Science.gov

Sample records for acoustic voice analysis

  1. Voice-over: perceptual and acoustic analysis of vocal features.

    PubMed

    Medrado, Reny; Ferreira, Leslie Piccolotto; Behlau, Mara

    2005-09-01

    Voice-overs are professional voice users who use their voices to market products in the electronic media. The purposes of this study were to (1) analyze voice-overed and non-overed productions of an advertising text in two groups consisting of 10 male professional voice-overs and 10 male non-voice-overs; and (2) determine specific acoustic features of voice-over productions in both groups. A naïve group of listeners were engaged for the perceptual analysis of the recorded advertising text. The voice-overed production samples from both groups were submitted for analysis of acoustic and temporal features. The following parameters were analyzed: (1) the total text length, (2) the length of the three emphatic pauses, (3) values of the mean, (4) minimum, (5) maximum fundamental frequency, and (6) the semitone range. The majority of voice-overs and non-voice-overs were correctly identified by the listeners in both productions. However voice-overs were more consistently correctly identified than non-voice-overs. The total text length was greater for voice-overs. The pause time distribution was statistically more homogeneous for the voice-overs. The acoustic analysis indicated that the voice-overs had lower values of mean, minimum, and maximum fundamental frequency and a greater range of semitones. The voice-overs carry the voice-overed production features to their non-voice-overed production. PMID:16102662

  2. Acoustic Analysis Before and After Voice Therapy for Laryngeal Pathology.

    PubMed

    Chhetri, S S; Gautam, R

    2015-01-01

    Background Voice problems caused by pathologies in vocal folds are well known. Some types of laryngeal pathologies have certain acoustic characteristics. Objective evaluation helps characterize the voice and voice problems providing supporting evidences, severity of disorders. It helps assess the response to the treatment and measures the outcomes. Objective The objective of the study is to determine the effectiveness of the voice therapy and quantify the results objectively by voice parameters. Method Study includes 61 patients who presented with different types of laryngeal pathologies. Acoustic analyses and voice assessment was done with Dr. Speech ver 4 (Tiger DRS Inc.). Acoustic parameters including fundamental frequency, jitters, shimmers, Harmonic to noise ratio (HNR), Normalized noise energy (NNE) were analyzed before and after voice therapy. Result Bilateral vocal nodules were the most common pathologies comprising 44.26%. All acoustic parameters showed a significant difference after the therapy (p<0.05) except for NNE. Dysphonia due to vocal fold polyp showed no improvement even after voice therapy (p>0.05). Conclusion Acoustic analysis provides an objective, recordable data regarding the voice parameters and its pathologies. Though, few pathology require alternative therapy rather than voice therapy, overall it has a good effect on glottic closure. As the voice therapy can improve the different indices of voice, it can be viewed as imperative part of treatment and to monitor progression. PMID:27423282

  3. Standardization of pitch range settings in voice acoustic analysis

    PubMed Central

    Vogel, Adam P.; Maruff, Paul; Snyder, Peter J.; Mundt, James C.

    2009-01-01

    Voice acoustic analysis is typically a labor intensive, time consuming process that requires the application of idiosyncratic parameters tailored to individual aspects of the speech signal. These processes limit the efficiency and utility of voice analysis in clinical practice as well as applied research and development. In the current study, we analyzed 1120 voice files using standard techniques (case by case hand analysis); taking roughly 8 weeks of personnel time complete. The obtained results were then compared to the analytic output of several automated analysis scripts that made use of pre-set pitch range parameters. The automated analysis scripts reduced processing time of the 1680 speech samples to less than 2.5 hours and produced results comparable to the hand analysis when pitch window were appropriately selected to account for known population differences (i.e., sex differences). Caution should be exercised when applying suggested settings to pathological voice populations. PMID:19363172

  4. [Acoustic analysis of the voice in singing children].

    PubMed

    Shilenkova, V V; Korotchenko, V V

    2010-01-01

    The present acoustic analysis of the voice is based on the data obtained from 54 singing children (19 boys and 25 girls). They were divided into two groups of 27 subjects each, with one including premutational-age the other mutational-age children (from 8 to 12 and from 13 to 16 years respectively). software package was used to analyse phonetograms and spectrograms of the voice and to study the speech profile. The acoustic parameters measured included voice frequency range, strength, and Jitter, maximum phonation time, and dysphonic index (DSI) depending on the age of the singing children. Premutational acoustic voice characteristics were essentially similar in boys and girls unlike mutational ones that differed dramatically, in the first place due to their substantial change in boys. The boys' voice underwent marked narrowing of the frequency range and its shift toward lower values, the jitter increased, and DSI became negative (-1.7+/-2.6). On the contrary, the voice frequency range in girls broadened and shifted toward both high and low frequencies; the girls showed only small amounts of Jitter and high DSI (2.4+/-2.2). PMID:20436424

  5. Acoustic Analysis of Voice in Dysarthria following Stroke

    ERIC Educational Resources Information Center

    Wang, Yu-Tsai; Kent, Ray D.; Kent, Jane Finley; Duffy, Joseph R.; Thomas, Jack E.

    2009-01-01

    Although perceptual studies indicate the likelihood of voice disorders in persons with stroke, there have been few objective instrumental studies of voice dysfunction in dysarthria following stroke. This study reports automatic analysis of sustained vowel phonation for 61 speakers with stroke. The results show: (1) men with stroke and healthy…

  6. Acoustic Analysis of the Tremulous Voice: Assessing the Utility of the Correlation Dimension and Perturbation Parameters

    ERIC Educational Resources Information Center

    Shao, Jun; MacCallum, Julia K.; Zhang, Yu; Sprecher, Alicia; Jiang, Jack J.

    2010-01-01

    Acoustic analysis may provide a useful means to quantitatively characterize the tremulous voice. Signals were obtained from 25 subjects with diagnoses of either Parkinson's disease or vocal polyps exhibiting vocal tremor. These were compared to signals from 24 subjects with normal voices. Signals were analyzed via correlation dimension and several…

  7. [Acoustic analysis of voice production. Production trial from a clinical perspective].

    PubMed

    Dejonckere, P H

    1986-01-01

    This article presents an overview of relevant methods for acoustic analysis of voice from a clinical point of view: Mean speaking frequency and fundamental frequency in singing; frequency range of phonation; pitch perturbations; intensity range of phonation and phonetogram; cycle-to-cycle amplitude variations; Sound spectrography (Visible Speech) and Long-Time-Average-Spectrum. PMID:3751531

  8. Acoustic Analysis of the Voiced-Voiceless Distinction in Dutch Tracheoesophageal Speech

    ERIC Educational Resources Information Center

    Jongmans, Petra; Wempe, Ton G.; van Tinteren, Harm; Hilgers, Frans J. M.; Pols, Louis C. W.; van As-Brooks, Corina J.

    2010-01-01

    Purpose: Confusions between voiced and voiceless plosives and voiced and voiceless fricatives are common in Dutch tracheoesophageal (TE) speech. This study investigates (a) which acoustic measures are found to convey a correct voicing contrast in TE speech and (b) whether different measures are found in TE speech than in normal laryngeal (NL)…

  9. Acoustical analysis of the underlying voice differences between two groups of professional singers: opera and country and western.

    PubMed

    Burns, P

    1986-05-01

    An acoustical analysis of the speaking and singing voices of two types of professional singers was conducted. The vowels /i/, /a/, and /o/ were spoken and sung ten times each by seven opera and seven country and western singers. Vowel spectra were derived by computer software techniques allowing quantitative assessment of formant structure (F1-F4), relative amplitude of resonance peaks (F1-F4), fundamental frequency, and harmonic high frequency energy. Formant analysis was the most effective parameter differentiating the two groups. Only opera singers lowered their fourth formant creating a wide-band resonance area (approximately 2,800 Hz) corresponding to the well-known "singing formant." Country and western singers revealed similar resonatory voice characteristics for both spoken and sung output. These results implicate faulty vocal technique in country and western singers as a contributory reason for vocal abuse/fatigue. PMID:3702569

  10. Mapping emotions into acoustic space: the role of voice production.

    PubMed

    Patel, Sona; Scherer, Klaus R; Björkner, Eva; Sundberg, Johan

    2011-04-01

    Research on the vocal expression of emotion has long since used a "fishing expedition" approach to find acoustic markers for emotion categories and dimensions. Although partially successful, the underlying mechanisms have not yet been elucidated. To illustrate that this research can profit from considering the underlying voice production mechanism, we specifically analyzed short affect bursts (sustained/a/vowels produced by 10 professional actors for five emotions) according to physiological variations in phonation (using acoustic parameters derived from the acoustic signal and the inverse filter estimated voice source waveform). Results show significant emotion main effects for 11 of 12 parameters. Subsequent principal components analysis revealed three components that explain acoustic variations due to emotion, including "tension," "perturbation," and "voicing frequency." These results suggest that future work may benefit from theory-guided development of parameters to assess differences in physiological voice production mechanisms in the vocal expression of different emotions. PMID:21354259

  11. Exploring the feasibility of smart phone microphone for measurement of acoustic voice parameters and voice pathology screening.

    PubMed

    Uloza, Virgilijus; Padervinskis, Evaldas; Vegiene, Aurelija; Pribuisiene, Ruta; Saferis, Viktoras; Vaiciukynas, Evaldas; Gelzinis, Adas; Verikas, Antanas

    2015-11-01

    The objective of this study is to evaluate the reliability of acoustic voice parameters obtained using smart phone (SP) microphones and investigate the utility of use of SP voice recordings for voice screening. Voice samples of sustained vowel/a/obtained from 118 subjects (34 normal and 84 pathological voices) were recorded simultaneously through two microphones: oral AKG Perception 220 microphone and SP Samsung Galaxy Note3 microphone. Acoustic voice signal data were measured for fundamental frequency, jitter and shimmer, normalized noise energy (NNE), signal to noise ratio and harmonic to noise ratio using Dr. Speech software. Discriminant analysis-based Correct Classification Rate (CCR) and Random Forest Classifier (RFC) based Equal Error Rate (EER) were used to evaluate the feasibility of acoustic voice parameters classifying normal and pathological voice classes. Lithuanian version of Glottal Function Index (LT_GFI) questionnaire was utilized for self-assessment of the severity of voice disorder. The correlations of acoustic voice parameters obtained with two types of microphones were statistically significant and strong (r = 0.73-1.0) for the entire measurements. When classifying into normal/pathological voice classes, the Oral-NNE revealed the CCR of 73.7% and the pair of SP-NNE and SP-shimmer parameters revealed CCR of 79.5%. However, fusion of the results obtained from SP voice recordings and GFI data provided the CCR of 84.60% and RFC revealed the EER of 7.9%, respectively. In conclusion, measurements of acoustic voice parameters using SP microphone were shown to be reliable in clinical settings demonstrating high CCR and low EER when distinguishing normal and pathological voice classes, and validated the suitability of the SP microphone signal for the task of automatic voice analysis and screening. PMID:26162450

  12. The Belt voice: Acoustical measurements and esthetic correlates

    NASA Astrophysics Data System (ADS)

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  13. The Acoustic Voice Quality Index: Toward Improved Treatment Outcomes Assessment in Voice Disorders

    ERIC Educational Resources Information Center

    Maryn, Youri; De Bodt, Marc; Roy, Nelson

    2010-01-01

    Voice practitioners require an objective index of dysphonia severity as a means to reliably track treatment outcomes. To ensure ecological validity however, such a measure should survey both sustained vowels and continuous speech. In an earlier study, a multivariate acoustic model referred to as the Acoustic Voice Quality Index (AVQI), consisting…

  14. Effects of microphone type on acoustic measures of voice.

    PubMed

    Parsa, V; Jamieson, D G; Pretty, B R

    2001-09-01

    Acoustic measures provide an objective means to describe pathological voices and are a routine component of the clinical voice examination. Because the voice sample is obtained using a microphone, microphone characteristics have the potential to influence the values of parameters obtained from a voice sample. This project examined how the choice of microphone affects key voice parameters and investigated how one might compensate for such microphone effects through filtering or by including additional parameters in the decision process. A database of 53 normal voice samples and 100 pathological voice samples was used in four experiments conducted in an anechoic chamber using four different microphones. One omnidirectional microphone and three cardioid microphones were used in these experiments. The original voice samples were presented to each microphone through a speaker located in an anechoic chamber, and the output of each microphone sampled to computer disk. Each microphone modified the frequency spectrum of the voice signal; this, in turn, affected the values of the voice parameters obtained. These microphone effects reduced the accuracy with which acoustic measures of voice could be used to discriminate pathological from normal voices. Discrimination performance improved when the microphone output was filtered to compensate for microphone frequency response. Performance also improved when spectral moment coefficient parameters were added to the vocal function parameters already in use. PMID:11575630

  15. Associations between voice ergonomic risk factors and acoustic features of the voice.

    PubMed

    Rantala, Leena M; Hakala, Suvi; Holmqvist, Sofia; Sala, Eeva

    2015-10-01

    The associations between voice ergonomic risk factors in 40 classrooms and the acoustic parameters of 40 schoolteachers' voices were investigated. The risk factors assessed were connected to participants' working practices, working postures, and the indoor air quality in their workplaces. The teachers recorded spontaneous speech and sustained /a/ before and after a working day. Fundamental frequency, sound pressure level, the slope of the spectrum, perturbation, and harmonic-to-noise ratio were analysed. The results showed that the more the voice ergonomic risk factors were involved, the louder the teachers' voices became. Working practices correlated most often with the acoustic parameters; associations were found especially before a working day. The results suggest that a risky voice ergonomic environment affects voice production. PMID:24007529

  16. Multidimensional voice analysis of reflux laryngitis patients.

    PubMed

    Pribuisienë, Rûta; Uloza, Virgilijus; Saferis, Viktoras

    2005-01-01

    The aim of the study was to analyze and quantify the voice characteristics of reflux laryngitis (RL) patients and to determine the most important voice tests and voice-quality parameters in the functional diagnostics of RL. The voices of 83 RL patients and 31 persons in the control group were evaluated. Vocal function was assessed using a multidimensional set of video laryngostroboscopic, perceptual, acoustic, aerodynamic and subjective measurements according to the protocol elaborated by the Committee on Phoniatrics of the European Laryngological Society. The mean values of the hoarseness visual analogue scale assessment and voice handicap index were significantly higher (P<0.05) in the group of RL patients as compared to the controls. Objective voice assessment revealed a significant increase in mean values of jitter, shimmer and normalized noise energy (NNE), along with a significant decrease in pitch range, maximum frequency, phonetogram area (S) and maximum phonation time (MPT) in RL patients, both in the male and female subgroups. According to the results of discriminant analysis, the NNE, MPT, S and intensity range were determined as an optimum set for functional diagnostics of RL. The derived function (equation) makes it possible to assign the person to the group of RL patients with an accuracy of 86.7%. The sensitivity and specificity of eight voice parameters were found to be higher than 50%. The results of the present study demonstrate a reduction of phonation capabilities and voice quality in RL patients. Multidimensional voice evaluation makes it possible to detect significant differences in mean values of perceptual, subjective and objective voice quality parameters between RL patients and controls groups. Therefore, multidimensional voice analysis is an important tool in the functional diagnostics of RL. PMID:15004705

  17. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  18. Perceptual and acoustic characteristics of voice changes in reflux laryngitis patients.

    PubMed

    Pribuisiene, Ruta; Uloza, Virgilijus; Kupcinskas, Limas; Jonaitis, Laimas

    2006-03-01

    The aim of the study was to outline the multidimensional perceptual, subjective, and instrumental acoustic voice changes in the group of reflux laryngitis (RL) patients. Data of multidimensional voice assessment of 108 RL patients and 90 healthy persons of the control group were subjected to comparative analysis. A slight hoarseness according to the GRB (G-grade, R- rough, B-breathy) scale was prevailing in the RL patients group. Statistically significant difference (P < 0.001) between RL patients group and the control group was found of all voice parameters measured, with the patients having worse results--increased mean jitter, shimmer, normalized noise energy, voice handicap index (VHI), and decreased parameters of phonetogram. The results of the study demonstrated that multidimensional voice assessment documented deteriorated voice quality and restricted phonation capabilities in the tested group of RL patients. PMID:15925484

  19. Acoustic and phonatory characterization of the Fado voice.

    PubMed

    Mendes, Ana P; Rodrigues, Aira F; Guerreiro, David Michael

    2013-09-01

    Fado is a Portuguese musical genre, instrumentally accompanied by a Portuguese and an acoustic guitar. Fado singers' voice is perceptually characterized by a low pitch, hoarse, and strained voice. The present research study sketches the acoustic and phonatory profile of the Fado singers' voice. Fifteen Fado singers produced spoken and sung phonatory tasks. For the spoken voice measures, the maximum phonation time and s/z ratio of Fado singers were near the inefficient physiological threshold. Fundamental frequency was higher than that found in nonsingers and lower than that found in Western Classical singers. Jitter and shimmer mean values were higher compared with nonsingers. Harmonic-to-noise ratio (HNR) was similar to the mean values for nonsingers. For the sung voice, jitter was higher compared with Country, Musical Theater, Soul, Jazz, and Western Classical singers and lower than Pop singers. Shimmer mean values were lower than Country, Musical Theater, Pop, Soul, and Jazz singers and higher than Western Classical singers. HNR was similar for Western Classical singers. Maximum phonational frequency range of Fado singers indicated that male and female subjects had a lower range compared with Western Classical singers. Additionally, Fado singers produced vibrato, but singer's formant was rarely produced. These sung voice characteristics could be related with life habits, less/lack of singing training, or could be just a Fado voice characteristic. PMID:23591453

  20. The Aging Female Voice: Acoustic and Respiratory Data

    ERIC Educational Resources Information Center

    Awan, Shaheen N.

    2006-01-01

    The purpose of this study was to extend understanding of the effects of aging on the female voice by obtaining measures of both acoustic and respiratory-based performance in groups of 18-30, 40-49, 50-59, 60-69, and 70-79-year-old subjects. Acoustic measures of speaking fundamental frequency (SFF), pitch sigma, jitter, shimmer, and signal-to-noise…

  1. Fatigue estimation using voice analysis.

    PubMed

    Greeley, Harold P; Berg, Joel; Friets, Eric; Wilson, John; Greenough, Glen; Picone, Joseph; Whitmore, Jeffrey; Nesthus, Thomas

    2007-08-01

    In the present article, we present a means to remotely and transparently estimate an individual's level of fatigue by quantifying changes in his or her voice characteristics. Using Voice analysis to estimate fatigue is unique from established cognitive measures in a number of ways: (1) speaking is a natural activity requiring no initial training or learning curve, (2) voice recording is a unobtrusive operation allowing the speakers to go about their normal work activities, (3) using telecommunication infrastructure (radio, telephone, etc.) a diffuse set of remote populations can be monitored at a central location, and (4) often, previously recorded voice data are available for post hoc analysis. By quantifying changes in the mathematical coefficients that describe the human speech production process, we were able to demonstrate that for speech sounds requiring a large average air flow, a speaker's voice changes in synchrony with both direct measures of fatigue and with changes predicted by the length of time awake. PMID:17958175

  2. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations

    PubMed Central

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.

    2015-01-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise. PMID:26723357

  3. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations.

    PubMed

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J

    2015-12-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise. PMID:26723357

  4. Birth Control Pills and Nonprofessional Voice: Acoustic Analyses

    ERIC Educational Resources Information Center

    Amir, Ofer; Biron-Shental, Tal; Shabtai, Esther

    2006-01-01

    Purpose: Two studies are presented here. Study 1 was aimed at evaluating whether the voice characteristics of women who use birth control pills that contain different progestins differ from the voice characteristics of a control group. Study 2 presents a meta-analysis that combined the results of Study 1 with those from 3 recent studies that…

  5. Voice stress analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Haddad, Darren M.; Ratley, Roy J.

    2001-02-01

    Voice Stress Analysis (VSA) systems are marketed as computer-based systems capable of measuring stress in a person's voice as an indicator of deception. They are advertised as being less expensive, easier to use, less invasive in use, and less constrained in their operation then polygraph technology. The National Institute of Justice have asked the Air Force Research Laboratory for assistance in evaluating voice stress analysis technology. Law enforcement officials have also been asking questions about this technology. If VSA technology proves to be effective, its value for military and law enforcement application is tremendous.

  6. Acoustic-Perceptual Correlates of Voice Quality in Elderly Men and Women

    ERIC Educational Resources Information Center

    Gorham-Rowan, Mary M.; Laures-Gore, Jacqueline

    2006-01-01

    Common perceptual characteristics of the elderly voice include hoarseness, breathiness, instability, and a change in the pitch of the voice. Although research is available concerning changes in the elderly voice, little research has been completed to examine the relationship between the perception of voice quality and acoustic measures. The…

  7. Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology

    PubMed Central

    Mundt, James C.; Snyder, Peter J.; Cannizzaro, Michael S.; Chappie, Kara; Geralts, Dayna S.

    2011-01-01

    Efforts to develop more effective depression treatments are limited by assessment methods that rely on patient-reported or clinician judgments of symptom severity. Depression also affects speech. Research suggests several objective voice acoustic measures affected by depression can be obtained reliably over the telephone. Thirty-five physician-referred patients beginning treatment for depression were assessed weekly, using standard depression severity measures, during a six-week observational study. Speech samples were also obtained over the telephone each week using an IVR system to automate data collection. Several voice acoustic measures correlated significantly with depression severity. Patients responding to treatment had significantly greater pitch variability, paused less while speaking, and spoke faster than at baseline. Patients not responding to treatment did not show similar changes. Telephone standardization for obtaining voice data was identified as a critical factor influencing the reliability and quality of speech data. This study replicates and extends previous research with a larger sample of patients assessing clinical change associated with treatment. The feasibility of obtaining voice acoustic measures reflecting depression severity and response to treatment using computer-automated telephone data collection techniques is also established. Insight and guidance for future research needs are also identified. PMID:21253440

  8. Correlation of instrumental voice evaluation with perceptual voice analysis using a modified visual analog scale.

    PubMed

    Yu, Ping; Revis, Joana; Wuyts, Floris L; Zanaret, Michel; Giovanni, Antoine

    2002-01-01

    Various rating scales have been used for perceptual voice analysis including ordinal (ORD) scales and visual analog (VA) scales. The purpose of this study was to determine the most suitable scale for studies using perceptual voice analysis as a gold standard for validation of objective analysis protocols. The study was carried out on 74 female voice samples from 68 dysphonic patients and 6 controls. A panel of 4 raters with experience in perceptual analysis was asked to score voices according to the G component (overall quality) of the GRBAS system. Two rating scales were used. The first was a conventional 4-point ORD scale. The second was a modified VA (mVA) scale obtained by transforming the VA scale into an ORD scale using a weighted conversion scheme. Objective voice evaluation was performed using the EVA workstation. Objective measurements included acoustic, aerodynamic, and physiologic parameters as well as parameters based on nonlinear mathematics (e.g., Lyapunov coefficient). Instrumental measurements were compared with results of perceptual analysis using either the conventional ORD scale or mVA scale. Results demonstrate that correlation between perceptual and objective voice judgments is better using a mVA scale than a conventional ORD scale (concordance, 88 vs. 64%). Data also indicate that the mVA scale described herein improves the correlation between objective and perceptual voice analysis. PMID:12417797

  9. Outcome of resonant voice therapy for female teachers with voice disorders: perceptual, physiological, acoustic, aerodynamic, and functional measurements.

    PubMed

    Chen, Sheng Hwa; Hsiao, Tzu-Yu; Hsiao, Li-Chun; Chung, Yu-Mei; Chiang, Shu-Chiung

    2007-07-01

    Teachers have a high percentage of voice problems. For voice disordered teachers, resonant voice therapy is hypothesized to reduce voice problems. No research has been done on the physiological, acoustic, and aerodynamic effects of resonant voice therapy for school teachers. The purpose of this study is to investigate resonant voice therapy outcome from perceptual, physiological, acoustic, aerodynamic, and functional aspects for female teachers with voice disorders. A prospective study was designed for this research. The research subjects were 24 female teachers in Taipei. All subjects received resonant voice therapy in groups of 4 subjects, 90 minutes per session, and 1 session per week for 8 weeks. The outcome of resonant voice therapy was assessed from auditory perceptual judgment, videostroboscopic examination, acoustic measurements, aerodynamic measurements, and functional measurements before and after therapy. After therapy the severity of roughness, strain, monotone, resonance, hard attack, and glottal fry in auditory perceptual judgments, the severity of vocal fold pathology, mucosal wave, amplitude, and vocal fold closure in videostroboscopic examinations, phonation threshold pressure, and the score of physical scale in the Voice Handicap Index were significantly reduced. The speaking Fo, maximum range of speaking Fo, and maximum range of speaking intensity were significantly increased after therapy. No significant change was found in perturbation and breathiness measurements after therapy. Resonant voice therapy is effective for school teachers and is suggested as one of the therapy approaches in clinics for this population. PMID:16581227

  10. Fluid-acoustic interactions and their impact on pathological voiced speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Zanartu, Matias; Peterson, Sean D.; Plesniak, Michael W.

    2011-11-01

    Voiced speech is produced by vibration of the vocal fold structures. Vocal fold dynamics arise from aerodynamic pressure loadings, tissue properties, and acoustic modulation of the driving pressures. Recent speech science advancements have produced a physiologically-realistic fluid flow solver (BLEAP) capable of prescribing asymmetric intraglottal flow attachment that can be easily assimilated into reduced order models of speech. The BLEAP flow solver is extended to incorporate acoustic loading and sound propagation in the vocal tract by implementing a wave reflection analog approach for sound propagation based on the governing BLEAP equations. This enhanced physiological description of the physics of voiced speech is implemented into a two-mass model of speech. The impact of fluid-acoustic interactions on vocal fold dynamics is elucidated for both normal and pathological speech through linear and nonlinear analysis techniques. Supported by NSF Grant CBET-1036280.

  11. Automatic phonetogram recording supplemented with acoustical voice-quality parameters.

    PubMed

    Pabon, J P; Plomp, R

    1988-12-01

    A new method for automatic voice-quality registration is presented. The method is based on a technique called phonetography, which is the registration of the dynamic range of a voice as a function of fundamental frequency. In the new phonetogram-recording method fundamental frequency (Fo) and sound-pressure level (SPL) are automatically measured and represented in an XY-diagram. Three additional acoustical voice-quality parameters are measured simultaneously with Fo and SPL: (a) jitter in the Fo as a measure for roughness, (b) the SPL difference between the 0-1.5 kHz and the 1.5-5 kHz bands as a measure for sharpness, and (c) the vocal-noise level above 5 kHz as a measure for breathiness. With this method, the voice-quality parameter values, which may change substantially as a function of Fo and SPL, are pinned to a reference position in the patient's total vocal range. Seen as a reference tool, the phonetogram opens the possibility for a more meaningful comparison of voice-quality data. Some examples, demonstrating the dependence of the chosen quality parameters on Fo and SPL are given. PMID:3230899

  12. Acoustic sensors in the helmet detect voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-09-01

    The Army Research Laboratory has developed body-contacting acoustic sensors that detect diverse physiological sounds such as heartbeats and breaths, high quality speech, and activity. These sensors use an acoustic impedance-matching gel contained in a soft, compliant pad to enhance the body borne sounds, yet significantly repel airborne noises due to an acoustic impedance mismatch. The signals from such a sensor can be used as a microphone with embedded physiology, or a dedicated digital signal processor can process packetized data to separate physiological parameters from voice, and log parameter trends for performance surveillance. Acoustic sensors were placed inside soldier helmets to monitor voice, physiology, activity, and situational awareness clues such as bullet shockwaves from sniper activity and explosions. The sensors were also incorporated into firefighter breathing masks, neck and wrist straps, and other protective equipment. Heart rate, breath rate, blood pressure, voice and activity can be derived from these sensors (reports at www.arl.army.mil/acoustics). Having numerous sensors at various locations provides a means for array processing to reduce motion artifacts, calculate pulse transit time for passive blood pressure measurement, and the origin of blunt/penetrating traumas such as ballistic wounding. These types of sensors give us the ability to monitor soldiers and civilian emergency first-responders in demanding environments, and provide vital signs information to assess their health status and how that person is interacting with the environment and mission at hand. The Objective Force Warrior, Scorpion, Land Warrior, Warrior Medic, and other military and civilian programs can potentially benefit from these sensors.

  13. Comparison of Acoustic and Stroboscopic Findings and Voice Handicap Index between Allergic Rhinitis Patients and Controls

    PubMed Central

    Koç, Eltaf Ayça Özbal; Koç, Bülent; Erbek, Selim

    2014-01-01

    Background: In our experience Allergic Rhinitis (AR) patients suffer from voice problems more than health subjects. Aims: To investigate the acoustic analysis of voice, stroscopic findings of larynx and Voice Handicap Index scores in allergic rhinitis patients compared with healthy controls. Study Design: Case-control study. Methods: Thirty adult patients diagnosed with perennial allergic rhinitis were compared with 30 age- and sex-matched healthy controls without allergy. All assessments were performed in the speech physiology laboratory and the testing sequence was as follows: 1. Voice Handicap Index (VHI) questionnaire, 2. Laryngovideostroboscopy, 3. Acoustic analyses. Results: No difference was observed between the allergic rhinitis and control groups regarding mean Maximum Phonation Time (MPT) values, Fo values, and stroboscopic assessment (p>0.05). On the other hand, mean VHI score (p=0.001) and s/z ratio (p=0.011) were significantly higher in the allergic rhinitis group than in controls. Conclusion: Our findings suggest that the presence of allergies could have effects on laryngeal dysfunction and voice-related quality of life. PMID:25667789

  14. Physiological and acoustic characteristics of the male music theatre voice.

    PubMed

    Bourne, Tracy; Garnier, Maëva; Samson, Adeline

    2016-07-01

    Six male music theatre singers were recorded in three different voice qualities: legit and two types of belt ("chesty" and "twangy"), on two vowels ([e] and [ɔ]), at four increasing pitches in the upper limit of each singer's belt range (∼250-440 Hz). The audio signal, the electroglottographic (EGG) signal, and the vocal tract impedance were all measured simultaneously. Voice samples were analyzed and then evaluated perceptually by 16 expert listeners. The three qualities were produced with significant differences at the physiological, acoustical, and perceptual levels: Singers produced belt qualities with a higher EGG contact quotient (CQEGG) and greater contacting speed quotient (Qcs), greater sound pressure level (SPL), and energy above 1 kHz (alpha ratio), and with higher frequencies of the first two vocal tract resonances (fR1, fR2), especially in the upper pitch range when compared to legit. Singers produced the chesty belt quality with higher CQEGG, Qcs, and SPL values and lower alpha ratios over the whole belt range, and with higher fR1 at the higher pitch range when compared to twangy belt. Consistent tuning of fR1 to the second voice harmonic (2f0) was observed in all three qualities and for both vowels. Expert listeners tended to identify all qualities based on the same acoustical and physiological variations as those observed in the singers' intended qualities. PMID:27475183

  15. Acoustic cues for the recognition of self-voice and other-voice

    PubMed Central

    Xu, Mingdi; Homae, Fumitaka; Hashimoto, Ryu-ichiro; Hagiwara, Hiroko

    2013-01-01

    Self-recognition, being indispensable for successful social communication, has become a major focus in current social neuroscience. The physical aspects of the self are most typically manifested in the face and voice. Compared with the wealth of studies on self-face recognition, self-voice recognition (SVR) has not gained much attention. Converging evidence has suggested that the fundamental frequency (F0) and formant structures serve as the key acoustic cues for other-voice recognition (OVR). However, little is known about which, and how, acoustic cues are utilized for SVR as opposed to OVR. To address this question, we independently manipulated the F0 and formant information of recorded voices and investigated their contributions to SVR and OVR. Japanese participants were presented with recorded vocal stimuli and were asked to identify the speaker—either themselves or one of their peers. Six groups of 5 peers of the same sex participated in the study. Under conditions where the formant information was fully preserved and where only the frequencies lower than the third formant (F3) were retained, accuracies of SVR deteriorated significantly with the modulation of the F0, and the results were comparable for OVR. By contrast, under a condition where only the frequencies higher than F3 were retained, the accuracy of SVR was significantly higher than that of OVR throughout the range of F0 modulations, and the F0 scarcely affected the accuracies of SVR and OVR. Our results indicate that while both F0 and formant information are involved in SVR, as well as in OVR, the advantage of SVR is manifested only when major formant information for speech intelligibility is absent. These findings imply the robustness of self-voice representation, possibly by virtue of auditory familiarity and other factors such as its association with motor/articulatory representation. PMID:24133475

  16. Voices Carry: A Content Analysis of "Voices from the Middle"

    ERIC Educational Resources Information Center

    Wilson, Melissa B.; Blady, Shannon; Kumar, Tracey; Moorman, Honor; Prior, Lori; Willson, Angeli

    2011-01-01

    As educators who have been strongly influenced by this journal, the authors decided to do a content analysis of the "voices" from "Voices from the Middle," from its inception to today. They listened closely to who is talking, what the authors are (and are not) discussing, the educational contexts of these conversations, and how the dialogue has…

  17. Copying hierarchical leaders’ voices? Acoustic plasticity in female Japanese macaques

    PubMed Central

    Lemasson, Alban; Jubin, Ronan; Masataka, Nobuo; Arlet, Malgorzata

    2016-01-01

    It has been historically claimed that call production in nonhuman primates has been shaped by genetic factors, although, recently socially-guided plasticity and cortical control during vocal exchanges have been observed. In humans, context-dependent vocal convergence with relatives, friends or leaders’ voices can be found. Comparative studies with monkeys and apes presenting tolerant social organizations have demonstrated that affiliative bonding is the determining factor of convergence. We tested whether vocal copying could also exist in a primate species with a despotic social organization. We compared the degree of inter-individual similarity of contact calls in two groups of Japanese macaques as a function of age, dominance rank, maternal kin and affiliative bonds. We found a positive relationship between dyadic acoustic similarity and female rank differences. Since most call exchanges were initiated by dominant females and since this species is known for the ability of responders to acoustically match initiators’ calls, we conclude that high social status may motivate vocal convergence in this despotic society. Accordingly, intra-individual comparisons showed that isolated calls were more stereotyped than exchanged calls, and that dominants had more stereotyped voices than subordinates. This opens new lines of research with regard to social motivation guiding acoustic plasticity in primates. PMID:26880673

  18. Perceptual identification and acoustic measures of the resonant voice based on "Lessac's Y-Buzz"--a preliminary study with actors.

    PubMed

    Barrichelo, Viviane M O; Behlau, Mara

    2007-01-01

    This study aimed to verify whether the resonant voice based on Lessac's Y-Buzz can be perceived by listeners as resonant and different from habitual voice and to compare them to determine whether this sound exploration improves the vocal production. Nine newly graduated actors, six men and three women without voice complaints, were the subjects. They received a session of Lessac's Y-Buzz training from the primary investigator. Before training, they were asked to sustain the vowel /i/ at comfortable frequency and habitual loudness. After training, they were requested to sustain the Y-Buzz they had learned at a comfortable frequency and habitual loudness. Three speech-language pathologists (SLP) trained in voice developed an auditory-perceptive analysis. The pre- and posttraining voice samples were randomly spliced together, edited, and presented in pairs to perceptual judges who were asked to identify the most resonant of the pair. The voice samples were also acoustically compared through the Hoarseness Diagram and acoustic measures using the VoxMetria Software (CTS, version 2.0s, Brazil). The Y-Buzz trials were identified as resonant voice in 74% of the comparisons. The acoustic measures showed a statistically significant decrease of irregularity (P = 0.002) and shimmer (P = 0.38). The Hoarseness Diagram demonstrated how the resonant voice moved toward the normality for irregularity and noise components. The results showed that the resonant voice based on the Y-Buzz can be identified as resonant and different from normal voicing in the same subject, and it apparently implies a better vocal production demonstrating a significant decrease of shimmer and irregularity through the Hoarseness Diagram evaluation. PMID:16458480

  19. Voice stress analysis

    NASA Technical Reports Server (NTRS)

    Brenner, Malcolm; Shipp, Thomas

    1988-01-01

    In a study of the validity of eight candidate voice measures (fundamental frequency, amplitude, speech rate, frequency jitter, amplitude shimmer, Psychological Stress Evaluator scores, energy distribution, and the derived measure of the above measures) for determining psychological stress, 17 males age 21 to 35 were subjected to a tracking task on a microcomputer CRT while parameters of vocal production as well as heart rate were measured. Findings confirm those of earlier studies that increases in fundamental frequency, amplitude, and speech rate are found in speakers involved in extreme levels of stress. In addition, it was found that the same changes appear to occur in a regular fashion within a more subtle level of stress that may be characteristic, for example, of routine flying situations. None of the individual speech measures performed as robustly as did heart rate.

  20. The source-filter theory of whistle-like calls in marmosets: Acoustic analysis and simulation of helium-modulated voices.

    PubMed

    Koda, Hiroki; Tokuda, Isao T; Wakita, Masumi; Ito, Tsuyoshi; Nishimura, Takeshi

    2015-06-01

    Whistle-like high-pitched "phee" calls are often used as long-distance vocal advertisements by small-bodied marmosets and tamarins in the dense forests of South America. While the source-filter theory proposes that vibration of the vocal fold is modified independently from the resonance of the supralaryngeal vocal tract (SVT) in human speech, a source-filter coupling that constrains the vibration frequency to SVT resonance effectively produces loud tonal sounds in some musical instruments. Here, a combined approach of acoustic analyses and simulation with helium-modulated voices was used to show that phee calls are produced principally with the same mechanism as in human speech. The animal keeps the fundamental frequency (f0) close to the first formant (F1) of the SVT, to amplify f0. Although f0 and F1 are primarily independent, the degree of their tuning can be strengthened further by a flexible source-filter interaction, the variable strength of which depends upon the cross-sectional area of the laryngeal cavity. The results highlight the evolutionary antiquity and universality of the source-filter model in primates, but the study can also explore the diversification of vocal physiology, including source-filter interaction and its anatomical basis in non-human primates. PMID:26093398

  1. Remote Capture of Human Voice Acoustical Data by Telephone: A Methods Study

    ERIC Educational Resources Information Center

    Cannizzaro, Michael S.; Reilly, Nicole; Mundt, James C.; Snyder, Peter J.

    2005-01-01

    In this pilot study we sought to determine the reliability and validity of collecting speech and voice acoustical data via telephone transmission for possible future use in large clinical trials. Simultaneous recordings of each participant's speech and voice were made at the point of participation, the local recording (LR), and over a telephone…

  2. Acoustics Characteristics of Voice and Vocal Care in Acting and Other Students

    ERIC Educational Resources Information Center

    Varosanec-Skaric, Gordana

    2008-01-01

    Based on voice-history data, a X[superscript 2] test was used to investigate the difference between students of acting (n = 45) and other students (n = 45). A t-test was used to calculate the differences in acoustic parameters between the two groups. It was expected that students of acting spent significantly more time practicing voice exercises,…

  3. Cepstral Analysis of Voice in Patients With Thyroidectomy

    PubMed Central

    Shin, Yu Jeong; Hong, Ki Hwan

    2016-01-01

    Objectives The vocal changes after a thyroidectomy are temporary and nonsevere, therefore, obtaining accurate analytical results on the pathological vocal characteristics following such a procedure is difficult. For a more objective acoustic analysis, this study used the cepstral analysis method to examine changes in the patients’ voices during the perioperative period regarding sustained vowel phonation. Methods The sustained phonation of the five vowels (i.e., /a/, /e/, /i/, /o/, and /u/) by 35 patients with thyroidectomy were recorded by using a Multi-Speech program. Of the 35 patients, 10 were men and 25 were women, with an average age of 51.5 years. Voice data were collected a total of 3 times (preoperatively, 5–7 days after the operation, and 6 weeks after the operation) and were edited according to each fragment (on-set, mid, and off-set) for cepstral analysis. Results The cepstral analysis on the patients’ voices revealed no significant differences between the examination periods of all vowel phonations. However, analysis of the on-set fragment of the vowel /i/ revealed pathological characteristics in which the cepstral measurements of the voice were significantly lower after the operation than before the operation, with the cepstral measurements of the voice increasing further 6 weeks following surgery. Conclusion The results of the acoustic analysis on the on-set fragment of the vowel /i/ will be important data for characterizing the vocal changes during the perioperative period. This study contributes to future research on the mechanisms underlying changes in the voice of patients with a history of thyroid or neck surgery. PMID:27090273

  4. Study of Harmonics-to-Noise Ratio and Critical-Band Energy Spectrum of Speech as Acoustic Indicators of Laryngeal and Voice Pathology

    NASA Astrophysics Data System (ADS)

    Shama, Kumara; krishna, Anantha; Cholayya, Niranjan U.

    2006-12-01

    Acoustic analysis of speech signals is a noninvasive technique that has been proved to be an effective tool for the objective support of vocal and voice disease screening. In the present study acoustic analysis of sustained vowels is considered. A simple[InlineEquation not available: see fulltext.]-means nearest neighbor classifier is designed to test the efficacy of a harmonics-to-noise ratio (HNR) measure and the critical-band energy spectrum of the voiced speech signal as tools for the detection of laryngeal pathologies. It groups the given voice signal sample into pathologic and normal. The voiced speech signal is decomposed into harmonic and noise components using an iterative signal extrapolation algorithm. The HNRs at four different frequency bands are estimated and used as features. Voiced speech is also filtered with 21 critical-bandpass filters that mimic the human auditory neurons. Normalized energies of these filter outputs are used as another set of features. The results obtained have shown that the HNR and the critical-band energy spectrum can be used to correlate laryngeal pathology and voice alteration, using previously classified voice samples. This method could be an additional acoustic indicator that supplements the clinical diagnostic features for voice evaluation.

  5. Age- and sex-related variations in vocal-tract morphology and voice acoustics during adolescence.

    PubMed

    Markova, Diana; Richer, Louis; Pangelinan, Melissa; Schwartz, Deborah H; Leonard, Gabriel; Perron, Michel; Pike, G Bruce; Veillette, Suzanne; Chakravarty, M Mallar; Pausova, Zdenka; Paus, Tomáš

    2016-05-01

    Distinct differences in the human voice emerge during adolescence, with males producing deeper and more resonant voices than females by the end of sexual maturation. Using magnetic resonance images of heads and voice recordings obtained in 532 typically developing adolescents, we investigate what might be the drivers of this change in voice, and the subjective judgment of the voice "maleness" and "femaleness". We show clear sex differences in the morphology of voice-related structures during adolescence, with males displaying strong associations between age (and puberty) and both vocal-fold and vocal-tract length; this was not the case in female adolescents. At the same time, males (compared with females) display stronger associations between age (and puberty) with both fundamental frequency and formant position. In males, vocal morphology was a mediator in the relationship between bioavailable testosterone and acoustic indices. Subjective judgment of the voice sex could be predicted by the morphological and acoustic parameters in males only: the length of vocal folds and its acoustic counterpart, fundamental frequency, is a larger predictor of subjective "maleness" of a voice than vocal-tract length and formant position. PMID:27062936

  6. Flow-Structure-Acoustic Interaction Computational Modeling of Voice Production inside an Entire Airway

    NASA Astrophysics Data System (ADS)

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2015-11-01

    Human voice quality is directly determined by the interplay of dynamic behavior of glottal flow, vibratory characteristics of VFs and acoustic characteristics of upper airway. These multiphysics constituents are tightly coupled together and precisely coordinate to produce understandable sound. Despite many years' research effort, the direct relationships among the detailed flow features, VF vibration and aeroacoustics still remains elusive. This study utilizes a first-principle based, flow-structure-acoustics interaction computational modeling approach to study the process of voice production inside an entire human airway. In the current approach, a sharp interface immersed boundary method based incompressible flow solver is utilized to model the glottal flow; A finite element based solid mechanics solver is utilized to model the vocal vibration; A high-order immersed boundary method based acoustics solver is utilized to directly compute sound. These three solvers are fully coupled to mimic the complex flow-structure-acoustic interaction during voice production. The geometry of airway is reconstructed based on the in-vivo MRI measurement reported by Story et al. (1995) and a three-layer continuum based vocal fold model is taken from Titze and Talkin (1979). Results from these simulations will be presented and further analyzed to get new insight into the complex flow-structure-acoustic interaction during voice production. This study is expected to improve the understanding of fundamental physical mechanism of voice production and to help to build direct cause-effect relationship between biomechanics and voice sound.

  7. Acoustic interpretation of the voice range profile (phonetogram).

    PubMed

    Titze, I R

    1992-02-01

    The voice range profile (VRP) is a display of vocal intensity range versus fundamental frequency (F0). Past measurements have shown that the intensity range is reduced at the extremes of the F0 range, that there is a gradual upward tilt of the high- and low-intensity boundaries with increasing F0, and that a ripple exists at the boundaries. The intensity ripple, which results from tuning of source harmonics to the formants, is more noticeable at the upper boundary than the lower boundary because higher harmonics are not energized as effectively near phonation threshold as at maximum lung pressure. The gradual tilt of the intensity boundaries results from more effective transmission and radiation of acoustic energy at higher fundamental frequencies. This depends on the spectral distribution of the source power, however, At low F0, a smaller spectral slope (more harmonic energy) produces greater intensity. At high F0, on the other hand, a shift of energy toward the fundamental results in greater intensity. This dependence of intensity on spectral distribution of source power seems to explain the reduced intensity range at higher F0. An unrelated problem of reduced intensity range at low F0 stems from the inherent difficulty of keeping F0 from rising when subglottal pressure is increased. PMID:1735970

  8. Outcomes Measurement in Voice Disorders: Application of an Acoustic Index of Dysphonia Severity

    ERIC Educational Resources Information Center

    Awan, Shaheen N.; Roy, Nelson

    2009-01-01

    Purpose: The purpose of this experiment was to assess the ability of an acoustic model composed of both time-based and spectral-based measures to track change following voice disorder treatment and to serve as a possible treatment outcomes measure. Method: A weighted, four-factor acoustic algorithm consisting of shimmer, pitch sigma, the ratio of…

  9. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  10. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  11. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  12. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  13. Real time analysis of voiced sounds

    NASA Technical Reports Server (NTRS)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  14. Changes in Acoustic Characteristics of the Voice across the Life Span: Measures from Individuals 4-93 Years of Age

    ERIC Educational Resources Information Center

    Stathopoulos, Elaine T.; Huber, Jessica E.; Sussman, Joan E.

    2011-01-01

    Purpose: The purpose of the present investigation was to examine acoustic voice changes across the life span. Previous voice production investigations used small numbers of participants, had limited age ranges, and produced contradictory results. Method: Voice recordings were made from 192 male and female participants 4-93 years of age. Acoustic…

  15. Voices of athletes reveal only modest acoustic correlates of stature

    NASA Astrophysics Data System (ADS)

    Owren, Michael J.; Anderson, John D.

    2005-04-01

    Recent studies of acoustic cues to body-size in nonhuman primate and human vocalizations have produced results varying from very strong relationships between formant frequencies and length/weight in rhesus monkeys to weak correlations between formants and stature in humans. The current work attempted to address these discrepancies by compiling a database of naturally occurring speech with a large number of vocalizers of maximally varying size. To that end, fundamental frequency (F0) and formant frequencies were measured in both running speech and filled pauses (i.e., ``ah'' and ``um'') produced by male athletes during televised same-day interviews. Multiple-regression analysis of data from 100 male athletes showed that these acoustic measures accounted for at most 17% of variance in height over a 37-cm range. Analyses of filled speech pauses produced by a subset of 48 athletes could account for up to 36%. These outcomes fall within the range of previously reported outcomes, indicating that while speech acoustics are correlated with body-size in human adult males, the cues provided are quite modest.

  16. Voice assessment: Updates on perceptual, acoustic, aerodynamic, and endoscopic imaging methods

    PubMed Central

    Mehta, Daryush D.; Hillman, Robert E.

    2013-01-01

    Purpose of review This paper describes recent advances in perceptual, acoustic, aerodynamic, and endoscopic imaging methods for assessing voice production. Recent findings Perceptual assessment Speech-language pathologists are being encouraged to use the new CAPE-V inventory for auditory perceptual assessment of voice quality, and recent studies have provided new insights into listener reliability issues that have plagued subjective perceptual judgments of voice quality. Acoustic assessment Progress is being made on the development of algorithms that are more robust for analyzing disordered voices, including the capability to extract voice quality-related measures from running speech segments. Aerodynamic assessment New devices for measuring phonation threshold air pressures and air flows have the potential to serve as sensitive indices of glottal phonatory conditions, and recent developments in aeroacoustic theory may provide new insights into laryngeal sound production mechanisms. Endoscopic imaging The increased light sensitivity of new ultra high-speed color digital video processors is enabling high-quality endoscopic imaging of vocal fold tissue motion at unprecedented image capture rates, which promises to provide new insights into mechanisms of normal and disordered voice production. Summary Some of the recent research advances in voice quality assessment could be more readily adopted into clinical practice, while others will require further development. PMID:18475073

  17. Experiences of hearing voices: analysis of a novel phenomenological survey

    PubMed Central

    Woods, Angela; Jones, Nev; Alderson-Day, Ben; Callard, Felicity; Fernyhough, Charles

    2015-01-01

    Summary Background Auditory hallucinations—or voices—are a common feature of many psychiatric disorders and are also experienced by individuals with no psychiatric history. Understanding of the variation in subjective experiences of hallucination is central to psychiatry, yet systematic empirical research on the phenomenology of auditory hallucinations remains scarce. We aimed to record a detailed and diverse collection of experiences, in the words of the people who hear voices themselves. Methods We made a 13 item questionnaire available online for 3 months. To elicit phenomenologically rich data, we designed a combination of open-ended and closed-ended questions, which drew on service-user perspectives and approaches from phenomenological psychiatry, psychology, and medical humanities. We invited people aged 16–84 years with experience of voice-hearing to take part via an advertisement circulated through clinical networks, hearing voices groups, and other mental health forums. We combined qualitative and quantitative methods, and used inductive thematic analysis to code the data and χ2 tests to test additional associations of selected codes. Findings Between Sept 9 and Nov 29, 2013, 153 participants completed the study. Most participants described hearing multiple voices (124 [81%] of 153 individuals) with characterful qualities (106 [69%] individuals). Less than half of the participants reported hearing literally auditory voices—70 (46%) individuals reported either thought-like or mixed experiences. 101 (66%) participants reported bodily sensations while they heard voices, and these sensations were significantly associated with experiences of abusive or violent voices (p=0·024). Although fear, anxiety, depression, and stress were often associated with voices, 48 (31%) participants reported positive emotions and 49 (32%) reported neutral emotions. Our statistical analysis showed that mixed voices were more likely to have changed over time (p=0·030), be

  18. Perception of recorded singing voice quality and expertise: cognitive linguistics and acoustic approaches.

    PubMed

    Morange, Séverine; Dubois, Danièle; Fontaine, Jean-Marc

    2010-07-01

    The objective of the present pluridisciplinary study was to contribute to determine how a diversity of audience differently appreciates several versions resulting from different "restoration" treatments of one single original lyrical recording. We present here a joint analysis coupling psychological and linguistic analyses with acoustic descriptions on a unique research object: a Caruso's piece of song diversely remastered on commercial CDs. Thirty-two subjects were selected contrasted on age ("younger than 30 years" and "older than 60 years") related with their different experience of earlier technical recording devices (rendering through devices such as radio, 78rpm records, CD...) and on expertise concerning musical acoustics (acousticians and/or musicians vs ordinary music lovers). Eleven excerpts of reediting of an opera record interpreted by Caruso were selected from what could found on the market. The listening protocol involved a free categorization task and the selection of excerpts on preference judgments. Each task involved subjects' free commentaries about their choices as a joint output from psychological processing. A cluster analysis scaffold by a psycholinguistic processing of the verbal comments of the categories allowed to identify both commonalities and differences in groupings excerpts by the different groups of the subjects, along a diversity of criteria, varying according to age and expertise. Each excerpt can therefore be characterized both according to psychological and to acoustic criteria. This study has enabled us to develop the idea that a lyric voice is a multifaced object (cultural, esthetic, technical, physical), acoustic parameters being linked to the various sensory experiences and expertises of appraisers. Such pluridisciplinary research and the coupling of the correlated multiplicity of methodologies we developed acknowledge for a better understanding of listening practices and music-lover assessments here concerned with a

  19. Acoustic analysis of speech under stress.

    PubMed

    Sondhi, Savita; Khan, Munna; Vijay, Ritu; Salhan, Ashok K; Chouhan, Satish

    2015-01-01

    When a person is emotionally charged, stress could be discerned in his voice. This paper presents a simplified and a non-invasive approach to detect psycho-physiological stress by monitoring the acoustic modifications during a stressful conversation. Voice database consists of audio clips from eight different popular FM broadcasts wherein the host of the show vexes the subjects who are otherwise unaware of the charade. The audio clips are obtained from real-life stressful conversations (no simulated emotions). Analysis is done using PRAAT software to evaluate mean fundamental frequency (F0) and formant frequencies (F1, F2, F3, F4) both in neutral and stressed state. Results suggest that F0 increases with stress; however, formant frequency decreases with stress. Comparison of Fourier and chirp spectra of short vowel segment shows that for relaxed speech, the two spectra are similar; however, for stressed speech, they differ in the high frequency range due to increased pitch modulation. PMID:26558301

  20. Voice Stress Analysis: Use of Telephone Recordings.

    ERIC Educational Resources Information Center

    Waln, Ronald F.; Downey, Ronald G.

    The ability to detect lying is an important skill. While the polygraph is the most common mechanical method used for lie detection, other electronic-based methods have also been developed. One such method, the analysis of voice stress patterns, is based on the assumption that lying is a stressful activity which reduces involuntary frequency…

  1. Effects of subglottal and supraglottal acoustic loading on voice production

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyan; Mongeau, Luc; Frankel, Steven

    2002-05-01

    Speech production involves sound generation by confined jets through an orifice (the glottis) with a time-varying area. Predictive models are usually based on the quasi-steady assumption. This assumption allows the complex unsteady flows to be treated as steady flows, which are more effectively modeled computationally. Because of the reflective properties of the human lungs, trachea and vocal tract, subglottal and supraglottal resonance and other acoustic effects occur in speech, which might affect glottal impedance, especially in the regime of unsteady flow separation. Changes in the flow structure, or flow regurgitation due to a transient negative transglottal pressure, could also occur. These phenomena may affect the quasi-steady behavior of speech production. To investigate the possible effects of the subglottal and supraglottal acoustic loadings, a dynamic mechanical model of the larynx was designed and built. The subglottal and supraglottal acoustic loadings are simulated using an expansion in the tube upstream of the glottis and a finite length tube downstream, respectively. The acoustic pressures of waves radiated upstream and downstream of the orifice were measured and compared to those predicted using a model based on the quasi-steady assumption. A good agreement between the experimental data and the predictions was obtained for different operating frequencies, flow rates, and orifice shapes. This supports the validity of the quasi-steady assumption for various subglottal and supraglottal acoustic loadings.

  2. Acoustic Correlates of Fatigue in Laryngeal Muscles: Findings for a Criterion-Based Prevention of Acquired Voice Pathologies

    ERIC Educational Resources Information Center

    Boucher, Victor J.

    2008-01-01

    Purpose: The objective was to identify acoustic correlates of laryngeal muscle fatigue in conditions of vocal effort. Method: In a previous study, a technique of electromyography (EMG) served to define physiological signs of "voice fatigue" in laryngeal muscles involved in voicing. These signs correspond to spectral changes in contraction…

  3. Imagination in harmony with science: Spectral analysis as a practical pedagogic tool in the voice studio

    NASA Astrophysics Data System (ADS)

    Rundus, Katharin Elaine

    Traditionally, voice teachers have relied on intuition and imagination to impart technical information to their students. Spectral analysis, generated on a personal computer, is now available, affordable and accessible to the twenty-first century voice teacher. These programs provide several acoustical functions using frequency, intensity and time to provide technical information about the human singing voice. This paper advocates the use of this technology as a supplemental and supporting strategy in addition to the traditional pedagogic modes of metaphor and intuition. To begin, the paper examines the acoustical principles that reflect beautiful singing and are necessary to an understanding of spectral analysis. Several figures are used that graphically explain the source-filter theory of vowels and how it is affected by the constant manipulation of a closed-open tube like the human vocal tract. Nine functions of Real Analysis (a spectral analysis program in real time manufactured by Tiger DRS, Inc.) are then examined and explained in relation to the singing voice. The paper goes on to outline a systematic vocal pedagogy in eight parts that can be used in harmony with spectral analysis, portrayed in an octagonal spiral figure. In the fourth chapter, this systematic vocal pedagogy is then integrated with spectral analysis to suggest a holistic and artistic method to use this technology. In a table format, several singing behaviors are identified, both negative and positive; training solutions using Real Analysis functions are outlined for each behavior. The paper concludes by pointing out that this technology is valuable because it teaches teachers about their own voice in a scientific manner and allows them to share this quantifiable information with their students. Furthermore, twenty-first century students are accepting of and eager for new technologies as they learn about their voices. This new technology does not change the traditional goals of voice training

  4. Unique gel-coupled acoustic sensor array monitors human voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael

    2002-11-01

    The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. The Army Research Laboratory's gel-coupled acoustic physiological monitoring sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. Acoustic signal processing detects physiological events such as heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. Acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that sometimes obscure meaningful physiology. A noise-canceling sensor array configuration helps remove motion noise by using two acoustic sensors on the front sides of the neck and 2 additional acoustic sensors on each wrist. The motion noise detected on all 4 sensors will be dissimilar and out of phase, yet the physiology on all 4 sensors is covariant. Pulse wave transit time between neck and wrist will indicate systolic blood pressure. Data from a firefighter experiment will be presented.

  5. Acoustics characteristics of voice and vocal care in acting and other students.

    PubMed

    Varosanec-Skarić, Gordana

    2008-01-01

    Based on voice-history data, a chi2 test was used to investigate the difference between students of acting (n = 45) and other students (n = 45). A t-test was used to calculate the differences in acoustic parameters between the two groups. It was expected that students of acting spent significantly more time practicing voice exercises, took more acting instructions, and generally spoke more in larger rooms and did warm up exercises (p < .001). However, it was not expected that they smoked more than non-professionals (p = .003), and that they drank alcoholic drinks as much as other students. Male students of acting had significantly lower f(0) SD means (p = .015), which means that they had a more stable pitch throughout phonation. Students of acting also showed a significantly higher Harmonics-to-Noise Ratio (HNR) than other students (p = .001 for males; p = .01 for females). The data showed the importance of the appropriate use of voice, which reflected relatively good voice quality despite the bad living habits of the future professional voice users. PMID:18608245

  6. The Voice of Emotion: Acoustic Properties of Six Emotional Expressions.

    NASA Astrophysics Data System (ADS)

    Baldwin, Carol May

    Studies in the perceptual identification of emotional states suggested that listeners seemed to depend on a limited set of vocal cues to distinguish among emotions. Linguistics and speech science literatures have indicated that this small set of cues included intensity, fundamental frequency, and temporal properties such as speech rate and duration. Little research has been done, however, to validate these cues in the production of emotional speech, or to determine if specific dimensions of each cue are associated with the production of a particular emotion for a variety of speakers. This study addressed deficiencies in understanding of the acoustical properties of duration and intensity as components of emotional speech by means of speech science instrumentation. Acoustic data were conveyed in a brief sentence spoken by twelve English speaking adult male and female subjects, half with dramatic training, and half without such training. Simulated expressions included: happiness, surprise, sadness, fear, anger, and disgust. The study demonstrated that the acoustic property of mean intensity served as an important cue for a vocal taxonomy. Overall duration was rejected as an element for a general taxonomy due to interactions involving gender and role. Findings suggested a gender-related taxonomy, however, based on differences in the ways in which men and women use the duration cue in their emotional expressions. Results also indicated that speaker training may influence greater use of the duration cue in expressions of emotion, particularly for male actors. Discussion of these results provided linkages to (1) practical management of emotional interactions in clinical and interpersonal environments, (2) implications for differences in the ways in which males and females may be socialized to express emotions, and (3) guidelines for future perceptual studies of emotional sensitivity.

  7. Flow-structure-acoustic interaction in a human voice model.

    PubMed

    Becker, Stefan; Kniesburges, Stefan; Müller, Stefan; Delgado, Antonio; Link, Gerhard; Kaltenbacher, Manfred; Döllinger, Michael

    2009-03-01

    For the investigation of the physical processes of human phonation, inhomogeneous synthetic vocal folds were developed to represent the full fluid-structure-acoustic coupling. They consisted of polyurethane rubber with a stiffness in the range of human vocal folds and were mounted in a channel, shaped like the vocal tract in the supraglottal region. This test facility permitted extensive observations of flow-induced vocal fold vibrations, the periodic flow field, and the acoustic signals in the far field of the channel. Detailed measurements were performed applying particle-image velocimetry, a laser-scanning vibrometer, a microphone, unsteady pressure sensors, and a hot-wire probe, with the aim of identifying the physical mechanisms in human phonation. The results support the existence of the Coanda effect during phonation, with the flow attaching to one vocal fold and separating from the other. This behavior is not linked to one vocal fold and changes stochastically from cycle to cycle. The oscillating flow field generates a tonal sound. The broadband noise is presumed to be caused by the interaction of the asymmetric flow with the downstream-facing surfaces of the vocal folds, analogous to trailing-edge noise. PMID:19275292

  8. Learning [Voice

    ERIC Educational Resources Information Center

    Tauberer, Joshua Ian

    2010-01-01

    The [voice] distinction between homorganic stops and fricatives is made by a number of acoustic correlates including voicing, segment duration, and preceding vowel duration. The present work looks at [voice] from a number of multidimensional perspectives. This dissertation's focus is a corpus study of the phonetic realization of [voice] in two…

  9. Comparing the acoustics of voiced and voiceless fricatives in Deg Xinag

    NASA Astrophysics Data System (ADS)

    Wright, Richard; Hargus, Sharon; Miller, Julia

    2005-09-01

    Few studies have looked at the acoustic properties of fricative voicing and place in Native American languages despite their relatively rich fricative inventories of rarely studied fricative places. Deg Xinag, an endangered Athabaskan language spoken in Alaska, provides us with a rare opportunity to investigate fricative place and voicing within a single language: it has eight places of articulation for voiceless fricatives, six of which have voiced counterparts, including some rarely studied place contrasts (e.g., palato-alveolar versus retroflex, uvular versus glottal, lateral versus alveolar). In this study, pre- and post-vocalic fricatives were digitally recorded in the field from eight speakers (two males, six females) using a head-mounted mic to control for distance from the source. The segmental context was also controlled for, the neighboring vowel being [a] in all cases. Each speaker produced four repetitions of each word. Each fricative was analyzed qualitatively using impressionistic transcription and spectrographic investigation, and quantitatively using a set of widely employed measures: (a) widely employed spectral measures (center of gravity, skew, kurtosis, standard deviation, lowest spectral peak), peak and rms intensity of frication, overall duration and duration of voicing. [Work supported by NSF.

  10. Self, Voices and Embodiment: A Phenomenological Analysis

    PubMed Central

    Rosen, C; Jones, N; Chase, KA; Grossman, LS; Gin, H; Sharma, RP

    2016-01-01

    Objective The primary aim of this study was to examine first-person phenomenological descriptions of the relationship between the self and Auditory Verbal Hallucinations (AVHs). Complex AVHs are frequently described as entities with clear interpersonal characteristics. Strikingly, investigations of first-person (subjective) descriptions of the phenomenology of the relationship are virtually absent from the literature. Method Twenty participants with psychosis and actively experiencing AVHs were recruited from the University of Illinois at Chicago. A mixed-methods design involving qualitative and quantitative components was utilized. Following a priority-sequence model of complementarity, quantitative analyses were used to test elements of emergent qualitative themes. Results The qualitative analysis identified three foundational constructs in the relationship between self and voices: ‘understanding of origin,’ ‘distinct interpersonal identities,’ and ‘locus of control.’ Quantitative analyses further supported identified links of these constructs. Subjects experienced their AVHs as having identities distinct from self and actively engaged with their AVHs experienced a greater sense of autonomy and control over AVHs. Discussion Given the clinical importance of AVHs and emerging strategies targeting the relationship between the hearer and voices, our findings highlight the importance of these relational constructs in improvement and innovation of clinical interventions. Our analyses also underscore the value of detailed voice assessments such as those provided by the Maastricht Interview are needed in the evaluation process. Subjects narratives shows that the relational phenomena between hearer and AVH(s) is dynamic, and can be influenced and changed through the hearers’ engagement, conversation, and negotiation with their voices. PMID:27099869

  11. Elephants can determine ethnicity, gender, and age from acoustic cues in human voices

    PubMed Central

    McComb, Karen; Shannon, Graeme; Sayialel, Katito N.; Moss, Cynthia

    2014-01-01

    Animals can accrue direct fitness benefits by accurately classifying predatory threat according to the species of predator and the magnitude of risk associated with an encounter. Human predators present a particularly interesting cognitive challenge, as it is typically the case that different human subgroups pose radically different levels of danger to animals living around them. Although a number of prey species have proved able to discriminate between certain human categories on the basis of visual and olfactory cues, vocalizations potentially provide a much richer source of information. We now use controlled playback experiments to investigate whether family groups of free-ranging African elephants (Loxodonta africana) in Amboseli National Park, Kenya can use acoustic characteristics of speech to make functionally relevant distinctions between human subcategories differing not only in ethnicity but also in sex and age. Our results demonstrate that elephants can reliably discriminate between two different ethnic groups that differ in the level of threat they represent, significantly increasing their probability of defensive bunching and investigative smelling following playbacks of Maasai voices. Moreover, these responses were specific to the sex and age of Maasai presented, with the voices of Maasai women and boys, subcategories that would generally pose little threat, significantly less likely to produce these behavioral responses. Considering the long history and often pervasive predatory threat associated with humans across the globe, it is likely that abilities to precisely identify dangerous subcategories of humans on the basis of subtle voice characteristics could have been selected for in other cognitively advanced animal species. PMID:24616492

  12. Elephants can determine ethnicity, gender, and age from acoustic cues in human voices.

    PubMed

    McComb, Karen; Shannon, Graeme; Sayialel, Katito N; Moss, Cynthia

    2014-04-01

    Animals can accrue direct fitness benefits by accurately classifying predatory threat according to the species of predator and the magnitude of risk associated with an encounter. Human predators present a particularly interesting cognitive challenge, as it is typically the case that different human subgroups pose radically different levels of danger to animals living around them. Although a number of prey species have proved able to discriminate between certain human categories on the basis of visual and olfactory cues, vocalizations potentially provide a much richer source of information. We now use controlled playback experiments to investigate whether family groups of free-ranging African elephants (Loxodonta africana) in Amboseli National Park, Kenya can use acoustic characteristics of speech to make functionally relevant distinctions between human subcategories differing not only in ethnicity but also in sex and age. Our results demonstrate that elephants can reliably discriminate between two different ethnic groups that differ in the level of threat they represent, significantly increasing their probability of defensive bunching and investigative smelling following playbacks of Maasai voices. Moreover, these responses were specific to the sex and age of Maasai presented, with the voices of Maasai women and boys, subcategories that would generally pose little threat, significantly less likely to produce these behavioral responses. Considering the long history and often pervasive predatory threat associated with humans across the globe, it is likely that abilities to precisely identify dangerous subcategories of humans on the basis of subtle voice characteristics could have been selected for in other cognitively advanced animal species. PMID:24616492

  13. Acoustic changes in student actors' voices after 12 months of training.

    PubMed

    Walzak, Peta; McCabe, Patricia; Madill, Cate; Sheard, Christine

    2008-05-01

    This study was to evaluate acoustic changes in student actors' voices after 12 months of actor training. The design used was a longitudinal study. Eighteen students enrolled in an Australian tertiary 3-year acting program (nine male and nine female) were assessed at the beginning of their acting course and again 12 months later using a questionnaire, interview, maximum phonation time (MPT), reading, spontaneous speaking, sustained phonation tasks, and a pitch range task. Samples were analyzed for MPT, fundamental frequency across tasks, pitch range for speaking and reading, singing pitch range, noise-to-harmonic ratio, shimmer, and jitter. After training, measures of shimmer significantly increased for both male and female participants. Female participants' pitch range significantly increased after training, with a significantly lower mean frequency for their lowest pitch. The finding of limited or negative changes for some measures indicate that further investigation is required into the long-term effects of actor voice training and which parameters of voicing are most targeted and valued in training. Particular investigation into the relationship between training targets and outcomes could more reliably inform acting programs about changes in teaching methodologies. Further research into the relationship between specific training techniques, physiological changes, and vocal changes may also provide information on implementing more evidence-based training methods. PMID:17512170

  14. Contemporary review: Impact of primary neopharyngoplasty on acoustic characteristics of alaryngeal tracheoesophageal voice.

    PubMed

    Albirmawy, Osama A; Elsheikh, Mohamed N; Silver, Carl E; Rinaldo, Alessandra; Ferlito, Alfio

    2012-02-01

    The physiology of the vibratory mechanism in alaryngeal tracheoesophageal speech depends on several factors. The structure and resulting function of the neoglottis (or neopharynx) varies from patient to patient depending on the individual details of the surgical procedure performed, as well as the patient's anatomy. In general, the vibratory segment is a blending of the pharyngeal constrictor muscles, cricopharyngeus, and upper circular fibers of the esophagus. Limited ability to visualize dynamically these three-dimensional structures during rapid events of voice and speech production impedes complete understanding of the vibratory function of the neopharynx. Acoustic studies have elucidated some general characteristics of the pharyngoesophagus and neoglottic vibratory mechanism in the laryngectomized population. A critical degree of tonicity is necessary for apposition of mucosal surfaces in the production of tracheoesophageal voice. Deficiencies in the vibratory segment can usually be managed with various surgical procedures (neopharyngoplasty), resulting in reduced intraesophageal pressure and corresponding increase in fluent, intelligible, effortless speech. The acoustic measures, when correlated with neopharyngoplasty variables, produce many significant associations. Some of them are paramount and deserve further attention. PMID:22258890

  15. Effects of nasalance on the acoustical properties of the tenor passaggio and the head voice

    NASA Astrophysics Data System (ADS)

    Perna, Nicholas Kevin

    This study aims to measure the effect that nasality has on the acoustical properties of the tenor passaggio and head voice. Not to be confused with forward resonance, nasality here will be defined as nasalance, the reading of a Nasometer, or the percentage of nasal and oral airflow during phonation. A previous study by Peer Birch et al. has shown that professional tenors used higher percentages of nasalance through their passaggio. They hypothesized that tenors used nasalance to make slight timbral adjustments as they ascended through passaggio. Other well respected authors including Richard Miller and William McIver have claimed that teaching registration issues is the most important component of training young tenors. It seemed logical to measure the acoustic effects of nasalance on the tenor passaggio and head voice. Eight professional operatic tenors participated as subjects performing numerous vocal exercises that demonstrated various registration events. These examples were recorded and analyzed using a Nasometer and Voce Vista Pro Software. Tenors did generally show an increase of nasalance during an ascending B-flat major scale on the vowels [i] and [u]. Perhaps the most revealing result was that six of seven tenors showed at least a 5-10% increase in nasalance on the note after their primary register transition on the vowel of [a]. It is suggested that this phenomenon receive further empirical scrutiny, because, if true, pedagogues could use nasalance as a tool for helping a young tenor ascend through his passaggio.

  16. Comparisons among aerodynamic, electroglottographic, and acoustic spectral measures of female voice.

    PubMed

    Holmberg, E B; Hillman, R E; Perkell, J S; Guiod, P C; Goldman, S L

    1995-12-01

    This study examines measures of the glottal airflow waveform, the electroglottographic signal (EGG), amplitude differences between peaks in the acoustic spectrum, and observations of the spectral energy content of the third formant (F3), in terms of how they relate to one another. Twenty females with normal voices served as subjects. Both group and individual data were studied. Measurements were made for the vowel in two speech tasks: strings of the syllable /pae/and sustained phonation of /ae/, which were produced at two levels of vocal effort: comfortable and loud voice. The main results were: 1. Significant differences in parameter values between /pae/and/ae/were related to significant differences in the sound pressure level (SPL). 2. An "adduction quotient," measured from the glottal waveform at a 30% criterion, was sensitive enough to differentiate between waveforms reflecting abrupt versus gradual vocal fold closing movements. 3. DC flow showed weak or nonsignificant relationships with acoustic measures. 4. The spectral content in the third formant (F3) in comfortable loudness typically consisted of a mix of noise and harmonic energy. In loud voice, the F3 spectral content typically consisted of harmonic energy. 5. Significant differences were found in all measures between tokens with F3 harmonic energy and tokens with F3 noise, independent of loudness condition. 6. Strong relationships between flow- and EGG-adduction quotients suggested that these signals can be used to complement each other. 7. The amplitude difference between spectral peaks of the first and third formant (F1-F3) was found to add information about abruptness of airflow decrease (flow declination) that may be lost in the glottal waveform signal due to low-pass filtering. The results are discussed in terms of how an integrated use of these measures can contribute to a better understanding of the normal vocal mechanism and help to improve methods for evaluating vocal function. PMID:8747815

  17. The acoustic and perceptual differences to the non-singer's singing voice before and after a singing vocal warm-up

    NASA Astrophysics Data System (ADS)

    DeRosa, Angela

    The present study analyzed the acoustic and perceptual differences in non-singer's singing voice before and after a vocal warm-up. Experiments were conducted with 12 females who had no singing experience and considered themselves to be non-singers. Participants were recorded performing 3 tasks: a musical scale stretching to their most comfortable high and low pitches, sustained productions of the vowels /a/ and /i/, and singing performance of the "Star Spangled Banner." Participants were recorded performing these three tasks before a vocal warm-up, after a vocal warm-up, and then again 2-3 weeks later after 2-3 weeks of practice. Acoustical analysis consisted of formant frequency analysis, singer's formant/singing power ratio analysis, maximum phonation frequency range analysis, and an analysis of jitter, noise to harmonic ratio (NHR), relative average perturbation (RAP), and voice turbulence index (VTI). A perceptual analysis was also conducted with 12 listeners rating comparison performances of before vs. after the vocal warm-up, before vs. after the second vocal warm-up, and after both vocal warm-ups. There were no significant findings for the formant frequency analysis of the vowel /a/, but there was significance for the 1st formant frequency analysis of the vowel /i/. Singer's formant analyzed via Singing Power Ratio analysis showed significance only for the vowel /i/. Maximum phonation frequency range analysis showed a significant increase after the vocal warm-ups. There were no significant findings for the acoustic measures of jitter, NHR, RAP, and VTI. Perceptual analysis showed a significant difference after a vocal warm-up. The results indicate that a singing vocal warm-up can have a significant positive influence on the singing voice of non-singers.

  18. Effect of Septoplasty on Cepstral Analysis of Voice.

    PubMed

    Thejaswi, D; Alfred, Rezwin M; D'Souza, Florida P

    2016-09-01

    Resonance change is a common clinical symptom in individuals with deviated nasal septum. Often this anatomical deficit is surgically treated by septoplasty. Therefore monitoring resonance changes using acoustical tools is vital. Hence, the study investigated cepstral measure differences in subjects with deviated nasal septum compared to normals. A case-control study design involving 20 subjects within 18-40 years divided into Group I of 10 subjects with deviated nasal septum (DNS) and Group II of 10 normal subjects participated. All the subjects sustained nasalized vowel /ã/ at 10 cm mouth-microphone distance for minimum of 5 seconds. For Group I, voice sample was recorded in 2 conditions, 2 days pre-septoplasty and 1 month post-septoplasty. Cepstral peak prominence (CPP) and smooth cepstral peak prominence (CPPS) values was extracted using the Hillenbrand algorithm. Mean values revealed increased CPP and CPPS measure post-septoplasty when compared to pre-septoplasty. ANOVA showed statistically significant difference only for CPPS at p = 0.00. The higher cepstral values of post-septoplasty is due to widened nasal passage that leads to increased nasal volume, decreased acoustic damping and increased nasal patency. These changes in supraglottic chambers will result in a better acoustic space for good resonance. However, the CPPS values were not similar to normal subjects because of scarring or incomplete recovery of the outer mucosal layer of the nasal tract. Thus, we can conclude that cepstral analysis is a sensitive tool to detect resonance changes in the nasal patency. PMID:27508128

  19. Voice processing in dementia: a neuropsychological and neuroanatomical analysis

    PubMed Central

    Hailstone, Julia C.; Ridgway, Gerard R.; Bartlett, Jonathan W.; Goll, Johanna C.; Buckley, Aisling H.; Crutch, Sebastian J.

    2011-01-01

    Voice processing in neurodegenerative disease is poorly understood. Here we undertook a systematic investigation of voice processing in a cohort of patients with clinical diagnoses representing two canonical dementia syndromes: temporal variant frontotemporal lobar degeneration (n = 14) and Alzheimer’s disease (n = 22). Patient performance was compared with a healthy matched control group (n = 35). All subjects had a comprehensive neuropsychological assessment including measures of voice perception (vocal size, gender, speaker discrimination) and voice recognition (familiarity, identification, naming and cross-modal matching) and equivalent measures of face and name processing. Neuroanatomical associations of voice processing performance were assessed using voxel-based morphometry. Both disease groups showed deficits on all aspects of voice recognition and impairment was more severe in the temporal variant frontotemporal lobar degeneration group than the Alzheimer’s disease group. Face and name recognition were also impaired in both disease groups and name recognition was significantly more impaired than other modalities in the temporal variant frontotemporal lobar degeneration group. The Alzheimer’s disease group showed additional deficits of vocal gender perception and voice discrimination. The neuroanatomical analysis across both disease groups revealed common grey matter associations of familiarity, identification and cross-modal recognition in all modalities in the right temporal pole and anterior fusiform gyrus; while in the Alzheimer’s disease group, voice discrimination was associated with grey matter in the right inferior parietal lobe. The findings suggest that impairments of voice recognition are significant in both these canonical dementia syndromes but particularly severe in temporal variant frontotemporal lobar degeneration, whereas impairments of voice perception may show relative specificity for Alzheimer’s disease. The right anterior

  20. Reliability in perceptual analysis of voice quality.

    PubMed

    Bele, Irene Velsvik

    2005-12-01

    This study focuses on speaking voice quality in male teachers (n = 35) and male actors (n = 36), who represent untrained and trained voice users, because we wanted to investigate normal and supranormal voices. In this study, both substantial and methodologic aspects were considered. It includes a method for perceptual voice evaluation, and a basic issue was rater reliability. A listening group of 10 listeners, 7 experienced speech-language therapists, and 3 speech-language therapist students evaluated the voices by 15 vocal characteristics using VA scales. Two sets of voice signals were investigated: text reading (2 loudness levels) and sustained vowel (3 levels). The results indicated a high interrater reliability for most perceptual characteristics. Connected speech was evaluated more reliably, especially at the normal level, but both types of voice signals were evaluated reliably, although the reliability for connected speech was somewhat higher than for vowels. Experienced listeners tended to be more consistent in their ratings than did the student raters. Some vocal characteristics achieved acceptable reliability even with a smaller panel of listeners. The perceptual characteristics grouped in 4 factors reflected perceptual dimensions. PMID:16301102

  1. Analysis of Measured and Simulated Supraglottal Acoustic Waves.

    PubMed

    Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A

    2016-09-01

    To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. PMID:26377510

  2. Cue-specific effects of categorization training on the relative weighting of acoustic cues to consonant voicing in English

    PubMed Central

    Francis, Alexander L.; Kaganovich, Natalya; Driscoll-Huber, Courtney

    2008-01-01

    In English, voiced and voiceless syllable-initial stop consonants differ in both fundamental frequency at the onset of voicing (onset F0) and voice onset time (VOT). Although both correlates, alone, can cue the voicing contrast, listeners weight VOT more heavily when both are available. Such differential weighting may arise from differences in the perceptual distance between voicing categories along the VOT versus onset F0 dimensions, or it may arise from a bias to pay more attention to VOT than to onset F0. The present experiment examines listeners’ use of these two cues when classifying stimuli in which perceptual distance was artificially equated along the two dimensions. Listeners were also trained to categorize stimuli based on one cue at the expense of another. Equating perceptual distance eliminated the expected bias toward VOT before training, but successfully learning to base decisions more on VOT and less on onset F0 was easier than vice versa. Perceptual distance along both dimensions increased for both groups after training, but only VOT-trained listeners showed a decrease in Garner interference. Results lend qualified support to an attentional model of phonetic learning in which learning involves strategic redeployment of selective attention across integral acoustic cues. PMID:18681610

  3. Acoustic Predictors of Intelligibility for Segmentally Interrupted Speech: Temporal Envelope, Voicing, and Duration

    ERIC Educational Resources Information Center

    Fogerty, Daniel

    2013-01-01

    Purpose: Temporal interruption limits the perception of speech to isolated temporal glimpses. An analysis was conducted to determine the acoustic parameter that best predicts speech recognition from temporal fragments that preserve different types of speech information--namely, consonants and vowels. Method: Young listeners with normal hearing…

  4. Voice measures of workload in the advanced flight deck

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray; Odonnell, Richard

    1989-01-01

    Voice samples were obtained from 14 male subjects under high and low workload conditions. Acoustical analysis of the voice suggested that high workload conditions can be revealed by their effects on the voice over time. Aircrews in the advanced flight deck will be voicing short, imperative sentences repeatedly. A drop in the energy of the voice, as reflected by reductions in amplitude and frequency over time, and the failure to achieve old amplitude and frequency levels after rest periods, can signal that the workload demands of the situation are straining the speaker. This kind of measurement would be relatively unaffected by individual differences in acoustical measures.

  5. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2002-01-01

    Low power EM waves are used to detect motions of vocal tract tissues of the human speech system before, during, and after voiced speech. A voiced excitation function is derived. The excitation function provides speech production information to enhance speech characterization and to enable noise removal from human speech.

  6. Double Fourier analysis for Emotion Identification in Voiced Speech

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.

    2016-04-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.

  7. The effect of choir formation on the acoustical attributes of the singing voice

    NASA Astrophysics Data System (ADS)

    Atkinson, Debra Sue

    Research shows that many things can influence choral tone and choral blend. Some of these are vowel uniformity, vibrato, choral formation, strategic placement of singers, and spacing between singers. This study sought to determine the effect that changes in choral formation and spacing between singers would have on four randomly selected voices of an ensemble as revealed through long-term average spectra (LTAS) of the individual singers. All members of the ensemble were given the opportunity to express their preferences for each of the choral formations and the four randomly selected choristers were asked specific questions regarding the differences between choral singing and solo singing. The results indicated that experienced singers preferred singing in a mixed-spread choral formation. However, the graphs of the choral excerpts as compared to the solo recordings revealed that the choral graphs for the soprano and bass were very similar to the graphs of their solos, but the graphs of the tenor and the alto were different from their solo graphs. It is obvious from the results of this study that the four selected singers did sing with slightly different techniques in the choral formations than they did while singing their solos. The members of this ensemble were accustomed to singing in many different formations. Therefore, it was easy for them to consciously think about how they sang in each of the four formations (mixed-close, mixed-spread, sectional-close, and sectional-spread) and answer the questionnaire accordingly. This would not be as easy for a group that never changed choral formations. Therefore, the results of this study cannot be generalized to choirs who only sing in sectional formation. As researchers learn more about choral acoustics and the effects of choral singing on the voice, choral conductors will be able to make better decisions about the methods used to achieve their desired choral blend. It is up to the choral conductors to glean the

  8. Acoustic emission and signal analysis

    NASA Astrophysics Data System (ADS)

    Rao, A. K.

    1990-01-01

    A review is given of the acoustic emission (AE) phenomenon and its applications in NDE and geological rock mechanics. Typical instrumentation used in AE signal detection, data acquisition, processing, and analysis is discussed. The parameters used in AE signal analysis are outlined, and current methods of AE signal analysis procedures are discussed. A literature review is presented on the pattern classification of AE signals. A discussion then follows on the application of AE in aircraft component monitoring, with an experiment described which focuses on in-flight AE monitoring during fatigue crack growth in an aero engine mount. A pattern recognition approach is detailed for the classification of the experimental data. The approach subjects each of the data files to a cluster analysis by the threshold-k-means scheme. The technique is shown to classify the data successfully.

  9. A system for analysis and classification of voice communications

    NASA Technical Reports Server (NTRS)

    Older, H. J.; Jenney, L. L.; Garland, L.

    1973-01-01

    A method for analysis and classification of verbal communications typically associated with manned space missions or simulations was developed. The study was carried out in two phases. Phase 1 was devoted to identification of crew tasks and activities which require voice communication for accomplishment or reporting. Phase 2 entailed development of a message classification system and a preliminary test of its feasibility. The classification system permits voice communications to be analyzed to three progressively more specific levels of detail and to be described in terms of message content, purpose, and the participants in the information exchange. A coding technique was devised to allow messages to be recorded by an eight-digit number.

  10. A Conjoint Analysis of Voice Over IP Attributes.

    ERIC Educational Resources Information Center

    Zubey, Michael L.; Wagner, William; Otto, James R.

    2002-01-01

    Managers need to understand the tradeoffs associated with voice over Internet protocol (VoIP) networks as compared to the Public Switched Telephone Network (PSTN). This article measures the preference structures between IP telephony and PSTN services using conjoint analysis. The purpose is to suggest VoIP technology attributes that best meet…

  11. Comment on "Increase in voice level and speaker comfort in lecture rooms" [J. Acoust. Soc. Am. 125, 2072-2082 (2009)] (L).

    PubMed

    Pelegrín-García, David

    2011-03-01

    Recently, a paper written by Brunskog Gade, Payá-Ballester and Reig-Calbo, "Increase in voice level and speaker comfort in lecture rooms" [J. Acoust. Soc. Am. 125, 2072-2082 (2009)] related teachers' variation in vocal intensity during lecturing to the room acoustic conditions, introducing an objective parameter called "room gain" to describe these variations. In a failed attempt to replicate the objective measurements by Brunskog et al., a simplified and improved method for the calculation of room gain is proposed, in addition with an alternative magnitude called "voice support." The measured parameters are consistent with those of other studies and are used here to build two empirical models relating the voice power levels measured by Brunskog et al., to the room gain and the voice support. PMID:21428479

  12. VoICE: A semi-automated pipeline for standardizing vocal analysis across models

    PubMed Central

    Burkett, Zachary D.; Day, Nancy F.; Peñagarikano, Olga; Geschwind, Daniel H.; White, Stephanie A.

    2015-01-01

    The study of vocal communication in animal models provides key insight to the neurogenetic basis for speech and communication disorders. Current methods for vocal analysis suffer from a lack of standardization, creating ambiguity in cross-laboratory and cross-species comparisons. Here, we present VoICE (Vocal Inventory Clustering Engine), an approach to grouping vocal elements by creating a high dimensionality dataset through scoring spectral similarity between all vocalizations within a recording session. This dataset is then subjected to hierarchical clustering, generating a dendrogram that is pruned into meaningful vocalization “types” by an automated algorithm. When applied to birdsong, a key model for vocal learning, VoICE captures the known deterioration in acoustic properties that follows deafening, including altered sequencing. In a mammalian neurodevelopmental model, we uncover a reduced vocal repertoire of mice lacking the autism susceptibility gene, Cntnap2. VoICE will be useful to the scientific community as it can standardize vocalization analyses across species and laboratories. PMID:26018425

  13. Role of the Internal Superior Laryngeal Nerve in the Motor Responses of Vocal Cords and the Related Voice Acoustic Changes

    PubMed Central

    Seifpanahi, Sadegh; Izadi, Farzad; Jamshidi, Ali-Ashraf; Torabinezhad, Farhad; Sarrafzadeh, Javad; Mohammadi, Siavash

    2016-01-01

    Background: Repeated efforts by researchers to impose voice changes by laryngeal surface electrical stimulation (SES) have come to no avail. This present pre-experimental study employed a novel method for SES application so as to evoke the motor potential of the internal superior laryngeal nerve (ISLN) and create voice changes. Methods: Thirty-two normal individuals (22 females and 10 males) participated in this study. The subjects were selected from the students of Iran University of Medical Sciences in 2014. Two monopolar active electrodes were placed on the thyrohyoid space at the location of the ISLN entrance to the larynx and 1 dispersive electrode was positioned on the back of the neck. A current with special programmed parameters was applied to stimulate the ISLN via the active electrodes and simultaneously the resultant acoustic changes were evaluated. All the means of the acoustic parameters during SES and rest periods were compared using the paired t-test. Results: The findings indicated significant changes (P=0.00) in most of the acoustic parameters during SES presentation compared to them at rest. The mean of fundamental frequency standard deviation (SD F0) at rest was 1.54 (SD=0.55) versus 4.15 (SD=3.00) for the SES period. The other investigated parameters comprised fundamental frequency (F0), minimum F0, jitter, shimmer, harmonic-to-noise ratio (HNR), mean intensity, and minimum intensity. Conclusion: These findings demonstrated significant changes in most of the important acoustic features, suggesting that the stimulation of the ISLN via SES could induce motor changes in the vocal folds. The clinical applicability of the method utilized in the current study in patients with vocal fold paralysis requires further research. PMID:27582586

  14. Acoustic Analysis of Speech of Cochlear Implantees and Its Implications

    PubMed Central

    Patadia, Rajesh; Govale, Prajakta; Rangasayee, R.; Kirtane, Milind

    2012-01-01

    Objectives Cochlear implantees have improved speech production skills compared with those using hearing aids, as reflected in their acoustic measures. When compared to normal hearing controls, implanted children had fronted vowel space and their /s/ and /∫/ noise frequencies overlapped. Acoustic analysis of speech provides an objective index of perceived differences in speech production which can be precursory in planning therapy. The objective of this study was to compare acoustic characteristics of speech in cochlear implantees with those of normal hearing age matched peers to understand implications. Methods Group 1 consisted of 15 children with prelingual bilateral severe-profound hearing loss (age, 5-11 years; implanted between 4-10 years). Prior to an implant behind the ear, hearing aids were used; prior & post implantation subjects received at least 1 year of aural intervention. Group 2 consisted of 15 normal hearing age matched peers. Sustained productions of vowels and words with selected consonants were recorded. Using Praat software for acoustic analysis, digitized speech tokens were measured for F1, F2, and F3 of vowels; centre frequency (Hz) and energy concentration (dB) in burst; voice onset time (VOT in ms) for stops; centre frequency (Hz) of noise in /s/; rise time (ms) for affricates. A t-test was used to find significant differences between groups. Results Significant differences were found in VOT for /b/, F1 and F2 of /e/, and F3 of /u/. No significant differences were found for centre frequency of burst, energy concentration for stops, centre frequency of noise in /s/, or rise time for affricates. These findings suggest that auditory feedback provided by cochlear implants enable subjects to monitor production of speech sounds. Conclusion Acoustic analysis of speech is an essential method for discerning characteristics which have or have not been improved by cochlear implantation and thus for planning intervention. PMID:22701768

  15. Effects of a music therapy voice protocol on speech intelligibility, vocal acoustic measures, and mood of individuals with Parkinson's disease.

    PubMed

    Haneishi, E

    2001-01-01

    This study examined the effects of a Music Therapy Voice Protocol (MTVP) on speech intelligibility, vocal intensity, maximum vocal range, maximum duration of sustained vowel phonation, vocal fundamental frequency, vocal fundamental frequency variability, and mood of individuals with Parkinson's disease. Four female patients, who demonstrated voice and speech problems, served as their own controls and participated in baseline assessment (study pretest), a series of MTVP sessions involving vocal and singing exercises, and final evaluation (study posttest). In study pre and posttests, data for speech intelligibility and all acoustic variables were collected. Statistically significant increases were found in speech intelligibility, as rated by caregivers, and in vocal intensity from study pretest to posttest as the results of paired samples t-tests. In addition, before and after each MTVP session (session pre and posttests), self-rated mood scores and selected acoustic variables were collected. No significant differences were found in any of the variables from the session pretests to posttests, across the entire treatment period, or their interactions as the results of two-way ANOVAs with repeated measures. Although not significant, the mean of mood scores in session posttests (M = 8.69) was higher than that in session pretests (M = 7.93). PMID:11796078

  16. A Flexible Analysis Tool for the Quantitative Acoustic Assessment of Infant Cry

    PubMed Central

    Reggiannini, Brian; Sheinkopf, Stephen J.; Silverman, Harvey F.; Li, Xiaoxue; Lester, Barry M.

    2015-01-01

    Purpose In this article, the authors describe and validate the performance of a modern acoustic analyzer specifically designed for infant cry analysis. Method Utilizing known algorithms, the authors developed a method to extract acoustic parameters describing infant cries from standard digital audio files. They used a frame rate of 25 ms with a frame advance of 12.5 ms. Cepstral-based acoustic analysis proceeded in 2 phases, computing frame-level data and then organizing and summarizing this information within cry utterances. Using signal detection methods, the authors evaluated the accuracy of the automated system to determine voicing and to detect fundamental frequency (F0) as compared to voiced segments and pitch periods manually coded from spectrogram displays. Results The system detected F0 with 88% to 95% accuracy, depending on tolerances set at 10 to 20 Hz. Receiver operating characteristic analyses demonstrated very high accuracy at detecting voicing characteristics in the cry samples. Conclusions This article describes an automated infant cry analyzer with high accuracy to detect important acoustic features of cry. A unique and important aspect of this work is the rigorous testing of the system’s accuracy as compared to ground-truth manual coding. The resulting system has implications for basic and applied research on infant cry development. PMID:23785178

  17. A structured approach to voice range profile (phonetogram) analysis.

    PubMed

    Sulter, A M; Wit, H P; Schutte, H K; Miller, D G

    1994-10-01

    A new method to analyze voice range profiles (phonetograms) is described. The structured analysis is based on quantitatively determining the features: shape, area, and "speaking range" dynamics, without distorting the shape of phonetograms. The parameter sets describing these features are calculated independently of fundamental frequency, which makes it possible to compare phonetograms. Two phonetograms representing a normal and a pathological example are used to illustrate the proposed method. The process provides a tool for establishing normative data for specified groups. PMID:7823554

  18. Assessment of voice quality: Current state-of-the-art.

    PubMed

    Barsties, Ben; De Bodt, Marc

    2015-06-01

    Voice quality is not clearly defined but it can be concluded that it is a multidimensional perceived construct. Therefore, there are broadly two approaches to measure voice quality: (1) subjective measurements to score a client's voice that reflects his or her judgment of the voice and (2) objective measurements by applying specific algorithm to quantify certain aspects of a correlate of vocal production. This paper proposes a collection and discusses a number of critical issues of the current state-of-the-art in voice quality assessments of auditory-perceptual judgment, objective-acoustic analysis and aerodynamic measurements in clinical practice and research that maybe helpful for clinicians and researchers. PMID:25440411

  19. Voice Dysfunction in Dysarthria: Application of the Multi-Dimensional Voice Program.

    ERIC Educational Resources Information Center

    Kent, R. D.; Vorperian, H. K.; Kent, J. F.; Duffy, J. R.

    2003-01-01

    Part 1 of this paper recommends procedures and standards for the acoustic analysis of voice in individuals with dysarthria. In Part 2, acoustic data are reviewed for dysarthria associated with Parkinson disease (PD), cerebellar disease, amytrophic lateral sclerosis, traumatic brain injury, unilateral hemispheric stroke, and essential tremor.…

  20. Vibro-acoustic analysis of composite plates

    NASA Astrophysics Data System (ADS)

    Sarigül, A. S.; Karagözlü, E.

    2014-03-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.

  1. Voice characteristics of acromegaly.

    PubMed

    Aydin, Kadriye; Turkyilmaz, Didem; Ozturk, Burak; Dagdelen, Selcuk; Ozgen, Burce; Unal, Faruk; Erbas, Tomris

    2013-03-01

    Acromegaly's effect on voice is still indefinite. We aimed to define acoustic characteristics of patients with acromegaly. Cross-sectional case-control study was designed. Thirty-seven patients with acromegaly and 30 age- and sex-matched healthy controls were included. Fundamental frequency (F0) and measurements related to frequency, amplitude, noise and tremor of the obtained voice sample were analyzed using Multi-Dimensional Voice Program. Absolute jitter (Jita) and jitter percent (Jitt), shimmer in decibel and shimmer percent, noise to harmonic ratio and soft phonation index, fundamental frequency tremor frequency and frequency tremor intensity index represented the parameters related to frequency, amplitude, noise and tremor of the voice sample, respectively. Patients with acromegaly, especially the uncontrolled patients, exhibited significant differences in frequency perturbation measurements. Jitt of all patients and Jita of uncontrolled patients were significantly higher than that of control group (p = 0.044 and p = 0.043, respectively). Jitter which is a measure of frequency perturbation can be assumed as an indicator of hoarse and deepened voice. Jita of all patients and Jitt of uncontrolled patients were elevated, but not reaching a statistical significance. Controlled and active patients had similar analysis of acoustic parameters. In the correlation analysis, shimmer and IGF-1 (insulin like growth factor 1) was found to be positively correlated in all patients with acromegaly and in female patients. When the p value is adjusted according to Bonferroni correction regarding the use of ten parameters for acoustic analysis (so adjusted p is <0.005), all the statistically significant findings become insignificant. Considering the parameters test different properties of voice, it is reasonable to pay attention to the findings. Patients with acromegaly have increased frequency perturbations measures, but this increase is non-significant according to Bonferroni

  2. Physiological attributes of vocal fatigue and their acoustic effects: a synthesis of findings for a criterion-based prevention of acquired voice disorders.

    PubMed

    Boucher, Victor J; Ayad, Tareck

    2010-05-01

    The lack of a physiological definition of "vocal fatigue" is a central problem in prevention research that seeks to identify effects of voice effort and acoustic signs of potential vocal fold lesions. This report presents a three-part synthesis of electromyographic (EMG) and acoustic observations from a study that served to define physiological features of vocal fatigue. The study used a technique of EMG to show that, contrary to views that laryngeal tissues are largely nonfatiguable, voice effort induces spectral compression in the contraction potentials of glottal adductors typically associated with muscle fatigue. In subsequent analyses, these observable attributes served to identify, in seven subjects with widely differing profiles, consistent signs of voice tremor and effects of vocal loading on the voice apparatus. Given the novel character of this criterion-based approach, the first part (section "The Rationale of Electromyographic Observations of Fatigue") describes the EMG technique and its usefulness in observing in vivo effects of vocal loading. The second part (section "Acoustic Signs of Fatigue in Muscles Involved in Voicing") summarizes the results of a test that served to determine whether the identified signs of tremor reflect muscle fatigue induced by voice effort or by "general fatigue" associated with waking hours. The third part (section "Compensatory Stabilization of Tremor and Effects of 'Critical Fatigue'") presents the results of analyses of compensatory effects in three laryngeal muscles by reference to EMG observations of one subject in conditions of vocal loading. Taken together, the results illustrate the benefits of an approach based on objective criterion changes in muscle fatigue and show that valid tremor signs may, nonetheless, be sporadic, given the varying compensatory behavior of muscles in fatiguing conditions. PMID:19321298

  3. Acoustic correlates of vocal quality.

    PubMed

    Eskenazi, L; Childers, D G; Hicks, D M

    1990-06-01

    We have investigated the relationship between various voice qualities and several acoustic measures made from the vowel /i/ phonated by subjects with normal voices and patients with vocal disorders. Among the patients (pathological voices), five qualities were investigated: overall severity, hoarseness, breathiness, roughness, and vocal fry. Six acoustic measures were examined. With one exception, all measures were extracted from the residue signal obtained by inverse filtering the speech signal using the linear predictive coding (LPC) technique. A formal listening test was implemented to rate each pathological voice for each vocal quality. A formal listening test also rated overall excellence of the normal voices. A scale of 1-7 was used. Multiple linear regression analysis between the results of the listening test and the various acoustic measures was used with the prediction sums of squares (PRESS) as the selection criteria. Useful prediction equations of order two or less were obtained relating certain acoustic measures and the ratings of pathological voices for each of the five qualities. The two most useful parameters for predicting vocal quality were the Pitch Amplitude (PA) and the Harmonics-to-Noise Ratio (HNR). No acoustic measure could rank the normal voices. PMID:2359270

  4. An acoustical and perceptual analysis of the vocal behavior of classroom teachers.

    PubMed

    Schmidt, C P; Andrews, M L; McCutcheon, J W

    1998-12-01

    This study examined perceptual evaluations of classroom teachers, acoustic measures of their voices ( fundamental frequency [F0], frequency range [F0SD], % jitter, and % shimmer), and behavioral measures (rate, dysfluencies, and episodes of vocal fry). This preliminary study attempted to identify perceptual and acoustic measures that discriminate between effective and less effective classroom teachers. Seven teachers were recorded on audiotape while presenting a 10-12 minute lecture. Voice samples (N > 200) for each teacher were subjected to acoustic analysis. Audiotapes were evaluated by listeners (N = 180), who scale-rated and used an adjective checklist to determine teachers' overall effectiveness. A three-member team evaluated global aspects of voice (e.g., use of pauses, inflections, contours, and phrasing). Results indicated that frequency range, frequency variability, rate, and number of dysfluencies appeared to correlate with perceptual judgments of teaching effectiveness and specific adjective descriptors. F0, % jitter, and % shimmer did not appear to be linked to perceptual judgments. Individual case profiles were established and recommendations were made for future empirical research involving larger samples of teachers. PMID:9988030

  5. Effects of voice training and voice hygiene education on acoustic and perceptual speech parameters and self-reported vocal well-being in female teachers.

    PubMed

    Ilomaki, Irma; Laukkanen, Anne-Maria; Leppanen, Kirsti; Vilkman, Erkki

    2008-01-01

    Voice education programs may help in optimizing teachers' voice use. This study compared effects of voice training (VT) and voice hygiene lecture (VHL) in 60 randomly assigned female teachers. All 60 attended the lecture, and 30 completed a short training course in addition. Text reading was recorded in working environments and analyzed for fundamental frequency (F0), equivalent sound level (Leq), alpha ratio, jitter, shimmer, and perceptual quality. Self-reports of vocal well-being were registered. In the VHL group, increased F0 and difficulty of phonation and in the VT group decreased perturbation, increased alpha ratio, easier phonation, and improved perceptual and self-reported voice quality were found. Both groups equally self-reported increase of voice care knowledge. Results seem to indicate improved vocal well-being after training. PMID:18569647

  6. Acoustic Gaits: Gait Analysis With Footstep Sounds.

    PubMed

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred

    2015-08-01

    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured. PMID:25769144

  7. The professional voice.

    PubMed

    Benninger, M S

    2011-02-01

    The human voice is not only the key to human communication but also serves as the primary musical instrument. Many professions rely on the voice, but the most noticeable and visible are singers. Care of the performing voice requires a thorough understanding of the interaction between the anatomy and physiology of voice production, along with an awareness of the interrelationships between vocalisation, acoustic science and non-vocal components of performance. This review gives an overview of the care and prevention of professional voice disorders by describing the unique and integrated anatomy and physiology of singing, the roles of development and training, and the importance of the voice care team. PMID:21029501

  8. Effects of Intensive Voice Treatment (the Lee Silverman Voice Treatment [LSVT]) on Vowel Articulation in Dysarthric Individuals with Idiopathic Parkinson Disease: Acoustic and Perceptual Findings

    ERIC Educational Resources Information Center

    Sapir, Shimon; Spielman, Jennifer L.; Ramig, Lorraine O.; Story, Brad H.; Fox, Cynthia

    2007-01-01

    Purpose: To evaluate the effects of intensive voice treatment targeting vocal loudness (the Lee Silverman Voice Treatment [LSVT]) on vowel articulation in dysarthric individuals with idiopathic Parkinson's disease (PD). Method: A group of individuals with PD receiving LSVT (n = 14) was compared to a group of individuals with PD not receiving LSVT…

  9. Voice-onset time and buzz-onset time identification: A ROC analysis

    NASA Astrophysics Data System (ADS)

    Lopez-Bascuas, Luis E.; Rosner, Burton S.; Garcia-Albea, Jose E.

    2001-05-01

    Previous studies have employed signal detection theory to analyze data from speech and nonspeech experiments. Typically, signal distributions were assumed to be Gaussian. Schouten and van Hessen [J. Acoust. Soc. Am. 104, 2980-2990 (1998)] explicitly tested this assumption for an intensity continuum and a speech continuum. They measured response distributions directly and, assuming an interval scale, concluded that the Gaussian assumption held for both continua. However, Pastore and Macmillan [J. Acoust. Soc. Am. 111, 2432 (2002)] applied ROC analysis to Schouten and van Hessen's data, assuming only an ordinal scale. Their ROC curves suppported the Gaussian assumption for the nonspeech signals only. Previously, Lopez-Bascuas [Proc. Audit. Bas. Speech Percept., 158-161 (1997)] found evidence with a rating scale procedure that the Gaussian model was inadequate for a voice-onset time continuum but not for a noise-buzz continuum. Both continua contained ten stimuli with asynchronies ranging from -35 ms to +55 ms. ROC curves (double-probability plots) are now reported for each pair of adjacent stimuli on the two continua. Both speech and nonspeech ROCs often appeared nonlinear, indicating non-Gaussian signal distributions under the usual zero-variance assumption for response criteria.

  10. Objective voice and speech analysis of persons with chronic hoarseness by prosodic analysis of speech samples.

    PubMed

    Haderlein, Tino; Döllinger, Michael; Matoušek, Václav; Nöth, Elmar

    2016-10-01

    Automatic voice assessment is often performed using sustained vowels. In contrast, speech analysis of read-out texts can be applied to voice and speech assessment. Automatic speech recognition and prosodic analysis were used to find regression formulae between automatic and perceptual assessment of four voice and four speech criteria. The regression was trained with 21 men and 62 women (average age 49.2 years) and tested with another set of 24 men and 49 women (48.3 years), all suffering from chronic hoarseness. They read the text 'Der Nordwind und die Sonne' ('The North Wind and the Sun'). Five voice and speech therapists evaluated the data on 5-point Likert scales. Ten prosodic and recognition accuracy measures (features) were identified which describe all the examined criteria. Inter-rater correlation within the expert group was between r = 0.63 for the criterion 'match of breath and sense units' and r = 0.87 for the overall voice quality. Human-machine correlation was between r = 0.40 for the match of breath and sense units and r = 0.82 for intelligibility. The perceptual ratings of different criteria were highly correlated with each other. Likewise, the feature sets modeling the criteria were very similar. The automatic method is suitable for assessing chronic hoarseness in general and for subgroups of functional and organic dysphonia. In its current version, it is almost as reliable as a randomly picked rater from a group of voice and speech therapists. PMID:26016644

  11. Acoustic Speech Analysis Of Wayang Golek Puppeteer

    NASA Astrophysics Data System (ADS)

    Hakim, Faisal Abdul; Mandasari, Miranti Indar; Sarwono, Joko

    2010-12-01

    Active disguising speech is one problem to be taken into account in forensic speaker verification or identification processes. The verification processes are usually carried out by comparison between unknown samples and known samples. Active disguising can be occurred on both samples. To simulate the condition of speech disguising, voices of Wayang Golek Puppeteer were used. It is assumed that wayang golek puppeteer is a master of disguise. He can manipulate his voice into many different types of character's voices. This paper discusses the speech characteristics of 2 puppeteers. Comparison was made between the voices of puppeteer's habitual voice with his manipulated voice.

  12. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  13. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  14. Phonation Types in Marathi: An Acoustic Investigation

    ERIC Educational Resources Information Center

    Berkson, Kelly Harper

    2013-01-01

    This dissertation presents a comprehensive instrumental acoustic analysis of phonation type distinctions in Marathi, an Indic language with numerous breathy voiced sonorants and obstruents. Important new facts about breathy voiced sonorants, which are crosslinguistically rare, are established: male and female speakers cue breathy phonation in…

  15. Measures of voiced frication for automatic classification

    NASA Astrophysics Data System (ADS)

    Jackson, Philip J. B.; Jesus, Luis M. T.; Shadle, Christine H.; Pincas, Jonathan

    2001-05-01

    As an approach to understanding the characteristics of the acoustic sources in voiced fricatives, it seems apt to draw on knowledge of vowels and voiceless fricatives, which have been relatively well studied. However, the presence of both phonation and frication in these mixed-source sounds offers the possibility of mutual interaction effects, with variations across place of articulation. This paper examines the acoustic and articulatory consequences of these interactions and explores automatic techniques for finding parametric and statistical descriptions of these phenomena. A reliable and consistent set of such acoustic cues could be used for phonetic classification or speech recognition. Following work on devoicing of European Portuguese voiced fricatives [Jesus and Shadle, in Mamede et al. (eds.) (Springer-Verlag, Berlin, 2003), pp. 1-8]. and the modulating effect of voicing on frication [Jackson and Shadle, J. Acoust. Soc. Am. 108, 1421-1434 (2000)], the present study focuses on three types of information: (i) sequences and durations of acoustic events in VC transitions, (ii) temporal, spectral and modulation measures from the periodic and aperiodic components of the acoustic signal, and (iii) voicing activity derived from simultaneous EGG data. Analysis of interactions observed in British/American English and European Portuguese speech corpora will be compared, and the principal findings discussed.

  16. Spectral Analysis of the Voice in Down Syndrome

    ERIC Educational Resources Information Center

    Albertini, G.; Bonassi, S.; Dall'Armi, V.; Giachetti, I.; Giaquinto, S.; Mignano, M.

    2010-01-01

    The voice quality of individuals with Down Syndrome (DS) is generally described as husky, monotonous and raucous. On the other hand, the voice of DS children is characterized by breathiness, roughness, and nasality and is typically low pitched. However, research on phonation and intonation in these participants is limited. The present study was…

  17. Vibro-acoustic analysis of the acoustic-structure interaction of flexible structure due to acoustic excitation

    NASA Astrophysics Data System (ADS)

    Djojodihardjo, Harijono

    2015-03-01

    The application of BE-FE acoustic-structure interaction on a structure subject to acoustic load is elaborated using the boundary element-finite element acoustic structural coupling and the utilization of the computational scheme developed earlier. The plausibility of the numerical treatment is investigated and validated through application to generic cases. The analysis carried out in the work is intended to serve as a baseline in the analysis of acoustic structure interaction for lightweight structures. Results obtained thus far exhibit the robustness of the method developed.

  18. Nonlinear dynamic analysis of voices before and after surgical excision of vocal polyps

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; McGilligan, Clancy; Zhou, Liang; Vig, Mark; Jiang, Jack J.

    2004-05-01

    Phase space reconstruction, correlation dimension, and second-order entropy, methods from nonlinear dynamics, are used to analyze sustained vowels generated by patients before and after surgical excision of vocal polyps. Two conventional acoustic perturbation parameters, jitter and shimmer, are also employed to analyze voices before and after surgery. Presurgical and postsurgical analyses of jitter, shimmer, correlation dimension, and second-order entropy are statistically compared. Correlation dimension and second-order entropy show a statistically significant decrease after surgery, indicating reduced complexity and higher predictability of postsurgical voice dynamics. There is not a significant postsurgical difference in shimmer, although jitter shows a significant postsurgical decrease. The results suggest that jitter and shimmer should be applied to analyze disordered voices with caution; however, nonlinear dynamic methods may be useful for analyzing abnormal vocal function and quantitatively evaluating the effects of surgical excision of vocal polyps.

  19. Effects of singing training on the speaking voice of voice majors.

    PubMed

    Mendes, Ana P; Brown, W S; Rothman, Howard B; Sapienza, Christine

    2004-03-01

    This longitudinal study gathered data with regard to the question: Does singing training have an effect on the speaking voice? Fourteen voice majors (12 females and two males; age range 17 to 20 years) were recorded once a semester for four consecutive semesters, while sustaining vowels and reading the "Rainbow Passage." Acoustic measures included speaking fundamental frequency (SFF) and sound pressure level (SLP). Perturbation measures included jitter, shimmer, and harmonic-to-noise ratio. Temporal measures included sentence, consonant, and diphthong durations. Results revealed that, as the number of semesters increased, the SFF increased while jitter and shimmer slightly decreased. Repeated measure analysis, however, indicated that none of the acoustic, temporal, or perturbation differences were statistically significant. These results confirm earlier cross-sectional studies that compared singers with nonsingers, in that singing training mostly affects the singing voice and rarely the speaking voice. PMID:15070227

  20. Evaluation of voice pathology based on the estimation of vocal fold biomechanical parameters.

    PubMed

    Gómez-Vilda, P; Fernández-Baillo, R; Nieto, A; Díaz, F; Fernández-Camacho, F J; Rodellar, V; Alvarez, A; Martínez, R

    2007-07-01

    Voice disorders are a source of increasing concern as normal voice quality is a social demand for at least one third of the population in developed countries in cases where voice is an essential resource in professional exercise. In addition, the growing exposure to certain pathogenic factors such as smoking, alcohol abuse, air pollution, and acoustic contamination, and other problems such as gastro-esopharyngeal reflux or allergy as well as aging, aggravate voice disorders. Voice pathologies justify the assignment of larger resources to prevention policies, early detection, and less aggressive treatments. Traditional pathology detection relies on perceptive evaluation methods (GRABS), acoustic analysis, and visual inspection (indirect laryngoscopy, and modern fibro-endo-stroboscopy). This article describes a method for voice pathology detection based on the noninvasive estimation of vocal cord biomechanical parameters derived from voice using specific signal processing methods. Preliminary results using records from patients showing four frequent causes of voice pathology (nodules, polyps, chronic laryngitis, and Reinke's edema) are given. The results show that the alteration (distortion, unbalance, or deviation) of cord biomechanical parameters may serve as an indicator of pathology. Statistical methods based on hierarchical clustering and principal component analysis reveal that combining biomechanical estimates with classic perturbation parameters increases the accuracy of acoustic analysis, improving the detection of voice pathology. This research could open new possibilities for noninvasive screening of vocal fold pathologies and could be used in the implantation of e-health voice care services. PMID:16549321

  1. Acoustic echo cancellation for full-duplex voice transmission on fading channels

    NASA Technical Reports Server (NTRS)

    Park, Sangil; Messer, Dion D.

    1990-01-01

    This paper discusses the implementation of an adaptive acoustic echo canceler for a hands-free cellular phone operating on a fading channel. The adaptive lattice structure, which is particularly known for faster convergence relative to the conventional tapped-delay-line (TDL) structure, is used in the initialization stage. After convergence, the lattice coefficients are converted into the coefficients for the TDL structure which can accommodate a larger number of taps in real-time operation due to its computational simplicity. The conversion method of the TDL coefficients from the lattice coefficients is derived and the DSP56001 assembly code for the lattice and TDL structure is included, as well as simulation results and the schematic diagram for the hardware implementation.

  2. Computerized Analysis of Acoustic Characteristics of Patients with Internal Nasal Valve Collapse Before and After Functional Rhinoplasty

    PubMed Central

    Rezaei, Fariba; Omrani, Mohammad Reza; Abnavi, Fateme; Mojiri, Fariba; Golabbakhsh, Marzieh; Barati, Sohrab; Mahaki, Behzad

    2015-01-01

    Acoustic analysis of sounds produced during speech provides significant information about the physiology of larynx and vocal tract. The analysis of voice power spectrum is a fundamental sensitive method of acoustic assessment that provides valuable information about the voice source and characteristics of vocal tract resonance cavities. The changes in long-term average spectrum (LTAS) spectral tilt and harmony to noise ratio (HNR) were analyzed to assess the voice quality before and after functional rhinoplasty in patients with internal nasal valve collapse. Before and 3 months after functional rhinoplasty, 12 participants were evaluated and HNR and LTAS spectral tilt in /a/ and /i/ vowels were estimated. It was seen that an increase in HNR and a decrease in LTAS spectral tilt existed after surgery. Mean LTAS spectral tilt in vowel /a/ decreased from 2.37 ± 1.04 to 2.28 ± 1.17 (P = 0.388), and it was decreased from 4.16 ± 1.65 to 2.73 ± 0.69 in vowel /i/ (P = 0.008). Mean HNR in the vowel /a/ increased from 20.71 ± 3.93 to 25.06 ± 2.67 (P = 0.002), and it was increased from 21.28 ± 4.11 to 25.26 ± 3.94 in vowel /i/ (P = 0.002). Modification of the vocal tract caused the vocal cords to close sufficiently, and this showed that although rhinoplasty did not affect the larynx directly, it changes the structure of the vocal tract and consequently the resonance of voice production. The aim of this study was to investigate the changes in voice parameters after functional rhinoplasty in patients with internal nasal valve collapse by computerized analysis of acoustic characteristics. PMID:26955564

  3. Computerized Analysis of Acoustic Characteristics of Patients with Internal Nasal Valve Collapse Before and After Functional Rhinoplasty.

    PubMed

    Rezaei, Fariba; Omrani, Mohammad Reza; Abnavi, Fateme; Mojiri, Fariba; Golabbakhsh, Marzieh; Barati, Sohrab; Mahaki, Behzad

    2015-01-01

    Acoustic analysis of sounds produced during speech provides significant information about the physiology of larynx and vocal tract. The analysis of voice power spectrum is a fundamental sensitive method of acoustic assessment that provides valuable information about the voice source and characteristics of vocal tract resonance cavities. The changes in long-term average spectrum (LTAS) spectral tilt and harmony to noise ratio (HNR) were analyzed to assess the voice quality before and after functional rhinoplasty in patients with internal nasal valve collapse. Before and 3 months after functional rhinoplasty, 12 participants were evaluated and HNR and LTAS spectral tilt in /a/ and /i/ vowels were estimated. It was seen that an increase in HNR and a decrease in LTAS spectral tilt existed after surgery. Mean LTAS spectral tilt in vowel /a/ decreased from 2.37 ± 1.04 to 2.28 ± 1.17 (P = 0.388), and it was decreased from 4.16 ± 1.65 to 2.73 ± 0.69 in vowel /i/ (P = 0.008). Mean HNR in the vowel /a/ increased from 20.71 ± 3.93 to 25.06 ± 2.67 (P = 0.002), and it was increased from 21.28 ± 4.11 to 25.26 ± 3.94 in vowel /i/ (P = 0.002). Modification of the vocal tract caused the vocal cords to close sufficiently, and this showed that although rhinoplasty did not affect the larynx directly, it changes the structure of the vocal tract and consequently the resonance of voice production. The aim of this study was to investigate the changes in voice parameters after functional rhinoplasty in patients with internal nasal valve collapse by computerized analysis of acoustic characteristics. PMID:26955564

  4. Neural mechanisms for voice recognition.

    PubMed

    Andics, Attila; McQueen, James M; Petersson, Karl Magnus; Gál, Viktor; Rudas, Gábor; Vidnyánszky, Zoltán

    2010-10-01

    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The pre-defined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible 'mean voice' representations. PMID:20553895

  5. Wavelet Analysis for Acoustic Phased Array

    NASA Astrophysics Data System (ADS)

    Kozlov, Inna; Zlotnick, Zvi

    2003-03-01

    Wavelet spectrum analysis is known to be one of the most powerful tools for exploring quasistationary signals. In this paper we use wavelet technique to develop a new Direction Finding (DF) Algorithm for the Acoustic Phased Array (APA) systems. Utilising multi-scale analysis of libraries of wavelets allows us to work with frequency bands instead of individual frequency of an acoustic source. These frequency bands could be regarded as features extracted from quasistationary signals emitted by a noisy object. For detection, tracing and identification of a sound source in a noisy environment we develop smart algorithm. The essential part of this algorithm is a special interacting procedure of the above-mentioned DF-algorithm and the wavelet-based Identification (ID) algorithm developed in [4]. Significant improvement of the basic properties of a receiving APA pattern is achieved.

  6. Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: The role of vocalizer body size and voice-acoustic allometry

    NASA Astrophysics Data System (ADS)

    Rendall, Drew; Kollias, Sophie; Ney, Christina; Lloyd, Peter

    2005-02-01

    Key voice features-fundamental frequency (F0) and formant frequencies-can vary extensively between individuals. Much of the variation can be traced to differences in the size of the larynx and vocal-tract cavities, but whether these differences in turn simply reflect differences in speaker body size (i.e., neutral vocal allometry) remains unclear. Quantitative analyses were therefore undertaken to test the relationship between speaker body size and voice F0 and formant frequencies for human vowels. To test the taxonomic generality of the relationships, the same analyses were conducted on the vowel-like grunts of baboons, whose phylogenetic proximity to humans and similar vocal production biology and voice acoustic patterns recommend them for such comparative research. For adults of both species, males were larger than females and had lower mean voice F0 and formant frequencies. However, beyond this, F0 variation did not track body-size variation between the sexes in either species, nor within sexes in humans. In humans, formant variation correlated significantly with speaker height but only in males and not in females. Implications for general vocal allometry are discussed as are implications for speech origins theories, and challenges to them, related to laryngeal position and vocal tract length. .

  7. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  8. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks

    PubMed Central

    Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-01-01

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375

  9. An Investigation of Vocal Tract Characteristics for Acoustic Discrimination of Pathological Voices

    PubMed Central

    Lee, Jung-Won; Kang, Hong-Goo; Choi, Jeung-Yoon; Son, Young-Ik

    2013-01-01

    This paper investigates the effectiveness of measures related to vocal tract characteristics in classifying normal and pathological speech. Unlike conventional approaches that mainly focus on features related to the vocal source, vocal tract characteristics are examined to determine if interaction effects between vocal folds and the vocal tract can be used to detect pathological speech. Especially, this paper examines features related to formant frequencies to see if vocal tract characteristics are affected by the nature of the vocal fold-related pathology. To test this hypothesis, stationary fragments of vowel /aa/ produced by 223 normal subjects, 472 vocal fold polyp subjects, and 195 unilateral vocal cord paralysis subjects are analyzed. Based on the acoustic-articulatory relationships, phonation for pathological subjects is found to be associated with measures correlated with a raised tongue body or an advanced tongue root. Vocal tract-related features are also found to be statistically significant from the Kruskal-Wallis test in distinguishing normal and pathological speech. Classification results demonstrate that combining the formant measurements with vocal fold-related features results in improved performance in differentiating vocal pathologies including vocal polyps and unilateral vocal cord paralysis, which suggests that measures related to vocal tract characteristics may provide additional information in diagnosing vocal disorders. PMID:24288686

  10. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks.

    PubMed

    Luque, Joaquín; Larios, Diego F; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-01-01

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375

  11. Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling

    PubMed Central

    Samlan, Robin A.; Story, Brad H.

    2011-01-01

    Purpose To relate vocal fold structure and kinematics to two acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method A computational, kinematic model of the medial surfaces of the vocal folds was used to specify features of vocal fold structure and vibration in a manner consistent with breathy voice. Four model parameters were altered: degree of vocal fold adduction, surface bulging, vibratory nodal point, and supraglottal constriction. CPP and H1-H2 were measured from simulated glottal area, glottal flow and acoustic waveforms and related to the underlying vocal fold kinematics. Results CPP decreased with increased separation of the vocal processes, whereas the nodal point location had little effect. H1-H2 increased as a function of separation of the vocal processes in the range of 1–1.5 mm and decreased with separation > 1.5 mm. Conclusions CPP is generally a function of vocal process separation. H1*-H2* will increase or decrease with vocal process separation based on vocal fold shape, pivot point for the rotational mode, and supraglottal vocal tract shape, limiting its utility as an indicator of breathy voice. Future work will relate the perception of breathiness to vocal fold kinematics and acoustic measures. PMID:21498582

  12. Performance of wavelet analysis and neural networks for pathological voices identification

    NASA Astrophysics Data System (ADS)

    Salhi, Lotfi; Talbi, Mourad; Abid, Sabeur; Cherif, Adnane

    2011-09-01

    Within the medical environment, diverse techniques exist to assess the state of the voice of the patient. The inspection technique is inconvenient for a number of reasons, such as its high cost, the duration of the inspection, and above all, the fact that it is an invasive technique. This study focuses on a robust, rapid and accurate system for automatic identification of pathological voices. This system employs non-invasive, non-expensive and fully automated method based on hybrid approach: wavelet transform analysis and neural network classifier. First, we present the results obtained in our previous study while using classic feature parameters. These results allow visual identification of pathological voices. Second, quantified parameters drifting from the wavelet analysis are proposed to characterise the speech sample. On the other hand, a system of multilayer neural networks (MNNs) has been developed which carries out the automatic detection of pathological voices. The developed method was evaluated using voice database composed of recorded voice samples (continuous speech) from normophonic or dysphonic speakers. The dysphonic speakers were patients of a National Hospital 'RABTA' of Tunis Tunisia and a University Hospital in Brussels, Belgium. Experimental results indicate a success rate ranging between 75% and 98.61% for discrimination of normal and pathological voices using the proposed parameters and neural network classifier. We also compared the average classification rate based on the MNN, Gaussian mixture model and support vector machines.

  13. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  14. The Role of Pitch and Timbre in Voice Gender Categorization

    PubMed Central

    Pernet, Cyril R.; Belin, Pascal

    2012-01-01

    Voice gender perception can be thought of as a mixture of low-level perceptual feature extraction and higher-level cognitive processes. Although it seems apparent that voice gender perception would rely on low-level pitch analysis, many lines of research suggest that this is not the case. Indeed, voice gender perception has been shown to rely on timbre perception and to be categorical, i.e., to depend on accessing a gender model or representation. Here, we used a unique combination of acoustic stimulus manipulation and mathematical modeling of human categorization performances to determine the relative contribution of pitch and timbre to this process. Contrary to the idea that voice gender perception relies on timber only, we demonstrate that voice gender categorization can be performed using pitch only but more importantly that pitch is used only when timber information is ambiguous (i.e., for more androgynous voices). PMID:22347205

  15. Voice analysis as an objective state marker in bipolar disorder.

    PubMed

    Faurholt-Jepsen, M; Busk, J; Frost, M; Vinberg, M; Christensen, E M; Winther, O; Bardram, J E; Kessing, L V

    2016-01-01

    Changes in speech have been suggested as sensitive and valid measures of depression and mania in bipolar disorder. The present study aimed at investigating (1) voice features collected during phone calls as objective markers of affective states in bipolar disorder and (2) if combining voice features with automatically generated objective smartphone data on behavioral activities (for example, number of text messages and phone calls per day) and electronic self-monitored data (mood) on illness activity would increase the accuracy as a marker of affective states. Using smartphones, voice features, automatically generated objective smartphone data on behavioral activities and electronic self-monitored data were collected from 28 outpatients with bipolar disorder in naturalistic settings on a daily basis during a period of 12 weeks. Depressive and manic symptoms were assessed using the Hamilton Depression Rating Scale 17-item and the Young Mania Rating Scale, respectively, by a researcher blinded to smartphone data. Data were analyzed using random forest algorithms. Affective states were classified using voice features extracted during everyday life phone calls. Voice features were found to be more accurate, sensitive and specific in the classification of manic or mixed states with an area under the curve (AUC)=0.89 compared with an AUC=0.78 for the classification of depressive states. Combining voice features with automatically generated objective smartphone data on behavioral activities and electronic self-monitored data increased the accuracy, sensitivity and specificity of classification of affective states slightly. Voice features collected in naturalistic settings using smartphones may be used as objective state markers in patients with bipolar disorder. PMID:27434490

  16. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640

  17. Acoustic attenuation analysis program for ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Kunze, R. K., Jr.

    1972-01-01

    A computerized acoustic attenuation prediction procedure has been developed to evaluate acoustically lined ducts for various geometric and environmental parameters. The analysis procedure is based on solutions to the acoustic wave equation, assuming uniform airflow on a duct cross section, combined with appropriate mathematical lining impedance models. The impedance models included in the analysis procedure are representative of either perforated sheet or porous polyimide impregnated fiberglass facing sheet coupled with a cellular backing space. Advantages and limitations of the analysis procedure are reviewed.

  18. Giving Voice to Emotion: Voice Analysis Technology Uncovering Mental States is Playing a Growing Role in Medicine, Business, and Law Enforcement.

    PubMed

    Allen, Summer

    2016-01-01

    It's tough to imagine anything more frustrating than interacting with a call center. Generally, people don't reach out to call centers when they?re happy-they're usually trying to get help with a problem or gearing up to do battle over a billing error. Add in an automatic phone tree, and you have a recipe for annoyance. But what if that robotic voice offering you a smorgasbord of numbered choices could tell that you were frustrated and then funnel you to an actual human being? This type of voice analysis technology exists, and it's just one example of the many ways that computers can use your voice to extract information about your mental and emotional state-including information you may not think of as being accessible through your voice alone. PMID:27187541

  19. Quantification of dyspnea confirmed by voice pitch analysis.

    PubMed

    Mohler, J G

    1982-01-01

    Previous efforts to quantitate dyspnea are reviewed. In this study, the voice was recorded at each level of exercise on 44 healthy male subjects exercised to maximum oxygen consumption (MVO2) by incremental treadmill testing. The fundamental frequency (FO) was compared to the physical changes noted during exercise associated with dyspnea at each level of oxygen uptake (VO2) and minute ventilation (VE). FO increased linearly with VO2 and VE. FO at MVO2 was about 1.66 times FO at rest; the slope of the increase was an individual characteristic. The sum of the graded signs of dyspnea codes (dyspnea sum index, DSI) also agreed with the measured voice changes, VO2, VE and the subjective assessment of dyspnea by the subject. Equations for predicting MVO2 from submaximal exercise are given which tested favorably against the actual MVO2. Because resting FO was most affected by anxiety, the equation predicting MVO2 from FO was not as reliable as from DSI. FO is a function of elastic properties of the vocal folds, which change in response to increased VE by permitting air to pass through "air shunts" of the arytenoid aperture. This creates a falsetto characteristic to the voice and is perceived as a stress quality. FO is a measurement reflecting many changes in the larynx with stress of exercise and perceived dyspnea. The laryngeal changes during exercise are reviewed, and the basis for the correlation between qualities of the voice and quantities such as FO are suggested. PMID:6927538

  20. Acoustical analysis of gear housing vibration

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.; Oswald, Fred B.

    1991-01-01

    The modal and acoustical analysis of the NASA gear-noise rig is described. Experimental modal analysis techniques were used to determine the modes of vibration of the transmission housing. The resulting modal data were then used in a boundary element method (BEM) analysis to calculate the sound pressure and sound intensity on the surface of the housing as well as the radiation efficiency of each mode. The radiation efficiencies of the transmission housing modes are compared with theoretical results for finite, baffled plates. A method that uses the measured mode shapes and the BEM to predict the effect of simple structural changes on the sound radiation efficiency of the modes of vibration is also described.

  1. Particle analysis in an acoustic cytometer

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  2. Modal analysis and intensity of acoustic radiation of the kettledrum.

    PubMed

    Tronchin, Lamberto

    2005-02-01

    The acoustical features of kettledrums have been analyzed by means of modal analysis and acoustic radiation (p/v ratio) measurements. Modal analysis of two different kettledrums was undertaken, exciting the system both by a hammer and a shaker. Up to 15 vibrational modes were clearly identified. Acoustic radiation was studied using two ways. Based on previous experiments of other researchers, a new parameter, called intensity of acoustic radiation (IAR), has been defined and measured. Results show a strict relationship between IAR and the frequency response function (FRF, which is the v/F ratio), and IAR also strongly relates the modal pattern to acoustic radiation. Finally, IAR is proposed for vibro-acoustical characterization of kettledrums and other musical instruments such as strings, pianos, and harpsichords. PMID:15759711

  3. Comparison of nonlinear dynamic methods and perturbation methods for voice analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.; Wallace, Stephanie M.; Zhou, Liang

    2005-10-01

    Nonlinear dynamic methods and perturbation methods are compared in terms of the effects of signal length, sampling rate, and noise. Results of theoretical and experimental studies quantitatively show that measurements representing frequency and amplitude perturbations are not applicable to chaotic signals because of difficulties in pitch tracking and sensitivity to initial state differences. Perturbation analyses are only reliable when applied to nearly periodic voice samples of sufficiently long signal lengths that were obtained at high sampling rates and low noise levels. In contrast, nonlinear dynamic methods, such as correlation dimension, allow the quantification of chaotic time series. Additionally, the correlation dimension method presents a more stable analysis of nearly periodic voice samples for shorter signal lengths, lower sampling rates, and higher noise levels. The correlation dimension method avoids some of the methodological issues associated with perturbation methods, and may potentially improve the ability for real time analysis as well as reduce costs in experimental designs for objectively assessing voice disorders.

  4. A local vector coding for high-quality voice analysis/synthesis

    NASA Astrophysics Data System (ADS)

    Ito, Masashi; Yano, Masafumi

    2005-09-01

    Line-type spectrum is observed in frequency responses for voiced sound. The spectrum can be characterized by physical parameters: instantaneous amplitude, frequency, and phase for each component. It is difficult to estimate these parameters for natural utterances accurately by power spectrogram because the sound is usually unstationary. A new method, termed local vector coding (LVC), has been proposed to analyze these sounds. LVC assumes that the time-varying parameters for the input sound can be approximated by simple quadratic functions in a short analysis window. Utilizing the phase responses, LVC can estimate not only instantaneous amplitude and frequency for each component of the input but also their time derivatives. The validity of LVC method is examined by using naturally uttered voiced speech. The averaged estimation errors, defined by the differences between the input and resynthesized signals, are lower than 30 dB of the input energy. It indicates that LVC method is very useful for analyzing natural sounds. In addition, since the parameters of each component obtained by LVC method characterize the vowel quality, any kind of voice can be synthesized/transformed by changing each parameter independently, such as a voice of a male adult to a female voice.

  5. Acoustic Analysis of Vowels Following Glossectomy

    ERIC Educational Resources Information Center

    Whitehill, Tara L.; Ciocca, Valter; Chan, Judy C-T.; Samman, Nabil

    2006-01-01

    This study examined the acoustic characteristics of vowels produced by speakers with partial glossectomy. Acoustic variables investigated included first formant (F1) frequency, second formant (F2) frequency, F1 range, F2 range and vowel space area. Data from the speakers with partial glossectomy were compared with age- and gender-matched controls.…

  6. New standard measures for clinical voice analysis include high speed films

    NASA Astrophysics Data System (ADS)

    Pedersen, Mette; Munch, Kasper

    2012-02-01

    In the clinical work with patients in a medical voice clinic it is important to have a normal updated reference for the data used. Several new parameters have to be correlated to older traditional measures. The older ones are stroboscopy, eventually coordinated with electroglottography (EGG), the Multi- Dimensional-Voice Program and airflow rates. Long Time Averaged Spectrograms (LTAS) and phonetograms (voice profiles) are calculating the range and dynamics of tones of the patients. High-speed films, updated airflow measures as well as area calculations of phonotograms add information to the understanding of the glottis closure in single movements of the vocal cords. A multivariate analysis was made to study the connection between the measures. This information can be used in many connections, also in the otolaryngological clinic.

  7. Multiple levels of linguistic and paralinguistic features contribute to voice recognition.

    PubMed

    Zarate, Jean Mary; Tian, Xing; Woods, Kevin J P; Poeppel, David

    2015-01-01

    Voice or speaker recognition is critical in a wide variety of social contexts. In this study, we investigated the contributions of acoustic, phonological, lexical, and semantic information toward voice recognition. Native English speaking participants were trained to recognize five speakers in five conditions: non-speech, Mandarin, German, pseudo-English, and English. We showed that voice recognition significantly improved as more information became available, from purely acoustic features in non-speech to additional phonological information varying in familiarity. Moreover, we found that the recognition performance is transferable between training and testing in phonologically familiar conditions (German, pseudo-English, and English), but not in unfamiliar (Mandarin) or non-speech conditions. These results provide evidence suggesting that bottom-up acoustic analysis and top-down influence from phonological processing collaboratively govern voice recognition. PMID:26088739

  8. Multiple levels of linguistic and paralinguistic features contribute to voice recognition

    PubMed Central

    Mary Zarate, Jean; Tian, Xing; Woods, Kevin J. P.; Poeppel, David

    2015-01-01

    Voice or speaker recognition is critical in a wide variety of social contexts. In this study, we investigated the contributions of acoustic, phonological, lexical, and semantic information toward voice recognition. Native English speaking participants were trained to recognize five speakers in five conditions: non-speech, Mandarin, German, pseudo-English, and English. We showed that voice recognition significantly improved as more information became available, from purely acoustic features in non-speech to additional phonological information varying in familiarity. Moreover, we found that the recognition performance is transferable between training and testing in phonologically familiar conditions (German, pseudo-English, and English), but not in unfamiliar (Mandarin) or non-speech conditions. These results provide evidence suggesting that bottom-up acoustic analysis and top-down influence from phonological processing collaboratively govern voice recognition. PMID:26088739

  9. Dimensionality in voice quality.

    PubMed

    Bele, Irene Velsvik

    2007-05-01

    This study concerns speaking voice quality in a group of male teachers (n = 35) and male actors (n = 36), as the purpose was to investigate normal and supranormal voices. The goal was the development of a method of valid perceptual evaluation for normal to supranormal and resonant voices. The voices (text reading at two loudness levels) had been evaluated by 10 listeners, for 15 vocal characteristics using VA scales. In this investigation, the results of an exploratory factor analysis of the vocal characteristics used in this method are presented, reflecting four dimensions of major importance for normal and supranormal voices. Special emphasis is placed on the effects on voice quality of a change in the loudness variable, as two loudness levels are studied. Furthermore, the vocal characteristics Sonority and Ringing voice quality are paid special attention, as the essence of the term "resonant voice" was a basic issue throughout a doctoral dissertation where this study was included. PMID:16504471

  10. Ambient noise analysis of underwater acoustic data

    NASA Astrophysics Data System (ADS)

    Snyder, Mark A.; Orlin, Pete; Schulte, Annette; Newcomb, Joal

    2003-04-01

    The Littoral Acoustic Demonstration Center (LADC) deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summers of 2001 and 2002. The buoys recorded frequencies up to 5859 Hz continuously for 36 days in 2001 and for 72 days in 2002. The acoustic signals recorded include sperm whale vocalizations, seismic airguns, and shipping traffic. The variability of the ambient noise is analyzed using spectrograms, time series, and statistical measurements. Variations in ambient noise before, during, and after tropical storm/hurricane passage are also investigated.

  11. Features for voice activity detection: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Graf, Simon; Herbig, Tobias; Buck, Markus; Schmidt, Gerhard

    2015-12-01

    In many speech signal processing applications, voice activity detection (VAD) plays an essential role for separating an audio stream into time intervals that contain speech activity and time intervals where speech is absent. Many features that reflect the presence of speech were introduced in literature. However, to our knowledge, no extensive comparison has been provided yet. In this article, we therefore present a structured overview of several established VAD features that target at different properties of speech. We categorize the features with respect to properties that are exploited, such as power, harmonicity, or modulation, and evaluate the performance of some dedicated features. The importance of temporal context is discussed in relation to latency restrictions imposed by different applications. Our analyses allow for selecting promising VAD features and finding a reasonable trade-off between performance and complexity.

  12. Voice Source Characteristics of Male and Female Speakers of French.

    ERIC Educational Resources Information Center

    Temple, Rosalind A. M.

    1996-01-01

    A study investigated the realization of voicing contrasts ("breathiness") in plosive consonants produced by young French adults, particularly as they differ in males and females. Data came from acoustic analysis of recordings of nine informants reading lists of monosyllabic words with initial plosive consonants in isolation and in the content,…

  13. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  14. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  15. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  16. Acoustic analysis of explosions in high noise environment

    NASA Astrophysics Data System (ADS)

    Man, Hong; Desai, Sachi

    2008-04-01

    Explosion detection and recognition is a critical capability to provide situational awareness to the war-fighters in battlefield. Acoustic sensors are frequently deployed to detect such events and to trigger more expensive sensing/sensor modalities (i.e. radar, laser spectroscope, IR etc.). Acoustic analysis of explosions has been intensively studied to reliably discriminate mortars, artillery, round variations, and type of blast (i.e. chemical/biological or high-explosive). One of the major challenges is high level of noise, which may include non-coherent noise generated from the environmental background and coherent noise induced by possible mobile acoustic sensor platform. In this work, we introduce a new acoustic scene analysis method to effectively enhance explosion classification reliability and reduce the false alarm rate at low SNR and with high coherent noise. The proposed method is based on acoustic signature modeling using Hidden Markov Models (HMMs). Special frequency domain acoustic features characterizing explosions as well as coherent noise are extracted from each signal segment, which forms an observation vector for HMM training and test. Classification is based on a unique model similarity measure between the HMM estimated from the test observations and the trained HMMs. Experimental tests are based on the acoustic explosion dataset from US ARMY ARDEC, and experimental results have demonstrated the effectiveness of the proposed method.

  17. Analysis of modal and creaky voice quality variations

    NASA Astrophysics Data System (ADS)

    Shetye, Avanti S.; Espy-Wilson, Carol Y.

    2005-09-01

    Voice quality, as a major vehicle of information about physical, phonological, and social characteristics of the speaker, has a vital semiotic role to play in spoken interaction [Laver (1968), Laver and Trudgill (1979)]. In the past couple of years, our lab developed an Aperiodicity/Periodicity/Pitch (APP) detector that produces a spectro-temporal profile of the periodic and aperiodic regions of the speech waveform [Deshmukh et al. (in press)]. To do so, the speech signal is passed through a 60-channel gamma tone auditory filterbank. The distribution of the dips occurring in the average magnitude difference function (AMDF) computed from each channel envelope is analyzed to determine periodicity and aperiodicity. Presently, the APP detector classifies both turbulent noise and irregular vocal fold vibration (creakiness) as aperiodic. In this work, we are investigating the detailed characteristics of the AMDF waveform when speech is creaky. This information is presently being used to distinguish aperiodicity due to turbulence from aperiodicity due to creakiness. We will present results from the refined APP detector using various male and female utterances from the TIMIT database.

  18. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections. PMID:26163739

  19. Assessment of Severe Apnoea through Voice Analysis, Automatic Speech, and Speaker Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Fernández Pozo, Rubén; Blanco Murillo, Jose Luis; Hernández Gómez, Luis; López Gonzalo, Eduardo; Alcázar Ramírez, José; Toledano, Doroteo T.

    2009-12-01

    This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.

  20. The interaction of tone with voicing and foot structure: evidence from Kera phonetics and phonology

    NASA Astrophysics Data System (ADS)

    Pearce, Mary Dorothy

    This thesis uses acoustic measurements as a basis for the phonological analysis of the interaction of tone with voicing and foot structure in Kera (a Chadic language). In both tone spreading and vowel harmony, the iambic foot acts as a domain for spreading. Further evidence for the foot comes from measurements of duration, intensity and vowel quality. Kera is unusual in combining a tone system with a partially independent metrical system based on iambs. In words containing more than one foot, the foot is the tone bearing unit (TBU), but in shorter words, the TBU is the syllable. In perception and production experiments, results show that Kera speakers, unlike English and French, use the fundamental frequency as the principle cue to 'Voicing" contrast. Voice onset time (VOT) has only a minor role. Historically, tones probably developed from voicing through a process of tonogenesis, but synchronically, the feature voice is no longer contrastive and VOT is used in an enhancing role. Some linguists have claimed that Kera is a key example for their controversial theory of long-distance voicing spread. But as voice is not part of Kera phonology, this thesis gives counter-evidence to the voice spreading claim. An important finding from the experiments is that the phonological grammars are different between village women, men moving to town and town men. These differences are attributed to French contact. The interaction between Kera tone and voicing and contact with French have produced changes from a 2-way voicing contrast, through a 3-way tonal contrast, to a 2-way voicing contrast plus another contrast with short VOT. These diachronic and synchronic tone/voicing facts are analysed using laryngeal features and Optimality Theory. This thesis provides a body of new data, detailed acoustic measurements, and an analysis incorporating current theoretical issues in phonology, which make it of interest to Africanists and theoreticians alike.

  1. The acoustic simulation and analysis of complicated reciprocating compressor piping systems, I: Analysis technique and parameter matrices of acoustic elements

    NASA Astrophysics Data System (ADS)

    To, C. W. S.

    1984-09-01

    This paper describes the mathematical formulation, equations, and procedures employed in the development of a comprehensive digital computer program for acoustic simulation and analysis of large and complicated piping systems. The analysis technique used is the transfer matrix method in which the piping system, with or without multiple inputs and outputs, is represented by a combination of discrete acoustic elements interconnected to one another at two stations such that the acoustic pressure and volume velocity at one station are uniquely related to those at the other by a two-by-two parameter matrix. Parameter matrices of 19 acoustic elements are included in this paper. By making use of these parameter matrices and the analysis technique, any complicated practical reciprocating compressor piping system can be modelled or analyzed.

  2. A Spectral Analysis Approach for Acoustic Radiation from Composite Panels

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Singh, Mahendra P.; Mei, Chuh

    2004-01-01

    A method is developed to predict the vibration response of a composite panel and the resulting far-field acoustic radiation due to acoustic excitation. The acoustic excitation is assumed to consist of obliquely incident plane waves. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. The approach can easily include other effects such as shape memory alloy (SMA) ber reinforcement, large detection thermal postbuckling, and non-symmetric SMA distribution or lamination. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Results for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement. The mechanisms for further transmission loss improvement are identified and discussed.

  3. Speech masking and cancelling and voice obscuration

    DOEpatents

    Holzrichter, John F.

    2013-09-10

    A non-acoustic sensor is used to measure a user's speech and then broadcasts an obscuring acoustic signal diminishing the user's vocal acoustic output intensity and/or distorting the voice sounds making them unintelligible to persons nearby. The non-acoustic sensor is positioned proximate or contacting a user's neck or head skin tissue for sensing speech production information.

  4. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  5. Analysis of some acoustics-jet flow interaction problems

    NASA Technical Reports Server (NTRS)

    Chow, P. L.

    1984-01-01

    Analytical problems in the interactions between the mean-shear flows and the acoustic field in the planar and circular jets are examined. These problems are basic in understanding the effects of coherent large structure on the generation and complications of sound in a sub-sonic jet. Three problems were investigated: (1) spatial (vs. temporal) normal mode analysis in a planar jets; (2) a slightly divergent, planar jet; and (3) acoustic waves in an axisymmetrical jet.

  6. Voice use in professional soccer management.

    PubMed

    O'Neill, Jenna; McMenamin, Ruth

    2014-12-01

    Vocal load related to heavy voice use in particular professions increases the risk of occupational voice disorders. Research on professional voice use has primarily focused on educators, singers, and call-centre advisors. This paper describes the daily experiences of professional soccer managers' occupational voice use through qualitative methods. Four global themes were identified: 1) voice uses, 2) factors affecting voice change, 3) impact of voice use, and 4) the importance of voice in soccer management. All describe the nature of soccer managers' vocal demands. Risk factors for voice disorders include intense and prolonged voice use in environments with adverse acoustic properties for speakers and poor phonation methods. Research on vocal behaviours and early prevention programmes for this population group is warranted. PMID:23971728

  7. LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor

    NASA Astrophysics Data System (ADS)

    Hernández, Ignacio; Staffelbach, Gabriel; Poinsot, Thierry; Román Casado, Juan C.; Kok, Jim B. W.

    2013-01-01

    Numerical simulations were performed using Large Eddy Simulation (LES) and acoustic analysis tools to study thermo-acoustic instabilities in a methane/air academic burner installed at the University of Twente (The Netherlands). It operates under fuel-lean partially premixed conditions at atmospheric pressure, and was built to study thermo-acoustic instabilities in conditions representative of gas turbine Lean Premixed systems: gaseous fuel is injected upstream of the combustor and has a limited time to mix with air. Even though the objective is to burn in a premixed mode, the actual regime corresponds to a partially premixed flame where strong equivalence ratio variations are created especially during combustion instabilities. Capturing these modes with LES is a challenge: here, simulations for both stable and unstable regimes are performed. In the unstable case, the limit cycle oscillations (LCO) are characterized and compared to experimental results. Reasonable agreement is found between simulations and experiments.

  8. Acoustic assessment of erygmophonic speech of Moroccan laryngectomized patients

    PubMed Central

    Ouattassi, Naouar; Benmansour, Najib; Ridal, Mohammed; Zaki, Zouheir; Bendahhou, Karima; Nejjari, Chakib; Cherkaoui, Abdeljabbar; El Alami, Mohammed Nouredine El Amine

    2015-01-01

    Introduction Acoustic evaluation of alaryngeal voices is among the most prominent issues in speech analysis field. In fact, many methods have been developed to date to substitute the classic perceptual evaluation. The Aim of this study is to present our experience in erygmophonic speech objective assessment and to discuss the most widely used methods of acoustic speech appraisal. through a prospective case-control study we have measured acoustic parameters of speech quality during one year of erygmophonic rehabilitation therapy of Moroccan laryngectomized patients. Methods We have assessed acoustic parameters of erygmophonic speech samples of eleven laryngectomized patients through the speech rehabilitation therapy. Acoustic parameters were obtained by perturbation analysis method and linear predictive coding algorithms also through the broadband spectrogram. Results Using perturbation analysis methods, we have found erygmophonic voice to be significantly poorer than normal speech and it exhibits higher formant frequency values. However, erygmophonic voice shows also higher and extremely variable Error values that were greater than the acceptable level. And thus, live a doubt on the reliability of those analytic methods results. Conclusion Acoustic parameters for objective evaluation of alaryngeal voices should allow a reliable representation of the perceptual evaluation of the quality of speech. This requirement has not been fulfilled by the common methods used so far. Therefore, acoustical assessment of erygmophonic speech needs more investigations. PMID:26587121

  9. Acoustic analysis of a mechanical circulatory support.

    PubMed

    Hubbert, Laila; Sundbom, Per; Loebe, Matthias; Peterzén, Bengt; Granfeldt, Hans; Ahn, Henrik

    2014-07-01

    Mechanical circulatory support technology is continually improving. However, adverse complications do occur with devastating consequences, for example, pump thrombosis that may develop in several parts of the pump system. The aim of this study was to design an experimental clot/thrombosis model to register and analyze acoustic signals from the left ventricular assist device (LVAD) HeartMate II (HMII) (Thoratec Corporation, Inc., Pleasanton, CA, USA) and detect changes in sound signals correlating to clots in the inflow, outflow, and pump housing. Using modern telecom techniques, it was possible to register and analyze the HMII pump-specific acoustic fingerprint in an experimental model of LVAD support using a mock loop. Increase in pump speed significantly (P<0.005) changed the acoustic fingerprint at certain frequency (0-23,000 Hz) intervals (regions: R1-3 and peaks: P1,3-4). When the ball valves connected to the tubing were narrowed sequentially by ∼50% of the inner diameter (to mimic clot in the out- and inflow tubing), the frequency spectrum changed significantly (P<0.005) in P1 and P2 and R1 when the outflow tubing was narrowed. This change was not seen to the same extent when the lumen of the ball valve connected to the inflow tube was narrowed by ∼50%. More significant (P<0.005) acoustic changes were detected in P1 and P2 and R1 and R3, with the largest dB figs. in the lower frequency ranges in R1 and P2, when artificial clots and blood clots passed through the pump system. At higher frequencies, a significant change in dB figs. in R3 and P4 was detected when clots passed through the pump system. Acoustic monitoring of pump sounds may become a valuable tool in LVAD surveillance. PMID:24372095

  10. The influence of stoma occlusion on aspects of tracheoesophageal voice.

    PubMed

    van As, C J; Hilgers, F J; Koopmans-van Beinum, F J; Ackerstaff, A H

    1998-09-01

    In this study, speech of 21 laryngectomized patients is investigated under 2 different stoma occlusion conditions, i.e. direct digital occlusion of the stoma (by thumb or finger), and digital occlusion (by finger) via a special heat and moisture exchanger with speech valve (Provox Stomafilter). For both conditions, acoustical analyses of voice quality (various pitch, amplitude, tremor and harmonicity measures) were performed on a sustained /a/, the mean maximum phonation time was calculated, and a phonetogram was made. Acoustical analysis was possible in 13 of the 21 voices (for the other voices, the pitch was too low or the voice was too aperiodic), but no statistical significant differences were found for any of the acoustical parameters studied. However, the maximum phonation time was significantly longer, and the dynamic range significantly larger, under the Stomafilter occlusion condition. The maximum phonation time showed a relevant improvement in 57% of the patients, while the dynamic range showed a relevant improvement in 35% of the patients. In total, 75% of the patients experience an improvement in one or both of these speech characteristics when using the Stomafilter occlusion. It can be concluded that optimal stoma occlusion by means of a specialized device has a positive influence on two relevant parameters of prosthetic voice production: maximum phonation time and dynamic loudness range. PMID:9840514

  11. [Voice disturbances in young children with gastroesophageal reflux disease].

    PubMed

    Viaz'menov, E O; Radtsig, E Iu; Bogomil'skiĭ, M R; Vodolazov, S Iu; Poliudov, S A; Myzin, A V

    2010-01-01

    The objective of the present work was to study voice disturbances in young children with gastroesophageal reflux disease. Diagnostic algorithm included direct transnasal examination of the larynx using an Olympus fibroscope (Japan), fibrogastroduodenoscopy, 24-hour potentiometry, biopsy of oesophageal mucosa, and acoustic analysis of the voice. A total of 26 children at the age from 8 months to 3 years with voice disturbances were examined, including 12 children below one year, 5 between 1 and 2 years, and 9 between 2 and 3 years. The main signs of laryngoesophageal reflux were dysphonia, oedema, hyperemia, and altered light reflex of mucous membrane of arytenoid cartilages, interarytenoid space, and vocal cords. It is concluded that voice disturbances are the most common symptoms of laryngoesophageal reflux in young children which necessitates the earliest possible endoscopic study of the larynx in all cases of dysphonia. PMID:20517277

  12. Web-based application for voice telediagnostics

    NASA Astrophysics Data System (ADS)

    Lusawa, Adam; Grzanka, Antoni

    2006-10-01

    This paper presents a web-based system for distance acoustic investigation of human voice. The system is dedicated to diagnosis of speech disorders, and can also be used in evaluating voice rehabilitation results. The fundamental part of the paper contains an extensive description of the system for voice telediagnostics. The paper also presents a review of presently applied technologies and methods of voice transmission over the Internet.

  13. Effect of testosterone therapy on the female voice

    PubMed Central

    Glaser, R.; York, A.; Dimitrakakis, C.

    2016-01-01

    Abstract Objectives This prospective study was designed to investigate the effect of testosterone, delivered by subcutaneous implants, on the female voice. Methods Ten women who had opted for testosterone therapy were recruited for voice analysis. Voices were recorded prior to treatment and at 3 months, 6 months, and 12 months while on testosterone therapy. Acoustic samples were collected with subjects reading a sentence, reading a paragraph, and participating in a conversation. Significant changes in the voice over time were investigated using a repeated-measures analysis of variance with the fundamental frequency (F 0) as a response variable. Demographic variables associated with characteristics of the voice were assessed. Results There were no significant differences in average F 0 related to smoking history, menopausal status, weight, or body mass index. There was no difference in average fundamental speaking frequency (sentence, paragraph, conversation) between the pre-treatment group and any post-treatment group at 3 and 12 months. There was an increase in sentence speech F 0 at 6 months. Two of three patients with lower than expected F 0 at baseline improved on testosterone therapy. Conclusion Therapeutic levels of testosterone, delivered by subcutaneous implant, had no adverse affect on the female voice including lowering or deepening of the voice. PMID:26857354

  14. What about the "actor's formant" in actresses' voices?

    PubMed

    Master, Suely; De Biase, Noemi Grigolleto; Madureira, Sandra

    2012-05-01

    Spectrographic analysis of male actors' voices showed a cluster, the "actor's formant" (AF), which is related to the perception of good and projected voice quality. To date, similar phenomena have not been described in the voices of actresses. Therefore, the objective of the current investigation was to compare actresses' and nonactresses' voices through acoustic analysis to verify the existence of the "AF" cluster or the strategies used to produce the performing voice. Thirty actresses and 30 nonactresses volunteered as subjects in the present study. All subjects read a 40-second text at both habitual and loud levels. Praat (v.5.1) was then used to analyze equivalent sound pressure level (Leq), speaking fundamental frequency (SFF), and in the long-term average spectrum window, the difference between the amplitude level of the fundamental frequency and first formant (L1-L0), the spectral tilt (alpha ratio), and the amplitude and frequency of the "AF" region. Significant differences between the groups, in both levels, were observed for SFF and L1-L0, with actresses presenting lower values. There were no significant differences between groups for Leq or alpha ratio at either level. There was no evidence of an "AF" cluster in the actresses' voices. Voice projection for this group of actresses seemed to be mainly a result of a laryngeal setting instead of vocal tract resonances. PMID:21376530

  15. Similarity analysis of voice signals using wavelets with dynamic time warping

    NASA Astrophysics Data System (ADS)

    Tashakkori, Rahman; Bowers, Courtney

    2003-04-01

    Accurately recognizing speech is a difficult task. Differences in gender, accent, pace, tone, as well as defects in the recording equipment and environmental noise can disturb a voice signal. Speech recognition systems are commonly studied and implemented by companies trying to alleviate problems, such as illness or injury, or to increase overall efficiency. This research uses wavelet analysis with several traditional methods to study similarities among sound signals. Through a series of seven steps, a similarity analysis of some voice signals from the same speaker as well as from different speakers is performed. The efficiency of four different wavelets (Haar, db2, db4 and Discrete Morlet), different correlation methods developed previously or in this research, and two different Dynamic Time Warping methods are studied in this research. Through several experiments, it will be shown that these techniques produce excellent results for signals by the same speaker. Based on the limited number of cases studied in this research, some evidence will be presented that suggests the proposed methods on this research are more effective for recognizing male voice files than those of females.

  16. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  17. Atypical mismatch negativity in response to emotional voices in people with autism spectrum conditions.

    PubMed

    Fan, Yang-Teng; Cheng, Yawei

    2014-01-01

    Autism Spectrum Conditions (ASC) are characterized by heterogeneous impairments of social reciprocity and sensory processing. Voices, similar to faces, convey socially relevant information. Whether voice processing is selectively impaired remains undetermined. This study involved recording mismatch negativity (MMN) while presenting emotionally spoken syllables dada and acoustically matched nonvocal sounds to 20 subjects with ASC and 20 healthy matched controls. The people with ASC exhibited no MMN response to emotional syllables and reduced MMN to nonvocal sounds, indicating general impairments of affective voice and acoustic discrimination. Weaker angry MMN amplitudes were associated with more autistic traits. Receiver operator characteristic analysis revealed that angry MMN amplitudes yielded a value of 0.88 (p<.001). The results suggest that people with ASC may process emotional voices in an atypical fashion already at the automatic stage. This processing abnormality can facilitate diagnosing ASC and enable social deficits in people with ASC to be predicted. PMID:25036143

  18. Minimizing vehicle noise and weight using panel acoustic contribution analysis

    NASA Astrophysics Data System (ADS)

    Brown, Gordon M.

    1998-05-01

    Panel acoustic contribution analysis (PACA) is an advanced engineering tool to improve noise, vibration, and harshness quality and minimize weight of vehicles. It is a technique to categorize areas of vehicle body panels as positive (sound level increases as vibration amplitude increases), negative or neutral according to their contribution to the total sound. PACA is a hybrid of computer aided engineering and experimental methods. Computer aided holometry, scanning laser velocimetry, or an accelerometer net is used to experimentally measure structure vibration complex velocities. These velocities are the boundary conditions for a boundary element model of the acoustic cavity. Boundary element analysis is then used to predict the vehicle interior sound and calculate panel acoustic contributions. Experimental results for a welded steel box (validation) and vehicle application are presented.

  19. Nested sampling applied in Bayesian room-acoustics decay analysis.

    PubMed

    Jasa, Tomislav; Xiang, Ning

    2012-11-01

    Room-acoustic energy decays often exhibit single-rate or multiple-rate characteristics in a wide variety of rooms/halls. Both the energy decay order and decay parameter estimation are of practical significance in architectural acoustics applications, representing two different levels of Bayesian probabilistic inference. This paper discusses a model-based sound energy decay analysis within a Bayesian framework utilizing the nested sampling algorithm. The nested sampling algorithm is specifically developed to evaluate the Bayesian evidence required for determining the energy decay order with decay parameter estimates as a secondary result. Taking the energy decay analysis in architectural acoustics as an example, this paper demonstrates that two different levels of inference, decay model-selection and decay parameter estimation, can be cohesively accomplished by the nested sampling algorithm. PMID:23145609

  20. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. PMID:15957758

  1. Acoustic analysis in Mudejar-Gothic churches: Experimental results

    NASA Astrophysics Data System (ADS)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  2. Voice following radiotherapy.

    PubMed

    Stoicheff, M L

    1975-04-01

    This study was undertaken to provide information on the voice of patients following radiotherapy for glottic cancer. Part I presents findings from questionnaires returned by 227 of 235 patients successfully irradiated for glottic cancer from 1960 through 1971. Part II presents preliminary findings on the speaking fundamental frequencies of 22 irradiated patients. Normal to near-normal voice was reported by 83 percent of the 227 patients; however, 80 percent did indicate persisting vocal difficulties such as fatiguing of voice with much usage, inability to sing, reduced loudness, hoarse voice quality and inability to shout. Amount of talking during treatments appeared to affect length of time for voice to recover following treatments in those cases where it took from nine to 26 weeks; also, with increasing years since treatment, patients rated their voices more favorably. Smoking habits following treatments improved significantly with only 27 percent smoking heavily as compared with 65 percent prior to radiation therapy. No correlation was found between smoking (during or after treatments) and vocal ratings or between smoking and length of time for voice to recover. There was no relationship found between reported vocal ratings and stage of the disease. Data on mean speaking fundamental frequency seem to indicate a trend toward lower frequencies in irradiated patients as compared with normals. A trend was also noted in both irradidated and control groups for lower speaking fundamental frequencies in heavy smokers compared with non-smokers or previous smokers. These trends would indicate some vocal cord thickening or edema in irradiated patients and in heavy smokers. It is suggested that the study of irradiated patients' voices before, during and following treatments by means of audio, aerodynamic and acoustic instrumentation would yield additional information of diagnostic value on recovery of laryngeal function. It is also suggested that the voice pathologist could

  3. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  4. Photo-acoustic analysis of dental materials and tissue

    NASA Astrophysics Data System (ADS)

    Jeleva, Pavlina Jetchkova

    2005-11-01

    The goal of the presented study is the investigation of the feasibility of using optically generated acoustic waves for analysis of dental material below laser-ablation threshold. The temperature rise of dental material and tissue has been modeled analytically and numerically, and measured experimentally. Following interactions with nano- and femto-second laser radiation the temperature rises at a rate of typically 1°C per J/cm 2, along with the generation of an acoustical wave. The results from the models agree with the experiment. The acoustic measurements show differences in the acoustic signal strength and the frequency spectrum when the canal in the porcelain phantom is empty or filled with intralipid solution. The photo-acoustic technique is found to be suitable for detection of liquids under a layer of dental porcelain material, consequently it can be the basis for building an imaging tool for dental diagnostic applications. By generating sound waves in the pulp, one would be able to evaluate it's state and the overall health of the tooth. This is of vital importance for diagnosing initial-stage inflammation.

  5. Voice data mining for laryngeal pathology assessment.

    PubMed

    Hemmerling, Daria; Skalski, Andrzej; Gajda, Janusz

    2016-02-01

    The aim of this study was to evaluate the usefulness of different methods of speech signal analysis in the detection of voice pathologies. Firstly, an initial vector was created consisting of 28 parameters extracted from time, frequency and cepstral domain describing the human voice signal based on the analysis of sustained vowels /a/, /i/ and /u/ all at high, low and normal pitch. Afterwards we used a linear feature extraction technique (principal component analysis), which enabled a reduction in the number of parameters and choose the most effective acoustic features describing the speech signal. We have also performed non-linear data transformation which was calculated using kernel principal components. The results of the presented methods for normal and pathological cases will be revealed and discussed in this paper. The initial and extracted feature vectors were classified using the k-means clustering and the random forest classifier. We found that reasonably good classification accuracies could be achieved by selecting appropriate features. We obtained accuracies of up to 100% for classification of healthy versus pathology voice using random forest classification for female and male recordings. These results may assist in the feature development of automated detection systems for diagnosis of patients with symptoms of pathological voice. PMID:26471193

  6. Automatic Evaluation of Voice Quality Using Text-Based Laryngograph Measurements and Prosodic Analysis

    PubMed Central

    Haderlein, Tino; Schwemmle, Cornelia; Döllinger, Michael; Matoušek, Václav; Ptok, Martin; Nöth, Elmar

    2015-01-01

    Due to low intra- and interrater reliability, perceptual voice evaluation should be supported by objective, automatic methods. In this study, text-based, computer-aided prosodic analysis and measurements of connected speech were combined in order to model perceptual evaluation of the German Roughness-Breathiness-Hoarseness (RBH) scheme. 58 connected speech samples (43 women and 15 men; 48.7 ± 17.8 years) containing the German version of the text “The North Wind and the Sun” were evaluated perceptually by 19 speech and voice therapy students according to the RBH scale. For the human-machine correlation, Support Vector Regression with measurements of the vocal fold cycle irregularities (CFx) and the closed phases of vocal fold vibration (CQx) of the Laryngograph and 33 features from a prosodic analysis module were used to model the listeners' ratings. The best human-machine results for roughness were obtained from a combination of six prosodic features and CFx (r = 0.71, ρ = 0.57). These correlations were approximately the same as the interrater agreement among human raters (r = 0.65, ρ = 0.61). CQx was one of the substantial features of the hoarseness model. For hoarseness and breathiness, the human-machine agreement was substantially lower. Nevertheless, the automatic analysis method can serve as the basis for a meaningful objective support for perceptual analysis. PMID:26136813

  7. Automatic Evaluation of Voice Quality Using Text-Based Laryngograph Measurements and Prosodic Analysis.

    PubMed

    Haderlein, Tino; Schwemmle, Cornelia; Döllinger, Michael; Matoušek, Václav; Ptok, Martin; Nöth, Elmar

    2015-01-01

    Due to low intra- and interrater reliability, perceptual voice evaluation should be supported by objective, automatic methods. In this study, text-based, computer-aided prosodic analysis and measurements of connected speech were combined in order to model perceptual evaluation of the German Roughness-Breathiness-Hoarseness (RBH) scheme. 58 connected speech samples (43 women and 15 men; 48.7 ± 17.8 years) containing the German version of the text "The North Wind and the Sun" were evaluated perceptually by 19 speech and voice therapy students according to the RBH scale. For the human-machine correlation, Support Vector Regression with measurements of the vocal fold cycle irregularities (CFx) and the closed phases of vocal fold vibration (CQx) of the Laryngograph and 33 features from a prosodic analysis module were used to model the listeners' ratings. The best human-machine results for roughness were obtained from a combination of six prosodic features and CFx (r = 0.71, ρ = 0.57). These correlations were approximately the same as the interrater agreement among human raters (r = 0.65, ρ = 0.61). CQx was one of the substantial features of the hoarseness model. For hoarseness and breathiness, the human-machine agreement was substantially lower. Nevertheless, the automatic analysis method can serve as the basis for a meaningful objective support for perceptual analysis. PMID:26136813

  8. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  9. Acoustic analysis of an Olmecan whistle

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio; Menchaca, Rolando; Velazquez, Roberto

    2002-05-01

    Thousands of stone artifacts over 2500 years of age have been found in the Olmecan area in the southeast region of Mexico. These range from the famous big heads with helmets (about 2 m in diameter), to small pieces with precisely drilled holes, which some archaeologists consider to have some simple uses, much simpler than the work needed to produce the stone artifact itself. The one studied here (about 3 cm in size), is considered by the acoustics community as an air-phone, and a detailed anaysis has been done employing FFT techniques in order to find out the frequency spread, the particular tones produced and the sound radiated power through the different holes and cavities. The artifact is made of a very solid stone, so-called ilmenite, believed to have titanium, which is very hard to drill. Nevertheless, many similar pieces have been found in the area, which means they were built on purpose, and the material used gives the idea of a sacred application. Attempts have been made to reproduce the artifacts, which produce sounds similar to those from the original pieces.

  10. Structure analysis using acoustically levitated droplets.

    PubMed

    Leiterer, J; Delissen, F; Emmerling, F; Thünemann, A F; Panne, U

    2008-06-01

    Synchrotron diffraction with a micrometer-sized X-ray beam permits the efficient characterization of micrometer-sized samples, even in time-resolved experiments, which is important because often the amount of sample available is small and/or the sample is expensive. In this context, we will present acoustic levitation as a useful sample handling method for small solid and liquid samples, which are suspended in a gaseous environment (air) by means of a stationary ultrasonic field. A study of agglomeration and crystallization processes in situ was performed by continuously increasing the concentration of the samples by evaporating the solvent. Absorption and contamination processes on the sample container walls were suppressed strongly by this procedure, and parasitic scattering such as that observed when using glass capillaries was also absent. The samples investigated were either dissolved or dispersed in water droplets with diameters in the range of 1 micrometer to 2 millimeters. Initial results from time-resolved synchrotron small- and wide-angle X-ray scattering measurements of ascorbic acid, acetylsalicylic acid, apoferritin, and colloidal gold are presented. PMID:18373085

  11. Voice Disorders in Mucosal Leishmaniasis

    PubMed Central

    Ruas, Ana Cristina Nunes; Lucena, Márcia Mendonça; da Costa, Ananda Dutra; Vieira, Jéssica Rafael; de Araújo-Melo, Maria Helena; Terceiro, Benivaldo Ramos Ferreira; de Sousa Torraca, Tania Salgado; de Oliveira Schubach, Armando; Valete-Rosalino, Claudia Maria

    2014-01-01

    Introduction Leishmaniasis is considered as one of the six most important infectious diseases because of its high detection coefficient and ability to produce deformities. In most cases, mucosal leishmaniasis (ML) occurs as a consequence of cutaneous leishmaniasis. If left untreated, mucosal lesions can leave sequelae, interfering in the swallowing, breathing, voice and speech processes and requiring rehabilitation. Objective To describe the anatomical characteristics and voice quality of ML patients. Materials and Methods A descriptive transversal study was conducted in a cohort of ML patients treated at the Laboratory for Leishmaniasis Surveillance of the Evandro Chagas National Institute of Infectious Diseases - Fiocruz, between 2010 and 2013. The patients were submitted to otorhinolaryngologic clinical examination by endoscopy of the upper airways and digestive tract and to speech-language assessment through directed anamnesis, auditory perception, phonation times and vocal acoustic analysis. The variables of interest were epidemiologic (sex and age) and clinic (lesion location, associated symptoms and voice quality. Results 26 patients under ML treatment and monitored by speech therapists were studied. 21 (81%) were male and five (19%) female, with ages ranging from 15 to 78 years (54.5+15.0 years). The lesions were distributed in the following structures 88.5% nasal, 38.5% oral, 34.6% pharyngeal and 19.2% laryngeal, with some patients presenting lesions in more than one anatomic site. The main complaint was nasal obstruction (73.1%), followed by dysphonia (38.5%), odynophagia (30.8%) and dysphagia (26.9%). 23 patients (84.6%) presented voice quality perturbations. Dysphonia was significantly associated to lesions in the larynx, pharynx and oral cavity. Conclusion We observed that vocal quality perturbations are frequent in patients with mucosal leishmaniasis, even without laryngeal lesions; they are probably associated to disorders of some resonance

  12. Bayesian probability analysis for acoustic-seismic landmine detection

    NASA Astrophysics Data System (ADS)

    Xiang, Ning; Sabatier, James M.; Goggans, Paul M.

    2002-11-01

    Landmines buried in the subsurface induce distinct changes in the seismic vibration of the ground surface when an acoustic source insonifies the ground. A scanning laser Doppler vibrometer (SLDV) senses the acoustically-induced seismic vibration of the ground surface in a noncontact, remote manner. The SLDV-based acoustic-to-seismic coupling technology exhibits significant advantages over conventional sensors due to its capability for detecting both metal and nonmetal mines and its stand-off distance. The seismic vibration data scanned from the SLDV are preprocessed to form images. The detection of landmines relies primarily on an analysis of the target amplitude, size, shape, and frequency range. A parametric model has been established [Xiang and Sabatier, J. Acoust. Soc. Am. 110, 2740 (2001)] to describe the amplified surface vibration velocity induced by buried landmines within an appropriate frequency range. This model incorporates vibrational amplitude, size, position of landmines, and the background amplitude into a model-based analysis process in which Bayesian target detection and parameter estimation have been applied. Based on recent field measurement results, the landmine detection procedure within a Bayesian framework will be discussed. [Work supported by the United States Army Communications-Electronics Command, Night Vision and Electronic Sensors Directorate.

  13. Perceptual centres in speech - an acoustic analysis

    NASA Astrophysics Data System (ADS)

    Scott, Sophie Kerttu

    Perceptual centres, or P-centres, represent the perceptual moments of occurrence of acoustic signals - the 'beat' of a sound. P-centres underlie the perception and production of rhythm in perceptually regular speech sequences. P-centres have been modelled both in speech and non speech (music) domains. The three aims of this thesis were toatest out current P-centre models to determine which best accounted for the experimental data bto identify a candidate parameter to map P-centres onto (a local approach) as opposed to the previous global models which rely upon the whole signal to determine the P-centre the final aim was to develop a model of P-centre location which could be applied to speech and non speech signals. The first aim was investigated by a series of experiments in which a) speech from different speakers was investigated to determine whether different models could account for variation between speakers b) whether rendering the amplitude time plot of a speech signal affects the P-centre of the signal c) whether increasing the amplitude at the offset of a speech signal alters P-centres in the production and perception of speech. The second aim was carried out by a) manipulating the rise time of different speech signals to determine whether the P-centre was affected, and whether the type of speech sound ramped affected the P-centre shift b) manipulating the rise time and decay time of a synthetic vowel to determine whether the onset alteration was had more affect on P-centre than the offset manipulation c) and whether the duration of a vowel affected the P-centre, if other attributes (amplitude, spectral contents) were held constant. The third aim - modelling P-centres - was based on these results. The Frequency dependent Amplitude Increase Model of P-centre location (FAIM) was developed using a modelling protocol, the APU GammaTone Filterbank and the speech from different speakers. The P-centres of the stimuli corpus were highly predicted by attributes of

  14. Voice Outcome Following Carbon Dioxide Laser Assisted Microlaryngeal Surgery.

    PubMed

    Divakaran, Shilpa; Alexander, Arun; Vijayakumar, Sabarinath; Saxena, Sunil Kumar

    2015-12-01

    Very few studies have been conducted in South Indian population to evaluate glottic function and voice outcome following carbon dioxide (CO2) laser assisted microsurgery for benign lesions of the larynx. This is a descriptive study which aims at assessing the voice outcome (perceptual and acoustic) and vocal fold function (stroboscopic) following CO2 laser excision in benign vocal fold lesions. 50 adult patients with benign laryngeal lesions were selected to undergo CO2 laser excision in super-pulse mode at power setting of 6 watts. Perceptual analysis was done using GRBAS score. Voice analysis was done using Praat software and fundamental frequency, jitter, shimmer and harmonics to noise ratio were assessed. Stroboscopy was done to evaluate vocal fold function using glottic closure and mucosal wave pattern as parameters. Evaluation of these parameters was done pre-operatively and at 2, 6 weeks and 3 months post-operatively. Perceptual analysis revealed a significant improvement in the GRBAS score after surgery (p < 0.001). Acoustic analysis showed that all the parameters improved significantly after surgery (p < 0.001). Stroboscopy showed that vocal fold function improved in 98 % of patients in terms of completeness of glottic closure and regular, periodic mucosal wave. Super-pulse micro-spot carbon dioxide laser is a safe and effective treatment option for benign lesions of vocal folds, with excellent voice outcome. PMID:26693452

  15. An analysis of blade vortex interaction aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Lee, D. J.

    1985-01-01

    The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

  16. Acoustic Facies Analysis of Side-Scan Sonar Data

    NASA Astrophysics Data System (ADS)

    Dwan, Fa Shu

    Acoustic facies analysis methods have allowed the generation of system-independent values for the quantitative seafloor acoustic parameter, backscattering strength, from GLORIA and (TAMU) ^2 side-scan sonar data. The resulting acoustic facies parameters enable quantitative comparisons of data collected by different sonar systems, data from different environments, and measurements made with survey geometries. Backscattering strength values were extracted from the sonar amplitude data by inversion based on the sonar equation. Image processing products reveal seafloor features and patterns of relative intensity. To quantitatively compare data collected at different times or by different systems, and to ground truth-measurements and geoacoustic models, quantitative corrections must be made on any given data set for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area contribution, and grazing angle effects. In the sonar equation, backscattering strength is the sonar parameter which is directly related to seafloor properties. The GLORIA data used in this study are from the edge of a distal lobe of the Monterey Fan. An interfingered region of strong and weak seafloor signal returns from a flat seafloor region provides an ideal data set for this study. Inversion of imagery data from the region allows the quantitative definition of different acoustic facies. The (TAMU) ^2 data used are from a calibration site near the Green Canyon area of the Gulf of Mexico. Acoustic facies analysis techniques were implemented to generate statistical information for acoustic facies based on the estimates of backscattering strength. The backscattering strength values have been compared with Lambert's Law and other functions to parameterize the description of the acoustic facies. The resulting Lambertian constant values range from -26 dB to -36 dB. A modified Lambert relationship, which consists of both intercept and slope

  17. Every Voice

    ERIC Educational Resources Information Center

    Patrick, Penny

    2008-01-01

    This article discusses how the author develops an approach that allows her students, who are part of the marginalized population, to learn the power of their own voices--not just their writing voices, but their oral voices as well. The author calls it "TWIST": Thoughts, Writing folder, Inquiring mind, Supplies, and Teamwork. It is where students…

  18. Post-laryngectomy voice rehabilitation with voice prosthesis: 15 years experience of the ENT Clinic of University of Catania. Retrospective data analysis and literature review.

    PubMed

    Serra, A; Di Mauro, P; Spataro, D; Maiolino, L; Cocuzza, S

    2015-12-01

    This study reports our 15-year experience, in Sicily, with the use of voice prostheses, analysing the different variables that have influenced the success or failure of speech rehabilitation. The retrospective clinical analysis was carried out by reviewing the clinical histories of 95 patients with laryngeal cancer, in whom a voice prosthesis had been placed by trachea-oesophageal puncture between 1998 and 2013. Age, type of tumour, type of surgery, use of prior radiation therapy, type of puncture, prosthesis used and its duration, number of replacements, complications and causes for prosthetic success or failure were analysed. The results showed a mean of Harrison-Robillard-Schultz (HRS) TEP rating scale of 11.8 in primary TEP and 12.6 in secondary TEP (P =0.613). PORT did not affect overall rehabilitation success. In these patients, the mean HRS rating scale was 11.2, with long-term success of 85% (P =0.582). In patients over 70 years old, long-term success was 82.5%, with 78% in primary and 86% in secondary TEP, the mean HRS was 11.2 in primary and 12 in secondary TEP (P =0.648). In total, long-term success was 87.5%, with 84% in primary and 91% in secondary TEP. The results obtained by retrospective analysis of 15 years of prosthetic rehabilitation in the Sicilian territory highlighted standard rehabilitation, in terms of intra and postoperative complications, fistula related pathology and overall success. PMID:26900247

  19. Acoustical Characteristics of Mastication Sounds: Application of Speech Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Brochetti, Denise

    Food scientists have used acoustical methods to study characteristics of mastication sounds in relation to food texture. However, a model for analysis of the sounds has not been identified, and reliability of the methods has not been reported. Therefore, speech analysis techniques were applied to mastication sounds, and variation in measures of the sounds was examined. To meet these objectives, two experiments were conducted. In the first experiment, a digital sound spectrograph generated waveforms and wideband spectrograms of sounds by 3 adult subjects (1 male, 2 females) for initial chews of food samples differing in hardness and fracturability. Acoustical characteristics were described and compared. For all sounds, formants appeared in the spectrograms, and energy occurred across a 0 to 8000-Hz range of frequencies. Bursts characterized waveforms for peanut, almond, raw carrot, ginger snap, and hard candy. Duration and amplitude of the sounds varied with the subjects. In the second experiment, the spectrograph was used to measure the duration, amplitude, and formants of sounds for the initial 2 chews of cylindrical food samples (raw carrot, teething toast) differing in diameter (1.27, 1.90, 2.54 cm). Six adult subjects (3 males, 3 females) having normal occlusions and temporomandibular joints chewed the samples between the molar teeth and with the mouth open. Ten repetitions per subject were examined for each food sample. Analysis of estimates of variation indicated an inconsistent intrasubject variation in the acoustical measures. Food type and sample diameter also affected the estimates, indicating the variable nature of mastication. Generally, intrasubject variation was greater than intersubject variation. Analysis of ranks of the data indicated that the effect of sample diameter on the acoustical measures was inconsistent and depended on the subject and type of food. If inferences are to be made concerning food texture from acoustical measures of mastication

  20. Wideband link-budget analysis for undersea acoustic signaling

    NASA Astrophysics Data System (ADS)

    Rice, Joseph A.; Hansen, Joseph T.

    2002-11-01

    Link-budget analysis is commonly applied to satellite and wireless communications for estimating the signal-to-noise ratio (SNR) at the receiver. Link-budget analysis considers transmitter power, transmitter antenna gain, channel losses, channel noise, and receiver antenna gain. For underwater signaling, the terms of the sonar equation readily translate to a formulation of the link budget. However, the strong frequency dependence of underwater acoustic propagation requires special consideration, and is represented as an intermediate result called the channel SNR. The channel SNR includes ambient-noise and transmission-loss components. Several acoustic communication and navigation problems are addressed through wideband link-budget analyses. [Work sponsored by ONR 321.

  1. Acoustical and functional analysis of Mountain lion (Puma concolor) vocalizations

    NASA Astrophysics Data System (ADS)

    Potter, Jacquelyn

    2002-05-01

    A 2-year study resulted in acoustic analysis of the structure of over 900 mountain lion vocalizations recorded in a seminatural setting at Wildlife Prairie Park near Peoria, Illinois. A vocal repertoire was obtained by describing quantitative variables about the sounds, i.e., frequency of the dominant part of the sound (beginning, ending, maximum, and minimum), duration, and number of components. Other variables described the tonal, harmonic, and wideband qualities of the sounds. Behavioral data were collected during the same period. Further analysis of both acoustic and behavioral data was completed to develop a correlation matrix between vocalizations and behavior. This study also looked at the effects of seasons on vocal behavior. Correlations were found between vocalization types and rates of usage with specific behaviors. Vocalization type and the usage rate also varied by season.

  2. Frequency Analysis of Acoustic Emission - Application to machining and welding

    NASA Astrophysics Data System (ADS)

    Snoussi, A.

    1987-01-01

    Ultrasonic acoustic waves were seized and exploited within a bandwidth ranging from 30 kHz to 55 kHz for non-destructive control when boring three kinds of steel with a digitally programmed drill. In addition, these waves were considered in soldering two steels and one aluminum using T.I.G. process. Spectrum analysis of acoustic emissions produced during the drill is closely related to the extraction of turnings from the metal. Because of the wick's progressive wearing out, the spectrum tends to be close to the machine's own noise spectrum. Meanwhile in the soldering operation of test-tubes of 2 mm thickness, the frequency analysis shows a particular frequency called signature corresponding to the flow of protection gas. Other frequencies associated to some internal defects in the soldering process as a delay in the fissure and a lack in the fusion were detected.

  3. Mean-based neural coding of voices.

    PubMed

    Andics, Attila; McQueen, James M; Petersson, Karl Magnus

    2013-10-01

    The social significance of recognizing the person who talks to us is obvious, but the neural mechanisms that mediate talker identification are unclear. Regions along the bilateral superior temporal sulcus (STS) and the inferior frontal cortex (IFC) of the human brain are selective for voices, and they are sensitive to rapid voice changes. Although it has been proposed that voice recognition is supported by prototype-centered voice representations, the involvement of these category-selective cortical regions in the neural coding of such "mean voices" has not previously been demonstrated. Using fMRI in combination with a voice identity learning paradigm, we show that voice-selective regions are involved in the mean-based coding of voice identities. Voice typicality is encoded on a supra-individual level in the right STS along a stimulus-dependent, identity-independent (i.e., voice-acoustic) dimension, and on an intra-individual level in the right IFC along a stimulus-independent, identity-dependent (i.e., voice identity) dimension. Voice recognition therefore entails at least two anatomically separable stages, each characterized by neural mechanisms that reference the central tendencies of voice categories. PMID:23664949

  4. Wavenumber transform analysis for acoustic black hole design.

    PubMed

    Feurtado, Philip A; Conlon, Stephen C

    2016-07-01

    Acoustic black holes (ABHs) are effective, passive, lightweight vibration absorbers that have been developed and shown to effectively reduce the structural vibration and radiated sound of beam and plate structures. ABHs employ a local thickness change that reduces the speed of bending waves and increases the transverse vibration amplitude. The vibrational energy can then be effectively focused and dissipated by material losses or through conventional viscoelastic damping treatments. In this work, the measured vibratory response of embedded ABH plates was transformed into the wavenumber domain in order to investigate the use of wavenumber analysis for characterizing, designing, and optimizing practical ABH systems. The results showed that wavenumber transform analysis can be used to simultaneously visualize multiple aspects of ABH performance including changes in bending wave speed, transverse vibration amplitude, and energy dissipation. The analysis was also used to investigate the structural acoustic coupling of the ABH system and determine the radiation efficiency of the embedded ABH plates compared to a uniform plate. The results demonstrated that the ABH effect results in acoustic decoupling as well as vibration reduction. The wavenumber transform based methods and results will be useful for implementing ABHs into real world structures. PMID:27475193

  5. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  6. Control of voice gender in pre-pubertal children.

    PubMed

    Cartei, Valentina; Cowles, Wind; Banerjee, Robin; Reby, David

    2014-03-01

    Adult listeners are capable of identifying the gender of speakers as young as 4 years old from their voice. In the absence of a clear anatomical dimorphism in the dimensions of pre-pubertal boys' and girls' vocal apparatus, the observed gender differences may reflect children's regulation of their vocal behaviour. A detailed acoustic analysis was conducted of the utterances of 34 6- to 9-year-old children, in their normal voices and also when asked explicitly to speak like a boy or a girl. Results showed statistically significant shifts in fundamental and formant frequency values towards those expected from the sex dimorphism in adult voices. Directions for future research on the role of vocal behaviours in pre-pubertal children's expression of gender are considered. PMID:24372318

  7. Treated cabin acoustic prediction using statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Ingraham, Steven T.; Moore, James A.

    1987-01-01

    The application of statistical energy analysis (SEA) to the modeling and design of helicopter cabin interior noise control treatment is demonstrated. The information presented here is obtained from work sponsored at NASA Langley for the development of analytic modeling techniques and the basic understanding of cabin noise. Utility and executive interior models are developed directly from existing S-76 aircraft designs. The relative importance of panel transmission loss (TL), acoustic leakage, and absorption to the control of cabin noise is shown using the SEA modeling parameters. It is shown that the major cabin noise improvement below 1000 Hz comes from increased panel TL, while above 1000 Hz it comes from reduced acoustic leakage and increased absorption in the cabin and overhead cavities.

  8. Music Structure Analysis from Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Dannenberg, Roger B.; Goto, Masataka

    Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.

  9. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    NASA Astrophysics Data System (ADS)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  10. Efficacy of the Discreteness of Voicing Category (DOVC) Measure for Characterizing Voicing Errors in Children with Cochlear Implants: A Report

    ERIC Educational Resources Information Center

    Bharadwaj, Sneha V.; Graves, Amanda G.

    2008-01-01

    Purpose: This investigation explored the utility of an acoustic measure, called the discreteness of voicing category (DOVC), in identifying voicing errors in stop consonants produced by children with cochlear implants. Another objective was to examine the perceptual relevance of the DOVC measure and 2 commonly used voice onset time (VOT)-based…

  11. Damage Detection and Analysis in CFRPs Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis Laron

    Real time monitoring of damage is an important aspect of life management of critical structures. Acoustic emission (AE) techniques allow for measurement and assessment of damage in real time. Acoustic emission parameters such as signal amplitude and duration were monitored during the loading sequences. Criteria that can indicate the onset of critical damage to the structure were developed. Tracking the damage as it happens gives a better analysis of the failure evolution that will allow for a more accurate determination of structural life. The main challenge is distinguishing between legitimate damage signals and "false positives" which are unrelated to damage growth. Such false positives can be related to electrical noise, friction, or mechanical vibrations. This research focuses on monitoring signals of damage growth in carbon fiber reinforced polymers (CFRPs) and separating the relevant signals from the false ones. In this Dissertation, acoustic emission signals from CFRP specimens were experimentally recorded and analyzed. The objectives of this work are: (1) perform static and fatigue loading of CFRP composite specimens and measure the associated AE signals, (2) accurately determine the AE parameters (energy, frequency, duration, etc.) of signals generated during failure of such specimens, (3) use fiber optic sensors to monitor the strain distribution of the damage zone and relate these changes in strain measurements to AE data.

  12. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    NASA Astrophysics Data System (ADS)

    Emokpae, Lloyd

    -of-sight (LOS) and NLOS links by utilizing directional antennas, which will boost the signal-to-noise ratio (SNR) at the receiver while promoting NLOS usage. In our model, we employ a directional underwater acoustic antenna composed of an array of hydrophones that can be summed up at various phases and amplitudes resulting in a beam-former. We have also adopted a practical multimodal directional transducer concept which generates both directional and omni-directional beam patterns by combining the fundamental vibration modes of a cylindrical acoustic radiator. This allows the transducer to be electrically controlled and steered by simply adjusting the electrical voltage weights. A prototype acoustic modem is then developed to utilize the multimodal directional transducer for both LOS and NLOS communication. The acoustic modem has also been used as a platform for empirically validating our SBR communication model in a tank and with empirical data. Networking protocols have been developed to exploit the SBR communication model. These protocols include node discovery and localization, directional medium access control (D-MAC) and geographical routing. In node discovery and localization, each node will utilize SBR-based range measurements to its neighbors to determine their relative position. The D-MAC protocol utilizes directional antennas to increase the network throughput due to the spatial efficiency of the antenna model. In the proposed reflection-enabled directional MAC protocol (RED-MAC), each source node will be able to determine if an obstacle is blocking the LOS link to the destination and switch to the best NLOS link by utilizing surface/bottom reflections. Finally, we have developed a geographical routing algorithm which aims to establish the best stable route from a source node to a destination node. The optimized route is selected to achieve maximum network throughput. Extensive analysis of the network throughput when utilizing directional antennas is also presented

  13. Voice rehabilitation with tragal cartilage and perichondrium after vertical partial laryngectomy for glottic cancer

    PubMed Central

    Chirilă, Magdalena; Ţiple, Cristina; Dinescu, Florina Veronica; Mureşan, Rodica; Bolboacă, Sorana D.

    2015-01-01

    Background: The goal of the study is to test medialization of the neocord after oncological surgery for glottic cancer, using autologous tragal cartilage and perichondrium by the direct approach. Materials and Methods: Sixteen patients underwent comprehensive assessment including auditory perceptual assessment, videostrobolaryngoscopy, and acoustic voice analysis. The cartilage graft was inserted into a pocket created in the tyroarytenoid — lateral cricoarytenoid muscle complex or the excavated musculomembranous part of the neocord, and fixed by placing the perichondrium by the direct approach. The patients were evaluated preoperatively, and at 14 days, 60 days, and 6 months later. Results: Improvement of voice and breathiness was correlated with the increase of closed quotient and harmonic-to-noise ratio; the acoustic voice parameters studied showed significant differences between preoperative and postoperative voices, and these objective measurements of voice changes provided accurate and documentary evidence of the results of surgical treatment. Conclusion: This method may be considered a safe and efficient phonosurgical procedure for voice restoration. PMID:26109985

  14. Signature analysis of acoustic emission from graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Henneke, E. G., II

    1977-01-01

    Acoustic emissions were monitored for crack extension across and parallel to the fibers in a single ply and multiply laminates of graphite epoxy composites. Spectrum analysis was performed on the transient signal to ascertain if the fracture mode can be characterized by a particular spectral pattern. The specimens were loaded to failure quasistatically in a tensile machine. Visual observations were made via either an optical microscope or a television camera. The results indicate that several types of characteristics in the time and frequency domain correspond to different types of failure.

  15. Adductor spasmodic dysphonia: Relationships between acoustic indices and perceptual judgments

    NASA Astrophysics Data System (ADS)

    Cannito, Michael P.; Sapienza, Christine M.; Woodson, Gayle; Murry, Thomas

    2003-04-01

    This study investigated relationships between acoustical indices of spasmodic dysphonia and perceptual scaling judgments of voice attributes made by expert listeners. Audio-recordings of The Rainbow Passage were obtained from thirty one speakers with spasmodic dysphonia before and after a BOTOX injection of the vocal folds. Six temporal acoustic measures were obtained across 15 words excerpted from each reading sample, including both frequency of occurrence and percent time for (1) aperiodic phonation, (2) phonation breaks, and (3) fundamental frequency shifts. Visual analog scaling judgments were also obtained from six voice experts using an interactive computer interface to quantify four voice attributes (i.e., overall quality, roughness, brokenness, breathiness) in a carefully psychoacoustically controlled environment, using the same reading passages as stimuli. Number and percent aperiodicity and phonation breaks correlated significanly with perceived overall voice quality, roughness, and brokenness before and after the BOTOX injection. Breathiness was correlated with aperidocity only prior to injection, while roughness also correlated with frequency shifts following injection. Factor analysis reduced perceived attributes to two principal components: glottal squeezing and breathiness. The acoustic measures demonstrated a strong regression relationship with perceived glottal squeezing, but no regression relationship with breathiness was observed. Implications for an analysis of pathologic voices will be discussed.

  16. Quality Prediction of Twin Wire Arc Sprayed Coatings Using Acoustic Emission Analysis

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.; Wang, G.; Zielke, R.

    2013-03-01

    In this work, acoustic emission analysis is utilized in the twin wire arc spraying (TWAS) process to study the influence of the adjustable process parameters on the simultaneously obtained acoustic signals at the nozzle and at the substrate. The amplitude of recorded signals at the substrate was in general much higher than those recorded at the nozzle. At the substrate side, the amplitude of emitted acoustic signals is dependent on feedstock materials and is higher when using solid wires. The acoustic signals were recorded at the spraying gun for different gas pressures without arc ignition (as dry runs) in order to reveal the effect of the arc on the emitted acoustic signals. A correlation between controllable parameters, the acoustic signals, and the obtained in-flight particle characteristics was observed. This work contributes to the online control of TWAS processes and is one of many proposed publications in the research field of the conducted acoustic emission analysis.

  17. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  18. Spectral analysis methods for vehicle interior vibro-acoustics identification

    NASA Astrophysics Data System (ADS)

    Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal

    2009-02-01

    Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.

  19. Applying FSL to the FIAC Data: Model-Based and Model-Free Analysis of Voice and Sentence Repetition Priming

    PubMed Central

    Beckmann, Christian F.; Jenkinson, Mark; Woolrich, Mark W.; Behrens, Timothy E.J.; Flitney, David E.; Devlin, Joseph T.; Smith, Stephen M.

    2009-01-01

    This article presents results obtained from applying various tools from FSL (FMRIB Software Library) to data from the repetition priming experiment used for the HBM’05 Functional Image Analysis Contest. We present analyses from the model-based General Linear Model (GLM) tool (FEAT) and from the model-free independent component analysis tool (MELODIC). We also discuss the application of tools for the correction of image distortions prior to the statistical analysis and the utility of recent advances in functional magnetic resonance imaging (FMRI) time series modeling and inference such as the use of optimal constrained HRF basis function modeling and mixture modeling inference. The combination of hemodynamic response function (HRF) and mixture modeling, in particular, revealed that both sentence content and speaker voice priming effects occurred bilaterally along the length of the superior temporal sulcus (STS). These results suggest that both are processed in a single underlying system without any significant asymmetries for content vs. voice processing. PMID:16565953

  20. Filterbank-based independent component analysis for acoustic mixtures

    NASA Astrophysics Data System (ADS)

    Park, Hyung-Min

    2011-06-01

    Independent component analysis (ICA) for acoustic mixtures has been a challenging problem due to very complex reverberation involved in real-world mixing environments. In an effort to overcome disadvantages of the conventional time domain and frequency domain approaches, this paper describes filterbank-based independent component analysis for acoustic mixtures. In this approach, input signals are split into subband signals and decimated. A simplified network performs ICA on the decimated signals, and finally independent components are synthesized. First, a uniform filterbank is employed in the approach for basic and simple derivation and implementation. The uniform-filterbank-based approach achieves better separation performance than the frequency domain approach and gives faster convergence speed with less computational complexity than the time domain approach. Since most of natural signals have exponentially or more steeply decreasing energy as the frequency increases, the spectral characteristics of natural signals introduce a Bark-scale filterbank which divides low frequency region minutely and high frequency region widely. The Bark-scale-filterbank-based approach shows faster convergence speed than the uniform-filterbank-based one because it has more whitened inputs in low frequency subbands. It also improves separation performance as it has enough data to train adaptive parameters exactly in high frequency subbands.

  1. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  2. Multi-dimensional analysis of subjective acoustical ratings and acoustical measures in existing concert halls

    NASA Astrophysics Data System (ADS)

    Okano, Toshiyuki

    2001-05-01

    Correlations between subjective acoustical ratings and hall-averaged values of acoustical measures are studied among existing worldwide major concert halls. It was shown that the classified acoustical ratings by Beranek [Concert and Opera Halls, How They Sound (ASA, 1996)] are discriminated correctly by combining binaural quality index (BQI) with some other acoustical measures. BQI is determined by the arithmetic average of inter-aural cross correlation coefficient in three octave bands of 500, 1000, and 2000 Hz, subtracted from unity, calculated from the early 80-ms part of binaural impulse response. Considering that the upper limit value of BQI not to cause disturbing image shift is approximately 0.85 at individual seat [Okano, J. Acoust. Soc. Am. 2219-2230 (2000)], the values of 0.6 or higher in hall averaged value of BQI, 0.85 or smaller in individual seat value of BQI, and approximately 5 dB or higher in strength factor at middle frequencies are proposed as design objectives to attain a high acoustical quality. It should be provided that other acoustical measures are also optimized. These target values will be very effective in studying room shape of halls, using scale models or computer models.

  3. Perception of synthesized voice quality in connected speech by Cantonese speakers.

    PubMed

    Yiu, Edwin M L; Murdoch, Bruce; Hird, Kathryn; Lau, Polly

    2002-09-01

    Perceptual voice analysis is a subjective process. However, despite reports of varying degrees of intrajudge and interjudge reliability, it is widely used in clinical voice evaluation. One of the ways to improve the reliability of this procedure is to provide judges with signals as external standards so that comparison can be made in relation to these "anchor" signals. The present study used a Klatt speech synthesizer to create a set of speech signals with varying degree of three different voice qualities based on a Cantonese sentence. The primary objective of the study was to determine whether different abnormal voice qualities could be synthesized using the "built-in" synthesis parameters using a perceptual study. The second objective was to determine the relationship between acoustic characteristics of the synthesized signals and perceptual judgment. Twenty Cantonese-speaking speech pathologists with at least three years of clinical experience in perceptual voice evaluation were asked to undertake two tasks. The first was to decide whether the voice quality of the synthesized signals was normal or not. The second was to decide whether the abnormal signals should be described as rough, breathy, or vocal fry. The results showed that signals generated with a small degree of aspiration noise were perceived as breathiness while signals with a small degree of flutter or double pulsing were perceived as roughness. When the flutter or double pulsing increased further, tremor and vocal fry, rather than roughness, were perceived. Furthermore, the amount of aspiration noise, flutter, or double pulsing required for male voice stimuli was different from that required for the female voice stimuli with a similar level of perceptual breathiness and roughness. These findings showed that changes in perceived vocal quality could be achieved by systematic modifications of synthesis parameters. This opens up the possibility of using synthesized voice signals as external standards or

  4. Voice measures of workload in the advanced flight deck: Additional studies

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray

    1989-01-01

    These studies investigated acoustical analysis of the voice as a measure of workload in individual operators. In the first study, voice samples were recorded from a single operator during high, medium, and low workload conditions. Mean amplitude, frequency, syllable duration, and emphasis all tended to increase as workload increased. In the second study, NASA test pilots performed a laboratory task, and used a flight simulator under differing work conditions. For two of the pilots, high workload in the simulator brought about greater amplitude, peak duration, and stress. In both the laboratory and simulator tasks, high workload tended to be associated with more statistically significant drop-offs in the acoustical measures than were lower workload levels. There was a great deal of intra-subject variability in the acoustical measures. The results suggested that in individual operators, increased workload might be revealed by high initial amplitude and frequency, followed by rapid drop-offs over time.

  5. Neural network data analysis for laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Schlamp, Stefan; Hornung, Hans G.; Cummings, Eric B.

    2000-06-01

    A general, analytical closed-form solution for laser-induced thermal acoustic (LITA) signals using homodyne or heterodyne detection and using electrostrictive and thermal gratings is derived. A one-hidden-layer feed-forward neural network is trained using back-propagation learning and a steepest descent learning rule to extract the speed of sound and flow velocity from a heterodyne LITA signal. The effect of the network size on the performance is demonstrated. The accuracy is determined with a second set of LITA signals that were not used during the training phase. The accuracy is found to be better than that of a conventional frequency decomposition technique while being computationally as efficient. This data analysis method is robust with respect to noise, numerically stable and fast enough for real-time data analysis.

  6. Acoustic streaming jets: A scaling and dimensional analysis

    SciTech Connect

    Botton, V. Henry, D.; Millet, S.; Ben-Hadid, H.; Garandet, J. P.

    2015-10-28

    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  7. Coefficient of variation spectral analysis: An application to underwater acoustics

    NASA Astrophysics Data System (ADS)

    Herstein, P. D.; Laplante, R. F.

    1983-05-01

    Acoustic noise in the ocean is often described in terms of its power spectral density. Just as in other media, this noise consists of both narrowband and broadband frequency components. A major problem in the analysis of power spectral density measurements is distinguishing between narrowband spectral components of interest and contaminating narrowband components. In this paper, the use of coefficient of variation (Cv) spectrum is examined as an adjunct to the conventional power spectrum to distinguish narrowband components of interest from contaminating components. The theory of the Cv is presented. Coefficients for several classical input distributions are developed. It is shown that Cv spectra can be easily implemented as an adjunct procedure during the computation of the ensemble of averaged power spectra. Power and Cv spectra derived from actual at-sea sonobuoy measurements of deep ocean ambient noise separate narrowband components from narrowband lines of interest in the ensemble of averaged power spectra, these acoustic components of interest can be distinguished in the Cv spectra.

  8. An analysis of the acoustic input impedance of the ear.

    PubMed

    Withnell, Robert H; Gowdy, Lauren E

    2013-10-01

    Ear canal acoustics was examined using a one-dimensional lossy transmission line with a distributed load impedance to model the ear. The acoustic input impedance of the ear was derived from sound pressure measurements in the ear canal of healthy human ears. A nonlinear least squares fit of the model to data generated estimates for ear canal radius, ear canal length, and quantified the resistance that would produce transmission losses. Derivation of ear canal radius has application to quantifying the impedance mismatch at the eardrum between the ear canal and the middle ear. The length of the ear canal was found, in general, to be longer than the length derived from the one-quarter wavelength standing wave frequency, consistent with the middle ear being mass-controlled at the standing wave frequency. Viscothermal losses in the ear canal, in some cases, may exceed that attributable to a smooth rigid wall. Resistance in the middle ear was found to contribute significantly to the total resistance. In effect, this analysis "reverse engineers" physical parameters of the ear from sound pressure measurements in the ear canal. PMID:23917695

  9. Voice - How humans communicate?

    PubMed Central

    Tiwari, Manjul; Tiwari, Maneesha

    2012-01-01

    Voices are important things for humans. They are the medium through which we do a lot of communicating with the outside world: our ideas, of course, and also our emotions and our personality. The voice is the very emblem of the speaker, indelibly woven into the fabric of speech. In this sense, each of our utterances of spoken language carries not only its own message but also, through accent, tone of voice and habitual voice quality it is at the same time an audible declaration of our membership of particular social regional groups, of our individual physical and psychological identity, and of our momentary mood. Voices are also one of the media through which we (successfully, most of the time) recognize other humans who are important to us—members of our family, media personalities, our friends, and enemies. Although evidence from DNA analysis is potentially vastly more eloquent in its power than evidence from voices, DNA cannot talk. It cannot be recorded planning, carrying out or confessing to a crime. It cannot be so apparently directly incriminating. As will quickly become evident, voices are extremely complex things, and some of the inherent limitations of the forensic-phonetic method are in part a consequence of the interaction between their complexity and the real world in which they are used. It is one of the aims of this article to explain how this comes about. This subject have unsolved questions, but there is no direct way to present the information that is necessary to understand how voices can be related, or not, to their owners. PMID:22690044

  10. Characterizing noise in nonhuman vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs

    NASA Astrophysics Data System (ADS)

    Riede, Tobias; Mitchell, Brian R.; Tokuda, Isao; Owren, Michael J.

    2005-07-01

    Measuring noise as a component of mammalian vocalizations is of interest because of its potential relevance to the communicative function. However, methods for characterizing and quantifying noise are less well established than methods applicable to harmonically structured aspects of signals. Using barks of coyotes and domestic dogs, we compared six acoustic measures and studied how they are related to human perception of noisiness. Measures of harmonic-to-noise-ratio (HNR), percent voicing, and shimmer were found to be the best predictors of perceptual rating by human listeners. Both acoustics and perception indicated that noisiness was similar across coyote and dog barks, but within each species there was significant variation among the individual vocalizers. The advantages and disadvantages of the various measures are discussed.

  11. The accuracy of a voice vote

    PubMed Central

    Titze, Ingo R.; Palaparthi, Anil

    2014-01-01

    The accuracy of a voice vote was addressed by systematically varying group size, individual voter loudness, and words that are typically used to express agreement or disagreement. Five judges rated the loudness of two competing groups in A-B comparison tasks. Acoustic analysis was performed to determine the sound energy level of each word uttered by each group. Results showed that individual voter differences in energy level can grossly alter group loudness and bias the vote. Unless some control is imposed on the sound level of individual voters, it is difficult to establish even a two-thirds majority, much less a simple majority. There is no symmetry in the bias created by unequal sound production of individuals. Soft voices do not bias the group loudness much, but loud voices do. The phonetic balance of the two words chosen (e.g., “yea” and “nay” as opposed to “aye” and “no”) seems to be less of an issue. PMID:24437776

  12. A Novel Analysis of Acoustic Oscillations in Chromospheric Active Regions

    NASA Astrophysics Data System (ADS)

    Monsue, Teresa; Hill, Frank; Stassun, Keivan G.

    2015-04-01

    A helioseismic analysis of the chromosphere is employed in H-alpha to study how solar flares around active regions affect the behavior of acoustic oscillations. Our analysis deals with flares directly over sunspots, where the region is highly magnetized. In our current study of analyzing these oscillations in the chromosphere we study the temporal evolution of the oscillatory behavior from data taken from the Global Oscillation Network Group (GONG) H-alpha detectors. We investigate the wave behavior across different frequency bands (1 < ν < 8.33 mHz). In order to analyze the frequency bands of the oscillations, our analysis utilizes time series data to create Fourier power spectra of individual pixels spatially resolved and temporally evolved around the flare region; thereby creating a movie of each frequency band. This study entails three active regions, directly over sunspots, in which flaring activity is taking place from two solar flares, which occurred on June 13th and July 12th, 2012. We found that the intensity of the flare has an effect on the oscillations within different frequency bands. A suppression of power was observed in dark anomalous structures across the total frequency bands and in other regions there was an observed boost in power due to flaring activity. We find that, in the heart of all three regions, the low-frequency power (˜1-2 mHz) is substantially enhanced immediately prior to and after the flare, and that power at all frequencies up to 8 mHz is depleted at flare maximum. This depletion is both frequency and time dependent, which probably reflects the changing depths visible during the flare in the bandpass of the filter. These variations are not observed outside the flaring region. The depletion may indicate that acoustic energy is being converted into thermal energy at flare maximum, while the low-frequency enhancement may arise from an instability in the chromosphere and provide an early warning of the flare onset.

  13. Voice Disorders

    MedlinePlus

    ... make you hoarse. They can also lead to problems such as nodules, polyps, and sores on the ... disorders varies depending on the cause. Most voice problems can be successfully treated when diagnosed early. NIH: ...

  14. Voice Disorders

    MedlinePlus

    ... or voice box. In your larynx are your vocal cords, two bands of muscle that vibrate to make ... unique. Many things we do can injure our vocal cords. Talking too much, screaming, constantly clearing your throat, ...

  15. The gay voice in popular music: a social value model analysis of "Don't Leave Me This Way".

    PubMed

    Attig, R B

    1991-01-01

    The gay voice in popular music and its potential to create positive social change regarding societal values about homosexuality is the focus of the present study. The historical development of the gay voice in popular music is reviewed as an introduction to a critical analysis of the Communards' music video "Don't Leave Me This Way." Using a modified version of the Social Value Model proposed by Rushing and Frentz, the video is analyzed on three levels: (a) narrative content, (b) use of symbols in the narrative, and (c) lyrical content. It is suggested that this video effected a dialectical synthesis of mainstream and homosexual values because it achieved mainstream commercial success while realistically expressing a gay perspective. PMID:1713241

  16. Novel techniques for the analysis of wireless integrated voice/data networks

    NASA Astrophysics Data System (ADS)

    Wieselthier, Jeffrey E.; Barnhart, Craig M.; Ephremides, Anthony

    1995-07-01

    In this report, we consider the evaluation of data-packet delay in wireless integrated voice data networks. In networks that support circuit-switched voice, the voice occupancy process satisfies a product-form solution under reasonable modeling assumptions. Although this product-form solution provides an accurate characterization of equilibrium voice-traffic behavior, it does not directly provide a method to evaluate data-packet delay. However, examination of each link separately in a manner that incorporates interaction with the rest of the network permits us to take advantage of the wireless nature of the network and obtain a three-flow characterization of each link, which also satisfies a product-form solution and is hence termed a 'mini-product-form' solution. By matching the values of these flows to the average values obtained from the product-form solution of the entire network, we obtain a three-dimensional Markov chain characterization of the voice occupancy state on the link, which permits a simpler evaluation of data-packet delay. A further reduction is possible by converting the three-dimensional chain to a single-dimensional one. Performance results demonstrate that these models provide satisfactory delay estimates that also appear to be upper bounds on delay.

  17. 'Inner voices': the cerebral representation of emotional voice cues described in literary texts.

    PubMed

    Brück, Carolin; Kreifelts, Benjamin; Gößling-Arnold, Christina; Wertheimer, Jürgen; Wildgruber, Dirk

    2014-11-01

    While non-verbal affective voice cues are generally recognized as a crucial behavioral guide in any day-to-day conversation their role as a powerful source of information may extend well beyond close-up personal interactions and include other modes of communication such as written discourse or literature as well. Building on the assumption that similarities between the different 'modes' of voice cues may not only be limited to their functional role but may also include cerebral mechanisms engaged in the decoding process, the present functional magnetic resonance imaging study aimed at exploring brain responses associated with processing emotional voice signals described in literary texts. Emphasis was placed on evaluating 'voice' sensitive as well as task- and emotion-related modulations of brain activation frequently associated with the decoding of acoustic vocal cues. Obtained findings suggest that several similarities emerge with respect to the perception of acoustic voice signals: results identify the superior temporal, lateral and medial frontal cortex as well as the posterior cingulate cortex and cerebellum to contribute to the decoding process, with similarities to acoustic voice perception reflected in a 'voice'-cue preference of temporal voice areas as well as an emotion-related modulation of the medial frontal cortex and a task-modulated response of the lateral frontal cortex. PMID:24396008

  18. Voice, Schooling, Inequality, and Scale

    ERIC Educational Resources Information Center

    Collins, James

    2013-01-01

    The rich studies in this collection show that the investigation of voice requires analysis of "recognition" across layered spatial-temporal and sociolinguistic scales. I argue that the concepts of voice, recognition, and scale provide insight into contemporary educational inequality and that their study benefits, in turn, from paying attention to…

  19. Effects of noise and acoustics in schools on vocal health in teachers.

    PubMed

    Cutiva, Lady Catherine Cantor; Burdorf, Alex

    2015-01-01

    Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotα, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12-2.99) and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88-3.53) were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health. PMID:25599754

  20. Effects of noise and acoustics in schools on vocal health in teachers

    PubMed Central

    Cutiva, Lady Catherine Cantor; Burdorf, Alex

    2015-01-01

    Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotá, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12–2.99) and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88–3.53) were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health. PMID:25599754

  1. About Your Voice

    MedlinePlus

    ... Is Voice? “Voice” is the sound made by vibration of the vocal cords caused by air passing ... swelling of the vocal cords and changes their vibration resulting in an abnormal voice. Reduced voice use ( ...

  2. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  3. Voice Teachers on Voice, Part 3

    ERIC Educational Resources Information Center

    Gollobin, Laurie Brooks; White, Harvey

    1978-01-01

    Concludes a three-part symposium with eight prominent voice teachers on voice teaching methods. In this part, the teachers discuss placement, voice breaks, tone deafness, covered tone, and developing volume and offer some final general comments. (Editor)

  4. Using rotor or tip speed in the acoustical analysis of small wind turbines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustical noise data have been collected and analyzed on small wind turbines used for water pumping at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near Bushland, Texas. This acoustical analysis differed from previous research in that the data were analyzed with rotor or tip ...

  5. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures

    NASA Technical Reports Server (NTRS)

    Block, J.

    1983-01-01

    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  6. Temporal analysis of acoustic emission from a plunged granular bed

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Katsuragi, Hiroaki

    2015-10-01

    The statistical property of acoustic emission (AE) events from a plunged granular bed is analyzed by means of actual-time and natural-time analyses. These temporal analysis methods allow us to investigate the details of AE events that follow a power-law distribution. In the actual-time analysis, the calm-time distribution, and the decay of the event-occurrence density after the largest event (i.e., the Omori-Utsu law) are measured. Although the former always shows a power-law form, the latter does not always obey a power law. Markovianity of the event-occurrence process is also verified using a scaling law by assuming that both of them exhibit power laws. We find that the effective shear strain rate is a key parameter to classify the emergence rate of power-law nature and Markovianity in granular AE events. For the natural-time analysis, the existence of self-organized critical states is revealed by calculating the variance of natural time χk, where k th natural time of N events is defined as χk=k /N . In addition, the energy difference distribution can be fitted by a q -Gaussian form, which is also consistent with the criticality of the system.

  7. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  8. Functional Voice Testing Detects Early Changes in Vocal Pitch in Women During Testosterone Administration

    PubMed Central

    Pencina, Karol M.; Coady, Jeffry A.; Beleva, Yusnie M.; Bhasin, Shalender; Basaria, Shehzad

    2015-01-01

    Objective: To determine dose-dependent effects of T administration on voice changes in women with low T levels. Methods: Seventy-one women who have undergone a hysterectomy with or without oophorectomy with total T < 31 ng/dL and/or free T < 3.5 pg/mL received a standardized transdermal estradiol regimen during the 12-week run-in period and were then randomized to receive weekly im injections of placebo or 3, 6.25, 12.5, or 25 mg T enanthate for 24 weeks. Total and free T levels were measured by liquid chromatography-tandem mass spectrometry and equilibrium dialysis, respectively. Voice handicap was measured by self-report using a validated voice handicap index questionnaire at baseline and 24 weeks after intervention. Functional voice testing was performed using the Kay Elemetrics-Computer Speech Lab to determine voice frequency, volume, and harmonics. Results: Forty-six women with evaluable voice data at baseline and after intervention were included in the analysis. The five groups were similar at baseline. Mean on-treatment nadir total T concentrations were 13, 83, 106, 122, and 250 ng/dL in the placebo, 3-, 6.25-, 12.5-, and 25-mg groups, respectively. Analyses of acoustic voice parameters revealed significant lowering of average pitch in the 12.5- and 25-mg dose groups compared to placebo (P < .05); these changes in pitch were significantly related to increases in T concentrations. No significant dose- or concentration-dependent changes in self-reported voice handicap index scores were observed. Conclusion: Testosterone administration in women with low T levels over 24 weeks was associated with dose- and concentration-dependent decreases in average pitch in the higher dose groups. These changes were seen despite the lack of self-reported changes in voice. PMID:25875779

  9. Scientific bases of human-machine communication by voice.

    PubMed Central

    Schafer, R W

    1995-01-01

    The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines. PMID:7479802

  10. Scientific Bases of Human-Machine Communication by Voice

    NASA Astrophysics Data System (ADS)

    Schafer, Ronald W.

    1995-10-01

    The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines.

  11. Method of detection, classification, and identification of objects employing acoustic signal analysis

    NASA Astrophysics Data System (ADS)

    Orzanowski, Tomasz; Madura, Henryk; Sosnowski, Tomasz; Chmielewski, Krzysztof

    2008-10-01

    The methods of detection and identification of objects based on acoustic signal analysis are used in many applications, e.g., alarm systems, military battlefield reconnaissance systems, intelligent ammunition, and others. The construction of technical objects such as vehicle or helicopter gives some possibilities to identify them on the basis of acoustic signals generated by those objects. In this paper a method of automatic detection, classification and identification of military vehicles and helicopters using a digital analysis of acoustic signals is presented. The method offers a relatively high probability of object detection in attendance of other disturbing acoustic signals. Moreover, it provides low probability of false classification and identification of object. The application of this method to acoustic sensor for the anti-helicopter mine is also presented.

  12. Swinging at a cocktail party: voice familiarity aids speech perception in the presence of a competing voice.

    PubMed

    Johnsrude, Ingrid S; Mackey, Allison; Hakyemez, Hélène; Alexander, Elizabeth; Trang, Heather P; Carlyon, Robert P

    2013-10-01

    People often have to listen to someone speak in the presence of competing voices. Much is known about the acoustic cues used to overcome this challenge, but almost nothing is known about the utility of cues derived from experience with particular voices--cues that may be particularly important for older people and others with impaired hearing. Here, we use a version of the coordinate-response-measure procedure to show that people can exploit knowledge of a highly familiar voice (their spouse's) not only to track it better in the presence of an interfering stranger's voice, but also, crucially, to ignore it so as to comprehend a stranger's voice more effectively. Although performance declines with increasing age when the target voice is novel, there is no decline when the target voice belongs to the listener's spouse. This finding indicates that older listeners can exploit their familiarity with a speaker's voice to mitigate the effects of sensory and cognitive decline. PMID:23985575

  13. Acoustic analysis and mood classification of pain-relieving music.

    PubMed

    Knox, Don; Beveridge, Scott; Mitchell, Laura A; MacDonald, Raymond A R

    2011-09-01

    Listening to preferred music (that which is chosen by the participant) has been shown to be effective in mitigating the effects of pain when compared to silence and a variety of distraction techniques. The wide range of genre, tempo, and structure in music chosen by participants in studies utilizing experimentally induced pain has led to the assertion that structure does not play a significant role, rather listening to preferred music renders the music "functionally equivalent" as regards its effect upon pain perception. This study addresses this assumption and performs detailed analysis of a selection of music chosen from three pain studies. Music analysis showed significant correlation between timbral and tonal aspects of music and measurements of pain tolerance and perceived pain intensity. Mood classification was performed using a hierarchical Gaussian Mixture Model, which indicated the majority of the chosen music expressed contentment. The results suggest that in addition to personal preference, associations with music and the listening context, emotion expressed by music, as defined by its acoustical content, is important to enhancing emotional engagement with music and therefore enhances the level of pain reduction and tolerance. PMID:21895104

  14. Acoustic emission analysis of tooth-composite interfacial debonding.

    PubMed

    Cho, N Y; Ferracane, J L; Lee, I B

    2013-01-01

    This study detected tooth-composite interfacial debonding during composite restoration by means of acoustic emission (AE) analysis and investigated the effects of composite properties and adhesives on AE characteristics. The polymerization shrinkage, peak shrinkage rate, flexural modulus, and shrinkage stress of a methacrylate-based universal hybrid, a flowable, and a silorane-based composite were measured. Class I cavities on 49 extracted premolars were restored with 1 of the 3 composites and 1 of the following adhesives: 2 etch-and-rinse adhesives, 2 self-etch adhesives, and an adhesive for the silorane-based composite. AE analysis was done for 2,000 sec during light-curing. The silorane-based composite exhibited the lowest shrinkage (rate), the longest time to peak shrinkage rate, the lowest shrinkage stress, and the fewest AE events. AE events were detected immediately after the beginning of light-curing in most composite-adhesive combinations, but not until 40 sec after light-curing began for the silorane-based composite. AE events were concentrated at the initial stage of curing in self-etch adhesives compared with etch-and-rinse adhesives. Reducing the shrinkage (rate) of composites resulted in reduced shrinkage stress and less debonding, as evidenced by fewer AE events. AE is an effective technique for monitoring, in real time, the debonding kinetics at the tooth-composite interface. PMID:23100273

  15. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    PubMed

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-01

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis. PMID:22742654

  16. An Anthology of Voices: An Analysis of Trainee Drama Teachers' Monologues

    ERIC Educational Resources Information Center

    Schonmann, Shifra; Kempe, Andy

    2010-01-01

    This paper reports on research undertaken into the processes through which student teachers begin to formulate an identity as a professional teacher. Using Fuller's investigations into the attitudes of trainee teachers towards their courses (1969) as a baseline, a discussion is established on the place of the student voice in contemporary initial…

  17. Stimulus control analysis of language disorders: A study of substitution between voiced and unvoiced consonants

    PubMed Central

    Brasolotto, Alcione G.; de Rose, Julio C.; Stoddard, Lawrence T.; de Souza, Deisy G.

    1993-01-01

    This study attempted to analyze defective stimulus control relations underlying persistent substitution between voiced and unvoiced consonants in the speech and writing of two children. A series of 20 tests was administered repeatedly. Some tests consisted of matching-to-sample tasks, with dictated words, printed words, or pictures as samples. Comparison stimuli were arranged in pairs of printed words or pictures, such that the only difference in their corresponding spoken words was the voicing of one consonant phoneme. In other tests, a stimulus (dictated word, printed word, or picture) was presented, and the subject was required to emit an oral response (repeat the dictated word, read the printed word, or name the picture) or a written response (write to dictation, copy the word, or write a picture name). Other tests required the subjects to make a same/different distinction in pairs of dictated words that did or did not differ in the voicing of a single phoneme. Results showed distinct deficit profiles for each subject, consisting of patterns of defective stimulus control relations. The subjects were able, however, to distinguish between voiced and unvoiced sounds and to produce these sounds. ImagesFig. 1Fig. 2 PMID:22477078

  18. Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications

    ERIC Educational Resources Information Center

    Pabon, Peter; Ternstrom, Sten; Lamarche, Anick

    2011-01-01

    Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…

  19. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  20. Effects of chemoradiotherapy on voice and swallowing

    PubMed Central

    Lazarus, Cathy L.

    2009-01-01

    Purpose of review Chemotherapy has been found to result in comparable survival rates to surgery for head and neck cancer. However, toxicity can often be worse after chemoradiotherapy, with impairment in voice, swallowing, nutrition, and quality of life. Investigators are attempting to modify radiotherapy treatment regimens to spare organs that have an impact on swallowing. This review will highlight voice and swallowing impairment seen after chemoradiotherapy, as well as treatment for voice and swallowing disorders in this population. Results of newer radiotherapy regimens will also be highlighted. Recent findings Specific oropharyngeal swallowing motility disorders after chemoradiotherapy have been identified. Damage to specific structures has been correlated with specific pharyngeal phase swallow impairment. Swallowing function and quality of life have been examined over time, with improvement seen in both. Preventive/prophylactic swallow exercise programs have been encouraging. Chemoradiotherapy effects on voice have been identified in terms of acoustic, aerodynamic, and patient and clinician-rated perception of function. Improvement in voice has also been observed over time after chemoradiotherapy. Voice therapy has been found to have a positive impact on voice and perceptual measures in this population. Summary Current studies show some improvement in swallow function after swallow and voice therapy in patients treated with chemoradiotherapy. Further, there is a suggestion of improved swallow function with sparing of organs with specific radiotherapy protocols. Future research needs to focus on specific voice and swallow treatment regimens in the head and neck cancer patient treated with chemoradiotherapy, specifically, timing, frequency, duration, and specific treatment types. PMID:19337126

  1. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    SciTech Connect

    CAP,JEROME S.; TRACEY,BRIAN

    1999-11-15

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code [1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package [2] to study the effects of in-plane modes and to

  2. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  3. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension. PMID:19418043

  4. Voice recognition.

    PubMed

    Mehta, Amit; McLoud, Theresa C

    2003-07-01

    Voice recognition represents one of the new technologies that are changing the practice of radiology. Thirty percent of radiology practices are either currently or plan to have voice recognition (VR) systems. VR software encompasses 4 core processes: spoken recognition of human speech, synthesis of human readable characters into speech, speaker identification and verification, and comprehension. Many software packages are available offering VR. All these packages should contain an interface with the radiology information system. The benefits include decreased turnaround time and cost savings. Its advantages include the transfer of secretarial duties to the radiologist with a result in decreased productivity. PMID:12867815

  5. Measuring glottal activity during voiced speech using a tuned electromagnetic resonating collar sensor

    NASA Astrophysics Data System (ADS)

    Brown, D. R., III; Keenaghan, K.; Desimini, S.

    2005-11-01

    Non-acoustic speech sensors can be employed to obtain measurements of one or more aspects of the speech production process, such as glottal activity, even in the presence of background noise. These sensors have a long history of clinical applications and have also recently been applied to the problem of denoising speech signals recorded in acoustically noisy environments (Ng et al 2000 Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) (Istanbul, Turkey) vol 1, pp 229-32). Recently, researchers developed a new non-acoustic speech sensor based primarily on a tuned electromagnetic resonator collar (TERC) (Brown et al 2004 Meas. Sci. Technol. 15 1291). The TERC sensor measures glottal activity by sensing small changes in the dielectric properties of the glottis that result from voiced speech. This paper builds on the seminal work in Brown et al (2004). The primary contributions of this paper are (i) a description of a new single-mode TERC sensor design addressing the comfort and complexity issues of the original sensor, (ii) a complete description of new external interface systems used to obtain long-duration recordings from the TERC sensor and (iii) more extensive experimental results and analysis for the single-mode TERC sensor including spectrograms of speech containing both voiced and unvoiced speech segments in quiet and acoustically noisy environments. The experimental results demonstrate that the single-mode TERC sensor is able to detect glottal activity up to the fourth harmonic and is also insensitive to acoustic background noise.

  6. Relation of Structural and Vibratory Kinematics of the Vocal Folds to Two Acoustic Measures of Breathy Voice Based on Computational Modeling

    ERIC Educational Resources Information Center

    Samlan, Robin A.; Story, Brad H.

    2011-01-01

    Purpose: To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method: The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a…

  7. Acoustic concomitants of emotional expression in operatic singing: the case of Lucia in Ardi gli incensi.

    PubMed

    Siegwart, H; Scherer, K R

    1995-09-01

    Two excerpts from the cadenza in Ardi gli incensi from Donizetti's opera Lucia di Lammermoor were acoustically analyzed for five recorded versions of the cadenza by Toti dal Monte, Maria Callas, Renata Scotto, Joan Sutherland, and Edita Gruberova. These acoustic parameters of the singing voices were correlated with preference and emotional expression judgments, based on pairwise comparisons, made by a group of experienced listener-judges. In addition to showing major differences in the voice quality of the five "dive" studied, the acoustic parameters suggested which vocal cues affect listener judgments. Two component scores, based on a factorial-dimensional analysis of the acoustic parameters, predicted 84% of the variance in the preference ratings. PMID:8541968

  8. Thermal Acoustic Oscillation: Causes, Detection, Analysis and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Hartwig, Jason W.

    2014-01-01

    The presentation discusses the causes of Thermal Acoustic Oscillations, how it can be detected, analyzed and prevented. It also discusses where it can occur, where it doesn't occur and practical mitigation techniques.

  9. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  10. Theoretical analysis of a cell's oscillations in an acoustic field

    NASA Astrophysics Data System (ADS)

    Allen, John S.; Zinin, Pavel

    2005-09-01

    The analysis and deformation of an individual cell in a high-frequency acoustic field is of fundamental interest for a variety of applications such as ultrasound cell separation and drug delivery. The oscillations of biological cells in a sound field are investigated using a shell model for the cell following an approach developed previously [Zinin, Ultrasonics, 30, 26-34 (1992)]. The model accounts for the three components which comprise the cell's motion: the internal fluid (cytoplasma), the cell membrane, and the surrounding fluid. The cell membrane whose thickness is small compared to the cell radius can be approximated as a thin elastic shell. The elastic properties of this shell together with the viscosities of the internal and external fluids determine the oscillations of the cell. The dipole oscillations of the cell depend on the surface area modulus and the maximum frequency for the relative change in cell area can be determined. Moreover, the higher order oscillations starting with the quadrupole oscillations are governed by the shell's shear modulus. Induced stresses in bacteria cell membranes in the vicinity of an oscillating bubble are investigated and cell rupture with respect to these stresses is analyzed.

  11. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1983-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine. Previously announced in STAR as N83-21896

  12. Parallel Finite Element Domain Decomposition for Structural/Acoustic Analysis

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Tungkahotara, Siroj; Watson, Willie R.; Rajan, Subramaniam D.

    2005-01-01

    A domain decomposition (DD) formulation for solving sparse linear systems of equations resulting from finite element analysis is presented. The formulation incorporates mixed direct and iterative equation solving strategics and other novel algorithmic ideas that are optimized to take advantage of sparsity and exploit modern computer architecture, such as memory and parallel computing. The most time consuming part of the formulation is identified and the critical roles of direct sparse and iterative solvers within the framework of the formulation are discussed. Experiments on several computer platforms using several complex test matrices are conducted using software based on the formulation. Small-scale structural examples are used to validate thc steps in the formulation and large-scale (l,000,000+ unknowns) duct acoustic examples are used to evaluate the ORIGIN 2000 processors, and a duster of 6 PCs (running under the Windows environment). Statistics show that the formulation is efficient in both sequential and parallel computing environmental and that the formulation is significantly faster and consumes less memory than that based on one of the best available commercialized parallel sparse solvers.

  13. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    NASA Astrophysics Data System (ADS)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  14. Wavelet time-frequency analysis and least squares support vector machines for the identification of voice disorders.

    PubMed

    Fonseca, Everthon Silva; Guido, Rodrigo Capobianco; Scalassara, Paulo Rogério; Maciel, Carlos Dias; Pereira, José Carlos

    2007-04-01

    This work describes a novel algorithm to identify laryngeal pathologies, by the digital analysis of the voice. It is based on Daubechies' discrete wavelet transform (DWT-db), linear prediction coefficients (LPC), and least squares support vector machines (LS-SVM). Wavelets with different support-sizes and three LS-SVM kernels are compared. Particularly, the proposed approach, implemented with modest computer requirements, leads to an adequate larynx pathology classifier to identify nodules in vocal folds. It presents over 90% of classification accuracy and has a low order of computational complexity in relation to the speech signal's length. PMID:17078942

  15. Fast response to human voices in autism.

    PubMed

    Lin, I-Fan; Agus, Trevor R; Suied, Clara; Pressnitzer, Daniel; Yamada, Takashi; Komine, Yoko; Kato, Nobumasa; Kashino, Makio

    2016-01-01

    Individuals with autism spectrum disorders (ASD) are reported to allocate less spontaneous attention to voices. Here, we investigated how vocal sounds are processed in ASD adults, when those sounds are attended. Participants were asked to react as fast as possible to target stimuli (either voices or strings) while ignoring distracting stimuli. Response times (RTs) were measured. Results showed that, similar to neurotypical (NT) adults, ASD adults were faster to recognize voices compared to strings. Surprisingly, ASD adults had even shorter RTs for voices than the NT adults, suggesting a faster voice recognition process. To investigate the acoustic underpinnings of this effect, we created auditory chimeras that retained only the temporal or the spectral features of voices. For the NT group, no RT advantage was found for the chimeras compared to strings: both sets of features had to be present to observe an RT advantage. However, for the ASD group, shorter RTs were observed for both chimeras. These observations indicate that the previously observed attentional deficit to voices in ASD individuals could be due to a failure to combine acoustic features, even though such features may be well represented at a sensory level. PMID:27193919

  16. Fast response to human voices in autism

    PubMed Central

    Lin, I-Fan; Agus, Trevor R.; Suied, Clara; Pressnitzer, Daniel; Yamada, Takashi; Komine, Yoko; Kato, Nobumasa; Kashino, Makio

    2016-01-01

    Individuals with autism spectrum disorders (ASD) are reported to allocate less spontaneous attention to voices. Here, we investigated how vocal sounds are processed in ASD adults, when those sounds are attended. Participants were asked to react as fast as possible to target stimuli (either voices or strings) while ignoring distracting stimuli. Response times (RTs) were measured. Results showed that, similar to neurotypical (NT) adults, ASD adults were faster to recognize voices compared to strings. Surprisingly, ASD adults had even shorter RTs for voices than the NT adults, suggesting a faster voice recognition process. To investigate the acoustic underpinnings of this effect, we created auditory chimeras that retained only the temporal or the spectral features of voices. For the NT group, no RT advantage was found for the chimeras compared to strings: both sets of features had to be present to observe an RT advantage. However, for the ASD group, shorter RTs were observed for both chimeras. These observations indicate that the previously observed attentional deficit to voices in ASD individuals could be due to a failure to combine acoustic features, even though such features may be well represented at a sensory level. PMID:27193919

  17. Asymptotic modal analysis and statistical energy analysis of an acoustic cavity

    NASA Technical Reports Server (NTRS)

    Kubota, Y.; Dionne, H. D.; Dowell, E. H.

    1988-01-01

    A basic asymptotic theory for structural wall/acoustic cavity interaction is presented, and the analysis is illustrated with examples of the acoustic cavity response to a prescribed wall motion. Although, when spatially averaged, the classical modal analysis (CMA) response approaches the asymptotic modal analysis (AMA) response more rapidly as the number of modes increases, it is shown that information about local response intensification is lost in the averaging process. A larger bandwidth at a given center frequency is found to contain more excited modes than a smaller bandwidth; however, the AMA is slightly more accurate in the smaller bandwidth. All AMA asymptotes were shown to be approached from below by a CMA with fixed bandwidth and increasing center frequency.

  18. Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    PubMed Central

    Little, Max A; McSharry, Patrick E; Roberts, Stephen J; Costello, Declan AE; Moroz, Irene M

    2007-01-01

    Background Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness. Methods This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a "hoarseness" diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices. Results On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8 ± 2.0%. The true positive classification performance is 95.4 ± 3.2%, and the true negative performance is 91.5 ± 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools. Conclusion Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification

  19. Lost Voices.

    ERIC Educational Resources Information Center

    Chiseri-Strater, Elizabeth

    Different writing voices are linked to early adult developmental issues that are gender-related. Research by Donald Graves has shown that gender affects topic choice in girls' and boys' writing as early as age seven. Adult developmental theories provide frames for looking at the growth potential of writers and locating gender-related issues. The…

  20. An analysis and retrofit of the acoustics at Image Creators Health and Beauty Salon

    NASA Astrophysics Data System (ADS)

    Ellis, Donna

    2002-11-01

    This paper discusses the analysis and retrofit of the acoustics in a high-volume beauty salon in Severna Park, MD. The major issues in what was designed to be a serene environment are reverberation times of 1-1.68 s in the mid- to upper-frequency range. Employee and customer complaints include heightened stress, vocal strain, headaches, and poor intelligibility. Existing analysis and acoustical retrofit solutions will be demonstrated.

  1. Discourse-voice regulatory strategies in the psychotherapeutic interaction: a state-space dynamics analysis

    PubMed Central

    Tomicic, Alemka; Martínez, Claudio; Pérez, J. Carola; Hollenstein, Tom; Angulo, Salvador; Gerstmann, Adam; Barroux, Isabelle; Krause, Mariane

    2015-01-01

    This study seeks to provide evidence of the dynamics associated with the configurations of discourse-voice regulatory strategies in patient–therapist interactions in relevant episodes within psychotherapeutic sessions. Its central assumption is that discourses manifest themselves differently in terms of their prosodic characteristics according to their regulatory functions in a system of interactions. The association between discourse and vocal quality in patients and therapists was analyzed in a sample of 153 relevant episodes taken from 164 sessions of five psychotherapies using the state space grid (SSG) method, a graphical tool based on the dynamic systems theory (DST). The results showed eight recurrent and stable discourse-voice regulatory strategies of the patients and three of the therapists. Also, four specific groups of these discourse-voice strategies were identified. The latter were interpreted as regulatory configurations, that is to say, as emergent self-organized groups of discourse-voice regulatory strategies constituting specific interactional systems. Both regulatory strategies and their configurations differed between two types of relevant episodes: Change Episodes and Rupture Episodes. As a whole, these results support the assumption that speaking and listening, as dimensions of the interaction that takes place during therapeutic conversation, occur at different levels. The study not only shows that these dimensions are dependent on each other, but also that they function as a complex and dynamic whole in therapeutic dialog, generating relational offers which allow the patient and the therapist to regulate each other and shape the psychotherapeutic process that characterizes each type of relevant episode. PMID:25932014

  2. Discourse-voice regulatory strategies in the psychotherapeutic interaction: a state-space dynamics analysis.

    PubMed

    Tomicic, Alemka; Martínez, Claudio; Pérez, J Carola; Hollenstein, Tom; Angulo, Salvador; Gerstmann, Adam; Barroux, Isabelle; Krause, Mariane

    2015-01-01

    This study seeks to provide evidence of the dynamics associated with the configurations of discourse-voice regulatory strategies in patient-therapist interactions in relevant episodes within psychotherapeutic sessions. Its central assumption is that discourses manifest themselves differently in terms of their prosodic characteristics according to their regulatory functions in a system of interactions. The association between discourse and vocal quality in patients and therapists was analyzed in a sample of 153 relevant episodes taken from 164 sessions of five psychotherapies using the state space grid (SSG) method, a graphical tool based on the dynamic systems theory (DST). The results showed eight recurrent and stable discourse-voice regulatory strategies of the patients and three of the therapists. Also, four specific groups of these discourse-voice strategies were identified. The latter were interpreted as regulatory configurations, that is to say, as emergent self-organized groups of discourse-voice regulatory strategies constituting specific interactional systems. Both regulatory strategies and their configurations differed between two types of relevant episodes: Change Episodes and Rupture Episodes. As a whole, these results support the assumption that speaking and listening, as dimensions of the interaction that takes place during therapeutic conversation, occur at different levels. The study not only shows that these dimensions are dependent on each other, but also that they function as a complex and dynamic whole in therapeutic dialog, generating relational offers which allow the patient and the therapist to regulate each other and shape the psychotherapeutic process that characterizes each type of relevant episode. PMID:25932014

  3. Tense-Lax Vowel Classification with Energy Trajectory and Voice Quality Measurements

    NASA Astrophysics Data System (ADS)

    Lee, Suk-Myung; Choi, Jeung-Yoon

    This work examines energy trajectory and voice quality measurements, in addition to conventional formant and duration properties, to classify tense and lax vowels in English. Tense and lax vowels are produced with differing articulatory configurations which can be identified by measuring acoustic cues such as energy peak location, energy convexity, open quotient and spectral tilt. An analysis of variance (ANOVA) is conducted, and dialect effects are observed. An overall 85.2% classification rate is obtained using the proposed features on the TIMIT database, resulting in improvement over using only conventional acoustic features. Adding the proposed features to widely used cepstral features also results in improved classification.

  4. Speech Motor Development during Acquisition of the Voicing Contrast

    ERIC Educational Resources Information Center

    Grigos, Maria I.; Saxman, John H.; Gordon, Andrew M.

    2005-01-01

    Lip and jaw movements were studied longitudinally in 19-month-old children as they acquired the voicing contrast for /p/ and /b/. A movement tracking system obtained lip and jaw kinematics as participants produced the target utterances /papa/ and /baba/. Laryngeal adjustments were also tracked through acoustically recorded voice onset time (VOT)…

  5. Onset of Voicing in Stuttered and Fluent Utterances.

    ERIC Educational Resources Information Center

    Borden, Gloria J.; And Others

    1985-01-01

    Electroglottographic (EGG) and acoustic waveforms of the first few glottal pulses of voicing were monitored and voice onset time (VOT) measured during an adaptation task performed by adult stutterers and controls. Fluent utterances of stutterers resembled those of controls. After dysfluencies, however, the EGG signal increased gradually, lending…

  6. Voicing Status of Word Final Plosives in Friedreich's Ataxia Dysarthria

    ERIC Educational Resources Information Center

    Blaney, B. E.; Hewlett, N.

    2007-01-01

    In a previous study, the authors identified final plosive voicing contrast as the highest single error source in dysarthria associated with Friedreich's Ataxia in a group of Irish English-speaking participants. This study aimed to determine the acoustic features underlying misperceptions of voicing status and implications for clinical management.…

  7. Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels

    ERIC Educational Resources Information Center

    Li, Tianhao; Fu, Qian-Jie

    2011-01-01

    Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…

  8. Modeling ground vehicle acoustic signatures for analysis and synthesis

    SciTech Connect

    Haschke, G.; Stanfield, R.

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  9. Event identification by acoustic signature recognition

    SciTech Connect

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and future applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.

  10. An emergency command recognizer for voiced system control

    NASA Astrophysics Data System (ADS)

    Wetterlind, P.; Johnston, Waymon L.

    1987-10-01

    An algorithm for accepting speaker-independent voiced input, aimed especially at accommodating emergency acoustic commands, is described. The algorithm is directed toward correctly identifying commands from speaker-independent acoustic input using machine recognition of common, standarized phonemic input, using these recognized sounds to reconstruct entire words and phrases. Speaker-dependent phonemes are not used during the command reconstruction process, so that speaker idiosyncracies are accommodated. Machine recognition extends to voice pitch and emotional tension characteristics.

  11. The effective acoustic environment of helicopter crewmen

    NASA Technical Reports Server (NTRS)

    Camp, R. T., Jr.; Mozo, B. T.

    1978-01-01

    Methods of measuring the composite acoustic environment of helicopters in order to quantify the effective acoustic environment of the crewmen and to assess the real acoustic hazards of the personnel are examined. It is indicated that the attenuation characteristics of the helmets and hearing protectors and the variables of the physiology of the human ear be accounted for in determining the effective acoustic environment of Army helicopter crewmen as well as the acoustic hazards of voice communications systems noise.

  12. Graphical analysis of electron inertia induced acoustic instability

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Deka, U.; Dwivedi, C. B.

    2005-03-01

    Recently, the practical significance of the asymptotic limit of me/mi→0 for electron density distribution has been judged in a two-component plasma system with drifting ions. It is reported that in the presence of drifting ions with drift speed exceeding the ion acoustic wave speed, the electron inertial delay effect facilitates the resonance coupling of the usual fluid ion acoustic mode with the ion-beam mode. In this contribution the same instability is analyzed by graphical and numerical methods. This is to note that the obtained dispersion relation differs from those of the other known normal modes of low frequency ion plasma oscillations and waves. This is due to consideration of electron inertial delay in derivation of the dispersion relation of the ion acoustic wave fluctuations. Numerical calculations of the dispersion relation and wave energy are carried out to depict the graphical appearance of poles and positive-negative enegy modes. It is found that the electron inertia induced ion acoustic wave instability arises out of linear resonance coupling between the negative and positive energy modes. Characterization of the resonance nature of the instability in Mach number space for different wave numbers of the ion acoustic mode is presented.

  13. Analysis of acoustic signals on welding and cutting

    SciTech Connect

    Morita, Takao; Ogawa, Yoji; Sumitomo, Takashi

    1995-12-31

    The sounds emitted during the welding and cutting processes are closely related to the processing phenomena, and sometimes they provide useful information for evaluation of their processing conditions. The analyses of acoustic signals from arc welding, plasma arc cutting, oxy-flame cutting, and water jet cutting are carried out in details in order to develop effective signal processing algorithm. The sound from TIG arc welding has the typical line spectrum which principal frequency, is almost the same as that of supplied electricity. The disturbance of welding process is clearly appeared oil the acoustic emission. The sound exposure level for CO{sub 2} or MIG welding is higher than that for TIG welding, and the relative intensity of the typical line spectrum caused by supplied electricity becomes low. But the sudden transition of welding condition oil produces an apparent change of sound exposure level. On the contrary, the acoustics from cutting processes are much louder than those of arc welding and show more chaotic behavior because the supplied fluid velocity and temperature of arc for cutting processes are much higher than those for welding processes. Therefore, it requires a special technique to extract the well meaning signals from the loud acoustic sounds. Further point of view, the reduction of acoustic exposure level becomes an important research theme with the growth of application fields of cutting processes.

  14. A comparative analysis of acoustic energy models for churches.

    PubMed

    Berardi, Umberto; Cirillo, Ettore; Martellotta, Francesco

    2009-10-01

    Different models to improve prediction of energy-based acoustic parameters in churches have been proposed by different researchers [E. Cirillo and F. Martellotta, J. Acoust. Soc. Am. 118, 232-248 (2005); T. Zamarreño et al., J. Acoust. Soc. Am. 121, 234-250 (2006)]. They all suggested variations to the "revised" theory proposed by Barron and Lee [J. Acoust. Soc. Am. 84, 618-628 (1988)], starting from experimental observations. The present paper compares these models and attempts to generalize their use taking advantage of the measurements carried out in 24 Italian churches differing in style, typology, and location. The whole sample of churches was divided into two groups. The first was used to fine-tune existing models, with particular reference to the "mu model," which was originally tested only on Mudejar-Gothic churches. Correlations between model parameters and major typological and architectural factors were found, leading to a classification that greatly simplifies parameter choice. Finally, the reliability of each model was verified on the rest of the sample, showing that acoustic parameters can be predicted with reasonable accuracy provided that one of the specifically modified theories is used. The results show that the model requiring more input parameters performs slightly better than the other which, conversely, is simpler to apply. PMID:19813798

  15. A probability density function method for acoustic field uncertainty analysis

    NASA Astrophysics Data System (ADS)

    James, Kevin R.; Dowling, David R.

    2005-11-01

    Acoustic field predictions, whether analytical or computational, rely on knowledge of the environmental, boundary, and initial conditions. When knowledge of these conditions is uncertain, acoustic field predictions will also be uncertain, even if the techniques for field prediction are perfect. Quantifying acoustic field uncertainty is important for applications that require accurate field amplitude and phase predictions, like matched-field techniques for sonar, nondestructive evaluation, bio-medical ultrasound, and atmospheric remote sensing. Drawing on prior turbulence research, this paper describes how an evolution equation for the probability density function (PDF) of the predicted acoustic field can be derived and used to quantify predicted-acoustic-field uncertainties arising from uncertain environmental, boundary, or initial conditions. Example calculations are presented in one and two spatial dimensions for the one-point PDF for the real and imaginary parts of a harmonic field, and show that predicted field uncertainty increases with increasing range and frequency. In particular, at 500 Hz in an ideal 100 m deep underwater sound channel with a 1 m root-mean-square depth uncertainty, the PDF results presented here indicate that at a range of 5 km, all phases and a 10 dB range of amplitudes will have non-negligible probability. Evolution equations for the two-point PDF are also derived.

  16. On the vibro-acoustical operational modal analysis of a helicopter cabin

    NASA Astrophysics Data System (ADS)

    Pierro, E.; Mucchi, E.; Soria, L.; Vecchio, A.

    2009-05-01

    This paper aims to present a modal decomposition formulation for a vibro-acoustical operational modal analysis (OMA). In literature many works can be found on this topic, but until now no attention has been focused on the analytical form of the cross-power spectra (CPs) between the system outputs when a fluid-structure coupling is present. In this work it is shown that the CPs modal decomposition depends on the choice of the references, i.e. acoustical or structural. At first it is theoretically pointed out that the CP formulation for the acoustical and structural case is formally identical if appropriately pre-processed. Then, this theoretical result is verified through the results of an extensive experimental testing on the helicopter EUROCOPTER EC-135. The CPs between the structural output velocities and the acoustical response of the microphone inside the helicopter cabin are considered as inputs of an OMA. In order to verify the effectiveness of the modal model so obtained a classical modal analysis is also performed. The acoustical reference choice reveals to be suitable for a vibro-acoustical OMA. It is highlighted, indeed, that the acoustical pressure measurement inside the enclosure can be used as reference instead of the commonly used structural sensors, both from the theoretical and practical point of view. This is useful for high scale structures where the structural responses are usually measured by means of moving sensor arrays and additional fixed reference sensors should be positioned on the surface.

  17. Assessment of infant cry: acoustic cry analysis and parental perception.

    PubMed

    LaGasse, Linda L; Neal, A Rebecca; Lester, Barry M

    2005-01-01

    Infant crying signals distress to potential caretakers who can alleviate the aversive conditions that gave rise to the cry. The cry signal results from coordination among several brain regions that control respiration and vocal cord vibration from which the cry sounds are produced. Previous work has shown a relationship between acoustic characteristics of the cry and diagnoses related to neurological damage, SIDS, prematurity, medical conditions, and substance exposure during pregnancy. Thus, assessment of infant cry provides a window into the neurological and medical status of the infant. Assessment of infant cry is brief and noninvasive and requires recording equipment and a standardized stimulus to elicit a pain cry. The typical protocol involves 30 seconds of crying from a single application of the stimulus. The recorded cry is submitted to an automated computer analysis system that digitizes the cry and either presents a digital spectrogram of the cry or calculates measures of cry characteristics. The most common interpretation of cry measures is based on deviations from typical cry characteristics. Another approach evaluates the pattern across cry characteristics suggesting arousal or under-arousal or difficult temperament. Infants with abnormal cries should be referred for a full neurological evaluation. The second function of crying--to elicit caretaking--involves parent perception of the infant's needs. Typically, parents are sensitive to deviations in cry characteristics, but their perception can be altered by factors in themselves (e.g., depression) or in the context (e.g., culture). The potential for cry assessment is largely untapped. Infant crying and parental response is the first language of the new dyadic relationship. Deviations in the signal and/or misunderstanding the message can compromise infant care, parental effectiveness, and undermine the budding relationship. (c) 2005 Wiley-Liss, Inc. MRDD Research Reviews 2005;11:83-93. PMID:15856439

  18. An acoustical analysis of a room with a concave dome ceiling element

    NASA Astrophysics Data System (ADS)

    Utami, Sentagi S.

    2001-05-01

    Concave surfaces are often considered detrimental in room acoustics, especially because of the impact they have on the distribution of sound energy. This paper explores certain acoustical characteristics and anomalies found in spaces below concave dome ceiling elements. The architectural design of the Darusshollah mosque in East Java, Indonesia is used as a case study with specific spatial and functional concerns. Investigations of the mosque have been conducted through both a 1:12 scale model and a computer model that utilizes ray tracing and image source methods. Analysis techniques are discussed. Results are presented and compared to provide useful insights into the acoustics of such distinctive environments.

  19. Analysis of Particle Image Velocimetry (PIV) Data for Acoustic Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    Acoustic velocity measurements were taken using Particle Image Velocimetry (PIV) in a Normal Incidence Tube configuration at various frequency, phase, and amplitude levels. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Estimates of lower measurement sensitivity levels were determined based on PIV image quality, correlation, and noise level parameters used in the test. Comparison of measurements with linear acoustic theory are presented. The onset of nonlinear, harmonic frequency acoustic levels were also studied for various decibel and frequency levels ranging from 90 to 132 dB and 500 to 3000 Hz, respectively.

  20. Objective and perceptual analysis of outcome of voice rehabilitation after laryngectomy in an Indian tertiary referral cancer centre.

    PubMed

    Varghese, B T; Mathew, A; Sebastian, S; Iype, E M; Sebastian, P; Rajan, B

    2013-07-01

    Post laryngectomy voice rehabilitation is very challenging in centres with limited resources because of cost concerns and morbidity. A study of laryngectomised voice rehabilitated patients on follow up was performed to look into overall quality of life (QOL), morbidity and voice quality. Those patients who had visited head and neck surgical outpatient department during the period of January 2008 to October 2009 were evaluated for their QOL, morbidity and voice quality, objectively and subjectively. Voice rating and QOL rating showed a distinct discrepancy which could be explained by the morbidity recorded for surgical voice restoration in the present study. Voice rehabilitation strategy after laryngectomy in a low resource setting has to take in account financial social educational background of the patient besides technical issues. PMID:24427633

  1. Treatment outcomes for professional voice users.

    PubMed

    Wingate, Judith M; Brown, William S; Shrivastav, Rahul; Davenport, Paul; Sapienza, Christine M

    2007-07-01

    Professional voice users comprise 25% to 35% of the U.S. working population. Their voice problems may interfere with job performance and impact costs for both employers and employees. The purpose of this study was to examine treatment outcomes of two specific rehabilitation programs for a group of professional voice users. Eighteen professional voice users participated in this study; half had complaints of throat pain or vocal fatigue (Dysphonia Group), and half were found to have benign vocal fold lesions (Lesion Group). One group received 5 weeks of expiratory muscle strength training followed by six sessions of traditional voice therapy. Treatment order was reversed for the second group. The study was designed as a repeated measures study with independent variables of treatment order, laryngeal diagnosis (lesion vs non-lesion), gender, and time. Dependent variables included maximum expiratory pressure (MEP), Voice Handicap Index (VHI) score, Vocal Rating Scale (VRS) score, Voice Effort Scale score, phonetogram measures, subglottal pressures, and acoustic and perceptual measures. Results showed significant improvements in MEP, VHI scores, and VRS scores, subglottal pressure for loud intensity, phonetogram area, and dynamic range. No significant difference was found between laryngeal diagnosis groups. A significant difference was not observed for treatment order. It was concluded that the combined treatment was responsible for the improvements observed. The results indicate that a combined modality treatment may be successful in the remediation of vocal problems for professional voice users. PMID:16581229

  2. Occupational risk factors and voice disorders.

    PubMed

    Vilkman, E

    1996-01-01

    From the point of view of occupational health, the field of voice disorders is very poorly developed as compared, for instance, to the prevention and diagnostics of occupational hearing disorders. In fact, voice disorders have not even been recognized in the field of occupational medicine. Hence, it is obviously very rare in most countries that the voice disorder of a professional voice user, e.g. a teacher, a singer or an actor, is accepted as an occupational disease by insurance companies. However, occupational voice problems do not lack significance from the point of view of the patient. We also know from questionnaires and clinical studies that voice complaints are very common. Another example of job-related health problems, which has proved more successful in terms of its occupational health status, is the repetition strain injury of the elbow, i.e. the "tennis elbow". Its textbook definition could be used as such to describe an occupational voice disorder ("dysphonia professional is"). In the present paper the effects of such risk factors as vocal loading itself, background noise and room acoustics and low relative humidity of the air are discussed. Due to individual factors underlying the development of professional voice disorders, recommendations rather than regulations are called for. There are many simple and even relatively low-cost methods available for the prevention of vocal problems as well as for supporting rehabilitation. PMID:21275584

  3. Electronic dummy for acoustical testing

    NASA Technical Reports Server (NTRS)

    Bauer, B. B.; Di Mattia, A. L.; Rosencheck, A. J.; Stern, M.; Torick, E. L.

    1967-01-01

    Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal.

  4. Estimation of crack and damage progression in concrete by quantitative acoustic emission analysis

    SciTech Connect

    Ohtsu, Masayasu

    1999-05-01

    The kinematics of cracking can be represented by the moment tensor. To distinguish moment tensor components from acoustic emission waveforms, the SiGMA (simplified Green`s functions for moment tensor analysis) procedure was developed. By applying the procedure to bending tests of notched beams, cracks in the fracture process zone of cementitious materials can be identified by kinematic means. In addition to cracks, estimation of the damage level in structural concrete is also conducted, based on acoustic emission activity of a concrete sample under compression. Depending on the damage resulting from existing microcracks, acoustic emission generated behavior is quantitatively estimated by the rate process analysis. The damage mechanics are introduced to quantify the degree of damage. Determining the current damage level using acoustic emission without information on undamaged concrete is attempted by correlating the damage value with the rate process.

  5. ATC/pilot voice communications: A survey of the literature

    NASA Astrophysics Data System (ADS)

    Prinzo, O. Veronika; Britton, Thomas W.

    1993-11-01

    The first radio-equipped control tower in the United States opened at the Cleveland Municipal Airport in 1930. From that time to the present, voice radio communications have played a primary role in air safety. Verbal communications in air traffic control (ATC) operations have been frequently cited as causal factors in operational errors and pilot deviations in the FAA Operational Error and Deviation System, the NASA Aviation Safety Reporting System (ASRS), and reports derived from government sponsored research projects. Collectively, the data provided by these programs indicate that communications constitute a significant problem for pilots and controllers. Although the communications problem was well known the research literature was fragmented, making it difficult to appreciate the various types of verbal communications problems that existed and their unique influence on the quality of ATC/pilot communications. This is a survey of the voice radio communications literature. The 43 reports in the review represent survey data, field studies, laboratory studies, narrative reports, and reviews. The survey topics pertain to communications taxonomies, acoustical correlates and cognitive/psycholinguistic perspectives. Communications taxonomies were used to identify the frequency and types of information that constitute routine communications, as well as those communications involved in operational errors, pilot deviations, and other safety-related events. Acoustical correlate methodologies identified some qualities of a speaker's voice, such as loudness, pitch, and speech rate, which might be used potentially to monitor stress, mental workload, and other forms of psychological or physiological factors that affect performance. Cognitive/psycho-linguistic research offered an information processing perspective for understanding how pilots' and controllers' memory and language comprehension processes affect their ability to communicate effectively with one another. This

  6. Identification of vibration excitations from acoustic measurements using near field acoustic holography and the force analysis technique

    NASA Astrophysics Data System (ADS)

    Pézerat, C.; Leclère, Q.; Totaro, N.; Pachebat, M.

    2009-10-01

    This study presents a method of using acoustic holography and the force analysis technique to identify vibration sources from radiated noise measurements. The structure studied is a plate excited by a shaker on which three measurements were performed: the first is a reference measurement of plate velocity obtained by scanning laser vibrometry, the second is based on sound pressure measurements in the near field of the structure, and the third is the measurement of normal acoustic velocities by using a p-U probe recently developed by Microflown Technologies. This was followed by the application of classical NAH, known as pressure-to-velocity holography and velocity-to-velocity holography to predict the plate velocity field from acoustic measurements at distances of 1 and 5 cm. Afterwards, the force analysis technique, also known as the RIFF technique, is applied with these five data sets. The principle is to inject the displacement field of the structure into its equation of motion and extract the resulting force distribution. This technique requires regularization done by a low-pass filter in the wavenumber domain. Apart from pressure-to-velocity holography at 5 cm, the reconstructed force distribution allows localizing the excitation point in the measurement area. FAT regularization is also shown to improve results as its cutoff wavenumber is optimized with the natural wavenumber of the plate. Lastly, quantitative force values are extracted from force distributions at all frequencies of the band 0-4 kHz studied and compared with the force spectrum measured directly by a piezoelectric sensor.

  7. Voice quality after treatment for T1a glottic carcinoma--radiotherapy versus laser cordectomy.

    PubMed

    Krengli, Marco; Policarpo, Mario; Manfredda, Irene; Aluffi, Paolo; Gambaro, Giuseppina; Panella, Massimiliano; Pia, Francesco

    2004-01-01

    The purpose of this study was to assess the anatomic and functional outcomes and compare the voice quality in patients affected by T1a glottic carcinoma treated with curative intent with radiotherapy or laser cordectomy. Fifty-seven cases were analysed: 27 after curative radiotherapy and 30 after laser cordectomy. All patients were studied with videolaryngostroboscopy, voice analysis by narrow spectrogram, and vocal parameters (Jitter, Shimmer, noise/harmonic ratio, and diplophonia). Videolaryngostroboscopy showed severe glottic inadequacy in 25% of cases treated with radiation and insufficient compensation 'ventricular band' or 'with arytenoid hyperadduction' in 65% of cases after surgery. Severe dysphonia on the electro-acoustic analysis of voice was observed in 25% of cases after radiation and 70% after laser (p < 0.001). Fundamental frequency and vocal parameters showed more favourable results in the radiation group (p < 0.001). Voice assessment showed better results after radiotherapy compared with laser cordectomy. Voice outcome should be carefully considered in the treatment decision for T1 glottic carcinoma. PMID:15244253

  8. Acoustic comunication systems and sounds in three species of crickets from central Italy: musical instruments for a three-voices composition

    NASA Astrophysics Data System (ADS)

    Monacchi, David; Valentini, Laura

    2016-04-01

    Natural soundscape has always constituted a reference in cognitive and emotional processes. The imitation of natural sounds contributed to the origin of the verbal language, which has been then subjected to an even more refined process of abstraction throughout history. The musical language also evolved along the same path of imitation. Among the many sonic elements of a natural environment, the stridulation of crickets is one of the most consistent for its timbre, articulation, diffusion and intrinsic emotional power. More than 900 species of crickets, in fact, have been described. They can be found in all parts of the world with the exception of cold regions at latitudes higher than 55° North and South. Among the many species we're working on (Order Orthoptera and Suborder Ensifera), we refer here of a comparison between the morphology of the acoustic emission systems and the corresponding waveforms/spectral patterns of sound in three widespread species from central Italy: Gryllus Bimaculatus, Acheta Domesticus (Gryllidae), and Ruspolia Nitidula (Conocephalidae). The samples of the acoustic apparatus of the target individuals, stored in ethanol, were observed under a Field Emission Gun Environmental Electron Scanning Microscope (FEG-ESEM, Quanta 200, FEI, The Netherlands). The use of this type of microscope allowed to analyze the samples without any kind of manipulation (dehydration and/or metallization), while maintaining the morphological features of the fragile acoustic apparatus. The observations were made with different sensors (SE: secondary-electron sensor and BSE: backscattered-electron sensor), and performed at low-medium vacuum with energies varying from c.ca 10 to 30kV. Male individuals have an acoustic apparatus consisting in two cuticular structures (tegmina) positioned above wings, while both male and females have receiving organs (tympanum) in forelegs. Stridulation mechanism is produced when the file and the scraper (plectrum) scrub one another

  9. Can the Acoustic Analysis of Expressive Prosody Discriminate Schizophrenia?

    PubMed

    Martínez-Sánchez, Francisco; Muela-Martínez, José Antonio; Cortés-Soto, Pedro; García Meilán, Juan José; Vera Ferrándiz, Juan Antonio; Egea Caparrós, Amaro; Pujante Valverde, Isabel María

    2015-01-01

    Emotional states, attitudes and intentions are often conveyed by modulations in the tone of voice. Impaired recognition of emotions from a tone of voice (receptive prosody) has been described as characteristic symptoms of schizophrenia. However, the ability to express non-verbal information in speech (expressive prosody) has been understudied. This paper describes a useful technique for quantifying the degree of expressive prosody deficits in schizophrenia, using a semi-automatic method, and evaluates this method's ability to discriminate between patient and control groups. Forty-five medicated patients with a diagnosis of schizophrenia were matched with thirty-five healthy comparison subjects. Production of expressive prosodic speech was analyzed using variation in fundamental frequency (F0) measures on an emotionally neutral reading task. Results revealed that patients with schizophrenia exhibited significantly more pauses (p < .001), were slower (p < .001), and showed less pitch variability in speech (p < .05) and fewer variations in syllable timing (p < .001) than control subjects. These features have been associated with «flat» speech prosody. Signal processing algorithms applied to speech were shown to be capable of discriminating between patients and controls with an accuracy of 93.8%. These speech parameters may have a diagnostic and prognosis value and therefore could be used as a dependent measure in clinical trials. PMID:26522128

  10. Dynamical energy analysis for built-up acoustic systems at high frequencies.

    PubMed

    Chappell, D J; Giani, S; Tanner, G

    2011-09-01

    Standard methods for describing the intensity distribution of mechanical and acoustic wave fields in the high frequency asymptotic limit are often based on flow transport equations. Common techniques are statistical energy analysis, employed mostly in the context of vibro-acoustics, and ray tracing, a popular tool in architectural acoustics. Dynamical energy analysis makes it possible to interpolate between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. In this work a version of dynamical energy analysis based on a Chebyshev basis expansion of the Perron-Frobenius operator governing the ray dynamics is introduced. It is shown that the technique can efficiently deal with multi-component systems overcoming typical geometrical limitations present in statistical energy analysis. Results are compared with state-of-the-art hp-adaptive discontinuous Galerkin finite element simulations. PMID:21895083

  11. Analysis of Voice Impairment in Aphasia after Stroke-Underlying Neuroanatomical Substrates

    ERIC Educational Resources Information Center

    Vukovic, Mile; Sujic, Radmila; Petrovic-Lazic, Mirjana; Miller, Nick; Milutinovic, Dejan; Babac, Snezana; Vukovic, Irena

    2012-01-01

    Phonation is a fundamental feature of human communication. Control of phonation in the context of speech-language disturbances has traditionally been considered a characteristic of lesions to subcortical structures and pathways. Evidence suggests however, that cortical lesions may also implicate phonation. We carried out acoustic and perceptual…

  12. Quantitative Analysis Of Acoustic Emission From Rock Fracture Experiments

    NASA Astrophysics Data System (ADS)

    Goodfellow, Sebastian David

    This thesis aims to advance the methods of quantitative acoustic emission (AE) analysis by calibrating sensors, characterizing sources, and applying the results to solve engi- neering problems. In the first part of this thesis, we built a calibration apparatus and successfully calibrated two commercial AE sensors. The ErgoTech sensor was found to have broadband velocity sensitivity and the Panametrics V103 was sensitive to surface normal displacement. These calibration results were applied to two AE data sets from rock fracture experiments in order to characterize the sources of AE events. The first data set was from an in situ rock fracture experiment conducted at the Underground Research Laboratory (URL). The Mine-By experiment was a large scale excavation response test where both AE (10 kHz - 1 MHz) and microseismicity (MS) (1 Hz - 10 kHz) were monitored. Using the calibration information, magnitude, stress drop, dimension and energy were successfully estimated for 21 AE events recorded in the tensile region of the tunnel wall. Magnitudes were in the range -7.5 < Mw < -6.8, which is consistent with other laboratory AE results, and stress drops were within the range commonly observed for induced seismicity in the field (0.1 - 10 MPa). The second data set was AE collected during a true-triaxial deformation experiment, where the objectives were to characterize laboratory AE sources and identify issues related to moving the analysis from ideal in situ conditions to more complex laboratory conditions in terms of the ability to conduct quantitative AE analysis. We found AE magnitudes in the range -7.8 < Mw < -6.7 and as with the in situ data, stress release was within the expected range of 0.1 - 10 MPa. We identified four major challenges to quantitative analysis in the laboratory, which in- hibited our ability to study parameter scaling (M0 ∝ fc -3 scaling). These challenges were 0c (1) limited knowledge of attenuation which we proved was continuously evolving, (2

  13. Speech and Voice in Instructional Programmes.

    ERIC Educational Resources Information Center

    Jaspers, Fons

    1994-01-01

    Describes the application of audio as a vehicle of information. In applying audio to the audiovisual, computer-assisted instruction format, a consideration of the aspects of dominance and redundancy in auditory-visual presentation is required. Understanding acoustic and informational characteristics of audio and qualities of voice and speech may…

  14. Comparing Comments and Semantic Networks about Voice Mail.

    ERIC Educational Resources Information Center

    Rice, Ronald E.; Danowski, James

    1991-01-01

    Discusses semantic communication networks, methods of content analysis, and voice mail as a communication system. A study that examined conceptual distinctions between voice mail answering and voice mail messaging in a large insurance organization is described, and semantic network analysis is compared to traditional content analysis. (28…

  15. Acoustic Inspection and Analysis of Liquids in Sealed Containers

    SciTech Connect

    Diaz, Aaron A.

    2003-12-01

    This article describes the Acoustic Inspection Device (AID) developed by PNNL which uses acoustic to determine the contents and fill level of sealed containers. AID is a power drill shaped battery operated device fitted with a transducer that sends an ultrasonic pusle through a container of liquid and measure the return echo. The device compares the echo velocity and attnuation and compares that data to a materials database in an Palm Pilot vlecored to the top of the device to give the operator a text identification of the substance with 5 seconds. The device is sensitive enough to distinguish coke from diet coke and and can distinguish subtances at a variety of temperatures ranging from below freezing to over 100degreesF. PNNL won an R&D 100 award for the technology in 2003.

  16. An iterative algorithm for analysis of coupled structural-acoustic systems subject to random excitations

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Zhong; Chen, Gang; Kang, Zhan

    2012-04-01

    This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.

  17. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  18. Acoustic vibration analysis for utilization of woody plant in space environment

    NASA Astrophysics Data System (ADS)

    Chida, Yukari; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Motohashi, Kyohei; Sakurai, Naoki; Nakagawa-izumi, Akiko

    2012-07-01

    We are proposing to raise woody plants for space agriculture in Mars. Space agriculture has the utilization of wood in their ecosystem. Nobody knows the real tree shape grown under space environment under the low or micro gravitational conditions such as outer environment. Angiosperm tree forms tension wood for keeping their shape. Tension wood formation is deeply related to gravity, but the details of the mechanism of its formation has not yet been clarified. For clarifying the mechanism, the space experiment in international space station, ISS is the best way to investigate about them as the first step. It is necessary to establish the easy method for crews who examine the experiments at ISS. Here, we are proposing to investigate the possibility of the acoustic vibration analysis for the experiment at ISS. Two types of Japanese cherry tree, weeping and upright types in Prunus sp., were analyzed by the acoustic vibration method. Coefficient-of-variation (CV) of sound speed was calculated by the acoustic vibration analysis. The amount of lignin and decomposed lignin were estimated by both Klason and Py-GC/MS method, respectively. The relationships of the results of acoustic vibration analysis and the inner components in tested woody materials were investigated. After the experiments, we confirm the correlation about them. Our results indicated that the acoustic vibration analysis would be useful for determining the inside composition as a nondestructive method in outer space environment.

  19. Voice Teachers on Voice, Part 1

    ERIC Educational Resources Information Center

    Gollobin, Laurie Brooks; White, Harvey

    1977-01-01

    Little real consensus exists among voice teachers on methodologies to achieve good vocal technique. Nevertheless, voice teachers can profit from sharing their ideas. In this first of a three part series, eight prominent voice teachers offer their views on a wide range of technical questions. (Author/RK)

  20. Vocal Dynamic Visual Pattern for voice characterization

    NASA Astrophysics Data System (ADS)

    Dajer, M. E.; Andrade, F. A. S.; Montagnoli, A. N.; Pereira, J. C.; Tsuji, D. H.

    2011-12-01

    Voice assessment requires simple and painless exams. Modern technologies provide the necessary resources for voice signal processing. Techniques based on nonlinear dynamics seem to asses the complexity of voice more accurately than other methods. Vocal dynamic visual pattern (VDVP) is based on nonlinear methods and provides qualitative and quantitative information. Here we characterize healthy and Reinke's edema voices by means of perturbation measures and VDVP analysis. VDPD and jitter show different results for both groups, while amplitude perturbation has no difference. We suggest that VDPD analysis improve and complement the evaluation methods available for clinicians.

  1. VOT and the perception of voicing

    NASA Astrophysics Data System (ADS)

    Remez, Robert E.

    2001-05-01

    In explaining the ability to distinguish phonemes, linguists have described the dimension of voicing. Acoustic analyses have identified many correlates of the voicing contrast in initial, medial, and final consonants within syllables, and these in turn have motivated studies of the perceptual resolution of voicing. The framing conceptualization articulated by Lisker and Abramson 40 years ago in physiological, phonetic, and perceptual studies has been widely influential, and research on voicing now adopts their perspective without reservation. Their original survey included languages with two voicing categories (Dutch, Puerto Rican Spanish, Hungarian, Tamil, Cantonese, English), three voicing categories (Eastern Armenian, Thai, Korean), and four voicing categories (Hindi, Marathi). Perceptual studies inspired by this work have also ranged widely, including tests with different languages and with listeners of several species. The profound value of the analyses of Lisker and Abramson is evident in the empirical traction provided by the concept of VOT in research on the every important perceptual question about speech and language in our era. Some of these classic perceptual investigations will be reviewed. [Research supported by NIH (DC00308).

  2. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    NASA Astrophysics Data System (ADS)

    Omar, Al Haj; Véronique, Peres; Eric, Serris; François, Grosjean; Jean, Kittel; François, Ropital; Michel, Cournil

    2015-06-01

    Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  3. Acoustic effects analysis utilizing speckle pattern with fixed-particle Monte Carlo

    NASA Astrophysics Data System (ADS)

    Vakili, Ali; Hollmann, Joseph A.; Holt, R. Glynn; DiMarzio, Charles A.

    2016-03-01

    Optical imaging in a turbid medium is limited because of multiple scattering a photon undergoes while traveling through the medium. Therefore, optical imaging is unable to provide high resolution information deep in the medium. In the case of soft tissue, acoustic waves unlike light, can travel through the medium with negligible scattering. However, acoustic waves cannot provide medically relevant contrast as good as light. Hybrid solutions have been applied to use the benefits of both imaging methods. A focused acoustic wave generates a force inside an acoustically absorbing medium known as acoustic radiation force (ARF). ARF induces particle displacement within the medium. The amount of displacement is a function of mechanical properties of the medium and the applied force. To monitor the displacement induced by the ARF, speckle pattern analysis can be used. The speckle pattern is the result of interfering optical waves with different phases. As light travels through the medium, it undergoes several scattering events. Hence, it generates different scattering paths which depends on the location of the particles. Light waves that travel along these paths have different phases (different optical path lengths). ARF induces displacement to scatterers within the acoustic focal volume, and changes the optical path length. In addition, temperature rise due to conversion of absorbed acoustic energy to heat, changes the index of refraction and therefore, changes the optical path length of the scattering paths. The result is a change in the speckle pattern. Results suggest that the average change in the speckle pattern measures the displacement of particles and temperature rise within the acoustic wave focal area, hence can provide mechanical and thermal properties of the medium.

  4. Voice-stress measure of mental workload

    NASA Technical Reports Server (NTRS)

    Alpert, Murray; Schneider, Sid J.

    1988-01-01

    In a planned experiment, male subjects between the age of 18 and 50 will be required to produce speech while performing various tasks. Analysis of the speech produced should reveal which aspects of voice prosody are associated with increased workloads. Preliminary results with two female subjects suggest a possible trend for voice frequency and amplitude to be higher and the variance of the voice frequency to be lower in the high workload condition.

  5. Acoustic emission analysis: A test method for metal joints bonded by adhesives

    NASA Technical Reports Server (NTRS)

    Brockmann, W.; Fischer, T.

    1978-01-01

    Acoustic emission analysis is applied to study adhesive joints which had been subjected to mechanical and climatic stresses, taking into account conditions which make results applicable to adhesive joints used in aerospace technology. Specimens consisting of the alloy AlMgSi0.5 were used together with a phenolic resin adhesive, an epoxy resin modified with a polyamide, and an epoxy resin modified with a nitrile. Results show that the acoustic emission analysis provides valuable information concerning the behavior of adhesive joints under load and climatic stresses.

  6. Helicopter blade-vortex interaction locations: Scale-model acoustics and free-wake analysis results

    NASA Technical Reports Server (NTRS)

    Hoad, Danny R.

    1987-01-01

    The results of a model rotor acoustic test in the Langley 4by 7-Meter Tunnel are used to evaluate a free-wake analytical technique. An acoustic triangulation technique is used to locate the position in the rotor disk where the blade-vortex interaction noise originates. These locations, along with results of the rotor free-wake analysis, are used to define the geometry of the blade-vortex interaction noise phenomena as well as to determine if the free-wake analysis is a capable diagnostic tool. Data from tests of two teetering rotor systems are used in these analyses.

  7. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  8. Analysis of Postsurgical Health-Related Quality of Life and Quality of Voice of Patients With Laryngeal Carcinoma.

    PubMed

    Luo, Jie; Wu, Jieli; Lv, Kexing; Li, Kaichun; Wu, Jianhui; Wen, Yihui; Li, Xiaoling; Tang, Haocheng; Jiang, Aiyun; Wang, Zhangfeng; Wen, Weiping; Lei, Wenbin

    2016-01-01

    This study aims to analyze the postsurgical health-related quality of life (HRQOL) and quality of voice (QOV) of patients with laryngeal carcinoma with an expectation of improving the treatment and HRQOL of these patients. Based on the collection of information of patients with laryngeal carcinoma regarding clinical characteristics (age, TNM stage, with or without laryngeal preservation and/or neck dissection, with or without postoperative irradiation and/or chemotherapy, etc.), QOV using Voice Handicap Index (VIH) scale and HRQOL using EORTC QLQ-C30 and EORTCQLQ-H&N35 scales, the differences of postsurgical HRQOL related to their clinical characteristics were analyzed using univariate nonparametric tests, the main factors impacting the postsurgical HRQOL were analyzed using regression analyses (generalized linear models) and the correlation between QOV and HRQOL analyzed using spearman correlation analysis. A total of 92 patients were enrolled in this study, on whom the use of EORTC QLQ-C30, EORTC QLQ-H&N35 and VHI scales revealed that: the differences of HRQOL were significant among patients with different ages, TNM stages, and treatment modalities; the main factors impacting the postsurgical HRQOL were pain, speech disorder, and dry mouth; and QOV was significantly correlated with HRQOL. For the patients with laryngeal carcinoma included in our study, the quality of life after open surgeries were impacted by many factors predominated by pain, speech disorder, and dry mouth. It is suggested that doctors in China do more efforts on the patients' postoperative pain and xerostomia management and speech rehabilitation with the hope of improving the patients' quality of life. PMID:26735538

  9. Analysis of Postsurgical Health-Related Quality of Life and Quality of Voice of Patients With Laryngeal Carcinoma

    PubMed Central

    Luo, Jie; Wu, Jieli; Lv, Kexing; Li, Kaichun; Wu, Jianhui; Wen, Yihui; Li, Xiaoling; Tang, Haocheng; Jiang, Aiyun; Wang, Zhangfeng; Wen, Weiping; Lei, Wenbin

    2016-01-01

    Abstract This study aims to analyze the postsurgical health-related quality of life (HRQOL) and quality of voice (QOV) of patients with laryngeal carcinoma with an expectation of improving the treatment and HRQOL of these patients. Based on the collection of information of patients with laryngeal carcinoma regarding clinical characteristics (age, TNM stage, with or without laryngeal preservation and/or neck dissection, with or without postoperative irradiation and/or chemotherapy, etc.), QOV using Voice Handicap Index (VIH) scale and HRQOL using EORTC QLQ-C30 and EORTCQLQ-H&N35 scales, the differences of postsurgical HRQOL related to their clinical characteristics were analyzed using univariate nonparametric tests, the main factors impacting the postsurgical HRQOL were analyzed using regression analyses (generalized linear models) and the correlation between QOV and HRQOL analyzed using spearman correlation analysis. A total of 92 patients were enrolled in this study, on whom the use of EORTC QLQ-C30, EORTC QLQ-H&N35 and VHI scales revealed that: the differences of HRQOL were significant among patients with different ages, TNM stages, and treatment modalities; the main factors impacting the postsurgical HRQOL were pain, speech disorder, and dry mouth; and QOV was significantly correlated with HRQOL. For the patients with laryngeal carcinoma included in our study, the quality of life after open surgeries were impacted by many factors predominated by pain, speech disorder, and dry mouth. It is suggested that doctors in China do more efforts on the patients’ postoperative pain and xerostomia management and speech rehabilitation with the hope of improving the patients’ quality of life. PMID:26735538

  10. Field support, data analysis and associated research for the acoustic grenade sounding program

    NASA Technical Reports Server (NTRS)

    Barnes, T. G.; Bullard, E. R.

    1976-01-01

    Temperature and horizontal winds in the 30 to 90 km altitude range of the upper atmosphere, were determined by acoustic grenade soundings conducted at Wallops Island, Virginia and Kourou, French Guiana. Field support provided at these locations included deployment of the large area microphone system, supervision, maintenance and operation of sound ranging stations; and coordination of activities. Data analysis efforts included the analysis of field data to determine upper atmospheric meteorological parameters. Profiles for upper atmospheric temperature, wind and density are provided in plots and tables for each of the acoustic grenade soundings conducted during the contract period. Research efforts were directed toward a systematic comparison of temperature data from acoustic grenade with other meteorological sensor probes in the upper atmosphere.

  11. Voice Education in Teacher Training: An Investigation into the Knowledge about the Voice and Voice Care in Teacher-Training Students

    ERIC Educational Resources Information Center

    Kovacic, Gordana

    2005-01-01

    The aim of the present study was to investigate knowledge about the voice and voice care in teacher-training students. A voice care questionnaire was administered to teacher-training students (N = 184) and students of other professions (N = 143). Discriminant analysis demonstrated that the teacher-training students' knowledge was significantly…

  12. FRP/steel composite damage acoustic emission monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  13. Acoustical analysis of Spanish vowels produced by laryngectomized subjects.

    PubMed

    Cervera, T; Miralles, J L; González-Alvarez, J

    2001-10-01

    The purpose of this study was to describe the acoustic characteristics of Spanish vowels in subjects who had undergone a total laryngectomy and to compare the results with those obtained in a control group of subjects who spoke normally. Our results are discussed in relation to those obtained in previous studies with English-speaking laryngectomized patients. The comparison between English and Spanish, which diFfer widely in the size of their vowel inventories, will help us to determine specific or universal vowel production characteristics in these patients. Our second objective was to relate the acoustic properties of these vowels to the perceptual data obtained in our previous work (J. L. Miralles & T. Cervera, 1995). In that study, results indicated that vowels produced by alaryngeal speakers were well perceived in word context. Vowels were produced in CVCV word context by two groups of patients who had undergone laryngectomy: tracheoesophageal speakers (TES) and esophageal speakers. In addition a control group of normal talkers was included. Audio recordings of 24 Spanish words produced by each speaker were analyzed using CSL (Kay Elemetrics). Results showed that F1, F2, and vowel duration of alaryngeal speakers differ significantly from normal values. In general, laryngectomized patients produce vowels with higher formant frequencies and longer durations than the group of laryngeal subjects. Thus, the data indicate modifications either in the frequency or temporal domain, following the same tendency found in previous studies with English-speaking laryngectomized speakers. PMID:11708538

  14. Acoustical analysis and multiple source auralizations of charismatic worship spaces

    NASA Astrophysics Data System (ADS)

    Lee, Richard W.

    2001-05-01

    Because of the spontaneity and high level of call and response, many charismatic churches have verbal and musical communication problems that stem from highly reverberant sound fields, poor speech intelligibility, and muddy music. This research looks at the subjective dimensions of room acoustics perception that affect a charismatic worship space, which is summarized using the acronym RISCS (reverberation, intimacy, strength, coloration, and spaciousness). The method of research is to obtain acoustical measurements for three worship spaces in order to analyze the objective parameters associated with the RISCS subjective dimensions. For the same spaces, binaural room impulse response (BRIR) measurements are done for different receiver positions in order to create an auralization for each position. The subjective descriptors of RISCS are analyzed through the use of listening tests of the three auralized spaces. The results from the measurements and listening tests are analyzed to determine if listeners' perceptions correlate with the objective parameter results, the appropriateness of the subjective parameters for the use of the space, and which parameters seem to take precedent. A comparison of the multi-source auralization to a conventional single-source auralization was done with the mixed down version of the synchronized multi-track anechoic signals.

  15. Acoustic Analysis of Plutonium and Nuclear Weapon Components at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Saleh, T. A.; Reynolds, J. J.; Rowe, C. A.; Freibert, F. J.; Ten Cate, J. A.; Ulrich, T. J.; Farrow, A. M.

    2012-12-01

    One of the primary missions of Los Alamos National Laboratory is to use science based techniques to certify the nuclear weapons stockpile of the United States. As such we use numerous NDE techniques to monitor materials and systems properties in weapons. Two techniques will be discussed in this presentation, Acoustic Resonance Spectroscopy (ARS) and Acoustic Emission (AE). ARS is used to observe manufacturing variations or changes in the plutonium containing component (pit) of the weapon system. Both quantitative and qualitative comparisons can be used to determine variation in the pit components. Piezoelectric transducer driven acoustic resonance experiments will be described along with initial qualitative and more complex analysis and comparison techniques derived from earthquake analysis performed at LANL. Similarly, AE is used to measure the time of arrival of acoustic signals created by mechanical events that can occur in nuclear weapon components. Both traditional time of arrival techniques and more advanced techniques are used to pinpoint the location and type of acoustic emission event. Similar experiments on tensile tests of brittle phases of plutonium metal will be described.

  16. Norm-Based Coding of Voice Identity in Human Auditory Cortex

    PubMed Central

    Latinus, Marianne; McAleer, Phil; Bestelmeyer, Patricia E.G.; Belin, Pascal

    2013-01-01

    Summary Listeners exploit small interindividual variations around a generic acoustical structure to discriminate and identify individuals from their voice—a key requirement for social interactions. The human brain contains temporal voice areas (TVA) [1] involved in an acoustic-based representation of voice identity [2–6], but the underlying coding mechanisms remain unknown. Indirect evidence suggests that identity representation in these areas could rely on a norm-based coding mechanism [4, 7–11]. Here, we show by using fMRI that voice identity is coded in the TVA as a function of acoustical distance to two internal voice prototypes (one male, one female)—approximated here by averaging a large number of same-gender voices by using morphing [12]. Voices more distant from their prototype are perceived as more distinctive and elicit greater neuronal activity in voice-sensitive cortex than closer voices—a phenomenon not merely explained by neuronal adaptation [13, 14]. Moreover, explicit manipulations of distance-to-mean by morphing voices toward (or away from) their prototype elicit reduced (or enhanced) neuronal activity. These results indicate that voice-sensitive cortex integrates relevant acoustical features into a complex representation referenced to idealized male and female voice prototypes. More generally, they shed light on remarkable similarities in cerebral representations of facial and vocal identity. PMID:23707425

  17. Relationship between perceived politeness and spectral characteristics of voice

    NASA Astrophysics Data System (ADS)

    Ito, Mika

    2005-04-01

    This study investigates the role of voice quality in perceiving politeness under conditions of varying relative social status among Japanese male speakers. The work focuses on four important methodological issues: experimental control of sociolinguistic aspects, eliciting natural spontaneous speech, obtaining recording quality suitable for voice quality analysis, and assessment of glottal characteristics through the use of non-invasive direct measurements of the speech spectrum. To obtain natural, unscripted utterances, the speech data were collected with a Map Task. This methodology allowed us to study the effect of manipulating relative social status among participants in the same community. We then computed the relative amplitudes of harmonics and formant peaks in spectra obtained from the Map Task recordings. Finally, an experiment was conducted to observe the alignment between acoustic measures and the perceived politeness of the voice samples. The results suggest that listeners' perceptions of politeness are determined by spectral characteristics of speakers, in particular, spectral tilts obtained by computing the difference in amplitude between the first harmonic and the third formant.

  18. [The quality of voice in coal-miners after burn/inhalation injury due to methane explosion].

    PubMed

    Orecka, Boguslawa; Sikora, Łukasz; Misiołek, Maciej; Fira, Rafał; Miśkiewicz-Orczyk, Katarzyna; Paluch, Zbigniew; Krzywiecki, Andrzej; Grzanka, Alicja; Namysłowski, Grzegorz

    2012-01-01

    The job as a coal-miner exposes to the greatest risk. One of the most dangerous health hazard is a burn/inhalation injury during the methane explosion. The victims undergo physical trauma, effect of high temperature and inhalation of toxic gases and products of incomplete combustion, As a result of inhalation injury both, upper and lower airways are affected. The aim of the study was to analyse the relationship between burn/inhalation injury and quality of voice in affected coal-miners. A group of 23 patients (men) in age from 28 to 59 (mean 38.5) 3 years after burn/inhalation injury participated in this study. The voice evaluation based on ENT examination, videlaryngostroboscopy, acoustic analysis, MPT parameter and GRBAS analysis was performed. The special control group of coal-miners served as a control. On the basis of the subjective evaluation and the objective acoustic analysis, aerodynamic parameter and videlaryngostroboscopy the worse quality of voice in the group of injured coalminers was shown in comparison to the control group. No substantial correlation between the acoustic parameters, MPT parameter and ventilating rates was found. PMID:22500499

  19. Analysis of Fumarole Acoustics at Aso Volcano, Japan

    NASA Astrophysics Data System (ADS)

    McKee, K. F.; Yokoo, A.; Fee, D.; Huang, Y. C.; Yoshikawa, S.; Utsugi, M.; Minami, T.; Ohkura, T.

    2015-12-01

    The lowermost portion of large eruption columns is the momentum-driven, fluid flow portion known as a volcanic jet. The perturbation of the atmosphere from this region produces a sound known as jetting or jet noise. Recent work has shown that this volcanic jet noise produced by a volcano has similar characteristics as the sound from jet and rocket engines. The study of volcanic jet noise has gained much from laboratory jet engine studies; however, jet engines have been engineered to reduce noise thereby limiting their use as a comparison tool to the complex, ever-changing volcanic jet. Previous studies have noted that fumaroles produce jet noise without further detailed investigation. The goal of this work is to enhance our understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We aim to characterize the acoustic signature of fumaroles and evaluate if fumarolic jets scale to that of large volcanic jets. To investigate this, we deployed a 6-element acoustic array at two different locations along the edge of the crater wall at Aso Volcano, Japan from early July through mid-August 2015. Approximately two months before this deployment, the pyroclastic cone within Aso's crater partially collapsed into the vent. The cone was constructed during both ash venting and strombolian-style explosive activity in the last year. After the deployment, on July 13 a new small vent opened on the southwest flank of the pyroclastic cone. The vent is several meters in diameter and has consistent gas jetting which produces audible jet noise. To better capture the acoustic signature of the gas jetting we moved the array to the southwestern edge of the crater. The array is 230 meters from the vent and is positioned 54 degrees from the vertical jet axis, a recording angle usually not feasible in volcanic environments. Preliminary investigations suggest directionality at the source and the influence of topography along the propagation path as

  20. Wavelet analysis of baryon acoustic structures in the galaxy distribution

    NASA Astrophysics Data System (ADS)

    Arnalte-Mur, P.; Labatie, A.; Clerc, N.; Martínez, V. J.; Starck, J.-L.; Lachièze-Rey, M.; Saar, E.; Paredes, S.

    2012-06-01

    Context. Baryon acoustic oscillations (BAO) are imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. Aims: The BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. We present a new method to detect the real-space structures associated with BAO. These baryon acoustic structures are spherical shells of relatively small density contrast, surrounding high density central regions. Methods: We design a specific wavelet adapted to search for shells, and exploit the physics of the process by making use of two different mass tracers, introducing a specific statistic to detect the BAO features. We show the effect of the BAO signal in this new statistic when applied to the Λ - cold dark matter (ΛCDM) model, using an analytical approximation to the transfer function. We confirm the reliability and stability of our method by using cosmological N-body simulations from the MareNostrum Institut de Ciències de l'Espai (MICE). Results: We apply our method to the detection of BAO in a galaxy sample drawn from the Sloan Digital Sky Survey (SDSS). We use the "main" catalogue to trace the shells, and the luminous red galaxies (LRG) as tracers of the high density central regions. Using this new method, we detect, with a high significance, that the LRG in our sample are preferentially located close to the centres of shell-like structures in the density field, with characteristics similar to those expected from BAO. We show that stacking selected shells, we can find their characteristic density profile. Conclusions: We delineate a new feature of the cosmic web, the BAO shells. As these are real spatial structures, the BAO phenomenon can be studied in detail by examining those shells. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc

  1. A report on alterations to the speaking and singing voices of four women following hormonal therapy with virilizing agents.

    PubMed

    Baker, J

    1999-12-01

    Four women aged between 27 and 58 years sought otolaryngological examination due to significant alterations to their voices, the primary concerns being hoarseness in vocal quality, lowering of habitual pitch, difficulty projecting their speaking voices, and loss of control over their singing voices. Otolaryngological examination with a mirror or flexible laryngoscope revealed no apparent abnormality of vocal fold structure or function, and the women were referred for speech pathology with diagnoses of functional dysphonia. Objective acoustic measures using the Kay Visipitch indicated significant lowering of the mean fundamental frequency for each woman, and perceptual analysis of the patients' voices during quiet speaking, projected voice use, and comprehensive singing activities revealed a constellation of features typically noted in the pubescent male. The original diagnoses of a functional dysphonia were queried, prompting further exploration of each woman's medical history, revealing in each case onset of vocal symptoms shortly after commencing treatment for conditions with medications containing virilizing agents (eg, Danocrine (danazol), Deca-Durabolin (nandrolene decanoate), and testosterone). Although some of the vocal symptoms decreased in severity with the influences from 6 months voice therapy and after withdrawal from the drugs, a number of symptoms remained permanent, suggesting each subject had suffered significant alterations in vocal physiology, including muscle tissue changes, muscle coordination dysfunction, and propioceptive dysfunction. This retrospective study is presented in order to illustrate that it was both the projected speaking voice and the singing voice that proved so highly sensitive to the virilization effects. The implications for future prospective research studies and responsible clinical practice are discussed. PMID:10622516

  2. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    SciTech Connect

    Matzner, Shari; Fu, Tao; Ren, Huiying; Deng, Zhiqun; Sun, Yannan; Carlson, Thomas J.

    2011-09-30

    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmental models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.

  3. FY-93 noncontacting acoustic ultrasonic signature analysis development

    SciTech Connect

    Tow, D.M.; Rodriguez, J.G.; Williamson, R.L.; Blackwood, L.G.

    1994-04-01

    A noncontacting, long-standoff inspection system with proven capabilities in container fill identification has been under development at the Idaho National Engineering Laboratory. The system detects subtle change in container vibration characteristics caused by differences in the physical properties of the fill materials. A container is inspected by acoustically inducting it to vibrate and sensing the vibrational response with a laser vibrometer. A standoff distance of several meters is feasible. In previous work the system proved to be a reliable means of distinguishing between munitions with a variety of chemical fills. During FY-93, the system was modified to improve performance and simplify operation. Other FY-93 accomplishments include progress in modeling the vibrational characteristics of containers and refinements to the statistical classification algorithms. Progress was also made in identifying other applications for this technology.

  4. Perceptually-driven signal analysis for acoustic event classification

    NASA Astrophysics Data System (ADS)

    Philips, Scott M.

    In many acoustic signal processing applications human listeners are able to outperform automated processing techniques, particularly in the identification and classification of acoustic events. The research discussed in this paper develops a framework for employing perceptual information from human listening experiments to improve automatic event classification. We focus on the identification of new signal attributes, or features, that are able to predict the human performance observed in formal listening experiments. Using this framework, our newly identified features have the ability to elevate automatic classification performance closer to the level of human listeners. We develop several new methods for learning a perceptual feature transform from human similarity measures. In addition to providing a more fundamental basis for uncovering perceptual features than previous approaches, these methods also lead to a greater insight into how humans perceive sounds in a dataset. We also develop a new approach for learning a perceptual distance metric. This metric is shown to be applicable to modern kernel-based techniques used in machine learning and provides a connection between the fields of psychoacoustics and machine learning. Our research demonstrates these new methods in the area of active sonar signal processing. There is anecdotal evidence within the sonar community that human operators are adept in the task of discriminating between active sonar target and clutter echoes. We confirm this ability in a series of formal listening experiments. With the results of these experiments, we then identify perceptual features and distance metrics using our novel methods. The results show better agreement with human performance than previous approaches. While this work demonstrates these methods using perceptual similarity measures from active sonar data, they are applicable to any similarity measure between signals.

  5. Quantitative and Descriptive Comparison of Four Acoustic Analysis Systems: Vowel Measurements

    ERIC Educational Resources Information Center

    Burris, Carlyn; Vorperian, Houri K.; Fourakis, Marios; Kent, Ray D.; Bolt, Daniel M.

    2014-01-01

    Purpose: This study examines accuracy and comparability of 4 trademarked acoustic analysis software packages (AASPs): Praat, WaveSurfer, TF32, and CSL by using synthesized and natural vowels. Features of AASPs are also described. Method: Synthesized and natural vowels were analyzed using each of the AASP's default settings to secure 9…

  6. Automated pattern analysis: A newsilent partner in insect acoustic detection studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This seminar reviews methods that have been developed for automated analysis of field-collected sounds used to estimate pest populations and guide insect pest management decisions. Several examples are presented of successful usage of acoustic technology to map insect distributions in field environ...

  7. Acoustic analysis reveals a new cryptic bush–cricket in the Carpathian Mountains (Orthoptera, Phaneropteridae)

    PubMed Central

    Iorgu, Ionuţ Ştefan

    2012-01-01

    Abstract A new morphologically cryptic species of phaneropterid bush–cricket from the genus Isophya is described from the Eastern Carpathian Mountains: Isophya dochia sp. n. Sound analysis and morphological details are discussed in the paper comparing the new species with several Isophya species having similar morphology and acoustic behavior. PMID:23378813

  8. Data-driven automated acoustic analysis of human infant vocalizations using neural network tools

    PubMed Central

    Warlaumont, Anne S.; Oller, D. Kimbrough; Buder, Eugene H.; Dale, Rick; Kozma, Robert

    2010-01-01

    Acoustic analysis of infant vocalizations has typically employed traditional acoustic measures drawn from adult speech acoustics, such as f0, duration, formant frequencies, amplitude, and pitch perturbation. Here an alternative and complementary method is proposed in which data-derived spectrographic features are central. 1-s-long spectrograms of vocalizations produced by six infants recorded longitudinally between ages 3 and 11 months are analyzed using a neural network consisting of a self-organizing map and a single-layer perceptron. The self-organizing map acquires a set of holistic, data-derived spectrographic receptive fields. The single-layer perceptron receives self-organizing map activations as input and is trained to classify utterances into prelinguistic phonatory categories (squeal, vocant, or growl), identify the ages at which they were produced, and identify the individuals who produced them. Classification performance was significantly better than chance for all three classification tasks. Performance is compared to another popular architecture, the fully supervised multilayer perceptron. In addition, the network’s weights and patterns of activation are explored from several angles, for example, through traditional acoustic measurements of the network’s receptive fields. Results support the use of this and related tools for deriving holistic acoustic features directly from infant vocalization data and for the automatic classification of infant vocalizations. PMID:20370038

  9. A finite difference analysis of the field present behind an acoustically impenetrable two-layer barrier.

    PubMed

    Hurrell, Andrew M

    2008-06-01

    The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface. PMID:18537372

  10. Acoustic Propagation Studies For Sperm Whale Phonation Analysis During LADC Experiments

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Ioup, George E.; Ioup, Juliette W.; Caruthers, Jerald W.

    2004-11-01

    The Littoral Acoustic Demonstration Center (LADC) conducted a series of passive acoustic experiments in the Northern Gulf of Mexico and the Ligurian Sea in 2001 and 2002. Environmental and acoustic moorings were deployed in areas of large concentrations of marine mammals (mainly, sperm whales). Recordings and analysis of whale phonations are among the objectives of the project. Each mooring had a single autonomously recording hydrophone (Environmental Acoustic Recording System (EARS)) obtained from the U.S. Naval Oceanographic Office after modification to record signals up to 5,859 Hz in the Gulf of Mexico and up to 12,500 Hz in the Ligurian Sea. Self-recording environmental sensors, attached to the moorings, and concurrent environmental ship surveys provided the environmental data for the experiments. The results of acoustic simulations of long-range propagation of the broad-band (500-6,000 Hz) phonation pulses from a hypothetical whale location to the recording hydrophone in the experimental environments are presented. The utilization of the simulation results for an interpretation of the spectral features observed in whale clicks and for the development of tracking algorithms from single hydrophone recordings based on the identification of direct and surface and bottom reflected arrivals are discussed. [Research supported by ONR.

  11. The accuracy of auditors' and layered voice Analysis (LVA) operators' judgments of truth and deception during police questioning.

    PubMed

    Horvath, Frank; McCloughan, Jamie; Weatherman, Dan; Slowik, Stanley

    2013-03-01

    The purpose of this study was to determine if auditors could identify truthful and deceptive persons in a sample (n = 74) of audio recordings used to assess the effectiveness of layered voice analysis (LVA). The LVA employs an automated algorithm to detect deception, but it was not effective here. There were 31 truthful and 43 deceptive persons in the sample and two LVA operators averaged 48% correct decisions on truth-tellers and 25% on deceivers. Subsequent to the LVA analysis the recordings were audited by three interviewers, each independently rendering a decision of truthful or deceptive and indicating their confidence. Auditors' judgments averaged 68% correct decisions on truth-tellers and 71% on deceivers. Auditors' detection rates, generally, exceeded chance and there was significantly (p < 0.05) greater confidence on correct than incorrect judgments of deceivers but not on truth-tellers. These results suggest that the success reported for LVA analysis may be due to operator's judgment. PMID:23406506

  12. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    NASA Astrophysics Data System (ADS)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni; Chiodi, Ilaria; Mondello, Chiara; Osellame, Roberto; Berg-Sørensen, Kirstine; Cristiani, Ilaria; Minzioni, Paolo

    2016-04-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values.

  13. Analysis of random structure-acoustic interaction problems using coupled boundary element and finite element methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Pates, Carl S., III

    1994-01-01

    A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.

  14. Passive acoustic monitoring of human physiology during activity indicates health and performance of soldiers and firefighters

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-04-01

    The Army Research Laboratory has developed a unique gel-coupled acoustic physiological monitoring sensor that has acoustic impedance properties similar to the skin. This facilitates the transmission of body sounds into the sensor pad, yet significantly repels ambient airborne noises due to an impedance mismatch. The sensor's sensitivity and bandwidth produce excellent signatures for detection and spectral analysis of diverse physiological events. Acoustic signal processing detects heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. Comfortable acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Noise-canceling sensor arrays help remove out-of-phase motion noise and enhance covariant physiology by using two acoustic sensors on the front sides of the neck and two additional acoustic sensors on each wrist. Pulse wave transit time between neck and wrist acoustic sensors will indicate systolic blood pressure. Larger torso-sized arrays can be used to acoustically inspect the lungs and heart, or built into beds for sleep monitoring. Acoustics is an excellent input for sensor fusion.

  15. Factors Predicting the Use of Passive Voice in Newspaper Headlines

    ERIC Educational Resources Information Center

    Micciulla, Linnea Margaret

    2011-01-01

    Information packaging researchers have found that certain factors influence active/passive voice alternations: Animacy, Definiteness and Weight influence argument order and thus choice of voice. Researchers in Critical Discourse Analysis (CDA) and psycholinguistics claim that voice is influenced by social factors, e.g. gender, social standing, or…

  16. Vibroacoustic analysis and experimental validation of the structural responses of NASA Mars Exploration Rover spacecraft due to acoustic launch load

    NASA Technical Reports Server (NTRS)

    Hwang, H. J.

    2003-01-01

    Structural responses of a spacecraft during liftoff are dominated by the intense acoustic pressure field imping on the exterior of the launch vehicle. Statistical Energy Analysis model of the NASA Mars Exploration Rover spacecraft has been developed and the SEA model was analyzed to predict vibroacoustic responses of the spacecraft under the diffuse acoustic loading condition.

  17. Analysis of clot formation with acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Longo, Diane M.; Lawrence, Michael B.; Walker, William F.

    2002-04-01

    Inappropriate blood coagulation plays an important role in diseases including stroke, heart attack, and deep vein thrombosis (DVT). DVT arises when a blood clot forms in a large vein of the leg. DVT is detrimental because the blood flow may be partially or completely obstructed. More importantly, a potentially fatal situation may arise if part of the clot travels to the arteries in the lungs, forming a pulmonary embolism (PE). Characterization of the mechanical properties of DVT could improve diagnosis and suggest appropriate treatment. We are developing a technique to assess mechanical properties of forming thrombi. The technique uses acoustic radiation force as a means to produce small, localized displacements within the sample. Returned ultrasound echoes are processed to estimate the time dependent displacement of the sample. Appropriate mechanical modeling and signal processing produce plots depicting relative mechanical properties (relative elasticity and relative viscosity) and force-free parameters (time constant, damping ratio, and natural frequency). We present time displacement curves of blood samples obtained during coagulation, and show associated relative and force-free parameter plots. These results show that the Voigt model with added mass accurately characterizes blood behavior during clot formation.

  18. Analysis of In Mine Acoustic Recordings for Single Fired Explosions

    NASA Astrophysics Data System (ADS)

    McKenna, S.; Hayward, C.; Stump, B.

    2003-12-01

    In August of 2003, a series of single fired test shots were executed at a copper mine in Arizona. The ten shots, fired on August 18 and 19, 2003, ranged in size from 1700 lbs to 13600 lbs in simultaneously detonated patterns ranging from a single hole to eight holes. All were located within the same pit and within 100 m of each other. Both free face and bench shots were included. Southern Methodist University had previously deployed a set of acoustic gauges ringing the active production areas of the mine. The five Validyne DP250 sensors recorded not only the ten test shots, but also seven delay fired production shots over the four day period from August 18 to 21, 2003. Each recorded blast arrival was analyzed for peak amplitude and spectrum. Signals were then compared for the variability between shots and sensors as well as a comparison between fully contained and poorly contained shots. Blast yield, scale depth, and centroid depth were compared to the above measured quantities for each of the single-fired and production shots.

  19. Risk Factors of Acoustic Neuroma: Systematic Review and Meta-Analysis

    PubMed Central

    Chen, Mantao; Fan, Zuoxu; Cao, Fei; Wang, Liang

    2016-01-01

    Purpose Many epidemiological studies have investigated environmental risk factors for the development of acoustic neuroma. However, these results are controversial. We conducted a meta-analysis of case-control studies to identify any potential relationship between history of noise exposure, smoking, allergic diseases, and risk of acoustic neuroma. Materials and Methods We searched PubMed to identify relevant articles. Two researchers evaluated the eligibility and extracted the data independently. Results Eleven case-control studies were included in our meta-analysis. Acoustic neuroma was found to be associated with leisure noise exposure [odds ratio (OR)=1.33, 95% confidence interval (CI): 1.05–1.68], but not with occupational noise exposure and ever noise exposure (OR=1.20, 95% CI: 0.84–1.72 and OR=1.15, 95% CI: 0.80–1.65). The OR of acoustic neuroma for ever (versus never) smoking was 0.53 (95% CI: 0.30–0.94), while the subgroup analysis indicated ORs of 0.95 (95% CI: 0.81–1.10) and 0.49 (95% CI: 0.41–0.59) for ex-smoker and current smoker respectively. The ORs for asthma, eczema, and seasonal rhinitis were 0.98 (95% CI: 0.80–1.18), 0.91 (95% CI: 0.76–1.09), and 1.52 (95% CI: 0.90–2.54), respectively. Conclusion Our meta-analysis is suggestive of an elevated risk of acoustic neuroma among individuals who were ever exposed to leisure noise, but not to occupational noise. Our study also indicated a lower acoustic neuroma risk among ever and current cigarette smokers than never smokers, while there was no significant relationship for ex-smokers. No significant associations were found between acoustic neuroma and history of any allergic diseases, such as asthma, eczema, and seasonal rhinitis. PMID:26996581

  20. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; Ehgamberdiev, Shuhrat; Landenkov, Oleg

    1999-01-01

    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  1. Synergy of seismic, acoustic, and video signals in blast analysis

    SciTech Connect

    Anderson, D.P.; Stump, B.W.; Weigand, J.

    1997-09-01

    The range of mining applications from hard rock quarrying to coal exposure to mineral recovery leads to a great variety of blasting practices. A common characteristic of many of the sources is that they are detonated at or near the earth`s surface and thus can be recorded by camera or video. Although the primary interest is in the seismic waveforms that these blasts generate, the visual observations of the blasts provide important constraints that can be applied to the physical interpretation of the seismic source function. In particular, high speed images can provide information on detonation times of individuals charges, the timing and amount of mass movement during the blasting process and, in some instances, evidence of wave propagation away from the source. All of these characteristics can be valuable in interpreting the equivalent seismic source function for a set of mine explosions and quantifying the relative importance of the different processes. This paper documents work done at the Los Alamos National Laboratory and Southern Methodist University to take standard Hi-8 video of mine blasts, recover digital images from them, and combine them with ground motion records for interpretation. The steps in the data acquisition, processing, display, and interpretation are outlined. The authors conclude that the combination of video with seismic and acoustic signals can be a powerful diagnostic tool for the study of blasting techniques and seismology. A low cost system for generating similar diagnostics using consumer-grade video camera and direct-to-disk video hardware is proposed. Application is to verification of the Comprehensive Test Ban Treaty.

  2. Structure borne noise analysis using Helmholtz equation least squares based forced vibro acoustic components

    NASA Astrophysics Data System (ADS)

    Natarajan, Logesh Kumar

    This dissertation presents a structure-borne noise analysis technology that is focused on providing a cost-effective noise reduction strategy. Structure-borne sound is generated or transmitted through structural vibration; however, only a small portion of the vibration can effectively produce sound and radiate it to the far-field. Therefore, cost-effective noise reduction is reliant on identifying and suppressing the critical vibration components that are directly responsible for an undesired sound. However, current technologies cannot successfully identify these critical vibration components from the point of view of direct contribution to sound radiation and hence cannot guarantee the best cost-effective noise reduction. The technology developed here provides a strategy towards identifying the critical vibration components and methodically suppressing them to achieve a cost-effective noise reduction. The core of this technology is Helmholtz equation least squares (HELS) based nearfield acoustic holography method. In this study, the HELS formulations derived in spherical co-ordinates using spherical wave expansion functions utilize the input data of acoustic pressures measured in the nearfield of a vibrating object to reconstruct the vibro-acoustic responses on the source surface and acoustic quantities in the far field. Using these formulations, three steps were taken to achieve the goal. First, hybrid regularization techniques were developed to improve the reconstruction accuracy of normal surface velocity of the original HELS method. Second, correlations between the surface vibro-acoustic responses and acoustic radiation were factorized using singular value decomposition to obtain orthogonal basis known here as the forced vibro-acoustic components (F-VACs). The F-VACs enables one to identify the critical vibration components for sound radiation in a similar manner that modal decomposition identifies the critical natural modes in a structural vibration. Finally

  3. Questioning Photovoice Research: Whose Voice?

    PubMed

    Evans-Agnew, Robin A; Rosemberg, Marie-Anne S

    2016-07-01

    Photovoice is an important participatory research tool for advancing health equity. Our purpose is to critically review how participant voice is promoted through the photovoice process of taking and discussing photos and adding text/captions. PubMed, Scopus, PsycINFO, and Web of Science databases were searched from the years 2008 to 2014 using the keywords photovoice, photonovella, photovoice and social justice, and photovoice and participatory action research. Research articles were reviewed for how participant voice was (a) analyzed, (b) exhibited in community forums, and (c) disseminated through published manuscripts. Of 21 studies, 13 described participant voice in the data analysis, 14 described participants' control over exhibiting photo-texts, seven manuscripts included a comprehensive set of photo-texts, and none described participant input on choice of manuscript photo-texts. Photovoice designs vary in the advancement of participant voice, with the least advancement occurring in manuscript publication. Future photovoice researchers should expand approaches to advancing participant voice. PMID:26786953

  4. Methods of Voice Reconstruction

    PubMed Central

    Chen, Hung-Chi; Kim Evans, Karen F.; Salgado, Christopher J.; Mardini, Samir

    2010-01-01

    This article reviews methods of voice reconstruction. Nonsurgical methods of voice reconstruction include electrolarynx, pneumatic artificial larynx, and esophageal speech. Surgical methods of voice reconstruction include neoglottis, tracheoesophageal puncture, and prosthesis. Tracheoesophageal puncture can be performed in patients with pedicled flaps such as colon interposition, jejunum, or gastric pull-up or in free flaps such as perforator flaps, jejunum, and colon flaps. Other flaps for voice reconstruction include the ileocolon flap and jejunum. Laryngeal transplantation is also reviewed. PMID:22550443

  5. A prospective longitudinal study of voice characteristics and health-related quality of life outcomes following laryngeal cancer treatment with radiotherapy.

    PubMed

    Karlsson, Therese; Bergström, Liza; Ward, Elizabeth; Finizia, Caterina

    2016-06-01

    Background To investigate potential changes in perceptual, acoustic and patient-reported outcomes over 12 months for laryngeal cancer patients treated with radiotherapy. Material and methods A total of 40 patients with Tis-T3 laryngeal cancer treated with curative intent by radiotherapy were included in this prospective longitudinal descriptive study. Patients were followed pre-radiotherapy, one month, six months and 12 months post-radiotherapy, where voice recordings and patient-reported outcome instruments (European Organization for Research and Treatment of Cancer Quality-of-Life Questionnaire Core30, Head and Neck35, Swedish Self-Evaluation of Communication Experiences after Laryngeal Cancer) were completed at each appointment. Perceptual analysis, using the Grade-Roughness-Breathiness-Asthenia-Strain scale and vocal fry parameters, and acoustic measures including harmonics-to-noise ratio (HNR), jitter, shimmer and mean spoken fundamental frequency (MSFF) were produced from voice recordings. Results All patients presented with dysphonic voices pre-radiotherapy, where 95% demonstrated some degree of vocal roughness. This variable improved significantly immediately post-radiotherapy, however, then deteriorated again between six and 12 months. Vocal fry also increased significantly at 12 months. Acoustic measures were abnormal pre- and post-treatment with no significant change noted except for MSFF, which lowered significantly by 12 months. Health-related quality of life (HRQL) deteriorated post-radiotherapy but returned to pretreatment levels by 12 months. Conclusion By 12 months, most perceptual, acoustic, patient-reported voice and HRQL outcomes for laryngeal cancer patients treated by radiotherapy had showed no significant improvements compared to pretreatment function. Further studies are required to investigate potential benefits of voice rehabilitation following radiotherapy. PMID:27056401

  6. Sex and the singer: Gender categorization aspects of singing voice

    NASA Astrophysics Data System (ADS)

    Ternström, Sten

    2003-04-01

    The singing voice exhibits many systematic differences by gender and age. The physiological differences between the voice organs of males, females, and children are well known and give rise to several acoustic differences, including acoustic power, pitch range, and spectral distribution. Vocal artists often strive to widen their range of expression, and it is not uncommon for males to sing in a femalelike register, as in counter tenors and in some pop/rock genres. The opposite, however, is quite rare. While ambiguous or contradictory gender in speech is usually a social disadvantage, in singing it can be a desired effect. The physical differences in singing voice production between males and females are reviewed in detail. Some interesting borderline cases are examined from an acoustic standpoint.

  7. Writing with Voice

    ERIC Educational Resources Information Center

    Kesler, Ted

    2012-01-01

    In this Teaching Tips article, the author argues for a dialogic conception of voice, based in the work of Mikhail Bakhtin. He demonstrates a dialogic view of voice in action, using two writing examples about the same topic from his daughter, a fifth-grade student. He then provides five practical tips for teaching a dialogic conception of voice in…

  8. Personal Genres, Public Voices

    ERIC Educational Resources Information Center

    Danielewicz, Jane

    2008-01-01

    Writing in personal genres, like autobiography, leads writers to public voices. Public voice is a discursive quality of a text that conveys the writer's authority and position relative to others. To show how voice and authority depend on genre, I analyze the autobiographies of two writers who take opposing positions on the same topic. By producing…

  9. Guided by Voices

    ERIC Educational Resources Information Center

    Wallin, Jason J.

    2010-01-01

    While the educational project privileges signifying speech, the psychical significance of the "voice" has become an institutional "vanishing mediator." Against the commonplace assumption that the voice functions as a benign vehicle for conscious meaning-making, this article examines the sublimated privilege and function of the voice in the context…

  10. A ''Voice Inversion Effect?''

    ERIC Educational Resources Information Center

    Bedard, Catherine; Belin, Pascal

    2004-01-01

    Voice is the carrier of speech but is also an ''auditory face'' rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a ''voice inversion effect,'' by analogy to the classical ''face inversion effect,'' which could support the hypothesis of a voice-specific module. Experiment 1 consisted…

  11. Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Schilden, Thomas; Schröder, Wolfgang; Ali, Syed Raza Christopher; Schreyer, Anne-Marie; Wu, Jie; Radespiel, Rolf

    2016-05-01

    The tunnel noise in a Mach 5.9 Ludwieg tube is determined by two methods, a newly developed cone-probe-DNS method and a reliable hot-wire-Pitot-probe method. The new method combines pressure and heat flux measurements using a cone probe and direct numerical simulation (DNS). The modal analysis is based on transfer functions obtained by the DNS to link the measured quantities to the tunnel noise. The measurements are performed for several unit-Reynolds numbers in the range of 5 ṡ 106 ≤ Re/m ≤ 16 ṡ 106 and probe positions to identify the sensitivities of tunnel noise. The DNS solutions show similar response mechanisms of the cone probe to incident acoustic and entropy waves which leads to high condition numbers of the transfer matrix such that a unique relationship between response and source mechanism can be only determined by neglecting the contribution of the non-acoustic modes to the pressure and heat flux fluctuations. The results of the cone-probe-DNS method are compared to a modal analysis based on the hot-wire-Pitot-probe method which provides reliable results in the frequency range less than 50 kHz. In this low frequency range the findings of the two different mode analyses agree well. At higher frequencies, the newly developed cone-probe-DNS method is still valid. The tunnel noise is dominated by the acoustic mode, since the entropy mode is lower by one order of magnitude and the vorticity mode can be neglected. The acoustic mode is approximately 0.5% at 30 kHz and the cone-probe-DNS data illustrate the acoustic mode to decrease and to asymptotically approach 0.2%.

  12. Seismo-acoustic analysis of thunderstorms at Plostina (Romania) site

    NASA Astrophysics Data System (ADS)

    Grecu, Bogdan; Ghica, Daniela; Moldovan, Iren; Ionescu, Constantin

    2013-04-01

    The National Institute for Earth Physics (Romania) operates one of the largest seismic networks in the Eastern Europe. The network includes 97 stations with velocity sensors of which 52 are broadband and 45 are short period, 102 strong motion stations and 8 seismic observatories. Located in the most active seismic region of Romania, i.e. Vrancea area, the Plostina Observatory included initially two seismic stations, one at surface with both broadband and accelerometer sensors and one at 30 m depth with only short period velocity sensor. Starting with 2007, the facilities at Plostina have been upgraded so that at present, the observatory also includes one seismic array (PLOR) of seven elements (PLOR1, PLOR2, PLOR3, PLOR4, PLOR5, PLOR6, PLOR7) with an aperture of 2.5 km, seven infrasound elements (IPL2, IPL3, IPL4, IPH4, IPH5, IPH6, IPH7), two three-component fluxgate sensors, one Boltek EFM-100 electrometer and one La Crosse weather station. The element PLOR4 is co-located with the accelerometer and borehole sensor, two infrasonic elements (IPL4 and IPH4), one fluxgate sensor, the Boltek electrometer and the weather station. All the date are continuously recorded and real-time transmitted to the Romanian National Data Centre (RONDC) in Magurele. The recent developments at Plostina site made possible the improvement of the local miscroseismic activity monitoring as well as conducting of other geophysical studies such as acoustic measurements, observations of the variation of the magnetic field in correlation with solar activity, observations of the variation of radioactive alpha gases concentration, observations of the telluric currents. In this work, we investigate the signals emitted due to the process of lightning and thunder during thunderstorms activity at Plostina site. These signals are well recorded by both seismic and infrasound networks and they are used to perform spectral and specific array analyses. We also perform multiple correlations between the

  13. Information-theoretic analysis of iterated Bayesian acoustic source localization in a static ocean waveguide.

    PubMed

    Hayward, Thomas J

    2015-05-01

    Fundamental constructs of information theory are applied to quantify the performance of iterated (sequential) Bayesian localization of a time-harmonic source in a range- and time-invariant acoustic waveguide using the segmented Fourier transforms of the received pressure time series. The nonlinear relation, defined by acoustic propagation, between the source location and the received narrowband spectral components is treated as a nonlinear communication channel. The performance analysis includes mismatch between the acoustic channel and the model channel on which the Bayesian inference is based. Source location uncertainty is quantified by the posterior probability density of source location, by the posterior entropy and associated uncertainty area, by the information gain (relative entropy) at each iteration, and by large-ensemble limits of these quantities. A computational example for a vertical receiver array in a shallow-water waveguide is presented with acoustic propagation represented by normal modes and ambient noise represented by a Kuperman-Ingenito model. Performance degradation due to noise-model mismatch is quantified in an example. Potential extensions to uncertain and stochastic environments are discussed. PMID:25994704

  14. Effects of different analysis techniques and recording duty cycles on passive acoustic monitoring of killer whales.

    PubMed

    Riera, Amalis; Ford, John K; Ross Chapman, N

    2013-09-01

    Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency. PMID:23968036

  15. Finite element analysis and optimization of a single-axis acoustic levitator.

    PubMed

    Andrade, Marco A B; Buiochi, Flávio; Adamowski, Julio C

    2010-01-01

    A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance, the transducer face displacement, and the acoustic radiation potential that acts on small spheres are determined by the finite element method. The numerical electrical impedance is compared with that acquired experimentally by an impedance analyzer, and the predicted displacement is compared with that obtained by a fiber-optic vibration sensor. The numerical acoustic radiation potential is verified experimentally by placing small spheres in the levitator. The same procedure is used to optimize a levitator consisting of a curved reflector and a concave-faced transducer. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. The optimized levitator is able to levitate 3, 2.5-mm diameter steel spheres with a power consumption of only 0.9 W. PMID:20178913

  16. Blend uniformity analysis of pharmaceutical products by Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS).

    PubMed

    Fitzpatrick, Dara; Scanlon, Eoin; Krüse, Jacob; Vos, Bastiaan; Evans-Hurson, Rachel; Fitzpatrick, Eileen; McSweeney, Seán

    2012-11-15

    Blend uniformity analysis (BUA) is a routine and highly regulated aspect of pharmaceutical production. In most instances, it involves quantitative determination of individual components of a blend in order to ascertain the mixture ratio. This approach often entails the use of costly and sophisticated instrumentation and complex statistical methods. In this study, a new and simple qualitative blend confirmatory test is introduced based on a well known acoustic phenomenon. Several over the counter (OTC) product powder blends are analysed and it is shown that each product has a unique and highly reproducible acoustic signature. The acoustic frequency responses generated during the dissolution of the product are measured and recorded in real time. It is shown that intra-batch and inter-batch variation for each product is either insignificant or non-existent when measured in triplicate. This study demonstrates that Broadband Acoustic Resonance Dissolution Spectroscopy or BARDS can be used successfully to determine inter-batch variability, stability and uniformity of powder blends. This is just one application of a wide range of BARDS applications which are more cost effective and time efficient than current methods. PMID:22884840

  17. Mares Prefer the Voices of Highly Fertile Stallions

    PubMed Central

    Lemasson, Alban; Remeuf, Kévin; Trabalon, Marie; Cuir, Frédérique; Hausberger, Martine

    2015-01-01

    We investigated the possibility that stallion whinnies, known to encode caller size, also encoded information about caller arousal and fertility, and the reactions of mares in relation to type of voice. Voice acoustic features are correlated with arousal and reproduction success, the lower-pitched the stallion’s voice, the slower his heart beat and the higher his fertility. Females from three study groups preferred playbacks of low-pitched voices. Hence, females are attracted by frequencies encoding for large male size, calmness and high fertility. More work is needed to explore the relative importance of morpho-physiological features. Assortative mating may be involved as large females preferred voices of larger stallions. Our study contributes to basic and applied ongoing research on mammal reproduction, and questions the mechanisms used by females to detect males’ fertility. PMID:25714814

  18. A pilot study about speech changes after partial Tucker's laryngectomy: the reduction of regressive voicing assimilation.

    PubMed

    Galant, C; Lagier, A; Vercasson, C; Santini, L; Dessi, P; Giovanni, A; Fakhry, N

    2015-12-01

    Partial frontolateral laryngectomy (PL) is performed to remove larynx tumor while preserving its main functions. So far, the speech changes induced by difficulties of voicing and the alterations to the vocal tract due to PL have been seldom addressed. The goal of our study was to make an acoustic analysis of regressive voicing assimilation (RVA) among patients after PL and to study the relationship with rates of speech. A retrospective study was conducted from January to April 2013. 11 subjects treated by partial frontolateral laryngectomy, and ten healthy subjects were included. Functional recordings of voice were analyzed and compared. For assimilation sequences we found a significant modification of voicing ratio in healthy subjects (p < 0.05) and PL patient at accelerated speaking rate only (p < 0.05). The vowel duration is significantly modified only for healthy subjects. For all subjects (PL patients and healthy) the duration of C1 consonant was not significantly modified. Our results highlight the presence of RVA in healthy subjects, but also in PL patients in the rapid speaking mode. PMID:26156226

  19. Voice onset time is necessary but not always sufficient to describe acquisition of voiced stops: The cases of Greek and Japanese

    PubMed Central

    Kong, Eun Jong; Beckman, Mary E.; Edwards, Jan

    2012-01-01

    The age at which children master adult-like voiced stops can generally be predicted by voice onset time (VOT): stops with optional short lag are early, those with obligatory lead are late. However, Japanese voiced stops are late despite having a short lag variant, whereas Greek voiced stops are early despite having consistent voicing lead. This cross-sectional study examines the acoustics of word-initial stops produced by English-, Japanese-, and Greek-speaking children aged 2 to 5, to investigate how these seemingly exceptional mastery patterns relate to use of other phonetic correlates. Productions were analyzed for VOT, f0 and spectral tilt (H1-H2) in Japanese and English, and for amplitude trajectory in Greek and Japanese. Japanese voiceless stops have intermediate lag VOT values, so other “secondary” cues are needed to differentiate them from the voiced short lag VOT variant. Greek voiced stops are optionally prenasalized, and the amplitude trajectory for the voice bar during closure suggests that younger children use a greater degree of nasal venting to create the aerodynamic conditions necessary for voicing lead. Taken together, the findings suggest that VOT must be supplemented by measurements of other language-specific acoustic properties to explain the mastery pattern of voiced stops in some languages. PMID:23105160

  20. Acoustic, respiratory kinematic and electromyographic effects of vocal training

    NASA Astrophysics Data System (ADS)

    Mendes, Ana Paula De Brito Garcia

    The longitudinal effects of vocal training on the respiratory, phonatory and articulatory systems were investigated in this study. During four semesters, fourteen voice major students were recorded while speaking and singing. Acoustic, temporal, respiratory kinematic and electromyographic parameters were measured to determine changes in the three systems as a function of vocal training. Acoustic measures of the speaking voice included fundamental frequency, sound pressure level (SPL), percent jitter and shimmer, and harmonic-to-noise ratio. Temporal measures included duration of sentences, diphthongs and the closure durations of stop consonants. Acoustic measures of the singing voice included fundamental frequency and sound pressure level of the phonational range, vibrato pulses per second, vibrato amplitude variation and the presence of the singer's formant. Analysis of the data revealed that vocal training had a significant effect on the singing voice. Fundamental frequency and SPL of the 90% level and 90--10% of the phonational range increased significantly during four semesters of vocal training. Physiological data was collected from four subjects during three semesters of vocal training. Respiratory kinematic measures included lung volume, rib cage and abdominal excursions extracted from spoken sung samples. Descriptive statistics revealed that rib cage and abdominal excursions increased from the 1st to the 2nd semester and decrease from the 2nd to the 3rd semester of vocal training. Electromyographic measures of the pectoralis major, rectus abdominis and external obliques muscles revealed that burst duration means decreased from the 1st to the 2nd semester and increased from the 2nd to the 3rd semester. Peak amplitude means increased from the 1st to the 2nd and decreased from the 2nd to the 3rd semester of vocal training. Chest wall excursions and muscle force generation of the three muscles increased as the demanding level and the length of the phonatory

  1. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  2. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  3. Application of Wavelet Packet Analysis to the Measurement of the Baryon Acoustic Oscillation

    NASA Astrophysics Data System (ADS)

    Kadowaki, Kevin; Garcia, Noel; Ford, Taurean; Pando, Jesus; SDSS-FAST Collaboration

    2016-03-01

    We develop a method of wavelet packet analysis to measure the Baryon Acoustic Oscillation (BAO) peak and apply this method to the CMASS galaxy catalog from the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We compare our results to a fiducial ?CDM flat cosmological model and detect a BAO signature in the power spectrum comparable to the previous consensus results of the BOSS collaboration. We find DA = 1365rd /rd , fid at z = . 54 . Member ID Forthcoming.

  4. Inharmonicity Analysis: A Novel Physical Method for Acoustic Screening of Dysphonia

    NASA Astrophysics Data System (ADS)

    Matteson, Sam; Lu, Fang-Ling

    2008-10-01

    In the United States 6.8% of men, women, and children report current voice problems and approximately 29% will report some problems during their lifetime. Often this dysphonia is due to pathologies of the vocal folds. The authors (a physicist and a speech pathologist) describe an interdisciplinary approach that shows promise of detecting physiological abnormalities of the vocal folds from an analysis of the Fourier spectrum of spoken ``tokens.'' The underlying principle maintains that the normal human vocal fold is a linear oscillator that emits overtones that are very nearly precise integral values of the fundamental. Physiological problems of the vocal folds, however, introduce mechanical non-linearities that manifest themselves as frequency deviations from the ideal harmonic (that is, integral) values. The authors quantify this inharmonicity, describing and illustrating how one can obtain and analyze such data. They outline, as well, a proposed program to assess the clinical sensitivity and significance of the analysis discussed in this work.

  5. Measurement and prediction of voice support and room gain in school classrooms.

    PubMed

    Pelegrín-García, David; Brunskog, Jonas; Lyberg-Åhlander, Viveka; Löfqvist, Anders

    2012-01-01

    Objective acoustic parameters have been measured in 30 school classrooms. These parameters include usual descriptors of the acoustic quality from the listeners' standpoint, such as reverberation time, speech transmission index, and background noise level, and two descriptors of the acoustic properties for a speaker: Voice support and room gain. This paper describes the measurement method for these two parameters and presents a prediction model for voice support and room gain derived from the diffuse field theory. The voice support for medium-sized classrooms with volumes between 100 and 250 m(3) and good acoustical quality lies in the range between -14 and -9 dB, whereas the room gain is in the range between 0.2 and 0.5 dB. The prediction model for voice support describes the measurements in the classrooms with a coefficient of determination of 0.84 and a standard deviation of 1.2 dB. PMID:22280584

  6. Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)

    2001-01-01

    The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.

  7. Temporary voice changes after uncomplicated thyroidectomy.

    PubMed

    Debruyne, F; Ostyn, F; Delaere, P; Wellens, W; Decoster, W

    1997-01-01

    Voice characteristics were studied before and after thyroidectomy in patients with intact vocal fold motility. The speaking voice was acoustically analysed in 47 patients and phonetograms were made in 17 patients. Eight parameters were measured and the pre- and postoperative values compared. The results show that the most affected parameter was the pitch of the speaking voice. The fourth postoperative day there was, on average, a lower SFo and a smaller Fo range during speaking. Postoperatively a progressive normalisation took place. After three months there were no more statistical differences and, looking at the individual measures, the SF0 of all patients fell within 2 semitones from their preoperative level. Vocal quality was also altered in the first postoperative examination, as shown by the higher jitter and smaller harmonics. These measures normalised after two weeks. In the same way, the evaluation of the limits of the voice by means of the phonetogram, showed that the maximal performances in the intensity and pitch domain were decreased in the earliest postoperative period. Information about temporary voice change is useful in patients undergoing thyroidectomy. PMID:9350311

  8. Auditory brainstem's sensitivity to human voices.

    PubMed

    Nan, Yun; Skoe, Erika; Nicol, Trent; Kraus, Nina

    2015-03-01

    Differentiating between voices is a basic social skill humans acquire early in life. The current study aimed to understand the subcortical mechanisms of voice processing by focusing on the two most important acoustical voice features: the fundamental frequency (F0) and harmonics. We measured frequency following responses in a group of young adults to a naturally produced speech syllable under two linguistic contexts: same-syllable and multiple-syllable. Compared to the same-syllable context, the multiple-syllable context contained more speech cues to aid voice processing. We analyzed the magnitude of the response to the F0 and harmonics between same-talker and multiple-talker conditions within each linguistic context. Results establish that the human auditory brainstem is sensitive to different talkers as shown by enhanced harmonic responses under the multiple-talker compared to the same-talker condition, when the stimulus stream contained multiple syllables. This study thus provides the first electrophysiological evidence of the auditory brainstem's sensitivity to human voices. PMID:25620126

  9. Effects of the Interaction of Caffeine and Water on Voice Performance: A Pilot Study

    ERIC Educational Resources Information Center

    Franca, Maria Claudia; Simpson, Kenneth O.

    2013-01-01

    The objective of this "pilot" investigation was to study the effects of the interaction of caffeine and water intake on voice as evidenced by acoustic and aerodynamic measures, to determine whether ingestion of 200 mg of caffeine and various levels of water intake have an impact on voice. The participants were 48 females ranging in age…

  10. The Sound of Voice: Voice-Based Categorization of Speakers’ Sexual Orientation within and across Languages

    PubMed Central

    Maass, Anne; Paladino, Maria Paola; Vespignani, Francesco; Eyssel, Friederike; Bentler, Dominik

    2015-01-01

    Empirical research had initially shown that English listeners are able to identify the speakers' sexual orientation based on voice cues alone. However, the accuracy of this voice-based categorization, as well as its generalizability to other languages (language-dependency) and to non-native speakers (language-specificity), has been questioned recently. Consequently, we address these open issues in 5 experiments: First, we tested whether Italian and German listeners are able to correctly identify sexual orientation of same-language male speakers. Then, participants of both nationalities listened to voice samples and rated the sexual orientation of both Italian and German male speakers. We found that listeners were unable to identify the speakers' sexual orientation correctly. However, speakers were consistently categorized as either heterosexual or gay on the basis of how they sounded. Moreover, a similar pattern of results emerged when listeners judged the sexual orientation of speakers of their own and of the foreign language. Overall, this research suggests that voice-based categorization of sexual orientation reflects the listeners' expectations of how gay voices sound rather than being an accurate detector of the speakers' actual sexual identity. Results are discussed with regard to accuracy, acoustic features of voices, language dependency and language specificity. PMID:26132820

  11. Identifying hidden voice and video streams

    NASA Astrophysics Data System (ADS)

    Fan, Jieyan; Wu, Dapeng; Nucci, Antonio; Keralapura, Ram; Gao, Lixin

    2009-04-01

    Given the rising popularity of voice and video services over the Internet, accurately identifying voice and video traffic that traverse their networks has become a critical task for Internet service providers (ISPs). As the number of proprietary applications that deliver voice and video services to end users increases over time, the search for the one methodology that can accurately detect such services while being application independent still remains open. This problem becomes even more complicated when voice and video service providers like Skype, Microsoft, and Google bundle their voice and video services with other services like file transfer and chat. For example, a bundled Skype session can contain both voice stream and file transfer stream in the same layer-3/layer-4 flow. In this context, traditional techniques to identify voice and video streams do not work. In this paper, we propose a novel self-learning classifier, called VVS-I , that detects the presence of voice and video streams in flows with minimum manual intervention. Our classifier works in two phases: training phase and detection phase. In the training phase, VVS-I first extracts the relevant features, and subsequently constructs a fingerprint of a flow using the power spectral density (PSD) analysis. In the detection phase, it compares the fingerprint of a flow to the existing fingerprints learned during the training phase, and subsequently classifies the flow. Our classifier is not only capable of detecting voice and video streams that are hidden in different flows, but is also capable of detecting different applications (like Skype, MSN, etc.) that generate these voice/video streams. We show that our classifier can achieve close to 100% detection rate while keeping the false positive rate to less that 1%.

  12. Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops

    NASA Astrophysics Data System (ADS)

    Jones, Lloyd E.; Sandberg, Richard D.

    2011-12-01

    In this study the role of acoustic feedback instabilities in the tonal airfoil self-noise phenomenon is investigated. First, direct numerical simulations are conducted of the flow around a NACA-0012 airfoil at Re=1×105 and four angles of attack. At the two lowest angles of attack considered the airfoil self-noise exhibits a clear tonal contribution, whereas at the two higher angles of attack the tonal contribution becomes less significant in comparison to the broadband noise. Classical linear stability analysis of time-averaged boundary layer profiles shows that the tonal noise occurs at a frequency significantly lower than that of the most convectively amplified instability wave. Two-dimensional linear stability analysis of the time-averaged flowfield is then performed, illustrating the presence of an acoustic feedback loop involving the airfoil trailing edge. The feedback loop is found to be unstable only for the cases where tonal self-noise is prominent, and is found to self-select a frequency almost identical to that of the tonal self-noise. The constituent mechanisms of the acoustic feedback loop are considered, which appear to explain why the preferred frequency is lower than that of the most convectively amplified instability wave.

  13. Development of an Acoustic Signal Analysis Tool “Auto-F” Based on the Temperament Scale

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    The MIDI interface is originally designed for electronic musical instruments but we consider this music-note based coding concept can be extended for general acoustic signal description. We proposed applying the MIDI technology to coding of bio-medical auscultation sound signals such as heart sounds for retrieving medical records and performing telemedicine. Then we have tried to extend our encoding targets including vocal sounds, natural sounds and electronic bio-signals such as ECG, using Generalized Harmonic Analysis method. Currently, we are trying to separate vocal sounds included in popular songs and encode both vocal sounds and background instrumental sounds into separate MIDI channels. And also, we are trying to extract articulation parameters such as MIDI pitch-bend parameters in order to reproduce natural acoustic sounds using a GM-standard MIDI tone generator. In this paper, we present an overall algorithm of our developed acoustic signal analysis tool, based on those research works, which can analyze given time-based signals on the musical temperament scale. The prominent feature of this tool is producing high-precision MIDI codes, which reproduce the similar signals as the given source signal using a GM-standard MIDI tone generator, and also providing analyzed texts in the XML format.

  14. Acoustic analysis by spherical microphone array processing of room impulse responses.

    PubMed

    Khaykin, Dima; Rafaely, Boaz

    2012-07-01

    Spherical microphone arrays have been recently used for room acoustics analysis, to detect the direction-of-arrival of early room reflections, and compute directional room impulse responses and other spatial room acoustics parameters. Previous works presented methods for room acoustics analysis using spherical arrays that are based on beamforming, e.g., delay-and-sum, regular beamforming, and Dolph-Chebyshev beamforming. Although beamforming methods provide useful directional selectivity, optimal array processing methods can provide enhanced performance. However, these algorithms require an array cross-spectrum matrix with a full rank, while array data based on room impulse responses may not satisfy this condition due to the single frame data. This paper presents a smoothing technique for the cross-spectrum matrix in the frequency domain, designed for spherical microphone arrays, that can solve the problem of low rank when using room impulse response data, therefore facilitating the use of optimal array processing methods. Frequency smoothing is shown to be performed effectively using spherical arrays, due to the decoupling of frequency and angular components in the spherical harmonics domain. Experimental study with data measured in a real auditorium illustrates the performance of optimal array processing methods such as MUSIC and MVDR compared to beamforming. PMID:22779475

  15. Impact-acoustics-based health monitoring of tile-wall bonding integrity using principal component analysis

    NASA Astrophysics Data System (ADS)

    Tong, F.; Tso, S. K.; Hung, M. Y. Y.

    2006-06-01

    The use of the acoustic features extracted from the impact sounds for bonding integrity assessment has been extensively investigated. Nonetheless, considering the practical implementation of tile-wall non-destructive evaluation (NDE), the traditional defects classification method based directly on frequency-domain features has been of limited application because of the overlapping feature patterns corresponding to different classes whenever there is physical surface irregularity. The purpose of this paper is to explore the clustering and classification ability of principal component analysis (PCA) as applied to the impact-acoustics signature in tile-wall inspection with a view to mitigating the adverse influence of surface non-uniformity. A clustering analysis with signature acquired on sample slabs shows that impact-acoustics signatures of different bonding quality and different surface roughness are well separated into different clusters when using the first two principal components obtained. By adopting as inputs the feature vectors extracted with PCA applied, a multilayer back-propagation artificial neural network (ANN) classifier is developed for automatic health monitoring and defects classification of tile-walls. The inspection results obtained experimentally on the prepared sample slabs are presented and discussed, confirming the utility of the proposed method, particularly in dealing with tile surface irregularity.

  16. Three-dimensional coupled mode analysis of internal-wave acoustic ducts.

    PubMed

    Shmelev, Alexey A; Lynch, James F; Lin, Ying-Tsong; Schmidt, Henrik

    2014-05-01

    A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting. PMID:24815234

  17. An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Walker, James L.

    1996-01-01

    The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.

  18. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  19. The Voices of Higher Education Service-Learning Directors: A Qualitative Inductive Analysis

    ERIC Educational Resources Information Center

    Woodard, Kelsey

    2013-01-01

    This research explored issues surrounding service-learning directors (SLDs) within higher education institutions, including who they are, how they became SLDs, and what they experience in the role. Qualitative data were drawn from in-depth interviews of 11 SLDs, as well as review of their vitaes. A qualitative inductive analysis was conducted in…

  20. Listening to the Voices of Retained Students: An Analysis of the Social Structure of School

    ERIC Educational Resources Information Center

    Kershaw, Alicia Anne Ballew

    2009-01-01

    This research is a qualitative study of elementary students who have been retained in grade. A critical analysis of marginalization and stratification in education is illustrated through narratives and interviews. A review of the historical, social, and political context of educational bureaucracy and the reliance on grade retention to increase…

  1. High Frequency Acoustic Response Characterization and Analysis of the Deep Throttling Common Extensible Cryogenic Engine

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.

    2011-01-01

    The Common Extensive Cryogenic Engine program demonstrated the operation of a deep throttling engine design. The program, spanning five years from August 2005 to July 2010, funded testing through four separate engine demonstration test series. Along with successful completion of multiple objectives, a discrete response of approximately 4000 Hz was discovered and explored throughout the program. The typical low-amplitude acoustic response was evident in the chamber measurement through almost every operating condition; however, at certain off-nominal operating conditions, the response became discrete with higher amplitude. This paper summarizes the data reduction, characterization, and analysis of the 4,000 Hz response for the entire program duration, using the large amount of data collected. Upon first encountering the response, new objectives and instrumentation were incorporated in future test series to specifically collect 4,000 Hz data. The 4,000 Hz response was identified as being related to the first tangential acoustic mode by means of frequency estimation and spatial decomposition. The latter approach showed that the effective node line of the mode was aligned with the manifold propellant inlets with standing waves and quasi-standing waves present at various times. Contour maps that contain instantaneous frequency and amplitude trackings of the response were generated as a significant improvement to historical manual approaches of data reduction presentation. Signal analysis and dynamic data reduction also uncovered several other features of the response including a stable limit cycle, the progressive engagement of subsequent harmonics, the U-shaped time history, an intermittent response near the test-based neutral stability region, other acoustic modes, and indications of modulation with a separate subsynchronous response. Although no engine damage related to the acoustic mode was noted, the peak-to-peak fluctuating pressure amplitude achieved 12.1% of the

  2. Vibro-acoustic analysis of manned spacecraft using SEA

    NASA Astrophysics Data System (ADS)

    Rodrigo, G. Alonso; Klein, M.; Borello, G.

    A comprehensive preliminary statistical energy analysis (SEA) model of a typical manned spacecraft (Columbus APM) has been built and interesting results have been extracted from it. In the process, a good understanding of the noise transmission in this type of structure has been achieved and what is more important, the critical parameters governing the behavior of the system have been identified. In general, all the damping loss factors as well as the coupling loss factors are critical parameters, but among them we can underline the coupling loss factor between the external shell and the rack rear panel. The other two most critical items are the so called small cavities (air cavities between the external shell and the racks rear panel) and the equipment mass distribution among the different panels of a rack. The importance of the SEA parameters has proved to be capital. With the sensitivity analysis we have shown that a great scatter in the results is achieved modifying the values of certain critical parameters. This conclusion could be expected because looking at the literature we can see that success in SEA prediction has never been reached without an appropriate test campaign aiming at measuring the relevant SEA parameters. This is why it is strongly recommended to build an experimental SEA parameters database for APM-like structures. Existing hardware, such as the SPACELAB, could be used for such a task.

  3. Acoustical analysis and modeling of reciprocating compressors, noise produced by gas pulsation, using four-pole method. II

    NASA Astrophysics Data System (ADS)

    Herfat, Ali T.; Seel, Robert V.

    2003-04-01

    Presented in Paper II is the noise analysis of reciprocating compressors (such as air conditioning and refrigeration reciprocating compressors) using the four-pole method. The gas pulsation noise inside compressor head cavities, mufflers, and through-valves can be analyzed by applying the FPM. This method formulates the characteristics of acoustic elements by establishing a relationship between their input and output gas pressures and volume flow rates. When the acoustic elements in the system (compressor) are connected at points between them, the FPM allows an easy assembly of element equations to obtain system acoustical model.

  4. Sources of listener disagreement in voice quality assessment.

    PubMed

    Kreiman, J; Gerratt, B R

    2000-10-01

    Traditional interval or ordinal rating scale protocols appear to be poorly suited to measuring vocal quality. To investigate why this might be so, listeners were asked to classify pathological voices as having or not having different voice qualities. It was reasoned that this simple task would allow listeners to focus on the kind of quality a voice had, rather than how much of a quality it possessed, and thus might provide evidence for the validity of traditional vocal qualities. In experiment 1, listeners judged whether natural pathological voice samples were or were not primarily breathy and rough. Listener agreement in both tasks was above chance, but listeners agreed poorly that individual voices belonged in particular perceptual classes. To determine whether these results reflect listeners' difficulty agreeing about single perceptual attributes of complex stimuli, listeners in experiment 2 classified natural pathological voices and synthetic stimuli (varying in f0 only) as low pitched or not low pitched. If disagreements derive from difficulties dividing an auditory continuum consistently, then patterns of agreement should be similar for both kinds of stimuli. In fact, listener agreement was significantly better for the synthetic stimuli than for the natural voices. Difficulty isolating single perceptual dimensions of complex stimuli thus appears to be one reason why traditional unidimensional rating protocols are unsuited to measuring pathologic voice quality. Listeners did agree that a few aphonic voices were breathy, and that a few voices with prominent vocal fry and/or interharmonics were rough. These few cases of agreement may have occurred because the acoustic characteristics of the voices in question corresponded to the limiting case of the quality being judged. Values of f0 that generated listener agreement in experiment 2 were more extreme for natural than for synthetic stimuli, consistent with this interpretation. PMID:11051513

  5. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  6. Coping with hearing voices: an emancipatory approach.

    PubMed

    Romme, M A; Honig, A; Noorthoorn, E O; Escher, A D

    1992-07-01

    A questionnaire comprising 30 open-ended questions was sent to 450 people with chronic hallucinations of hearing voices who had responded to a request on television. Of the 254 replies, 186 could be used for analysis. It was doubtful whether 13 of these respondents were experiencing true hallucinations. Of the remaining 173 subjects, 115 reported an inability to cope with the voices. Ninety-seven respondents were in psychiatric care, and copers were significantly less often in psychiatric care (24%) than non-copers (49%). Four coping strategies were apparent: distraction, ignoring the voices, selective listening to them, and setting limits on their influence. PMID:1638338

  7. Acoustic cardiac signals analysis: a Kalman filter–based approach

    PubMed Central

    Salleh, Sheik Hussain; Hussain, Hadrina Sheik; Swee, Tan Tian; Ting, Chee-Ming; Noor, Alias Mohd; Pipatsart, Surasak; Ali, Jalil; Yupapin, Preecha P

    2012-01-01

    Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss–Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense. PMID:22745550

  8. Vibro-Acoustic Analysis of NASA's Space Shuttle Launch Pad 39A Flame Trench Wall

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.

    2009-01-01

    A vital element to NASA's manned space flight launch operations is the Kennedy Space Center Launch Complex 39's launch pads A and B. Originally designed and constructed In the 1960s for the Saturn V rockets used for the Apollo missions, these pads were modified above grade to support Space Shuttle missions. But below grade, each of the pad's original walls (including a 42 feet deep, 58 feet wide, and 450 feet long tunnel designed to deflect flames and exhaust gases, the flame trench) remained unchanged. On May 31, 2008 during the launch of STS-124, over 3500 of the. 22000 interlocking refractory bricks that lined east wall of the flame trench, protecting the pad structure were liberated from pad 39A. The STS-124 launch anomaly spawned an agency-wide initiative to determine the failure root cause, to assess the impact of debris on vehicle and ground support equipment safety, and to prescribe corrective action. The investigation encompassed radar imaging, infrared video review, debris transport mechanism analysis using computational fluid dynamics, destructive testing, and non-destructive evaluation, including vibroacoustic analysis, in order to validate the corrective action. The primary focus of this paper is on the analytic approach, including static, modal, and vibro-acoustic analysis, required to certify the corrective action, and ensure Integrity and operational reliability for future launches. Due to the absence of instrumentation (including pressure transducers, acoustic pressure sensors, and accelerometers) in the flame trench, defining an accurate acoustic signature of the launch environment during shuttle main engine/solid rocket booster Ignition and vehicle ascent posed a significant challenge. Details of the analysis, including the derivation of launch environments, the finite element approach taken, and analysistest/ launch data correlation are discussed. Data obtained from the recent launch of STS-126 from Pad 39A was instrumental in validating the

  9. The singing voice and country music

    NASA Astrophysics Data System (ADS)

    Leborgne, Wendy D.

    2003-04-01

    Preliminary acoustic measures on the Broadway Belt voice suggest uniqueness in this type of vocal production. This study objectively compared the acoustic production of the Broadway Belt voice in four elite and four average belters. Three casting directors evaluated the vocal quality of 20 musical theater majors proficient in the singing style referred to as belting. Each belter sang two specified vocalizes as well as six short excerpts from the belting repertoire. The raters judged the belters on a set of seven perceptual parameters (loudness, vibrato, ring, timbre, focus, nasality, and registration breaks) and reported an overall score. Initially, Pearson product-moment correlation coefficients were calculated and reported for perceived loudness, vibrato, ring, timbre, focus, and nasality for the elite and average groups. Then, significant acoustic results related to vocal intensity, amplitude and magnitude of vibrato, increased spectral energy in the expected Singer's Formant area, and trends in F1-F2 characteristics were assessed. Overall patterns of these results suggest the elite belters maintained a greater magnitude of vocal vibrato, a brighter vocal quality on some vowels, and different harmonic--formant relationships than average belters. Specific relevant data related to these acoustical events will be the focus of this presentation.

  10. Refined acoustic modeling and analysis of shotgun microphones.

    PubMed

    Bai, Mingsian R; Lo, Yi-Yang

    2013-04-01

    A shotgun microphone is a highly directional pickup device widely used in noisy environments. The key element that leads to its superior directivity is a tube with multiple slot openings along its length. One traditional way to model the directional response of a shotgun is to assume plane waves traveling in the tube as if it is in the free field. However, the frequency response and directivity predicted by this traveling wave model can differ drastically from practical measurements. In this paper, an in-depth electroacoustic analysis was conducted to examine the problem by considering the standing waves inside the tube with an analogous circuit containing phased pressure sources and T-networks of tube segments. A further refinement is to model the housing diffraction effect with the aid of the equivalent source method (ESM). The on-axis frequency response and directivity pattern predicted by the proposed model are in close agreement with the measurements. From the results, a peculiar bifurcation phenomenon of directivity pattern at the Helmholtz frequency was also noted. While the shotgun behaves like an endfire array above the Helmholtz frequency, it becomes a broadside array below the Helmholtz frequency. The standing wave effect can be mitigated by covering the slot openings with mesh screen, which was found to alter the shotgun response to be closer to that of the traveling wave model above a critical frequency predicted by the half-wavelength rule. A mode-switching model was developed to predict the directional responses of mesh-treated shotguns. PMID:23556574

  11. Analysis of a silent voice: a qualitative inquiry of embroidery created by a patient with schizophrenia.

    PubMed

    Blakeman, John R; Samuelson, Sheryl J; McEvoy, Kimberly N

    2013-06-01

    A poster-sized piece of embroidery, completed in the 1960s, hangs in the Glore Psychiatric Museum, a testament to the daily experience of a woman who rarely spoke and was diagnosed with schizophrenia. The embroidery document was analyzed by three researchers who came to agreement on themes via triangulation and constant comparison. The woman's lived experience was considered. The analysis found that although the patient was silent, she was connected in interesting ways to the environment around her. Implications for nursing care include awareness of the importance of milieu to patients, that silence should not be inferred to be detachment, and nurses should continue to develop creative ways to engage patients who may communicate in nontraditional ways. PMID:23586361

  12. Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data

    NASA Technical Reports Server (NTRS)

    Lalime, Aimee L.; Johnson, Marty E.; Rizzi, Stephen A. (Technical Monitor)

    2002-01-01

    Binaural or "virtual acoustic" representation has been proposed as a method of analyzing acoustic and vibroacoustic data. Unfortunately, this binaural representation can require extensive computer power to apply the Head Related Transfer Functions (HRTFs) to a large number of sources, as with a vibrating structure. This work focuses on reducing the number of real-time computations required in this binaural analysis through the use of Singular Value Decomposition (SVD) and Equivalent Source Reduction (ESR). The SVD method reduces the complexity of the HRTF computations by breaking the HRTFs into dominant singular values (and vectors). The ESR method reduces the number of sources to be analyzed in real-time computation by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. It is shown that the effectiveness of the SVD and ESR methods improves as the complexity of the source increases. In addition, preliminary auralization tests have shown that the results from both the SVD and ESR methods are indistinguishable from the results found with the exhaustive method.

  13. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  14. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    PubMed Central

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni; Chiodi, Ilaria; Mondello, Chiara; Osellame, Roberto; Berg-Sørensen, Kirstine; Cristiani, Ilaria; Minzioni, Paolo

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values. PMID:27040456

  15. A perturbative analysis of surface acoustic wave propagation and reflection in interdigital transducers

    NASA Astrophysics Data System (ADS)

    Thoma, Carsten Hilmar

    1997-12-01

    The coupling of stress and strain fields to electric fields present in anisotropic piezoelectric crystals makes them ideal for use as electromechanical transducers in a wide variety of applications. In recent years such crystals have been utilized to produce surface acoustic wave devices for signal processing applications, in which an applied metallic grating both transmits and receives, through the piezoelectric effect, electromechanical surface waves. The design of such interdigital transducers requires an accurate knowledge of wave propagation and reflection. The presence of the metal grating in addition to its ideal transduction function, by means of electrical and mechanical loading, also introduces a velocity shift as well as reflection into substrate surface waves. We seek to obtain a consistent formulation of the wave behavior due to the electrical and mechanical loading of the substrate crystal by the metallic grating. A perturbative solution up to second order in h//lambda is developed, where h is the maximum grating height and λ the acoustic wavelength. For the operating frequencies and physical parameters of modern surface acoustic wave devices such an analysis will provide an adequate description of device behavior in many cases, thereby circumventing the need for more computationally laborious methods. Numerical calculations are presented and compared with available experimental data.

  16. An Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    SciTech Connect

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun; Carlson, Thomas J.

    2012-05-31

    Fishes and other marine mammals suffer a range of potential effects from intense sound sources generated by anthropogenic underwater processes such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording devices (USR) were built to monitor the acoustic sound pressure waves generated by those anthropogenic underwater activities, so the relevant processing software becomes indispensable for analyzing the audio files recorded by these USRs. However, existing software packages did not meet performance and flexibility requirements. In this paper, we provide a detailed description of a new software package, named Aquatic Acoustic Metrics Interface (AAMI), which is a Graphical User Interface (GUI) designed for underwater sound monitoring and analysis. In addition to the general functions, such as loading and editing audio files recorded by USRs, the software can compute a series of acoustic metrics in physical units, monitor the sound's influence on fish hearing according to audiograms from different species of fishes and marine mammals, and batch process the sound files. The detailed applications of the software AAMI will be discussed along with several test case scenarios to illustrate its functionality.

  17. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells.

    PubMed

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni; Chiodi, Ilaria; Mondello, Chiara; Osellame, Roberto; Berg-Sørensen, Kirstine; Cristiani, Ilaria; Minzioni, Paolo

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values. PMID:27040456

  18. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2014-01-01

    In this work, energy analysis of an oscillating isolated spherical bubble in water irradiated by an ultrasonic wave has been theoretically studied for various conditions of acoustic amplitude, ultrasound frequency, static pressure and liquid temperature in order to explain the effects of these key parameters on both sonochemistry and sonoluminescence. The Keller-Miksis equation for the temporal variation of the bubble radius in compressible and viscous medium has been employed as a dynamics model. The numerical calculations showed that the rate of energy accumulation, dE/dt, increased linearly with increasing acoustic amplitude in the range of 1.5-3.0 atm and decreased sharply with increasing frequency in the range 200-1000 kHz. There exists an optimal static pressure at which the power w is highest. This optimum shifts toward a higher value as the acoustic amplitude increases. The energy of the bubble slightly increases with the increase in liquid temperature from 10 to 60 °C. The results of this study should be a helpful means to explain a variety of experimental observations conducted in the field of sonochemistry and sonoluminescence concerning the effects of operational parameters. PMID:23683796

  19. Performance Analysis of Power Saving Class of Type I for Voice Service in Two-Way Communication in IEEE 802.16e

    NASA Astrophysics Data System (ADS)

    Hwang, Eunju; Kim, Kyung Jae; Choi, Bong Dae

    In IEEE 802.16e, power saving is one of the important issues for battery-powered mobile stations (MSs). We present a performance analysis of power saving class (PSC) of type I in IEEE 802.16e standard for voice over Internet protocol (VoIP) service with silence suppression in two-way communication. On-off pattern of a voice user in two-way communication is characterized by the modified Brady model, which includes short silence gaps less than 200ms and talkspurt periods shorter than 15ms, and so differs from the Brady model. Our analysis of PSC I follows the standard-based procedure for the deactivation of the sleep mode, where a uplink packet arrival during a mutual silence period wakes up the MS immediately while a downlink packet arrival waits to be served until the next listening window. We derive the delay distribution of the first downlink packet arriving during a mutual silence period, and find the dropping probability of downlink packets since a voice packet drops if it is not transmitted within maximum delay constraint. In addition, we calculate the average power consumption under the modified Brady model. Analysis and simulation results show that the sleep mode operation for the MS with VoIP service yields 32 ∼ 39% reduction in the power consumption of the MS. Finally we obtain the optimal initial/final-sleep windows that yield the minimum average power consumption while satisfying QoS constraints on the packet dropping probability and the maximum delay.

  20. Aeroacoustic mechanisms of voiced sound production

    NASA Astrophysics Data System (ADS)

    Krane, Michael

    2002-05-01

    The focus of this study is to quantify the order of magnitude of the direct effects of (1) vocal-fold wall motion and (2) glottal flow separation point movement on the production of voiced speech sounds. A solution for the sound-pressure field shows three source mechanisms: (1) a volume source due to unsteady glottal air flow; (2) a quadrupole source representing interaction of the glottal jet with the pharynx walls; and (3) an octupole due to direct sound radiation by the glottal jet itself. A relation is derived expressing glottal volume flow in terms of transglottal pressure difference, vocal-fold wall motion, and separation point motion. Using scaling analysis, the transglottal pressure difference is shown to be the dominant effect on glottal volume flow, while vocal-fold wall motion is shown to have a negligible effect. However, separation point motion is shown to have a measurable effect during the closure phase of the vibration cycle. Using these results, the acoustic effect of separation point motion is shown to be measurable, while the effect of vocal-fold wall vibration is shown to be negligible. Relative contributions of these effects across age, gender, and degree of glottal closure are discussed.

  1. Signals voice biofeedback for speech fluency disorders

    NASA Astrophysics Data System (ADS)

    Martin, Jose Francisco; Fernandez-Ramos, Raquel; Romero-Sanchez, Jorge; Rios, Francisco

    2003-04-01

    The knowledge about mechanisms of voice production as well as the parameters obtaining, allow us to present solutions for coding, transmission and establishment of properties to distinguish between the responsible physiological mechanisms. In this work, we are interested in the evaluation of syllabic Sequences in Continuous Speech. We keep in mind this evaluation is very interesting and useful for Foniatrics and Logopaedia applications focus on the measurement and control of Speech Fluency. Moreover, we are interested in studying and evaluating sequential programming and muscular coordination. In this way, the main objective of our work is focus on the study of production mechanisms, model, evaluation methods and introduction of a reliable algorithm to catalogue and classify the phenomena of rythm and speech fluency. In this paper, we present an algorithm for syllabic analysis based on Short Time Energy concept. Firstly, the algorithm extracts the temporary syllabic intervals of speech and silence, and then compared with normality intervals. Secondly, it proceeds to feedback in real time to the patient luminous and acoustic signals indicating the degree of mismatching with the normality model. This methodology is useful to improve fluency disorder. We present an ASIC microelectronic solution for the syllabic analyser and a portable prototype to be used in a clinic level as much as individualized tool for the patient.

  2. Internal strain analysis of ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Kent, Renee M.

    1993-01-01

    Quantitative studies of material behavior characteristics are essential for predicting the functionality of a material under its operating conditions. A nonintrusive methodology for measuring the in situ strain of small dimeter (to 11 microns) ceramic fibers under uniaxial tensile loading and the local internal strains of ceramics and ceramic composites under flexural loading is introduced. The strain measurements and experimentally observed mechanical behavior are analyzed in terms of the microstructural development and fracture behavior of each test specimen evaluated. Measurement and analysis of Nicalon silicon carbide (SiC) fiber (15 microns diameter) indicate that the mean elastic modulus of the individual fiber is 185.3 GPa. Deviations observed in the experimentally determined elastic modulus values between specimens were attributed to microstructural variations which occur during processing. Corresponding variations in the fracture surface morphology were also observed. The observed local mechanical behavior of a lithium alumino-silicate (LAS) glass ceramic, a LAS/SiC monofilament composite, and a calcium alumino-silicate (CAS)/SiC fully reinforced composite exhibits nonlinearities and apparent hysteresis due to the subcritical mechanical loading. Local hysteresis in the LAS matrices coincided with the occurrence of multiple fracture initiation sites, localized microcracking, and secondary cracking. The observed microcracking phenomenon was attributed to stress relaxation of residual stresses developed during processing, and local interaction of the crack front with the microstructure. The relaxation strain and stress predicted on apparent mechanical hysteresis effects were defined and correlated with the magnitude of the measured fracture stress for each specimen studied. This quantitative correlation indicated a repeatable measure of the stress at which matrix microcracking occurred for stress relief of each material system. Stress relaxation occurred

  3. Internal strain analysis of ceramics using scanning laser acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Kent, Renee M.

    1993-03-01

    Quantitative studies of material behavior characteristics are essential for predicting the functionality of a material under its operating conditions. A nonintrusive methodology for measuring the in situ strain of small dimeter (to 11 microns) ceramic fibers under uniaxial tensile loading and the local internal strains of ceramics and ceramic composites under flexural loading is introduced. The strain measurements and experimentally observed mechanical behavior are analyzed in terms of the microstructural development and fracture behavior of each test specimen evaluated. Measurement and analysis of Nicalon silicon carbide (SiC) fiber (15 microns diameter) indicate that the mean elastic modulus of the individual fiber is 185.3 GPa. Deviations observed in the experimentally determined elastic modulus values between specimens were attributed to microstructural variations which occur during processing. Corresponding variations in the fracture surface morphology were also observed. The observed local mechanical behavior of a lithium alumino-silicate (LAS) glass ceramic, a LAS/SiC monofilament composite, and a calcium alumino-silicate (CAS)/SiC fully reinforced composite exhibits nonlinearities and apparent hysteresis due to the subcritical mechanical loading. Local hysteresis in the LAS matrices coincided with the occurrence of multiple fracture initiation sites, localized microcracking, and secondary cracking. The observed microcracking phenomenon was attributed to stress relaxation of residual stresses developed during processing, and local interaction of the crack front with the microstructure. The relaxation strain and stress predicted on apparent mechanical hysteresis effects were defined and correlated with the magnitude of the measured fracture stress for each specimen studied. This quantitative correlation indicated a repeatable measure of the stress at which matrix microcracking occurred for stress relief of each material system. Stress relaxation occurred

  4. Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array

    NASA Astrophysics Data System (ADS)

    Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu

    2016-04-01

    In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.

  5. Smartphone App for Voice Disorders

    MedlinePlus

    ... this page please turn Javascript on. Feature: Taste, Smell, Hearing, Language, Voice, Balance Smartphone App for Voice ... try on the new ones. Read More "Taste, Smell, Hearing, Language, Voice, Balance" Articles At Last: A ...

  6. Occupational safety and health aspects of voice and speech professions.

    PubMed

    Vilkman, Erkki

    2004-01-01

    A well-functioning voice is an essential tool for one third of the labour force. Vocal demands vary to a great extent between the different voice and speech professions. In professions with heavy vocal loading (e.g. school and kindergarten teachers), occupational voice disorders threatening working ability are common. Vocal loading is a combination of prolonged voice use and additional loading factors (e.g. background noise, acoustics, air quality) affecting the fundamental frequency, type and loudness of phonation or the vibratory characteristics of the vocal folds as well as the external frame of the larynx. The prevention and treatment of occupational voice disorders calls for improved occupational safety and health (OSH) arrangements for voice and speech professionals. On the basis of epidemiological and acoustic-physiological research, the presence of risk to vocal health can be substantiated. From the point of view of the physical load on the vocal apparatus, loading-related physiological changes (adaptation) may play a role in the occupational risk. Environmental factors affect vocal loading changes. In teaching professions, the working environment is shared with children, who benefit from amendments of OSH legislation concerning their teachers. PMID:15258436

  7. Bell clapper impact dynamics and the voicing of a carillon

    NASA Astrophysics Data System (ADS)

    Fletcher, N. H.; McGee, W. T.; Tarnopolsky, A. Z.

    2002-03-01

    The periodic re-voicing of the bell clappers of the Australian National Carillon in Canberra provided an opportunity for the study of the acoustic effects of this operation. After prolonged playing, the impact of the pear-shaped clapper on a bell produces a significant flat area on both the clapper and the inside surface of the bell. This deformation significantly decreases the duration of the impact event and has the effect of increasing the relative amplitude of higher modes in the bell sound, making it ``brighter'' or even ``clangy.'' This effect is studied by comparing the spectral envelope of the sounds of several bells before and after voicing. Theoretical analysis shows that the clapper actually strikes the bell and remains in contact with the bell surface until it is ejected by a displacement pulse that has traveled around the complete circumference of the bell. The contact time, typically about 1 ms, is therefore much longer than the effective impact time, which is only a few tenths of a millisecond. Both the impact time and the contact time are reduced by the presence of a flat on the clapper.

  8. Bell clapper impact dynamics and the voicing of a carillon.

    PubMed

    Fletcher, N H; McGee, W T; Tarnopolsky, A Z

    2002-03-01

    The periodic re-voicing of the bell clappers of the Australian National Carillon in Canberra provided an opportunity for the study of the acoustic effects of this operation. After prolonged playing, the impact of the pear-shaped clapper on a bell produces a significant flat area on both the clapper and the inside surface of the bell. This deformation significantly decreases the duration of the impact event and has the effect of increasing the relative amplitude of higher modes in the bell sound, making it "brighter" or even "clangy." This effect is studied by comparing the spectral envelope of the sounds of several bells before and after voicing. Theoretical analysis shows that the clapper actually strikes the bell and remains in contact with the bell surface until it is ejected by a displacement pulse that has traveled around the complete circumference of the bell. The contact time, typically about 1 ms, is therefore much longer than the effective impact time, which is only a few tenths of a millisecond. Both the impact time and the contact time are reduced by the presence of a flat on the clapper. PMID:11931320

  9. Prospective computer-assisted voice analysis for patients with early stage glottic cancer: A preliminary report of the functional result of laryngeal irradiation

    SciTech Connect

    Harrison, L.B.; Solomon, B.; Miller, S.; Fass, D.E.; Armstrong, J.; Sessions, R.B. )

    1990-07-01

    In January 1987 we began a prospective study aimed at evaluating objective parameters of vocal function for all patients treated with RT for early glottic cancer. All patients underwent vocal analysis using a voice analyzer interfaced with a computer. This allowed for the determination of percent voicing (%V) (normal = presence of phonation = 90-100%V). Other parameters such as breathiness and strain were also measured. Patients were recorded before RT, weekly during RT, and at set intervals after RT. There have been 25 patients studied. Eighteen (18) are evaluable at 9 months after treatment. All patients were male and ranged from 45-84 years old. Fourteen (14) and T1 lesions and received 66 GY/33 fractions to their larynx and 4 had T2 tumors and received 66-70 Gy/33-35 fractions. To date, all patients are locally controlled. Three distinct patterns of %V changes have been encountered. However, all patients demonstrated normal phonation pattern by 3 months after RT, and this is sustained at 9 months follow-up. In addition, 94% of patients have had significant decrease in breathiness after RT, which objectively documents diminished hoarseness. In 83%, breathiness is normal after RT. Most patients have had increased strain after RT, which documents increased vocal cord tension. However, strain remained within normal limits in 89%. Our preliminary analysis suggests that the majority of patients irradiated for early glottic cancer demonstrate a decrease in breathiness and an increase in strain after RT, and enjoy a resultant voice that has normal phonation maintained at 9 months after RT. Our data also demonstrate three distinct phonation patterns. Further follow-up will allow us to determine the prognostic significance, if any, of these patterns, and to continue to follow objective vocal parameters on larger numbers of patient.

  10. Prospective computer-assisted voice analysis for patients with early stage glottic cancer: a preliminary report of the functional result of laryngeal irradiation.

    PubMed

    Harrison, L B; Solomon, B; Miller, S; Fass, D E; Armstrong, J; Sessions, R B

    1990-07-01

    In January 1987 we began a prospective study aimed at evaluating objective parameters of vocal function for all patients treated with RT for early glottic cancer. All patients underwent vocal analysis using a voice analyzer interfaced with a computer. This allowed for the determination of percent voicing (%V) (normal = presence of phonation = 90-100%V). Other parameters such as breathiness (air turbulence or hoarseness) and strain (vocal cord tension) were also measured. Patients were recorded before RT, weekly during RT, and at set intervals after RT. There have been 25 patients studied. Eighteen (18) are evaluable at 9 months after treatment. All patients were male and ranged from 45-84 years old. Fourteen (14) and T1 lesions and received 66 GY/33 fractions to their larynx and 4 had T2 tumors and received 66-70 Gy/33-35 fractions. To date, all patients are locally controlled. Three distinct patterns of %V changes have been encountered. However, all patients demonstrated normal phonation pattern by 3 months after RT, and this is sustained at 9 months follow-up. In addition, 94% of patients have had significant decrease in breathiness after RT, which objectively documents diminished hoarseness. In 83%, breathiness is normal after RT. Most patients have had increased strain after RT, which documents increased vocal cord tension. However, strain remained within normal limits in 89%. Our preliminary analysis suggests that the majority of patients irradiated for early glottic cancer demonstrate a decrease in breathiness and an increase in strain after RT, and enjoy a resultant voice that has normal phonation maintained at 9 months after RT. Our data also demonstrate three distinct phonation patterns. Further follow-up will allow us to determine the prognostic significance, if any, of these patterns, and to continue to follow objective vocal parameters on larger numbers of patient. PMID:2380077

  11. Acoustical analysis of mechanical heart valve sounds for early detection of malfunction.

    PubMed

    Famaey, Nele; Defever, Korijn; Bielen, Paul; Flameng, Willem; Vander Sloten, Jos; Sas, Paul; Meuris, Bart

    2010-10-01

    Mechanical heart valves carry the disadvantage of lifelong antithrombotic therapy, due to the high risk of thrombus formation on the valve surface. Current diagnostic methods are incapable of detecting thrombus formation in an early stage. This article investigates a new diagnostic method, based on the analysis of the acoustic signal produced by the valve. This method should be capable of early detection of malfunction, thus permitting targeted medication and reducing valve-related complications and mortality. A measurement setup assuring optimal signal quality was developed, and a signal analysis program was implemented and validated on an in vitro mock circulatory loop. Next, four sheep were implanted with a bileaflet mechanical valve. The signals of their valves developing thrombosis were assessed on a weekly basis before explantation. Three sheep were sacrificed shortly after detection of malfunction according to the newly developed method. In each case, thrombus or membrane formation was detected on the leaflets upon explantation. In one sheep, no malfunction was found in the analysis, which was also confirmed by the condition of the valve upon explantation. These preliminary results indicate that acoustical analysis of mechanical heart valves permits early detection of valvular malfunction. Further research with more in vitro and animal testing is required to statistically validate these findings. PMID:20573536

  12. An Acoustical and Physiological Investigation of the Arabic /E/.

    ERIC Educational Resources Information Center

    Al-Ani, Salman H.

    Using acoustical evidence from spectrograms and physiological evidence from X-ray sound films, it appears that the most common allophone for the Arabic voiced pharyngeal fricative, at least in Iraqi, is a voiceless stop, and not a voiced fricative, as many believe. The author considers the phoneme in different environments and describes its…

  13. Speakers' comfort and voice level variation in classrooms: laboratory research.

    PubMed

    Pelegrín-García, David; Brunskog, Jonas

    2012-07-01

    Teachers adjust their voice levels under different classroom acoustics conditions, even in the absence of background noise. Laboratory experiments have been conducted in order to understand further this relationship and to determine optimum room acoustic conditions for speaking. Under simulated acoustic environments, talkers do modify their voice levels linearly with the measure voice support, and the slope of this relationship is referred to as room effect. The magnitude of the room effect depends highly on the instruction used and on the individuals. Group-wise, the average room effect ranges from -0.93 dB/dB, with free speech, to -0.1 dB/dB with other less demanding communication tasks as reading and talking at short distances. The room effect for some individuals can be as strong as -1.7 dB/dB. A questionnaire investigation showed that the acoustic comfort for talking in classrooms, in the absence of background noise, is correlated to the decay times derived from an impulse response measured from the mouth to the ears of a talker, and that there is a maximum of preference for decay times between 0.4 and 0.5 s. Teachers with self-reported voice problems prefer higher decay times to speak in than their healthy colleagues. PMID:22779474

  14. Voicing and Devoicing Assimilation of French /s/ and /z/

    ERIC Educational Resources Information Center

    Abdelli-Beruh, Nassima B.

    2012-01-01

    The present acoustic-phonetic study explores whether voicing and devoicing assimilations of French fricatives are equivalent in magnitude and whether they operate similarly (i.e., complete vs. gradient, obligatory vs. optional, regressive vs. progressive). It concurrently assesses the contribution of speakers' articulation rate to the proportion…

  15. Detection of Voice Pathology using Fractal Dimension in a Multiresolution Analysis of Normal and Disordered Speech Signals.

    PubMed

    Ali, Zulfiqar; Elamvazuthi, Irraivan; Alsulaiman, Mansour; Muhammad, Ghulam

    2016-01-01

    Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1-1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed. PMID:26531753

  16. Two-fluid Analysis of the Geodesic Acoustic Mode in Tokamaks

    SciTech Connect

    Hirose, Akira; Weiland, Jan

    2011-10-03

    In most analysis reported so far on the geodesic acoustic mode (GAM) in tokamaks, the current along the magnetic field has been assumed to vanish, J{sub ||} = 0. The parallel electron current associated with low frequency modes in tokamaks is large even in electrostatic limit and tends to short-circuit the cross-field electric field. The collisionless electrostatic GAM as predicted in the original work (Winsor, et al.) does not exist. The GAM only modifies the Alfven frequency. The finding in this study suggests that electrostatic GAM should be confined at the edge where the electron collision frequency is high.

  17. Information passage from acoustic impedance to seismogram: Perspectives from wavelet-based multiscale analysis

    NASA Astrophysics Data System (ADS)

    Li, Chun-Feng

    2004-07-01

    Traditional seismic interpretation of surface seismic data is focused primarily on seismic oscillation. Rich singularity information carried by, but deeply buried in, seismic data is often ignored. We show that wavelet-based singularity analysis reveals generic singularity information conducted from acoustic impedance to seismogram. The singularity exponents (known as Hölder exponent α) calculated from seismic data are independent of amplitude and robust to phase changes and noises. These unique properties of α offer potentially important application in many fields, especially in studying seismic data interpretation, processing, inversion, and wave attenuation.

  18. Seismo-acoustic analysis for series of ammunition demolition explosions at Sayarim, Israel

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Gitterman, Y.; Ben-Horin, Y.; Arrowsmith, S.

    2012-04-01

    We analyzed detection and location capabilities of a seismo-acoustic network using records of explosion series conducted recently at Sayarim Military Range (SMR), Israel, for demolition of outdated ammunitions. The signals from the explosions have been recorded at local distances by the Israel Seismic Network (ISN), two single infrasound sensors co-located with ISN seismic stations and two infrasound arrays deployed by Israel NDC: 5-element IMA (at Mt. Meron), co-located with IMS seismic array MMAI, and 4-element test temporary array in Northern Negev. All shots (each one with nominal explosives weight ~10-15 tons, detonated simultaneously) were located at the same small area ~0.5x0.5 km, in some cases placed in several grooves, separated by 0.3-0.5 km. Some shots were divided in time by only 20-40 sec, facilitating analysis of the source variability under about constant atmospheric conditions. The following preliminary results have been obtained: 1) the accuracy of seismo-acoustic source location, provided by 5 seismic stations and 2 acoustic receivers using celerity model and wind profile for the day, was within ±1 km of the SMR explosion site; 2) the analysis of acoustic phases recorded at ISN seismic stations at different azimuths showed a clear correlation of the phase peak amplitude with the wind direction; 3) infrasound signals from the explosions were clearly detected at IMA array at 340 km, whereas seismic signals were attenuated below the background noise after 100-150 km; 4) the frequency band occupied by the signal is estimated within 0.2-5 Hz, and the f-k analysis, applied to the infrasound array recordings, provided azimuth of 184° and apparent velocity of 344 m/s, compared to the true azimuth 190° and celerity 277 m/s (the azimuth bias could be explained by the prevailing strong south-western winds ~80 knots observed at a time of the explosion at assumed propagation heights); 5) spectral analysis of infrasound signals provided determination of the

  19. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  20. Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure

    NASA Technical Reports Server (NTRS)

    Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.

    2010-01-01

    A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.

  1. Improving Speaker Recognition by Biometric Voice Deconstruction

    PubMed Central

    Mazaira-Fernandez, Luis Miguel; Álvarez-Marquina, Agustín; Gómez-Vilda, Pedro

    2015-01-01

    Person identification, especially in critical environments, has always been a subject of great interest. However, it has gained a new dimension in a world threatened by a new kind of terrorism that uses social networks (e.g., YouTube) to broadcast its message. In this new scenario, classical identification methods (such as fingerprints or face recognition) have been forcedly replaced by alternative biometric characteristics such as voice, as sometimes this is the only feature available. The present study benefits from the advances achieved during last years in understanding and modeling voice production. The paper hypothesizes that a gender-dependent characterization of speakers combined with the use of a set of features derived from the components, resulting from the deconstruction of the voice into its glottal source and vocal tract estimates, will enhance recognition rates when compared to classical approaches. A general description about the main hypothesis and the methodology followed to extract the gender-dependent extended biometric parameters is given. Experimental validation is carried out both on a highly controlled acoustic condition database, and on a mobile phone network recorded under non-controlled acoustic conditions. PMID:26442245

  2. Bioengineered vocal fold mucosa for voice restoration.

    PubMed

    Ling, Changying; Li, Qiyao; Brown, Matthew E; Kishimoto, Yo; Toya, Yutaka; Devine, Erin E; Choi, Kyeong-Ok; Nishimoto, Kohei; Norman, Ian G; Tsegyal, Tenzin; Jiang, Jack J; Burlingham, William J; Gunasekaran, Sundaram; Smith, Lloyd M; Frey, Brian L; Welham, Nathan V

    2015-11-18

    Patients with voice impairment caused by advanced vocal fold (VF) fibrosis or tissue loss have few treatment options. A transplantable, bioengineered VF mucosa would address the individual and societal costs of voice-related communication loss. Such a tissue must be biomechanically capable of aerodynamic-to-acoustic energy transfer and high-frequency vibration and physiologically capable of maintaining a barrier against the airway lumen. We isolated primary human VF fibroblasts and epithelial cells and cocultured them under organotypic conditions. The resulting engineered mucosae showed morphologic features of native tissue, proteome-level evidence of mucosal morphogenesis and emerging extracellular matrix complexity, and rudimentary barrier function in vitro. When grafted into canine larynges ex vivo, the mucosae generated vibratory behavior and acoustic output that were indistinguishable from those of native VF tissue. When grafted into humanized mice in vivo, the mucosae survived and were well tolerated by the human adaptive immune system. This tissue engineering approach has the potential to restore voice function in patients with otherwise untreatable VF mucosal disease. PMID:26582902

  3. Improving Speaker Recognition by Biometric Voice Deconstruction.

    PubMed

    Mazaira-Fernandez, Luis Miguel; Álvarez-Marquina, Agustín; Gómez-Vilda, Pedro

    2015-01-01

    Person identification, especially in critical environments, has always been a subject of great interest. However, it has gained a new dimension in a world threatened by a new kind of terrorism that uses social networks (e.g., YouTube) to broadcast its message. In this new scenario, classical identification methods (such as fingerprints or face recognition) have been forcedly replaced by alternative biometric characteristics such as voice, as sometimes this is the only feature available. The present study benefits from the advances achieved during last years in understanding and modeling voice production. The paper hypothesizes that a gender-dependent characterization of speakers combined with the use of a set of features derived from the components, resulting from the deconstruction of the voice into its glottal source and vocal tract estimates, will enhance recognition rates when compared to classical approaches. A general description about the main hypothesis and the methodology followed to extract the gender-dependent extended biometric parameters is given. Experimental validation is carried out both on a highly controlled acoustic condition database, and on a mobile phone network recorded under non-controlled acoustic conditions. PMID:26442245

  4. Start/End Delays of Voiced and Unvoiced Speech Signals

    SciTech Connect

    Herrnstein, A

    1999-09-24

    Recent experiments using low power EM-radar like sensors (e.g, GEMs) have demonstrated a new method for measuring vocal fold activity and the onset times of voiced speech, as vocal fold contact begins to take place. Similarly the end time of a voiced speech segment can be measured. Secondly it appears that in most normal uses of American English speech, unvoiced-speech segments directly precede or directly follow voiced-speech segments. For many applications, it is useful to know typical duration times of these unvoiced speech segments. A corpus, assembled earlier of spoken ''Timit'' words, phrases, and sentences and recorded using simultaneously measured acoustic and EM-sensor glottal signals, from 16 male speakers, was used for this study. By inspecting the onset (or end) of unvoiced speech, using the acoustic signal, and the onset (or end) of voiced speech using the EM sensor signal, the average duration times for unvoiced segments preceding onset of vocalization were found to be 300ms, and for following segments, 500ms. An unvoiced speech period is then defined in time, first by using the onset of the EM-sensed glottal signal, as the onset-time marker for the voiced speech segment and end marker for the unvoiced segment. Then, by subtracting 300ms from the onset time mark of voicing, the unvoiced speech segment start time is found. Similarly, the times for a following unvoiced speech segment can be found. While data of this nature have proven to be useful for work in our laboratory, a great deal of additional work remains to validate such data for use with general populations of users. These procedures have been useful for applying optimal processing algorithms over time segments of unvoiced, voiced, and non-speech acoustic signals. For example, these data appear to be of use in speaker validation, in vocoding, and in denoising algorithms.

  5. Changing Voices, Changing Times.

    ERIC Educational Resources Information Center

    Friar, Kendra Kay

    1999-01-01

    Addresses the 1500-year-old belief that adolescents should not sing once their voice changes. Reviews the advances in changing-voice theory by Duncan McKenzie, Irwin Cooper, John Cooksey, Anthony Barresi, Lynn Gackle, and Ken Phillips that question this traditional belief in choral education and help adolescent boys and girls sing "through the…

  6. Voice integrated systems

    NASA Technical Reports Server (NTRS)

    Curran, P. Mike

    1977-01-01

    The program at Naval Air Development Center was initiated to determine the desirability of interactive voice systems for use in airborne weapon systems crew stations. A voice recognition and synthesis system (VRAS) was developed and incorporated into a human centrifuge. The speech recognition aspect of VRAS was developed using a voice command system (VCS) developed by Scope Electronics. The speech synthesis capability was supplied by a Votrax, VS-5, speech synthesis unit built by Vocal Interface. The effects of simulated flight on automatic speech recognition were determined by repeated trials in the VRAS-equipped centrifuge. The relationship of vibration, G, O2 mask, mission duration, and cockpit temperature and voice quality was determined. The results showed that: (1) voice quality degrades after 0.5 hours with an O2 mask; (2) voice quality degrades under high vibration; and (3) voice quality degrades under high levels of G. The voice quality studies are summarized. These results were obtained with a baseline of 80 percent recognition accuracy with VCS.

  7. Borderline Space for Voice

    ERIC Educational Resources Information Center

    Batchelor, Denise

    2012-01-01

    Being on the borderline as a student in higher education is not always negative, to do with marginalisation, exclusion and having a voice that is vulnerable. Paradoxically, being on the edge also has positive connections with integration, inclusion and having a voice that is strong. Alternative understandings of the concept of borderline space can…

  8. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.

    PubMed

    Mainka, Alexander; Poznyakovskiy, Anton; Platzek, Ivan; Fleischer, Mario; Sundberg, Johan; Mürbe, Dirk

    2015-01-01

    The vocal tract shape is crucial to voice production. Its lower part seems particularly relevant for voice timbre. This study analyzes the detailed morphology of parts of the epilaryngeal tube and the hypopharynx for the sustained German vowels /a/, /e/, /i/, /o/, and /u/ by thirteen male singer subjects who were at the beginning of their academic singing studies. Analysis was based on two different phonatory conditions: a natural, speech-like phonation and a singing phonation, like in classical singing. 3D models of the vocal tract were derived from magnetic resonance imaging and compared with long-term average spectrum analysis of audio recordings from the same subjects. Comparison of singing to the speech-like phonation, which served as reference, showed significant adjustments of the lower vocal tract: an average lowering of the larynx by 8 mm and an increase of the hypopharyngeal cross-sectional area (+ 21:9%) and volume (+ 16:8%). Changes in the analyzed epilaryngeal portion of the vocal tract were not significant. Consequently, lower larynx-to-hypopharynx area and volume ratios were found in singing compared to the speech-like phonation. All evaluated measures of the lower vocal tract varied significantly with vowel quality. Acoustically, an increase of high frequency energy in singing correlated with a wider hypopharyngeal area. The findings offer an explanation how classical male singers might succeed in producing a voice timbre with increased high frequency energy, creating a singer`s formant cluster. PMID:26186691

  9. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing

    PubMed Central

    Mainka, Alexander; Poznyakovskiy, Anton; Platzek, Ivan; Fleischer, Mario; Sundberg, Johan; Mürbe, Dirk

    2015-01-01

    The vocal tract shape is crucial to voice production. Its lower part seems particularly relevant for voice timbre. This study analyzes the detailed morphology of parts of the epilaryngeal tube and the hypopharynx for the sustained German vowels /a/, /e/, /i/, /o/, and /u/ by thirteen male singer subjects who were at the beginning of their academic singing studies. Analysis was based on two different phonatory conditions: a natural, speech-like phonation and a singing phonation, like in classical singing. 3D models of the vocal tract were derived from magnetic resonance imaging and compared with long-term average spectrum analysis of audio recordings from the same subjects. Comparison of singing to the speech-like phonation, which served as reference, showed significant adjustments of the lower vocal tract: an average lowering of the larynx by 8 mm and an increase of the hypopharyngeal cross-sectional area (+ 21.9%) and volume (+ 16.8%). Changes in the analyzed epilaryngeal portion of the vocal tract were not significant. Consequently, lower larynx-to-hypopharynx area and volume ratios were found in singing compared to the speech-like phonation. All evaluated measures of the lower vocal tract varied significantly with vowel quality. Acoustically, an increase of high frequency energy in singing correlated with a wider hypopharyngeal area. The findings offer an explanation how classical male singers might succeed in producing a voice timbre with increased high frequency energy, creating a singer‘s formant cluster. PMID:26186691

  10. Tracking Voice Change after Thyroidectomy: Application of Spectral/Cepstral Analyses

    ERIC Educational Resources Information Center

    Awan, Shaheen N.; Helou, Leah B.; Stojadinovic, Alexander; Solomon, Nancy Pearl

    2011-01-01

    This study evaluates the utility of perioperative spectral and cepstral acoustic analyses to monitor voice change after thyroidectomy. Perceptual and acoustic analyses were conducted on speech samples (sustained vowel /[alpha]/ and CAPE-V sentences) provided by 70 participants (36 women and 34 men) at four study time points: prior to thyroid…

  11. Thin plate model for transverse mode analysis of surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Chen, Jing; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2016-07-01

    In this paper, we propose a physical model for the analysis of transverse modes in surface acoustic wave (SAW) devices. It is mostly equivalent to the scalar potential (SP) theory, but sufficiently flexible to include various effects such as anisotropy, coupling between multiple modes, etc. First, fundamentals of the proposed model are established and procedures for determining the model parameters are given in detailed. Then the model is implemented in the partial differential equation mode of the commercial finite element analysis software COMSOL. The analysis is carried out for an infinitely long interdigital transducer on the 128°YX-LiNbO3 substrate. As a demonstration, it is shown how the energy leakage changes with the frequency and the device design.

  12. The effect of recording and analysis bandwidth on acoustic identification of delphinid species.

    PubMed

    Oswald, Julie N; Rankin, Shannon; Barlow, Jay

    2004-11-01

    Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n = 484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours. PMID:15603163

  13. The effect of recording and analysis bandwidth on acoustic identification of delphinid species

    NASA Astrophysics Data System (ADS)

    Oswald, Julie N.; Rankin, Shannon; Barlow, Jay

    2004-11-01

    Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n=484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours..

  14. Site effect determination using seismic noise from Tungurahua volcano (Ecuador): implications for seismo-acoustic analysis

    NASA Astrophysics Data System (ADS)

    Palacios, Pablo; Kendall, J.-Michael; Mader, Heidy

    2015-05-01

    Scattering and refractions that occur in the heterogenous near-surface beneath seismic stations can strongly affect the relative amplitudes recorded by three-component seismometers. Using data from Tungurahua volcano we have developed a procedure to correct these `site effects'. We show that seismic noise signals store site information, and then use their normalized spectral amplitudes as site frequency response functions. The process does not require a reference station (as per the S-wave and coda methods) or assume that the vertical amplitude is constant (the H/V component ratio method). Correcting the site effects has three consequences on data analysis: (1) improvement of the seismic source location and its energy estimation; (2) identification of a strong influence on the volcanic acoustic seismic ratio (VASR) and (3) decoupling the air wave impact on the ground caused by explosions or eruption jets. We show how site effect corrections improve the analysis of an eruption jet on 2006 July 14-15, appearing two periods of strong acoustic energy release and a progressive increase of the seismic energy, reaching the maximum before finishing the eruption.

  15. a Psycholinguistic Model for Simultaneous Translation, and Proficiency Assessment by Automated Acoustic Analysis of Discourse.

    NASA Astrophysics Data System (ADS)

    Yaghi, Hussein M.

    Two separate but related issues are addressed: how simultaneous translation (ST) works on a cognitive level and how such translation can be objectively assessed. Both of these issues are discussed in the light of qualitative and quantitative analyses of a large corpus of recordings of ST and shadowing. The proposed ST model utilises knowledge derived from a discourse analysis of the data, many accepted facts in the psychology tradition, and evidence from controlled experiments that are carried out here. This model has three advantages: (i) it is based on analyses of extended spontaneous speech rather than word-, syllable-, or clause -bound stimuli; (ii) it draws equally on linguistic and psychological knowledge; and (iii) it adopts a non-traditional view of language called 'the linguistic construction of reality'. The discourse-based knowledge is also used to develop three computerised systems for the assessment of simultaneous translation: one is a semi-automated system that treats the content of the translation; and two are fully automated, one of which is based on the time structure of the acoustic signals whilst the other is based on their cross-correlation. For each system, several parameters of performance are identified, and they are correlated with assessments rendered by the traditional, subjective, qualitative method. Using signal processing techniques, the acoustic analysis of discourse leads to the conclusion that quality in simultaneous translation can be assessed quantitatively with varying degrees of automation. It identifies as measures of performance (i) three content-based standards; (ii) four time management parameters that reflect the influence of the source on the target language time structure; and (iii) two types of acoustical signal coherence. Proficiency in ST is shown to be directly related to coherence and speech rate but inversely related to omission and delay. High proficiency is associated with a high degree of simultaneity and

  16. Analysis of the 3D acoustic cloaking problems using optimization method

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Spivak, Yu E.

    2016-06-01

    Control problems for the 3D model of acoustic scattering which describes scattering acoustic waves by a permeable obstacle with the form of a spherical layer are considered. These problems arise while developing the design technologies of acoustic cloaking devices using the wave flow method. The solvability of direct and control problems for the acoustic scattering model under study is proved. The sufficient conditions which provide local uniqueness and stability of optimal solutions are established.

  17. Acoustic Analysis of Inhaler Sounds From Community-Dwelling Asthmatic Patients for Automatic Assessment of Adherence

    PubMed Central

    D'arcy, Shona; Costello, Richard W.

    2014-01-01

    Inhalers are devices which deliver medication to the airways in the treatment of chronic respiratory diseases. When used correctly inhalers relieve and improve patients' symptoms. However, adherence to inhaler medication has been demonstrated to be poor, leading to reduced clinical outcomes, wasted medication, and higher healthcare costs. There is a clinical need for a system that can accurately monitor inhaler adherence as currently no method exists to evaluate how patients use their inhalers between clinic visits. This paper presents a method of automatically evaluating inhaler adherence through acoustic analysis of inhaler sounds. An acoustic monitoring device was employed to record the sounds patients produce while using a Diskus dry powder inhaler, in addition to the time and date patients use the inhaler. An algorithm was designed and developed to automatically detect inhaler events from the audio signals and provide feedback regarding patient adherence. The algorithm was evaluated on 407 audio files obtained from 12 community dwelling asthmatic patients. Results of the automatic classification were compared against two expert human raters. For patient data for whom the human raters Cohen's kappa agreement score was \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${>}{0.81}$\\end{document}, results indicated that the algorithm's accuracy was 83% in determining the correct inhaler technique score compared with the raters. This paper has several clinical implications as it demonstrates the feasibility of using acoustics to objectively monitor patient inhaler adherence and provide real-time personalized medical care for a chronic respiratory illness. PMID:27170883

  18. In vitro experimental investigation of voice production

    PubMed Central

    Horáčcek, Jaromír; Brücker, Christoph; Becker, Stefan

    2012-01-01

    The process of human phonation involves a complex interaction between the physical domains of structural dynamics, fluid flow, and acoustic sound production and radiation. Given the high degree of nonlinearity of these processes, even small anatomical or physiological disturbances can significantly affect the voice signal. In the worst cases, patients can lose their voice and hence the normal mode of speech communication. To improve medical therapies and surgical techniques it is very important to understand better the physics of the human phonation process. Due to the limited experimental access to the human larynx, alternative strategies, including artificial vocal folds, have been developed. The following review gives an overview of experimental investigations of artificial vocal folds within the last 30 years. The models are sorted into three groups: static models, externally driven models, and self-oscillating models. The focus is on the different models of the human vocal folds and on the ways in which they have been applied. PMID:23181007

  19. Voice Savers for Music Teachers

    ERIC Educational Resources Information Center

    Cookman, Starr

    2012-01-01

    Music teachers are in a class all their own when it comes to voice use. These elite vocal athletes require stamina, strength, and flexibility from their voices day in, day out for hours at a time. Voice rehabilitation clinics and research show that music education ranks high among the professionals most commonly affected by voice problems.…

  20. A "voice inversion effect?".

    PubMed

    Bédard, Catherine; Belin, Pascal

    2004-07-01

    Voice is the carrier of speech but is also an "auditory face" rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a "voice inversion effect," by analogy to the classical "face inversion effect," which could support the hypothesis of a voice-specific module. Experiment 1 consisted of a gender identification task on two syllables pronounced by 90 speakers (boys, girls, men, and women). Experiment 2 consisted of a speaker discrimination task on pairs of syllables (8 men and 8 women). Experiment 3 consisted of an instrument discrimination task on pairs of melodies (8 string and 8 wind instruments). In all three experiments, stimuli were presented in 4 conditions: (1) no inversion; (2) temporal inversion (e.g., backwards speech); (3) frequency inversion centered around 4000 Hz; and (4) around 2500 Hz. Results indicated a significant decrease in performance caused by sound inversion, with a much stronger effect for frequency than for temporal inversion. Interestingly, although frequency inversion markedly affected timbre for both voices and instruments, subjects' performance was still above chance. However, performance at instrument discrimination was much higher than for voices, preventing comparison of inversion effects for voices vs. non-vocal stimuli. Additional experiments will be necessary to conclude on the existence of a possible "voice inversion effect." PMID:15177788

  1. The discrimination of man-made explosions from earthquakes using seismo-acoustic analysis in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Jeon, Jeong-Soo

    2010-05-01

    Korea Institute of Geoscience and Mineral Resources (KIGAM) operates an infrasound network consisting of seven seismo-acoustic arrays in South Korea. Development of the arrays began in 1999, partially in collaboration with Southern Methodist University, with the goal of detecting distant infrasound signals from natural and anthropogenic phenomena in and around the Korean Peninsula. The main operational purpose of this network is to discriminate man-made seismic events from seismicity including thousands of seismic events per year in the region. The man-made seismic events are major cause of error in estimating the natural seismicity, especially where the seismic activity is weak or moderate such as in the Korean Peninsula. In order to discriminate the man-made explosions from earthquakes, we have applied the seismo-acoustic analysis associating seismic and infrasonic signals generated from surface explosion. The observations of infrasound at multiple arrays made it possible to discriminate surface explosion, because small or moderate size earthquake is not sufficient to generate infrasound. Till now we have annually discriminated hundreds of seismic events in seismological catalog as surface explosions by the seismo-acoustic analysis. Besides of the surface explosions, the network also detected infrasound signals from other sources, such as bolide, typhoons, rocket launches, and underground nuclear test occurred in and around the Korean Peninsula. In this study, ten years of seismo-acoustic data are reviewed with recent infrasonic detection algorithm and association method that finally linked to the seismic monitoring system of the KIGAM to increase the detection rate of surface explosions. We present the long-term results of seismo-acoustic analysis, the detection capability of the multiple arrays, and implications for seismic source location. Since the seismo-acoustic analysis is proved as a definite method to discriminate surface explosion, the analysis will be

  2. Comparison of Modal Analysis Methods Applied to a Vibro-Acoustic Test Article

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn; Pappa, Richard; Buehrle, Ralph; Grosveld, Ferdinand

    2001-01-01

    Modal testing of a vibro-acoustic test article referred to as the Aluminum Testbed Cylinder (ATC) has provided frequency response data for the development of validated numerical models of complex structures for interior noise prediction and control. The ATC is an all aluminum, ring and stringer stiffened cylinder, 12 feet in length and 4 feet in diameter. The cylinder was designed to represent typical aircraft construction. Modal tests were conducted for several different configurations of the cylinder assembly under ambient and pressurized conditions. The purpose of this paper is to present results from dynamic testing of different ATC configurations using two modal analysis software methods: Eigensystem Realization Algorithm (ERA) and MTS IDEAS Polyreference method. The paper compares results from the two analysis methods as well as the results from various test configurations. The effects of pressurization on the modal characteristics are discussed.

  3. Biphonation in voice signals

    SciTech Connect

    Herzel, H.; Reuter, R.

    1996-06-01

    Irregularities in voiced speech are often observed as a consequence of vocal fold lesions, paralyses, and other pathological conditions. Many of these instabilities are related to the intrinsic nonlinearities in the vibrations of the vocal folds. In this paper, a specific nonlinear phenomenon is discussed: The appearance of two independent fundamental frequencies termed biphonation. Several narrow-band spectrograms are presented showing biphonation in signals from voice patients, a newborn cry, a singer, and excised larynx experiments. Finally, possible physiological mechanisms of instabilities of the voice source are discussed. {copyright} {ital 1996 American Institute of Physics.}

  4. Mismatch Negativity to Threatening Voices Associated with Positive Symptoms in Schizophrenia.

    PubMed

    Chen, Chenyi; Liu, Chia-Chien; Weng, Pei-Yuan; Cheng, Yawei

    2016-01-01

    Although the general consensus holds that emotional perception is impaired in patients with schizophrenia, the extent to which neural processing of emotional voices is altered in schizophrenia remains to be determined. This study enrolled 30 patients with chronic schizophrenia and 30 controls and measured their mismatch negativity (MMN), a component of auditory event-related potentials (ERP). In a passive oddball paradigm, happily or angrily spoken deviant syllables dada were randomly presented within a train of emotionally neutral standard syllables. Results showed that MMN in response to angry syllables and angry-derived non-vocal sounds was significantly decreased in individuals with schizophrenia. P3a to angry syllables showed stronger amplitudes but longer latencies. Weaker MMN amplitudes were associated with more positive symptoms of schizophrenia. Receiver operator characteristic analysis revealed that angry MMN, angry-derived MMN, and angry P3a could help predict whether someone had received a clinical diagnosis of schizophrenia. The findings suggested general impairments of voice perception and acoustic discrimination in patients with chronic schizophrenia. The emotional salience processing of voices showed an atypical fashion at the preattentive level, being associated with positive symptoms in schizophrenia. PMID:27471459

  5. Mismatch Negativity to Threatening Voices Associated with Positive Symptoms in Schizophrenia

    PubMed Central

    Chen, Chenyi; Liu, Chia-Chien; Weng, Pei-Yuan; Cheng, Yawei

    2016-01-01

    Although the general consensus holds that emotional perception is impaired in patients with schizophrenia, the extent to which neural processing of emotional voices is altered in schizophrenia remains to be determined. This study enrolled 30 patients with chronic schizophrenia and 30 controls and measured their mismatch negativity (MMN), a component of auditory event-related potentials (ERP). In a passive oddball paradigm, happily or angrily spoken deviant syllables dada were randomly presented within a train of emotionally neutral standard syllables. Results showed that MMN in response to angry syllables and angry-derived non-vocal sounds was significantly decreased in individuals with schizophrenia. P3a to angry syllables showed stronger amplitudes but longer latencies. Weaker MMN amplitudes were associated with more positive symptoms of schizophrenia. Receiver operator characteristic analysis revealed that angry MMN, angry-derived MMN, and angry P3a could help predict whether someone had received a clinical diagnosis of schizophrenia. The findings suggested general impairments of voice perception and acoustic discrimination in patients with chronic schizophrenia. The emotional salience processing of voices showed an atypical fashion at the preattentive level, being associated with positive symptoms in schizophrenia. PMID:27471459

  6. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  7. Quantitative analysis of the acoustic repertoire of southern right whales in New Zealand.

    PubMed

    Webster, Trudi A; Dawson, Stephen M; Rayment, William J; Parks, Susan E; Van Parijs, Sofie M

    2016-07-01

    Quantitatively describing the acoustic repertoire of a species is important for establishing effective passive acoustic monitoring programs and developing automated call detectors. This process is particularly important when the study site is remote and visual surveys are not cost effective. Little is known about the vocal behavior of southern right whales (Eubalaena australis) in New Zealand. The aim of this study was to describe and quantify their entire vocal repertoire on calving grounds in the sub-Antarctic Auckland Islands. Over three austral winters (2010-2012), 4349 calls were recorded, measured, and classified into 10 call types. The most frequently observed types were pulsive, upcall, and tonal low vocalizations. A long tonal low call (≤15.5 s duration) and a very high call (peak frequency ∼750 Hz) were described for the first time. Random Forest multivariate analysis of 28 measured variables was used to classify calls with a high degree of accuracy (82%). The most important variables for classification were maximum ceiling frequency, number of inflection points, duration, and the difference between the start and end frequency. This classification system proved to be a repeatable, fast, and objective method for categorising right whale calls and shows promise for other vocal taxa. PMID:27475156

  8. Image formation and system analysis of a scanning tomographic acoustic microscope

    NASA Astrophysics Data System (ADS)

    Kent, Samuel Davis, III

    This dissertation focuses on research that has been conducted to implement an automated Scanning Tomographic Acoustic Microscope (STAM), and research that has been performed to increase the understanding of the performance characteristics of the STAM. STAM technology permits high resolution microscopy which yields important information on the internal structure and acoustic properties of thick specimens, provided that technology is utilized in a cohesive manner. Prior to the research conducted for this dissertation, only a proof-of-concept STAM had been developed; actual STAM imaging was difficult and impractical. This dissertation describes the hardware and software development that has led to the first automated STAM. It focuses on significant problems that were encountered and their solutions. Specifically, accurate data acquisition necessitated the development of special-purpose data acquisition hardware, rotational controls, frequency controls, and automation controls. Inaccuracies in the laser scanning hardware were identified as a significant source of reconstruction error. This error was removed by estimation and correction algorithms. Rotation of the specimen for multiple-angle tomography required the development of a noise-tolerant projection-pose estimation algorithm. An iterative technique for image enhancement is also presented. The resulting STAM system is evaluated to determine its performance characteristics. A component-wise resolution analysis is presented that specifies the resolution-limit in both range and cross-range. The dependency of reconstruction quality on accurate representation of the magnitude and phase of the detected wave fields is also provided.

  9. An Application of the Acoustic Similarity Law to the Numerical Analysis of Centrifugal Fan Noise

    NASA Astrophysics Data System (ADS)

    Jeon, Wan-Ho; Lee, Duck-Joo; Rhee, Huinam

    Centrifugal fans, which are frequently used in our daily lives and various industries, usually make severe noise problems. Generally, the centrifugal fan noise consists of tones at the blade passing frequency and its higher harmonics. These tonal sounds come from the interaction between the flow discharged from the impeller and the cutoff in the casing. Prediction of the noise from a centrifugal fan becomes more necessary to optimize the design to meet both the performance and noise criteria. However, only some limited studies on noise prediction method exist because there are difficulties in obtaining detailed information about the flow field and casing effect on noise radiation. This paper aims to investigate the noise generation mechanism of a centrifugal fan and to develop a prediction method for the unsteady flow and acoustic pressure fields. In order to do this, a numerical analysis method using acoustic similarity law is proposed, and it is verified that the method can predict the noise generation mechanism very well by comparing the predicted results with available experimental results.

  10. Amplitude-Frequency Analysis of Signals of Acoustic Emission from Granite Fractured at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Chmel‧, A. E.

    2015-05-01

    The problem of stability of underground structures serving to store radioactive waste, to gasify carbon, and to utilize geothermal energy is associated with the action of elevated temperatures and pressures. The acoustic-emission method makes it possible to monitor the accumulation of microcracks arising in stress fields of both thermal and mechanical origin. In this report, the authors give results of a laboratory investigation into the acoustic emission from granite subjected to impact fracture at temperatures of up to 600°C. An amplitude-frequency analysis of acousticemission signals has enabled the authors to evaluate the dimension of the arising microcracks and to determine their character (intergranular or intragranular). It has been shown that intergranular faults on the boundaries between identical minerals predominate at room temperature (purely mechanical action); at a temperature of 300°C (impact plus thermoelastic stresses), there also appear cracks on the quartz-feldspar boundaries; finally, at temperatures of 500-600°C, it is intragranular faults that predominate in feldspar. The dimensions of the above three types of microcracks are approximately 2, 0.8, and 0.3 mm respectively.

  11. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus).

    PubMed

    Agamaite, James A; Chang, Chia-Jung; Osmanski, Michael S; Wang, Xiaoqin

    2015-11-01

    The common marmoset (Callithrix jacchus), a highly vocal New World primate species, has emerged in recent years as a promising animal model for studying brain mechanisms underlying perception, vocal production, and cognition. The present study provides a quantitative acoustic analysis of a large number of vocalizations produced by marmosets in a social environment within a captive colony. Previous classifications of the marmoset vocal repertoire were mostly based on qualitative observations. In the present study a variety of vocalizations from individually identified marmosets were sampled and multiple acoustic features of each type of vocalization were measured. Results show that marmosets have a complex vocal repertoire in captivity that consists of multiple vocalization types, including both simple calls and compound calls composed of sequences of simple calls. A detailed quantification of the vocal repertoire of the marmoset can serve as a solid basis for studying the behavioral significance of their vocalizations and is essential for carrying out studies that investigate such properties as perceptual boundaries between call types and among individual callers as well as neural coding mechanisms for vocalizations. It can also serve as the basis for evaluating abnormal vocal behaviors resulting from diseases or genetic manipulations. PMID:26627765

  12. Analysis of acoustic networks including cavities by means of a linear finite volume method

    NASA Astrophysics Data System (ADS)

    Torregrosa, A. J.; Broatch, A.; Gil, A.; Moreno, D.

    2012-09-01

    A procedure allowing for the analysis of complex acoustic networks, including three-dimensional cavities described in terms of zero-dimensional equivalent elements, is presented and validated. The procedure is based on the linearization of the finite volume method often used in gas-dynamics, which is translated into an acoustic network comprising multi-ports accounting for mass exchanges between the finite volumes, and equivalent 2-ports describing momentum exchange across the volume surfaces. The application of the concept to a one-dimensional case shows that it actually converges to the exact analytical solution when a sufficiently large number of volumes are considered. This has allowed the formulation of an objective criterion for the choice of a mesh providing results with a prefixed error up to a certain Helmholtz number, which has been generalized to three-dimensional cases. The procedure is then applied to simple but relevant three-dimensional geometries in the absence of a mean flow, showing good agreement with experimental and other computational results.

  13. Efficient modeling of flat and homogeneous acoustic treatments for vibroacoustic finite element analysis. Direct field formulations

    NASA Astrophysics Data System (ADS)

    Alimonti, L.; Atalla, N.

    2016-04-01

    This paper is concerned with the development of a simplified model for noise control treatments to speed up finite element analysis in vibroacoustic applications. The methodology relies on the assumption that the acoustic treatment is flat and homogeneous. Moreover, its finite lateral extent is neglected. This hypothesis is justified by short wavelength and large dissipation, which suggest that the reflected field emanating from the acoustic treatment lateral boundaries does not substantially affect its dynamic response. Under these circumstances, the response of the noise control treatment can be formally obtained by means of convolution integrals involving simple analytical kernels (i.e. Green functions). Such fundamental solutions can be computed efficiently by the transfer matrix method. However, some arbitrariness arises in the formulation of the mathematical model, resulting in different baffling conditions at the two ends of the treatment to be considered. Thus, the paper investigates the possibility of different formulations (i.e. baffling conditions) within the same hybrid finite element-transfer matrix framework, seeking for the best strategy in terms of tradeoff between efficiency and accuracy. Numerical examples are provided to show strengths and limitations of the proposed methodology.

  14. Acoustic analysis of primate air sacs and their effect on vocalization.

    PubMed

    de Boer, Bart

    2009-12-01

    This paper presents an analysis of the acoustic impedance of primate air sacs and their interaction with the vocal tract. A lumped element model is derived and it is found that the inertance of the neck and the volume of the air sac are relevant, as well as the mass and stiffness of the walls (depending on the tissue). It is also shown that at low frequencies, radiation from the air sac can be non-negligible, even if the mouth is open. It is furthermore shown that an air sac can add one or two low resonances to the resonances of the oral tract, and that it shifts up the oral tract's resonances below approximately 2000 Hz, and shifts them closer together. The theory was verified by acoustic measurements and applied to the red howler monkey (Alouatta seniculus) and the siamang (Symphalangus syndactylus). The theory describes the physical models and the siamang calls correctly, but appears incomplete for the howler monkey vocalizations. The relation between air sacs and the evolution of speech is discussed briefly, and it is proposed that an air sac would reduce the ability to produce distinctive speech, but would enhance the impression of size of the vocalizer. PMID:20000947

  15. Numerical analysis of sound propagation for acoustic lens array in different fluid mediums

    NASA Astrophysics Data System (ADS)

    Fujisawa, Kei; Asada, Akira

    2014-11-01

    In this paper, an acoustic sound focusing method using acoustic lens array is investigated numerically. To understand the sound propagation in the acoustic field in water with a lens material of glycerin, compressible Navier-Stokes equation, the mass conservation, energy equation, state equation in cylindrical coordinate system are solved without applying parabolic approximation. The numerical method is based on the finite difference time domain method. The numerical calculation of the sound propagation is carried out in the near field of the acoustic lens array of variable thickness normal to the acoustic beam. The numerical result shows that the sound pressure level along the beam axis increases due to the influence of the acoustic lens array, which indicates the capability of the acoustic lens array to the sound focusing.

  16. Using Ambulatory Voice Monitoring to Investigate Common Voice Disorders: Research Update

    PubMed Central

    Mehta, Daryush D.; Van Stan, Jarrad H.; Zañartu, Matías; Ghassemi, Marzyeh; Guttag, John V.; Espinoza, Víctor M.; Cortés, Juan P.; Cheyne, Harold A.; Hillman, Robert E.

    2015-01-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from inefficient and/or abusive patterns of vocal behavior, referred to as vocal hyperfunction. The clinical management of hyperfunctional voice disorders would be greatly enhanced by the ability to monitor and quantify detrimental vocal behaviors during an individual’s activities of daily life. This paper provides an update on ongoing work that uses a miniature accelerometer on the neck surface below the larynx to collect a large set of ambulatory data on patients with hyperfunctional voice disorders (before and after treatment) and matched-control subjects. Three types of analysis approaches are being employed in an effort to identify the best set of measures for differentiating among hyperfunctional and normal patterns of vocal behavior: (1) ambulatory measures of voice use that include vocal dose and voice quality correlates, (2) aerodynamic measures based on glottal airflow estimates extracted from the accelerometer signal using subject-specific vocal system models, and (3) classification based on machine learning and pattern recognition approaches that have been used successfully in analyzing long-term recordings of other physiological signals. Preliminary results demonstrate the potential for ambulatory voice monitoring to improve the diagnosis and treatment of common hyperfunctional voice disorders. PMID:26528472

  17. Changes in F2-F1 as a voicing cue

    NASA Astrophysics Data System (ADS)

    Warren, Willis J.; Coren, Amy E.

    2003-10-01

    The interaction between formant transitions and vowel length was measured with respect to syllable final voicing distinctions. A synthesized ad VC token of 360 ms was edited in 5-ms intervals from either side, onset or offset, so that 260 ms were preserved. Ten subjects were asked to make final voicing judgments for the words ``odd'' and ``ought'' ([ad] vs [at]) when hearing the 20 edited tokens. Each token was presented five times, randomly, for a total of 1000 judgements. Results showed an overwhelming number of voiced responses when the entire offset was preserved and symmetrical voiceless results with the deletion of offset. A follow-up experiment utilized a similarly synthesized token of 460 ms. The results when adding 100 ms onto the vowel were insignificantly different than the results acquired for formant transitions, suggesting the latter are a more important cue for syllable final voicing distinctions. These findings contradict previous vowel length conclusions [L. J. Raphael, J. Acoust. Soc. Am. 51, 1296-1303 (1972)] and further suggest that in addition to F1 [V. Summers, J. Acoust. Soc. Am. 84, 485-492 (1988)], F2 transitions are also an important cue to final voicing distinctions in low vowel contexts.

  18. On the role of glottis-interior sources in the production of voiced sound

    PubMed Central

    Howe, M. S.; McGowan, R. S.

    2012-01-01

    The voice source is dominated by aeroacoustic sources downstream of the glottis. In this paper an investigation is made of the contribution to voiced speech of secondary sources within the glottis. The acoustic waveform is ultimately determined by the volume velocity of air at the glottis, which is controlled by vocal fold vibration, pressure forcing from the lungs, and unsteady backreactions from the sound and from the supraglottal air jet. The theory of aerodynamic sound is applied to study the influence on the fine details of the acoustic waveform of “potential flow” added-mass-type glottal sources, glottis friction, and vorticity either in the glottis-wall boundary layer or in the portion of the free jet shear layer within the glottis. These sources govern predominantly the high frequency content of the sound when the glottis is near closure. A detailed analysis performed for a canonical, cylindrical glottis of rectangular cross section indicates that glottis-interior boundary/shear layer vortex sources and the surface frictional source are of comparable importance; the influence of the potential flow source is about an order of magnitude smaller. PMID:22352512

  19. On the role of glottis-interior sources in the production of voiced sound.

    PubMed

    Howe, M S; McGowan, R S

    2012-02-01

    The voice source is dominated by aeroacoustic sources downstream of the glottis. In this paper an investigation is made of the contribution to voiced speech of secondary sources within the glottis. The acoustic waveform is ultimately determined by the volume velocity of air at the glottis, which is controlled by vocal fold vibration, pressure forcing from the lungs, and unsteady backreactions from the sound and from the supraglottal air jet. The theory of aerodynamic sound is applied to study the influence on the fine details of the acoustic waveform of "potential flow" added-mass-type glottal sources, glottis friction, and vorticity either in the glottis-wall boundary layer or in the portion of the free jet shear layer within the glottis. These sources govern predominantly the high frequency content of the sound when the glottis is near closure. A detailed analysis performed for a canonical, cylindrical glottis of rectangular cross section indicates that glottis-interior boundary/shear layer vortex sources and the surface frictional source are of comparable importance; the influence of the potential flow source is about an order of magnitude smaller. PMID:22352512

  20. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    NASA Astrophysics Data System (ADS)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  1. Back-and-Forth Methodology for Objective Voice Quality Assessment: From/to Expert Knowledge to/from Automatic Classification of Dysphonia

    NASA Astrophysics Data System (ADS)

    Fredouille, Corinne; Pouchoulin, Gilles; Ghio, Alain; Revis, Joana; Bonastre, Jean-François; Giovanni, Antoine

    2009-12-01

    This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists). The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices), rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0-3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.

  2. The maximum intelligible range of the human voice

    NASA Astrophysics Data System (ADS)

    Boren, Braxton

    This dissertation examines the acoustics of the spoken voice at high levels and the maximum number of people that could hear such a voice unamplified in the open air. In particular, it examines an early auditory experiment by Benjamin Franklin which sought to determine the maximum intelligible crowd for the Anglican preacher George Whitefield in the eighteenth century. Using Franklin's description of the experiment and a noise source on Front Street, the geometry and diffraction effects of such a noise source are examined to more precisely pinpoint Franklin's position when Whitefield's voice ceased to be intelligible. Based on historical maps, drawings, and prints, the geometry and material of Market Street is constructed as a computer model which is then used to construct an acoustic cone tracing model. Based on minimal values of the Speech Transmission Index (STI) at Franklin's position, Whitefield's on-axis Sound Pressure Level (SPL) at 1 m is determined, leading to estimates centering around 90 dBA. Recordings are carried out on trained actors and singers to determine their maximum time-averaged SPL at 1 m. This suggests that the greatest average SPL achievable by the human voice is 90-91 dBA, similar to the median estimates for Whitefield's voice. The sites of Whitefield's largest crowds are acoustically modeled based on historical evidence and maps. Based on Whitefield's SPL, the minimal STI value, and the crowd's background noise, this allows a prediction of the minimally intelligible area for each site. These yield maximum crowd estimates of 50,000 under ideal conditions, while crowds of 20,000 to 30,000 seem more reasonable when the crowd was reasonably quiet and Whitefield's voice was near 90 dBA.

  3. MSAT voice modulation considerations

    NASA Technical Reports Server (NTRS)

    Bossler, Dan

    1990-01-01

    The challenge for Mobile satellite (MSAT) voice services is to provide near toll quality voice to the user, while minimizing the power and bandwidth resources of the satellite. The options for MSAT voice can be put into one of two groups: Analog and Digital. Analog, nominally narrowband single sideband techniques, have a shown robustness to the fading and shadowing environment. Digital techniques, a combination of low rate vocoders and bandwidth efficient modems, show the promise of enhanced fidelity, as well as easier networking to the emerging digital world. The problems and tradeoffs to designers are many, especially in the digital case. Processor speed vs. cost and MET power requirements, channel coding, bandwidth efficiency vs. power efficiency etc. While the list looks daunting, in fact an acceptable solution is well within the technology. The objectives are reviewed that the MSAT voice service must meet, along with the options that are seen for the future.

  4. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  5. Finding Your Voice

    ERIC Educational Resources Information Center

    Neugebauer, Bonnie

    2008-01-01

    In this article, the author offers ways on how to find a voice when telling or sharing stories in print or in person. To find a voice, someone must: (1) Trust themselves; (2) Trust their audience whether they know they can trust them or not; (3) Be respectful in their inventions; (4) Listen to and read the stories of others; (5) Make mistakes; (6)…

  6. MSAT broadcast voice services

    NASA Technical Reports Server (NTRS)

    Jones, John W.

    1995-01-01

    Later this year the MSAT satellite network will be delivering mobile and remote communications throughout North America. Its services include a family of Broadcast Voice Services, the first of which will be MSAT Dispatch Radio, which will extend the features and functionality of terrestrial Specialized Mobile Radio (SMR) to the entire continent. This paper describes the MSAT Broadcast Voice Services in general, and MSAT Dispatch Radio in particular, and provides examples of commercial and government applications.

  7. The effects of acoustic radiation force on contrast agents: Experimental and theoretial analysis

    NASA Astrophysics Data System (ADS)

    Dayton, Paul Alexander

    The goal of this research is to understand the response of ultrasound contrast agents to acoustic radiation force. Ultrasound contrast agents are encapsulated microbubbles similar in size and rheologic behavior to human erythrocytes. A core of either air or a high- molecular weight gas makes these microbubbles extremely compressible and highly echogenic. Clinically, the detection of blood is difficult without contrast agents because the echoes from blood cells are typically 30-40 dB less than tissue echoes. Ultrasound contrast agents have been shown to be extremely useful in assisting delineation of perfused tissue in echocardiography, and are being increasingly used for tumor detection in radiology. The high compressibility of gas-filled contrast agents makes these microbubbles susceptible to translation due to radiation force. Thus, it is important to understand the effects of this force in order to avoid erroneous measurements based on the location and flow velocity of microbubbles. In addition, the ability to displace and concentrate microbubbles may be an advantage in targeted imaging, targeted therapy, or industrial applications where it is desired to localize microbubbles in a region. In this study, experimental and theoretical tools are combined to investigate the interaction between microbubbles and an acoustic pulse. Several unique experimental systems allow visualization and analysis of the radius-time curves of individual microbubbles, the displacement of individual microbubbles in-vitro, and the displacement of microbubbles in-vivo. Theoretical analysis illustrates that the effect of radiation force on microbubbles is directly proportional to the product of the bubble volume and the acoustic pressure gradient. A model designed to simulate the radius-time behavior of individual microbubbles is verified from experimental data, and used to estimate the magnitude of radiation force. The resulting bubble translation is determined using a second model

  8. a Computational Method for the Analysis of Acoustic Radiation from Turbofan Inlets

    NASA Astrophysics Data System (ADS)

    Raviprakash, G. K.

    1992-01-01

    A computational method is presented for the analysis of the noise radiation from turbofan inlets. The method developed considers the effect of mean flow and can be used at high frequencies. The techniques for generating the grid, solving the acoustic equations, applying radiating conditions on the far-field boundary, imposing inlet-fan interface conditions as well as solving the steady compressible flow equations are embodied in the Inlet Acoustic Analysis Method. The theoretical basis, formulated for 3-D acoustics within an axisymmetric domain, considers the effect of non-uniform mean flow. The discretization of the field equations is done using a finite volume type differencing. This leads to a block tri-diagonal system of equations which is then efficiently solved. A new and powerful method is developed for the application of radiating conditions. A layer potential representation is used in obtaining numerically local radiating conditions. The locally radiating conditions, developed using the single layer source representation, can be used even at the interior eigenvalues. Using this technique, the radiating conditions can be applied very close to the inlet, and hence the computational efficiency can be significantly increased. The irrotationality conditions for the axisymmetric compressible flow are discretized for solving the mean flow field. An iterative scheme is developed to solve for the stream function, the density, and the speed of sound. The inlet-fan interface conditions are incorporated to properly specify the source of noise. The noise source is either directly specified or the interface potential distribution is split into a combination of an imposed right traveling disturbance and an unknown combination of left traveling disturbances, that come out as part of the solution process. The grid generation procedure utilizes algebraic transformations as well as the grid blending technique. This process is automated to accommodate variations in the grid

  9. A computational method for the analysis of acoustic radiation from turbofan inlets

    NASA Astrophysics Data System (ADS)

    Raviprakash, G. K.

    A computational method is presented for the analysis of the noise radiation from turbofan inlets. The method developed considers the effect of mean flow and can be used at high frequencies. The techniques for generating the grid, solving the acoustic equations, applying radiating conditions on the far-field boundary, imposing inlet-fan interface conditions as well as solving the steady compressible flow equations are embodied in the Inlet Acoustic Analysis Method. The theoretical basis, formulated for 3-D acoustics within an axisymmetric domain, considers the effect of non-uniform mean flow. The discretization of the field equations is done using a finite volume type differencing. This leads to a block tri-diagonal system of equations which is then efficiently solved. A new and powerful method is developed for the application of radiating conditions. A layer potential representation is used in obtaining numerically local radiating conditions. The locally radiating conditions, developed using the single layer source representation, can be used even at the interior eigenvalues. Using this technique, the radiating conditions can be applied very close to the inlet, and hence the computational efficiency can be significantly increased. The irrotationality conditions for the axisymmetric compressible flow are discretized for solving the mean flow field. An iterative scheme is developed to solve for the stream function, the density, and the speed of sound. The inlet-fan interface conditions are incorporated to properly specify the source of noise. The noise source is either directly specified or the interface potential distribution is split into a combination of an imposed right traveling disturbance and an unknown combination of left traveling disturbances, that come out as part of the solution process. The grid generation procedure utilizes algebraic transformations as well as the grid blending techniques. This process is automated to accommodate variations in the grid

  10. A Neural Network/Acoustic Emission Analysis of Impact Damaged Graphite/Epoxy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Hill, Erik v. K.; Workman, Gary L.; Russell, Samuel S.

    1995-01-01

    Acoustic emission (AE) signal analysis has been used to measure the effects of impact damage on burst pressure in 5.75 inch diameter, inert propellant filled, filament wound pressure vessels. The AE data were collected from fifteen graphite/epoxy pressure vessels featuring five damage states and three resin systems. A burst pressure prediction model was developed by correlating the AE amplitude (frequency) distribution, generated during the first pressure ramp to 800 psig (approximately 25% of the average expected burst pressure for an undamaged vessel) to known burst pressures using a four layered back propagation neural network. The neural network, trained on three vessels from each resin system, was able to predict burst pressures with a worst case error of 5.7% for the entire fifteen bottle set.

  11. Finite element approach analysis for characteristics of electromagnetic acoustic Lamb wave

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoming; Li, Songsong

    2016-04-01

    The electromagnetic acoustic Lamb wave, with the advantages of quickly detecting the defect and sensitivity to the defects, is widely used in non-destructive testing of thin sheet. In this paper, the directivity of sound field, Phase velocity, group velocity and particle displacement amplitude of Lamb wave are study based on finite element analysis method. The results show that, for 1mm aluminum, when the excitation frequency 0.64MHz, the displacement amplitude of A0 mode is minimum, and the displacement amplitude S0 mode is largest. Appropriate to increase the displacement amplitude of a mode, while reducing displacement amplitude of another mode, to achieve the excitation of a single mode Lamb wave. It is helpful to the Optimization of transducer parameters, the choice of Lamb wave modes and providing optimal excitation frequency.

  12. Nonlinear Acoustic Response of an Aircraft Fuselage Sidewall Structure by a Reduced-Order Analysis

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Groen, David S.

    2006-01-01

    A reduced-order nonlinear analysis of a structurally complex aircraft fuselage sidewall panel is undertaken to explore issues associated with application of such analyses to practical structures. Of primary interest is the trade-off between computational efficiency and accuracy. An approach to modal basis selection is offered based upon the modal participation in the linear regime. The nonlinear static response to a uniform pressure loading and nonlinear random response to a uniformly distributed acoustic loading are computed. Comparisons of the static response with a nonlinear static solution in physical degrees-of-freedom demonstrate the efficacy of the approach taken for modal basis selection. Changes in the modal participation as a function of static and random loading levels suggest a means for improvement in the basis selection.

  13. Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission.

    PubMed

    Kovač, Jaka; Legat, Andraž; Zajec, Bojan; Kosec, Tadeja; Govekar, Edvard

    2015-09-01

    In the paper the results of the acoustic emission (AE) based detection and characterization of stress-corrosion cracking (SCC) in stainless steel are presented. As supportive methods for AE interpretation, electrochemical noise, specimen elongation measurements, and digital imaging of the specimen surface were used. Based on the defined qualitative and quantitative time and power spectra characteristics of the AE bursts, a manual and an automatic procedure for the detection of crack related AE bursts were introduced. The results of the analysis of the crack related AE bursts indicate that the AE method is capable of detecting large scale cracks, where, apart from intergranular crack propagation, also some small ductile fractures occur. The sizes of the corresponding ductile fracture areas can be estimated based on a relative comparison of the energies of the detected AE bursts. It has also been shown that AE burst time and power spectra features can be successfully used for the automatic detection of SCC. PMID:26112425

  14. Analysis of scattering from an acoustic cloak in a moving fluid.

    PubMed

    Huang, Xun; Zhong, Siyang; Stalnov, Oksana

    2014-05-01

    This work develops a theoretical framework for acoustic cloak scattering analysis in a low speed non-stationary fluid that is simply described as a potential flow. The equivalent sound source induced by the moving fluid local to the cloak is analytically constructed and is then estimated using Born approximation. The far-field scattering can thereafter be obtained using the associated Green's function of the convected wave equation. The results demonstrate that the proposed analytical approach, which might be helpful in the design and evaluation of cloaking systems, effectively elucidates key characteristics of the relevant physics. In addition, it can be seen that, in a moving fluid, the so-called convected cloaking design achieves better cloaking performance than the classical cloaking design. PMID:24815241

  15. Acoustically-induced modulation spectroscopy for ultra-sensitive gas analysis

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.; Penney, C. M.; Lapp, M.

    1984-01-01

    A new optical technique has been developed for ultra-sensitive attenuation measurements in gaseous media and, in particular, for determination of low levels of smoke emitted from jet engines. It is a variation on direct light transmission where the sample gas density in a cell is modulated acoustically by a speaker. The amplitude variation of the light transmission is proportional to the gas density and is insensitive to window contamination and detector instabilities. Preliminary analysis and experiments indicate that the instrument promises to measure light absorption to less than 1 percent per meter and allow measurment of smoke emissions from 1 to 100 mg/cu m. The technique has been demonstrated through the use of an absorbing gas, viz., 200 ppm of NO2 in N2 which produces 25 percent per meter absorption.

  16. The acoustic simulation and analysis of complicated reciprocating compressor piping systems, II: Program structure and applications

    NASA Astrophysics Data System (ADS)

    To, C. W. S.

    1984-09-01

    The main objectives of the investigation reported in this paper, Part II, and its companion paper, Part I, are (a) to provide a formulation, including the mean flow effects and suitable for digital computer automation, of the acoustics of complicated piping systems, and (b) to develop a comprehensive digital computer program for the simulation and analysis of complicated reciprocating compressor piping systems. In this paper, the digital computer program structure and applications of the program developed, written in Fortran IV, are described. It is concluded that the computer program is versatile and user-friendly. It is capable of providing a great deal of information from one set of input data, and is open-ended and modular for updating.

  17. Seeing a voice: Rudolph Koenig's instruments for studying vowel sounds.

    PubMed

    Pantalony, David

    2004-01-01

    The human voice was one of the more elusive acoustical phenomena to study in the 19th century and therefore a crucial test of Hermann von Helmholtz's new theory of sound. This article describes the origins of instruments used to study vowel sounds: synthesizers for production, resonators for detection, and manometric flames for visual display. Instrument maker Rudolph Koenig played a leading role in transforming Helmholtz's ideas into apparatus. In particular, he was the first to make the human voice visible for research and teaching. Koenig's work reveals the rich context of science, craft traditions, experiment, demonstration culture, and commerce in his Paris workshop. PMID:15457810

  18. Dynamic Analysis of a Building Under Rocket Engine Plume Acoustic Load

    NASA Technical Reports Server (NTRS)

    Qian, Z.; VanDyke, D.; Wright, S.; Redmond, M.

    2001-01-01

    Studies have been performed to develop finite-element modeling and simulation techniques to predict the dynamic structural response of Building 4010 to the acoustic load from the plume of high-thrust rocket motors. The building is the Test Control Center and general office space for the E-complex at Stennis Space Center. It is a large single span; light-structured building located approximately 1,000 feet from the E-1 test stand. A three-dimensional shell/beam combined model of the building was built using Pro/Engineer platform and imported into Pro/Mechanica for analysis. An Equivalent Shell technique was developed to simplify the highly complex building structure so that the calculation is more efficient and accurate. A deterministic approach was used for the dynamic analysis. A pre-stressed modal analysis was performed to simulate the weight stiffening of the structure, through which about 200 modes ranging from 0 to 35 Hz were identified. In an initial dynamic frequency analysis, the maximum response over the model was found. Then the complete 3-D distributions of the displacement, as well as the stresses, were calculated through a final frequency analysis. The results were compared to a strain gage and accelerometer recordings from rocket engine tests and showed reasonable agreement.

  19. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    SciTech Connect

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  20. Dissociation of human and computer voices in the brain: evidence for a preattentive gestalt-like perception.

    PubMed

    Lattner, Sonja; Maess, Burkhard; Wang, Yunhua; Schauer, Michael; Alter, Kai; Friederici, Angela D

    2003-09-01

    We investigated the early ("preattentive") cortical processing of voice information, using the so-called "mismatch response". This brain potential allows inferences to be made about the sensory short-term store. Most importantly, the mismatch potential also provides information about the organization of long-term memory traces in the auditory system. Such traces have reliably been reported for phonemes. However, it is unclear whether they also exist for human voice information. To explore this issue, 10 healthy subjects were presented with a single word stimulus uttered by voices of different prototypicality (natural, manipulated, synthetic) in a mismatch experiment (stimulus duration 380 msec, onset-to-onset interval 900 msec). The event-related magnetic fields were recorded by a 148-channel whole-head magnetometer and a source current density modeling of the magnetic field data was performed using a minimum-norm estimate. Each deviating voice signal in a series of standard-voice stimuli evoked a mismatch response that was localized in temporal brain regions bilaterally. Increased mismatch related magnetic flux was observed in response to decreased prototypicality of a presented voice signal, but did not correspond to the acoustic similarity of standard voice and deviant voices. We, therefore, conclude that the mismatch activation predominantly reflects the ecological validity of the voice signals. We further demonstrate that the findings cannot be explained by mere acoustic feature processing, but rather point towards a holistic mapping of the incoming voice signal onto long-term representations in the auditory memory. PMID:12953302