is necessary to understand how voices can be related, or not, to their owners.

  5. Voice - How humans communicate?

    PubMed Central

    Tiwari, Manjul; Tiwari, Maneesha

    2012-01-01

    Voices are important things for humans. They are the medium through which we do a lot of communicating with the outside world: our ideas, of course, and also our emotions and our personality. The voice is the very emblem of the speaker, indelibly woven into the fabric of speech. In this sense, each of our utterances of spoken language carries not only its own message but also, through accent, tone of voice and habitual voice quality it is at the same time an audible declaration of our membership of particular social regional groups, of our individual physical and psychological identity, and of our momentary mood. Voices are also one of the media through which we (successfully, most of the time) recognize other humans who are important to us—members of our family, media personalities, our friends, and enemies. Although evidence from DNA analysis is potentially vastly more eloquent in its power than evidence from voices, DNA cannot talk. It cannot be recorded planning, carrying out or confessing to a crime. It cannot be so apparently directly incriminating. As will quickly become evident, voices are extremely complex things, and some of the inherent limitations of the forensic-phonetic method are in part a consequence of the interaction between their complexity and the real world in which they are used. It is one of the aims of this article to explain how this comes about. This subject have unsolved questions, but there is no direct way to present the information that is necessary to understand how voices can be related, or not, to their owners. PMID:22690044

  6. The accuracy of a voice vote

    PubMed Central

    Titze, Ingo R.; Palaparthi, Anil

    2014-01-01

    The accuracy of a voice vote was addressed by systematically varying group size, individual voter loudness, and words that are typically used to express agreement or disagreement. Five judges rated the loudness of two competing groups in A-B comparison tasks. Acoustic analysis was performed to determine the sound energy level of each word uttered by each group. Results showed that individual voter differences in energy level can grossly alter group loudness and bias the vote. Unless some control is imposed on the sound level of individual voters, it is difficult to establish even a two-thirds majority, much less a simple majority. There is no symmetry in the bias created by unequal sound production of individuals. Soft voices do not bias the group loudness much, but loud voices do. The phonetic balance of the two words chosen (e.g., “yea” and “nay” as opposed to “aye” and “no”) seems to be less of an issue. PMID:24437776

  7. Characterizing noise in nonhuman vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs

    NASA Astrophysics Data System (ADS)

    Riede, Tobias; Mitchell, Brian R.; Tokuda, Isao; Owren, Michael J.

    2005-07-01

    Measuring noise as a component of mammalian vocalizations is of interest because of its potential relevance to the communicative function. However, methods for characterizing and quantifying noise are less well established than methods applicable to harmonically structured aspects of signals. Using barks of coyotes and domestic dogs, we compared six acoustic measures and studied how they are related to human perception of noisiness. Measures of harmonic-to-noise-ratio (HNR), percent voicing, and shimmer were found to be the best predictors of perceptual rating by human listeners. Both acoustics and perception indicated that noisiness was similar across coyote and dog barks, but within each species there was significant variation among the individual vocalizers. The advantages and disadvantages of the various measures are discussed.

  8. Learning-induced changes in the cerebral processing of voice identity.

    PubMed

    Latinus, Marianne; Crabbe, Frances; Belin, Pascal

    2011-12-01

    Temporal voice areas showing a larger activity for vocal than non-vocal sounds have been identified along the superior temporal sulcus (STS); more voice-sensitive areas have been described in frontal and parietal lobes. Yet, the role of voice-sensitive regions in representing voice identity remains unclear. Using a functional magnetic resonance adaptation design, we aimed at disentangling acoustic- from identity-based representations of voices. Sixteen participants were scanned while listening to pairs of voices drawn from morphed continua between 2 initially unfamiliar voices, before and after a voice learning phase. In a given pair, the first and second stimuli could be identical or acoustically different and, at the second session, perceptually similar or different. At both sessions, right mid-STS/superior temporal gyrus (STG) and superior temporal pole (sTP) showed sensitivity to acoustical changes. Critically, voice learning induced changes in the acoustical processing of voices in inferior frontal cortices (IFCs). At the second session only, right IFC and left cingulate gyrus showed sensitivity to changes in perceived identity. The processing of voice identity appears to be subserved by a large network of brain areas ranging from the sTP, involved in an acoustic-based representation of unfamiliar voices, to areas along the convexity of the IFC for identity-related processing of familiar voices.

  9. Voice Disorders

    MedlinePlus

    ... on the vocal cords. Other causes of voice disorders include infections, upward movement of stomach acids into ... throat, growths due to a virus, cancer, and diseases that paralyze the vocal cords. Signs that your ...

  10. An evaluation of voice stress analysis techniques in a simulated AWACS environment

    NASA Astrophysics Data System (ADS)

    Jones, William A., Jr.

    1990-08-01

    The purpose was to determine if voice analysis algorithms are an effective measure of stress resulting from high workload. Fundamental frequency, frequency jitter, and amplitude shimmer algorithms were employed to measure the effects of stress in crewmember communications data in simulated AWACS mission scenarios. Two independent workload measures were used to identify levels of stress: a predictor model developed by the simulation author based upon scenario generated stimulus events; and the duration of communication for each weapons director, representative of the individual's response to the induced stress. Between eight and eleven speech samples were analyzed for each of the sixteen Air Force officers who participated in the study. Results identified fundamental frequency and frequency jitter as statistically significant vocal indicators of stress, while amplitude shimmer showed no signs of any significant relationship with workload or stress. Consistent with previous research, the frequency algorithm was identified as the most reliable measure. However, the results did not reveal a sensitive discrimination measure between levels of stress, but rather, did distinguish between the presence or absence of stress. The results illustrate a significant relationship between fundamental frequency and the effects of stress and also a significant inverse relationship with jitter, though less dramatic.

  11. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  12. Effects of noise and acoustics in schools on vocal health in teachers.

    PubMed

    Cutiva, Lady Catherine Cantor; Burdorf, Alex

    2015-01-01

    Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotα, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12-2.99) and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88-3.53) were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health.

  13. Voice, Schooling, Inequality, and Scale

    ERIC Educational Resources Information Center

    Collins, James

    2013-01-01

    The rich studies in this collection show that the investigation of voice requires analysis of "recognition" across layered spatial-temporal and sociolinguistic scales. I argue that the concepts of voice, recognition, and scale provide insight into contemporary educational inequality and that their study benefits, in turn, from paying attention to…

  14. Numerical analysis of ultrasound propagation and reflection intensity for biological acoustic impedance microscope.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-08-01

    This paper proposes a new method for microscopic acoustic imaging that utilizes the cross sectional acoustic impedance of biological soft tissues. In the system, a focused acoustic beam with a wide band frequency of 30-100 MHz is transmitted across a plastic substrate on the rear side of which a soft tissue object is placed. By scanning the focal point along the surface, a 2-D reflection intensity profile is obtained. In the paper, interpretation of the signal intensity into a characteristic acoustic impedance is discussed. Because the acoustic beam is strongly focused, interpretation assuming vertical incidence may lead to significant error. To determine an accurate calibration curve, a numerical sound field analysis was performed. In these calculations, the reflection intensity from a target with an assumed acoustic impedance was compared with that from water, which was used as a reference material. The calibration curve was determined by changing the assumed acoustic impedance of the target material. The calibration curve was verified experimentally using saline solution, of which the acoustic impedance was known, as the target material. Finally, the cerebellar tissue of a rat was observed to create an acoustic impedance micro profile. In the paper, details of the numerical analysis and verification of the observation results will be described.

  15. About Your Voice

    MedlinePlus

    ... Is Voice? “Voice” is the sound made by vibration of the vocal cords caused by air passing ... swelling of the vocal cords and changes their vibration resulting in an abnormal voice. Reduced voice use ( ...

  16. Voice Teachers on Voice, Part 3

    ERIC Educational Resources Information Center

    Gollobin, Laurie Brooks; White, Harvey

    1978-01-01

    Concludes a three-part symposium with eight prominent voice teachers on voice teaching methods. In this part, the teachers discuss placement, voice breaks, tone deafness, covered tone, and developing volume and offer some final general comments. (Editor)

  17. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures

    NASA Technical Reports Server (NTRS)

    Block, J.

    1983-01-01

    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  18. Using rotor or tip speed in the acoustical analysis of small wind turbines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustical noise data have been collected and analyzed on small wind turbines used for water pumping at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near Bushland, Texas. This acoustical analysis differed from previous research in that the data were analyzed with rotor or tip ...

  19. Functional Voice Testing Detects Early Changes in Vocal Pitch in Women During Testosterone Administration

    PubMed Central

    Pencina, Karol M.; Coady, Jeffry A.; Beleva, Yusnie M.; Bhasin, Shalender; Basaria, Shehzad

    2015-01-01

    Objective: To determine dose-dependent effects of T administration on voice changes in women with low T levels. Methods: Seventy-one women who have undergone a hysterectomy with or without oophorectomy with total T < 31 ng/dL and/or free T < 3.5 pg/mL received a standardized transdermal estradiol regimen during the 12-week run-in period and were then randomized to receive weekly im injections of placebo or 3, 6.25, 12.5, or 25 mg T enanthate for 24 weeks. Total and free T levels were measured by liquid chromatography-tandem mass spectrometry and equilibrium dialysis, respectively. Voice handicap was measured by self-report using a validated voice handicap index questionnaire at baseline and 24 weeks after intervention. Functional voice testing was performed using the Kay Elemetrics-Computer Speech Lab to determine voice frequency, volume, and harmonics. Results: Forty-six women with evaluable voice data at baseline and after intervention were included in the analysis. The five groups were similar at baseline. Mean on-treatment nadir total T concentrations were 13, 83, 106, 122, and 250 ng/dL in the placebo, 3-, 6.25-, 12.5-, and 25-mg groups, respectively. Analyses of acoustic voice parameters revealed significant lowering of average pitch in the 12.5- and 25-mg dose groups compared to placebo (P < .05); these changes in pitch were significantly related to increases in T concentrations. No significant dose- or concentration-dependent changes in self-reported voice handicap index scores were observed. Conclusion: Testosterone administration in women with low T levels over 24 weeks was associated with dose- and concentration-dependent decreases in average pitch in the higher dose groups. These changes were seen despite the lack of self-reported changes in voice. PMID:25875779

  20. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  1. A study of vibrato: assessment by panel of judges compared to spectral voice analysis.

    PubMed

    Morsomme, D; Orban, A; Jamart, J; Remacle, M

    1999-01-01

    Experts in voice singing and voice training were asked to judge the vibrato of 30 singers (4 samples per singer: a sung [a] held without vibrato; a sung a[ held with vibrato; a self-selected passage and an imposed passage. In the first part, they ticked the type of oscillations (vibrato, straight tone, tremolo, quivering...). In the second part, they appraised various criteria. Intra-judge and inter-judge consistencies were determined. The subjective parameters were thereafter correlated with the measurements of six parameters of the MDVP (MultiDimentional Voice Program). The measurements were carried out on each task. Intra-judge consistency was good for only one judge (67-87% consistency). Since judge 2 and 3 were hardly reproducible (45-73%; 28-57%) measurement of the inter-judge consistency was pointless. The results of judge 1 were correlated with the Fundamental Tremor Frequency Index, the jitter and the shimmer. PMID:10668358

  2. Scientific bases of human-machine communication by voice.

    PubMed Central

    Schafer, R W

    1995-01-01

    The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines. PMID:7479802

  3. Scientific Bases of Human-Machine Communication by Voice

    NASA Astrophysics Data System (ADS)

    Schafer, Ronald W.

    1995-10-01

    The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines.

  4. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  5. Alignment of an acoustic manipulation device with cepstral analysis of electronic impedance data.

    PubMed

    Hughes, D A; Qiu, Y; Démoré, C; Weijer, C J; Cochran, S

    2015-02-01

    Acoustic particle manipulation is an emerging technology that uses ultrasonic standing waves to position objects with pressure gradients and acoustic radiation forces. To produce strong standing waves, the transducer and the reflector must be aligned properly such that they are parallel to each other. This can be a difficult process due to the need to visualise the ultrasound waves and as higher frequencies are introduced, this alignment requires higher accuracy. In this paper, we present a method for aligning acoustic resonators with cepstral analysis. This is a simple signal processing technique that requires only the electrical impedance measurement data of the resonator, which is usually recorded during the fabrication process of the device. We first introduce the mathematical basis of cepstral analysis and then demonstrate and validate it using a computer simulation of an acoustic resonator. Finally, the technique is demonstrated experimentally to create many parallel linear traps for 10 μm fluorescent beads inside an acoustic resonator.

  6. Relation of Structural and Vibratory Kinematics of the Vocal Folds to Two Acoustic Measures of Breathy Voice Based on Computational Modeling

    ERIC Educational Resources Information Center

    Samlan, Robin A.; Story, Brad H.

    2011-01-01

    Purpose: To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method: The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a…

  7. Measuring glottal activity during voiced speech using a tuned electromagnetic resonating collar sensor

    NASA Astrophysics Data System (ADS)

    Brown, D. R., III; Keenaghan, K.; Desimini, S.

    2005-11-01

    Non-acoustic speech sensors can be employed to obtain measurements of one or more aspects of the speech production process, such as glottal activity, even in the presence of background noise. These sensors have a long history of clinical applications and have also recently been applied to the problem of denoising speech signals recorded in acoustically noisy environments (Ng et al 2000 Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) (Istanbul, Turkey) vol 1, pp 229-32). Recently, researchers developed a new non-acoustic speech sensor based primarily on a tuned electromagnetic resonator collar (TERC) (Brown et al 2004 Meas. Sci. Technol. 15 1291). The TERC sensor measures glottal activity by sensing small changes in the dielectric properties of the glottis that result from voiced speech. This paper builds on the seminal work in Brown et al (2004). The primary contributions of this paper are (i) a description of a new single-mode TERC sensor design addressing the comfort and complexity issues of the original sensor, (ii) a complete description of new external interface systems used to obtain long-duration recordings from the TERC sensor and (iii) more extensive experimental results and analysis for the single-mode TERC sensor including spectrograms of speech containing both voiced and unvoiced speech segments in quiet and acoustically noisy environments. The experimental results demonstrate that the single-mode TERC sensor is able to detect glottal activity up to the fourth harmonic and is also insensitive to acoustic background noise.

  8. Effects of chemoradiotherapy on voice and swallowing

    PubMed Central

    Lazarus, Cathy L.

    2009-01-01

    Purpose of review Chemotherapy has been found to result in comparable survival rates to surgery for head and neck cancer. However, toxicity can often be worse after chemoradiotherapy, with impairment in voice, swallowing, nutrition, and quality of life. Investigators are attempting to modify radiotherapy treatment regimens to spare organs that have an impact on swallowing. This review will highlight voice and swallowing impairment seen after chemoradiotherapy, as well as treatment for voice and swallowing disorders in this population. Results of newer radiotherapy regimens will also be highlighted. Recent findings Specific oropharyngeal swallowing motility disorders after chemoradiotherapy have been identified. Damage to specific structures has been correlated with specific pharyngeal phase swallow impairment. Swallowing function and quality of life have been examined over time, with improvement seen in both. Preventive/prophylactic swallow exercise programs have been encouraging. Chemoradiotherapy effects on voice have been identified in terms of acoustic, aerodynamic, and patient and clinician-rated perception of function. Improvement in voice has also been observed over time after chemoradiotherapy. Voice therapy has been found to have a positive impact on voice and perceptual measures in this population. Summary Current studies show some improvement in swallow function after swallow and voice therapy in patients treated with chemoradiotherapy. Further, there is a suggestion of improved swallow function with sparing of organs with specific radiotherapy protocols. Future research needs to focus on specific voice and swallow treatment regimens in the head and neck cancer patient treated with chemoradiotherapy, specifically, timing, frequency, duration, and specific treatment types. PMID:19337126

  9. Usefulness of acoustic studies on the differential diagnostics of organic and functional dysphonia.

    PubMed

    Pruszewicz, A; Obrebowski, A; Swidziński, P; Demeńko, G; Wika, T; Wojciechowska, A

    1991-01-01

    Phoniatric and acoustic examinations were carried out in a group of 30 patients with dysphonia, including 15 with organic type and 15 with functional type. A complex phoniatric assessment offered the possibility to differentiate between these two groups of pathological voices. This was achieved also on the basis of acoustic analysis of the voice by extracting characteristics such as: formant frequency, Fo and its range, percentage of noise in the analysed verbal text, mean and maximum values of jitter. The possibility of differential diagnosis of these two different types of dysphonia in acoustic studies was confirmed by clinical examinations. The acoustic studies presented can be regarded as a new approach to a fast and sufficiently precise method in the screening diagnostics of dysphonia conditioned by growth of the vocal fold mass.

  10. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    PubMed

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-01

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  11. Acoustic emission analysis of tooth-composite interfacial debonding.

    PubMed

    Cho, N Y; Ferracane, J L; Lee, I B

    2013-01-01

    This study detected tooth-composite interfacial debonding during composite restoration by means of acoustic emission (AE) analysis and investigated the effects of composite properties and adhesives on AE characteristics. The polymerization shrinkage, peak shrinkage rate, flexural modulus, and shrinkage stress of a methacrylate-based universal hybrid, a flowable, and a silorane-based composite were measured. Class I cavities on 49 extracted premolars were restored with 1 of the 3 composites and 1 of the following adhesives: 2 etch-and-rinse adhesives, 2 self-etch adhesives, and an adhesive for the silorane-based composite. AE analysis was done for 2,000 sec during light-curing. The silorane-based composite exhibited the lowest shrinkage (rate), the longest time to peak shrinkage rate, the lowest shrinkage stress, and the fewest AE events. AE events were detected immediately after the beginning of light-curing in most composite-adhesive combinations, but not until 40 sec after light-curing began for the silorane-based composite. AE events were concentrated at the initial stage of curing in self-etch adhesives compared with etch-and-rinse adhesives. Reducing the shrinkage (rate) of composites resulted in reduced shrinkage stress and less debonding, as evidenced by fewer AE events. AE is an effective technique for monitoring, in real time, the debonding kinetics at the tooth-composite interface. PMID:23100273

  12. Acoustic emission analysis of tooth-composite interfacial debonding.

    PubMed

    Cho, N Y; Ferracane, J L; Lee, I B

    2013-01-01

    This study detected tooth-composite interfacial debonding during composite restoration by means of acoustic emission (AE) analysis and investigated the effects of composite properties and adhesives on AE characteristics. The polymerization shrinkage, peak shrinkage rate, flexural modulus, and shrinkage stress of a methacrylate-based universal hybrid, a flowable, and a silorane-based composite were measured. Class I cavities on 49 extracted premolars were restored with 1 of the 3 composites and 1 of the following adhesives: 2 etch-and-rinse adhesives, 2 self-etch adhesives, and an adhesive for the silorane-based composite. AE analysis was done for 2,000 sec during light-curing. The silorane-based composite exhibited the lowest shrinkage (rate), the longest time to peak shrinkage rate, the lowest shrinkage stress, and the fewest AE events. AE events were detected immediately after the beginning of light-curing in most composite-adhesive combinations, but not until 40 sec after light-curing began for the silorane-based composite. AE events were concentrated at the initial stage of curing in self-etch adhesives compared with etch-and-rinse adhesives. Reducing the shrinkage (rate) of composites resulted in reduced shrinkage stress and less debonding, as evidenced by fewer AE events. AE is an effective technique for monitoring, in real time, the debonding kinetics at the tooth-composite interface.

  13. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    SciTech Connect

    CAP,JEROME S.; TRACEY,BRIAN

    1999-11-15

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code [1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package [2] to study the effects of in-plane modes and to

  14. Stimulus control analysis of language disorders: A study of substitution between voiced and unvoiced consonants

    PubMed Central

    Brasolotto, Alcione G.; de Rose, Julio C.; Stoddard, Lawrence T.; de Souza, Deisy G.

    1993-01-01

    This study attempted to analyze defective stimulus control relations underlying persistent substitution between voiced and unvoiced consonants in the speech and writing of two children. A series of 20 tests was administered repeatedly. Some tests consisted of matching-to-sample tasks, with dictated words, printed words, or pictures as samples. Comparison stimuli were arranged in pairs of printed words or pictures, such that the only difference in their corresponding spoken words was the voicing of one consonant phoneme. In other tests, a stimulus (dictated word, printed word, or picture) was presented, and the subject was required to emit an oral response (repeat the dictated word, read the printed word, or name the picture) or a written response (write to dictation, copy the word, or write a picture name). Other tests required the subjects to make a same/different distinction in pairs of dictated words that did or did not differ in the voicing of a single phoneme. Results showed distinct deficit profiles for each subject, consisting of patterns of defective stimulus control relations. The subjects were able, however, to distinguish between voiced and unvoiced sounds and to produce these sounds. ImagesFig. 1Fig. 2 PMID:22477078

  15. Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications

    ERIC Educational Resources Information Center

    Pabon, Peter; Ternstrom, Sten; Lamarche, Anick

    2011-01-01

    Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…

  16. Discourse-voice regulatory strategies in the psychotherapeutic interaction: a state-space dynamics analysis.

    PubMed

    Tomicic, Alemka; Martínez, Claudio; Pérez, J Carola; Hollenstein, Tom; Angulo, Salvador; Gerstmann, Adam; Barroux, Isabelle; Krause, Mariane

    2015-01-01

    This study seeks to provide evidence of the dynamics associated with the configurations of discourse-voice regulatory strategies in patient-therapist interactions in relevant episodes within psychotherapeutic sessions. Its central assumption is that discourses manifest themselves differently in terms of their prosodic characteristics according to their regulatory functions in a system of interactions. The association between discourse and vocal quality in patients and therapists was analyzed in a sample of 153 relevant episodes taken from 164 sessions of five psychotherapies using the state space grid (SSG) method, a graphical tool based on the dynamic systems theory (DST). The results showed eight recurrent and stable discourse-voice regulatory strategies of the patients and three of the therapists. Also, four specific groups of these discourse-voice strategies were identified. The latter were interpreted as regulatory configurations, that is to say, as emergent self-organized groups of discourse-voice regulatory strategies constituting specific interactional systems. Both regulatory strategies and their configurations differed between two types of relevant episodes: Change Episodes and Rupture Episodes. As a whole, these results support the assumption that speaking and listening, as dimensions of the interaction that takes place during therapeutic conversation, occur at different levels. The study not only shows that these dimensions are dependent on each other, but also that they function as a complex and dynamic whole in therapeutic dialog, generating relational offers which allow the patient and the therapist to regulate each other and shape the psychotherapeutic process that characterizes each type of relevant episode.

  17. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  18. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension. PMID:19418043

  19. Transient analysis of acoustically derived pressure and rate data

    SciTech Connect

    Kabir, C.S.; Kuchuk, F.J.; Hasan, A.R.

    1988-09-01

    A pressure-buildup test conducted on a sucker-rod pumping well is often by long-duration wellbore storage. In fact, this distortion could be so severe that even a week's shut-in period may not allow a semilog analysis. A longer shut-in period becomes economically discouraging because of lost production. Low energy and low transmissivity in the reservoir, coupled with increased fluid compressibility, contribute to this long-duration storage phenomenon. One way of reducing the storage effect clearly lies in the simultaneous analysis of downhole pressure and flow rate, estimated from casinghead pressure and rising annular liquid-level measurement made by acoustic well sounding (AWS). Ascertaining the quality of the indirectly measured pressure and rate data constitutes one of the objectives of this study. Several methods exist to translate the AWS measurement to downhole pressure and rate data for the subsequent transient analysis. The authors show that even an empirical hydrodynamic correlation provides satisfactory transient-pressure/flow-rate data for convolution and deconvolution analyses for moderate pumping-liquid columns. When long annular liquid columns are encountered, translating the AWS measurement with a mechanistically based hydrodynamic model appears to be a prudent approach. Interpretation of several transient tests show that automated convolved-type-curve or history matching of field data is a powerful tool for reservoir-parameter (total mobility, skin, fracture half-length, and storage coefficient) estimation. A simple algorithm for computing the Laplace transform of the wellbore pressure for an infinite-conductivity vertically fractured well in an infinite reservoir is developed in this work for a rapid, iterative-type computation used in automated convolved-type-curve analysis.

  20. Fast response to human voices in autism

    PubMed Central

    Lin, I-Fan; Agus, Trevor R.; Suied, Clara; Pressnitzer, Daniel; Yamada, Takashi; Komine, Yoko; Kato, Nobumasa; Kashino, Makio

    2016-01-01

    Individuals with autism spectrum disorders (ASD) are reported to allocate less spontaneous attention to voices. Here, we investigated how vocal sounds are processed in ASD adults, when those sounds are attended. Participants were asked to react as fast as possible to target stimuli (either voices or strings) while ignoring distracting stimuli. Response times (RTs) were measured. Results showed that, similar to neurotypical (NT) adults, ASD adults were faster to recognize voices compared to strings. Surprisingly, ASD adults had even shorter RTs for voices than the NT adults, suggesting a faster voice recognition process. To investigate the acoustic underpinnings of this effect, we created auditory chimeras that retained only the temporal or the spectral features of voices. For the NT group, no RT advantage was found for the chimeras compared to strings: both sets of features had to be present to observe an RT advantage. However, for the ASD group, shorter RTs were observed for both chimeras. These observations indicate that the previously observed attentional deficit to voices in ASD individuals could be due to a failure to combine acoustic features, even though such features may be well represented at a sensory level. PMID:27193919

  1. Fast response to human voices in autism.

    PubMed

    Lin, I-Fan; Agus, Trevor R; Suied, Clara; Pressnitzer, Daniel; Yamada, Takashi; Komine, Yoko; Kato, Nobumasa; Kashino, Makio

    2016-05-19

    Individuals with autism spectrum disorders (ASD) are reported to allocate less spontaneous attention to voices. Here, we investigated how vocal sounds are processed in ASD adults, when those sounds are attended. Participants were asked to react as fast as possible to target stimuli (either voices or strings) while ignoring distracting stimuli. Response times (RTs) were measured. Results showed that, similar to neurotypical (NT) adults, ASD adults were faster to recognize voices compared to strings. Surprisingly, ASD adults had even shorter RTs for voices than the NT adults, suggesting a faster voice recognition process. To investigate the acoustic underpinnings of this effect, we created auditory chimeras that retained only the temporal or the spectral features of voices. For the NT group, no RT advantage was found for the chimeras compared to strings: both sets of features had to be present to observe an RT advantage. However, for the ASD group, shorter RTs were observed for both chimeras. These observations indicate that the previously observed attentional deficit to voices in ASD individuals could be due to a failure to combine acoustic features, even though such features may be well represented at a sensory level.

  2. Thermal Acoustic Oscillation: Causes, Detection, Analysis and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Hartwig, Jason W.

    2014-01-01

    The presentation discusses the causes of Thermal Acoustic Oscillations, how it can be detected, analyzed and prevented. It also discusses where it can occur, where it doesn't occur and practical mitigation techniques.

  3. Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    PubMed Central

    Little, Max A; McSharry, Patrick E; Roberts, Stephen J; Costello, Declan AE; Moroz, Irene M

    2007-01-01

    Background Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness. Methods This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a "hoarseness" diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices. Results On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8 ± 2.0%. The true positive classification performance is 95.4 ± 3.2%, and the true negative performance is 91.5 ± 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools. Conclusion Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification

  4. Lost Voices.

    ERIC Educational Resources Information Center

    Chiseri-Strater, Elizabeth

    Different writing voices are linked to early adult developmental issues that are gender-related. Research by Donald Graves has shown that gender affects topic choice in girls' and boys' writing as early as age seven. Adult developmental theories provide frames for looking at the growth potential of writers and locating gender-related issues. The…

  5. Voice Messaging.

    ERIC Educational Resources Information Center

    Davis, Barbara D.; Tisdale, Judy Jones; Krapels, Roberta H.

    2001-01-01

    Surveys corporate use of voice message systems by interviewing employees in four different companies. Finds that all four companies viewed their voicemail systems as a supplement to personal contact (not a replacement) and provided training, but had no formal method to assess customer satisfaction with their system. Suggests business communication…

  6. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    NASA Astrophysics Data System (ADS)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  7. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  8. Parallel Finite Element Domain Decomposition for Structural/Acoustic Analysis

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Tungkahotara, Siroj; Watson, Willie R.; Rajan, Subramaniam D.

    2005-01-01

    A domain decomposition (DD) formulation for solving sparse linear systems of equations resulting from finite element analysis is presented. The formulation incorporates mixed direct and iterative equation solving strategics and other novel algorithmic ideas that are optimized to take advantage of sparsity and exploit modern computer architecture, such as memory and parallel computing. The most time consuming part of the formulation is identified and the critical roles of direct sparse and iterative solvers within the framework of the formulation are discussed. Experiments on several computer platforms using several complex test matrices are conducted using software based on the formulation. Small-scale structural examples are used to validate thc steps in the formulation and large-scale (l,000,000+ unknowns) duct acoustic examples are used to evaluate the ORIGIN 2000 processors, and a duster of 6 PCs (running under the Windows environment). Statistics show that the formulation is efficient in both sequential and parallel computing environmental and that the formulation is significantly faster and consumes less memory than that based on one of the best available commercialized parallel sparse solvers.

  9. An analysis and retrofit of the acoustics at Image Creators Health and Beauty Salon

    NASA Astrophysics Data System (ADS)

    Ellis, Donna

    2002-11-01

    This paper discusses the analysis and retrofit of the acoustics in a high-volume beauty salon in Severna Park, MD. The major issues in what was designed to be a serene environment are reverberation times of 1-1.68 s in the mid- to upper-frequency range. Employee and customer complaints include heightened stress, vocal strain, headaches, and poor intelligibility. Existing analysis and acoustical retrofit solutions will be demonstrated.

  10. Event identification by acoustic signature recognition

    SciTech Connect

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and future applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.

  11. The effective acoustic environment of helicopter crewmen

    NASA Technical Reports Server (NTRS)

    Camp, R. T., Jr.; Mozo, B. T.

    1978-01-01

    Methods of measuring the composite acoustic environment of helicopters in order to quantify the effective acoustic environment of the crewmen and to assess the real acoustic hazards of the personnel are examined. It is indicated that the attenuation characteristics of the helmets and hearing protectors and the variables of the physiology of the human ear be accounted for in determining the effective acoustic environment of Army helicopter crewmen as well as the acoustic hazards of voice communications systems noise.

  12. Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels

    ERIC Educational Resources Information Center

    Li, Tianhao; Fu, Qian-Jie

    2011-01-01

    Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…

  13. Voicing Status of Word Final Plosives in Friedreich's Ataxia Dysarthria

    ERIC Educational Resources Information Center

    Blaney, B. E.; Hewlett, N.

    2007-01-01

    In a previous study, the authors identified final plosive voicing contrast as the highest single error source in dysarthria associated with Friedreich's Ataxia in a group of Irish English-speaking participants. This study aimed to determine the acoustic features underlying misperceptions of voicing status and implications for clinical management.…

  14. Speech Motor Development during Acquisition of the Voicing Contrast

    ERIC Educational Resources Information Center

    Grigos, Maria I.; Saxman, John H.; Gordon, Andrew M.

    2005-01-01

    Lip and jaw movements were studied longitudinally in 19-month-old children as they acquired the voicing contrast for /p/ and /b/. A movement tracking system obtained lip and jaw kinematics as participants produced the target utterances /papa/ and /baba/. Laryngeal adjustments were also tracked through acoustically recorded voice onset time (VOT)…

  15. Children's voices: can we hear them?

    PubMed

    McPherson, G; Thorne, S

    2000-02-01

    This article addresses an important but often neglected notion in the care of children--the notion of voice. Recognizing that a crucial role for pediatric nurses is that of advocate for the child, this article poses the questions of how children's voices can be heard and how nurses know whose voice they represent when they act in an advocacy capacity. Drawing on contributions from psychology, sociology, and feminist studies, the analysis narrows our focus to the special challenge created for pediatric nurses when they recognize the importance of voice in caring for children, and examines the complexities inherent in attending to voice in pediatric nursing practice.

  16. [Preliminary study of acoustic and aerodynamic parameters after Tucker frontal anterior laryngectomy].

    PubMed

    Giovanni, A; Robert, D; Teston, B; Guarella, M D; Zanaret, M

    1996-01-01

    Currently, not objective method has been demonstrated to be reliable for the evaluation of vocal handicap after partial laryngectomy. Such a tool would allow objective assessment of the post-operative voice and its clinical course as well as a comparison of different surgical techniques in terms of voice quality. We used a EVA device to measure simultaneously acoustic and aerodynamic parameters. We included 23 normal subjects and 34 patients who had undergone a Tucker laryngectomy. All subjects were males. At sustained voice production, acoustic measures of vibration stability (jitter, coefficient of variation in the fundamental frequency, shimmer, coefficient of variation in intensity) and air leak from the glottis (buccal air flow over intensity). The quality of voice in operated patients was judged by a jury of listeners who assigned a global score to voice quality. Results were analyzed to verify the correlation between objective measurements and the jury's score, taken as the reference measurement. The pertinence of the objective measurements was demonstrated for the stability of the frequency and the glottal air leak. Multiple regression analysis demonstrated that total variance of the objective measurements accounted for 84.7% of the scores provided by the jury (R2 = 0.847, p < 0.0001). These satisfactory results emphasize the interest of multiparametric analysis including aerodynamic measurements. These preliminary results led to the hypothesis that objective and subjective measurements could be useful in techniques aimed at improving voice quality (temporal organization of vibratory instability, work on intralaryngeal pressures).

  17. Modeling ground vehicle acoustic signatures for analysis and synthesis

    SciTech Connect

    Haschke, G.; Stanfield, R.

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  18. Discourse-voice regulatory strategies in the psychotherapeutic interaction: a state-space dynamics analysis

    PubMed Central

    Tomicic, Alemka; Martínez, Claudio; Pérez, J. Carola; Hollenstein, Tom; Angulo, Salvador; Gerstmann, Adam; Barroux, Isabelle; Krause, Mariane

    2015-01-01

    This study seeks to provide evidence of the dynamics associated with the configurations of discourse-voice regulatory strategies in patient–therapist interactions in relevant episodes within psychotherapeutic sessions. Its central assumption is that discourses manifest themselves differently in terms of their prosodic characteristics according to their regulatory functions in a system of interactions. The association between discourse and vocal quality in patients and therapists was analyzed in a sample of 153 relevant episodes taken from 164 sessions of five psychotherapies using the state space grid (SSG) method, a graphical tool based on the dynamic systems theory (DST). The results showed eight recurrent and stable discourse-voice regulatory strategies of the patients and three of the therapists. Also, four specific groups of these discourse-voice strategies were identified. The latter were interpreted as regulatory configurations, that is to say, as emergent self-organized groups of discourse-voice regulatory strategies constituting specific interactional systems. Both regulatory strategies and their configurations differed between two types of relevant episodes: Change Episodes and Rupture Episodes. As a whole, these results support the assumption that speaking and listening, as dimensions of the interaction that takes place during therapeutic conversation, occur at different levels. The study not only shows that these dimensions are dependent on each other, but also that they function as a complex and dynamic whole in therapeutic dialog, generating relational offers which allow the patient and the therapist to regulate each other and shape the psychotherapeutic process that characterizes each type of relevant episode. PMID:25932014

  19. Electronic dummy for acoustical testing

    NASA Technical Reports Server (NTRS)

    Bauer, B. B.; Di Mattia, A. L.; Rosencheck, A. J.; Stern, M.; Torick, E. L.

    1967-01-01

    Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal.

  20. Analysis of acoustic signals on welding and cutting

    SciTech Connect

    Morita, Takao; Ogawa, Yoji; Sumitomo, Takashi

    1995-12-31

    The sounds emitted during the welding and cutting processes are closely related to the processing phenomena, and sometimes they provide useful information for evaluation of their processing conditions. The analyses of acoustic signals from arc welding, plasma arc cutting, oxy-flame cutting, and water jet cutting are carried out in details in order to develop effective signal processing algorithm. The sound from TIG arc welding has the typical line spectrum which principal frequency, is almost the same as that of supplied electricity. The disturbance of welding process is clearly appeared oil the acoustic emission. The sound exposure level for CO{sub 2} or MIG welding is higher than that for TIG welding, and the relative intensity of the typical line spectrum caused by supplied electricity becomes low. But the sudden transition of welding condition oil produces an apparent change of sound exposure level. On the contrary, the acoustics from cutting processes are much louder than those of arc welding and show more chaotic behavior because the supplied fluid velocity and temperature of arc for cutting processes are much higher than those for welding processes. Therefore, it requires a special technique to extract the well meaning signals from the loud acoustic sounds. Further point of view, the reduction of acoustic exposure level becomes an important research theme with the growth of application fields of cutting processes.

  1. Occupational risk factors and voice disorders.

    PubMed

    Vilkman, E

    1996-01-01

    From the point of view of occupational health, the field of voice disorders is very poorly developed as compared, for instance, to the prevention and diagnostics of occupational hearing disorders. In fact, voice disorders have not even been recognized in the field of occupational medicine. Hence, it is obviously very rare in most countries that the voice disorder of a professional voice user, e.g. a teacher, a singer or an actor, is accepted as an occupational disease by insurance companies. However, occupational voice problems do not lack significance from the point of view of the patient. We also know from questionnaires and clinical studies that voice complaints are very common. Another example of job-related health problems, which has proved more successful in terms of its occupational health status, is the repetition strain injury of the elbow, i.e. the "tennis elbow". Its textbook definition could be used as such to describe an occupational voice disorder ("dysphonia professional is"). In the present paper the effects of such risk factors as vocal loading itself, background noise and room acoustics and low relative humidity of the air are discussed. Due to individual factors underlying the development of professional voice disorders, recommendations rather than regulations are called for. There are many simple and even relatively low-cost methods available for the prevention of vocal problems as well as for supporting rehabilitation. PMID:21275584

  2. Analysis of Particle Image Velocimetry (PIV) Data for Acoustic Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    Acoustic velocity measurements were taken using Particle Image Velocimetry (PIV) in a Normal Incidence Tube configuration at various frequency, phase, and amplitude levels. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Estimates of lower measurement sensitivity levels were determined based on PIV image quality, correlation, and noise level parameters used in the test. Comparison of measurements with linear acoustic theory are presented. The onset of nonlinear, harmonic frequency acoustic levels were also studied for various decibel and frequency levels ranging from 90 to 132 dB and 500 to 3000 Hz, respectively.

  3. ATC/pilot voice communications: A survey of the literature

    NASA Astrophysics Data System (ADS)

    Prinzo, O. Veronika; Britton, Thomas W.

    1993-11-01

    The first radio-equipped control tower in the United States opened at the Cleveland Municipal Airport in 1930. From that time to the present, voice radio communications have played a primary role in air safety. Verbal communications in air traffic control (ATC) operations have been frequently cited as causal factors in operational errors and pilot deviations in the FAA Operational Error and Deviation System, the NASA Aviation Safety Reporting System (ASRS), and reports derived from government sponsored research projects. Collectively, the data provided by these programs indicate that communications constitute a significant problem for pilots and controllers. Although the communications problem was well known the research literature was fragmented, making it difficult to appreciate the various types of verbal communications problems that existed and their unique influence on the quality of ATC/pilot communications. This is a survey of the voice radio communications literature. The 43 reports in the review represent survey data, field studies, laboratory studies, narrative reports, and reviews. The survey topics pertain to communications taxonomies, acoustical correlates and cognitive/psycholinguistic perspectives. Communications taxonomies were used to identify the frequency and types of information that constitute routine communications, as well as those communications involved in operational errors, pilot deviations, and other safety-related events. Acoustical correlate methodologies identified some qualities of a speaker's voice, such as loudness, pitch, and speech rate, which might be used potentially to monitor stress, mental workload, and other forms of psychological or physiological factors that affect performance. Cognitive/psycho-linguistic research offered an information processing perspective for understanding how pilots' and controllers' memory and language comprehension processes affect their ability to communicate effectively with one another. This

  4. Hidden voices.

    PubMed

    Weick, A

    2000-10-01

    Despite the rich history of care that has characterized the profession, social work has not been able to convey adequately its knowledge of the modest yet complex tasks involved in its role of social caretaking. The dominant voice of the formal culture, particularly in its emphasis on rationality and logic, does not create sufficient space or legitimacy for the experience of domestic and social caretaking to be conveyed. From personal and professional perspectives, this essay presents the vocabulary of care as the first voice of women and of social work and explores it as an avenue to better justify, dignify, and celebrate the humble but vital tasks carried out in all venues of social work practice.

  5. Objective and perceptual analysis of outcome of voice rehabilitation after laryngectomy in an Indian tertiary referral cancer centre.

    PubMed

    Varghese, B T; Mathew, A; Sebastian, S; Iype, E M; Sebastian, P; Rajan, B

    2013-07-01

    Post laryngectomy voice rehabilitation is very challenging in centres with limited resources because of cost concerns and morbidity. A study of laryngectomised voice rehabilitated patients on follow up was performed to look into overall quality of life (QOL), morbidity and voice quality. Those patients who had visited head and neck surgical outpatient department during the period of January 2008 to October 2009 were evaluated for their QOL, morbidity and voice quality, objectively and subjectively. Voice rating and QOL rating showed a distinct discrepancy which could be explained by the morbidity recorded for surgical voice restoration in the present study. Voice rehabilitation strategy after laryngectomy in a low resource setting has to take in account financial social educational background of the patient besides technical issues. PMID:24427633

  6. Acoustic comunication systems and sounds in three species of crickets from central Italy: musical instruments for a three-voices composition

    NASA Astrophysics Data System (ADS)

    Monacchi, David; Valentini, Laura

    2016-04-01

    Natural soundscape has always constituted a reference in cognitive and emotional processes. The imitation of natural sounds contributed to the origin of the verbal language, which has been then subjected to an even more refined process of abstraction throughout history. The musical language also evolved along the same path of imitation. Among the many sonic elements of a natural environment, the stridulation of crickets is one of the most consistent for its timbre, articulation, diffusion and intrinsic emotional power. More than 900 species of crickets, in fact, have been described. They can be found in all parts of the world with the exception of cold regions at latitudes higher than 55° North and South. Among the many species we're working on (Order Orthoptera and Suborder Ensifera), we refer here of a comparison between the morphology of the acoustic emission systems and the corresponding waveforms/spectral patterns of sound in three widespread species from central Italy: Gryllus Bimaculatus, Acheta Domesticus (Gryllidae), and Ruspolia Nitidula (Conocephalidae). The samples of the acoustic apparatus of the target individuals, stored in ethanol, were observed under a Field Emission Gun Environmental Electron Scanning Microscope (FEG-ESEM, Quanta 200, FEI, The Netherlands). The use of this type of microscope allowed to analyze the samples without any kind of manipulation (dehydration and/or metallization), while maintaining the morphological features of the fragile acoustic apparatus. The observations were made with different sensors (SE: secondary-electron sensor and BSE: backscattered-electron sensor), and performed at low-medium vacuum with energies varying from c.ca 10 to 30kV. Male individuals have an acoustic apparatus consisting in two cuticular structures (tegmina) positioned above wings, while both male and females have receiving organs (tympanum) in forelegs. Stridulation mechanism is produced when the file and the scraper (plectrum) scrub one another

  7. Multidimensional Fourier Methods: Analysis of Internal Soliton Data and Acoustic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Osborne, A.

    2005-05-01

    The aggressive pursuit of a satisfactory level of physical understanding of nonlinear oceanic wave dynamics has lead to the use of multidimensional Fourier analysis as a tool for the time series analysis of both internal wave motion and acoustic wave propagation. These new tools have arisen naturally for studies using the inverse scattering transform to particular nonlinear wave equations. When applied to the Korteweg-deVries equation, for example, one finds that the approach can be extended to arbitrarily high order. There are several advantages for using multidimensional Fourier methods over ordinary Fourier analysis: (1) fully nonlinear wave dynamics can be studied, (2) solitons become a natural component in the theory and correspond to the diagonal elements of the "Riemann matrix", (3) nonlinear interactions are accounted for by the off-diagonal elements of this matrix, (4) nonlinear acoustic modes are found to also have an (albeit static) solitonic component. These surprising results lead to new interpretations of acoustic waves propagating in the presence of a nonlinear internal wave field. One of the most important results is the implication that new nonlinear filtering techniques allow for the spectral decomposition of both the internal wave field and of the acoustic field. With regard to the acoustic field, one can foresee the application of the method to the observations of phenomena in the "hidden zones", where one would normally conclude that acoustic wave propagation does not occur.

  8. An Acoustic Analysis of Young Children's Productions of Word Stress.

    ERIC Educational Resources Information Center

    Pollock, Karen E.; And Others

    A study investigated children's use of three acoustic parameters (intensity, fundamental frequency, and duration) in the production of two-syllable nonsense words. Subjects were six children each at ages 2, 3, and 4 years with age-appropriate language skills and normal hearing sensitivity. An examiner produced eight novel two-syllable words of…

  9. Dynamical energy analysis for built-up acoustic systems at high frequencies.

    PubMed

    Chappell, D J; Giani, S; Tanner, G

    2011-09-01

    Standard methods for describing the intensity distribution of mechanical and acoustic wave fields in the high frequency asymptotic limit are often based on flow transport equations. Common techniques are statistical energy analysis, employed mostly in the context of vibro-acoustics, and ray tracing, a popular tool in architectural acoustics. Dynamical energy analysis makes it possible to interpolate between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. In this work a version of dynamical energy analysis based on a Chebyshev basis expansion of the Perron-Frobenius operator governing the ray dynamics is introduced. It is shown that the technique can efficiently deal with multi-component systems overcoming typical geometrical limitations present in statistical energy analysis. Results are compared with state-of-the-art hp-adaptive discontinuous Galerkin finite element simulations.

  10. Can the Acoustic Analysis of Expressive Prosody Discriminate Schizophrenia?

    PubMed

    Martínez-Sánchez, Francisco; Muela-Martínez, José Antonio; Cortés-Soto, Pedro; García Meilán, Juan José; Vera Ferrándiz, Juan Antonio; Egea Caparrós, Amaro; Pujante Valverde, Isabel María

    2015-01-01

    Emotional states, attitudes and intentions are often conveyed by modulations in the tone of voice. Impaired recognition of emotions from a tone of voice (receptive prosody) has been described as characteristic symptoms of schizophrenia. However, the ability to express non-verbal information in speech (expressive prosody) has been understudied. This paper describes a useful technique for quantifying the degree of expressive prosody deficits in schizophrenia, using a semi-automatic method, and evaluates this method's ability to discriminate between patient and control groups. Forty-five medicated patients with a diagnosis of schizophrenia were matched with thirty-five healthy comparison subjects. Production of expressive prosodic speech was analyzed using variation in fundamental frequency (F0) measures on an emotionally neutral reading task. Results revealed that patients with schizophrenia exhibited significantly more pauses (p < .001), were slower (p < .001), and showed less pitch variability in speech (p < .05) and fewer variations in syllable timing (p < .001) than control subjects. These features have been associated with «flat» speech prosody. Signal processing algorithms applied to speech were shown to be capable of discriminating between patients and controls with an accuracy of 93.8%. These speech parameters may have a diagnostic and prognosis value and therefore could be used as a dependent measure in clinical trials. PMID:26522128

  11. Analysis of Voice Impairment in Aphasia after Stroke-Underlying Neuroanatomical Substrates

    ERIC Educational Resources Information Center

    Vukovic, Mile; Sujic, Radmila; Petrovic-Lazic, Mirjana; Miller, Nick; Milutinovic, Dejan; Babac, Snezana; Vukovic, Irena

    2012-01-01

    Phonation is a fundamental feature of human communication. Control of phonation in the context of speech-language disturbances has traditionally been considered a characteristic of lesions to subcortical structures and pathways. Evidence suggests however, that cortical lesions may also implicate phonation. We carried out acoustic and perceptual…

  12. An acoustic analysis of laughter produced by congenitally deaf and normally hearing college students.

    PubMed

    Makagon, Maja M; Funayama, E Sumie; Owren, Michael J

    2008-07-01

    Relatively few empirical data are available concerning the role of auditory experience in nonverbal human vocal behavior, such as laughter production. This study compared the acoustic properties of laughter in 19 congenitally, bilaterally, and profoundly deaf college students and in 23 normally hearing control participants. Analyses focused on degree of voicing, mouth position, air-flow direction, temporal features, relative amplitude, fundamental frequency, and formant frequencies. Results showed that laughter produced by the deaf participants was fundamentally similar to that produced by the normally hearing individuals, which in turn was consistent with previously reported findings. Finding comparable acoustic properties in the sounds produced by deaf and hearing vocalizers confirms the presumption that laughter is importantly grounded in human biology, and that auditory experience with this vocalization is not necessary for it to emerge in species-typical form. Some differences were found between the laughter of deaf and hearing groups; the most important being that the deaf participants produced lower-amplitude and longer-duration laughs. These discrepancies are likely due to a combination of the physiological and social factors that routinely affect profoundly deaf individuals, including low overall rates of vocal fold use and pressure from the hearing world to suppress spontaneous vocalizations.

  13. Quantitative Analysis Of Acoustic Emission From Rock Fracture Experiments

    NASA Astrophysics Data System (ADS)

    Goodfellow, Sebastian David

    This thesis aims to advance the methods of quantitative acoustic emission (AE) analysis by calibrating sensors, characterizing sources, and applying the results to solve engi- neering problems. In the first part of this thesis, we built a calibration apparatus and successfully calibrated two commercial AE sensors. The ErgoTech sensor was found to have broadband velocity sensitivity and the Panametrics V103 was sensitive to surface normal displacement. These calibration results were applied to two AE data sets from rock fracture experiments in order to characterize the sources of AE events. The first data set was from an in situ rock fracture experiment conducted at the Underground Research Laboratory (URL). The Mine-By experiment was a large scale excavation response test where both AE (10 kHz - 1 MHz) and microseismicity (MS) (1 Hz - 10 kHz) were monitored. Using the calibration information, magnitude, stress drop, dimension and energy were successfully estimated for 21 AE events recorded in the tensile region of the tunnel wall. Magnitudes were in the range -7.5 < Mw < -6.8, which is consistent with other laboratory AE results, and stress drops were within the range commonly observed for induced seismicity in the field (0.1 - 10 MPa). The second data set was AE collected during a true-triaxial deformation experiment, where the objectives were to characterize laboratory AE sources and identify issues related to moving the analysis from ideal in situ conditions to more complex laboratory conditions in terms of the ability to conduct quantitative AE analysis. We found AE magnitudes in the range -7.8 < Mw < -6.7 and as with the in situ data, stress release was within the expected range of 0.1 - 10 MPa. We identified four major challenges to quantitative analysis in the laboratory, which in- hibited our ability to study parameter scaling (M0 ∝ fc -3 scaling). These challenges were 0c (1) limited knowledge of attenuation which we proved was continuously evolving, (2

  14. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  15. Development of “L-Shaped” Rotary Voice Coil Motor Actuator for Ultra Slim Optical Disk Drive Using Integrated Design Method based on Coupled-Field Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ju; Woo, Jung-Hyun; Kim, Sa-Ung; Oh, Je-Seung; Yoo, Jeong-Hoon; Park, No-Cheol; Park, Young-Pil; Shimano, Takeshi; Nakamura, Shigeo

    2007-06-01

    In this paper, we propose an “L-shaped” rotary voice coil motor (VCM) actuator for an ultra slim optical disk drive (ODD) with a CF II card size using the integrated design method that integrates coupled-field analysis and design methods.

  16. An Analysis of the Effects of Functional Communication and a Voice Output Communication Aid for a Child with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Olive, Melissa L.; Lang, Russell B.; Davis, Tonya N.

    2008-01-01

    The purpose of this study was to examine the effects of Functional Communication Training (FCT) and a Voice Output Communication Aid (VOCA) on the challenging behavior and language development of a 4-year-old girl with autism spectrum disorder. The participant's mother implemented modified functional analysis (FA) and intervention procedures in…

  17. Acoustic vibration analysis for utilization of woody plant in space environment

    NASA Astrophysics Data System (ADS)

    Chida, Yukari; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Motohashi, Kyohei; Sakurai, Naoki; Nakagawa-izumi, Akiko

    2012-07-01

    We are proposing to raise woody plants for space agriculture in Mars. Space agriculture has the utilization of wood in their ecosystem. Nobody knows the real tree shape grown under space environment under the low or micro gravitational conditions such as outer environment. Angiosperm tree forms tension wood for keeping their shape. Tension wood formation is deeply related to gravity, but the details of the mechanism of its formation has not yet been clarified. For clarifying the mechanism, the space experiment in international space station, ISS is the best way to investigate about them as the first step. It is necessary to establish the easy method for crews who examine the experiments at ISS. Here, we are proposing to investigate the possibility of the acoustic vibration analysis for the experiment at ISS. Two types of Japanese cherry tree, weeping and upright types in Prunus sp., were analyzed by the acoustic vibration method. Coefficient-of-variation (CV) of sound speed was calculated by the acoustic vibration analysis. The amount of lignin and decomposed lignin were estimated by both Klason and Py-GC/MS method, respectively. The relationships of the results of acoustic vibration analysis and the inner components in tested woody materials were investigated. After the experiments, we confirm the correlation about them. Our results indicated that the acoustic vibration analysis would be useful for determining the inside composition as a nondestructive method in outer space environment.

  18. VOT and the perception of voicing

    NASA Astrophysics Data System (ADS)

    Remez, Robert E.

    2001-05-01

    In explaining the ability to distinguish phonemes, linguists have described the dimension of voicing. Acoustic analyses have identified many correlates of the voicing contrast in initial, medial, and final consonants within syllables, and these in turn have motivated studies of the perceptual resolution of voicing. The framing conceptualization articulated by Lisker and Abramson 40 years ago in physiological, phonetic, and perceptual studies has been widely influential, and research on voicing now adopts their perspective without reservation. Their original survey included languages with two voicing categories (Dutch, Puerto Rican Spanish, Hungarian, Tamil, Cantonese, English), three voicing categories (Eastern Armenian, Thai, Korean), and four voicing categories (Hindi, Marathi). Perceptual studies inspired by this work have also ranged widely, including tests with different languages and with listeners of several species. The profound value of the analyses of Lisker and Abramson is evident in the empirical traction provided by the concept of VOT in research on the every important perceptual question about speech and language in our era. Some of these classic perceptual investigations will be reviewed. [Research supported by NIH (DC00308).

  19. An Instrumental Analysis of the Voicing Contrast in Word-Initial Stops in the Speech of Four-Year-Old English-Speaking Children. Papers and Reports on Child Language Development, Number 18.

    ERIC Educational Resources Information Center

    Barton, David; Macken, Marlys A.

    This paper reports on an investigation of the voice-onset-time (VOT) characteristics of word-initial stops produced by four four-year-old children. Instrumental analysis of the children's spontaneous speech showed that they had distinct distributions for voiced and voiceless stops at all three places of articulation and that there was very little…

  20. Vocal Dynamic Visual Pattern for voice characterization

    NASA Astrophysics Data System (ADS)

    Dajer, M. E.; Andrade, F. A. S.; Montagnoli, A. N.; Pereira, J. C.; Tsuji, D. H.

    2011-12-01

    Voice assessment requires simple and painless exams. Modern technologies provide the necessary resources for voice signal processing. Techniques based on nonlinear dynamics seem to asses the complexity of voice more accurately than other methods. Vocal dynamic visual pattern (VDVP) is based on nonlinear methods and provides qualitative and quantitative information. Here we characterize healthy and Reinke's edema voices by means of perturbation measures and VDVP analysis. VDPD and jitter show different results for both groups, while amplitude perturbation has no difference. We suggest that VDPD analysis improve and complement the evaluation methods available for clinicians.

  1. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    NASA Astrophysics Data System (ADS)

    Omar, Al Haj; Véronique, Peres; Eric, Serris; François, Grosjean; Jean, Kittel; François, Ropital; Michel, Cournil

    2015-06-01

    Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  2. Acoustic effects analysis utilizing speckle pattern with fixed-particle Monte Carlo

    NASA Astrophysics Data System (ADS)

    Vakili, Ali; Hollmann, Joseph A.; Holt, R. Glynn; DiMarzio, Charles A.

    2016-03-01

    Optical imaging in a turbid medium is limited because of multiple scattering a photon undergoes while traveling through the medium. Therefore, optical imaging is unable to provide high resolution information deep in the medium. In the case of soft tissue, acoustic waves unlike light, can travel through the medium with negligible scattering. However, acoustic waves cannot provide medically relevant contrast as good as light. Hybrid solutions have been applied to use the benefits of both imaging methods. A focused acoustic wave generates a force inside an acoustically absorbing medium known as acoustic radiation force (ARF). ARF induces particle displacement within the medium. The amount of displacement is a function of mechanical properties of the medium and the applied force. To monitor the displacement induced by the ARF, speckle pattern analysis can be used. The speckle pattern is the result of interfering optical waves with different phases. As light travels through the medium, it undergoes several scattering events. Hence, it generates different scattering paths which depends on the location of the particles. Light waves that travel along these paths have different phases (different optical path lengths). ARF induces displacement to scatterers within the acoustic focal volume, and changes the optical path length. In addition, temperature rise due to conversion of absorbed acoustic energy to heat, changes the index of refraction and therefore, changes the optical path length of the scattering paths. The result is a change in the speckle pattern. Results suggest that the average change in the speckle pattern measures the displacement of particles and temperature rise within the acoustic wave focal area, hence can provide mechanical and thermal properties of the medium.

  3. Voice-stress measure of mental workload

    NASA Technical Reports Server (NTRS)

    Alpert, Murray; Schneider, Sid J.

    1988-01-01

    In a planned experiment, male subjects between the age of 18 and 50 will be required to produce speech while performing various tasks. Analysis of the speech produced should reveal which aspects of voice prosody are associated with increased workloads. Preliminary results with two female subjects suggest a possible trend for voice frequency and amplitude to be higher and the variance of the voice frequency to be lower in the high workload condition.

  4. Helicopter blade-vortex interaction locations: Scale-model acoustics and free-wake analysis results

    NASA Technical Reports Server (NTRS)

    Hoad, Danny R.

    1987-01-01

    The results of a model rotor acoustic test in the Langley 4by 7-Meter Tunnel are used to evaluate a free-wake analytical technique. An acoustic triangulation technique is used to locate the position in the rotor disk where the blade-vortex interaction noise originates. These locations, along with results of the rotor free-wake analysis, are used to define the geometry of the blade-vortex interaction noise phenomena as well as to determine if the free-wake analysis is a capable diagnostic tool. Data from tests of two teetering rotor systems are used in these analyses.

  5. Acoustic emission analysis: A test method for metal joints bonded by adhesives

    NASA Technical Reports Server (NTRS)

    Brockmann, W.; Fischer, T.

    1978-01-01

    Acoustic emission analysis is applied to study adhesive joints which had been subjected to mechanical and climatic stresses, taking into account conditions which make results applicable to adhesive joints used in aerospace technology. Specimens consisting of the alloy AlMgSi0.5 were used together with a phenolic resin adhesive, an epoxy resin modified with a polyamide, and an epoxy resin modified with a nitrile. Results show that the acoustic emission analysis provides valuable information concerning the behavior of adhesive joints under load and climatic stresses.

  6. Voice characteristics of female physical education student teachers.

    PubMed

    Grillo, Elizabeth U; Fugowski, Justine

    2011-05-01

    In this study, the subjective and objective voice measures of seven female physical education student teachers during a semester of student teaching were investigated. The participants completed the voice measures at three data collection time points: baseline, middle, and end of the semester. The voice measures included acoustic and aerodynamic data, perceptual rating scales of vocal quality and vocal fatigue, an end-of-semester questionnaire, and the Voice Handicap Index. Results demonstrated that the subjective and objective voice measures changed at the middle and the end of the semester as compared with those at baseline. The change in the voice measures may suggest that the vocal mechanism was adapting to the increased vocal demands of teaching physical education.

  7. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  8. Norm-Based Coding of Voice Identity in Human Auditory Cortex

    PubMed Central

    Latinus, Marianne; McAleer, Phil; Bestelmeyer, Patricia E.G.; Belin, Pascal

    2013-01-01

    Summary Listeners exploit small interindividual variations around a generic acoustical structure to discriminate and identify individuals from their voice—a key requirement for social interactions. The human brain contains temporal voice areas (TVA) [1] involved in an acoustic-based representation of voice identity [2–6], but the underlying coding mechanisms remain unknown. Indirect evidence suggests that identity representation in these areas could rely on a norm-based coding mechanism [4, 7–11]. Here, we show by using fMRI that voice identity is coded in the TVA as a function of acoustical distance to two internal voice prototypes (one male, one female)—approximated here by averaging a large number of same-gender voices by using morphing [12]. Voices more distant from their prototype are perceived as more distinctive and elicit greater neuronal activity in voice-sensitive cortex than closer voices—a phenomenon not merely explained by neuronal adaptation [13, 14]. Moreover, explicit manipulations of distance-to-mean by morphing voices toward (or away from) their prototype elicit reduced (or enhanced) neuronal activity. These results indicate that voice-sensitive cortex integrates relevant acoustical features into a complex representation referenced to idealized male and female voice prototypes. More generally, they shed light on remarkable similarities in cerebral representations of facial and vocal identity. PMID:23707425

  9. Theoretical Analysis of Shear Wave Interference Patterns by Means of Dynamic Acoustic Radiation Forces.

    PubMed

    Hoyt, Kenneth

    2011-03-01

    Acoustic radiation forces associated with high intensity focused ultrasound stimulate shear wave propagation allowing shear wave speed and shear viscosity estimation of tissue structures. As wave speeds are meters per second, real time displacement tracking over an extend field-of-view using ultrasound is problematic due to very high frame rate requirements. However, two spatially separated dynamic external sources can stimulate shear wave motion leading to shear wave interference patterns. Advantages are shear waves can be imaged at lower frame rates and local interference pattern spatial properties reflect tissue's viscoelastic properties. Here a theoretical analysis of shear wave interference patterns by means of dynamic acoustic radiation forces is detailed. Using a viscoelastic Green's function analysis, tissue motion due to a pair of focused ultrasound beams and associated radiation forces are presented. Overall, this paper theoretically demonstrates shear wave interference patterns can be stimulated using dynamic acoustic radiation forces and tracked using conventional ultrasound imaging.

  10. Field support, data analysis and associated research for the acoustic grenade sounding program

    NASA Technical Reports Server (NTRS)

    Barnes, T. G.; Bullard, E. R.

    1976-01-01

    Temperature and horizontal winds in the 30 to 90 km altitude range of the upper atmosphere, were determined by acoustic grenade soundings conducted at Wallops Island, Virginia and Kourou, French Guiana. Field support provided at these locations included deployment of the large area microphone system, supervision, maintenance and operation of sound ranging stations; and coordination of activities. Data analysis efforts included the analysis of field data to determine upper atmospheric meteorological parameters. Profiles for upper atmospheric temperature, wind and density are provided in plots and tables for each of the acoustic grenade soundings conducted during the contract period. Research efforts were directed toward a systematic comparison of temperature data from acoustic grenade with other meteorological sensor probes in the upper atmosphere.

  11. Acoustic Analysis of Plutonium and Nuclear Weapon Components at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Saleh, T. A.; Reynolds, J. J.; Rowe, C. A.; Freibert, F. J.; Ten Cate, J. A.; Ulrich, T. J.; Farrow, A. M.

    2012-12-01

    One of the primary missions of Los Alamos National Laboratory is to use science based techniques to certify the nuclear weapons stockpile of the United States. As such we use numerous NDE techniques to monitor materials and systems properties in weapons. Two techniques will be discussed in this presentation, Acoustic Resonance Spectroscopy (ARS) and Acoustic Emission (AE). ARS is used to observe manufacturing variations or changes in the plutonium containing component (pit) of the weapon system. Both quantitative and qualitative comparisons can be used to determine variation in the pit components. Piezoelectric transducer driven acoustic resonance experiments will be described along with initial qualitative and more complex analysis and comparison techniques derived from earthquake analysis performed at LANL. Similarly, AE is used to measure the time of arrival of acoustic signals created by mechanical events that can occur in nuclear weapon components. Both traditional time of arrival techniques and more advanced techniques are used to pinpoint the location and type of acoustic emission event. Similar experiments on tensile tests of brittle phases of plutonium metal will be described.

  12. Voice Education in Teacher Training: An Investigation into the Knowledge about the Voice and Voice Care in Teacher-Training Students

    ERIC Educational Resources Information Center

    Kovacic, Gordana

    2005-01-01

    The aim of the present study was to investigate knowledge about the voice and voice care in teacher-training students. A voice care questionnaire was administered to teacher-training students (N = 184) and students of other professions (N = 143). Discriminant analysis demonstrated that the teacher-training students' knowledge was significantly…

  13. FRP/steel composite damage acoustic emission monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  14. Analysis of Postsurgical Health-Related Quality of Life and Quality of Voice of Patients With Laryngeal Carcinoma.

    PubMed

    Luo, Jie; Wu, Jieli; Lv, Kexing; Li, Kaichun; Wu, Jianhui; Wen, Yihui; Li, Xiaoling; Tang, Haocheng; Jiang, Aiyun; Wang, Zhangfeng; Wen, Weiping; Lei, Wenbin

    2016-01-01

    This study aims to analyze the postsurgical health-related quality of life (HRQOL) and quality of voice (QOV) of patients with laryngeal carcinoma with an expectation of improving the treatment and HRQOL of these patients. Based on the collection of information of patients with laryngeal carcinoma regarding clinical characteristics (age, TNM stage, with or without laryngeal preservation and/or neck dissection, with or without postoperative irradiation and/or chemotherapy, etc.), QOV using Voice Handicap Index (VIH) scale and HRQOL using EORTC QLQ-C30 and EORTCQLQ-H&N35 scales, the differences of postsurgical HRQOL related to their clinical characteristics were analyzed using univariate nonparametric tests, the main factors impacting the postsurgical HRQOL were analyzed using regression analyses (generalized linear models) and the correlation between QOV and HRQOL analyzed using spearman correlation analysis. A total of 92 patients were enrolled in this study, on whom the use of EORTC QLQ-C30, EORTC QLQ-H&N35 and VHI scales revealed that: the differences of HRQOL were significant among patients with different ages, TNM stages, and treatment modalities; the main factors impacting the postsurgical HRQOL were pain, speech disorder, and dry mouth; and QOV was significantly correlated with HRQOL. For the patients with laryngeal carcinoma included in our study, the quality of life after open surgeries were impacted by many factors predominated by pain, speech disorder, and dry mouth. It is suggested that doctors in China do more efforts on the patients' postoperative pain and xerostomia management and speech rehabilitation with the hope of improving the patients' quality of life. PMID:26735538

  15. Analysis of Postsurgical Health-Related Quality of Life and Quality of Voice of Patients With Laryngeal Carcinoma

    PubMed Central

    Luo, Jie; Wu, Jieli; Lv, Kexing; Li, Kaichun; Wu, Jianhui; Wen, Yihui; Li, Xiaoling; Tang, Haocheng; Jiang, Aiyun; Wang, Zhangfeng; Wen, Weiping; Lei, Wenbin

    2016-01-01

    Abstract This study aims to analyze the postsurgical health-related quality of life (HRQOL) and quality of voice (QOV) of patients with laryngeal carcinoma with an expectation of improving the treatment and HRQOL of these patients. Based on the collection of information of patients with laryngeal carcinoma regarding clinical characteristics (age, TNM stage, with or without laryngeal preservation and/or neck dissection, with or without postoperative irradiation and/or chemotherapy, etc.), QOV using Voice Handicap Index (VIH) scale and HRQOL using EORTC QLQ-C30 and EORTCQLQ-H&N35 scales, the differences of postsurgical HRQOL related to their clinical characteristics were analyzed using univariate nonparametric tests, the main factors impacting the postsurgical HRQOL were analyzed using regression analyses (generalized linear models) and the correlation between QOV and HRQOL analyzed using spearman correlation analysis. A total of 92 patients were enrolled in this study, on whom the use of EORTC QLQ-C30, EORTC QLQ-H&N35 and VHI scales revealed that: the differences of HRQOL were significant among patients with different ages, TNM stages, and treatment modalities; the main factors impacting the postsurgical HRQOL were pain, speech disorder, and dry mouth; and QOV was significantly correlated with HRQOL. For the patients with laryngeal carcinoma included in our study, the quality of life after open surgeries were impacted by many factors predominated by pain, speech disorder, and dry mouth. It is suggested that doctors in China do more efforts on the patients’ postoperative pain and xerostomia management and speech rehabilitation with the hope of improving the patients’ quality of life. PMID:26735538

  16. Correlation between the Voice Handicap Index and voice laboratory measurements after phonosurgery.

    PubMed

    Cheng, Jeffrey; Woo, Peak

    2010-04-01

    Phonosurgery is an effective treatment for some vocal fold pathologies, and the Voice Handicap Index (VHI) survey has been shown to be a useful instrument for evaluating treatment effectiveness. We conducted a nonrandomized, prospective study of 21 patients who underwent phonosurgery for the treatment of non-neoplastic vocal fold lesions at our academic tertiary-care referral center. Our goals were to compare pre- and postoperative VHI scores (subjective assessments) and pre- and postoperative results of acoustic and aerodynamic tests (objective assessments). We sought to determine if there was any correlation between the subjective and objective findings. We looked for differences between professional voice users (n = 10) and nonprofessional voice users (n = 11) in both subjective and objective measures. We found statistically significant differences between pre- and postoperative values in three of four VHI parameters, but in only one of 13 objective measures. There was no correlation between preoperative VHI scores and preoperative acoustic and aerodynamic test results. The professional voice users expressed greater postoperative improvement as reflected by lower VHI scores than did the nonprofessional voice users, confirming that the former are more negatively affected by a voice disability.

  17. Passive acoustic monitoring of human physiology during activity indicates health and performance of soldiers and firefighters

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-04-01

    The Army Research Laboratory has developed a unique gel-coupled acoustic physiological monitoring sensor that has acoustic impedance properties similar to the skin. This facilitates the transmission of body sounds into the sensor pad, yet significantly repels ambient airborne noises due to an impedance mismatch. The sensor's sensitivity and bandwidth produce excellent signatures for detection and spectral analysis of diverse physiological events. Acoustic signal processing detects heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. Comfortable acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Noise-canceling sensor arrays help remove out-of-phase motion noise and enhance covariant physiology by using two acoustic sensors on the front sides of the neck and two additional acoustic sensors on each wrist. Pulse wave transit time between neck and wrist acoustic sensors will indicate systolic blood pressure. Larger torso-sized arrays can be used to acoustically inspect the lungs and heart, or built into beds for sleep monitoring. Acoustics is an excellent input for sensor fusion.

  18. Wavelet analysis of baryon acoustic structures in the galaxy distribution

    NASA Astrophysics Data System (ADS)

    Arnalte-Mur, P.; Labatie, A.; Clerc, N.; Martínez, V. J.; Starck, J.-L.; Lachièze-Rey, M.; Saar, E.; Paredes, S.

    2012-06-01

    Context. Baryon acoustic oscillations (BAO) are imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. Aims: The BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. We present a new method to detect the real-space structures associated with BAO. These baryon acoustic structures are spherical shells of relatively small density contrast, surrounding high density central regions. Methods: We design a specific wavelet adapted to search for shells, and exploit the physics of the process by making use of two different mass tracers, introducing a specific statistic to detect the BAO features. We show the effect of the BAO signal in this new statistic when applied to the Λ - cold dark matter (ΛCDM) model, using an analytical approximation to the transfer function. We confirm the reliability and stability of our method by using cosmological N-body simulations from the MareNostrum Institut de Ciències de l'Espai (MICE). Results: We apply our method to the detection of BAO in a galaxy sample drawn from the Sloan Digital Sky Survey (SDSS). We use the "main" catalogue to trace the shells, and the luminous red galaxies (LRG) as tracers of the high density central regions. Using this new method, we detect, with a high significance, that the LRG in our sample are preferentially located close to the centres of shell-like structures in the density field, with characteristics similar to those expected from BAO. We show that stacking selected shells, we can find their characteristic density profile. Conclusions: We delineate a new feature of the cosmic web, the BAO shells. As these are real spatial structures, the BAO phenomenon can be studied in detail by examining those shells. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc

  19. Analysis of Fumarole Acoustics at Aso Volcano, Japan

    NASA Astrophysics Data System (ADS)

    McKee, K. F.; Yokoo, A.; Fee, D.; Huang, Y. C.; Yoshikawa, S.; Utsugi, M.; Minami, T.; Ohkura, T.

    2015-12-01

    The lowermost portion of large eruption columns is the momentum-driven, fluid flow portion known as a volcanic jet. The perturbation of the atmosphere from this region produces a sound known as jetting or jet noise. Recent work has shown that this volcanic jet noise produced by a volcano has similar characteristics as the sound from jet and rocket engines. The study of volcanic jet noise has gained much from laboratory jet engine studies; however, jet engines have been engineered to reduce noise thereby limiting their use as a comparison tool to the complex, ever-changing volcanic jet. Previous studies have noted that fumaroles produce jet noise without further detailed investigation. The goal of this work is to enhance our understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We aim to characterize the acoustic signature of fumaroles and evaluate if fumarolic jets scale to that of large volcanic jets. To investigate this, we deployed a 6-element acoustic array at two different locations along the edge of the crater wall at Aso Volcano, Japan from early July through mid-August 2015. Approximately two months before this deployment, the pyroclastic cone within Aso's crater partially collapsed into the vent. The cone was constructed during both ash venting and strombolian-style explosive activity in the last year. After the deployment, on July 13 a new small vent opened on the southwest flank of the pyroclastic cone. The vent is several meters in diameter and has consistent gas jetting which produces audible jet noise. To better capture the acoustic signature of the gas jetting we moved the array to the southwestern edge of the crater. The array is 230 meters from the vent and is positioned 54 degrees from the vertical jet axis, a recording angle usually not feasible in volcanic environments. Preliminary investigations suggest directionality at the source and the influence of topography along the propagation path as

  20. Power and perceived expressed emotion of voices: their impact on depression and suicidal thinking in those who hear voices.

    PubMed

    Connor, Charlotte; Birchwood, Max

    2013-01-01

    Considerable focus has been given to the interpersonal nature of the voice-hearing relationship and how appraisals about voices may be linked with distress and depression (the 'cognitive model'). Research hitherto has focused on appraisals of voice power, but the supportive and affiliative quality of voices, which may act to mitigate distress, is not understood. We explored appraisals of voices' power and emotional support to determine their significance in predicting depression and suicidal thought. We adapted the concept of expressed emotion (EE) and applied it to measure voice hearers' perception of the relationship with their voice(s). In a sample of 74 voice hearers, 55.4% were moderately depressed. Seventy-eight who rated their voices as high in both power and EE had a large and significant elevation in depression, suggesting that co-occurrence of these appraisals impacts on depression. Analysis of the relationship between power and EE revealed that many voices perceived as low in power were, nevertheless, perceived as high in EE. Those rating their voices as emotionally supportive showed the lowest levels of depression and suicidal thinking. These findings highlight the protective role that the supportive dimension of the voice/voice-hearer relationship may have.

  1. Automated pattern analysis: A newsilent partner in insect acoustic detection studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This seminar reviews methods that have been developed for automated analysis of field-collected sounds used to estimate pest populations and guide insect pest management decisions. Several examples are presented of successful usage of acoustic technology to map insect distributions in field environ...

  2. Quantitative and Descriptive Comparison of Four Acoustic Analysis Systems: Vowel Measurements

    ERIC Educational Resources Information Center

    Burris, Carlyn; Vorperian, Houri K.; Fourakis, Marios; Kent, Ray D.; Bolt, Daniel M.

    2014-01-01

    Purpose: This study examines accuracy and comparability of 4 trademarked acoustic analysis software packages (AASPs): Praat, WaveSurfer, TF32, and CSL by using synthesized and natural vowels. Features of AASPs are also described. Method: Synthesized and natural vowels were analyzed using each of the AASP's default settings to secure 9…

  3. FY-93 noncontacting acoustic ultrasonic signature analysis development

    SciTech Connect

    Tow, D.M.; Rodriguez, J.G.; Williamson, R.L.; Blackwood, L.G.

    1994-04-01

    A noncontacting, long-standoff inspection system with proven capabilities in container fill identification has been under development at the Idaho National Engineering Laboratory. The system detects subtle change in container vibration characteristics caused by differences in the physical properties of the fill materials. A container is inspected by acoustically inducting it to vibrate and sensing the vibrational response with a laser vibrometer. A standoff distance of several meters is feasible. In previous work the system proved to be a reliable means of distinguishing between munitions with a variety of chemical fills. During FY-93, the system was modified to improve performance and simplify operation. Other FY-93 accomplishments include progress in modeling the vibrational characteristics of containers and refinements to the statistical classification algorithms. Progress was also made in identifying other applications for this technology.

  4. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    SciTech Connect

    Matzner, Shari; Fu, Tao; Ren, Huiying; Deng, Zhiqun; Sun, Yannan; Carlson, Thomas J.

    2011-09-30

    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmental models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.

  5. Acoustic Propagation Studies For Sperm Whale Phonation Analysis During LADC Experiments

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Ioup, George E.; Ioup, Juliette W.; Caruthers, Jerald W.

    2004-11-01

    The Littoral Acoustic Demonstration Center (LADC) conducted a series of passive acoustic experiments in the Northern Gulf of Mexico and the Ligurian Sea in 2001 and 2002. Environmental and acoustic moorings were deployed in areas of large concentrations of marine mammals (mainly, sperm whales). Recordings and analysis of whale phonations are among the objectives of the project. Each mooring had a single autonomously recording hydrophone (Environmental Acoustic Recording System (EARS)) obtained from the U.S. Naval Oceanographic Office after modification to record signals up to 5,859 Hz in the Gulf of Mexico and up to 12,500 Hz in the Ligurian Sea. Self-recording environmental sensors, attached to the moorings, and concurrent environmental ship surveys provided the environmental data for the experiments. The results of acoustic simulations of long-range propagation of the broad-band (500-6,000 Hz) phonation pulses from a hypothetical whale location to the recording hydrophone in the experimental environments are presented. The utilization of the simulation results for an interpretation of the spectral features observed in whale clicks and for the development of tracking algorithms from single hydrophone recordings based on the identification of direct and surface and bottom reflected arrivals are discussed. [Research supported by ONR.

  6. Data-driven automated acoustic analysis of human infant vocalizations using neural network tools

    PubMed Central

    Warlaumont, Anne S.; Oller, D. Kimbrough; Buder, Eugene H.; Dale, Rick; Kozma, Robert

    2010-01-01

    Acoustic analysis of infant vocalizations has typically employed traditional acoustic measures drawn from adult speech acoustics, such as f0, duration, formant frequencies, amplitude, and pitch perturbation. Here an alternative and complementary method is proposed in which data-derived spectrographic features are central. 1-s-long spectrograms of vocalizations produced by six infants recorded longitudinally between ages 3 and 11 months are analyzed using a neural network consisting of a self-organizing map and a single-layer perceptron. The self-organizing map acquires a set of holistic, data-derived spectrographic receptive fields. The single-layer perceptron receives self-organizing map activations as input and is trained to classify utterances into prelinguistic phonatory categories (squeal, vocant, or growl), identify the ages at which they were produced, and identify the individuals who produced them. Classification performance was significantly better than chance for all three classification tasks. Performance is compared to another popular architecture, the fully supervised multilayer perceptron. In addition, the network’s weights and patterns of activation are explored from several angles, for example, through traditional acoustic measurements of the network’s receptive fields. Results support the use of this and related tools for deriving holistic acoustic features directly from infant vocalization data and for the automatic classification of infant vocalizations. PMID:20370038

  7. Analysis of random structure-acoustic interaction problems using coupled boundary element and finite element methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Pates, Carl S., III

    1994-01-01

    A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.

  8. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    NASA Astrophysics Data System (ADS)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni; Chiodi, Ilaria; Mondello, Chiara; Osellame, Roberto; Berg-Sørensen, Kirstine; Cristiani, Ilaria; Minzioni, Paolo

    2016-04-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values.

  9. Do Women's Voices Provide Cues of the Likelihood of Ovulation? The Importance of Sampling Regime

    PubMed Central

    Fischer, Julia; Semple, Stuart; Fickenscher, Gisela; Jürgens, Rebecca; Kruse, Eberhard; Heistermann, Michael; Amir, Ofer

    2011-01-01

    The human voice provides a rich source of information about individual attributes such as body size, developmental stability and emotional state. Moreover, there is evidence that female voice characteristics change across the menstrual cycle. A previous study reported that women speak with higher fundamental frequency (F0) in the high-fertility compared to the low-fertility phase. To gain further insights into the mechanisms underlying this variation in perceived attractiveness and the relationship between vocal quality and the timing of ovulation, we combined hormone measurements and acoustic analyses, to characterize voice changes on a day-to-day basis throughout the menstrual cycle. Voice characteristics were measured from free speech as well as sustained vowels. In addition, we asked men to rate vocal attractiveness from selected samples. The free speech samples revealed marginally significant variation in F0 with an increase prior to and a distinct drop during ovulation. Overall variation throughout the cycle, however, precluded unequivocal identification of the period with the highest conception risk. The analysis of vowel samples revealed a significant increase in degree of unvoiceness and noise-to-harmonic ratio during menstruation, possibly related to an increase in tissue water content. Neither estrogen nor progestogen levels predicted the observed changes in acoustic characteristics. The perceptual experiments revealed a preference by males for voice samples recorded during the pre-ovulatory period compared to other periods in the cycle. While overall we confirm earlier findings in that women speak with a higher and more variable fundamental frequency just prior to ovulation, the present study highlights the importance of taking the full range of variation into account before drawing conclusions about the value of these cues for the detection of ovulation. PMID:21957453

  10. Factors Predicting the Use of Passive Voice in Newspaper Headlines

    ERIC Educational Resources Information Center

    Micciulla, Linnea Margaret

    2011-01-01

    Information packaging researchers have found that certain factors influence active/passive voice alternations: Animacy, Definiteness and Weight influence argument order and thus choice of voice. Researchers in Critical Discourse Analysis (CDA) and psycholinguistics claim that voice is influenced by social factors, e.g. gender, social standing, or…

  11. The acoustic qualities of Embera Katio stops

    NASA Astrophysics Data System (ADS)

    Greenfield, Gisella Teresa Velez

    Embera Katío is a Chocó language of Colombia. This thesis presents the results of an acoustic analysis of the stops as produced by speakers from the departments of Córdoba and Antioquia. The analysis of the stops allows me to establish more conclusively their actual physical correlates and corresponding phonological categories. Five male adult native speakers of Embera Katío were recorded on location. Each one pronounced sixty-one words in a constant sentential frame, five times each. The utterances were analyzed acoustically, measuring duration, formant onset time, pre-voicing, and burst. Analysis of the data verifies that Embera Katío has three series of stops: aspirated, unaspirated and voiced. There are clear indications of systematic variation between the Katío of Córdoba and the Katío of Antioquia. As found in other languages, duration of the closure is the longest for bilabials and the shortest for velars. Conversely, FOT is the shortest for bilabials and the longest for velars. A preceding nasal vowel correlates with longer duration and shorter FOT. The most significant finding that differs from widespread tendencies in the world's languages is the fact that stress correlates with shorter FOT.

  12. A two-beam acoustic system for tissue analysis.

    PubMed

    Sachs, T D; Janney, C D

    1977-03-01

    In the 'thermo-acoustic sensing technique' (TAST), a burst of sound, called the 'thermometer' beam is passed through tissue and its transit time is measured. A focused sound field, called the heating field, then warms a small volume in the path of the therometer beam, in proportion to the absorption. Finally, the therometer beam burst is repeated and its transit time subtracted from that of the initial thermometer burst. This difference measures the velocity perturbation in the tissue produced by the heating field. The transit time difference is td = K integral of infinity-infinity IP dchi where K is the instrument constant, I the heating field intensity, and P a perturbation factor which characterizes the tissues. The integration is carried out along the path of the thermometer beam. The perturbation factor is P = (formula: see text) where C is the specific heat, rho the denisty, V the velocity of sound, (formula: see text) the temperature coefficient of velocity and alpha the heating field absorption coefficient which is apparently sensitive to tissue structure and condition. Experiments on a fixed human brain showed an ability to distinguish between various tissue types combined with a spatial resolution of better than 3 mm. Should predictions based on the data and theory prove correct, TAST may become a non-invasive alternative to biopsy. PMID:857267

  13. Analysis for Acoustic Characterization of Microbubbles under Ultrasound Exposure

    NASA Astrophysics Data System (ADS)

    Baba, Wataru; Nakamura, Yoji; Ichiyanagi, Mitsuhisa; Yoshinaka, Kiyoshi; Ikeda, Teiichiro; Takagi, Shu; Matsumoto, Yoichiro

    2011-09-01

    Microbubble contrast agents are used in many diagnoses and studied for therapeutic applications. But ultrasound parameters have not been physically analyzed, which means we do not have sufficient data about the parameters to explain unexpected events during diagnosis. The purpose of this study is to obtain sufficient knowledge about the parameters relevant to ultrasound therapy using microbubble contrast agents and to analyze the microbubble dynamics under ultrasound exposure. We measured the acoustic pressures of commercial contrast agent (Sonazoid™) resulting from ultrasound sine burst exposure of 3 cycles at center frequency 3.5 MHz, in various concentrations (void fractions). Results showed that for a high void fraction of 10-4, there appeared a low frequency signal of the order of 100 kHz in radiated echo from microbubbles, and comparatively low intensity level of the driving frequency in transmitted signal. The results suggested some change in dynamics of bubbles according to void fraction. We calculated the bubble interaction parameter β to know the transition range from single bubble behavior to bubble cloud behavior, and concluded that the low frequency signal appearing in the radiated echo is likely to be a resonance frequency of bubble cloud.

  14. Analysis of clot formation with acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Longo, Diane M.; Lawrence, Michael B.; Walker, William F.

    2002-04-01

    Inappropriate blood coagulation plays an important role in diseases including stroke, heart attack, and deep vein thrombosis (DVT). DVT arises when a blood clot forms in a large vein of the leg. DVT is detrimental because the blood flow may be partially or completely obstructed. More importantly, a potentially fatal situation may arise if part of the clot travels to the arteries in the lungs, forming a pulmonary embolism (PE). Characterization of the mechanical properties of DVT could improve diagnosis and suggest appropriate treatment. We are developing a technique to assess mechanical properties of forming thrombi. The technique uses acoustic radiation force as a means to produce small, localized displacements within the sample. Returned ultrasound echoes are processed to estimate the time dependent displacement of the sample. Appropriate mechanical modeling and signal processing produce plots depicting relative mechanical properties (relative elasticity and relative viscosity) and force-free parameters (time constant, damping ratio, and natural frequency). We present time displacement curves of blood samples obtained during coagulation, and show associated relative and force-free parameter plots. These results show that the Voigt model with added mass accurately characterizes blood behavior during clot formation.

  15. Risk Factors of Acoustic Neuroma: Systematic Review and Meta-Analysis

    PubMed Central

    Chen, Mantao; Fan, Zuoxu; Cao, Fei; Wang, Liang

    2016-01-01

    Purpose Many epidemiological studies have investigated environmental risk factors for the development of acoustic neuroma. However, these results are controversial. We conducted a meta-analysis of case-control studies to identify any potential relationship between history of noise exposure, smoking, allergic diseases, and risk of acoustic neuroma. Materials and Methods We searched PubMed to identify relevant articles. Two researchers evaluated the eligibility and extracted the data independently. Results Eleven case-control studies were included in our meta-analysis. Acoustic neuroma was found to be associated with leisure noise exposure [odds ratio (OR)=1.33, 95% confidence interval (CI): 1.05–1.68], but not with occupational noise exposure and ever noise exposure (OR=1.20, 95% CI: 0.84–1.72 and OR=1.15, 95% CI: 0.80–1.65). The OR of acoustic neuroma for ever (versus never) smoking was 0.53 (95% CI: 0.30–0.94), while the subgroup analysis indicated ORs of 0.95 (95% CI: 0.81–1.10) and 0.49 (95% CI: 0.41–0.59) for ex-smoker and current smoker respectively. The ORs for asthma, eczema, and seasonal rhinitis were 0.98 (95% CI: 0.80–1.18), 0.91 (95% CI: 0.76–1.09), and 1.52 (95% CI: 0.90–2.54), respectively. Conclusion Our meta-analysis is suggestive of an elevated risk of acoustic neuroma among individuals who were ever exposed to leisure noise, but not to occupational noise. Our study also indicated a lower acoustic neuroma risk among ever and current cigarette smokers than never smokers, while there was no significant relationship for ex-smokers. No significant associations were found between acoustic neuroma and history of any allergic diseases, such as asthma, eczema, and seasonal rhinitis. PMID:26996581

  16. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; Ehgamberdiev, Shuhrat; Landenkov, Oleg

    1999-01-01

    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  17. Structure borne noise analysis using Helmholtz equation least squares based forced vibro acoustic components

    NASA Astrophysics Data System (ADS)

    Natarajan, Logesh Kumar

    This dissertation presents a structure-borne noise analysis technology that is focused on providing a cost-effective noise reduction strategy. Structure-borne sound is generated or transmitted through structural vibration; however, only a small portion of the vibration can effectively produce sound and radiate it to the far-field. Therefore, cost-effective noise reduction is reliant on identifying and suppressing the critical vibration components that are directly responsible for an undesired sound. However, current technologies cannot successfully identify these critical vibration components from the point of view of direct contribution to sound radiation and hence cannot guarantee the best cost-effective noise reduction. The technology developed here provides a strategy towards identifying the critical vibration components and methodically suppressing them to achieve a cost-effective noise reduction. The core of this technology is Helmholtz equation least squares (HELS) based nearfield acoustic holography method. In this study, the HELS formulations derived in spherical co-ordinates using spherical wave expansion functions utilize the input data of acoustic pressures measured in the nearfield of a vibrating object to reconstruct the vibro-acoustic responses on the source surface and acoustic quantities in the far field. Using these formulations, three steps were taken to achieve the goal. First, hybrid regularization techniques were developed to improve the reconstruction accuracy of normal surface velocity of the original HELS method. Second, correlations between the surface vibro-acoustic responses and acoustic radiation were factorized using singular value decomposition to obtain orthogonal basis known here as the forced vibro-acoustic components (F-VACs). The F-VACs enables one to identify the critical vibration components for sound radiation in a similar manner that modal decomposition identifies the critical natural modes in a structural vibration. Finally

  18. Sex and the singer: Gender categorization aspects of singing voice

    NASA Astrophysics Data System (ADS)

    Ternström, Sten

    2003-04-01

    The singing voice exhibits many systematic differences by gender and age. The physiological differences between the voice organs of males, females, and children are well known and give rise to several acoustic differences, including acoustic power, pitch range, and spectral distribution. Vocal artists often strive to widen their range of expression, and it is not uncommon for males to sing in a femalelike register, as in counter tenors and in some pop/rock genres. The opposite, however, is quite rare. While ambiguous or contradictory gender in speech is usually a social disadvantage, in singing it can be a desired effect. The physical differences in singing voice production between males and females are reviewed in detail. Some interesting borderline cases are examined from an acoustic standpoint.

  19. Synergy of seismic, acoustic, and video signals in blast analysis

    SciTech Connect

    Anderson, D.P.; Stump, B.W.; Weigand, J.

    1997-09-01

    The range of mining applications from hard rock quarrying to coal exposure to mineral recovery leads to a great variety of blasting practices. A common characteristic of many of the sources is that they are detonated at or near the earth`s surface and thus can be recorded by camera or video. Although the primary interest is in the seismic waveforms that these blasts generate, the visual observations of the blasts provide important constraints that can be applied to the physical interpretation of the seismic source function. In particular, high speed images can provide information on detonation times of individuals charges, the timing and amount of mass movement during the blasting process and, in some instances, evidence of wave propagation away from the source. All of these characteristics can be valuable in interpreting the equivalent seismic source function for a set of mine explosions and quantifying the relative importance of the different processes. This paper documents work done at the Los Alamos National Laboratory and Southern Methodist University to take standard Hi-8 video of mine blasts, recover digital images from them, and combine them with ground motion records for interpretation. The steps in the data acquisition, processing, display, and interpretation are outlined. The authors conclude that the combination of video with seismic and acoustic signals can be a powerful diagnostic tool for the study of blasting techniques and seismology. A low cost system for generating similar diagnostics using consumer-grade video camera and direct-to-disk video hardware is proposed. Application is to verification of the Comprehensive Test Ban Treaty.

  20. Measurement of Voice Onset Time in Maxillectomy Patients

    PubMed Central

    Hattori, Mariko; Sumita, Yuka I.; Taniguchi, Hisashi

    2014-01-01

    Objective speech evaluation using acoustic measurement is needed for the proper rehabilitation of maxillectomy patients. For digital evaluation of consonants, measurement of voice onset time is one option. However, voice onset time has not been measured in maxillectomy patients as their consonant sound spectra exhibit unique characteristics that make the measurement of voice onset time challenging. In this study, we established criteria for measuring voice onset time in maxillectomy patients for objective speech evaluation. We examined voice onset time for /ka/ and /ta/ in 13 maxillectomy patients by calculating the number of valid measurements of voice onset time out of three trials for each syllable. Wilcoxon's signed rank test showed that voice onset time measurements were more successful for /ka/ and /ta/ when a prosthesis was used (Z = −2.232, P = 0.026 and Z = −2.401, P = 0.016, resp.) than when a prosthesis was not used. These results indicate a prosthesis affected voice onset measurement in these patients. Although more research in this area is needed, measurement of voice onset time has the potential to be used to evaluate consonant production in maxillectomy patients wearing a prosthesis. PMID:24574934

  1. Guided by Voices

    ERIC Educational Resources Information Center

    Wallin, Jason J.

    2010-01-01

    While the educational project privileges signifying speech, the psychical significance of the "voice" has become an institutional "vanishing mediator." Against the commonplace assumption that the voice functions as a benign vehicle for conscious meaning-making, this article examines the sublimated privilege and function of the voice in the context…

  2. Writing with Voice

    ERIC Educational Resources Information Center

    Kesler, Ted

    2012-01-01

    In this Teaching Tips article, the author argues for a dialogic conception of voice, based in the work of Mikhail Bakhtin. He demonstrates a dialogic view of voice in action, using two writing examples about the same topic from his daughter, a fifth-grade student. He then provides five practical tips for teaching a dialogic conception of voice in…

  3. Voices (Children's Books).

    ERIC Educational Resources Information Center

    Freeman, Evelyn B.; And Others

    1996-01-01

    Presents brief annotations of 41 recently published children's books (for students in elementary and middle grades). Focuses on a myriad of voices: those echoing the past and illuminating the wonders of nature; introspective voices seeking to help readers know themselves and their place in the world; voices of great joy and laughter uplifting…

  4. A ''Voice Inversion Effect?''

    ERIC Educational Resources Information Center

    Bedard, Catherine; Belin, Pascal

    2004-01-01

    Voice is the carrier of speech but is also an ''auditory face'' rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a ''voice inversion effect,'' by analogy to the classical ''face inversion effect,'' which could support the hypothesis of a voice-specific module. Experiment 1 consisted…

  5. Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Schilden, Thomas; Schröder, Wolfgang; Ali, Syed Raza Christopher; Schreyer, Anne-Marie; Wu, Jie; Radespiel, Rolf

    2016-05-01

    The tunnel noise in a Mach 5.9 Ludwieg tube is determined by two methods, a newly developed cone-probe-DNS method and a reliable hot-wire-Pitot-probe method. The new method combines pressure and heat flux measurements using a cone probe and direct numerical simulation (DNS). The modal analysis is based on transfer functions obtained by the DNS to link the measured quantities to the tunnel noise. The measurements are performed for several unit-Reynolds numbers in the range of 5 ṡ 106 ≤ Re/m ≤ 16 ṡ 106 and probe positions to identify the sensitivities of tunnel noise. The DNS solutions show similar response mechanisms of the cone probe to incident acoustic and entropy waves which leads to high condition numbers of the transfer matrix such that a unique relationship between response and source mechanism can be only determined by neglecting the contribution of the non-acoustic modes to the pressure and heat flux fluctuations. The results of the cone-probe-DNS method are compared to a modal analysis based on the hot-wire-Pitot-probe method which provides reliable results in the frequency range less than 50 kHz. In this low frequency range the findings of the two different mode analyses agree well. At higher frequencies, the newly developed cone-probe-DNS method is still valid. The tunnel noise is dominated by the acoustic mode, since the entropy mode is lower by one order of magnitude and the vorticity mode can be neglected. The acoustic mode is approximately 0.5% at 30 kHz and the cone-probe-DNS data illustrate the acoustic mode to decrease and to asymptotically approach 0.2%.

  6. Mares Prefer the Voices of Highly Fertile Stallions

    PubMed Central

    Lemasson, Alban; Remeuf, Kévin; Trabalon, Marie; Cuir, Frédérique; Hausberger, Martine

    2015-01-01

    We investigated the possibility that stallion whinnies, known to encode caller size, also encoded information about caller arousal and fertility, and the reactions of mares in relation to type of voice. Voice acoustic features are correlated with arousal and reproduction success, the lower-pitched the stallion’s voice, the slower his heart beat and the higher his fertility. Females from three study groups preferred playbacks of low-pitched voices. Hence, females are attracted by frequencies encoding for large male size, calmness and high fertility. More work is needed to explore the relative importance of morpho-physiological features. Assortative mating may be involved as large females preferred voices of larger stallions. Our study contributes to basic and applied ongoing research on mammal reproduction, and questions the mechanisms used by females to detect males’ fertility. PMID:25714814

  7. Blend uniformity analysis of pharmaceutical products by Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS).

    PubMed

    Fitzpatrick, Dara; Scanlon, Eoin; Krüse, Jacob; Vos, Bastiaan; Evans-Hurson, Rachel; Fitzpatrick, Eileen; McSweeney, Seán

    2012-11-15

    Blend uniformity analysis (BUA) is a routine and highly regulated aspect of pharmaceutical production. In most instances, it involves quantitative determination of individual components of a blend in order to ascertain the mixture ratio. This approach often entails the use of costly and sophisticated instrumentation and complex statistical methods. In this study, a new and simple qualitative blend confirmatory test is introduced based on a well known acoustic phenomenon. Several over the counter (OTC) product powder blends are analysed and it is shown that each product has a unique and highly reproducible acoustic signature. The acoustic frequency responses generated during the dissolution of the product are measured and recorded in real time. It is shown that intra-batch and inter-batch variation for each product is either insignificant or non-existent when measured in triplicate. This study demonstrates that Broadband Acoustic Resonance Dissolution Spectroscopy or BARDS can be used successfully to determine inter-batch variability, stability and uniformity of powder blends. This is just one application of a wide range of BARDS applications which are more cost effective and time efficient than current methods.

  8. Effects of different analysis techniques and recording duty cycles on passive acoustic monitoring of killer whales.

    PubMed

    Riera, Amalis; Ford, John K; Ross Chapman, N

    2013-09-01

    Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency.

  9. Effects of different analysis techniques and recording duty cycles on passive acoustic monitoring of killer whales.

    PubMed

    Riera, Amalis; Ford, John K; Ross Chapman, N

    2013-09-01

    Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency. PMID:23968036

  10. Listening through voices: Infant statistical word segmentation across multiple speakers.

    PubMed

    Estes, Katharine Graf; Lew-Williams, Casey

    2015-11-01

    To learn from their environments, infants must detect structure behind pervasive variation. This presents substantial and largely untested learning challenges in early language acquisition. The current experiments address whether infants can use statistical learning mechanisms to segment words when the speech signal contains acoustic variation produced by changes in speakers' voices. In Experiment 1, 8- and 10-month-old infants listened to a continuous stream of novel words produced by 8 different female voices. The voices alternated frequently, potentially interrupting infants' detection of transitional probability patterns that mark word boundaries. Infants at both ages successfully segmented words in the speech stream. In Experiment 2, 8-month-olds demonstrated the ability to generalize their learning about the speech stream when presented with a new, acoustically distinct voice during testing. However, in Experiments 3 and 4, when the same speech stream was produced by only 2 female voices, infants failed to segment the words. The results of these experiments indicate that low acoustic variation may interfere with infants' efficiency in segmenting words from continuous speech, but that infants successfully use statistical cues to segment words in conditions of high acoustic variation. These findings contribute to our understanding of whether statistical learning mechanisms can scale up to meet the demands of natural learning environments.

  11. Listening through voices: Infant statistical word segmentation across multiple speakers

    PubMed Central

    Estes, Katharine Graf; Lew-Williams, Casey

    2015-01-01

    To learn from their environments, infants must detect structure behind pervasive variation. This presents substantial and largely untested learning challenges in early language acquisition. The current experiments address whether infants can use statistical learning mechanisms to segment words when the speech signal contains acoustic variation produced by changes in speakers’ voices. In Experiment 1, 8- and 10-month-old infants listened to a continuous stream of novel words produced by eight different female voices. The voices alternated frequently, potentially interrupting infants’ detection of transitional probability patterns that mark word boundaries. Infants at both ages successfully segmented words in the speech stream. In Experiment 2, 8-month-olds demonstrated the ability to generalize their learning about the speech stream when presented with a new, acoustically distinct voice during testing. However, in Experiments 3 and 4, when the same speech stream was produced by only two female voices, infants failed to segment the words. The results of these experiments indicate that low acoustic variation may interfere with infants’ efficiency in segmenting words from continuous speech, but that infants successfully use statistical cues to segment words in conditions of high acoustic variation. These findings contribute to our understanding of whether statistical learning mechanisms can scale up to meet the demands of natural learning environments. PMID:26389607

  12. Acoustic, respiratory kinematic and electromyographic effects of vocal training

    NASA Astrophysics Data System (ADS)

    Mendes, Ana Paula De Brito Garcia

    The longitudinal effects of vocal training on the respiratory, phonatory and articulatory systems were investigated in this study. During four semesters, fourteen voice major students were recorded while speaking and singing. Acoustic, temporal, respiratory kinematic and electromyographic parameters were measured to determine changes in the three systems as a function of vocal training. Acoustic measures of the speaking voice included fundamental frequency, sound pressure level (SPL), percent jitter and shimmer, and harmonic-to-noise ratio. Temporal measures included duration of sentences, diphthongs and the closure durations of stop consonants. Acoustic measures of the singing voice included fundamental frequency and sound pressure level of the phonational range, vibrato pulses per second, vibrato amplitude variation and the presence of the singer's formant. Analysis of the data revealed that vocal training had a significant effect on the singing voice. Fundamental frequency and SPL of the 90% level and 90--10% of the phonational range increased significantly during four semesters of vocal training. Physiological data was collected from four subjects during three semesters of vocal training. Respiratory kinematic measures included lung volume, rib cage and abdominal excursions extracted from spoken sung samples. Descriptive statistics revealed that rib cage and abdominal excursions increased from the 1st to the 2nd semester and decrease from the 2nd to the 3rd semester of vocal training. Electromyographic measures of the pectoralis major, rectus abdominis and external obliques muscles revealed that burst duration means decreased from the 1st to the 2nd semester and increased from the 2nd to the 3rd semester. Peak amplitude means increased from the 1st to the 2nd and decreased from the 2nd to the 3rd semester of vocal training. Chest wall excursions and muscle force generation of the three muscles increased as the demanding level and the length of the phonatory

  13. Voice onset time is necessary but not always sufficient to describe acquisition of voiced stops: The cases of Greek and Japanese.

    PubMed

    Kong, Eun Jong; Beckman, Mary E; Edwards, Jan

    2012-11-01

    The age at which children master adult-like voiced stops can generally be predicted by voice onset time (VOT): stops with optional short lag are early, those with obligatory lead are late. However, Japanese voiced stops are late despite having a short lag variant, whereas Greek voiced stops are early despite having consistent voicing lead. This cross-sectional study examines the acoustics of word-initial stops produced by English-, Japanese-, and Greek-speaking children aged 2 to 5, to investigate how these seemingly exceptional mastery patterns relate to use of other phonetic correlates. Productions were analyzed for VOT, f0 and spectral tilt (H1-H2) in Japanese and English, and for amplitude trajectory in Greek and Japanese. Japanese voiceless stops have intermediate lag VOT values, so other "secondary" cues are needed to differentiate them from the voiced short lag VOT variant. Greek voiced stops are optionally prenasalized, and the amplitude trajectory for the voice bar during closure suggests that younger children use a greater degree of nasal venting to create the aerodynamic conditions necessary for voicing lead. Taken together, the findings suggest that VOT must be supplemented by measurements of other language-specific acoustic properties to explain the mastery pattern of voiced stops in some languages. PMID:23105160

  14. Voice onset time is necessary but not always sufficient to describe acquisition of voiced stops: The cases of Greek and Japanese

    PubMed Central

    Kong, Eun Jong; Beckman, Mary E.; Edwards, Jan

    2012-01-01

    The age at which children master adult-like voiced stops can generally be predicted by voice onset time (VOT): stops with optional short lag are early, those with obligatory lead are late. However, Japanese voiced stops are late despite having a short lag variant, whereas Greek voiced stops are early despite having consistent voicing lead. This cross-sectional study examines the acoustics of word-initial stops produced by English-, Japanese-, and Greek-speaking children aged 2 to 5, to investigate how these seemingly exceptional mastery patterns relate to use of other phonetic correlates. Productions were analyzed for VOT, f0 and spectral tilt (H1-H2) in Japanese and English, and for amplitude trajectory in Greek and Japanese. Japanese voiceless stops have intermediate lag VOT values, so other “secondary” cues are needed to differentiate them from the voiced short lag VOT variant. Greek voiced stops are optionally prenasalized, and the amplitude trajectory for the voice bar during closure suggests that younger children use a greater degree of nasal venting to create the aerodynamic conditions necessary for voicing lead. Taken together, the findings suggest that VOT must be supplemented by measurements of other language-specific acoustic properties to explain the mastery pattern of voiced stops in some languages. PMID:23105160

  15. Seismo-acoustic analysis of thunderstorms at Plostina (Romania) site

    NASA Astrophysics Data System (ADS)

    Grecu, Bogdan; Ghica, Daniela; Moldovan, Iren; Ionescu, Constantin

    2013-04-01

    The National Institute for Earth Physics (Romania) operates one of the largest seismic networks in the Eastern Europe. The network includes 97 stations with velocity sensors of which 52 are broadband and 45 are short period, 102 strong motion stations and 8 seismic observatories. Located in the most active seismic region of Romania, i.e. Vrancea area, the Plostina Observatory included initially two seismic stations, one at surface with both broadband and accelerometer sensors and one at 30 m depth with only short period velocity sensor. Starting with 2007, the facilities at Plostina have been upgraded so that at present, the observatory also includes one seismic array (PLOR) of seven elements (PLOR1, PLOR2, PLOR3, PLOR4, PLOR5, PLOR6, PLOR7) with an aperture of 2.5 km, seven infrasound elements (IPL2, IPL3, IPL4, IPH4, IPH5, IPH6, IPH7), two three-component fluxgate sensors, one Boltek EFM-100 electrometer and one La Crosse weather station. The element PLOR4 is co-located with the accelerometer and borehole sensor, two infrasonic elements (IPL4 and IPH4), one fluxgate sensor, the Boltek electrometer and the weather station. All the date are continuously recorded and real-time transmitted to the Romanian National Data Centre (RONDC) in Magurele. The recent developments at Plostina site made possible the improvement of the local miscroseismic activity monitoring as well as conducting of other geophysical studies such as acoustic measurements, observations of the variation of the magnetic field in correlation with solar activity, observations of the variation of radioactive alpha gases concentration, observations of the telluric currents. In this work, we investigate the signals emitted due to the process of lightning and thunder during thunderstorms activity at Plostina site. These signals are well recorded by both seismic and infrasound networks and they are used to perform spectral and specific array analyses. We also perform multiple correlations between the

  16. Symmetry analysis for nonlinear time reversal methods applied to nonlinear acoustic imaging

    NASA Astrophysics Data System (ADS)

    Dos Santos, Serge; Chaline, Jennifer

    2015-10-01

    Using symmetry invariance, nonlinear Time Reversal (TR) and reciprocity properties, the classical NEWS methods are supplemented and improved by new excitations having the intrinsic property of enlarging frequency analysis bandwidth and time domain scales, with now both medical acoustics and electromagnetic applications. The analysis of invariant quantities is a well-known tool which is often used in nonlinear acoustics in order to simplify complex equations. Based on a fundamental physical principle known as symmetry analysis, this approach consists in finding judicious variables, intrinsically scale dependant, and able to describe all stages of behaviour on the same theoretical foundation. Based on previously published results within the nonlinear acoustic areas, some practical implementation will be proposed as a new way to define TR-NEWS based methods applied to NDT and medical bubble based non-destructive imaging. This paper tends to show how symmetry analysis can help us to define new methodologies and new experimental set-up involving modern signal processing tools. Some example of practical realizations will be proposed in the context of biomedical non-destructive imaging using Ultrasound Contrast Agents (ACUs) where symmetry and invariance properties allow us to define a microscopic scale-invariant experimental set-up describing intrinsic symmetries of the microscopic complex system.

  17. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  18. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  19. Acoustical Klein-Gordon equation: a time-independent perturbation analysis.

    PubMed

    Forbes, Barbara J; Pike, E Roy

    2004-07-30

    The perturbation analysis of an ideal acoustical duct was first made by Rayleigh in 1878 and the result has since stood in the literature. However, the analysis is based on the assumption of potential and kinetic energy densities that remain constant as a change in cross section occurs, whereas, in fact, they may fluctuate significantly in comparison to the slowly varying "wave function," Psi(x,t), of the acoustical Klein-Gordon equation. The square of the time-independent eigenfunction, psi(2)(x), is directly proportional to the potential energy per unit length of fluid, and it is shown that it is precisely the perturbation in potential energy that defines correctly the eigenvalue shifts.

  20. Measurement and prediction of voice support and room gain in school classrooms.

    PubMed

    Pelegrín-García, David; Brunskog, Jonas; Lyberg-Åhlander, Viveka; Löfqvist, Anders

    2012-01-01

    Objective acoustic parameters have been measured in 30 school classrooms. These parameters include usual descriptors of the acoustic quality from the listeners' standpoint, such as reverberation time, speech transmission index, and background noise level, and two descriptors of the acoustic properties for a speaker: Voice support and room gain. This paper describes the measurement method for these two parameters and presents a prediction model for voice support and room gain derived from the diffuse field theory. The voice support for medium-sized classrooms with volumes between 100 and 250 m(3) and good acoustical quality lies in the range between -14 and -9 dB, whereas the room gain is in the range between 0.2 and 0.5 dB. The prediction model for voice support describes the measurements in the classrooms with a coefficient of determination of 0.84 and a standard deviation of 1.2 dB.

  1. Voice handicap in singers.

    PubMed

    Murry, Thomas; Zschommler, Anne; Prokop, Jan

    2009-05-01

    The study aimed to determine the differences in responses to the Voice Handicap Index (VHI-10) between singers and nonsingers and to evaluate the ranked order differences of the VHI-10 statements for both groups. The VHI-10 was modified to include statements related to the singing voice for comparison to the original VHI-10. Thirty-five nonsingers with documented voice disorders responded to the VHI-10. A second group, consisting of 35 singers with voice complaints, responded to the VHI-10 with three statements added specifically addressing the singing voice. Data from both groups were analyzed in terms of overall subject self-rating of voice handicap and the rank order of statements from least to most important. The difference between the mean VHI-10 for the singers and nonsingers was not statistically significant, thus, supporting the validity of the VHI-10. However, the 10 statements were ranked differently in terms of their importance by both groups. In addition, when three statements related specifically to the singing voice were substituted in the original VHI-10, the singers judged their voice problem to be more severe than when using the original VHI-10. The type of statements used to assess self-perception of voice handicap may be related to the subject population. Singers with voice problems do not rate their voices to be more handicapped than nonsingers unless statements related specifically to singing are included.

  2. The Voice-Hearer

    PubMed Central

    2013-01-01

    Background For 25 years the international Hearing Voices Movement and the UK Hearing Voices Network have campaigned to improve the lives of people who hear voices. In so doing they have introduced a new term into the mental health lexicon: ‘the voice-hearer.’ Aims This article offers a ‘thick description’ of the figure of ‘the voice-hearer.’ Method A selection of prominent texts (life narratives, research papers, videos and blogs), the majority produced by people active in the Hearing Voices or consumer/survivor/ex-patient movements, were analysed from an interdisciplinary medical humanities perspective. Results ‘The voice-hearer’ (i) asserts voice-hearing as a meaningful experience, (ii) challenges psychiatric authority, and (iii) builds identity through sharing life narrative. While technically accurate, the definition of ‘the voice-hearer’ as simply ‘a person who has experienced voice-hearing or auditory verbal hallucinations’ fails to acknowledge that this is a complex, politically resonant and value-laden identity. Conclusions The figure of ‘the voice-hearer’ comes into being through a specific set of narrative practices as an ‘expert by experience’ who challenges the authority and diagnostic categories of mainstream psychiatry, especially the category of ‘schizophrenia.’ PMID:23691942

  3. Application of Wavelet Packet Analysis to the Measurement of the Baryon Acoustic Oscillation

    NASA Astrophysics Data System (ADS)

    Kadowaki, Kevin; Garcia, Noel; Ford, Taurean; Pando, Jesus; SDSS-FAST Collaboration

    2016-03-01

    We develop a method of wavelet packet analysis to measure the Baryon Acoustic Oscillation (BAO) peak and apply this method to the CMASS galaxy catalog from the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We compare our results to a fiducial ?CDM flat cosmological model and detect a BAO signature in the power spectrum comparable to the previous consensus results of the BOSS collaboration. We find DA = 1365rd /rd , fid at z = . 54 . Member ID Forthcoming.

  4. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Magri, Luca; Bauerheim, Michael; Nicoud, Franck; Juniper, Matthew P.

    2016-11-01

    Monte Carlo and Active Subspace Identification methods are combined with first- and second-order adjoint sensitivities to perform (forward) uncertainty quantification analysis of the thermo-acoustic stability of two annular combustor configurations. This method is applied to evaluate the risk factor, i.e., the probability for the system to be unstable. It is shown that the adjoint approach reduces the number of nonlinear-eigenproblem calculations by as much as the Monte Carlo samples.

  5. Preliminary Work for Modeling the Propellers of an Aircraft as a Noise Source in an Acoustic Boundary Element Analysis

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.

    1998-01-01

    An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.

  6. Inharmonicity Analysis: A Novel Physical Method for Acoustic Screening of Dysphonia

    NASA Astrophysics Data System (ADS)

    Matteson, Sam; Lu, Fang-Ling

    2008-10-01

    In the United States 6.8% of men, women, and children report current voice problems and approximately 29% will report some problems during their lifetime. Often this dysphonia is due to pathologies of the vocal folds. The authors (a physicist and a speech pathologist) describe an interdisciplinary approach that shows promise of detecting physiological abnormalities of the vocal folds from an analysis of the Fourier spectrum of spoken ``tokens.'' The underlying principle maintains that the normal human vocal fold is a linear oscillator that emits overtones that are very nearly precise integral values of the fundamental. Physiological problems of the vocal folds, however, introduce mechanical non-linearities that manifest themselves as frequency deviations from the ideal harmonic (that is, integral) values. The authors quantify this inharmonicity, describing and illustrating how one can obtain and analyze such data. They outline, as well, a proposed program to assess the clinical sensitivity and significance of the analysis discussed in this work.

  7. [The change of objective parameters of voice after laryngeal reinnervation].

    PubMed

    Palamarchuk, V A; Voĭtenko, V V

    2014-03-01

    Possibilities and late results of nonselective surgical reinnervation, using formation of primary or deferred anastomosis of n. laryngeal recurrence (NLR) with one of cervical peripheral nerves (proximal fragment of NLR, the main branch of cervical loop - ansa cervicalis, nerve-donor) in a one-sided laryngeal paralysis, were studied up. Preoperatively and postoperatively the indirect laryngoscopy, videolaryngoscopy, the voice spectral analysis (main frequency, intensity and the rate harmonics-noise RHN, maximal period of phonation--MPP) were accomplished, subjective selfestimation by a patient of the voice quality (VHI-30) was done. Anastomosis with NLR was formatted in 95 patients, including 53--with cervical loop, in 34 - NLR - NLR, 8 - NLR - nerve donor). Postoperative follow-up have constituted (12 +/- 1.8) mo at average, the period up to occurrence of the first indirect signs of laryngeal reinnervation- (4.5 +/- 2.9) mo, were observed in all the patients: occurrence of the vocal plica tone, reduction of the vocal fissure dimensions while phonation (peculiarly in anastomosis of NLR with cervical loop)--from (2.25 +/- 0.86) to (0.35 +/- 0.17) mm. In accordance to data of acoustic analysis, reinnervation is mostly effective in anastomosing of NLR with cervical loop, RHN increased from (12 +/- 3.7) to (24 +/- 2.4) (see symbol) MPP--from (7 +/- 1.22) to (16 +/- 3.52) c (p < 0.01). Improvement in all subgroups of the main group was noted while performing analysis of subjective psychosocial selfestimation of the voice formation.

  8. Effects of the Interaction of Caffeine and Water on Voice Performance: A Pilot Study

    ERIC Educational Resources Information Center

    Franca, Maria Claudia; Simpson, Kenneth O.

    2013-01-01

    The objective of this "pilot" investigation was to study the effects of the interaction of caffeine and water intake on voice as evidenced by acoustic and aerodynamic measures, to determine whether ingestion of 200 mg of caffeine and various levels of water intake have an impact on voice. The participants were 48 females ranging in age…

  9. The Sound of Voice: Voice-Based Categorization of Speakers’ Sexual Orientation within and across Languages

    PubMed Central

    Maass, Anne; Paladino, Maria Paola; Vespignani, Francesco; Eyssel, Friederike; Bentler, Dominik

    2015-01-01

    Empirical research had initially shown that English listeners are able to identify the speakers' sexual orientation based on voice cues alone. However, the accuracy of this voice-based categorization, as well as its generalizability to other languages (language-dependency) and to non-native speakers (language-specificity), has been questioned recently. Consequently, we address these open issues in 5 experiments: First, we tested whether Italian and German listeners are able to correctly identify sexual orientation of same-language male speakers. Then, participants of both nationalities listened to voice samples and rated the sexual orientation of both Italian and German male speakers. We found that listeners were unable to identify the speakers' sexual orientation correctly. However, speakers were consistently categorized as either heterosexual or gay on the basis of how they sounded. Moreover, a similar pattern of results emerged when listeners judged the sexual orientation of speakers of their own and of the foreign language. Overall, this research suggests that voice-based categorization of sexual orientation reflects the listeners' expectations of how gay voices sound rather than being an accurate detector of the speakers' actual sexual identity. Results are discussed with regard to accuracy, acoustic features of voices, language dependency and language specificity. PMID:26132820

  10. Identifying hidden voice and video streams

    NASA Astrophysics Data System (ADS)

    Fan, Jieyan; Wu, Dapeng; Nucci, Antonio; Keralapura, Ram; Gao, Lixin

    2009-04-01

    Given the rising popularity of voice and video services over the Internet, accurately identifying voice and video traffic that traverse their networks has become a critical task for Internet service providers (ISPs). As the number of proprietary applications that deliver voice and video services to end users increases over time, the search for the one methodology that can accurately detect such services while being application independent still remains open. This problem becomes even more complicated when voice and video service providers like Skype, Microsoft, and Google bundle their voice and video services with other services like file transfer and chat. For example, a bundled Skype session can contain both voice stream and file transfer stream in the same layer-3/layer-4 flow. In this context, traditional techniques to identify voice and video streams do not work. In this paper, we propose a novel self-learning classifier, called VVS-I , that detects the presence of voice and video streams in flows with minimum manual intervention. Our classifier works in two phases: training phase and detection phase. In the training phase, VVS-I first extracts the relevant features, and subsequently constructs a fingerprint of a flow using the power spectral density (PSD) analysis. In the detection phase, it compares the fingerprint of a flow to the existing fingerprints learned during the training phase, and subsequently classifies the flow. Our classifier is not only capable of detecting voice and video streams that are hidden in different flows, but is also capable of detecting different applications (like Skype, MSN, etc.) that generate these voice/video streams. We show that our classifier can achieve close to 100% detection rate while keeping the false positive rate to less that 1%.

  11. Development of an Acoustic Signal Analysis Tool “Auto-F” Based on the Temperament Scale

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    The MIDI interface is originally designed for electronic musical instruments but we consider this music-note based coding concept can be extended for general acoustic signal description. We proposed applying the MIDI technology to coding of bio-medical auscultation sound signals such as heart sounds for retrieving medical records and performing telemedicine. Then we have tried to extend our encoding targets including vocal sounds, natural sounds and electronic bio-signals such as ECG, using Generalized Harmonic Analysis method. Currently, we are trying to separate vocal sounds included in popular songs and encode both vocal sounds and background instrumental sounds into separate MIDI channels. And also, we are trying to extract articulation parameters such as MIDI pitch-bend parameters in order to reproduce natural acoustic sounds using a GM-standard MIDI tone generator. In this paper, we present an overall algorithm of our developed acoustic signal analysis tool, based on those research works, which can analyze given time-based signals on the musical temperament scale. The prominent feature of this tool is producing high-precision MIDI codes, which reproduce the similar signals as the given source signal using a GM-standard MIDI tone generator, and also providing analyzed texts in the XML format.

  12. Multi-channel acoustic recording and automated analysis of Drosophila courtship songs

    PubMed Central

    2013-01-01

    Background Drosophila melanogaster has served as a powerful model system for genetic studies of courtship songs. To accelerate research on the genetic and neural mechanisms underlying courtship song, we have developed a sensitive recording system to simultaneously capture the acoustic signals from 32 separate pairs of courting flies as well as software for automated segmentation of songs. Results Our novel hardware design enables recording of low amplitude sounds in most laboratory environments. We demonstrate the power of this system by collecting, segmenting and analyzing over 18 hours of courtship song from 75 males from five wild-type strains of Drosophila melanogaster. Our analysis reveals previously undetected modulation of courtship song features and extensive natural genetic variation for most components of courtship song. Despite having a large dataset with sufficient power to detect subtle modulations of song, we were unable to identify previously reported periodic rhythms in the inter-pulse interval of song. We provide detailed instructions for assembling the hardware and for using our open-source segmentation software. Conclusions Analysis of a large dataset of acoustic signals from Drosophila melanogaster provides novel insight into the structure and dynamics of species-specific courtship songs. Our new system for recording and analyzing fly acoustic signals should therefore greatly accelerate future studies of the genetics, neurobiology and evolution of courtship song. PMID:23369160

  13. Three-dimensional coupled mode analysis of internal-wave acoustic ducts.

    PubMed

    Shmelev, Alexey A; Lynch, James F; Lin, Ying-Tsong; Schmidt, Henrik

    2014-05-01

    A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting.

  14. Finite Difference Time Domain Analysis of Underwater Acoustic Lens System for Ambient Noise Imaging

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Miyazaki, Ayano; Ogasawara, Hanako; Yokoyama, Tomoki; Nakamura, Toshiaki

    2006-05-01

    Much attention has been paid to the new idea of detecting objects using ocean ambient noise. This concept is called ambient noise imaging (ANI). In this study, sound fields focused by an acoustic lens system constructed with a single biconcave lens were analyzed using the finite difference time domain (FDTD) method for realizing an ANI system. The size of the lens aperture that would have sufficient resolution—for example, the beam width is 1° at 60 kHz—was roughly determined by comparing the image points and -3 dB areas of sound pressure fields generated by lenses with various apertures. Then, in another FDTD analysis, we successfully used a lens with a determined aperture to detect rigid target objects in an acoustic noise field generated by a large number of point sources.

  15. An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Walker, James L.

    1996-01-01

    The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.

  16. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  17. High Frequency Acoustic Response Characterization and Analysis of the Deep Throttling Common Extensible Cryogenic Engine

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.

    2011-01-01

    The Common Extensive Cryogenic Engine program demonstrated the operation of a deep throttling engine design. The program, spanning five years from August 2005 to July 2010, funded testing through four separate engine demonstration test series. Along with successful completion of multiple objectives, a discrete response of approximately 4000 Hz was discovered and explored throughout the program. The typical low-amplitude acoustic response was evident in the chamber measurement through almost every operating condition; however, at certain off-nominal operating conditions, the response became discrete with higher amplitude. This paper summarizes the data reduction, characterization, and analysis of the 4,000 Hz response for the entire program duration, using the large amount of data collected. Upon first encountering the response, new objectives and instrumentation were incorporated in future test series to specifically collect 4,000 Hz data. The 4,000 Hz response was identified as being related to the first tangential acoustic mode by means of frequency estimation and spatial decomposition. The latter approach showed that the effective node line of the mode was aligned with the manifold propellant inlets with standing waves and quasi-standing waves present at various times. Contour maps that contain instantaneous frequency and amplitude trackings of the response were generated as a significant improvement to historical manual approaches of data reduction presentation. Signal analysis and dynamic data reduction also uncovered several other features of the response including a stable limit cycle, the progressive engagement of subsequent harmonics, the U-shaped time history, an intermittent response near the test-based neutral stability region, other acoustic modes, and indications of modulation with a separate subsynchronous response. Although no engine damage related to the acoustic mode was noted, the peak-to-peak fluctuating pressure amplitude achieved 12.1% of the

  18. Evaluation of cochlear implanted children's voices.

    PubMed

    Perrin, E; Berger-Vachon, C; Topouzkhanian, A; Truy, E; Morgon, A

    1999-02-15

    Cochlear implant (CI) is a good means in developing communication in deaf children. Nevertheless, compared to children with the same age, CI patients' voices are far from being similar. In this work, the voice of CI children has been compared with the voice of corresponding normal children (same age, same sex) included in the main stream. Six girls and two boys participated to the experiment. The phonetic material was a paragraph of the French standard text La bise et le soleil (The North Wind and the Sun). An objective and a subjective analysis of the voice were done and parameters were compared between both groups of people (implantees and control). Studied parameters were voice pitch, intensity, fluency, pauses, articulation and pleasantness in the objective analysis, and voice pitch, formants, and duration for the objective study. It appeared that intensity variations were different between control and implanted subjects. Also voice formants were not situated in the same region regarding the normal ranges, but differences were difficult to assess. Globally, the main change was in the speaking duration. This method is open for further studies and points out some relevant items for an efficient use in rehabilitation sessions. PMID:10206368

  19. The Voices of Higher Education Service-Learning Directors: A Qualitative Inductive Analysis

    ERIC Educational Resources Information Center

    Woodard, Kelsey

    2013-01-01

    This research explored issues surrounding service-learning directors (SLDs) within higher education institutions, including who they are, how they became SLDs, and what they experience in the role. Qualitative data were drawn from in-depth interviews of 11 SLDs, as well as review of their vitaes. A qualitative inductive analysis was conducted in…

  20. Acoustic analysis of musical intervals in modern Byzantine Chant scales.

    PubMed

    Delviniotis, Dimitrios; Kouroupetroglou, Georgios; Theodoridis, Sergios

    2008-10-01

    The goal of this work is to investigate experimentally the music intervals in modern Byzantine Chant performance and to compare the obtained results with the equal temperament scales introduced by the Patriarchal Music Committee (PMC). Current measurements resulted from pressure and electroglottographic recordings of 13 famous chanters singing scales of all the music genera. The scales' microintervals were derived after pitch detection based on autocorrelation, cepstrum, and harmonic product spectrum analysis. The microintervallic differences between the experimental values and the PMC's ones were statistically analyzed indicating large deviation of the mean values and the standard deviations. Significant interaction effects were identified among some genera and between ascending and descending scale directions.

  1. Laryngostroboscopic, acoustic, and environmental characteristics of high-risk vocal performers.

    PubMed

    Hoffman-Ruddy, B; Lehman, J; Crandell, C; Ingram, D; Sapienza, C

    2001-12-01

    Vocal performance often requires excessively high vocal demand. In particular "high-risk" performers, a group of individuals who use their voices at their maximum effort level, are often exposed to unique vocal abuse characteristics which include high environmental and performance demands and inconsistencies of cast performance. Three categories of high-risk performers were studied: musical theater, choral ensemble, and street theater. Musical theater performers produce a Broadway, West End "belting" style voice. Street theater performers use a high-energy pitch varying dialogue in order to imitate a desired character voice. Choral ensemble performance requires group cohesion and blending of four-part harmony. The melodies require sustained vocal durations within each of the respective registers. For each of these studied groups vocal tasks of sustained production of /i/ and /a/ were subjected to analysis. Acoustic measures included fundamental frequency, standard deviation of fundamental frequency, jitter percent, shimmer percent, and noise-to-harmonic ratio. Laryngostroboscopic parameters were assessed during sustained /i/. Environmental acoustic sound field measurements were made using an A weighting and linear weighting sound pressure level. These weightings were used to describe noise levels and vocal output, respectively, within the performance environments. Results of the analysis suggest that high-risk performers are a unique performance type defined by distinctive, acoustic, laryngostroboscopic, and environmental characteristics. PMID:11792030

  2. The singing voice and country music

    NASA Astrophysics Data System (ADS)

    Leborgne, Wendy D.

    2003-04-01

    Preliminary acoustic measures on the Broadway Belt voice suggest uniqueness in this type of vocal production. This study objectively compared the acoustic production of the Broadway Belt voice in four elite and four average belters. Three casting directors evaluated the vocal quality of 20 musical theater majors proficient in the singing style referred to as belting. Each belter sang two specified vocalizes as well as six short excerpts from the belting repertoire. The raters judged the belters on a set of seven perceptual parameters (loudness, vibrato, ring, timbre, focus, nasality, and registration breaks) and reported an overall score. Initially, Pearson product-moment correlation coefficients were calculated and reported for perceived loudness, vibrato, ring, timbre, focus, and nasality for the elite and average groups. Then, significant acoustic results related to vocal intensity, amplitude and magnitude of vibrato, increased spectral energy in the expected Singer's Formant area, and trends in F1-F2 characteristics were assessed. Overall patterns of these results suggest the elite belters maintained a greater magnitude of vocal vibrato, a brighter vocal quality on some vowels, and different harmonic--formant relationships than average belters. Specific relevant data related to these acoustical events will be the focus of this presentation.

  3. Aeroacoustic mechanisms of voiced sound production

    NASA Astrophysics Data System (ADS)

    Krane, Michael

    2002-05-01

    The focus of this study is to quantify the order of magnitude of the direct effects of (1) vocal-fold wall motion and (2) glottal flow separation point movement on the production of voiced speech sounds. A solution for the sound-pressure field shows three source mechanisms: (1) a volume source due to unsteady glottal air flow; (2) a quadrupole source representing interaction of the glottal jet with the pharynx walls; and (3) an octupole due to direct sound radiation by the glottal jet itself. A relation is derived expressing glottal volume flow in terms of transglottal pressure difference, vocal-fold wall motion, and separation point motion. Using scaling analysis, the transglottal pressure difference is shown to be the dominant effect on glottal volume flow, while vocal-fold wall motion is shown to have a negligible effect. However, separation point motion is shown to have a measurable effect during the closure phase of the vibration cycle. Using these results, the acoustic effect of separation point motion is shown to be measurable, while the effect of vocal-fold wall vibration is shown to be negligible. Relative contributions of these effects across age, gender, and degree of glottal closure are discussed.

  4. Vibro-Acoustic Analysis of NASA's Space Shuttle Launch Pad 39A Flame Trench Wall

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.

    2009-01-01

    A vital element to NASA's manned space flight launch operations is the Kennedy Space Center Launch Complex 39's launch pads A and B. Originally designed and constructed In the 1960s for the Saturn V rockets used for the Apollo missions, these pads were modified above grade to support Space Shuttle missions. But below grade, each of the pad's original walls (including a 42 feet deep, 58 feet wide, and 450 feet long tunnel designed to deflect flames and exhaust gases, the flame trench) remained unchanged. On May 31, 2008 during the launch of STS-124, over 3500 of the. 22000 interlocking refractory bricks that lined east wall of the flame trench, protecting the pad structure were liberated from pad 39A. The STS-124 launch anomaly spawned an agency-wide initiative to determine the failure root cause, to assess the impact of debris on vehicle and ground support equipment safety, and to prescribe corrective action. The investigation encompassed radar imaging, infrared video review, debris transport mechanism analysis using computational fluid dynamics, destructive testing, and non-destructive evaluation, including vibroacoustic analysis, in order to validate the corrective action. The primary focus of this paper is on the analytic approach, including static, modal, and vibro-acoustic analysis, required to certify the corrective action, and ensure Integrity and operational reliability for future launches. Due to the absence of instrumentation (including pressure transducers, acoustic pressure sensors, and accelerometers) in the flame trench, defining an accurate acoustic signature of the launch environment during shuttle main engine/solid rocket booster Ignition and vehicle ascent posed a significant challenge. Details of the analysis, including the derivation of launch environments, the finite element approach taken, and analysistest/ launch data correlation are discussed. Data obtained from the recent launch of STS-126 from Pad 39A was instrumental in validating the

  5. Effectiveness of voice therapy in reflux-related voice disorders.

    PubMed

    Vashani, K; Murugesh, M; Hattiangadi, G; Gore, G; Keer, V; Ramesh, V S; Sandur, V; Bhatia, S J

    2010-01-01

    Gastroesophageal reflux (GER) with laryngopharyngeal reflux plays a significant role in voice disorders. A significant proportion of patients attending ear, nose, and throat clinics with voice disorders may have gastroesophageal reflux disease (GERD). There is no controlled study of the effect of voice therapy on GERD. We assessed the effect of voice therapy in patients with dysphonia and GERD. Thirty-two patients with dysphonia and GERD underwent indirect laryngoscopy and voice analysis. Esophageal and laryngeal symptoms were assessed using the reflux symptom index (RSI). At endoscopy, esophagitis was graded according to Los Angeles classification. Patients were randomized to receive either voice therapy and omeprazole (20 mg bid) (n=16, mean [SD] age 36.1 [9.6] y; 5 men; Gp A) or omeprazole alone (n=16, age 31.8 [11.7] y; 9 men; Gp B). During voice analysis, jitter, shimmer, harmonic-to-noise ratio (HNR) and normalized noise energy (NNE) were assessed using the Dr. Speech software (version 4 1998; Tigers DRS, Inc). Hoarseness and breathiness of voice were assessed using a perceptual rating scale of 0-3. Parameters were reassessed after 6 weeks, and analyzed using parametric or nonparametric tests as applicable. In Group A, 9 patients had Grade A, 3 had Grade B, and 1 had Grade C esophagitis; 3 had normal study. In Group B, 8 patients had Grade A, 2 had Grade B esophagitis, and 6 had normal study. Baseline findings: median RSI scores were comparable (Group A 20.0 [range 14-27], Group B 19.0 [15-24]). Median rating was 2.0 for hoarseness and breathiness for both groups. Values in Groups A and B for jitter 0.5 (0.6) versus 0.5 (0.8), shimmer 3.1 (2.5) versus 2.8 (2.0), HNR 23.0 (5.6) versus 23.1 (4.2), and NNE -7.3 (3.2) versus -7.2 (3.4) were similar. Post-therapy values for Groups A and B: RSI scores were 9.0 (5-13; P<0.01 as compared with baseline) and 13.0 (10-17; P<0.01), respectively. Ratings for hoarseness and breathiness were 0.5 (P<0.01) and 1.0 (P<0

  6. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2014-01-01

    In this work, energy analysis of an oscillating isolated spherical bubble in water irradiated by an ultrasonic wave has been theoretically studied for various conditions of acoustic amplitude, ultrasound frequency, static pressure and liquid temperature in order to explain the effects of these key parameters on both sonochemistry and sonoluminescence. The Keller-Miksis equation for the temporal variation of the bubble radius in compressible and viscous medium has been employed as a dynamics model. The numerical calculations showed that the rate of energy accumulation, dE/dt, increased linearly with increasing acoustic amplitude in the range of 1.5-3.0 atm and decreased sharply with increasing frequency in the range 200-1000 kHz. There exists an optimal static pressure at which the power w is highest. This optimum shifts toward a higher value as the acoustic amplitude increases. The energy of the bubble slightly increases with the increase in liquid temperature from 10 to 60 °C. The results of this study should be a helpful means to explain a variety of experimental observations conducted in the field of sonochemistry and sonoluminescence concerning the effects of operational parameters. PMID:23683796

  7. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    PubMed Central

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni; Chiodi, Ilaria; Mondello, Chiara; Osellame, Roberto; Berg-Sørensen, Kirstine; Cristiani, Ilaria; Minzioni, Paolo

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values. PMID:27040456

  8. Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data

    NASA Technical Reports Server (NTRS)

    Lalime, Aimee L.; Johnson, Marty E.; Rizzi, Stephen A. (Technical Monitor)

    2002-01-01

    Binaural or "virtual acoustic" representation has been proposed as a method of analyzing acoustic and vibroacoustic data. Unfortunately, this binaural representation can require extensive computer power to apply the Head Related Transfer Functions (HRTFs) to a large number of sources, as with a vibrating structure. This work focuses on reducing the number of real-time computations required in this binaural analysis through the use of Singular Value Decomposition (SVD) and Equivalent Source Reduction (ESR). The SVD method reduces the complexity of the HRTF computations by breaking the HRTFs into dominant singular values (and vectors). The ESR method reduces the number of sources to be analyzed in real-time computation by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. It is shown that the effectiveness of the SVD and ESR methods improves as the complexity of the source increases. In addition, preliminary auralization tests have shown that the results from both the SVD and ESR methods are indistinguishable from the results found with the exhaustive method.

  9. A perturbative analysis of surface acoustic wave propagation and reflection in interdigital transducers

    NASA Astrophysics Data System (ADS)

    Thoma, Carsten Hilmar

    1997-12-01

    The coupling of stress and strain fields to electric fields present in anisotropic piezoelectric crystals makes them ideal for use as electromechanical transducers in a wide variety of applications. In recent years such crystals have been utilized to produce surface acoustic wave devices for signal processing applications, in which an applied metallic grating both transmits and receives, through the piezoelectric effect, electromechanical surface waves. The design of such interdigital transducers requires an accurate knowledge of wave propagation and reflection. The presence of the metal grating in addition to its ideal transduction function, by means of electrical and mechanical loading, also introduces a velocity shift as well as reflection into substrate surface waves. We seek to obtain a consistent formulation of the wave behavior due to the electrical and mechanical loading of the substrate crystal by the metallic grating. A perturbative solution up to second order in h//lambda is developed, where h is the maximum grating height and λ the acoustic wavelength. For the operating frequencies and physical parameters of modern surface acoustic wave devices such an analysis will provide an adequate description of device behavior in many cases, thereby circumventing the need for more computationally laborious methods. Numerical calculations are presented and compared with available experimental data.

  10. An Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    SciTech Connect

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun; Carlson, Thomas J.

    2012-05-31

    Fishes and other marine mammals suffer a range of potential effects from intense sound sources generated by anthropogenic underwater processes such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording devices (USR) were built to monitor the acoustic sound pressure waves generated by those anthropogenic underwater activities, so the relevant processing software becomes indispensable for analyzing the audio files recorded by these USRs. However, existing software packages did not meet performance and flexibility requirements. In this paper, we provide a detailed description of a new software package, named Aquatic Acoustic Metrics Interface (AAMI), which is a Graphical User Interface (GUI) designed for underwater sound monitoring and analysis. In addition to the general functions, such as loading and editing audio files recorded by USRs, the software can compute a series of acoustic metrics in physical units, monitor the sound's influence on fish hearing according to audiograms from different species of fishes and marine mammals, and batch process the sound files. The detailed applications of the software AAMI will be discussed along with several test case scenarios to illustrate its functionality.

  11. Acoustic cardiac signals analysis: a Kalman filter-based approach.

    PubMed

    Salleh, Sheik Hussain; Hussain, Hadrina Sheik; Swee, Tan Tian; Ting, Chee-Ming; Noor, Alias Mohd; Pipatsart, Surasak; Ali, Jalil; Yupapin, Preecha P

    2012-01-01

    Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss-Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense.

  12. Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array

    NASA Astrophysics Data System (ADS)

    Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu

    2016-04-01

    In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.

  13. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The acoustic tests and data analysis for a 0.508-scale fan vehicle of a 111,300 newton (25,000 pound) thrust, full-size engine, which would have application on an advanced transport aircraft, is described. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec) to achieve the desired pressure ratio in a single-stage fan with low radius ratio (0.38), and to maintain adequate stall margin. The fan has 44 tip-shrouded rotor blades and 90 outlet guide vanes. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized. The suppressed fan noise was shown to be consistent with the proposed federal regulation on aircraft noise.

  14. Internal strain analysis of ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Kent, Renee M.

    1993-01-01

    Quantitative studies of material behavior characteristics are essential for predicting the functionality of a material under its operating conditions. A nonintrusive methodology for measuring the in situ strain of small dimeter (to 11 microns) ceramic fibers under uniaxial tensile loading and the local internal strains of ceramics and ceramic composites under flexural loading is introduced. The strain measurements and experimentally observed mechanical behavior are analyzed in terms of the microstructural development and fracture behavior of each test specimen evaluated. Measurement and analysis of Nicalon silicon carbide (SiC) fiber (15 microns diameter) indicate that the mean elastic modulus of the individual fiber is 185.3 GPa. Deviations observed in the experimentally determined elastic modulus values between specimens were attributed to microstructural variations which occur during processing. Corresponding variations in the fracture surface morphology were also observed. The observed local mechanical behavior of a lithium alumino-silicate (LAS) glass ceramic, a LAS/SiC monofilament composite, and a calcium alumino-silicate (CAS)/SiC fully reinforced composite exhibits nonlinearities and apparent hysteresis due to the subcritical mechanical loading. Local hysteresis in the LAS matrices coincided with the occurrence of multiple fracture initiation sites, localized microcracking, and secondary cracking. The observed microcracking phenomenon was attributed to stress relaxation of residual stresses developed during processing, and local interaction of the crack front with the microstructure. The relaxation strain and stress predicted on apparent mechanical hysteresis effects were defined and correlated with the magnitude of the measured fracture stress for each specimen studied. This quantitative correlation indicated a repeatable measure of the stress at which matrix microcracking occurred for stress relief of each material system. Stress relaxation occurred

  15. Performance Analysis of Power Saving Class of Type I for Voice Service in Two-Way Communication in IEEE 802.16e

    NASA Astrophysics Data System (ADS)

    Hwang, Eunju; Kim, Kyung Jae; Choi, Bong Dae

    In IEEE 802.16e, power saving is one of the important issues for battery-powered mobile stations (MSs). We present a performance analysis of power saving class (PSC) of type I in IEEE 802.16e standard for voice over Internet protocol (VoIP) service with silence suppression in two-way communication. On-off pattern of a voice user in two-way communication is characterized by the modified Brady model, which includes short silence gaps less than 200ms and talkspurt periods shorter than 15ms, and so differs from the Brady model. Our analysis of PSC I follows the standard-based procedure for the deactivation of the sleep mode, where a uplink packet arrival during a mutual silence period wakes up the MS immediately while a downlink packet arrival waits to be served until the next listening window. We derive the delay distribution of the first downlink packet arriving during a mutual silence period, and find the dropping probability of downlink packets since a voice packet drops if it is not transmitted within maximum delay constraint. In addition, we calculate the average power consumption under the modified Brady model. Analysis and simulation results show that the sleep mode operation for the MS with VoIP service yields 32 ∼ 39% reduction in the power consumption of the MS. Finally we obtain the optimal initial/final-sleep windows that yield the minimum average power consumption while satisfying QoS constraints on the packet dropping probability and the maximum delay.

  16. Time-frequency-aspect analysis and visualization of acoustic scattering from elastic shells submerged in water

    NASA Astrophysics Data System (ADS)

    Yoder, Timothy J.

    2000-05-01

    The solutions for acoustic scattering from objects in separable geometries along with the associated fluid- structure interactions are well established. Closed-form solutions to these problems have either interpretations such as resonance scattering theory, or some limiting situations that provide insight into the physical processes that occur. In contrast, most acoustical scattering problems do not have closed-form solutions. Numerical solutions, like finite and boundary element methods, allow researchers to obtain solutions from scattering problems with more complicated geometries; unfortunately, these methods of solution are limited in that they lack the kind of interpretation that provides insight into the physical processes that occur. It is only through the systematic analysis of the large volume of data produced by numerical solutions that this insight is gained. One way to gain this insight is to analyze the monostatic dependence of echoes in the time-frequency domain. However, traditional three-dimensional graphical analysis of time-frequency signals that vary as a function of a third parameter (the monostatic dependence) does not display all of the signals' information content because two marginals, of this distribution (the time and frequency representations) contain information that is lost in the visual representation of the time-frequency domain. This information is lost because the uncertainty principal prevents simultaneous display of the time and frequency information via a time-frequency transform, and because humans do not possess the innate ability to perform the transforms that extract the information. The problem of how to systematically analyze monostatic scattering data in the time-frequency domain and how to visually display all of the data's information content is overcome by introducing a time-frequency-parameter graphical analysis technique. This technique is applied to farfield acoustic scattering from finite, elastic, cylindrical

  17. Bell clapper impact dynamics and the voicing of a carillon

    NASA Astrophysics Data System (ADS)

    Fletcher, N. H.; McGee, W. T.; Tarnopolsky, A. Z.

    2002-03-01

    The periodic re-voicing of the bell clappers of the Australian National Carillon in Canberra provided an opportunity for the study of the acoustic effects of this operation. After prolonged playing, the impact of the pear-shaped clapper on a bell produces a significant flat area on both the clapper and the inside surface of the bell. This deformation significantly decreases the duration of the impact event and has the effect of increasing the relative amplitude of higher modes in the bell sound, making it ``brighter'' or even ``clangy.'' This effect is studied by comparing the spectral envelope of the sounds of several bells before and after voicing. Theoretical analysis shows that the clapper actually strikes the bell and remains in contact with the bell surface until it is ejected by a displacement pulse that has traveled around the complete circumference of the bell. The contact time, typically about 1 ms, is therefore much longer than the effective impact time, which is only a few tenths of a millisecond. Both the impact time and the contact time are reduced by the presence of a flat on the clapper.

  18. An Acoustical and Physiological Investigation of the Arabic /E/.

    ERIC Educational Resources Information Center

    Al-Ani, Salman H.

    Using acoustical evidence from spectrograms and physiological evidence from X-ray sound films, it appears that the most common allophone for the Arabic voiced pharyngeal fricative, at least in Iraqi, is a voiceless stop, and not a voiced fricative, as many believe. The author considers the phoneme in different environments and describes its…

  19. Voicing and Devoicing Assimilation of French /s/ and /z/

    ERIC Educational Resources Information Center

    Abdelli-Beruh, Nassima B.

    2012-01-01

    The present acoustic-phonetic study explores whether voicing and devoicing assimilations of French fricatives are equivalent in magnitude and whether they operate similarly (i.e., complete vs. gradient, obligatory vs. optional, regressive vs. progressive). It concurrently assesses the contribution of speakers' articulation rate to the proportion…

  20. Speakers' comfort and voice level variation in classrooms: laboratory research.

    PubMed

    Pelegrín-García, David; Brunskog, Jonas

    2012-07-01

    Teachers adjust their voice levels under different classroom acoustics conditions, even in the absence of background noise. Laboratory experiments have been conducted in order to understand further this relationship and to determine optimum room acoustic conditions for speaking. Under simulated acoustic environments, talkers do modify their voice levels linearly with the measure voice support, and the slope of this relationship is referred to as room effect. The magnitude of the room effect depends highly on the instruction used and on the individuals. Group-wise, the average room effect ranges from -0.93 dB/dB, with free speech, to -0.1 dB/dB with other less demanding communication tasks as reading and talking at short distances. The room effect for some individuals can be as strong as -1.7 dB/dB. A questionnaire investigation showed that the acoustic comfort for talking in classrooms, in the absence of background noise, is correlated to the decay times derived from an impulse response measured from the mouth to the ears of a talker, and that there is a maximum of preference for decay times between 0.4 and 0.5 s. Teachers with self-reported voice problems prefer higher decay times to speak in than their healthy colleagues.

  1. Acquisition of English Voicing Contrast by Arab Children.

    ERIC Educational Resources Information Center

    Fokes, Joann; And Others

    1985-01-01

    Describes an investigation of the phonetic characteristics of children's second language acquisition, focusing on acoustical correlates of the voicing contrast for stop consonants, as produced by young native speakers of Arabic who were learning English as a second language. Neither age nor experience with English could predict phonetic…

  2. The model of local mode analysis for structural acoustics of box structures

    NASA Astrophysics Data System (ADS)

    Ngai, King-Wah

    Structure-borne noise is a new noise pollution problem emerging from railway concrete box structures in Hong Kong. Its low frequency noise with intermittent effect can cause considerable nuisance to neighborhoods. The tonal noise peaks in this low frequency range should be one of the important factors in structure-borne noise analysis. In the acoustic field, the deterministic analysis of all the resonant modes of vibration is generally considered as not practical. Many acoustic experts use the statistical energy analysis as the main tool for the noise investigation whereas the application of the experimental modal analysis in the structural acoustic problem is comparatively rare. In the past, most studies mainly focused on the structure-borne noise measurement and analysis. The detail study of the cause of structure-borne noise is lack, especially for the rectangular concrete box structure. In this dissertation, an experimental and analytical approach is adopted to study a typical concrete box model. This thesis aims at confirming the importance of modal analysis in the structure-borne noise study and then at identifying the local vibration modes along the cross-section of box structure. These local modes are responsible for the structure-borne noise radiation. The findings of this study suggest that the web of viaduct cross-section is not as rigid as assumed in the conventional viaduct design and the web face is likely to be more flexible in the vertical displacement of the concrete viaduct. Two types of local vibration modes along the cross-section are identified: the centre mode and the web mode. At the top panel of the viaduct, the centre mode has movement in the middle but not at the edges. The web mode has movement at the edges with the middle fixed. The combined centre and web mode has been found to be important in the structural acoustics of the concrete box structure. In the actual concrete viaduct, the coincidence frequency is especially low (often around

  3. Prospective computer-assisted voice analysis for patients with early stage glottic cancer: a preliminary report of the functional result of laryngeal irradiation.

    PubMed

    Harrison, L B; Solomon, B; Miller, S; Fass, D E; Armstrong, J; Sessions, R B

    1990-07-01

    In January 1987 we began a prospective study aimed at evaluating objective parameters of vocal function for all patients treated with RT for early glottic cancer. All patients underwent vocal analysis using a voice analyzer interfaced with a computer. This allowed for the determination of percent voicing (%V) (normal = presence of phonation = 90-100%V). Other parameters such as breathiness (air turbulence or hoarseness) and strain (vocal cord tension) were also measured. Patients were recorded before RT, weekly during RT, and at set intervals after RT. There have been 25 patients studied. Eighteen (18) are evaluable at 9 months after treatment. All patients were male and ranged from 45-84 years old. Fourteen (14) and T1 lesions and received 66 GY/33 fractions to their larynx and 4 had T2 tumors and received 66-70 Gy/33-35 fractions. To date, all patients are locally controlled. Three distinct patterns of %V changes have been encountered. However, all patients demonstrated normal phonation pattern by 3 months after RT, and this is sustained at 9 months follow-up. In addition, 94% of patients have had significant decrease in breathiness after RT, which objectively documents diminished hoarseness. In 83%, breathiness is normal after RT. Most patients have had increased strain after RT, which documents increased vocal cord tension. However, strain remained within normal limits in 89%. Our preliminary analysis suggests that the majority of patients irradiated for early glottic cancer demonstrate a decrease in breathiness and an increase in strain after RT, and enjoy a resultant voice that has normal phonation maintained at 9 months after RT. Our data also demonstrate three distinct phonation patterns. Further follow-up will allow us to determine the prognostic significance, if any, of these patterns, and to continue to follow objective vocal parameters on larger numbers of patient. PMID:2380077

  4. A First Comparative Study of Oesophageal and Voice Prosthesis Speech Production

    NASA Astrophysics Data System (ADS)

    Carello, Massimiliana; Magnano, Mauro

    2009-12-01

    The purpose of this work is to evaluate and to compare the acoustic properties of oesophageal voice and voice prosthesis speech production. A group of 14 Italian laryngectomized patients were considered: 7 with oesophageal voice and 7 with tracheoesophageal voice (with phonatory valve). For each patient the spectrogram obtained with the phonation of vowel /a/ (frequency intensity, jitter, shimmer, noise to harmonic ratio) and the maximum phonation time were recorded and analyzed. For the patients with the valve, the tracheostoma pressure, at the time of phonation, was measured in order to obtain important information about the "in vivo" pressure necessary to open the phonatory valve to enable speech.

  5. A clearer view of singing voice production: 25 years of progress.

    PubMed

    Cleveland, T F

    1994-03-01

    Voice research has enjoyed its most productive period of history during the past 25 years. Many of the enigmas related to the biomechanics and acoustics of the singing voice have been resolved. This paper presents state-of-the-art understanding regarding the following topics: vibrato, the singer's formant, formant tracking, voice registers, subglottal pressure, voice classification, modes of vocal fold vibration, laryngeal position during singing, flow glottography, and singing synthesis. In addition to these topics, the people who have made the most significant contributions to the advancement of singing research are recognized. PMID:8167783

  6. Improving Speaker Recognition by Biometric Voice Deconstruction

    PubMed Central

    Mazaira-Fernandez, Luis Miguel; Álvarez-Marquina, Agustín; Gómez-Vilda, Pedro

    2015-01-01

    Person identification, especially in critical environments, has always been a subject of great interest. However, it has gained a new dimension in a world threatened by a new kind of terrorism that uses social networks (e.g., YouTube) to broadcast its message. In this new scenario, classical identification methods (such as fingerprints or face recognition) have been forcedly replaced by alternative biometric characteristics such as voice, as sometimes this is the only feature available. The present study benefits from the advances achieved during last years in understanding and modeling voice production. The paper hypothesizes that a gender-dependent characterization of speakers combined with the use of a set of features derived from the components, resulting from the deconstruction of the voice into its glottal source and vocal tract estimates, will enhance recognition rates when compared to classical approaches. A general description about the main hypothesis and the methodology followed to extract the gender-dependent extended biometric parameters is given. Experimental validation is carried out both on a highly controlled acoustic condition database, and on a mobile phone network recorded under non-controlled acoustic conditions. PMID:26442245

  7. Improving Speaker Recognition by Biometric Voice Deconstruction.

    PubMed

    Mazaira-Fernandez, Luis Miguel; Álvarez-Marquina, Agustín; Gómez-Vilda, Pedro

    2015-01-01

    Person identification, especially in critical environments, has always been a subject of great interest. However, it has gained a new dimension in a world threatened by a new kind of terrorism that uses social networks (e.g., YouTube) to broadcast its message. In this new scenario, classical identification methods (such as fingerprints or face recognition) have been forcedly replaced by alternative biometric characteristics such as voice, as sometimes this is the only feature available. The present study benefits from the advances achieved during last years in understanding and modeling voice production. The paper hypothesizes that a gender-dependent characterization of speakers combined with the use of a set of features derived from the components, resulting from the deconstruction of the voice into its glottal source and vocal tract estimates, will enhance recognition rates when compared to classical approaches. A general description about the main hypothesis and the methodology followed to extract the gender-dependent extended biometric parameters is given. Experimental validation is carried out both on a highly controlled acoustic condition database, and on a mobile phone network recorded under non-controlled acoustic conditions. PMID:26442245

  8. Theoretical analysis of linearized acoustics and aerodynamics of advanced supersonic propellers

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1985-01-01

    The derivation of a formula for prediction of the noise of supersonic propellers using time domain analysis is presented. This formula is a solution of the Ffowcs Williams-Hawkings equation and does not have the Doppler singularity of some other formulations. The result presented involves some surface integrals over the blade and line integrals over the leading and trailing edges. The blade geometry, motion and surface pressure are needed for noise calculation. To obtain the blade surface pressure, the observer is moved onto the blade surface and a linear singular integral equation is derived which can be solved numerically. Two examples of acoustic calculations using a computer program are currently under development.

  9. Acoustic analysis of the frequency-dependent coupling between the frog's ears.

    PubMed

    Shofner, William P

    2015-09-01

    The ears of anurans are coupled through the Eustachian tubes and mouth cavity. The degree of coupling varies with frequency showing a bandpass characteristic, but the characteristics differ between empirically measured data based on auditory nerve responses and tympanic membrane vibration. In the present study, the coupling was modeled acoustically as a tube connected with a side branch. This tube corresponds to the Eustachian tubes, whereas the side branch corresponds to the mouth cavity and nares. The analysis accounts for the frequency dependency shown by the empirical data and reconciles the differences observed between the coupling as measured by tympanic membrane vibration and auditory nerve responses.

  10. Plane-wave analysis of solar acoustic-gravity waves: A (slightly) new approach

    NASA Technical Reports Server (NTRS)

    Bogart, Richard S.; Sa, L. A. D.; Duvall, Thomas L., Jr.; Haber, Deborah A.; Toomre, Juri; Hill, Frank

    1995-01-01

    The plane-wave decomposition of the acoustic-gravity wave effects observed in the photosphere provides a computationally efficient technique that probes the structure of the upper convective zone and boundary. In this region, the flat sun approximation is considered as being reasonably accurate. A technique to be used for the systematic plane-wave analysis of Michelson Doppler imager data, as part of the solar oscillations investigation, is described. Estimates of sensitivity are presented, and the effects of using different planar mappings are discussed. The technique is compared with previous approaches to the three dimensional plane-wave problem.

  11. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  12. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  13. Start/End Delays of Voiced and Unvoiced Speech Signals

    SciTech Connect

    Herrnstein, A

    1999-09-24

    Recent experiments using low power EM-radar like sensors (e.g, GEMs) have demonstrated a new method for measuring vocal fold activity and the onset times of voiced speech, as vocal fold contact begins to take place. Similarly the end time of a voiced speech segment can be measured. Secondly it appears that in most normal uses of American English speech, unvoiced-speech segments directly precede or directly follow voiced-speech segments. For many applications, it is useful to know typical duration times of these unvoiced speech segments. A corpus, assembled earlier of spoken ''Timit'' words, phrases, and sentences and recorded using simultaneously measured acoustic and EM-sensor glottal signals, from 16 male speakers, was used for this study. By inspecting the onset (or end) of unvoiced speech, using the acoustic signal, and the onset (or end) of voiced speech using the EM sensor signal, the average duration times for unvoiced segments preceding onset of vocalization were found to be 300ms, and for following segments, 500ms. An unvoiced speech period is then defined in time, first by using the onset of the EM-sensed glottal signal, as the onset-time marker for the voiced speech segment and end marker for the unvoiced segment. Then, by subtracting 300ms from the onset time mark of voicing, the unvoiced speech segment start time is found. Similarly, the times for a following unvoiced speech segment can be found. While data of this nature have proven to be useful for work in our laboratory, a great deal of additional work remains to validate such data for use with general populations of users. These procedures have been useful for applying optimal processing algorithms over time segments of unvoiced, voiced, and non-speech acoustic signals. For example, these data appear to be of use in speaker validation, in vocoding, and in denoising algorithms.

  14. Detection of Voice Pathology using Fractal Dimension in a Multiresolution Analysis of Normal and Disordered Speech Signals.

    PubMed

    Ali, Zulfiqar; Elamvazuthi, Irraivan; Alsulaiman, Mansour; Muhammad, Ghulam

    2016-01-01

    Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1-1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed.

  15. Detection of Voice Pathology using Fractal Dimension in a Multiresolution Analysis of Normal and Disordered Speech Signals.

    PubMed

    Ali, Zulfiqar; Elamvazuthi, Irraivan; Alsulaiman, Mansour; Muhammad, Ghulam

    2016-01-01

    Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1-1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed. PMID:26531753

  16. Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure

    NASA Technical Reports Server (NTRS)

    Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.

    2010-01-01

    A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.

  17. Psychosocial distress in patients presenting with voice concerns

    PubMed Central

    Misono, Stephanie; Peterson, Carol B.; Meredith, Liza; Banks, Kathryn; Bandyopadhyay, Dipankar; Yueh, Bevan; Frazier, Patricia A.

    2014-01-01

    Objectives To assess the prevalence of psychosocial distress (depression, anxiety, somatization, and perceived stress) in a consecutive sample of patients presenting with voice concerns, and to qualitatively analyze patient comments on challenges associated with voice problems. Study Design Cross-sectional study. Methods New patients presenting to a multidisciplinary voice clinic with voice concerns were invited to participate. Respondents (n = 197) completed the Brief Symptom Inventory 18 item scale (BSI-18), the 4-item Perceived Stress Scale (PSS-4), and the Voice Handicap Index 10 item scale (VHI-10). Qualitative analysis was performed of responses to an open-ended question about challenges associated with a voice problem. Results Approximately one-third (32%) of patients met strict case criteria for depression, anxiety, and/or somatic concerns based on the BSI-18. The majority of these patients had no prior diagnosis of depression or anxiety, and degree of distress was not predicted by type of voice-related diagnosis. Perceived stress was elevated among female patients (p=0.02). As expected, scores on the VHI-10 were indicative of concurrent voice-related handicap (mean 19.5, standard deviation 9.4). In qualitative analysis of responses regarding challenges associated with a voice problem, 19 themes were identified (e.g., threat to occupational functioning). Conclusions These findings identify a high prevalence of multiple types of distress among patients with voice disorders, representing an opportunity to provide more comprehensive care to this patient population. PMID:24930373

  18. Voice integrated systems

    NASA Technical Reports Server (NTRS)

    Curran, P. Mike

    1977-01-01

    The program at Naval Air Development Center was initiated to determine the desirability of interactive voice systems for use in airborne weapon systems crew stations. A voice recognition and synthesis system (VRAS) was developed and incorporated into a human centrifuge. The speech recognition aspect of VRAS was developed using a voice command system (VCS) developed by Scope Electronics. The speech synthesis capability was supplied by a Votrax, VS-5, speech synthesis unit built by Vocal Interface. The effects of simulated flight on automatic speech recognition were determined by repeated trials in the VRAS-equipped centrifuge. The relationship of vibration, G, O2 mask, mission duration, and cockpit temperature and voice quality was determined. The results showed that: (1) voice quality degrades after 0.5 hours with an O2 mask; (2) voice quality degrades under high vibration; and (3) voice quality degrades under high levels of G. The voice quality studies are summarized. These results were obtained with a baseline of 80 percent recognition accuracy with VCS.

  19. Voice and endocrinology

    PubMed Central

    Hari Kumar, K. V. S.; Garg, Anurag; Ajai Chandra, N. S.; Singh, S. P.; Datta, Rakesh

    2016-01-01

    Voice is one of the advanced features of natural evolution that differentiates human beings from other primates. The human voice is capable of conveying the thoughts into spoken words along with a subtle emotion to the tone. This extraordinary character of the voice in expressing multiple emotions is the gift of God to the human beings and helps in effective interpersonal communication. Voice generation involves close interaction between cerebral signals and the peripheral apparatus consisting of the larynx, vocal cords, and trachea. The human voice is susceptible to the hormonal changes throughout life right from the puberty until senescence. Thyroid, gonadal and growth hormones have tremendous impact on the structure and function of the vocal apparatus. The alteration of voice is observed even in physiological states such as puberty and menstruation. Astute clinical observers make out the changes in the voice and refer the patients for endocrine evaluation. In this review, we shall discuss the hormonal influence on the voice apparatus in normal and endocrine disorders. PMID:27730065

  20. The voice handicap index: correlation between subjective patient response and quantitative assessment of voice.

    PubMed

    Woisard, Virginie; Bodin, Séverine; Yardeni, Eli; Puech, Michele

    2007-09-01

    The aim of this prospective study is to elucidate the relationship between the Voice Handicap Index (VHI) and several voice laboratory measurements in the network of the multidimensional voice assessment. Fifty-eight patients were included. Each patient replies to the questionnaire and performs a voice assessment during the same time. The following parameters were measured: minimum frequency, maximum frequency, range, minimum intensity, subglottic pressure, mean flow, maximum phonation time, jitter, and dysphonia severity index. Regarding the relationship with the scores of the VHI, poor correlations with the minimal frequency for all the scores except the emotional one (total and subscales) and with the range for only the physical one are found. Seventeen questions correlate with the voice laboratory measurements we performed, with a decreased distribution between physical, functional, and emotional subscales. We observe that acoustic parameter is correlated with the emotional subscale, the parameters of the profile range are more often involved in the emotional subscale, as is the minimal frequency, but never with the physical subscale, and all the subscales are interesting despite the smaller number of differences with the emotional one. The VHI and the laboratory measurements give independent informations in practice.

  1. Tracking Voice Change after Thyroidectomy: Application of Spectral/Cepstral Analyses

    ERIC Educational Resources Information Center

    Awan, Shaheen N.; Helou, Leah B.; Stojadinovic, Alexander; Solomon, Nancy Pearl

    2011-01-01

    This study evaluates the utility of perioperative spectral and cepstral acoustic analyses to monitor voice change after thyroidectomy. Perceptual and acoustic analyses were conducted on speech samples (sustained vowel /[alpha]/ and CAPE-V sentences) provided by 70 participants (36 women and 34 men) at four study time points: prior to thyroid…

  2. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing

    PubMed Central

    Mainka, Alexander; Poznyakovskiy, Anton; Platzek, Ivan; Fleischer, Mario; Sundberg, Johan; Mürbe, Dirk

    2015-01-01

    The vocal tract shape is crucial to voice production. Its lower part seems particularly relevant for voice timbre. This study analyzes the detailed morphology of parts of the epilaryngeal tube and the hypopharynx for the sustained German vowels /a/, /e/, /i/, /o/, and /u/ by thirteen male singer subjects who were at the beginning of their academic singing studies. Analysis was based on two different phonatory conditions: a natural, speech-like phonation and a singing phonation, like in classical singing. 3D models of the vocal tract were derived from magnetic resonance imaging and compared with long-term average spectrum analysis of audio recordings from the same subjects. Comparison of singing to the speech-like phonation, which served as reference, showed significant adjustments of the lower vocal tract: an average lowering of the larynx by 8 mm and an increase of the hypopharyngeal cross-sectional area (+ 21.9%) and volume (+ 16.8%). Changes in the analyzed epilaryngeal portion of the vocal tract were not significant. Consequently, lower larynx-to-hypopharynx area and volume ratios were found in singing compared to the speech-like phonation. All evaluated measures of the lower vocal tract varied significantly with vowel quality. Acoustically, an increase of high frequency energy in singing correlated with a wider hypopharyngeal area. The findings offer an explanation how classical male singers might succeed in producing a voice timbre with increased high frequency energy, creating a singer‘s formant cluster. PMID:26186691

  3. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.

    PubMed

    Mainka, Alexander; Poznyakovskiy, Anton; Platzek, Ivan; Fleischer, Mario; Sundberg, Johan; Mürbe, Dirk

    2015-01-01

    The vocal tract shape is crucial to voice production. Its lower part seems particularly relevant for voice timbre. This study analyzes the detailed morphology of parts of the epilaryngeal tube and the hypopharynx for the sustained German vowels /a/, /e/, /i/, /o/, and /u/ by thirteen male singer subjects who were at the beginning of their academic singing studies. Analysis was based on two different phonatory conditions: a natural, speech-like phonation and a singing phonation, like in classical singing. 3D models of the vocal tract were derived from magnetic resonance imaging and compared with long-term average spectrum analysis of audio recordings from the same subjects. Comparison of singing to the speech-like phonation, which served as reference, showed significant adjustments of the lower vocal tract: an average lowering of the larynx by 8 mm and an increase of the hypopharyngeal cross-sectional area (+ 21:9%) and volume (+ 16:8%). Changes in the analyzed epilaryngeal portion of the vocal tract were not significant. Consequently, lower larynx-to-hypopharynx area and volume ratios were found in singing compared to the speech-like phonation. All evaluated measures of the lower vocal tract varied significantly with vowel quality. Acoustically, an increase of high frequency energy in singing correlated with a wider hypopharyngeal area. The findings offer an explanation how classical male singers might succeed in producing a voice timbre with increased high frequency energy, creating a singer`s formant cluster.

  4. Computation of unsteady transonic flows through rotating and stationary cascades. 3: Acoustic far-field analysis

    NASA Technical Reports Server (NTRS)

    Slutsky, S.; Fischer, D.; Erdos, J. I.

    1977-01-01

    A small perturbation type analysis has been developed for the acoustic far field in an infinite duct extending upstream and downstream of an axial turbomachinery stage. The analysis is designed to interface with a numerical solution of the near field of the blade rows and, thereby, to provide the necessary closure condition to complete the statement of infinite duct boundary conditions for the subject problem. The present analysis differs from conventional inlet duct analyses in that a simple harmonic time dependence was not assumed, since a transient signal is generated by the numerical near-field solution and periodicity is attained only asymptotically. A description of the computer code developed to carry out the necessary convolutions numerically is included, as well as the results of a sample application using an impulsively initiated harmonic signal.

  5. Thin plate model for transverse mode analysis of surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Chen, Jing; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2016-07-01

    In this paper, we propose a physical model for the analysis of transverse modes in surface acoustic wave (SAW) devices. It is mostly equivalent to the scalar potential (SP) theory, but sufficiently flexible to include various effects such as anisotropy, coupling between multiple modes, etc. First, fundamentals of the proposed model are established and procedures for determining the model parameters are given in detailed. Then the model is implemented in the partial differential equation mode of the commercial finite element analysis software COMSOL. The analysis is carried out for an infinitely long interdigital transducer on the 128°YX-LiNbO3 substrate. As a demonstration, it is shown how the energy leakage changes with the frequency and the device design.

  6. Vibro-acoustic analysis of a rectangular cavity bounded by a flexible panel with elastically restrained edges.

    PubMed

    Du, Jing T; Li, Wen L; Xu, Hong A; Liu, Zhi G

    2012-04-01

    A coupled system consisting of an acoustic cavity and an elastic panel is a classical problem in structural acoustics and is typically analyzed using modal approaches based on in vacuo structural modes and the rigidly walled acoustic modes which are pre-determined based on separate component models. Such modeling techniques, however, tend to suffer the following drawbacks or limitations: (a) a panel is only subjected to ideal boundary conditions such as the simply supported, (b) the coupling between the cavity and panel is considered weak, and (c) the particle velocity cannot be correctly predicted from the pressure gradient on the contacting interface, to name a few. Motivated by removing these restrictions, this paper presents a general method for the vibro-acoustic analysis of a three-dimensional (3D) acoustic cavity bounded by a flexible panel with general elastically restrained boundary conditions. The displacement of the plate and the sound pressure in the cavity are constructed in the forms of standard two-dimensional and 3D Fourier cosine series supplemented by several terms introduced to ensure and accelerate the convergence of the series expansions. The unknown expansions coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz procedure based on the energy expressions for the coupled structural acoustic system. The accuracy and effectiveness of the proposed method are demonstrated through numerical examples and comparisons with the results available in the literature.

  7. Self-Analysis Skills for the Developing Singer: Voice Students Who Can Analyze Their Own Singing Will Make Better Use of Their Practice Time and Become More Skilled, Expressive Singers

    ERIC Educational Resources Information Center

    Barefield, Robert

    2006-01-01

    Self-analysis is a basic component of artistic development. For the singer, self-analysis is equally important, but the steps for improvement may be less visible. As Richard Alderson has noted, a singer "hears his voice from the inside through the bony structure of the head rather than outside through the eardrum. We as singers are doomed to a…

  8. a Psycholinguistic Model for Simultaneous Translation, and Proficiency Assessment by Automated Acoustic Analysis of Discourse.

    NASA Astrophysics Data System (ADS)

    Yaghi, Hussein M.

    Two separate but related issues are addressed: how simultaneous translation (ST) works on a cognitive level and how such translation can be objectively assessed. Both of these issues are discussed in the light of qualitative and quantitative analyses of a large corpus of recordings of ST and shadowing. The proposed ST model utilises knowledge derived from a discourse analysis of the data, many accepted facts in the psychology tradition, and evidence from controlled experiments that are carried out here. This model has three advantages: (i) it is based on analyses of extended spontaneous speech rather than word-, syllable-, or clause -bound stimuli; (ii) it draws equally on linguistic and psychological knowledge; and (iii) it adopts a non-traditional view of language called 'the linguistic construction of reality'. The discourse-based knowledge is also used to develop three computerised systems for the assessment of simultaneous translation: one is a semi-automated system that treats the content of the translation; and two are fully automated, one of which is based on the time structure of the acoustic signals whilst the other is based on their cross-correlation. For each system, several parameters of performance are identified, and they are correlated with assessments rendered by the traditional, subjective, qualitative method. Using signal processing techniques, the acoustic analysis of discourse leads to the conclusion that quality in simultaneous translation can be assessed quantitatively with varying degrees of automation. It identifies as measures of performance (i) three content-based standards; (ii) four time management parameters that reflect the influence of the source on the target language time structure; and (iii) two types of acoustical signal coherence. Proficiency in ST is shown to be directly related to coherence and speech rate but inversely related to omission and delay. High proficiency is associated with a high degree of simultaneity and

  9. In vitro experimental investigation of voice production

    PubMed Central

    Horáčcek, Jaromír; Brücker, Christoph; Becker, Stefan

    2012-01-01

    The process of human phonation involves a complex interaction between the physical domains of structural dynamics, fluid flow, and acoustic sound production and radiation. Given the high degree of nonlinearity of these processes, even small anatomical or physiological disturbances can significantly affect the voice signal. In the worst cases, patients can lose their voice and hence the normal mode of speech communication. To improve medical therapies and surgical techniques it is very important to understand better the physics of the human phonation process. Due to the limited experimental access to the human larynx, alternative strategies, including artificial vocal folds, have been developed. The following review gives an overview of experimental investigations of artificial vocal folds within the last 30 years. The models are sorted into three groups: static models, externally driven models, and self-oscillating models. The focus is on the different models of the human vocal folds and on the ways in which they have been applied. PMID:23181007

  10. Voice Savers for Music Teachers

    ERIC Educational Resources Information Center

    Cookman, Starr

    2012-01-01

    Music teachers are in a class all their own when it comes to voice use. These elite vocal athletes require stamina, strength, and flexibility from their voices day in, day out for hours at a time. Voice rehabilitation clinics and research show that music education ranks high among the professionals most commonly affected by voice problems.…

  11. 'Doctor, my voice seems husky'.

    PubMed

    Lyons, B M

    1994-11-01

    Disorders of voice are a common problem in general practice. An understanding of the complex mechanism of voice production enables us to appreciate how many systemic disorders can affect voice. This article details the pathophysiology of voice production and how to assess the patient with hoarseness. Contemporary management of vocal disorders is described with reference to some newer surgical and investigative techniques.

  12. Cerebral Processing of Voice Gender Studied Using a Continuous Carryover fMRI Design

    PubMed Central

    Pernet, Cyril; Latinus, Marianne; Crabbe, Frances; Belin, Pascal

    2013-01-01

    Normal listeners effortlessly determine a person's gender by voice, but the cerebral mechanisms underlying this ability remain unclear. Here, we demonstrate 2 stages of cerebral processing during voice gender categorization. Using voice morphing along with an adaptation-optimized functional magnetic resonance imaging design, we found that secondary auditory cortex including the anterior part of the temporal voice areas in the right hemisphere responded primarily to acoustical distance with the previously heard stimulus. In contrast, a network of bilateral regions involving inferior prefrontal and anterior and posterior cingulate cortex reflected perceived stimulus ambiguity. These findings suggest that voice gender recognition involves neuronal populations along the auditory ventral stream responsible for auditory feature extraction, functioning in pair with the prefrontal cortex in voice gender perception. PMID:22490550

  13. Time-frequency analysis of acoustic signals in the audio-frequency range generated during Hadfield's steel friction

    NASA Astrophysics Data System (ADS)

    Dobrynin, S. A.; Kolubaev, E. A.; Smolin, A. Yu.; Dmitriev, A. I.; Psakhie, S. G.

    2010-07-01

    Time-frequency analysis of sound waves detected by a microphone during the friction of Hadfield’s steel has been performed using wavelet transform and window Fourier transform methods. This approach reveals a relationship between the appearance of quasi-periodic intensity outbursts in the acoustic response signals and the processes responsible for the formation of wear products. It is shown that the time-frequency analysis of acoustic emission in a tribosystem can be applied, along with traditional approaches, to studying features in the wear and friction process.

  14. Voice modulations in German ironic speech.

    PubMed

    Scharrer, Lisa; Christmann, Ursula; Knoll, Monja

    2011-12-01

    Previous research has shown that in different languages ironic speech is acoustically modulated compared to literal speech,and these modulations are assumed to aid the listener in the comprehension process by acting as cues that mark utterances as ironic. The present study was conducted to identify paraverbal features of German 'ironic criticism' that may possibly act as irony cues by comparing acoustic measures of ironic and literal speech. For this purpose, samples of scripted ironic and literal target utterances produced by 14 female speakers were recorded and acoustically analyzed. Results showed that in contrast to literal remarks, ironic criticism was characterized by a decreased mean fundamental frequency (F0), raised energy levels and increased vowel duration, whereas F0-contours differed only marginally between both speech types. Furthermore, we found ironic speech to be characterized by vowel hyperarticulation,an acoustic feature which has so far not been considered as a possible irony cue. Contrary to our expectations, voice modulations in ironic speech were applied independently from the availability of additional, visual irony cues.The results are discussed in light of previous findings on acoustic features of irony yielded for other languages.

  15. Biphonation in voice signals

    SciTech Connect

    Herzel, H.; Reuter, R.

    1996-06-01

    Irregularities in voiced speech are often observed as a consequence of vocal fold lesions, paralyses, and other pathological conditions. Many of these instabilities are related to the intrinsic nonlinearities in the vibrations of the vocal folds. In this paper, a specific nonlinear phenomenon is discussed: The appearance of two independent fundamental frequencies termed biphonation. Several narrow-band spectrograms are presented showing biphonation in signals from voice patients, a newborn cry, a singer, and excised larynx experiments. Finally, possible physiological mechanisms of instabilities of the voice source are discussed. {copyright} {ital 1996 American Institute of Physics.}

  16. Equal autophonic level curves under different room acoustics conditions.

    PubMed

    Pelegrín-García, David; Fuentes-Mendizábal, Oier; Brunskog, Jonas; Jeong, Cheol-Ho

    2011-07-01

    The indirect auditory feedback from one's own voice arises from sound reflections at the room boundaries or from sound reinforcement systems. The relative variations of indirect auditory feedback are quantified through room acoustic parameters such as the room gain and the voice support, rather than the reverberation time. Fourteen subjects matched the loudness level of their own voice (the autophonic level) to that of a constant and external reference sound, under different synthesized room acoustics conditions. The matching voice levels are used to build a set of equal autophonic level curves. These curves give an indication of the amount of variation in voice level induced by the acoustic environment as a consequence of the sidetone compensation or Lombard effect. In the range of typical rooms for speech, the variations in overall voice level that result in a constant autophonic level are on the order of 2 dB, and more than 3 dB in the 4 kHz octave band. By comparison of these curves with previous studies, it is shown that talkers use acoustic cues other than loudness to adjust their voices when speaking in different rooms.

  17. Delay analysis of an integrated voice and data access protocol with collision detection for multimedia satellite networks

    NASA Astrophysics Data System (ADS)

    Poon, Charles C. K.; Suda, Tatsuya

    1992-03-01

    The novel multiple-access scheme for multimedia satellite networks presented is based on a combination of FDMA and TDMA, integrating both circuit and packet-switching techniques. While the circuit-switching method is used to transmit such stream-type traffic as real-time voice communications, packet-switching is used to transmit such 'bursty' traffic as interactive data. A ground radio network is assumed for control signaling; the tone sense multiple access/partial collision detection scheme is implemented on this network to enhance the integrated access scheme's performance.

  18. Mismatch Negativity to Threatening Voices Associated with Positive Symptoms in Schizophrenia.

    PubMed

    Chen, Chenyi; Liu, Chia-Chien; Weng, Pei-Yuan; Cheng, Yawei

    2016-01-01

    Although the general consensus holds that emotional perception is impaired in patients with schizophrenia, the extent to which neural processing of emotional voices is altered in schizophrenia remains to be determined. This study enrolled 30 patients with chronic schizophrenia and 30 controls and measured their mismatch negativity (MMN), a component of auditory event-related potentials (ERP). In a passive oddball paradigm, happily or angrily spoken deviant syllables dada were randomly presented within a train of emotionally neutral standard syllables. Results showed that MMN in response to angry syllables and angry-derived non-vocal sounds was significantly decreased in individuals with schizophrenia. P3a to angry syllables showed stronger amplitudes but longer latencies. Weaker MMN amplitudes were associated with more positive symptoms of schizophrenia. Receiver operator characteristic analysis revealed that angry MMN, angry-derived MMN, and angry P3a could help predict whether someone had received a clinical diagnosis of schizophrenia. The findings suggested general impairments of voice perception and acoustic discrimination in patients with chronic schizophrenia. The emotional salience processing of voices showed an atypical fashion at the preattentive level, being associated with positive symptoms in schizophrenia. PMID:27471459

  19. Mismatch Negativity to Threatening Voices Associated with Positive Symptoms in Schizophrenia

    PubMed Central

    Chen, Chenyi; Liu, Chia-Chien; Weng, Pei-Yuan; Cheng, Yawei

    2016-01-01

    Although the general consensus holds that emotional perception is impaired in patients with schizophrenia, the extent to which neural processing of emotional voices is altered in schizophrenia remains to be determined. This study enrolled 30 patients with chronic schizophrenia and 30 controls and measured their mismatch negativity (MMN), a component of auditory event-related potentials (ERP). In a passive oddball paradigm, happily or angrily spoken deviant syllables dada were randomly presented within a train of emotionally neutral standard syllables. Results showed that MMN in response to angry syllables and angry-derived non-vocal sounds was significantly decreased in individuals with schizophrenia. P3a to angry syllables showed stronger amplitudes but longer latencies. Weaker MMN amplitudes were associated with more positive symptoms of schizophrenia. Receiver operator characteristic analysis revealed that angry MMN, angry-derived MMN, and angry P3a could help predict whether someone had received a clinical diagnosis of schizophrenia. The findings suggested general impairments of voice perception and acoustic discrimination in patients with chronic schizophrenia. The emotional salience processing of voices showed an atypical fashion at the preattentive level, being associated with positive symptoms in schizophrenia. PMID:27471459

  20. [Similarity of monozygotic twins regarding vocal performance and acoustic markers and possible clinical significance].

    PubMed

    Fuchs, M; Oeken, J; Hotopp, T; Täschner, R; Hentschel, B; Behrendt, W

    2000-06-01

    Auditory similarities in voices of monozygotic twins have already been described in the literature. However, is there a clinical relevance? Thus, the present study was designed to identify parameters of vocal performance and acoustic features which are significantly more similar in monozygotic twins than in non-related persons. In our hypothesis, comparable prerequisites for an increased vocal load in a profession or in an artistic education of the voice could be due to these similarities. We compared intra-pair differences with data from a control group. Moreover, we examined the correlation of intra-pair differences with the age of the monozygotic twins. A greater difference in older twin pairs than in younger pairs could show the effect of an exogene influence. In addition to the few phoniatric studies in twins in the literature, we used current methods for acoustic analysis. We examined seven parameters of vocal performance and three acoustic features in 31 monozygotic twin pairs (median age 36 years, range 18-75 years) and compared them with 30 control group pairs, which consisted of non-related persons of the same age and sex, newly combined from the group of monozygotic twins ("statistical twins"). We found significant differences in seven of ten parameters (vocal range, highest and lowest vocal fundamental frequency, fundamental speaking frequency, maximum voice intensity, number of partials, vibrato of intensity; U-test by Mann-Whitney). No correlation of the differences of the identical twins with age was found in the examined parameters. The voices of identical twins are significantly more similar than those of non-related persons regarding the above mentioned features. Thus, the suitability of the voices of monozygotic twins for professions with a high demand on voice is comparable. Results of the group comparison correlate largely with the literature. The missing correlation with age could be due to the fact that the environmental effects were not

  1. Quantitative analysis of the acoustic repertoire of southern right whales in New Zealand.

    PubMed

    Webster, Trudi A; Dawson, Stephen M; Rayment, William J; Parks, Susan E; Van Parijs, Sofie M

    2016-07-01

    Quantitatively describing the acoustic repertoire of a species is important for establishing effective passive acoustic monitoring programs and developing automated call detectors. This process is particularly important when the study site is remote and visual surveys are not cost effective. Little is known about the vocal behavior of southern right whales (Eubalaena australis) in New Zealand. The aim of this study was to describe and quantify their entire vocal repertoire on calving grounds in the sub-Antarctic Auckland Islands. Over three austral winters (2010-2012), 4349 calls were recorded, measured, and classified into 10 call types. The most frequently observed types were pulsive, upcall, and tonal low vocalizations. A long tonal low call (≤15.5 s duration) and a very high call (peak frequency ∼750 Hz) were described for the first time. Random Forest multivariate analysis of 28 measured variables was used to classify calls with a high degree of accuracy (82%). The most important variables for classification were maximum ceiling frequency, number of inflection points, duration, and the difference between the start and end frequency. This classification system proved to be a repeatable, fast, and objective method for categorising right whale calls and shows promise for other vocal taxa.

  2. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus).

    PubMed

    Agamaite, James A; Chang, Chia-Jung; Osmanski, Michael S; Wang, Xiaoqin

    2015-11-01

    The common marmoset (Callithrix jacchus), a highly vocal New World primate species, has emerged in recent years as a promising animal model for studying brain mechanisms underlying perception, vocal production, and cognition. The present study provides a quantitative acoustic analysis of a large number of vocalizations produced by marmosets in a social environment within a captive colony. Previous classifications of the marmoset vocal repertoire were mostly based on qualitative observations. In the present study a variety of vocalizations from individually identified marmosets were sampled and multiple acoustic features of each type of vocalization were measured. Results show that marmosets have a complex vocal repertoire in captivity that consists of multiple vocalization types, including both simple calls and compound calls composed of sequences of simple calls. A detailed quantification of the vocal repertoire of the marmoset can serve as a solid basis for studying the behavioral significance of their vocalizations and is essential for carrying out studies that investigate such properties as perceptual boundaries between call types and among individual callers as well as neural coding mechanisms for vocalizations. It can also serve as the basis for evaluating abnormal vocal behaviors resulting from diseases or genetic manipulations. PMID:26627765

  3. Quantitative analysis of the acoustic repertoire of southern right whales in New Zealand.

    PubMed

    Webster, Trudi A; Dawson, Stephen M; Rayment, William J; Parks, Susan E; Van Parijs, Sofie M

    2016-07-01

    Quantitatively describing the acoustic repertoire of a species is important for establishing effective passive acoustic monitoring programs and developing automated call detectors. This process is particularly important when the study site is remote and visual surveys are not cost effective. Little is known about the vocal behavior of southern right whales (Eubalaena australis) in New Zealand. The aim of this study was to describe and quantify their entire vocal repertoire on calving grounds in the sub-Antarctic Auckland Islands. Over three austral winters (2010-2012), 4349 calls were recorded, measured, and classified into 10 call types. The most frequently observed types were pulsive, upcall, and tonal low vocalizations. A long tonal low call (≤15.5 s duration) and a very high call (peak frequency ∼750 Hz) were described for the first time. Random Forest multivariate analysis of 28 measured variables was used to classify calls with a high degree of accuracy (82%). The most important variables for classification were maximum ceiling frequency, number of inflection points, duration, and the difference between the start and end frequency. This classification system proved to be a repeatable, fast, and objective method for categorising right whale calls and shows promise for other vocal taxa. PMID:27475156

  4. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus).

    PubMed

    Agamaite, James A; Chang, Chia-Jung; Osmanski, Michael S; Wang, Xiaoqin

    2015-11-01

    The common marmoset (Callithrix jacchus), a highly vocal New World primate species, has emerged in recent years as a promising animal model for studying brain mechanisms underlying perception, vocal production, and cognition. The present study provides a quantitative acoustic analysis of a large number of vocalizations produced by marmosets in a social environment within a captive colony. Previous classifications of the marmoset vocal repertoire were mostly based on qualitative observations. In the present study a variety of vocalizations from individually identified marmosets were sampled and multiple acoustic features of each type of vocalization were measured. Results show that marmosets have a complex vocal repertoire in captivity that consists of multiple vocalization types, including both simple calls and compound calls composed of sequences of simple calls. A detailed quantification of the vocal repertoire of the marmoset can serve as a solid basis for studying the behavioral significance of their vocalizations and is essential for carrying out studies that investigate such properties as perceptual boundaries between call types and among individual callers as well as neural coding mechanisms for vocalizations. It can also serve as the basis for evaluating abnormal vocal behaviors resulting from diseases or genetic manipulations.

  5. Analysis of acoustic networks including cavities by means of a linear finite volume method

    NASA Astrophysics Data System (ADS)

    Torregrosa, A. J.; Broatch, A.; Gil, A.; Moreno, D.

    2012-09-01

    A procedure allowing for the analysis of complex acoustic networks, including three-dimensional cavities described in terms of zero-dimensional equivalent elements, is presented and validated. The procedure is based on the linearization of the finite volume method often used in gas-dynamics, which is translated into an acoustic network comprising multi-ports accounting for mass exchanges between the finite volumes, and equivalent 2-ports describing momentum exchange across the volume surfaces. The application of the concept to a one-dimensional case shows that it actually converges to the exact analytical solution when a sufficiently large number of volumes are considered. This has allowed the formulation of an objective criterion for the choice of a mesh providing results with a prefixed error up to a certain Helmholtz number, which has been generalized to three-dimensional cases. The procedure is then applied to simple but relevant three-dimensional geometries in the absence of a mean flow, showing good agreement with experimental and other computational results.

  6. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions.

    PubMed

    Glaser, Diana; Komistek, Richard D; Cates, Harold E; Mahfouz, Mohamed R

    2010-02-10

    The performance evaluation of THA outcome is difficult and surgeons often use invasive methods to investigate effectiveness. A non-invasive acoustic and vibration analysis technique has recently been developed for more-in-depth evaluation of in vivo hip conditions. Gait kinematics, corresponding vibration and sound measurement of five THA subjects were analyzed post-operatively using video-fluoroscopy, sound and accelerometer measurements while walking on a treadmill. The sound sensor and a pair of tri-axial accelerometers, externally attached to the pelvic and femoral bone prominences, detected frequencies that are propagated through the femoral head and acetabular cup interactions. A data acquisition system was used to amplify the signal and filter out noise generated by undesired frequencies. In vivo kinematics and femoral head sliding quantified using video fluoroscopy were correlated to the sound and acceleration measurements. Distinct variations between the different subjects were identified. A correlation of sound and acceleration impulses with separation has been achieved. Although, in vivo sounds are quite variable in nature and all correlated well with the visual images. This is the first study to document and correlate visual and audible effects of THA under in-vivo conditions. This study has shown that the development of the acoustic and vibration technique provides a practical method and generates new possibilities for a better understanding of THA performance.

  7. Quantitative and descriptive comparison of four acoustic analysis systems: vowel measurements

    PubMed Central

    Burris, Carlyn; Vorperian, Houri K.; Fourakis, Marios; Kent, Ray D.; Bolt, Daniel M.

    2013-01-01

    Purpose This study examines accuracy and comparability of four trademarked acoustic analysis software packages (AASP): Praat, Wavesurfer, TF32 and CSL using synthesized and natural vowels. Features of AASP are also described. Methods Synthesized and natural vowels were analyzed using each of AASP’s default settings to secure nine acoustic measures: fundamental frequency (F0), formant frequencies (F1-F4), and formant bandwidths (B1-B4). The discrepancy between the software measured values and the input values (synthesized, previously reported, and manual measurements) was used to assess comparability and accuracy. Basic AASP features are described. Results Results indicate that Praat, Wavesurfer, and TF32 generate accurate and comparable F0 and F1-F4 data for synthesized vowels and adult male natural vowels. Results varied by vowel for adult females and children, with some serious errors. Bandwidth measurements by AASPs were highly inaccurate as compared to manual measurements and published data on formant bandwidths. Conclusions Values of F0 and F1-F4 are generally consistent and fairly accurate for adult vowels and for some child vowels using the default settings in Praat, Wavesurfer, and TF32. Manipulation of default settings yields improved output values in TF32 and CSL. Caution is recommended especially before accepting F1-F4 results for children and B1-B4 results for all speakers. PMID:24687465

  8. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  9. Amplitude-Frequency Analysis of Signals of Acoustic Emission from Granite Fractured at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Chmel‧, A. E.

    2015-05-01

    The problem of stability of underground structures serving to store radioactive waste, to gasify carbon, and to utilize geothermal energy is associated with the action of elevated temperatures and pressures. The acoustic-emission method makes it possible to monitor the accumulation of microcracks arising in stress fields of both thermal and mechanical origin. In this report, the authors give results of a laboratory investigation into the acoustic emission from granite subjected to impact fracture at temperatures of up to 600°C. An amplitude-frequency analysis of acousticemission signals has enabled the authors to evaluate the dimension of the arising microcracks and to determine their character (intergranular or intragranular). It has been shown that intergranular faults on the boundaries between identical minerals predominate at room temperature (purely mechanical action); at a temperature of 300°C (impact plus thermoelastic stresses), there also appear cracks on the quartz-feldspar boundaries; finally, at temperatures of 500-600°C, it is intragranular faults that predominate in feldspar. The dimensions of the above three types of microcracks are approximately 2, 0.8, and 0.3 mm respectively.

  10. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions.

    PubMed

    Glaser, Diana; Komistek, Richard D; Cates, Harold E; Mahfouz, Mohamed R

    2010-02-10

    The performance evaluation of THA outcome is difficult and surgeons often use invasive methods to investigate effectiveness. A non-invasive acoustic and vibration analysis technique has recently been developed for more-in-depth evaluation of in vivo hip conditions. Gait kinematics, corresponding vibration and sound measurement of five THA subjects were analyzed post-operatively using video-fluoroscopy, sound and accelerometer measurements while walking on a treadmill. The sound sensor and a pair of tri-axial accelerometers, externally attached to the pelvic and femoral bone prominences, detected frequencies that are propagated through the femoral head and acetabular cup interactions. A data acquisition system was used to amplify the signal and filter out noise generated by undesired frequencies. In vivo kinematics and femoral head sliding quantified using video fluoroscopy were correlated to the sound and acceleration measurements. Distinct variations between the different subjects were identified. A correlation of sound and acceleration impulses with separation has been achieved. Although, in vivo sounds are quite variable in nature and all correlated well with the visual images. This is the first study to document and correlate visual and audible effects of THA under in-vivo conditions. This study has shown that the development of the acoustic and vibration technique provides a practical method and generates new possibilities for a better understanding of THA performance. PMID:19931084

  11. The psychophysics of roughness applied to dysphonic voice.

    PubMed

    Eddins, David A; Kopf, Lisa M; Shrivastav, Rahul

    2015-12-01

    Roughness is a sound quality that has been related to the amplitude modulation characteristics of the acoustic stimulus. Roughness also is considered one of the primary elements of voice quality associated with natural variations across normal voices and is a salient feature of many dysphonic voices. It is known that the roughness of tonal stimuli is dependent on the frequency and depth of amplitude modulation and on the carrier frequency. Here, it is determined if similar dependencies exist for voiced speech stimuli. Knowledge of such dependencies can lead to a better understanding of the acoustic characteristics of vocal roughness along the continuum of normal to dysphonic and may facilitate computational estimates of vocal roughness. Synthetic vowel stimuli were modeled after talkers selected from the Satloff/Heman-Ackah disordered voice database. To parametrically control amplitude modulation frequency and depth, synthesized stimuli had minimal amplitude fluctuations, and amplitude modulation was superimposed with the desired frequency and depth. Perceptual roughness judgments depended on amplitude modulation frequency and depth in a manner that closely matched data from tonal carriers. The dependence of perceived roughness on amplitude modulation frequency and depth closely matched the roughness of sinusoidal carriers as reported by Fastl and Zwicker [(2007) Psychoacoustics: Facts and Models, 3rd ed. (Springer, New York)].

  12. Changes in F2-F1 as a voicing cue

    NASA Astrophysics Data System (ADS)

    Warren, Willis J.; Coren, Amy E.

    2003-10-01

    The interaction between formant transitions and vowel length was measured with respect to syllable final voicing distinctions. A synthesized ad VC token of 360 ms was edited in 5-ms intervals from either side, onset or offset, so that 260 ms were preserved. Ten subjects were asked to make final voicing judgments for the words ``odd'' and ``ought'' ([ad] vs [at]) when hearing the 20 edited tokens. Each token was presented five times, randomly, for a total of 1000 judgements. Results showed an overwhelming number of voiced responses when the entire offset was preserved and symmetrical voiceless results with the deletion of offset. A follow-up experiment utilized a similarly synthesized token of 460 ms. The results when adding 100 ms onto the vowel were insignificantly different than the results acquired for formant transitions, suggesting the latter are a more important cue for syllable final voicing distinctions. These findings contradict previous vowel length conclusions [L. J. Raphael, J. Acoust. Soc. Am. 51, 1296-1303 (1972)] and further suggest that in addition to F1 [V. Summers, J. Acoust. Soc. Am. 84, 485-492 (1988)], F2 transitions are also an important cue to final voicing distinctions in low vowel contexts.

  13. Using Ambulatory Voice Monitoring to Investigate Common Voice Disorders: Research Update

    PubMed Central

    Mehta, Daryush D.; Van Stan, Jarrad H.; Zañartu, Matías; Ghassemi, Marzyeh; Guttag, John V.; Espinoza, Víctor M.; Cortés, Juan P.; Cheyne, Harold A.; Hillman, Robert E.

    2015-01-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from inefficient and/or abusive patterns of vocal behavior, referred to as vocal hyperfunction. The clinical management of hyperfunctional voice disorders would be greatly enhanced by the ability to monitor and quantify detrimental vocal behaviors during an individual’s activities of daily life. This paper provides an update on ongoing work that uses a miniature accelerometer on the neck surface below the larynx to collect a large set of ambulatory data on patients with hyperfunctional voice disorders (before and after treatment) and matched-control subjects. Three types of analysis approaches are being employed in an effort to identify the best set of measures for differentiating among hyperfunctional and normal patterns of vocal behavior: (1) ambulatory measures of voice use that include vocal dose and voice quality correlates, (2) aerodynamic measures based on glottal airflow estimates extracted from the accelerometer signal using subject-specific vocal system models, and (3) classification based on machine learning and pattern recognition approaches that have been used successfully in analyzing long-term recordings of other physiological signals. Preliminary results demonstrate the potential for ambulatory voice monitoring to improve the diagnosis and treatment of common hyperfunctional voice disorders. PMID:26528472

  14. Back-and-Forth Methodology for Objective Voice Quality Assessment: From/to Expert Knowledge to/from Automatic Classification of Dysphonia

    NASA Astrophysics Data System (ADS)

    Fredouille, Corinne; Pouchoulin, Gilles; Ghio, Alain; Revis, Joana; Bonastre, Jean-François; Giovanni, Antoine

    2009-12-01

    This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists). The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices), rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0-3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.

  15. The maximum intelligible range of the human voice

    NASA Astrophysics Data System (ADS)

    Boren, Braxton

    This dissertation examines the acoustics of the spoken voice at high levels and the maximum number of people that could hear such a voice unamplified in the open air. In particular, it examines an early auditory experiment by Benjamin Franklin which sought to determine the maximum intelligible crowd for the Anglican preacher George Whitefield in the eighteenth century. Using Franklin's description of the experiment and a noise source on Front Street, the geometry and diffraction effects of such a noise source are examined to more precisely pinpoint Franklin's position when Whitefield's voice ceased to be intelligible. Based on historical maps, drawings, and prints, the geometry and material of Market Street is constructed as a computer model which is then used to construct an acoustic cone tracing model. Based on minimal values of the Speech Transmission Index (STI) at Franklin's position, Whitefield's on-axis Sound Pressure Level (SPL) at 1 m is determined, leading to estimates centering around 90 dBA. Recordings are carried out on trained actors and singers to determine their maximum time-averaged SPL at 1 m. This suggests that the greatest average SPL achievable by the human voice is 90-91 dBA, similar to the median estimates for Whitefield's voice. The sites of Whitefield's largest crowds are acoustically modeled based on historical evidence and maps. Based on Whitefield's SPL, the minimal STI value, and the crowd's background noise, this allows a prediction of the minimally intelligible area for each site. These yield maximum crowd estimates of 50,000 under ideal conditions, while crowds of 20,000 to 30,000 seem more reasonable when the crowd was reasonably quiet and Whitefield's voice was near 90 dBA.

  16. MSAT voice modulation considerations

    NASA Technical Reports Server (NTRS)

    Bossler, Dan

    1990-01-01

    The challenge for Mobile satellite (MSAT) voice services is to provide near toll quality voice to the user, while minimizing the power and bandwidth resources of the satellite. The options for MSAT voice can be put into one of two groups: Analog and Digital. Analog, nominally narrowband single sideband techniques, have a shown robustness to the fading and shadowing environment. Digital techniques, a combination of low rate vocoders and bandwidth efficient modems, show the promise of enhanced fidelity, as well as easier networking to the emerging digital world. The problems and tradeoffs to designers are many, especially in the digital case. Processor speed vs. cost and MET power requirements, channel coding, bandwidth efficiency vs. power efficiency etc. While the list looks daunting, in fact an acceptable solution is well within the technology. The objectives are reviewed that the MSAT voice service must meet, along with the options that are seen for the future.

  17. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    NASA Astrophysics Data System (ADS)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  18. MSAT broadcast voice services

    NASA Technical Reports Server (NTRS)

    Jones, John W.

    1995-01-01

    Later this year the MSAT satellite network will be delivering mobile and remote communications throughout North America. Its services include a family of Broadcast Voice Services, the first of which will be MSAT Dispatch Radio, which will extend the features and functionality of terrestrial Specialized Mobile Radio (SMR) to the entire continent. This paper describes the MSAT Broadcast Voice Services in general, and MSAT Dispatch Radio in particular, and provides examples of commercial and government applications.

  19. Seeing a voice: Rudolph Koenig's instruments for studying vowel sounds.

    PubMed

    Pantalony, David

    2004-01-01

    The human voice was one of the more elusive acoustical phenomena to study in the 19th century and therefore a crucial test of Hermann von Helmholtz's new theory of sound. This article describes the origins of instruments used to study vowel sounds: synthesizers for production, resonators for detection, and manometric flames for visual display. Instrument maker Rudolph Koenig played a leading role in transforming Helmholtz's ideas into apparatus. In particular, he was the first to make the human voice visible for research and teaching. Koenig's work reveals the rich context of science, craft traditions, experiment, demonstration culture, and commerce in his Paris workshop. PMID:15457810

  20. [Psychological classification of functional voice disorders].

    PubMed

    Kiese-Himmel, C; Kruse, E

    1997-01-01

    In an explorative study the classification of a collective of patients with different voice disorders by discriminant and cluster analysis was tried. 21 variables, obtained from 128 patients with various diagnoses of voice disorders, were used. A first discriminant analysis on the basis of diagnoses-groups permitted no differentiation. A subsequent hierarchical cluster analysis indicated a four-cluster-solution. The clusters showed only little association with the phoniatric diagnoses. Cluster 1 is characterized by patients with non-organic voice disorders. Cluster 2 is marked by emotional unstable patients with organic dysphonia. Cluster 3 consists of patients with psychosomatic dysphonia by laryngeal contact granuloma, and cluster 4 contains emotional stable patients suffering from organic dysphonia and from spasmodic dysphonia. Thirteen psychological variables discriminated the clusters significantly: Anxiety about appearing in public, emotionality (neuroticism), life satisfaction, aggressiveness, anxiety, about physical injuries, extraversion.

  1. a Computational Method for the Analysis of Acoustic Radiation from Turbofan Inlets

    NASA Astrophysics Data System (ADS)

    Raviprakash, G. K.

    1992-01-01

    A computational method is presented for the analysis of the noise radiation from turbofan inlets. The method developed considers the effect of mean flow and can be used at high frequencies. The techniques for generating the grid, solving the acoustic equations, applying radiating conditions on the far-field boundary, imposing inlet-fan interface conditions as well as solving the steady compressible flow equations are embodied in the Inlet Acoustic Analysis Method. The theoretical basis, formulated for 3-D acoustics within an axisymmetric domain, considers the effect of non-uniform mean flow. The discretization of the field equations is done using a finite volume type differencing. This leads to a block tri-diagonal system of equations which is then efficiently solved. A new and powerful method is developed for the application of radiating conditions. A layer potential representation is used in obtaining numerically local radiating conditions. The locally radiating conditions, developed using the single layer source representation, can be used even at the interior eigenvalues. Using this technique, the radiating conditions can be applied very close to the inlet, and hence the computational efficiency can be significantly increased. The irrotationality conditions for the axisymmetric compressible flow are discretized for solving the mean flow field. An iterative scheme is developed to solve for the stream function, the density, and the speed of sound. The inlet-fan interface conditions are incorporated to properly specify the source of noise. The noise source is either directly specified or the interface potential distribution is split into a combination of an imposed right traveling disturbance and an unknown combination of left traveling disturbances, that come out as part of the solution process. The grid generation procedure utilizes algebraic transformations as well as the grid blending technique. This process is automated to accommodate variations in the grid

  2. A computational method for the analysis of acoustic radiation from turbofan inlets

    NASA Astrophysics Data System (ADS)

    Raviprakash, G. K.

    A computational method is presented for the analysis of the noise radiation from turbofan inlets. The method developed considers the effect of mean flow and can be used at high frequencies. The techniques for generating the grid, solving the acoustic equations, applying radiating conditions on the far-field boundary, imposing inlet-fan interface conditions as well as solving the steady compressible flow equations are embodied in the Inlet Acoustic Analysis Method. The theoretical basis, formulated for 3-D acoustics within an axisymmetric domain, considers the effect of non-uniform mean flow. The discretization of the field equations is done using a finite volume type differencing. This leads to a block tri-diagonal system of equations which is then efficiently solved. A new and powerful method is developed for the application of radiating conditions. A layer potential representation is used in obtaining numerically local radiating conditions. The locally radiating conditions, developed using the single layer source representation, can be used even at the interior eigenvalues. Using this technique, the radiating conditions can be applied very close to the inlet, and hence the computational efficiency can be significantly increased. The irrotationality conditions for the axisymmetric compressible flow are discretized for solving the mean flow field. An iterative scheme is developed to solve for the stream function, the density, and the speed of sound. The inlet-fan interface conditions are incorporated to properly specify the source of noise. The noise source is either directly specified or the interface potential distribution is split into a combination of an imposed right traveling disturbance and an unknown combination of left traveling disturbances, that come out as part of the solution process. The grid generation procedure utilizes algebraic transformations as well as the grid blending techniques. This process is automated to accommodate variations in the grid

  3. The effects of acoustic radiation force on contrast agents: Experimental and theoretial analysis

    NASA Astrophysics Data System (ADS)

    Dayton, Paul Alexander

    The goal of this research is to understand the response of ultrasound contrast agents to acoustic radiation force. Ultrasound contrast agents are encapsulated microbubbles similar in size and rheologic behavior to human erythrocytes. A core of either air or a high- molecular weight gas makes these microbubbles extremely compressible and highly echogenic. Clinically, the detection of blood is difficult without contrast agents because the echoes from blood cells are typically 30-40 dB less than tissue echoes. Ultrasound contrast agents have been shown to be extremely useful in assisting delineation of perfused tissue in echocardiography, and are being increasingly used for tumor detection in radiology. The high compressibility of gas-filled contrast agents makes these microbubbles susceptible to translation due to radiation force. Thus, it is important to understand the effects of this force in order to avoid erroneous measurements based on the location and flow velocity of microbubbles. In addition, the ability to displace and concentrate microbubbles may be an advantage in targeted imaging, targeted therapy, or industrial applications where it is desired to localize microbubbles in a region. In this study, experimental and theoretical tools are combined to investigate the interaction between microbubbles and an acoustic pulse. Several unique experimental systems allow visualization and analysis of the radius-time curves of individual microbubbles, the displacement of individual microbubbles in-vitro, and the displacement of microbubbles in-vivo. Theoretical analysis illustrates that the effect of radiation force on microbubbles is directly proportional to the product of the bubble volume and the acoustic pressure gradient. A model designed to simulate the radius-time behavior of individual microbubbles is verified from experimental data, and used to estimate the magnitude of radiation force. The resulting bubble translation is determined using a second model

  4. Dissociation of human and computer voices in the brain: evidence for a preattentive gestalt-like perception.

    PubMed

    Lattner, Sonja; Maess, Burkhard; Wang, Yunhua; Schauer, Michael; Alter, Kai; Friederici, Angela D

    2003-09-01

    We investigated the early ("preattentive") cortical processing of voice information, using the so-called "mismatch response". This brain potential allows inferences to be made about the sensory short-term store. Most importantly, the mismatch potential also provides information about the organization of long-term memory traces in the auditory system. Such traces have reliably been reported for phonemes. However, it is unclear whether they also exist for human voice information. To explore this issue, 10 healthy subjects were presented with a single word stimulus uttered by voices of different prototypicality (natural, manipulated, synthetic) in a mismatch experiment (stimulus duration 380 msec, onset-to-onset interval 900 msec). The event-related magnetic fields were recorded by a 148-channel whole-head magnetometer and a source current density modeling of the magnetic field data was performed using a minimum-norm estimate. Each deviating voice signal in a series of standard-voice stimuli evoked a mismatch response that was localized in temporal brain regions bilaterally. Increased mismatch related magnetic flux was observed in response to decreased prototypicality of a presented voice signal, but did not correspond to the acoustic similarity of standard voice and deviant voices. We, therefore, conclude that the mismatch activation predominantly reflects the ecological validity of the voice signals. We further demonstrate that the findings cannot be explained by mere acoustic feature processing, but rather point towards a holistic mapping of the incoming voice signal onto long-term representations in the auditory memory. PMID:12953302

  5. Modulation of voice related to tremor and vibrato

    NASA Astrophysics Data System (ADS)

    Lester, Rosemary Anne

    Modulation of voice is a result of physiologic oscillation within one or more components of the vocal system including the breathing apparatus (i.e., pressure supply), the larynx (i.e. sound source), and the vocal tract (i.e., sound filter). These oscillations may be caused by pathological tremor associated with neurological disorders like essential tremor or by volitional production of vibrato in singers. Because the acoustical characteristics of voice modulation specific to each component of the vocal system and the effect of these characteristics on perception are not well-understood, it is difficult to assess individuals with vocal tremor and to determine the most effective interventions for reducing the perceptual severity of the disorder. The purpose of the present studies was to determine how the acoustical characteristics associated with laryngeal-based vocal tremor affect the perception of the magnitude of voice modulation, and to determine if adjustments could be made to the voice source and vocal tract filter to alter the acoustic output and reduce the perception of modulation. This research was carried out using both a computational model of speech production and trained singers producing vibrato to simulate laryngeal-based vocal tremor with different voice source characteristics (i.e., vocal fold length and degree of vocal fold adduction) and different vocal tract filter characteristics (i.e., vowel shapes). It was expected that, by making adjustments to the voice source and vocal tract filter that reduce the amplitude of the higher harmonics, the perception of magnitude of voice modulation would be reduced. The results of this study revealed that listeners' perception of the magnitude of modulation of voice was affected by the degree of vocal fold adduction and the vocal tract shape with the computational model, but only by the vocal quality (corresponding to the degree of vocal fold adduction) with the female singer. Based on regression analyses

  6. Prevalence, nature and risks of voice problems among public school teachers

    NASA Astrophysics Data System (ADS)

    Rammage, Linda; Hodgson, Murray; Naylor, Charlie

    2005-04-01

    Voice problems among teachers represent a rising cause of teacher absenteeism, use of sick benefits, and stress among teachers and students. In British Columbia, the BC Teachers Federation and Workers Compensation Board are receiving increasing numbers of claims from teachers experiencing occupational voice problems and in the provincial voice clinic, the percentage of teachers in the clinic population is rising. Previous studies of teachers voice problems have typically had low return rates, which can bias the prevalence estimates, and have not incorporated standardized voice inventories, psychological inventories and acoustic measures. A survey study is in progress in B.C. to probe demographic, environmental, voice-use, health, psychological and personality issues that are thought to contribute to development of voice problems among teachers. To ensure validity of prevalence estimates by high return rates, on-site completion of questionnaires is being used in schools. Acoustical measures are also being made of representative classrooms, to determine the degree to which noise and reverberation contribute to voice problems among teachers.

  7. Nonlinear Acoustic Response of an Aircraft Fuselage Sidewall Structure by a Reduced-Order Analysis

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Groen, David S.

    2006-01-01

    A reduced-order nonlinear analysis of a structurally complex aircraft fuselage sidewall panel is undertaken to explore issues associated with application of such analyses to practical structures. Of primary interest is the trade-off between computational efficiency and accuracy. An approach to modal basis selection is offered based upon the modal participation in the linear regime. The nonlinear static response to a uniform pressure loading and nonlinear random response to a uniformly distributed acoustic loading are computed. Comparisons of the static response with a nonlinear static solution in physical degrees-of-freedom demonstrate the efficacy of the approach taken for modal basis selection. Changes in the modal participation as a function of static and random loading levels suggest a means for improvement in the basis selection.

  8. Statistical analysis of infrasound signatures in airglow observations: Indications for acoustic resonance

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Schmidt, Carsten; Bittner, Michael

    2013-02-01

    The detection of infrasonic signals in temperature time series of the mesopause altitude region (at about 80-100 km) is performed at the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) using GRIPS instrumentation (GRound-based Infrared P-branch Spectrometers). Mesopause temperature values with a temporal resolution of up to 10 s are derived from the observation of nocturnal airglow emissions and permit the identification of signals within the long-period infrasound range.Spectral intensities of wave signatures with periods between 2.5 and 10 min are estimated applying the wavelet analysis technique to one minute mean temperature values. Selected events as well as the statistical distribution of 40 months of observation are presented and discussed with respect to resonant modes of the atmosphere. The mechanism of acoustic resonance generated by strong infrasonic sources is a potential explanation of distinct features with periods between 3 and 5 min observed in the dataset.

  9. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear Layer

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Berkman, Mert E.

    2001-01-01

    A detailed computational aeroacoustic analysis of a high-lift flow field is performed. Time-accurate Reynolds Averaged Navier-Stokes (RANS) computations simulate the free shear layer that originates from the slat cusp. Both unforced and forced cases are studied. Preliminary results show that the shear layer is a good amplifier of disturbances in the low to mid-frequency range. The Ffowcs-Williams and Hawkings equation is solved to determine the acoustic field using the unsteady flow data from the RANS calculations. The noise radiated from the excited shear layer has a spectral shape qualitatively similar to that obtained from measurements in a corresponding experimental study of the high-lift system.

  10. Analysis Techniques of Acoustic Emission Data for Damage Assessment of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Garilli, G.; Proverbio, E.; Marino, A.; de Domenico, D.; Termini, D.; Teramo, A.

    2010-12-01

    The aim of this work is the arrangement, through Acoustics Emission (AE) techniques, of a procedure aimed at early diagnosis of building diseases with the assessment of the causes that have produced a crack in a given structural element, in order to plan suitable structural adjustment works. To this end, bending tests were performed, divided into different cycles of increasing load on a concrete beam, to assess the damage level and response in relation to the stress change. Through the proposed procedure and different indicators of the damage level of material, such as b, Ib and Z-value, it was possible to identify in the study sample areas where cracks were detected, assessing the size, evolution process typology of microcraks. The recorded parameters of AE (Counts, Amplitude) are well related to the damage extent and applied load, providing a significant validation of the reliability analysis procedures used for monitoring and early detection of building diseases.

  11. Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission.

    PubMed

    Kovač, Jaka; Legat, Andraž; Zajec, Bojan; Kosec, Tadeja; Govekar, Edvard

    2015-09-01

    In the paper the results of the acoustic emission (AE) based detection and characterization of stress-corrosion cracking (SCC) in stainless steel are presented. As supportive methods for AE interpretation, electrochemical noise, specimen elongation measurements, and digital imaging of the specimen surface were used. Based on the defined qualitative and quantitative time and power spectra characteristics of the AE bursts, a manual and an automatic procedure for the detection of crack related AE bursts were introduced. The results of the analysis of the crack related AE bursts indicate that the AE method is capable of detecting large scale cracks, where, apart from intergranular crack propagation, also some small ductile fractures occur. The sizes of the corresponding ductile fracture areas can be estimated based on a relative comparison of the energies of the detected AE bursts. It has also been shown that AE burst time and power spectra features can be successfully used for the automatic detection of SCC.

  12. Increase in voice level and speaker comfort in lecture rooms.

    PubMed

    Brunskog, Jonas; Gade, Anders Christian; Bellester, Gaspar Payá; Calbo, Lilian Reig

    2009-04-01

    Teachers often suffer from health problems related to their voice. These problems are related to their working environment, including the acoustics of the lecture rooms. However, there is a lack of studies linking the room acoustic parameters to the voice produced by the speaker. In this pilot study, the main goals are to investigate whether objectively measurable parameters of the rooms can be related to an increase in the voice sound power produced by speakers and to the speakers' subjective judgments about the rooms. In six different rooms with different sizes, reverberation times, and other physical attributes, the sound power level produced by six speakers was measured. Objective room acoustic parameters were measured in the same rooms, including reverberation time and room gain, and questionnaires were handed out to people who had experience talking in the rooms. It is found that in different rooms significant changes in the sound power produced by the speaker can be found. It is also found that these changes mainly have to do with the size of the room and to the gain produced by the room. To describe this quality, a new room acoustic quantity called "room gain" is proposed.

  13. Theoretical and experimental dynamic analysis aimed at the improvement of an acoustic method for fresco detachment diagnosis

    NASA Astrophysics Data System (ADS)

    Del Vescovo, Dionisio; Fregolent, Annalisa

    2009-10-01

    An acoustic non-invasive method for the diagnosis of detachment in frescos was previously proposed by the authors. This method is based on the indirect evaluation of the vibrations due to detachments, by means of a surface inspection. In this paper the relations between the dynamics of the structure to be inspected and the operational principles of the acoustic method of diagnosis are presented. The dynamic analysis is carried out using experimental investigations and analytical and numerical models. It shows that the quality of the diagnosis depends on the capability of the acoustic device to excite the structural resonances related to the detachments. These results are useful for future improvements, in particular to enhance the sensitivity of the proposed method.

  14. Testing of containers made of glass-fiber reinforced plastic with the aid of acoustic emission analysis

    NASA Technical Reports Server (NTRS)

    Wolitz, K.; Brockmann, W.; Fischer, T.

    1979-01-01

    Acoustic emission analysis as a quasi-nondestructive test method makes it possible to differentiate clearly, in judging the total behavior of fiber-reinforced plastic composites, between critical failure modes (in the case of unidirectional composites fiber fractures) and non-critical failure modes (delamination processes or matrix fractures). A particular advantage is that, for varying pressure demands on the composites, the emitted acoustic pulses can be analyzed with regard to their amplitude distribution. In addition, definite indications as to how the damages occurred can be obtained from the time curves of the emitted acoustic pulses as well as from the particular frequency spectrum. Distinct analogies can be drawn between the various analytical methods with respect to whether the failure modes can be classified as critical or non-critical.

  15. Prospective clinical study on long-term swallowing function and voice quality in advanced head and neck cancer patients treated with concurrent chemoradiotherapy and preventive swallowing exercises.

    PubMed

    Kraaijenga, Sophie A C; van der Molen, Lisette; Jacobi, Irene; Hamming-Vrieze, Olga; Hilgers, Frans J M; van den Brekel, Michiel W M

    2015-11-01

    Concurrent chemoradiotherapy (CCRT) for advanced head and neck cancer (HNC) is associated with substantial early and late side effects, most notably regarding swallowing function, but also regarding voice quality and quality of life (QoL). Despite increased awareness/knowledge on acute dysphagia in HNC survivors, long-term (i.e., beyond 5 years) prospectively collected data on objective and subjective treatment-induced functional outcomes (and their impact on QoL) still are scarce. The objective of this study was the assessment of long-term CCRT-induced results on swallowing function and voice quality in advanced HNC patients. The study was conducted as a randomized controlled trial on preventive swallowing rehabilitation (2006-2008) in a tertiary comprehensive HNC center with twenty-two disease-free and evaluable HNC patients as participants. Multidimensional assessment of functional sequels was performed with videofluoroscopy, mouth opening measurements, Functional Oral Intake Scale, acoustic voice parameters, and (study specific, SWAL-QoL, and VHI) questionnaires. Outcome measures at 6 years post-treatment were compared with results at baseline and at 2 years post-treatment. At a mean follow-up of 6.1 years most initial tumor-, and treatment-related problems remained similarly low to those observed after 2 years follow-up, except increased xerostomia (68%) and increased (mild) pain (32%). Acoustic voice analysis showed less voicedness, increased fundamental frequency, and more vocal effort for the tumors located below the hyoid bone (n = 12), without recovery to baseline values. Patients' subjective vocal function (VHI score) was good. Functional swallowing and voice problems at 6 years post-treatment are minimal in this patient cohort, originating from preventive and continued post-treatment rehabilitation programs.

  16. Dynamic Analysis of a Building Under Rocket Engine Plume Acoustic Load

    NASA Technical Reports Server (NTRS)

    Qian, Z.; VanDyke, D.; Wright, S.; Redmond, M.

    2001-01-01

    Studies have been performed to develop finite-element modeling and simulation techniques to predict the dynamic structural response of Building 4010 to the acoustic load from the plume of high-thrust rocket motors. The building is the Test Control Center and general office space for the E-complex at Stennis Space Center. It is a large single span; light-structured building located approximately 1,000 feet from the E-1 test stand. A three-dimensional shell/beam combined model of the building was built using Pro/Engineer platform and imported into Pro/Mechanica for analysis. An Equivalent Shell technique was developed to simplify the highly complex building structure so that the calculation is more efficient and accurate. A deterministic approach was used for the dynamic analysis. A pre-stressed modal analysis was performed to simulate the weight stiffening of the structure, through which about 200 modes ranging from 0 to 35 Hz were identified. In an initial dynamic frequency analysis, the maximum response over the model was found. Then the complete 3-D distributions of the displacement, as well as the stresses, were calculated through a final frequency analysis. The results were compared to a strain gage and accelerometer recordings from rocket engine tests and showed reasonable agreement.

  17. Voice synthesis using the three-dimensional digital waveguide mesh

    NASA Astrophysics Data System (ADS)

    Speed, Matthew DA

    The acoustic response of the vocal tract is fundamental to our interpretation of voice production. As an acoustic filter, it shapes the spectral envelope of vocal fold vibration towards resonant modes, or formants, whose behaviours form the most basic building blocks of phonetics. Physical models of the voice exploit this effect by modelling the nature of wave propagation in abstracted cylindrical constructs. Whilst effective, the accuracy of such approaches is limited due to their limited geometrical analogue. Developments in numerical acoustics modelling meanwhile have seen the formalisation of higher dimensionality configurations of the same technologies, allowing a much closer geometrical representation of an acoustic field. The major focus of this thesis is the application of such a technique to the vocal tract, and comparison of its performance with lower dimensionality approaches. To afford the development of such models, a body of data is collected from Magnetic Resonance Imaging for a range of subjects, and procedures are developed for the decomposition of this imaging into suitable, efficient data structures for simulation. The simulation technique is exhaustively validated using a combination of bespoke measurement/inversion techniques and analytical determination of lower frequency behaviours. Finally, voice synthesis based on each numerical model is compared with acoustic recordings of the subjects involved and with equivalent simulations from lower dimensionality methods. It is found that application of a higher dimensionality method typically yields a more accurate frequency-domain representation of the voice, although in some cases lower dimensionality equivalents are seen to perform better at low frequencies..

  18. Voice Recognition Software Accuracy with Second Language Speakers of English.

    ERIC Educational Resources Information Center

    Coniam, D.

    1999-01-01

    Explores the potential of the use of voice-recognition technology with second-language speakers of English. Involves the analysis of the output produced by a small group of very competent second-language subjects reading a text into the voice recognition software Dragon Systems "Dragon NaturallySpeaking." (Author/VWL)

  19. Listening to More Voices: Why Being Heard Matters

    ERIC Educational Resources Information Center

    Elisha-Primo, Iris; Sandler, Simone; Goldfrad, Keren

    2015-01-01

    This article examines various voices in a triangulated needs analysis project aimed at reevaluating the curriculum of a graduate level EAP program. Previous work (Elisha-Primo, et al., 2010) presented students' voices; this article focuses on department chairpersons and graduate advisors, and graduate EFL instructors with respect to the perceived…

  20. Prosody and Voice Characteristics of Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Lenden, Jessica M.; Flipsen, Peter, Jr.

    2007-01-01

    This descriptive, longitudinal study involved the analysis of the prosody and voice characteristics of conversational speech produced by six young children with severe to profound hearing impairments who had been fitted with cochlear implants. A total of 40 samples were analyzed using the Prosody-Voice Screening Profile (PVSP; Shriberg, L. D.,…

  1. Girls, Computers, and "Becoming": "The Pink Voice" Writing Project

    ERIC Educational Resources Information Center

    Twomey, Sarah Jane

    2011-01-01

    Through a feminist content analysis of young women's writing and reflections, this study gives evidence of how a school-based new literacy project shared knowledge in a public voice about the irreducible and complex world of "becoming" a girl. This project, called "The Pink Voice," was conducted in a large urban centre on the West Coast of Canada.…

  2. Assimilation of Voices in Psychotherapy: The Case of Jan.

    ERIC Educational Resources Information Center

    Honos-Webb, Lara; Surko, Michael; Stiles, William B.; Greenberg, Leslie S.

    1999-01-01

    Presents a marker-based method for tracking the assimilation of a previously outcast voice into the self, conceived as a community of voices. Using a qualitative assimilation analysis of a sample case, tracks two major themes, excerpts 43 passages, and rates each passage on the Assimilation of Problematic Experiences Scale (APES). APES ratings…

  3. Assessment of voice coders for ATC/pilot voice communications via satellite digital communication channels

    NASA Astrophysics Data System (ADS)

    Troll, N. L.

    1989-03-01

    An Air Traffic Control (ATC) simulation testbench constructed for the purpose of assessing the use of voice coding equipment (vocoders) for relaying voice communications between air traffic controllers and pilots via satellite digital communication channels is described. The development of the testbench and the analysis procedures is described. Several vocoders employing different coding algorithms which have been proposed for use over satellite data channels are assessed. Within the limitations imposed by the simulation, the assessment suggests that voice coded speech at 8 to 9.6 k bit/sec would be acceptable for some ATC tasks. The assessment results were also used to rank the vocoders for acceptability to support ATC voice communications under various bit error rates over the digital communication channel.

  4. Student Voice Use and Vocal Health during an All-State Chorus Event

    ERIC Educational Resources Information Center

    Daugherty, James F.; Manternach, Jeremy N.; Price, Kathy K.

    2011-01-01

    This field-based case study documented students' (N = 256) voice use and voice health perceptions during a 3-day all-state high school chorus event through daily surveys, phonation duration data, analysis of rehearsal voice use behaviors, and field notes. Among the primary results are the following: (a) First and final day survey comparisons…

  5. Improving Accuracy in Detecting Acoustic Onsets

    ERIC Educational Resources Information Center

    Duyck, Wouter; Anseel, Frederik; Szmalec, Arnaud; Mestdagh, Pascal; Tavernier, Antoine; Hartsuiker, Robert J.

    2008-01-01

    In current cognitive psychology, naming latencies are commonly measured by electronic voice keys that detect when sound exceeds a certain amplitude threshold. However, recent research (e.g., K. Rastle & M. H. Davis, 2002) has shown that these devices are particularly inaccurate in precisely detecting acoustic onsets. In this article, the authors…

  6. Objective and subjective evaluation of the acoustic comfort in classrooms.

    PubMed

    Zannin, Paulo Henrique Trombetta; Marcon, Carolina Reich

    2007-09-01

    The acoustic comfort of classrooms in a Brazilian public school has been evaluated through interviews with 62 teachers and 464 pupils, measurements of background noise, reverberation time, and sound insulation. Acoustic measurements have revealed the poor acoustic quality of the classrooms. Results have shown that teachers and pupils consider the noise generated and the voice of the teacher in neighboring classrooms as the main sources of annoyance inside the classroom. Acoustic simulations resulted in the suggestion of placement of perforated plywood on the ceiling, for reduction in reverberation time and increase in the acoustic comfort of the classrooms. PMID:17202022

  7. Objective and subjective evaluation of the acoustic comfort in classrooms.

    PubMed

    Zannin, Paulo Henrique Trombetta; Marcon, Carolina Reich

    2007-09-01

    The acoustic comfort of classrooms in a Brazilian public school has been evaluated through interviews with 62 teachers and 464 pupils, measurements of background noise, reverberation time, and sound insulation. Acoustic measurements have revealed the poor acoustic quality of the classrooms. Results have shown that teachers and pupils consider the noise generated and the voice of the teacher in neighboring classrooms as the main sources of annoyance inside the classroom. Acoustic simulations resulted in the suggestion of placement of perforated plywood on the ceiling, for reduction in reverberation time and increase in the acoustic comfort of the classrooms.

  8. Assessing Linearity in the Loudness Envelope of the Messa di Voce Singing Exercise Through Acoustic Signal Analysis.

    PubMed

    Yadav, Manuj; Cabrera, Densil; Kenny, Dianna T

    2015-09-01

    Messa di voce (MDV) is a singing exercise that involves sustaining a single pitch with a linear change in loudness from silence to maximum intensity (the crescendo part) and back to silence again (the decrescendo part), with time symmetry between the two parts. Previous studies have used the sound pressure level (SPL, in decibels) of a singer's voice to measure loudness, so as to assess the linearity of each part-an approach that has limitations due to loudness and SPL not being linearly related. This article studies the loudness envelope shapes of MDVs, comparing the SPL approach with approaches that are more closely related to human loudness perception. The MDVs were performed by a cohort of tertiary singing students, recorded six times (once per semester) over a period of 3 years. The loudness envelopes were derived for a typical audience listening position, and for listening to one's own singing, using three models: SPL, Stevens' power law-based model, and a computational loudness model. The effects on the envelope shape due to room acoustics (an important effect) and vibrato (minimal effect) were also considered. The results showed that the SPL model yielded a lower proportion of linear crescendi and decrescendi, compared with other models. The Stevens' power law-based model provided results similar to the more complicated computational loudness model. Longitudinally, there was no consistent trend in the shape of the MDV loudness envelope for the cohort although there were some individual singers who exhibited improvements in linearity.

  9. Assessing Linearity in the Loudness Envelope of the Messa di Voce Singing Exercise Through Acoustic Signal Analysis.

    PubMed

    Yadav, Manuj; Cabrera, Densil; Kenny, Dianna T

    2015-09-01

    Messa di voce (MDV) is a singing exercise that involves sustaining a single pitch with a linear change in loudness from silence to maximum intensity (the crescendo part) and back to silence again (the decrescendo part), with time symmetry between the two parts. Previous studies have used the sound pressure level (SPL, in decibels) of a singer's voice to measure loudness, so as to assess the linearity of each part-an approach that has limitations due to loudness and SPL not being linearly related. This article studies the loudness envelope shapes of MDVs, comparing the SPL approach with approaches that are more closely related to human loudness perception. The MDVs were performed by a cohort of tertiary singing students, recorded six times (once per semester) over a period of 3 years. The loudness envelopes were derived for a typical audience listening position, and for listening to one's own singing, using three models: SPL, Stevens' power law-based model, and a computational loudness model. The effects on the envelope shape due to room acoustics (an important effect) and vibrato (minimal effect) were also considered. The results showed that the SPL model yielded a lower proportion of linear crescendi and decrescendi, compared with other models. The Stevens' power law-based model provided results similar to the more complicated computational loudness model. Longitudinally, there was no consistent trend in the shape of the MDV loudness envelope for the cohort although there were some individual singers who exhibited improvements in linearity. PMID:25892091

  10. A new acoustic portal into the odontocete ear and vibrational analysis of the tympanoperiotic complex.

    PubMed

    Cranford, Ted W; Krysl, Petr; Amundin, Mats

    2010-01-01

    Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish.

  11. A New Acoustic Portal into the Odontocete Ear and Vibrational Analysis of the Tympanoperiotic Complex

    PubMed Central

    Cranford, Ted W.; Krysl, Petr; Amundin, Mats

    2010-01-01

    Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish. PMID:20694149

  12. Acoustic emission (AE) health monitoring of diaphragm type couplings using neural network analysis

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce

    2005-05-01

    This paper presents the latest results obtained from Acoustic Emission (AE) monitoring and detection of cracks and/or damage in diaphragm couplings, which are used in some aircraft and engine drive systems. Early detection of mechanical failure in aircraft drive train components is a key safety and economical issue with both military and civil sectors of aviation. One of these components is the diaphragm-type coupling, which has been evaluated as the ideal drive coupling for many application requirements such as high speed, high torque, and non-lubrication. Its flexible axial and angular displacement capabilities have made it indispensable for aircraft drive systems. However, diaphragm-type couplings may develop cracks during their operation. The ability to monitor, detect, identify, and isolate coupling cracks on an operational aircraft system is required in order to provide sufficient advance warning to preclude catastrophic failure. It is known that metallic structures generate characteristic Acoustic Emission (AE) during crack growth/propagation cycles. This phenomenon makes AE very attractive among various monitoring techniques for fault detection in diaphragm-type couplings. However, commercially available systems capable of automatic discrimination between signals from crack growth and normal mechanical noise are not readily available. Positive classification of signals requires experienced personnel and post-test data analysis, which tend to be a time-consuming, laborious, and expensive process. With further development of automated classifiers, AE can become a fully autonomous fault detection technique requiring no human intervention after implementation. AE has the potential to be fully integrated with automated query and response mechanisms for system/process monitoring and control.

  13. The Use of Artificial Neural Networks to Estimate Speech Intelligibility from Acoustic Variables: A Preliminary Analysis.

    ERIC Educational Resources Information Center

    Metz, Dale Evan; And Others

    1992-01-01

    A preliminary scheme for estimating the speech intelligibility of hearing-impaired speakers from acoustic parameters, using a computerized artificial neural network to process mathematically the acoustic input variables, is outlined. Tests with 60 hearing-impaired speakers found the scheme to be highly accurate in identifying speakers separated by…

  14. An Analysis of Consolidation Grouting Effect of Bedrock Based on its Acoustic Velocity Increase

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Lu, Wen-bo; Zhang, Wen-ju; Yan, Peng; Zhou, Chuang-bing

    2015-05-01

    Acoustic velocity is an important parameter to evaluate the mechanical properties of fractured rock masses. Based on the in situ acoustic velocity measurement data of ~20 hydropower stations in China, we assessed the acoustic velocity increase of rock masses as a result of consolidation grouting in different geological conditions, such as fault sites, weathered areas and excavation-induced damage zones. We established an empirical relationship between the acoustic velocity of rock masses before and after consolidation grouting, and examined the correlation between acoustic velocity and deformation modulus. A case study is presented about a foundation consolidation grouting project for an intake tower of Pubugou Hydropower Station. The results show that different types of rock masses possess distinct ranges for resultant acoustic velocity increase by consolidation grouting. Under a confidence interval of 95 %, the ranges of the increasing rate of acoustic velocity in a faulted zone, weathered zone, and excavation-induced damage zone are observed to be 12.7-43.1, 12.3-31.2, and 6.9-14.5 %, respectively. The acoustic velocity before grouting and its increasing rate can be used to predict the effectiveness of consolidation grouting.

  15. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  16. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.

    PubMed

    Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre

    2012-01-01

    The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer.

  17. When the face fits: recognition of celebrities from matching and mismatching faces and voices.

    PubMed

    Stevenage, Sarah V; Neil, Greg J; Hamlin, Iain

    2014-01-01

    The results of two experiments are presented in which participants engaged in a face-recognition or a voice-recognition task. The stimuli were face-voice pairs in which the face and voice were co-presented and were either "matched" (same person), "related" (two highly associated people), or "mismatched" (two unrelated people). Analysis in both experiments confirmed that accuracy and confidence in face recognition was consistently high regardless of the identity of the accompanying voice. However accuracy of voice recognition was increasingly affected as the relationship between voice and accompanying face declined. Moreover, when considering self-reported confidence in voice recognition, confidence remained high for correct responses despite the proportion of these responses declining across conditions. These results converged with existing evidence indicating the vulnerability of voice recognition as a relatively weak signaller of identity, and results are discussed in the context of a person-recognition framework.

  18. When the face fits: recognition of celebrities from matching and mismatching faces and voices.

    PubMed

    Stevenage, Sarah V; Neil, Greg J; Hamlin, Iain

    2014-01-01

    The results of two experiments are presented in which participants engaged in a face-recognition or a voice-recognition task. The stimuli were face-voice pairs in which the face and voice were co-presented and were either "matched" (same person), "related" (two highly associated people), or "mismatched" (two unrelated people). Analysis in both experiments confirmed that accuracy and confidence in face recognition was consistently high regardless of the identity of the accompanying voice. However accuracy of voice recognition was increasingly affected as the relationship between voice and accompanying face declined. Moreover, when considering self-reported confidence in voice recognition, confidence remained high for correct responses despite the proportion of these responses declining across conditions. These results converged with existing evidence indicating the vulnerability of voice recognition as a relatively weak signaller of identity, and results are discussed in the context of a person-recognition framework. PMID:23531227

  19. The characterization of the vibrato in lyric and sertanejo singing styles: acoustic and perceptual auditory aspects.

    PubMed

    de Almeida Bezerra, Adriana; Cukier-Blaj, Sabrina; Duprat, André; Camargo, Zuleica; Granato, Lídio

    2009-11-01

    The vibrato is one of the embellishments most frequently used in the singing voice and it can be found in different singing styles, among those, lyric and Sertanejo (Brazilian country western-like singing style). Considering these two styles, the objective of the present study was to analyze the production of vibrato in the singing voice in the lyric and sertanejo genres from an acoustic and perceptual viewpoint. Twenty male singers-10 classical (operatic) singers and 10 sertanejo singers-reportedly in perfect laryngeal health, served as subjects for this study. Digital recording of the subjects' voices was performed. For each phonation, acoustic analysis was carried out together with comparison of overtones and vibrato rate and extension measurements. The results have shown that the mean values for vibrato rate and extent in lyric singers were 4.55-6.25 Hz and 0-54-1.66 semitone, respectively, whereas for sertanejo they were 5.0-6.56 Hz and 0.54-0.95 semitone. In the spectrogram, there was regularity in terms of frequency oscillation in the lyric genre whereas in the sertanejo style there was no regularity. PMID:19022619

  20. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic