Science.gov

Sample records for acoustic wave biosensor

  1. Surface acoustic wave biosensors: a review.

    PubMed

    Länge, Kerstin; Rapp, Bastian E; Rapp, Michael

    2008-07-01

    This review presents an overview of 20 years of worldwide development in the field of biosensors based on special types of surface acoustic wave (SAW) devices that permit the highly sensitive detection of biorelevant molecules in liquid media (such as water or aqueous buffer solutions). 1987 saw the first approaches, which used either horizontally polarized shear waves (HPSW) in a delay line configuration on lithium tantalate (LiTaO(3)) substrates or SAW resonator structures on quartz or LiTaO(3) with periodic mass gratings. The latter are termed "surface transverse waves" (STW), and they have comparatively low attenuation values when operated in liquids. Later Love wave devices were developed, which used a film resonance effect to significantly reduce attenuation. All of these sensor approaches were accompanied by the development of appropriate sensing films. First attempts used simple layers of adsorbed antibodies. Later approaches used various types of covalently bound layers, for example those utilizing intermediate hydrogel layers. Recent approaches involve SAW biosensor devices inserted into compact systems with integrated fluidics for sample handling. To achieve this, the SAW biosensors can be embedded into micromachined polymer housings. Combining these two features will extend the system to create versatile biosensor arrays for generic lab use or for diagnostic purposes.

  2. R&D 100 Winner 2010: Acoustic Wave Biosensors

    SciTech Connect

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-06-07

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  3. New Biosensor Using Shear Horizontal Surface Acoustic Wave Device

    NASA Astrophysics Data System (ADS)

    Kondoh, Jun; Matsui, Yoshikazu; Shiokawa, Showko

    1993-05-01

    This paper describes a new biosensor to detect an enzyme reaction in liquid using surface acoustic wave (SAW) devices fabricated on 36°-rotated Y-cut, X-propagating LiTaO3. The sensing wave on the substrate is a predominantly shear-horizontal-mode SAW (SH-SAW) and is affected by a strong acoustoelectric interaction between the piezoelectric potential and electrical properties of the materials in the adjacent liquid. As an example of an electrical property, pH change associated with an enzyme reaction leads to measurable perturbation in the wave-propagation characteristic. Taking advantage of this phenomenon we realized a SAW biosensor which consists of an immobilized urease membrane on the surface. Also, highly sensitive detection for the urea solution was obtained in our preliminary experiments.

  4. R&D 100 Winner 2010: Acoustic Wave Biosensors

    ScienceCinema

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-07-12

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  5. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  6. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  7. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices.

  8. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    PubMed Central

    Rocha-Gaso, María-Isabel; March-Iborra, Carmen; Montoya-Baides, Ángel; Arnau-Vives, Antonio

    2009-01-01

    This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), Surface Transverse Wave (STW), Love Wave (LW), Flexural Plate Wave (FPW), Shear Horizontal Acoustic Plate Mode (SH-APM) and Layered Guided Acoustic Plate Mode (LG-APM) - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications. PMID:22346725

  9. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    PubMed Central

    Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection. PMID:23459387

  10. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    DOEpatents

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  11. A high sensitivity wireless mass-loading surface acoustic wave DNA biosensor

    NASA Astrophysics Data System (ADS)

    Cai, Hua-Lin; Yang, Yi; Zhang, Yi-Han; Zhou, Chang-Jian; Guo, Cang-Ran; Liu, Jing; Ren, Tian-Ling

    2014-03-01

    In this paper, a surface acoustic wave (SAW) biosensor with gold delay area on LiNbO3 substrate detecting DNA sequences is proposed. By well-designed device parameters of the SAW sensor, it achieves a high performance for highly sensitive detection of target DNA. In addition, an effective biological treatment method for DNA immobilization and abundant experimental verification of the sensing effect have made it a reliable device in DNA detection. The loading mass of the probe and target DNA sequences is obtained from the frequency shifts, which are big enough in this work due to an effective biological treatment. The experimental results show that the biosensor has a high sensitivity of 1.2 pg/ml/Hz and high selectivity characteristic is also verified by the few responses of other substances. In combination with wireless transceiver, we develop a wireless receiving and processing system that can directly display the detection results.

  12. Surface Acoustic Wave (SAW) biosensors: coupling of sensing layers and measurement.

    PubMed

    Länge, Kerstin; Gruhl, Friederike J; Rapp, Michael

    2013-01-01

    Surface acoustic wave (SAW) devices based on horizontally polarized surface shear waves enable direct and label-free detection of proteins in real time. Signal response changes result mainly from mass increase and viscoelasticity changes on the device surface. With an appropriate sensor configuration all types of binding reactions can be detected by determining resonant frequency changes of an oscillator. To create a biosensor, SAW devices have to be coated with a sensing layer binding specifically to the analyte. Intermediate hydrogel layers used within the coating have been proven to be very suitable to easily immobilize capture molecules or ligands corresponding to the analyte. However, aside from mass increase due to analyte binding, the SAW signal response in a subsequent binding experiment strongly depends on the morphology of the sensing layer, as this may lead to different relative changes of viscoelasticity. Bearing these points in mind, we present two basic biosensor coating procedures, one with immobilized capture molecule and a second with immobilized ligand, allowing reliable SAW biosensor signal responses in subsequent binding assays.

  13. Theoretical and Experimental Investigations to Improve the Performance of Surface Acoustic Wave (SAW) Biosensors

    NASA Astrophysics Data System (ADS)

    Richardson, Mandek

    The objective of this dissertation is to improve the performance of surface acoustic wave (SAW) biosensors for use in point-of-care-testing (POCT) applications. SAW biosensors have the ability to perform fast, accurate detection of an analyte in real time without the use of labels. However, the technology suffers from the inability to differentiate between specific and non-specific binding. Due to this limitation, direct testing of bodily fluids using SAW sensors to accurately determine an analyte's concentration is difficult. In addition, these sensors are challenged by the need to detect small concentrations of a biomarker that are typically required to give a clinical diagnosis. Sensitivity, selectivity and reliability are three critical aspects for any sensing platform. To improve sensitivity the delay path of a SAW sensor has been modified with microcavities filled with various materials. These filled cavities increased sensitivity by confining wave energy to the surface by way of constructive interference and waveguiding. Thus, the improved sensitivity will result in a lower limit of detection. In addition, insertion loss is decreased as a consequence of increased wave confinement to the surface. Sensor selectivity and reliability are adversely affected by non-specific binding of unwanted species present in a sample. To address this issue a multifunctional SAW sensor is presented. The sensor consists of two SAW delay lines oriented orthogonal to each on ST-quartz in order to generate two distinct wave modes. One wave mode is used for sensing while the other is used to remove loosely bound material. By using the same transduction mechanism for both removal and sensing, the sensor chip is simplified and complex electronics are avoided. The findings of this research involve the technological advances for SAW biosensors that make their use in POCT possible.

  14. Highly sensitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures.

    PubMed

    Ten, S T; Hashim, U; Gopinath, S C B; Liu, W W; Foo, K L; Sam, S T; Rahman, S F A; Voon, C H; Nordin, A N

    2017-07-15

    Surface acoustic wave mediated transductions have been widely used in the sensors and actuators applications. In this study, a shear horizontal surface acoustic wave (SHSAW) was used for the detection of food pathogenic Escherichia coli O157:H7 (E.coli O157:H7), a dangerous strain among 225 E. coli unique serotypes. A few cells of this bacterium are able to cause young children to be most vulnerable to serious complications. Presence of higher than 1cfu E.coli O157:H7 in 25g of food has been considered as a dangerous level. The SHSAW biosensor was fabricated on 64° YX LiNbO3 substrate. Its sensitivity was enhanced by depositing 130.5nm thin layer of SiO2 nanostructures with particle size lesser than 70nm. The nanostructures act both as a waveguide as well as a physical surface modification of the sensor prior to biomolecular immobilization. A specific DNA sequence from E. coli O157:H7 having 22 mers as an amine-terminated probe ssDNA was immobilized on the thin film sensing area through chemical functionalization [(CHO-(CH2)3-CHO) and APTES; NH2-(CH2)3-Si(OC2H5)3]. The high-performance of sensor was shown with the specific oligonucleotide target and attained the sensitivity of 0.6439nM/0.1kHz and detection limit was down to 1.8femto-molar (1.8×10(-15)M). Further evidence was provided by specificity analysis using single mismatched and complementary oligonucleotide sequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Acoustic wave biosensor for the detection of the breast and prostate cancer metastasis biomarker protein PTHrP.

    PubMed

    Crivianu-Gaita, Victor; Aamer, Mohamed; Posaratnanathan, Roy T; Romaschin, Alexander; Thompson, Michael

    2016-04-15

    There are currently no biosensors that are able to reliably detect the process of cancer metastasis. We describe the first label-free real-time ultra-high frequency acoustic wave biosensor prototype capable of detecting the breast and prostate cancer metastasis biomarker, parathyroid hormone-related peptide (PTHrP). Two different linkers - 11-trichlorosilyl-undecanoic acid pentafluorophenyl ester (PFP) and S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) - were used to immobilize whole anti-PTHrP antibodies and Fab' fragments to surfaces as biorecognition elements. The biosensor surfaces were optimized using X-ray photoelectron spectroscopy (XPS) and the ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS). One optimized whole antibody-based surface (PFP/protein G'/whole antibodies/ethanolamine) and one optimized Fab' fragment-based surface (TUBTS/Fab' fragments) were tested as biosensors. It was determined that an in-line injection of bovine serum albumin prior to analyte injection yielded the most minimally fouling surfaces. Each surface was tested with no mass amplification and with sandwich-type secondary antibody mass amplification. The whole antibody-based mass-amplified biosensor yielded the lowest limit of detection (61 ng/mL), highest sensitivity, and a linear range from 61 ng/mL to 100 μg/mL. However, the Fab' fragment-based biosensor displayed better regenerability as a loss of ~20% of the initial analyte signal intensity was observed with each subsequent injection. The whole antibody-based biosensor was only capable of producing an analyte signal in the first injection.

  16. Development of novel acoustic wave biosensor platforms based on magnetostriction and fabrication of magnetostrictive nanowires

    NASA Astrophysics Data System (ADS)

    Li, Suiqiong

    There is an urgent need for biosensors that are able to detect and quantify the presence of a small amount of biological threat agents in a real-time manner. Acoustic wave (AW) devices, whose performance is defined by mass sensitivity (Sm) and merit quality factor (Q value), have been extensively studied as high performance biosensor platforms. However, current AW devices face some challenges in practical applications. In this research, two types of AW devices---magnetostrictive microcantilever (MSMC) and completely free-standing magnetostrictive particle (MSP)---were developed. The research consists of two parts: (1) Design and the feasibility study of MSMC and MSP based sensor technology; (2) Fabrication and characterization of micro/nano MSPs made of amorphous Fe-B alloy. Both MSMC and MSP based sensors are wireless/remote and work well in liquid, which makes the sensors good candidates for in-situ detection. The performance of MSMC was simulated and compared with the state of art AW devices: microcantilevers. The MSMC exhibits the following advantages: (1) remote/wireless driving and sensing; (2) ease of fabrication; (3) works well in liquid; (4) exhibits a high Q value (> 500 in air); (5) well suited for sensor array development. MSMCs in milli/micro sizes were fabricated and their performance was characterized in air and liquid. The experimental results confirm the advantages of MSMC mentioned above. The in situ detection of the yeast cells and Bacillus anthracis spores in water were performed using MSMC biosensors. MSPs in the shape of strip and bar were investigated. Strip-shape MSPs in milli/micro sizes were fabricated. The resonance behaviors of MSPs at the even and odd vibration modes were analyzed. MSP exhibits a Sm about 100 times greater, and a Q value about 10 times greater, than MCs. A multiple-sensor and a multiple-target approach were developed to further enhance the performance of MSP-based sensors. A unique methodology was created to detect the

  17. A Dry Membrane Protection Technique to Allow Surface Acoustic Wave Biosensor Measurements of Biological Model Membrane Approaches

    PubMed Central

    Reder-Christ, Katrin; Schmitz, Patrick; Bota, Marian; Gerber, Ursula; Falkenstein-Paul, Hildegard; Fuss, Christian; Enachescu, Marius; Bendas, Gerd

    2013-01-01

    Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW) biosensor SAM®5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM®5 blue in biomedical sciences. PMID:24064603

  18. Triple-helix DNA structural studies using a Love wave acoustic biosensor.

    PubMed

    Papadakis, George; Tsortos, Achilleas; Gizeli, Electra

    2009-12-15

    The development of sensors for detecting the conformation of surface-attached molecules is an emerging field with significance in the pharmaceutical industry and in drug design. In this work, triplex-forming oligos (TFOs), a separate class of non-natural DNA bending agents that can affect the mechanical properties of DNA through the formation of triple-helical structures of specific conformation and/or flexibility, are used as a model system in combination with an acoustic biosensor to determine molecular geometrical features. In practice, the degree of bending of a specific DNA target caused by a particular TFO was evaluated by measuring the ratio of acoustic energy change over phase change observed during the binding of pre-formed triplex DNA molecules to the device surface. The DNA bending angle derived via acoustic measurements is in excellent agreement with previously reported values using molecular biology techniques. The reported acoustic technique appears quite appealing for the biophysical study of DNA molecules providing rapid qualitative and quantitative information, at the same time holding promise to be developed as a high-throughput method for the evaluation of DNA conformational changes.

  19. Detection of single-nucleotide polymorphisms with novel leaky surface acoustic wave biosensors, DNA ligation and enzymatic signal amplification.

    PubMed

    Xu, Qinghua; Chang, Kai; Lu, Weiping; Chen, Wei; Ding, Yi; Jia, Shuangrong; Zhang, Kejun; Li, Fake; Shi, Jianfeng; Cao, Liang; Deng, Shaoli; Chen, Ming

    2012-03-15

    This manuscript describes a new technique for detecting single-nucleotide polymorphisms (SNPs) by integrating a leaky surface acoustic wave (LSAW) biosensor, enzymatic DNA ligation and enzymatic signal amplification. In this technique, the DNA target is hybridized with a capture probe immobilized on the surface of a LSAW biosensor. Then, the hybridized sequence is ligated to biotinylated allele-specific detection probe using Taq DNA ligase. The ligation does not take place if there is a single-nucleotide mismatch between the target and the capture probe. The ligated detection probe is transformed into a streptavidin-horseradish peroxidase (SA-HRP) terminal group via a biotin-streptavidin complex. Then, the SA-HRP group catalyzes the polymerization of 3,3-diaminobenzidine (DAB) to form a surface precipitate, thus effectively increasing the sensitivity of detecting surface mass changes and allowing detection of SNPs. Optimal detection conditions were found to be: 0.3 mol/L sodium ion concentration in PBS, pH 7.6, capture probe concentration 0.5 μmol/L and target sequence concentration 1.0 μmol/L. The detection limit was found to be 1 × 10(-12)mol/L. Using this technique, we were able to detect a single-point mutation at nucleotide A2293G in Japanese encephalitis virus.

  20. Influence of intermediate aminodextran layers on the signal response of surface acoustic wave biosensors.

    PubMed

    Länge, Kerstin; Rapp, Michael

    2008-06-15

    Surface acoustic wave (SAW) devices based on horizontally polarized surface shear waves enable direct and label-free detection of proteins in real time. Binding reactions on the sensor surface are detected by determining changes in surface wave velocity caused mainly by mass adsorption or change of viscoelasticity in the sensing layer. Intermediate hydrogel layers have been proven to be useful to immobilize capture molecules or ligands corresponding to the analyte. However, the SAW signal response strongly depends on the morphology of the hydrogel due to different relative changes of its acoustomechanical parameters such as viscoelasticity and density. In this work five aminodextrans (AMD) and one diamino polyethylene glycol (DA-PEG) were used as intermediate hydrogel layers. Sensors with immobilized streptavidin and samples containing biotinylated bovine serum albumin were used to exemplify affinity assays based on immobilized capture molecules for protein detection. The effects of the three-dimensional AMDs and the two-dimensional (2D) DA-PEG on the SAW signal response were investigated. The signal height decreased with increasing molar mass and increasing amount of immobilized AMD. Consequently, thin hydrogel layers are ideal to obtain optimum signal responses in this type of assay, whereas it is not necessarily a 2D hydrogel that gives the best results.

  1. A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure.

    PubMed

    Luo, Jingting; Luo, Pingxiang; Xie, Min; Du, Ke; Zhao, Bixia; Pan, Feng; Fan, Ping; Zeng, Fei; Zhang, Dongping; Zheng, Zhuanghao; Liang, Guangxing

    2013-11-15

    This work reports a high-performance Mn-doped ZnO multilayer structure Love mode surface acoustic wave (SAW) biosensor for the detection of blood sugar. The biosensor was functionalized via immobilizing glucose oxidase onto a pH-sensitive polymer which was attached on Mn-doped ZnO biosensor. The fabricated SAW glucose biosensor is highly sensitive, accurate and fast with good anti-interference. The sensitivity of the SAW glucose biosensor is 7.184 MHz/mM and the accuracy is 6.96 × 10(-3)mM, which is sensitive and accurate enough for glucose monitoring. A good degree of reversibility and stability of the glucose sensor is also demonstrated, which keeps a constant differential frequency shift up to 32 days. Concerning the time response to human serum, the glucose sensor shows a value of 4.6 ± 0.4 min when increasing glucose concentrations and 7.1 ± 0.6 min when decreasing, which is less than 10 min and reach the fast response requirement for medical applications. The Mn-doped ZnO Love mode SAW biosensor can be fully integrated with CMOS Si chips and developed as a portable, passive and wireless real time detection system for blood sugar monitoring in human serum.

  2. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  3. Development of Highly Sensitive Bulk Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer

    DTIC Science & Technology

    2009-01-01

    Chemie International Edition , vol. 39, pp. 29, 2000. [48] W. E. Newell, "Face-mounted piezoelectric resonators," Proceedings of the IEEE, vol. 53... International Edition , vol. 44, pp. 5456 - 5459, 2005. [132] S. Balamurugan, A. Obubuafo, S. A. Soper, and D. A. Spivak, "Surface immobilization methods...14. ABSTRACT In this research, I present several novel contributions to the field of microelectronic acoustic biosensors that approach the goal

  4. Modification and characterization of aluminum nitride surfaces for an acoustic wave biosensor

    NASA Astrophysics Data System (ADS)

    Rosenberger, Leland W.

    Aluminum nitride (AlN) is a piezoelectric material that is being developed for use in a surface acoustic wave sensor for the detection of bacteria in fluid media. An AlN film is deposited on a sapphire or silicon substrate. After conductor deposition, an electronic signal is applied across the device and the signal is modified by changes in the mass immobilized on the sensor surface. Bacteria are immobilized on the surface by antibodies specific to the bacterial species. The problem addressed in this dissertation is how to form a bridge between the inorganic surface and the antibodies. The approach used is to form a new chemical layer on the AlN by using silanes. Functional groups on the silane surface can then be used as anchor points for the antibodies. This approach was carried out in three steps: (1) characterize the AlN surface, (2) explore four surface treatment methods that prepare the AlN surface for silanization and (3) silanize the resulting surface. AlN films were deposited by a Plasma Source Molecular Beam Epitaxy method. The films were characterized by RHEED, X-ray diffraction, air/water contact angle, atomic force microscopy (AFM), ellipsometry and X-ray photoelectron spectroscopy (XPS). The four surface treatment methods explored were: immersion in boiling water, exposure to laser light, immersion in piranha solution and treatment with plasma. Samples were characterized by contact angle, AFM and XPS. Plasma treatment was preferred because it prepared the surface most effectively, without any loss of sub-surface AlN. Samples of AlN were silanized with two types of silane, along with silicon controls. Samples were characterized by contact angle, AFM and XPS. The effectiveness of silanes on AlN was equal to or somewhat less than that observed on silicon. AlN samples were also co-deposited with two different silanes and then the end group on one of the silanes was chemically modified. This demonstrated that the density of functional groups on the

  5. Single-shot analytical assay based on graphene-oxide-modified surface acoustic wave biosensor for detection of single-nucleotide polymorphisms.

    PubMed

    Liu, Xiang; Wang, Jia-Ying; Mao, Xiao-Bing; Ning, Yong; Zhang, Guo-Jun

    2015-09-15

    The combination of a surface acoustic wave (SAW) biosensor with graphene oxide (GO) provides a promising perspective for detecting DNA mutation. The GO-modified SAW biosensor was prepared by conjugating GO onto the SAW chip surface via electrostatic interaction. Afterward, the probe was immobilized on the GO surface, and detection of DNA mutation was realized by hybridization. The hybridization with a variety of targets would yield different mass and conformational changes on the chip surface, causing the different SAW signals in real time. A total of 137 clinical samples were detected by a single-shot analytical assay based on GO-modified SAW biosensor and direct sequencing in parallel. The diagnostic performance (both sensitivity and specificity) of the assay was evaluated with the direct sequencing as a reference testing method. The phase-shift value of three genotypes in 137 clinical samples was significantly different (p < 0.001). Furthermore, testing of diagnostic performance yielded diagnostic sensitivity and specificity of 100% and 88.6% for identifying CT and CC genotype, 98.0% and 96.2% for identifying CT and TT genotype, respectively. The single-shot analytical assay based on the GO-modified SAW biosensor could be exploited as a potential useful tool to identify CYP2D6*10 polymorphisms in clinical practice of personalized medicine.

  6. Guided-Wave Optical Biosensors

    PubMed Central

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  7. A new system for the amplification of biological signals: RecA and complimentary single strand DNA probes on a leaky surface acoustic wave biosensor.

    PubMed

    Zhang, Liqun; Wang, Yunxia; Chen, Ming; Luo, Yang; Deng, Kun; Chen, Dong; Fu, Weiling

    2014-10-15

    This research describes a new amplification signals system of the leaky surface acoustic wave (LSAW) bis-peptide nucleic acid (bis-PNA) biosensor for the simple, sensitive and rapid detection of the target double-stranded DNA (dsDNA). The system consists of a RecA protein-coated complementary single-stranded DNA (cssDNA) probe complex that amplifies the biological signal to improve the sensitivity of the biosensor. The bis-PNA probe for detecting HPV was first immobilized on a gold surface membrane of the detection channel. After the probe was completely hybridized with the corresponding target DNA, different concentrations of the "RecA protein-complementary single strand DNA probe" were added to react with the bis-PNA/dsDNA complex. The phase shift of the LSAW biosensors, which was measured and found to be most significant when the RecA protein was 45 μg/mL and the ATPγS was 2.5 mmol/L. Compared with other concentrations (P<0.01) of RecA and ATPγS, the value of the phase shift was (11.74 ± 1.03) degrees and the ratio of the phase shift and hybridization time clearly outperformed that of the other concentrations. Compared to the direct hybridization of the bis-PNA probe and the target DNA sequence, the sensitivity was effectively improved and the detection time was significantly shortened. PNA binding adjacent to the area of the target sequence homologous to the probe significantly increased the yield of the hybridization reaction between the PNA/dsDNA complex and the RecA protein-coated cssDNA probe. In this condition, the phase shift was significantly obvious and the detection time was significantly shortened. In conclusion, the combination of the RecA protein-coated cssDNA probe and the LSAW bis-PNA biosensor provides sensitivity and simple and rapid detection of clinical trace pathogenic microorganisms.

  8. Acoustic wave based MEMS devices for biosensing applications.

    PubMed

    Voiculescu, Ioana; Nordin, Anis Nurashikin

    2012-03-15

    This paper presents a review of acoustic-wave based MEMS devices that offer a promising technology platform for the development of sensitive, portable, real-time biosensors. MEMS fabrication of acoustic wave based biosensors enables device miniaturization, power consumption reduction and integration with electronic circuits. For biological applications, the biosensors are integrated in a microfluidic system and the sensing area is coated with a biospecific layer. When a bioanalyte interacts with the sensing layer, mass and viscosity variations of the biospecific layer can be detected by monitoring changes in the acoustic wave properties such as velocity, attenuation, resonant frequency and delay time. Few types of acoustic wave devices could be integrated in microfluidic systems without significant degradation of the quality factor. The acoustic wave based MEMS devices reported in the literature as biosensors and presented in this review are film bulk acoustic wave resonators (FBAR), surface acoustic waves (SAW) resonators and SAW delay lines. Different approaches to the realization of FBARs, SAW resonators and SAW delay lines for various biochemical applications are presented. Methods of integration of the acoustic wave MEMS devices in the microfluidic systems and functionalization strategies will be also discussed.

  9. A surface acoustic wave biosensor synergizing DNA-mediated in situ silver nanoparticle growth for a highly specific and signal-amplified nucleic acid assay.

    PubMed

    Zhang, Yulin; Yang, Fan; Sun, Zhongyue; Li, Yu-Tao; Zhang, Guo-Jun

    2017-09-08

    This work reports a surface acoustic wave (SAW) DNA sensor that synergizes the surface mass effect for signal-amplified and sequence-specific DNA detection in blood serum. By combining an enzyme-mediated DNA extension reaction (both viscoelastic and mass fractions) with the in situ synthesis of silver nanoparticles (mass fraction), a highly sensitive SAW biosensing interface with synergistic mass loading was tailor-engineered. As target DNA hybridized with the surface-confined capture probes, the exposed 3'-OH terminal of the target sequence could be triggered to elongate in the presence of terminal deoxynucleoside transferase (TdT) and deoxy-ribonucleoside triphosphate (dNTP), thereby producing an evident mass effect. Importantly, the extended domain can serve as a template to specifically hybridize with Ag(+)-binding sequences. In the presence of reducing agents, the accumulated silver ions would nucleate for the in situ synthesis of silver nanoparticles, further enhancing the mass loading. By using this approach, we observed a rapid growth event of silver nanoparticles for signal enhancement, which improved the detection limit (0.8 pM) of the SAW sensor by 3 orders of magnitude as compared to the strategy without signal amplification (at the nanomolar level). The sensor also achieved a high specificity in discriminating even a single-mismatched DNA sequence, and meanwhile could probe the low-abundance DNA molecules directly in human serum with minimal interference. These advantages make the SAW biosensor promising for practical applications, such as monitoring of molecular interactions and disease diagnostics.

  10. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  11. Theoretical analysis of a Love wave biosensor in liquid with a viscoelastic wave guiding layer

    NASA Astrophysics Data System (ADS)

    Wu, Huiyan; Xiong, Xiangming; Zu, Hongfei; Wang, James H.-C.; Wang, Qing-Ming

    2017-02-01

    The Love mode surface acoustic wave biosensor is considered as one of the most promising probing methods in biomedical research and diagnosis, which has been applied to detect the mechano-biological behaviors of cells attached to the surface of the device. Recent studies have reported the structural and functional optimization of Love wave biosensors for reducing propagation loss and improving sensitivity; however, the relevant device performance needs to be analyzed in depth in terms of device structure, electromechanical properties of piezoelectric crystal substrates, viscoelastic properties of wave guiding layers, and the effect of liquid loading. In this study, a 36° YX-LiTaO3 based Love wave sensor with a parylene-C wave guiding layer is considered as a cell-based biosensor. A theoretical model is proposed to describe the Love wave propagation in the wave guiding layer and penetration in the liquid medium. Decay length δ for the Love wave penetration in liquid is found to be in the order of ˜50 nm, which agrees well with experimental observations. In addition, the effects of the viscoelastic wave guiding layer and liquid medium on the effective electromechanical coupling coefficient K2 of the sensor, the propagation loss PL, and sensor response to mass loading (mass sensitivity) are investigated. The numerical results indicate that the maximum propagation velocity is found at h/λ = 0, where h is the thickness of the wave guiding layer and λ is the wavelength; and the optimal coupling coefficient and mass sensitivity can be obtained at h/λ = 0.045 and h/λ = ˜0.06 in a vacuum or ˜0.058 in water, respectively. For a good combination of these device performance parameters, it is suggested that the optimal wave guiding layer thickness in a Love wave biosensor is at the vicinity of h/λ = ˜0.05 in a vacuum and ˜0.048 in liquid (water).

  12. Guided acoustic wave inspection system

    SciTech Connect

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  13. Extreme driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Friedland, L.; Shagalov, A. G.

    2017-08-01

    The excitation of large amplitude, strongly nonlinear ion acoustic waves from trivial equilibrium by a chirped frequency drive is discussed. Under certain conditions, after passage through the linear resonance in this system, the nonlinearity and the variation of parameters work in tandem to preserve the phase-locking with the driving wave via excursion of the excited ion acoustic wave in its parameter space, yielding controlled growth of the wave amplitude. We study these autoresonant waves via a fully nonlinear warm fluid model and predict the formation of sharply peaked (extreme) ion acoustic excitations with local ion density significantly exceeding the unperturbed plasma density. The driven wave amplitude is bound by the kinetic wave-breaking, as the local maximum fluid velocity of the wave approaches the phase velocity of the drive. The Vlasov-Poisson simulations are used to confirm the results of the fluid model, and Whitham's averaged variational principle is applied for analyzing the evolution of autoresonant ion acoustic waves.

  14. A novel wireless Love wave biosensor platform for multifunctional detection

    NASA Astrophysics Data System (ADS)

    Song, Taehyeon; Nam, Minwoo; Song, SeungYeon; Yoon, Hyun C.; Lee, Keekeun

    2011-02-01

    This paper presents a novel wireless Love wave biosensor platform for multi-functional detection. A 440MHz wireless and surface acoustic wave (SAW)-based biosensor was developed on a 41° YX LiNbO3 piezoelectric substrate for the simultaneous detection of Anti- Dinitrophenyl-KLH (anti-DNP) immunoglobulin G (IgG). The developed biosensor was composed of a SAW reflective delay lines structured by an interdigital transducer (IDT), shorted grating reflectors, poly(methyl-methacrylate) (PMMA) layer and two sensitive films (Cr/Au). The PMMA was used for the waveguide layer. Coupling of mode (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. The fabricated devices were wirelessly characterized by using the network analyzer as the reader unit. The binding of anti-DNP to DNP receptor molecules induced a change in phase shifts of the original reflection peaks due to a mass loading effect. The phase shifts increased linearly with increasing anti-DNP concentration. The measured reflective coefficient S11 in the time domain showed high signal/noise (S/N) ratio, small signal attenuation, and few spurious peaks. The time positions of the reflection peaks were well matched with the predicted values from the simulation. The obtained sensitivity was 167.9°/μg/ml and 44.8°/ μg/ml for the 1st and the 2nd sensing area, respectively.

  15. Dust-Acoustic Waves: Visible Sound Waves

    SciTech Connect

    Merlino, Robert L.

    2009-11-10

    A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.

  16. Photonic crystal surface waves for optical biosensors.

    PubMed

    Konopsky, Valery N; Alieva, Elena V

    2007-06-15

    We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.

  17. A novel sensitive cell-based Love Wave biosensor for marine toxin detection.

    PubMed

    Zhang, Xi; Fang, Jiaru; Zou, Ling; Zou, Yingchang; Lang, Lang; Gao, Fan; Hu, Ning; Wang, Ping

    2016-03-15

    A novel HepG2 cell-based biosensor using Love Wave sensor was developed to implement the real-time and sensitive detection of a diarrheic shellfish poisoning (DSP) toxin, Okadaic acid (OA). Detachable Love Wave sensor unit and miniaturized 8-channel recording instrument were designed for the convenient experimental preparation and sensor response signal measurement. The Love Wave sensor, whose synchronous frequency is around 160 MHz, was fabricated with ST-cut quartz substrate. To establish a cell-based biosensor, HepG2 cells as sensing elements were cultured onto the Love Wave sensor surface, and the cell attachment process was recorded by this biosensor. Results showed this sensor could monitor the cell attachment process in real time and response signals were related to the initial cell seeding densities. Furthermore, cell-based Love Wave sensor was treated with OA toxin. This biosensor presented a good performance to various OA concentrations, with a wide linear detection range (10-100 μg/L). Based on the ultrasensitive acoustic wave platform, this cell-based biosensor will be a promising tool for real-time and convenient OA screening.

  18. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  19. Surface acoustic wave microfluidics.

    PubMed

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  20. Fiber optic evanescent wave biosensor

    NASA Astrophysics Data System (ADS)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  1. Millimeter wave I-Q standoff biosensor

    NASA Astrophysics Data System (ADS)

    Liao, Shaolin; Bakhtiari, Sasan; Elmer, Thomas; Raptis, Apostolos C.; Mikhelson, Ilya V.; Sahakian, Alan V.

    2012-06-01

    A continuous wave (CW) 94-GHz millimeter wave (mmW) standoff biosensor has been developed for remote biometric sensing applications. The sensor measures the demodulated in-phase (I) and quadrature-phase (Q) components of the received reflected mmW signal from a subject. Both amplitude and phase of the reflected signal are obtained from downconverted I and Q channels from the quadrature mixer. The mmW sensor can faithfully monitor human vital signs (heartbeat and respiration) at relatively long standoff distances. Principle Component Analysis (PCA) is used to extract the heartbeat, the respiration and the body motion signals. The approach allows one to deduce information about amplitude and beat-to-beat rate of the respiration and the heartbeat. Experimental results collected from a subject were analyzed and compared to the signal obtained with a three-electrode ECG monitoring instrument.

  2. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  3. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  4. Distributed feedback acoustic surface wave oscillator

    NASA Technical Reports Server (NTRS)

    Elachi, C. (Inventor)

    1977-01-01

    An acoustic surface wave oscillator is constructed from a semiconductor piezoelectric acoustic surface wave amplifier by providing appropriate perturbations at the piezoelectric boundary. The perturbations cause Bragg order reflections that maintain acoustic wave oscillation under certain conditions of gain and feedback.

  5. Producing undistorted acoustic sine waves.

    PubMed

    Boutin, Henri; Smith, John; Wolfe, Joe

    2014-04-01

    A simple digital method is described that can produce an undistorted acoustic sine wave using an amplifier and loudspeaker having considerable intrinsic distortion, a common situation at low frequencies and high power. The method involves, first, using a pure sine wave as the input and measuring the distortion products. An iterative procedure then progressively adds harmonics with appropriate amplitude and phase to cancel any distortion products. The method is illustrated by producing a pure 52 Hz sine wave at 107 dB sound pressure level with harmonic distortion reduced over the audible range to >65 dB below the fundamental.

  6. Effect of viscoelastic film for shear horizontal surface acoustic wave on quartz

    NASA Astrophysics Data System (ADS)

    Goto, Mikihiro; Yatsuda, Hiromi; Kondoh, Jun

    2015-07-01

    A numerical analysis for the mass loading sensitivity of shear horizontal surface acoustic wave (SH-SAW) immunoassay biosensors on quartz has already been studied. However, the mass loading analysis is insufficient to explain the actual biosensor performance. To understand the SH-SAW biosensor performance, we analyze the effect of a viscoelastic film on SH-SAW biosensors. In this paper, a numerical analysis using a simple viscoelastic model for the SH-SAW biosensors is presented. In the theoretical model, the bioreaction layer on the SH-SAW biosensors can be treated as a viscoelastic film. The velocity changes of the 250 MHz SH-SAWs on quartz substrates, which are covered with bovine serum albumin (BSA) layers of different thicknesses, were measured and compared with the theoretical results obtained using the proposed viscoelastic model. Good agreement of the velocity changes of SH-SAWs versus changes in the viscoelastic film thickness between theoretical and experimental results was obtained.

  7. Love wave acoustic sensor for testing in liquids

    NASA Astrophysics Data System (ADS)

    Pan, Haifeng; Zhu, Huizhong; Feng, Guanping

    2001-09-01

    Love wave is one type of the surface acoustic waves (SAWs). It is guided acoustic mode propagating in ta thin layer deposited on a substrate. Because of its advantages of high mass sensitivity, low noise level and being fit for operating in liquids, Love wave acoustic sensors have become one of the hot spots in the research of biosensor nowadays. In this paper the Love wave devices with the substrate of ST-cut quartz and the guiding layers of PMMA and fused quartz were fabricated successfully. By measuring the transfer function S21 and the insertion loss of the devices, the characteristics of the Rayleigh wave device and the Love wave devices with different guiding layers in gas phase and liquid phase were compared. It was validated that the Love wave sensor is suitable for testing in liquids but the Rayleigh wave sensor is not. What's more, SiO2 is the more proper material for the guiding layer of the Love wave device.

  8. Acoustic waves in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison

    2013-09-01

    Seminal papers by Brutsaert (1964) and Brutsaert and Luthin (1964) provided the first rigorous theoretical framework for examining the poroelastic behavior of unsaturated soils, including an important application linking acoustic wave propagation to soil hydraulic properties. Theoretical developments during the 50 years that followed have led Lo et al., (2005) to a comprehensive model of these phenomena, but the relationship of its elasticity parameters to standard poroelasticity parameters measured in hydrogeology has not been established. In the present study, we develop this relationship for three key parameters, the Gassman modulus, Skempton coefficient, and Biot-Willis coefficient by generalizing them to an unsaturated porous medium. We demonstrate the remarkable result that well-known and widely applied relationships among these parameters for a porous medium saturated by a single fluid are also valid under very general conditions for unsaturated soils. We show further that measurement of the Biot-Willis coefficient along with three of the six elasticity coefficients in the model of Lo et al. (2005) is sufficient to characterize poroelastic behavior. The elasticity coefficients in the model of Lo et al. (2005) are sensitive to the dependence of capillary pressure on water saturation and its viscous-drag coefficients are functions of relative permeability, implying that hysteresis in the water retention curve and hydraulic conductivity function should affect acoustic wave behavior in unsaturated soils. To quantify these as-yet unknown effects, we performed numerical simulations for Dune sand at two representative wave excitation frequencies. Our results show that the acoustic wave investigated by Brutsaert and Luthin (1964) propagates at essentially the same speed during imbibition and drainage, but is attenuated more during drainage than imbibition. Overall, effects on acoustic wave behavior caused by hysteresis become more significant as the excitation

  9. Millimeter waves: acoustic and electromagnetic.

    PubMed

    Ziskin, Marvin C

    2013-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects.

  10. Millimeter Waves: Acoustic and Electromagnetic

    PubMed Central

    Ziskin, Marvin C.

    2012-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. PMID:22926874

  11. Surface acoustic wave frequency comb

    NASA Astrophysics Data System (ADS)

    Matsko, A. B.; Savchenkov, A. A.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2012-02-01

    We investigate opto-mechanical oscillation (OMO) and subsequent generation of acoustic wave frequency combs in monolithic crystalline whispering gallery mode (WGM) resonators. The OMO is observed in resonators made of electro-optic (lithium tantalate), non-electro-optic birefringent (magnesium fluoride), and non-birefringent (calcium fluoride) materials. The phenomenon manifests itself as generation of optical harmonics separated by the eigenfrequency of a surface acoustic wave (SAW) mechanical mode of the same WGM resonator. We show that the light escaping the resonator and demodulated on a fast photodiode produces a spectrally pure radio frequency (RF) signal. For instance, we demonstrate generation of 200 MHz signals with instantaneous linewidth of 0.2 Hz.

  12. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  13. Is dust acoustic wave a new plasma acoustic mode?

    NASA Astrophysics Data System (ADS)

    Dwivedi, C. B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi et al. [J. Plasma Phys. 41, 219 (1989)]. It is suggested that both correct and more usable nomenclature of the ALM should be the so-called acoustic mode.

  14. Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens.

    PubMed

    Li, Shuangming; Wan, Ying; Su, Yan; Fan, Chunhai; Bhethanabotla, Venkat R

    2017-09-15

    In this work, a Love wave biosensing platform is described for detecting cancer-related biomarker carcinoembryonic antigen (CEA). An ST 90°-X quartz Love wave device with a layer of SiO2 waveguide was combined with gold nanoparticles (Au NPs) to amplify the mass loading effect of the acoustic wave sensor to achieve a limit of detection of 37pg/mL. The strategy involves modifying the Au NPs with anti-CEA antibody conjugates to form nanoprobes in a sandwich immunoassay. The unamplified detection limit of the Love wave biosensor is 9.4ng/mL. This 2-3 order of magnitude reduction in the limit of detection brings the SAW platform into the range useful for clinical diagnosis. Measurement electronics and microfluidics are easily constructed for acoustic wave biosensors, such as the Love wave device described here, allowing for robust platforms for point of care applications for cancer biomarkers in general. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Acoustic emissions from convected wave packets

    NASA Astrophysics Data System (ADS)

    Obrist, Dominik

    2011-02-01

    Localized acoustic sources can often be modeled by wave packets. It has been recognized for a long time that the particular structure of these wave packet sources has a strong influence on the character of the acoustic emission to the far field. In the present work, we study the acoustic emission patterns with respect to the phase velocity, group velocity, size, and aspect ratio of the wave packet sources. To this end, the acoustic problem is formulated on the basis of Lighthill's acoustic analogy and then recast to the geometrical problem of conic sections. This leads to the notion of elliptic (subsonic), parabolic (sonic), and hyperbolic (supersonic) acoustic emission patterns. The resulting geometric theory for acoustic emissions from wave packets includes phenomena such as Mach waves, bi- and superdirectivity, Doppler shift, and silent directions.

  16. Biosensors: the new wave in cancer diagnosis

    PubMed Central

    Bohunicky, Brian; Mousa, Shaker A

    2011-01-01

    The earlier cancer can be detected, the better the chance of a cure. Currently, many cancers are diagnosed only after they have metastasized throughout the body. Effective, accurate methods of cancer detection and clinical diagnosis are urgently needed. Biosensors are devices that are designed to detect a specific biological analyte by essentially converting a biological entity (ie, protein, DNA, RNA) into an electrical signal that can be detected and analyzed. The use of biosensors in cancer detection and monitoring holds vast potential. Biosensors can be designed to detect emerging cancer biomarkers and to determine drug effectiveness at various target sites. Biosensor technology has the potential to provide fast and accurate detection, reliable imaging of cancer cells, and monitoring of angiogenesis and cancer metastasis, and the ability to determine the effectiveness of anticancer chemotherapy agents. This review will briefly summarize the current obstacles to early detection of cancer and the expanding use of biosensors as a diagnostic tool, as well as some future applications of biosensor technology. PMID:24198482

  17. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  18. Acoustic waves in medical imaging and diagnostics.

    PubMed

    Sarvazyan, Armen P; Urban, Matthew W; Greenleaf, James F

    2013-07-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term ultrasonography, or its abbreviated version sonography, meant an imaging modality based on the use of ultrasonic compressional bulk waves. Beginning in the 1990s, there started to emerge numerous acoustic imaging modalities based on the use of a different mode of acoustic wave: shear waves. Imaging with these waves was shown to provide very useful and very different information about the biological tissue being examined. We discuss the physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities and frequencies that have been used in different imaging applications is presented. We discuss the potential for future shear wave imaging applications. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  20. Surface acoustic wave devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  1. Evanescent wave fluorescence biosensors: Advances of the last decade

    PubMed Central

    Taitt, Chris Rowe; Anderson, George P.; Ligler, Frances S.

    2015-01-01

    Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein. PMID:26232145

  2. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2015-09-30

    J., “ Comparison of measured acoustic reflection fluctuations and estimates based on roughness,” J. Acous. Soc. Am., 137, 2391-2391 (2015), DOI:http...of Acoustic Waves from Ocean Boundaries Marcia... acoustic interaction with the ocean floor, including penetration through and reflection from smooth and rough water/sediment interfaces, scattering

  3. Robust acoustic wave manipulation of bubbly liquids

    SciTech Connect

    Gumerov, N. A.; Akhatov, I. S.; Ohl, C.-D.; Sametov, S. P.; Khazimullin, M. V.; Gonzalez-Avila, S. R.

    2016-03-28

    Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  4. Probing Acoustic Nonlinearity by Mixing Surface Acoustic Waves

    SciTech Connect

    Hurley, David Howard; Telschow, Kenneth Louis

    2000-07-01

    Measurement methods aimed at determining material properties through nonlinear wave propagation are sensitive to artifacts caused by background nonlinearities inherent in the ultrasonic generation and detection methods. The focus of this paper is to describe our investigation of nonlinear mixing of surface acoustic waves (SAWs) as a means to decrease sensitivity to background nonlinearity and increase spatial sensitivity to acoustic nonlinearity induced by material microstructure.

  5. Acoustic wave science realized by metamaterials.

    PubMed

    Lee, Dongwoo; Nguyen, Duc Minh; Rho, Junsuk

    2017-01-01

    Artificially structured materials with unit cells at sub-wavelength scale, known as metamaterials, have been widely used to precisely control and manipulate waves thanks to their unconventional properties which cannot be found in nature. In fact, the field of acoustic metamaterials has been much developed over the past 15 years and still keeps developing. Here, we present a topical review of metamaterials in acoustic wave science. Particular attention is given to fundamental principles of acoustic metamaterials for realizing the extraordinary acoustic properties such as negative, near-zero and approaching-infinity parameters. Realization of acoustic cloaking phenomenon which is invisible from incident sound waves is also introduced by various approaches. Finally, acoustic lenses are discussed not only for sub-diffraction imaging but also for applications based on gradient index (GRIN) lens.

  6. Design and application of fiber optic evanescent wave biosensor

    NASA Astrophysics Data System (ADS)

    Huang, Huijie; Zhai, Junhui; Zhao, Yongkai; Yang, Ruifu; Ren, Bingqiang; Cheng, Zhaogu; Du, Longlong; Lu, Dunwu

    2003-12-01

    A fiber-optic biosensor is developed based on the principle of evanescent wave while light propagates in optical fiber. The biosensor uses a red laser diode at 636.85 nm for exciting Cy5 fluorescent dye. Sensitivity limit of 0.01 nnmol/l is obtained from the detection of serial Cy5 solutions with various concentrations. In log-to-log plot, excellent linear response characteristic is seen in the Cy5 concentrations ranging from 0.01 nmlo/l to 100 nmol/l. And a good result of signal-to-noise ratio of 4.61 is obtained when the biosensor is used to measure Legionella pneumophila solution of 0.01 μmol/l. All the results are comparable with those that are obtained by a commercial biochip scanner GeneTAC 1000.

  7. Swimming Using Surface Acoustic Waves

    PubMed Central

    Bourquin, Yannyk; Cooper, Jonathan M.

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  8. Swimming using surface acoustic waves.

    PubMed

    Bourquin, Yannyk; Cooper, Jonathan M

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel.

  9. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.; Lee, D. L.; Leja, I.

    1979-01-01

    Four areas of surface acoustic wave (SAW) controlled oscillators were investigated and a number of 401.2 MHz oscillators were constructed that showed improved performance. Aging studies on SAW devices packaged in HC36/U cold weld enclosures produced frequency drifts as low as 0.4 ppm in 35 weeks and drift rates well under 0.5 ppm/year. Temperature compensation circuits have substantially improved oscillator temperature stability, with a deviation of + or - 4 ppm observed over the range -45 C to + 40 C. High efficiency amplifiers were constructed for SAW oscillators and a dc to RF efficiency of 44 percent was obtained for an RF output of 25 mW. Shock and vibration tests were made on four oscillators and all survived 500 G shock pulses unchanged. Only when white noise vibration (20 Hz to 2000 Hz) levels of 20 G's rms were applied did some of the devices fail.

  10. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.

    1978-01-01

    A number of 401.2 MHz surface acoustic wave (SAW) controlled oscillators were built and tested. The performance of these oscillators was evaluated for possible use as stable oscillators in communication systems. A short term frequency stability of better than 1 x 10 to the minus 9th power for one second was measured for the SAW oscillators. Long term frequency drift was measured and was found to be dependent on SAW design and packaging. Drift rates ranging from 15 ppm in twenty weeks to 2.5 ppm in twenty weeks were observed. Some further improvement was required. The temperature dependence of the saw oscillators was evaluated and it was concluded that some form of temperature compensation will be necessary to meet the requirements of some communication systems.

  11. Is dust acoustic wave a new plasma acoustic mode?

    SciTech Connect

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of the ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}

  12. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  13. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  14. Optical biosensors based on photonic crystal surface waves.

    PubMed

    Konopsky, Valery N; Alieva, Elena V

    2009-01-01

    Optical biosensors have played a key role in the selective recognition of target biomolecules and in biomolecular interaction analysis, providing kinetic data about biological binding events in real time without labeling. The advantages of the label-free concept are the elimination of detrimental effects from labels that may interfere with fundamental interaction and the absence of a time-consuming pretreatment. The disadvantages of all label-free techniques--including the most mature one, surface plasmon resonance (SPR) technique, are a deficient sensitivity to a specific signal and undesirable susceptibilities to non-specific signals, e.g., to the volume effect of refraction index variations. These variations arise from temperature fluctuations and drifts and they are the limiting factor for many state-of-the-art optical biosensors. Here we describe a new optical biosensor technique based on the registration of dual optical s-polarized waves on a photonic crystal surface. The simultaneous registration of two different optical modes from the same surface spot permits the segregation of the volume and the surface signals, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. The technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with a signal/noise ratio of about 15 at 1 s signal accumulation time. The detection limit is about 20 fg of the analyte on the probed spot of the surface.

  15. Interferometry of background acoustic-gravity waves

    NASA Astrophysics Data System (ADS)

    Zabotin, Nikolay A.; Godin, Oleg A.; Sheehan, Anne F.

    2013-04-01

    In addition to acoustic-gravity waves generated in the ocean and atmosphere by strong transient events such as earthquakes and tsunamis, there exists a certain background level of acoustic-gravity waves. Because of their large free path length and a wide spatial distribution of the wave sources, background acoustic-gravity waves form a diffuse (but not necessarily isotropic), random wave field. Wave fields generated by uncorrelated sources are known to retain finite correlation at ranges large compared to the wavelength and spatial dimensions of the random wave sources. A technique known as noise (or wave) interferometry has been shown in seismology, helioseismology, acoustics, and other fields to be an effective tool for retrieving information about the deterministic propagation environment and the random wave field from two-point cross-correlation functions of diffuse noise. Here, we apply wave interferometry to acoustic-gravity waves in the coupled ocean-atmosphere system. The primary dataset analyzed in this study was obtained by 30 differential pressure gauges deployed from January 2009 to February 2010 on the seafloor offshore the South Island of New Zealand in the course of the Marine Observations of Anisotropy Near Aotearoa (MOANA) Seismic Experiment [Yang, Z., A. Sheehan, J. A. Collins, and G. Laske (2012), The character of seafloor ambient noise recorded offshore New Zealand: Results from the MOANA ocean bottom seismic experiment, Geochem. Geophys. Geosyst., 13, Q10011]. By applying time-reversal ideas to processing of cross-correlations of random wave fields, we have developed a compressed cross-correlation function technique to compensate for wave dispersion in evaluating the cross-correlation function of a random wave field. When applied to the seafloor pressure data, the technique drastically reduces the signal averaging times necessary for emergence of deterministic features and allows for accurate passive measurements of wave travel times and

  16. Shear waves in acoustic anisotropic media

    SciTech Connect

    Grechka, Vladimir; Zhang, Linbin; Rector, James W.

    2003-01-02

    Acoustic transversely isotropic (TI) media are defined by artificially setting the shear-wave velocity in the direction of symmetry axis, VS0, to zero. Contrary to conventional wisdom that equating VS0 = 0 eliminates shear waves, we demonstrate their presence and examine their properties. Specifically, we show that SV-waves generally have finite nonzero phase and group velocities in acoustic TI media. In fact, these waves have been observed in full waveform modeling, but apparently they were not understood and labeled as numerical artifacts. Acoustic TI media are characterized by extreme, in some sense infinite strength of anisotropy. It makes the following unusual wave phenomena possible: (1) there are propagation directions, where the SV-ray is orthogonal to the corresponding wavefront normal, (2) the SV-wave whose ray propagates along the symmetry axis is polarized parallel to the P-wave propagating in the same direction, (3) P-wave singularities, that is, directions where P- and SV -wave phase velocities coincide might exist in acoustic TI media. We also briefly discuss some aspects of wave propagation in low-symmetry acoustic anisotropic models. Extreme anisotropy in those media creates bizarre phase- and group-velocity surfaces that might bring intellectual delight to an anisotropic guru.

  17. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  18. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  19. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  20. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  1. Guided Bloch surface wave resonance for biosensor designs.

    PubMed

    Kang, Xiu-Bao; Liu, Lan-Jun; Lu, Hai; Li, Hai-Dong; Wang, Zhi-Guo

    2016-05-01

    A guided Bloch surface wave resonance (GBR) configuration is introduced for label-free biosensing. The GBR is realized by coupling the first-order diffraction of a subwavelength grating with the Bloch surface wave at the interface between a 1D photonic crystal slab and bio-solution. In addition to sustaining the Bloch surface mode, the photonic crystal provides the design freedom of simultaneously increasing the quality and decreasing the sideband transmissions of the resonance spectrum. The low sideband and high-quality features along with the large sensitivity rising from the strong overlap between the Bloch surface mode and the bio-solution make the GBR suitable for the design of biosensors. Biosensors with a high figure of merit are realized by the compact configurations.

  2. Writing magnetic patterns with surface acoustic waves

    SciTech Connect

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  3. Photonic Crystal Biosensor Based on Optical Surface Waves

    PubMed Central

    Konopsky, Valery N.; Karakouz, Tanya; Alieva, Elena V.; Vicario, Chiara; Sekatskii, Sergey K.; Dietler, Giovanni

    2013-01-01

    A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS/PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately. PMID:23429517

  4. Photonic crystal biosensor based on optical surface waves.

    PubMed

    Konopsky, Valery N; Karakouz, Tanya; Alieva, Elena V; Vicario, Chiara; Sekatskii, Sergey K; Dietler, Giovanni

    2013-02-19

    A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  5. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  6. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  7. Reflection and Refraction of Acoustic Waves by a Shock Wave

    NASA Technical Reports Server (NTRS)

    Brillouin, J.

    1957-01-01

    The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.

  8. Development of a Wireless Love Wave Biosensor Platform for Multi-functional Detection

    NASA Astrophysics Data System (ADS)

    Song, Taehyeon; Song, Seung Yeon; Yoon, Hyun C.; Lee, Keekeun

    2011-06-01

    A Love wave-based biosensor with a 440 MHz operating frequency was developed for simultaneous detection of two different concentrations of anti-dinitrophenyl-keyhole limpet hemocyanin (Anti-DNP-KLH) rabbit immunoglobulin G (IgG) in a single sensor. The sensor was composed of surface acoustic wave (SAW) reflective delay lines built from interdigital transducer (IDT) and several reflectors, a poly(methyl methacrylate) (PMMA) waveguide layer, and two sensitive films. To extract optimal device parameters, coupling of mode (COM) modeling was carried. According to the device parameters determined, the Love wave biosensor was fabricated and then wirelessly characterized by a network analyzer. Binding of anti-DNP IgG to DNP induced a change in the time positions of the original reflection peaks mainly due to the mass loading effect. The measured time positions were matched well with the predicted values from COM modeling. The sensitivities evaluated from the first and second sensitive films were 167.9 and 44.8 deg·µg-1·ml-1, respectively.

  9. RF Filter using Boundary Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Kando, Hajime; Yamamoto, Daisuke; Tochishita, Hikari; Kadota, Michio

    2006-05-01

    In this paper, we report a new structure of a shear horizontal (SH) type boundary acoustic wave for cellular phone applications. Such a structure composed of electrodes with a low shear wave velocity between two materials, namely, the SiO2 film/Au-electrode/LiNbO3 substrate, is proposed. The ladder filter used in this paper had this structure. By changing the propagation angle of the acoustic wave, the electromechanical coupling factor k2 range from 0 to 16% was obtained, as well as a normalized bandwidth range 0.67 to 1.85 fold as large as that of a 36-46°Y-X LiTaO3 leaky surface acoustic wave (LT-LSAW) filter. In addition, an excellent temperature coefficient of delay time (TCD=25 ppm/°C) and a large mutual coupling coefficient κ12 (=0.15) were also obtained.

  10. Investigation of Shallow Bulk Acoustic Waves

    DTIC Science & Technology

    1981-11-12

    with the theoretical calculation using equivalent circuit model. How- ever, the spurious bulk wave level at high frequencies is much lower than that of...effect of a metallic grating on SBAW devices on quartz. 7 A periodic metallic structure will support horizontal shear surface waves if the finger...We have extensively investigated shallow bulk acoustic waves in. terms of material aspects, transducer equivalent circuits and device dev-.iopment

  11. Biosensors.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  12. Biosensors.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  13. Imaging of Acoustic Waves in Sand

    SciTech Connect

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  14. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  15. Topological charge pump by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Yi, Zheng; Shi-Ping, Feng; Shi-Jie, Yang

    2016-06-01

    Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves. Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

  16. 25 years of dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Merlino, Robert L.; Merlino

    2014-12-01

    The dust acoustic wave (DAW) was first discussed by P. K. Shukla in May of 1989 at the First Capri Workshop on Dusty Plasmas. In the past 25 years, the subsequent publication of the linear and nonlinear properties of the DAW (Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543) has generated and sustained a large body of theoretical and experimental research that has clarified the physics of collective effects in dusty plasmas. A unique feature of the DAW is that it can be observed (literally) using laser illumination and high-speed videography, revealing details of wave-particle interactions at an unprecedented single particle level. This paper attempts to review some of the contributions and extensions of dust acoustic wave physics, as well as identify recent findings that illustrate the potential importance of this dust wave in the agglomeration of dust particles.

  17. Acoustic waves superimposed on incompressible flows

    NASA Technical Reports Server (NTRS)

    Hodge, Steve

    1990-01-01

    The use of incompressible approximations in deriving solutions to the Lighthill wave equation was investigated for problems where an analytical solution could be found. A particular model problem involves the determination of the sound field of a spherical oscillating bubble in an ideal fluid. It is found that use of incompressible boundary conditions leads to good approximations in the important region of high acoustic wave number.

  18. Broadband acoustic cloak for ultrasound waves.

    PubMed

    Zhang, Shu; Xia, Chunguang; Fang, Nicholas

    2011-01-14

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely, serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Because of the nonresonant nature of the building elements, this low-loss (∼6  dB/m) cylindrical cloak exhibits invisibility over a broad frequency range from 52 to 64 kHz. Furthermore, our experimental study indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.

  19. Broadband Acoustic Cloak for Ultrasound Waves

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Xia, Chunguang; Fang, Nicholas

    2011-01-01

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely, serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Because of the nonresonant nature of the building elements, this low-loss (˜6dB/m) cylindrical cloak exhibits invisibility over a broad frequency range from 52 to 64 kHz. Furthermore, our experimental study indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.

  20. Gas sensing with surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Martin, S. J.; Schweizer, K. S.; Ricco, A. J.; Zipperian, T. E.

    1985-03-01

    The use of a ZnO-on-Si surface acoustic wave (SAW) resonator as a gas sensor is discussed. In particular, the sensitivity of the device to organic vapors is examined. The planar nature of the SAW device, in which the acoustic energy is confined to within roughly one acoustic wavelength of the surface, makes the device extremely sensitive to surface perturbations. This characteristic has been exploited in the construction of SAW gas sensors in which the surface wave propagation characteristics are altered by species adsorbed from the ambient gas. The porous nature of the sputtered ZnO film, in conjunction with the microbalance capability of the SAW device, gives the sensor the ability to distinguish molecules on the basis of both size and mass.

  1. Acoustic-Gravity Waves from Bolide Sources

    NASA Astrophysics Data System (ADS)

    Revelle, Douglas O.

    2008-06-01

    We have developed a new approach to modeling the acoustic-gravity wave (AGW) radiation from bolide sources. This first effort involves entry modeling of bolide sources that have available satellite data through procedures developed in ReVelle (Earth Moon Planets 95, 441-476, 2004a; in: A. Milani, G. Valsecchi, D. Vokrouhlicky (eds) NEO Fireball Diversity: Energetics-based Entry Modeling and Analysis Techniques, Near-earth Objects: Our Celestial Neighbors (IAU S236), 2007b). Results from the entry modeling are directly coupled to AGW production through line source blast wave theory for the initial wave amplitude and period at x=10 (at 10 blast wave radii and perpendicular to the trajectory). The second effort involves the prediction of the formation and or dominance of the propagation of the atmospheric Lamb, edge-wave composite mode in a viscous fluid (Pierce, J. Acoust. Soc. Amer. 35, 1798-1807, 1963) as a function of the source energy, horizontal range and source altitude using the Lamb wave frequency that was deduced directly during the entry modeling and that is used as a surrogate for the source energy. We have also determined that Lamb wave production by bolides at close range decreases dramatically as either the source energy decreases or the source altitude increases. Finally using procedures in Gill ( Atmospheric-Ocean Dynamics, 1982) and in Tolstoy ( Wave Propagation, 1973), we have analyzed two simple dispersion relationships and have calculated the expected dispersion for the Lamb edge-wave mode and for the excited, propagating internal acoustic waves. Finally, we have used the above formalism to fully evaluate these techniques for four large bolides, namely: the Tunguska bolide of June 30, 1908; the Revelstoke bolide of March 31, 1965; the Crete bolide of June 6, 2002 and the Antarctic bolide of September 3, 2004. Due to page limitations, we will only present results in detail for the Revelstoke bolide.

  2. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  3. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  4. Marble Ageing Characterization by Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  5. Measuring Acoustic Nonlinearity by Collinear Mixing Waves

    NASA Astrophysics Data System (ADS)

    Liu, M.; Tang, G.; Jacobs, L. J.; Qu, J.

    2011-06-01

    It is well known that the acoustic nonlinearity parameter β is correlated to fatigue damage in metallic materials. Various methods have been developed to measure β. One of the most often used methods is the harmonic generation technique, in which β is obtained by measuring the magnitude of the second order harmonic waves. An inherent weakness of this method is the difficulty in distinguishing material nonlinearity from the nonlinearity of the measurement system. In this paper, we demonstrate the possibility of using collinear mixing waves to measure β. The wave mixing method is based on the interaction between two incident waves in a nonlinear medium. Under certain conditions, such interactions generate a third wave of different frequency. This generated third wave is also called resonant wave, because its amplitude is unbounded if the medium has no attenuation. Such resonant waves are less sensitive to the nonlinearity of the measurement system, and have the potential to identify the source location of the nonlinearity. In this work, we used a longitudinal wave and a shear wave as the incident waves. The resonant shear wave is measured experimentally on samples made of aluminum and steel, respectively. Numerical simulations of the tests were also performed using a finite difference method.

  6. The Acoustics of Shock Wave Lithotripsy

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2007-04-01

    The shock waves employed in lithotripsy are high amplitude acoustics waves. As they propagate through the body to the stone that are affected by coupling to the body and the presence of tissue through which they must pass. Once the shock wave arrives at the stone there is a complex transmission of energy into the stone as the shock wave can couple into compression and shear waves in the stone and produce cavitation in the surrounding fluid. The surrounding tissue is also subject to large physical forces that can result in damage. Physical phenomena that play a role include: generation of sound, nonlinear distortion, attenuation, diffraction, coupling into the body, transmission and mode conversion into the stone. This paper gives a synopsis of some of the relevant physics that applies to shock wave lithotripsy.

  7. Cloaking of the momentum in acoustic waves.

    PubMed

    Sklan, Sophia

    2010-01-01

    Through an appropriate change in variables, we find that the three-dimensional acoustic wave equation is subject to the transformation media interpretation. In particular, we determine that this interpretation can be extended beyond the pressure difference to also account for the momentum transported by the wave. The suitability of momentum transport is especially interesting as it is an example where the field of interest is not governed by a wave equation. We examine how both fields behave in the case of cloaking. Explicit consideration of the boundary conditions shows that perfect cloaking is preserved, even when the incoming momentum is nonzero at the surface of the cloak.

  8. Surface acoustic wave propagation in graphene

    NASA Astrophysics Data System (ADS)

    Thalmeier, Peter; Dóra, Balázs; Ziegler, Klaus

    2010-01-01

    Surface acoustic wave (SAW) propagation is a powerful method to investigate two-dimensional (2D) electron systems. We show how SAW observables are influenced by coupling to the 2D massless Dirac electrons of graphene and argue that Landau oscillations in SAW propagation can be observed as function of gate voltage for constant field. Contrary to other transport measurements, the zero-field SAW propagation gives the wave-vector dependence of graphene conductivity for small wave numbers. We predict a crossover from Schrödinger to Dirac-like behavior as a function of gate voltage, with no attenuation in the latter for clean samples.

  9. Acoustic Wave Filter Technology - A Review.

    PubMed

    Ruppel, Clemens

    2017-04-04

    Today, acoustic filters are the filter technology to meet the requirements with respect to performance dictated by the cellular phone standards and their form factor. Around 2 billion cellular phones are sold every year, and smart phones are of a very high percentage of approximately two thirds. Smart phones require a very high number of filter functions ranging from the low double-digit range up to almost triple digit numbers in the near future. In the frequency range up to 1 GHz surface acoustic wave (SAW) filters are almost exclusively employed, while in the higher frequency range bulk acoustic wave (BAW) and SAW filters are competing for their shares. Prerequisites for the success of acoustic filters were the availability of high quality substrates, advanced and highly reproducible fabrication technologies, optimum filter techniques, precise simulation software, and advanced design tools that allow the fast and efficient design according to customer specifications. The paper will try to focus on innovations leading to high volume applications of intermediate frequency (IF) and radio frequency (RF) acoustic filters, e.g., TV IF filters, IF filters for cellular phones, and SAW/BAW RF filters for the RF front-end of cellular phones.

  10. Millimeter-Wave Acoustic Transducers

    DTIC Science & Technology

    1990-04-01

    Phys . Rev. Lett . 54, 1810 ( 1985 ). 28. S.A. Akhmanov, V.V. Fadeev, R.V. Khokhlov, and O.N. Chunaev, Sov . Phys . JETP Lett . 6, 85...Acoust. Soc. Am. 66, 1801 (1979). 41 . F.P. Milliken, K.W. Schwartz and C.W. Smith, Phys . Rev. Lett . 48, 1204 (1982). 42 . T.E. Huber and H.J. Maris... Phys . Lett . 7, 264 (1965). 7. K.H. Yang, P.L. Richards, and Y.R. Shen, J. Appl. Phys . 44, 1417 (1973). 8. H.K. Wong, G.K. Wong and J.B.

  11. Wireless and simultaneous detections of multiple bio-molecules in a single sensor using Love wave biosensor.

    PubMed

    Oh, Haekwan; Fu, Chen; Kim, Kunnyun; Lee, Keekeun

    2014-11-17

    A Love wave-based biosensor with a 440 MHz center frequency was developed for the simultaneous detection of two different analytes of Cartilage Oligomeric Matrix Protein (COMP) and rabbit immunoglobulin G (IgG) in a single sensor. The developed biosensor consists of one-port surface acoustic wave (SAW) reflective delay lines on a 41° YX LiNbO3 piezoelectric substrate, a poly(methyl methacrylate) (PMMA) waveguide layer, and two different sensitive films. The Love wave biosensor was wirelessly characterized using two antennas and a network analyzer. The binding of the analytes to the sensitive layers induced a large change in the time positions of the original reflection peaks mainly due to the mass loading effect. The assessed time shifts in the reflection peaks were matched well with the predicted values from coupling of mode (COM) modeling. The sensitivities evaluated from the sensitive films were ~15 deg/µg/mL for the rabbit IgG and ~1.8 deg/ng/mL for COMP.

  12. Extraordinary transmission of gigahertz surface acoustic waves

    PubMed Central

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  13. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  14. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  15. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1986-01-01

    In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  16. Ring waveguide resonator on surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Martin, G.; Weihnacht, M.

    2007-04-01

    A simple regular electrode structure for surface acoustic wave (SAW) devices is proposed. The structure consists of an interdigital transducer in the form of a ring placed on the Z cut of a hexagonal piezoelectric crystal. Finite thickness electrodes produce the known slowing effect for a SAW in comparison with this SAW on a free surface. The closed "slow" electrode region with the "fast" surrounding region forms an open waveguide resonator structure with the acoustic field concentrated in the electrode region. If the radius of the structure is large enough for a given wavelength, an acceptable level of radiation losses can be reached. The electrical admittance of such resonator does not have sidelobes.

  17. Absorption of surface acoustic waves by graphene

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Xu, W.

    2011-06-01

    We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs). We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  18. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    SciTech Connect

    Polzikova, N. I. Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  19. Acoustic Remote Sensing of Rogue Waves

    NASA Astrophysics Data System (ADS)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  20. Elastic wave invariants for acoustic emission

    NASA Astrophysics Data System (ADS)

    Pardee, W. J.

    1981-07-01

    It is shown that there are four conserved properties of an elastic wave in an infinite isotropic plate: the energy, the two components of wave momentum parallel to the surface, and wave angular momentum normal to the surface. All four invariants are volume integrals of quadratic functions of the spatial (Eulerian) coordinates. The canonical energy-momentum density tensor and the orbital, spin, and total angular momentum density tensors are constructed and sufficient conditions for their conservation are demonstrated. A procedure for measuring the wave momentum of a surface wave is proposed. It is argued that these invariants are likely to be particularly useful characterizations of acoustic emission, e.g., from a growing crack. Experimental tests are proposed, and possible applications to practical monitoring problems described.

  1. Modulation of a quantum positron acoustic wave

    NASA Astrophysics Data System (ADS)

    Amin, M. R.

    2015-09-01

    Amplitude modulation of a positron acoustic wave is considered in a four-component electron-positron plasma in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the particle exchange-correlation potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to viscosity in the momentum balance equation of the charged carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the quantum positron acoustic wave by employing the standard reductive perturbation technique. Detailed analysis of the linear and nonlinear dispersions of the quantum positron acoustic wave is presented. For a typical parameter range, relevant to some dense astrophysical objects, it is found that the quantum positron acoustic wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the quantum effect due to the particle exchange-correlation potential is significant in comparison to the effect due to the Bohm potential for smaller values of the carrier wavenumber. However, for comparatively larger values of the carrier wavenumber, the Bohm potential effect overtakes the effect of the exchange-correlation potential. It is found that the critical wavenumber for the modulation instability depends on the ratio of the equilibrium hot electron number density and the cold positron number density and on the ratio of the equilibrium hot positron number density and the cold positron number density. A numerical result on the growth rate of the modulation instability is also presented.

  2. Resonant surface acoustic wave chemical detector

    DOEpatents

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  3. Biosensors for hepatitis B virus detection

    PubMed Central

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-01-01

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed. PMID:25253948

  4. Support minimized inversion of acoustic and elastic wave scattering

    SciTech Connect

    Safaeinili, Ali

    1994-04-24

    This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion.

  5. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  6. Design of guided Bloch surface wave resonance bio-sensors with high sensitivity

    NASA Astrophysics Data System (ADS)

    Kang, Xiu-Bao; Wen, Li-Wei; Wang, Zhi-Guo

    2017-01-01

    The sensing performance of bio-sensors based on guided Bloch surface wave (BSW) resonance (GBR) is studied. GBR is realized by coupling the propagating electromagnetic wave with BSW on one side of a one-dimensional photonic crystal slab via the grating on the other side. The sensitivity of the designed bio-sensors is proportional to the grating constant when the wavelength spectrum is analyzed, and inversely proportional to the normal wave vector of the incident electromagnetic wave when the angular spectrum is resolved. For a GBR bio-sensor designed to operate near 70° angle of incidence from air, the angular sensitivity is very high, reaching 128 deg RIU-1. The sensitivity can be substantially increased by designing bio-sensors for operating at larger angles of incidence.

  7. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  8. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  9. Laboratory observations of self-excited dust acoustic shock waves

    NASA Astrophysics Data System (ADS)

    Merlino, Robert L.; Heinrich, Jonathon R.; Kim, Su-Hyun

    2009-11-01

    Dust acoustic waves have been discussed in connection with dust density structures in Saturn's rings and the Earth's mesosphere, and as a possible mechanism for triggering condensation of small grains in dust molecular clouds. Dust acoustic waves are a ubiquitous occurrence in laboratory dusty plasmas formed in glow discharges. We report observations of repeated, self-excited dust acoustic shock waves in a dc glow discharge dusty plasma using high-speed video imaging. Two major observations will be presented: (1) The self-steepening of a nonlinear dust acoustic wave into a saw-tooth wave with sharp gradient in dust density, very similar to those found in numerical solutions [1] of the fully nonlinear fluid equations for nondispersive dust acoustic waves, and (2) the collision and confluence of two dust acoustic shock waves. [4pt] [1] B. Eliasson and P. K. Shukla, Phys. Rev. E 69, 067401 (2004).

  10. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Treesearch

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  11. Twisted electron-acoustic waves in plasmas

    NASA Astrophysics Data System (ADS)

    Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.

    2016-08-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  12. Twisted electron-acoustic waves in plasmas

    SciTech Connect

    Aman-ur-Rehman; Ali, S.; Khan, S. A.; Shahzad, K.

    2016-08-15

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q{sub eff} accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  13. Extraordinary spin-electron acoustic wave

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2017-02-01

    The extraordinary waves in spin-1/2 quantum plasma are studied. The evolutions of spin-up and spin-down electrons are considered separately. Hence, the separate spin evolution quantum hydrodynamics is used as the tool of research. It is demonstrated that the spin polarization of electrons modifies the spectrum of the lower extraordinary wave (LEW). An increase of the frequency at the large wave vector due to the spin modified Fermi pressure is found for the cyclotron frequency smaller than the Langmuir frequency. Existence of the extraordinary spin electron acoustic wave (SEAW) is demonstrated. Spectrum of the extraordinary SEAW is calculated. This spectrum is located below the spectrum of the LEW for the cyclotron frequency smaller than the Langmuir frequency and the spectrum located between spectrums of the upper extraordinary wave and the LEW for the cyclotron frequency larger than the Langmuir frequency. Presence of the extraordinary SEAW spectrum in the area usually occupied by the LEW spectrum decreases frequency of the LEW for large wave vectors, if the cyclotron frequency is larger than the Langmuir frequency. At the intermediate wave vectors, the LEW frequency is increased by the spin modified Fermi pressure.

  14. Acoustic wave network and multivariate analysis for biosensing in space

    NASA Astrophysics Data System (ADS)

    Jayarajah, Christine N.; Thompson, Michael

    2005-03-01

    Bioanalytical techniques play an important role in monitoring the effects of environmental stress factors on fundamental life processes. In terms of space flight and extraterrestrial research, radiation, altered and microgravity are known to induce changes in gene expression. We report the use of an on-line transverse shear mode (TSM) acoustic wave biosensor to detect the initiation of gene transcription and DNA — drug binding. Since this biosensor offers real-time, label free monitoring of biological processes, it is possible to detect sequential binding steps as demonstrated in this paper. Furthermore, this sensor responds to several factors in the liquid phase such as viscosity, elasticity, surface tension, charge distribution and mass loading, which can in turn be influenced by specific gravity. The sensing device is a piezoelectric quartz crystal onto which the probe molecule (DNA in this case) is immobilized. Change in resonance frequency of the crystal in response to the binding of the target molecule(s), RNA polymerase and actinomycin-D, is fit to an equivalent circuit model from which multidimensional data is extracted. By performing multivariate analysis on this data we are able to observe interactions between several of these data series representing parameters such as motional resistance and capacitance. As well, we are able to observe the dominating parameters (for instance, frequency vs. motional resistance, which in turn can correspond to mass loading vs. energy dissipation) during the course of the experiment, as they vary between the different steps. Such advantages offered by the TSM sensor along with multivariate analysis are indispensable for biotechnological work under the influence of microgravity as several variables come into play.

  15. Acceleration of solitary ion-acoustic surface waves

    NASA Astrophysics Data System (ADS)

    Stenflo, L.; Gradov, O. M.

    1991-10-01

    We consider the interaction between long-wavelength ion-acoustic and electron-plasma surface waves on a semi-infinite plasma. It then turns out that an ion-acoustic solitary wave can be accelerated when the amplitude of the electron-plasma surface wave varies in time.

  16. Identification of rocket-induced acoustic waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Mabie, Justin; Bullett, Terence; Moore, Prentiss; Vieira, Gerald

    2016-10-01

    Acoustic waves can create plasma disturbances in the ionosphere, but the number of observations is limited. Large-amplitude acoustic waves generated by energetic sources like large earthquakes and tsunamis are more readily observed than acoustic waves generated by weaker sources. New observations of plasma displacements caused by rocket-generated acoustic waves were made using the Vertically Incident Pulsed Ionospheric Radar (VIPIR), an advanced high-frequency radar. Rocket-induced acoustic waves which are characterized by low amplitudes relative to those induced by more energetic sources can be detected in the ionosphere using the phase data from fixed frequency radar observations of a plasma layer. This work is important for increasing the number and quality of observations of acoustic waves in the ionosphere and could help improve the understanding of energy transport from the lower atmosphere to the thermosphere.

  17. Application of BP neural network in acoustic wave measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Meifeng

    2017-07-01

    Acoustic wave measurement technology is the supporting technology in acoustic wave field. It is important to study acoustic wave with high precision and reliability testing equipment and scientific testing methods. The mathematical model of this acoustic wave measurement system was analyzed on the building of the system. The BP neural network algorithm was used in order to attain the higher accuracy for the acoustic wave measurement system. Frequency domain calibration was carried out by which the amplitude/frequency character curve of this system could be obtained. Then the model of the system was established by BP neural network algorithm. Finally, the validity of the established model was tested. The conclusion was that the math model reflected the original acoustic wave measurement system’s character through the regression result in the frequency domain.

  18. Ultrasound acoustic wave energy transfer and harvesting

    NASA Astrophysics Data System (ADS)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  19. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    SciTech Connect

    Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen

    2015-10-28

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.

  20. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  1. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection

    PubMed Central

    Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics. PMID:26177507

  2. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection.

    PubMed

    Papadakis, George; Skandalis, Nicholas; Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.

  3. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2008-11-01

    Electron Acoustic Waves (EAWs) are the low frequency branch of electrostatic plasma waves; these waves exist in neutralized plasmas, pure electrons, and pure ion plasmas. The EAWs typically have a phase velocity Vphase / Vth ˜1.4, quite low compared to typical plasma waves. Linear Landau damping would suggest that such slow phase velocity waves are strongly damped; but at finite wave amplitudes, trapping of particles at the phase velocity effectively flattens the distribution function, resulting in a ``BGK-like'' state with weak damping. Our experiments on standing mz= 1, mθ= 0 waves show that the small-amplitude dispersion relation for both fast Trivelpiece-Gould (TG) and slow (EAW) plasma modes is in close agreement with the ``thumb-shaped'' dispersion relation predicted by kinetic theory neglecting damping. However, the surprise here is that a moderate amplitude ``off-resonant'' drive readily modifies the velocity distribution so as to make the plasma mode resonant with the drive frequency. We have observed the plasma adjusting its velocity distribution so as to become resonant with a 100 cycle drive ranging from 10 kHz to 30 kHz. With a chirped frequency drive, the particle velocity distribution suffers extreme distortion, and the resulting plasma wave is almost undamped with γ/ φ˜10-5. Laser-Induced-Fluorescence measurements of the wave-coherent particle distribution f (vz, t), clearly show particle trapping in the EAW, with trapping widths as expected from theory considering two non-interacting traveling waves forming the standing wave. The coherent f (vz, t ) measurement also shows that particles slower than the wave phase velocity vph oscillate in phase with the wave, contrasting with the 180^o out-of-phase response of the particles moving faster than vph. The differing response of the fast and slow particles results in a small net fluid velocity, because the electrostatic restoring force is almost totally balanced by the kinetic pressure, consistent

  4. Acoustic gravity waves: A computational approach

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Dutt, P. K.

    1987-01-01

    This paper discusses numerical solutions of a hyperbolic initial boundary value problem that arises from acoustic wave propagation in the atmosphere. Field equations are derived from the atmospheric fluid flow governed by the Euler equations. The resulting original problem is nonlinear. A first order linearized version of the problem is used for computational purposes. The main difficulty in the problem as with any open boundary problem is in obtaining stable boundary conditions. Approximate boundary conditions are derived and shown to be stable. Numerical results are presented to verify the effectiveness of these boundary conditions.

  5. Surface Acoustic Wave Atomizer and Electrostatic Deposition

    NASA Astrophysics Data System (ADS)

    Yamagata, Yutaka

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  6. Surface acoustic wave atomizer and electrostatic deposition.

    PubMed

    Yamagata, Yutaka

    2010-01-01

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  7. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  8. Surface acoustic wave propagation in graphene film

    NASA Astrophysics Data System (ADS)

    Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula

    2015-09-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  9. Surface acoustic wave oxygen pressure sensor

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  10. Surface-Acoustic-Wave Piezoelectric Microbalance

    NASA Technical Reports Server (NTRS)

    Chuan, Raymond L.; Bowers, William D.

    1992-01-01

    Improved piezoelectric microbalances developed for use in measuring masses of volcanic, aerosol, and other small particles suspended in air. Sensitive microbalance used to analyze airborne particles in real time in environments as diverse as clean rooms or upper atmosphere. Surface-acoustic-wave resonator includes input and output sets of interdigitated electrodes and two passive conductive patterns acting as reflectors. Mechanical energy travels both ways out from middle and reflected back toward middle. Microbalance and associated circuitry fit in small package. Circuit draws only 80 mA at 5 V. Sensitivity more than 400 times that of bulk piezoelectric microbalance.

  11. Twisted dust acoustic waves in dusty plasmas

    SciTech Connect

    Shukla, P. K.

    2012-08-15

    We examine linear dust acoustic waves (DAWs) in a dusty plasma with strongly correlated dust grains, and discuss possibility of a twisted DA vortex beam carrying orbital angular momentum (OAM). For our purposes, we use the Boltzmann distributed electron and ion density perturbations, the dust continuity and generalized viscoelastic dust momentum equations, and Poisson's equation to obtain a dispersion relation for the modified DAWs. The effects of the polarization force, strong dust couplings, and dust charge fluctuations on the DAW spectrum are examined. Furthermore, we demonstrate that the DAW can propagate as a twisted vortex beam carrying OAM. A twisted DA vortex structure can trap and transport dust particles in dusty plasmas.

  12. Surface-Acoustic-Wave Piezoelectric Microbalance

    NASA Technical Reports Server (NTRS)

    Chuan, Raymond L.; Bowers, William D.

    1992-01-01

    Improved piezoelectric microbalances developed for use in measuring masses of volcanic, aerosol, and other small particles suspended in air. Sensitive microbalance used to analyze airborne particles in real time in environments as diverse as clean rooms or upper atmosphere. Surface-acoustic-wave resonator includes input and output sets of interdigitated electrodes and two passive conductive patterns acting as reflectors. Mechanical energy travels both ways out from middle and reflected back toward middle. Microbalance and associated circuitry fit in small package. Circuit draws only 80 mA at 5 V. Sensitivity more than 400 times that of bulk piezoelectric microbalance.

  13. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    PubMed

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  14. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  15. Surface Acoustic Waves to Drive Plant Transpiration

    PubMed Central

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-01-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems. PMID:28361922

  16. Surface Acoustic Waves to Drive Plant Transpiration.

    PubMed

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  17. Surface Acoustic Waves to Drive Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  18. Random coupling of acoustic-gravity waves in the atmosphere

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Lott, Francois; Haynes, Christophe

    2016-11-01

    In numerical modeling of long-range acoustic propagation in the atmosphere, the effect of gravity waves on low-frequency acoustic waves is often ignored. As the sound speed far exceeds the gravity wave phase speed, these two types of waves present different spatial scales and their linear coupling is weak. It is possible, however, to obtain relatively strong couplings via sound speed profile changes with altitude. In the present study, this scenario is analyzed for realistic gravity wave fields and the incident acoustic wave is modeled as a narrow-banded acoustic pulse. The gravity waves are represented as a random field using a stochastic multiwave parameterization of non-orographic gravity waves. The parameterization provides independent monochromatic gravity waves, and the gravity wave field is obtained as the linear superposition of the waves produced. When the random terms are retained, a more generalized wave equation is obtained that both qualitatively and quantitatively agrees with the observations of several highly dispersed stratospheric wavetrains. Here, we show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the parameterization can create or destroy an acoustic wavetrain.

  19. Porous silicon bulk acoustic wave resonator with integrated transducer

    PubMed Central

    2012-01-01

    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697

  20. Accurate finite element modeling of acoustic waves

    NASA Astrophysics Data System (ADS)

    Idesman, A.; Pham, D.

    2014-07-01

    In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.

  1. Magnetically programmable surface acoustic wave radio frequency identification tags

    NASA Astrophysics Data System (ADS)

    Chin, Matthew; Buford, Benjamin; Dhagat, Pallavi

    2011-04-01

    A reconfigurable surface acoustic wave reflector using an integrated magnetoresistive bit was fabricated and evaluated for use in programmable radio frequency identification tags. It is shown that two distinct reflectivities can be achieved depending on the magnetic state of the bit. The experimental results are compared with theoretical calculations of optimal reflectivities achievable from resistively loaded surface acoustic wave transducers.

  2. Acoustic microscope based on magneto-elastic wave phase conjugator

    NASA Astrophysics Data System (ADS)

    Brysev, A.; Krutyansky, L.; Pernod, P.; Preobrazhensky, V.

    2000-05-01

    Acoustic C-scan imaging (acoustic microscopy) by means of supercritical parametric wave phase conjugation (WPC) is studied experimentally. A phase conjugator based on a magneto-acoustic active material is used for compensating phase distortions introduced by solid and polymer aberration layers covering objects (electronic integrated circuits as examples). Improvement of images is demonstrated on an acoustic microscope, operating at a frequency of 10 MHz.

  3. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  4. Wave-wave interactions and deep ocean acoustics.

    PubMed

    Guralnik, Z; Bourdelais, J; Zabalgogeazcoa, X; Farrell, W E

    2013-10-01

    Deep ocean acoustics, in the absence of shipping and wildlife, is driven by surface processes. Best understood is the signal generated by non-linear surface wave interactions, the Longuet-Higgins mechanism, which dominates from 0.1 to 10 Hz, and may be significant for another octave. For this source, the spectral matrix of pressure and vector velocity is derived for points near the bottom of a deep ocean resting on an elastic half-space. In the absence of a bottom, the ratios of matrix elements are universal constants. Bottom effects vitiate the usual "standing wave approximation," but a weaker form of the approximation is shown to hold, and this is used for numerical calculations. In the weak standing wave approximation, the ratios of matrix elements are independent of the surface wave spectrum, but depend on frequency and the propagation environment. Data from the Hawaii-2 Observatory are in excellent accord with the theory for frequencies between 0.1 and 1 Hz, less so at higher frequencies. Insensitivity of the spectral ratios to wind, and presumably waves, is indeed observed in the data.

  5. Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials.

    PubMed

    Ao, Xianyu; Chan, C T

    2008-02-01

    A kind of two-dimensional acoustic metamaterial is designed so that it exhibits strong anisotropy along two orthogonal directions. Based on the rectangular equal frequency contour of this metamaterial, magnifying lenses for acoustic waves, analogous to electromagnetic hyperlenses demonstrated recently in the optical regime, can be realized. Such metamaterial may offer applications in imaging for systems that obey scalar wave equations.

  6. Nonlinear surface acoustic waves in cubic crystals

    NASA Astrophysics Data System (ADS)

    Kumon, Ronald Edward

    Model equations developed by Hamilton, Il'inskii, and Zabolotskaya [J. Acoust. Soc. Am. 105, 639-651 (1999)] are used to perform theoretical and numerical studies of nonlinear surface acoustic waves in a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, quasilinear solutions of the equations are derived, and expressions are developed for the shock formation distance and nonlinearity coefficient. A time-domain equation corresponding to the frequency-domain model equations is derived and shown to reduce to a time-domain equation introduced previously for Rayleigh waves [E. A. Zabolotskaya, J. Acoust. Soc. Am. 91, 2569-2575 (1992)]. Numerical calculations are performed to predict the evolution of initially monofrequency surface waves in the (001), (110), and (111) planes of the crystals RbCl, KCl, NaCl, CaF2, SrF2, BaF2, C (diamond), Si, Ge, Al, Ni, Cu in the moverline 3m point group, and the crystals Cs-alum, NH4- alum, and K-alum in the moverline 3 point group. The calculations are based on measured second- and third- order elastic constants taken from the literature. Nonlinearity matrix elements which describe the coupling strength of harmonic interactions are shown to provide a powerful tool for characterizing waveform distortion. Simulations in the (001) and (110) planes show that in certain directions the velocity waveform distortion may change in sign, generation of one or more harmonies may be suppressed and shock formation postponed, or energy may be transferred rapidly to the highest harmonics and shock formation enhanced. Simulations in the (111) plane show that the nonlinearity matrix elements are generally complex-valued, which may lead to asymmetric distortion and the appearance of low frequency oscillations near the peaks and shocks in the velocity waveforms. A simple transformation based on the phase of the nonlinearity matrix is shown to provide a reasonable approximation of asymmetric waveform

  7. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  8. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  9. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  10. Standing Surface Acoustic Wave Based Cell Coculture

    PubMed Central

    2015-01-01

    Precise reconstruction of heterotypic cell–cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell–cell interactions. PMID:25232648

  11. Raising Photoemission Efficiency with Surface Acoustic Waves

    SciTech Connect

    A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

    2012-07-01

    We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.

  12. Standing surface acoustic wave based cell coculture.

    PubMed

    Li, Sixing; Guo, Feng; Chen, Yuchao; Ding, Xiaoyun; Li, Peng; Wang, Lin; Cameron, Craig E; Huang, Tony Jun

    2014-10-07

    Precise reconstruction of heterotypic cell-cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell-cell interactions.

  13. Surface acoustic wave microsensors and applications

    NASA Astrophysics Data System (ADS)

    Galipeau, David W.; Story, Patrick R.; Vetelino, Kevin A.; Mileham, Russell D.

    1997-12-01

    Surface acoustic wave (SAW) devices have been studied for the last twenty years as highly sensitive yet relatively inexpensive microsensors for applications ranging from temperature and stress to gas and biological sensing. This wide range of applications is due to the SAW microsensors' high sensitivity to several physical parameters including mass, temperature, stress, and conductivity. Their low cost results from the use of standard batch microelectronic fabrication techniques for their manufacture. In this paper several chemical sensing applications for SAW devices are described. These include: gas detection; thin-film polymer characterization; dew-point measurements; surface energy measurements; and as a method to measure surface cleanliness. Experimental results are presented along with comparisons to other measurement techniques.

  14. Surface acoustic wave microsensors and applications

    NASA Astrophysics Data System (ADS)

    Galipeau, David W.; Story, Patrick R.; Vetelino, Kevin A.; Mileham, R. D.

    1997-06-01

    Surface acoustic wave (SAW) devices have been studied for the last twenty years as highly sensitive yet relatively inexpensive microsensors for applications ranging from gas and biological sensing to thin film and surface characterization. This wide range of applications is due to SAW microsensors high sensitivity to several physical parameters including mass, conductivity, permittivity, stress, temperature and electric fields. Their low cost results from the use of standard batch microelectronic fabrication techniques for their manufacture. In this work several SAW sensing applications are described. These include: gas detection; thin film polymer characterization; dew-point measurements; surface energy measurements; and as a method to measure surface cleanliness. Experimental results are presented along with comparisons to other measurement techniques.

  15. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    NASA Astrophysics Data System (ADS)

    Lay, Erin H.; Shao, Xuan-Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-01

    Acoustic waves with periods of 2-4 min and gravity waves with periods of 6-16 min have been detected at ionospheric heights (250-350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May-July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  16. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    SciTech Connect

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.

  17. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less

  18. Extracorporeal Acoustic Wave Therapy and Multiple Symmetric Lipomatosis

    PubMed Central

    Vindigni, Vincenzo; Bassetto, Franco

    2015-01-01

    Summary: Acoustic waves are mechanical waves recently used to activate tissue metabolism by exploiting the cell permeabilization caused by their passage. We report a case of a retroauricular lipoma in a 44-year-old woman affected by multiple symmetric lipomatosis and treated with extracorporeal acoustic wave therapy. The adipose thickness of the lipoma was reduced from 35.8 to 21 mm, with increased softness at palpatory examination. PMID:26180731

  19. Propagation of plate acoustic waves in contact with fluid medium

    NASA Astrophysics Data System (ADS)

    Ghatadi Suraji, Nagaraj

    The characteristics of acoustic waves propagating in thin piezoelectric plates in the presence of a fluid medium contacting one or both of the plate surfaces are investigated. If the velocity of plate wave in the substrate is greater than velocity of bulk wave in the fluid, then a plate acoustic wave (PAW) traveling in the substrate will radiate a bulk acoustic wave (BAW) in the fluid. It is found that, under proper conditions, efficient conversion of energy from plate acoustic waves to bulk acoustic waves and vice versa can be obtained. For example, using the fundamental anti symmetric plate wave mode (A0 mode) propagating in a lithium niobate substrate and water as the fluid, total mode conversion loss (PAW to BAW and back from BAW to PAW) of less than 3 dB has been obtained. This mode conversion principle can be used to realize miniature, high efficiency transducers for use in ultrasonic flow meters. Similar type of transducer based on conversion of energy from surface acoustic wave (SAW) to bulk acoustic wave (BAW) has been developed previously. The use of plate waves has several advantages. Since the energy of plate waves is present on both plate surfaces, the inter digital transducer (IDT) can be on the surface opposite from that which is in contact with the fluid. This protects the IDT from possible damage due to the fluid and also simplifies the job of making electrical connections to the IDT. Another advantage is that one has wider choice of substrate materials with plate waves than is the case with SAWs. Preliminary calculations indicate that the mode conversion principle can also be used to generate and detect ultrasonic waves in air. This has potential applications for realizing transducers for use in non-contact ultrasonic's. The design of an ASIC (Application Specific Integrated Circuit) chip containing an amplifier and frequency counter for use with ultrasonic transducers is also presented in this thesis.

  20. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  1. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  2. Theoretical and experimental study on the acoustic wave energy after the nonlinear interaction of acoustic waves in aqueous media

    NASA Astrophysics Data System (ADS)

    Lan, Chao-feng; Li, Feng-chen; Chen, Huan; Lu, Di; Yang, De-sen; Zhang, Meng

    2015-06-01

    Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves' amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.

  3. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  4. Pathogen detection using evanescent-wave fiber optic biosensor

    NASA Astrophysics Data System (ADS)

    Ferreira, Aldo P.; Werneck, Marcelo M.; Ribeiro, R. M.; Lins, U. G.

    1999-07-01

    This paper describes a real time optical biosensor that utilizes the evanescent field technique for monitoring microorganisms in hospital environment. The biosensor monitors interactions between the analytic (bacteria) and the evanescent field of an optical fiber passing through the culture media where the bacteria grows. The objective is to monitor atmospheres in hospital areas for the Staphylococcus aureus and Streptococcus pneumonia. The results lead us the conclusion that this kind of sensor presents quick response, good performance, easy of construction and low cost. We expect that the sensor will be of great help in controlling the hospital environment.

  5. Numerical Simulation of Driven Electron Acoustic Waves.

    NASA Astrophysics Data System (ADS)

    Valentini, F.; Dubin, D. H. E.; O'Neil, T. M.

    2006-10-01

    Electron-acoustic waves (EAW's) are nonlinear modes that can exist even at low amplitude. Within linear theory, EAW's would be heavily Landau damped because the wave phase velocity is comparable to the electron thermal velocity (φ 1.3 k vth). However, the nonlinearity (trapped particles) effectively turns off Landau damping. This paper uses Eulerian and PIC simulations to investigate the excitation and stability of EAW's. Successful excitation occurs when a relatively low amplitude driver field is applied resonantly for a sufficiently long time (many trapping periods). The excited EAW rings at nearly constant amplitude long after the driver is turned off, provided that the EAW has the longest wavelength that fits into the simulation domain. Otherwise, the EAW decays to a longer wavelength EAW. In phase space, this decay to a longer wavelength EAW appears as a merger of the vortex-like trapped particle distributions. In recent experiments with pure electron plasma columns (see poster by Kabantsev and Driscoll), EAW’s were successfully excited at the predicted resonant frequency, and the predicted decay to longer wavelength was observed. J.P. Holloway and J.J. Dorning, Phys Rev A 44 3856 (1991). F. Valentini, T.M. O'Neil, D.H.E. Dubin, Phys Plas 13 052303 (2006).

  6. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  7. Relationship between dust acoustic waves in two and three dimensions

    SciTech Connect

    Piel, A.; Goree, J.

    2006-10-15

    Low frequency electrostatic waves are investigated for a monolayer suspension of dust particles that are shielded by an ambient plasma of three-dimensional extension. The dispersion of the resulting dust acoustic surface waves is compared with dust acoustic waves in three dimensions and with lattice modes in two dimensions. It is found that the wave dispersion is determined by shielding of electric fields by electrons and ions on either side of the dust monolayer; this differs from previously studied cases of charged sheets in a vacuum. The phase velocity of these surface waves suggests the definition of a proper dust plasma frequency for monolayer systems.

  8. Creating and studying ion acoustic waves in ultracold neutral plasmas

    SciTech Connect

    Killian, T. C.; Castro, J.; McQuillen, P.; O'Neil, T. M.

    2012-05-15

    We excite ion acoustic waves in ultracold neutral plasmas by imprinting density modulations during plasma creation. Laser-induced fluorescence is used to observe the density and velocity perturbations created by the waves. The effect of expansion of the plasma on the evolution of the wave amplitude is described by treating the wave action as an adiabatic invariant. After accounting for this effect, we determine that the waves are weakly damped, but the damping is significantly faster than expected for Landau damping.

  9. Propagation of waves of acoustic frequencies in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1973-01-01

    The propagation of waves of acoustic frequencies in curved ducts is studied for the first four modes. The analysis makes use of Bessel functions to construct curves of wave number in the duct versus imposed wave number. The results apply to ducts of arbitrary width and arbitrary radii of curvature. The characteristics of motion in a bend are compared with propagation of waves in a straight duct, and important differences in the behavior of waves are noted.

  10. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    SciTech Connect

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  11. False Paradoxes of Superposition in Electric and Acoustic Waves.

    ERIC Educational Resources Information Center

    Levine, Richard C.

    1980-01-01

    Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)

  12. Self-focusing of ion-acoustic surface waves

    NASA Astrophysics Data System (ADS)

    Stenflo, L.; Gradov, O. M.

    1996-06-01

    An electrostatic ion-acoustic surface wave propagating along the boundary of a semi-infinite plasma is considered. It is shown that a nonlinear Schrödinger equation can describe the development of the wave amplitude. The self-focusing length of a wave beam is estimated.

  13. False Paradoxes of Superposition in Electric and Acoustic Waves.

    ERIC Educational Resources Information Center

    Levine, Richard C.

    1980-01-01

    Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)

  14. Waveform inversion of acoustic waves for explosion yield estimation

    SciTech Connect

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  15. Waveform inversion of acoustic waves for explosion yield estimation

    SciTech Connect

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  16. Ultrafast microfluidics using surface acoustic waves

    PubMed Central

    Yeo, Leslie Y.; Friend, James R.

    2009-01-01

    We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions

  17. Transportation control of microfluidic particles using mode switching between surface acoustic waves and plate waves

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Huang, Yeo-Wei; Hsu, Chih-Hsun

    2017-07-01

    In this study, we report the numerical and experimental results of guided acoustic mode switching between surface and plate acoustic waves (SAWs and PAWs) for manipulating microparticles suspended in a microfluidic channel. Numerical results show switchable acoustic pressure and acoustic radiation force fields for controlling particle motion in the microfluidic channel by acoustic mode switching. Acoustic mode switching can be achieved by designing an acoustic-wave device and by changing the frequencies of the input electrical signal. The working mechanisms of acoustic-mode-switchable manipulation are revealed. On the basis of numerical prediction, the feasibility of a mode-switchable acoustic microfluidic device is experimentally demonstrated, and the actuation of suspended microparticles using SAWs and PAWs is achieved. We note that this study provides access to mode-switching acoustophoresis.

  18. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  19. Anisotropic Swirling Surface Acoustic Waves from Inverse Filtering for On-Chip Generation of Acoustic Vortices

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Thomas, Jean-Louis; Charron, Eric; Bussonnière, Adrien; Bou Matar, Olivier; Baudoin, Michael

    2015-09-01

    From radio-electronics signal analysis to biological sample actuation, surface acoustic waves (SAWs) are involved in a multitude of modern devices. However, only the most simple standing or progressive waves such as plane and focused waves have been explored so far. In this paper, we expand the SAW toolbox with a wave family named "swirling surface acoustic waves" which are the 2D anisotropic analogue of bulk acoustic vortices. Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. After the rigorous mathematical definition of these waves, we synthesize them experimentally through the inverse filtering technique revisited for surface waves. For this purpose, we design a setup combining arrays of interdigitated transducers and a multichannel electronic that enables one to synthesize any prescribed wave field compatible with the anisotropy of the substrate in a region called the "acoustic scene." This work opens prospects for the design of integrated acoustic vortex generators for on-chip selective acoustic tweezing.

  20. A compact two-wave dichrometer of an optical biosensor analytical system for medicine

    NASA Astrophysics Data System (ADS)

    Chulkov, D. P.; Gusev, V. M.; Kompanets, O. N.; Vereschagin, F. V.; Skuridin, S. G.; Yevdokimov, Yu. M.

    2016-12-01

    An experimental model has been developed of a compact two-wave dichrometer on the base of LEDs that is well-suited to work with "liquid" DNA nanoconstructions as biosensing units. The mobile and inexpensive device is intended for use in a biosensor analytical system for rapid determination of biologically active compounds in liquids to solve practical problems of clinic medicine and pharmacology.

  1. A compact two-wave dichrometer of an optical biosensor analytical system for medicine

    NASA Astrophysics Data System (ADS)

    Chulkov, D. P.; Gusev, V. M.; Kompanets, O. N.; Vereschagin, F. V.; Skuridin, S. G.; Yevdokimov, Yu. M.

    2017-01-01

    An experimental model has been developed of a compact two-wave dichrometer on the base of LEDs that is well-suited to work with "liquid" DNA nanoconstructions as biosensing units. The mobile and inexpensive device is intended for use in a biosensor analytical system for rapid determination of biologically active compounds in liquids to solve practical problems of clinic medicine and pharmacology.

  2. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Deng, Yu-Qiang; Xu, Di-Hu; Fan, Ren-Hao; Peng, Ru-Wen; Chen, Ze-Guo; Lu, Ming-Hui; Huang, X. R.; Wang, Mu

    2015-01-01

    In this letter, we have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing, and acoustic devices.

  3. Validation of Bragg grating measurements of acoustic plate waves

    NASA Astrophysics Data System (ADS)

    Davis, Claire; Rajic, Nik; Rosalie, Cedric

    2008-04-01

    This paper reports on aspects of the design and validation of a Bragg grating sensor for acoustic plate wave detection. Advanced numerical modelling and an alternative experimental approach using Laser Vibrometry is used to validate the response of the Bragg measurements across a range of acoustic frequencies in a metal plate.

  4. Nonlinear propagation and control of acoustic waves in phononic superlattices

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.

    2016-05-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.

  5. Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave.

    PubMed

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  6. Droplet actuation by surface acoustic waves: an interplay between acoustic streaming and radiation pressure

    NASA Astrophysics Data System (ADS)

    Brunet, Philippe; Baudoin, Michael; Matar, Olivier Bou; Zoueshtiagh, Farzam

    2010-11-01

    Surface acoustic waves (SAW) are known to be a versatile technique for the actuation of sessile drops. Droplet displacement, internal mixing or drop splitting, are amongst the elementary operations that SAW can achieve, which are useful on lab-on-chip microfluidics benches. On the purpose to understand the underlying physical mechanisms involved during these operations, we study experimentally the droplet dynamics varying different physical parameters. Here in particular, the influence of liquid viscosity and acoustic frequency is investigated: it is indeed predicted that both quantities should play a role in the acoustic-hydrodynamic coupling involved in the dynamics. The key point is to compare the relative magnitude of the attenuation length, i.e. the scale within which the acoustic wave decays in the fluid, and the size of the drop. This relative magnitude governs the relative importance of acoustic streaming and acoustic radiation pressure, which are both involved in the droplet dynamics.

  7. Optimization of input parameters of acoustic-transfection for the intracellular delivery of macromolecules using FRET-based biosensors

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.

    2016-03-01

    Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.

  8. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  9. Spectral solution of acoustic wave-propagation problems

    NASA Technical Reports Server (NTRS)

    Kopriva, David A.

    1990-01-01

    The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.

  10. Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles.

    DTIC Science & Technology

    1983-06-01

    AD-A129 282 NONLINEAR SCATTERING OF ACOUSTIC WAVES BY VIBRATING OBSTACLES (U) NAVAL RESEARCH LAR WASHINOTON DC d C PIQUETTE 01 JUN 83 NRL-MR-5077...MICROCOPY RESOLUTION TEST CHART NAIOAL IBtJ[IAU Of S1ANDARD~If A3 NRL Memorandum Report 5077 Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles ... Obstacles continuing problem. S. PERFORMING ORG. REPORT NUMMER 7. AUTHOR(s) 6. CONTRACT OR GRANT NUMIISER( ) Jean C. Piquette* S. PERFORMING

  11. Surface spin-electron acoustic waves in magnetically ordered metals

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2016-05-09

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.

  12. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  13. Surface Acoustic Wave Induced Magnetic Switching

    NASA Astrophysics Data System (ADS)

    Davis, S.; Baruth, A.; Adenwalla, S.

    2010-03-01

    We report on the use of Surface Acoustic Waves (SAW) to switch the magnetization direction of lithographically patterned 40um by 10um cobalt rectangles between two titanium inter-digital transducers (IDTs) on Y-cut LiNbO3. Easy and hard axis magnetization loops measured using the magneto-optical Kerr effect (MOKE) show the expected in-plane shape anisotropy. After magnetic saturation along the long easy axis, the magnetic field is turned off and the IDT's are excited at the fundamental resonance frequency, 91.5 MHz, producing a SAW that travels across the patterned Co magnetic structure producing a fast time dependent mechanical strain parallel to the short hard axis of the Co. Magneto-elastic coupling results in a rotation of the magnetization into the hard axis direction, measured by in-plane MOKE measurements along the hard axis direction. Both dc MOKE and high frequency MOKE show, as expected, a definite turn on voltage followed by an asymptotic approach to saturation. Support from NSF MRSEC (DMR-0820521), UCARE, and NFC-Minnesota.

  14. Nozzleless Spray Cooling Using Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Ang, Kar Man; Yeo, Leslie; Friend, James; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Due to its reliability and portability, surface acoustic wave (SAW) atomization is an attractive approach for the generation of monodispersed microdroplets in microfluidics devices. Here, we present a nozzleless spray cooling technique via SAW atomization with key advantage of downward scalability by simply increasing the excitation frequency. With generation of micron size droplets through surface destabilization using SAW, the clogging issues commonly encountered by spraying nozzle can be neutralized. Using deionised water, cooling is improved when the atomization rate is increased and the position of the device is optimized such that the atomized droplets can be easily seeded into the upstream of the flow circulation. Cooling is further improved with the use of nanofluids; a suspension of nanoparticles in water. By increasing nanoparticle mass concentration from 1% to 3%, cooling is enhanced due to the deposition and formation of nanoparticle clusters on heated surface and eventually increase the surface area. However, further increase the concentration to 10% reduces the cooling efficiency due to drastic increase in viscosity μ that leads to lower atomization rate which scales as ṁ ~μ - 1 / 2 .

  15. Surface Acoustic Wave (SAW) Vibration Sensors

    PubMed Central

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  16. Spontaneous excitations of low amplitude hole filaments, acoustic vortices, and rogue wave events in weakly disordered dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Yi; Chang, Mei-Chu; Tsai, Jun-Yi; I, Lin

    2017-05-01

    In this work, we briefly review our recent experimental studies on the observations and waveform dynamics of spontaneous excitations of low and high amplitude singular objects: low amplitude hole filaments coinciding with the wiggling trajectories of topological defects surrounded by acoustic vortices with helical waveforms, and uncertain rogue wave events, in self-excited weakly disordered dust acoustic waves. The changes of waveform topology, caused by kinking, rupturing and reconnection of sequential wave crests surfaces, and the reversed process, are responsible for the chaotic creation, propagation, and annihilation of acoustic vortex pairs with opposite helicities winding around low amplitude hole filaments. The observed rogue wave events are preceded by a higher probability of surrounding defects. Particle focusing by the transverse electric forces from ruptured and tilted wave crests nearby defects are identified as the major cause for rogue wave generation.

  17. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  18. Diffraction of three-colour radiation on an acoustic wave

    SciTech Connect

    Kotov, V M

    2015-07-31

    We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)

  19. Incident Wave Removal for Defect Enhancement in Acoustic Wavefield Imaging

    NASA Astrophysics Data System (ADS)

    Master, Zubin M.; Michaels, Thomas E.; Michaels, Jennifer E.

    2007-03-01

    The method of Acoustic Wavefield Imaging (AWI) offers many advantages over conventional ultrasonic techniques for nondestructive evaluation, and also provides a means of incorporating fixed ultrasonic sensors used for structural health monitoring into subsequent inspections. AWI utilizes these fixed sensors as wave sources and an externally scanned ultrasonic transducer (or laser interferometer) as a receiver to acquire complete waveform data over the surface. When displayed as time-dependent images, these signals show the propagation of acoustic waves through a structure and subsequent interactions of these waves with both defects and structural geometry. Defect areas appear as stationary scattering sources on these images, but such scattered wave energy is often obscured by the stronger incident acoustic wavefield. The objective of the work presented here is to develop multidimensional signal processing algorithms to enhance the appearance of structural defects on wavefield images via removal of the incident wave. Results are presented for analysis of images from aluminum plate and solid laminate composite specimens.

  20. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  1. A novel Love Wave biosensor for rapid and sensitive detection of marine toxins.

    PubMed

    Zhang, Xi; Fang, Jiaru; Zou, Yingchang; Zou, Ling; Hu, Ning; Wang, Ping

    2015-01-01

    Marine toxins are produced by plankton and do a great harm to human through food chain by accumulating in shellfishes and fishes. It is highly required and favorable to develop novel methods for the rapid and efficient detection of marine toxins to avoid the poisoning cases that have occurred frequently in many countries. This study presents a real-time Love Wave biosensor for the rapid detection of okadaic acid (OA), which used HepG2 cell lines as the sensing elements. The results indicate that this cell-based biosensor can provide real-time information of cellular activities induced by okadaic acid and has a higher sensitivity than the conventional cell-based assay. It is suggested that this cell-based biosensor can be used as a convenient and efficient method for marine toxin detection, which has a great potential to contribute to avoid the harmful effects of marine toxins on the human health.

  2. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Optical biosensors

    PubMed Central

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  4. Ocean-Acoustic Solitary Wave Studies and Predictions

    NASA Astrophysics Data System (ADS)

    Warn-Varnas, A. C.; Chin-Bing, S. A.; King, D. B.; Hallock, Z.; Hawkins, J. A.

    Shallow water internal solitary waves have become a major topic of interest to oceanographers and acousticians. In this paper we review the cross-disciplinary status of joint ocean-acoustic solitary wave studies and predictions. We consider the process of acoustical mode coupling in the presence of solitary waves and the corresponding acoustical intensity loss due to increased coupling with the bottom. A study of the interaction of an acoustical field with a train of solitary waves is undertaken at a range of frequencies. At a resonant frequency the acoustic field can interact with the solitary wave packet which results in mode conversions (acoustic energy is redistributed among the modes, often from lower-order to higher-order modes). Higher signal losses can occur in the higher order modes through increased bottom attenuation and result in an anomalous acoustical intensity loss at the resonant frequency. We present some new results of joint ocean-acoustic research, from a dedicated study in the Strait of Messina, where solitary waves are generated by semidiurnal tidal flow over topographic variations. The University of Hamburg weakly nonhydrostatic two layer model is used for simulating the generation and propagation of solitary waves. In particular, the physical states encountered during an October 1995 cruise in the Strait of Messina (between Italy and Sicily) are simulated. Various parameter space sensitivity studies, about the existing cruise conditions, are performed. The modelled solitary wave trains are compared against conductivity-temperature-depth (CTD) chain measurements in terms of amplitudes, wavelengths, phase speeds and correlations with data. Predicted and observed sound speeds are used in acoustical intensity calculations that are conducted with a parabolic equation (PE) model. The differences in the resultant acoustical intensity fields provide a guide for the tuning of the oceanographic model parameters. The tuned oceanographic model shows

  5. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  6. Surface wave patterns on acoustically levitated viscous liquid alloys

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Yan, N.; Geng, D. L.; Wei, B.

    2014-04-01

    We demonstrate two different kinds of surface wave patterns on viscous liquid alloys, which are melted and solidified under acoustic levitation condition. These patterns are consistent with the morphologies of standing capillary waves and ensembles of oscillons, respectively. The rapid solidification of two-dimensional liquid alloy surfaces may hold them down.

  7. Application of surface acoustic wave devices to radio telemetry

    NASA Technical Reports Server (NTRS)

    Strasilla, U.

    1983-01-01

    Three experimental Surface Acoustic Wave Resonators (SAWR) are developed and evaluated. A desired center frequency is obtained by correct spacing of the Inter-Digital Transducers (IDT). Transmitting and receiving IDT's must be close for adequate coupling and a sufficient number of reflectors are required to create a high quality standing wave. A review of oscillator theory is given and current technology evaluated.

  8. Propagation of acoustic waves in multifractional polydisperse gas suspension

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Teregulova, E. A.

    2017-01-01

    The propagation of acoustic waves in multifractional polydisperse gas suspension is studied. A mathematical model is presented, the dispersion equation is obtained, dispersion curves are calculated. The influence of the particle size and the parameters of the dispersed phase for multifractional gas mixture with ice particles, aluminum and sand on dissipation and dispersion of sound waves is analyzed.

  9. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  10. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2014-09-30

    is described in [ Tolstoy , 2001.] Cuts perpendicular to the canyon and parallel in depth are shown in Fig. 8 and Fig. 9 respectively. Three- dimensional...Floor Acoustics. Springer-Verlag, New York, 2007. A. Tolstoy , K. Smith and N. Maltsev. The SWAM’99 Workshop. J. Comp. Acoust., 9(1): 1-16, 2001. M

  11. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    SciTech Connect

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  12. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    PubMed

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  13. Linear and nonlinear acoustic wave propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping

    1988-01-01

    The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.

  14. Acoustic Gravity Wave Chemistry Model for the RAYTRACE Code.

    DTIC Science & Technology

    2014-09-26

    AU)-AI56 850 ACOlUSTIC GRAVITY WAVE CHEMISTRY MODEL FOR THE IAYTRACE I/~ CODE(U) MISSION RESEARCH CORP SANTA BARBIARA CA T E OLD Of MAN 84 MC-N-SlS...DNA-TN-S4-127 ONAOOI-BO-C-0022 UNLSSIFIlED F/O 20/14 NL 1-0 2-8 1111 po 312.2 1--I 11111* i •. AD-A 156 850 DNA-TR-84-127 ACOUSTIC GRAVITY WAVE...Hicih Frequency Radio Propaoation Acoustic Gravity Waves 20. ABSTRACT (Continue en reveree mide if tteceeemr and Identify by block number) This

  15. Reciprocity calibration of acoustic emission transducers in Rayleigh-wave and longitudinal-wave sound fields

    SciTech Connect

    Hatano, H.; Watanabe, T.

    1997-03-01

    A new system was developed for the reciprocity calibration of acoustic emission transducers in Rayleigh-wave and longitudinal-wave sound fields. In order to reduce interference from spurious waves due to reflections and mode conversions, a large cylindrical block of forged steel was prepared for the transfer medium, and direct and spurious waves were discriminated between on the basis of their arrival times. Frequency characteristics of velocity sensitivity to both the Rayleigh wave and longitudinal wave were determined in the range of 50 kHz{endash}1 MHz by means of electrical measurements without the use of mechanical sound sources or reference transducers. {copyright} {ital 1997 Acoustical Society of America.}

  16. Nonlinear electron-acoustic waves in quantum plasma

    SciTech Connect

    Sah, O. P.; Manta, J.

    2009-03-15

    The nonlinear wave structure of electron-acoustic waves (EAWs) is investigated in a three component unmagnetized dense quantum plasma consisting of two distinct groups of electrons (one inertial cold electron, and other inertialess hot electrons) and immobile ions. By employing one dimensional quantum hydrodynamic model and standard reductive perturbation technique, a Korteweg-de-Vries equation governing the dynamics of EAWs is derived. Both compressive and rarefactive solitons along with periodical potential structures are found to exist for various ranges of dimensionless quantum parameter H. The quantum mechanical effects are also examined numerically on the profiles of the amplitude and the width of electron-acoustic solitary waves. It is observed that both the amplitude and the width of electron-acoustic solitary waves are significantly affected by the parameter H. The relevance of the present investigation to the astrophysical ultradense plasmas is also discussed.

  17. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    SciTech Connect

    Tabrizian, R.; Ayazi, F.

    2015-06-29

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  18. Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors

    PubMed Central

    Montagut, Yeison; García, José V.; Jiménez, Yolanda; March, Carmen; Montoya, Ángel; Arnau, Antonio

    2011-01-01

    Acoustic wave resonator techniques are widely used in in-liquid biochemical applications. The main challenges remaining are the improvement of sensitivity and limit of detection, as well as multianalysis capabilities and reliability. The sensitivity improvement issue has been addressed by increasing the sensor frequency, using different techniques such as high fundamental frequency quartz crystal microbalances (QCMs), surface generated acoustic waves (SGAWs) and film bulk acoustic resonators (FBARs). However, this sensitivity improvement has not been completely matched in terms of limit of detection. The decrease on frequency stability due to the increase of the phase noise, particularly in oscillators, has made it impossible to increase the resolution. A new concept of sensor characterization at constant frequency has been recently proposed based on the phase/mass sensitivity equation: Δφ/Δm ≈ −1/mL, where mL is the liquid mass perturbed by the resonator. The validation of the new concept is presented in this article. An immunosensor application for the detection of a low molecular weight pollutant, the insecticide carbaryl, has been chosen as a validation model. PMID:22163871

  19. Separation of acoustic waves in isentropic flow perturbations

    SciTech Connect

    Henke, Christian

    2015-04-15

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given.

  20. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  1. Generalized collar waves in acoustic logging while drilling

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Ming; He, Xiao; Zhang, Xiu-Mei

    2016-12-01

    Tool waves, also named collar waves, propagating along the drill collars in acoustic logging while drilling (ALWD), strongly interfere with the needed P- and S-waves of a penetrated formation, which is a key issue in picking up formation P- and S-wave velocities. Previous studies on physical insulation for the collar waves designed on the collar between the source and the receiver sections did not bring to a satisfactory solution. In this paper, we investigate the propagation features of collar waves in different models. It is confirmed that there exists an indirect collar wave in the synthetic full waves due to the coupling between the drill collar and the borehole, even there is a perfect isolator between the source and the receiver. The direct collar waves propagating all along the tool and the indirect ones produced by echoes from the borehole wall are summarized as the generalized collar waves. Further analyses show that the indirect collar waves could be relatively strong in the full wave data. This is why the collar waves cannot be eliminated with satisfactory effect in many cases by designing the physical isolators carved on the tool. Project supported by the National Natural Science Foundation of China (Grant Nos. 11134011 and 11374322) and the Foresight Research Project, Institute of Acoustics, Chinese Academy of Sciences.

  2. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  3. Negative birefraction of acoustic waves in a sonic crystal.

    PubMed

    Lu, Ming-Hui; Zhang, Chao; Feng, Liang; Zhao, Jun; Chen, Yan-Feng; Mao, Yi-Wei; Zi, Jian; Zhu, Yong-Yuan; Zhu, Shi-Ning; Ming, Nai-Ben

    2007-10-01

    Optical birefringence and dichroism are classical and important effects originating from two independent polarizations of optical waves in anisotropic crystals. Furthermore, the distinct dispersion relations of transverse electric and transverse magnetic polarized electromagnetic waves in photonic crystals can lead to birefringence more easily. However, it is impossible for acoustic waves in the fluid to show such a birefringence because only the longitudinal mode exists. The emergence of an artificial sonic crystal (SC) has significantly broadened the range of acoustic materials in nature that can give rise to acoustic bandgaps and be used to control the propagation of acoustic waves. Recently, negative refraction has attracted a lot of attention and has been demonstrated in both left-handed materials and photonic crystals. Similar to left-handed materials and photonic crystals, negative refractions have also been found in SCs. Here we report, for the first time, the acoustic negative-birefraction phenomenon in a two-dimensional SC, even with the same frequency and the same 'polarization' state. By means of this feature, double focusing images of a point source have been realized. This birefraction concept may be extended to other periodic systems corresponding to other forms of waves, showing great impacts on both fundamental physics and device applications.

  4. Magneto-acoustic imaging by continuous-wave excitation.

    PubMed

    Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu

    2017-04-01

    The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10(-7) Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.

  5. Effect of nonadiabaticity of dust charge variation on dust acoustic waves: generation of dust acoustic shock waves.

    PubMed

    Gupta, M R; Sarkar, S; Ghosh, S; Debnath, M; Khan, M

    2001-04-01

    The effect of nonadiabaticity of dust charge variation arising due to small nonzero values of tau(ch)/tau(d) has been studied where tau(ch) and tau(d) are the dust charging and dust hydrodynamical time scales on the nonlinear propagation of dust acoustic waves. Analytical investigation shows that the propagation of a small amplitude wave is governed by a Korteweg-de Vries (KdV) Burger equation. Notwithstanding the soliton decay, the "soliton mass" is conserved, but the dissipative term leads to the development of a noise tail. Nonadiabaticity generated dissipative effect causes the generation of a dust acoustic shock wave having oscillatory behavior on the downstream side. Numerical investigations reveal that the propagation of a large amplitude dust acoustic shock wave with dust density enhancement may occur only for Mach numbers lying between a minimum and a maximum value whose dependence on the dusty plasma parameters is presented.

  6. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    PubMed Central

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  7. Dissipation of acoustic-gravity waves: an asymptotic approach.

    PubMed

    Godin, Oleg A

    2014-12-01

    Acoustic-gravity waves in the middle and upper atmosphere and long-range propagation of infrasound are strongly affected by air viscosity and thermal conductivity. To characterize the wave dissipation, it is typical to consider idealized environments, which admit plane-wave solutions. Here, an asymptotic approach is developed that relies instead on the assumption that spatial variations of environmental parameters are gradual. It is found that realistic assumptions about the atmosphere lead to rather different predictions for wave damping than do the plane-wave solutions. A modification to the Sutherland-Bass model of infrasound absorption is proposed.

  8. Finite difference solutions to shocked acoustic waves

    NASA Technical Reports Server (NTRS)

    Walkington, N. J.; Eversman, W.

    1983-01-01

    The MacCormack, Lambda and split flux finite differencing schemes are used to solve a one dimensional acoustics problem. Two duct configurations were considered, a uniform duct and a converging-diverging nozzle. Asymptotic solutions for these two ducts are compared with the numerical solutions. When the acoustic amplitude and frequency are sufficiently high the acoustic signal shocks. This condition leads to a deterioration of the numerical solutions since viscous terms may be required if the shock is to be resolved. A continuous uniform duct solution is considered to demonstrate how the viscous terms modify the solution. These results are then compared with a shocked solution with and without viscous terms. Generally it is found that the most accurate solutions are those obtained using the minimum possible viscosity coefficients. All of the schemes considered give results accurate enough for acoustic power calculations with no one scheme performing significantly better than the others.

  9. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2013-09-30

    Reverberation Experiment 2013 (TREX13). Specifically, an acoustic system mounted on the ARL ROV was used to collect data over the “transition regions...The colored circles correspond to some of the bottom loss data collected. These data were collected by towing the ROV mounted acoustic system along...the bottom reflection. It varies as the depth of the ROV . Variations in the intensity of the return is proportional to the normal incident bottom

  10. Multimode filter composed of single-mode surface acoustic wave/bulk acoustic wave resonators

    NASA Astrophysics Data System (ADS)

    Huang, Yulin; Bao, Jingfu; Tang, Gongbin; Wang, Yiling; Omori, Tatsuya; Hashimoto, Ken-ya

    2017-07-01

    This paper discusses the possibility of realizing multimode filters composed of multiple single-mode resonators by using radio frequency surface and bulk acoustic wave (SAW/BAW) technologies. First, the filter operation and design principle are given. It is shown that excellent filter characteristics are achievable by combining multiple single-mode resonators with identical capacitance ratios provided that their resonance frequencies and clamped capacitances are set properly. Next, the effect of balun performance is investigated. It is shown that the total filter performance is significantly degraded by balun imperfections such as the common-mode rejection. Then, two circuits are proposed to improve the common-mode rejection, and their effectiveness is demonstrated.

  11. The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1993-01-01

    An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined.

  12. Electron-acoustic solitary waves in a nonextensive plasma

    SciTech Connect

    Tribeche, Mouloud; Djebarni, Lyes

    2010-12-15

    The problem of arbitrary amplitude electron-acoustic solitary waves (EASWs) in a plasma having cold fluid electrons, hot nonextensive electrons, and stationary ions is addressed. It is found that the 'Maxwellianization' process of the hot nonextensive component does not favor the propagation of the EASWs. In contrast to superthermality, nonextensivity makes the electron-acoustic solitary structure less spiky. Our theoretical analysis brings a possibility to develop more refined theories of nonlinear solitary structures in astrophysical plasmas.

  13. Modeling Nonlinear Acoustical Blast Waves Outdoors: A Research Summary

    DTIC Science & Technology

    1991-09-01

    Porous Surfaces. 5 David Gottlieb and Eli Turkel, "Dissipative Two-Four Methods for Time Dependent Problems," Mathematical Comnputation, No. 30 (1976...or structure factor, which Attenborough relates to the tortuosity. The local reaction assumption is inhereptly built into this model of the porous...k Waves in the Atmosphere," Journal of the Acoustical Socidy of America, No. 74 (1983). pp 1514-1517. David T. Blackstone., "Nonlinear Acoustics

  14. Broadband Metamaterial for Nonresonant Matching of Acoustic Waves

    DTIC Science & Technology

    2012-03-28

    transmission (EOT)5–8. Lately, it has been extended to acoustic waves, as extraordinary acoustic transmission ( EAT )9–11. Usually these phenomena are achieved... EAT limitations. To this goal, we show a way to manipulate the effective constitutive properties (density reff and sound velocity ceff) of an...obtained. Most EAT phenomena rely on resonance effects that are inherently narrow-band, and for which large transmission is usually hindered by

  15. The behavior of acoustic waves in the lakes bottom sediments.

    NASA Astrophysics Data System (ADS)

    Krylov, Pavel; Nourgaliev, Danis; Yasonov, Pavel

    2016-04-01

    Seismic studies are used for various tasks, such as the study of the bottom sediments properties, finding sunken objects, reconstruction the reservoir history, etc. Multiple acoustic waves are an enormous obstacle in obtaining full seismic record. Multiples from the bottom of a body of water (the surface of the base of water and the rock or sediment beneath it) and the air-water surface are common in lake seismic data. Multiple reflections on the seismic cross-sections are usually located on the double distance from the air/water surface. However, sometime multiple reflections from liquid deposits cannot be generated or they reflected from the deeper horizons. It is observed the phenomenon of changes in reflectance of the water/weakly consolidated sediments acoustic boundary under the influence of the acoustic wave. This phenomenon lies in the fact that after the first acoustic impact and reflection of acoustic wave for some time the reflectance of this boundary remains close to 0. This event on a cross-section can explain by the short-term changes in the properties of bottom sediments under the influence of shock? acoustic wave, with a further reduction of these properties to the next wave generation (generation period of 2 seconds). Perhaps in these deposits occurs thixotropic process. The paper presents the seismic acoustic cross-sections of Lake Balkhash (Kazakhstan), Turgoyak (Russia). The work was carried out according to the Russia Government's Program of Competitive Growth of Kazan Federal University, supported by the grant provided to the Kazan State University for performing the state program in the field of scientific research, and partially supported by the Russian Foundation for Basic research (grants № 14-05-00785, 16-35-00452).

  16. Nonlinear Wave-particle Interaction and Particle Trapping in Large Amplitude Dust Acoustic Waves

    SciTech Connect

    Chang, Mei-Chu; Teng, Lee-Wen; Lin, I.

    2011-11-29

    Large amplitude dust acoustic wave can be self-excited by the strong downward ion flow in a dusty plasma liquid formed by negatively charged dusts suspended in a weakly ionized low pressure discharge. In this work, we investigate experimentally the wave-particle phase space dynamics of the large amplitude dust acoustic wave by connecting the Lagrangian and Eulerian views, through directly tracking particle motion and measuring local dust density fluctuations. The microscopic pictures of wave steepening and breaking, resonant particle-wave crest trapping, and the absence of trough trapping observed in our experiment are constructed.

  17. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Frankel, M. S.; Peterson, A. M.

    1977-01-01

    This paper considers the interaction of electromagnetic and acoustic waves where a Radio Acoustic Sounding System (RASS) is operated in a stochastic environment characterized by turbulence, winds and mean-temperature gradients. It has been shown that for a RASS operating at acoustic frequencies below a few kilohertz propagating under typical atmospheric conditions, turbulence has little effect on the strength of the received radio signal scattered from the pulse at heights up to a few kilometers. This result implies that the received RF signal level (power) is primarily a function of sound intensity which decreases as x exp minus 2 where x is the altitude.

  18. Controllable optical transparency using an acoustic standing-wave device

    NASA Astrophysics Data System (ADS)

    Moradi, Kamran; El-Zahab, Bilal

    2015-09-01

    In this paper, a suspended-particle device with controllable light transmittance was developed based on acoustic stimuli. Using a glass compartment and carbon particle suspension in an organic solvent, the device responded to acoustic stimulation by alignment of particles. The alignment of light-absorbing carbon particles afforded an increase in light transmittance as high as 84.5% and was controllable based on the control of the frequency and amplitude of the acoustic waves. The device also demonstrated alignment memory rendering it energy-efficient.

  19. Microfluidic particle manipulation using high frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Collins, David J.

    2016-11-01

    Precise manipulation of particles and biological cells remains a very active research area in microfluidics. Among various force fields applied for microfluidic manipulations, acoustic waves have superior propagating properties in solids and fluids, which can readily enable non-contact cell manipulation in long operating distances. Exploiting acoustic waves for fluid and cell manipulation in microfluidics has led to a newly emerging research area, acoustofluidics. In this work, I will present particle and cell manipulation in microfluidics using high frequency surface acoustic waves (SAW). In particular, I will discuss a unique design of a focused IDT (FIDT) structure, which is able to generate a highly localized SAW field on the order of 20 µm wide. This highly focused acoustic beam has an effective manipulation area size that is comparable to individual micron-sized particles. Here, I demonstrate the use of this highly localized SAW field for single particle level sorting with sub-millisecond pulses and selective capture of particles. Based on the presented studies on acoustic particle manipulation, I envision that the merging of acoustics and microfluidics could enable various particle and cell manipulations needed in microfluidic applications. We acknowledge the support received from Singapore University of Technology and Design (SUTD)-Massachusetts Institute of Technology (MIT) International Design Center (IDG11300101) and SUTD Startup Research Grant (SREP13053) awarded to Y.A.

  20. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  1. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  2. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    PubMed Central

    Greve, David W.; Chin, Tao-Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-01-01

    Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity. PMID:23708273

  3. Drops subjected to surface acoustic waves: flow dynamics

    NASA Astrophysics Data System (ADS)

    Brunet, Philippe; Baudoin, Michael; Bou Matar, Olivier; Dynamique Des Systèmes Hors Equilibre Team; Aiman-Films Team

    2012-11-01

    Ultrasonic acoustic waves of frequency beyond the MHz are known to induce streaming flow in fluids that can be suitable to perform elementary operations in microfluidics systems. One of the currently appealing geometry is that of a sessile drop subjected to surface acoustic waves (SAW). Such Rayleigh waves produce non-trival actuation in the drop leading to internal flow, drop displacement, free-surface oscillations and atomization. We recently carried out experiments and numerical simulations that allowed to better understand the underlying physical mechanisms that couple acoustic propagation and fluid actuation. We varied the frequency and amplitude of actuation, as well as the properties of the fluid, and we measured the effects of these parameters on the dynamics of the flow. We compared these results to finite-elements numerical simulations.

  4. Surface acoustic wave devices for harsh environment wireless sensing

    SciTech Connect

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  5. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGES

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; ...

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  6. Surface acoustic wave properties of freestanding diamond films.

    PubMed

    Flannery, Colm M; Whitfield, Michael D; Jackman, Richard B

    2004-03-01

    "Ideal" diamond has the highest acoustic velocity of any material known, and is of great interest as a substrate material for high frequency surface acoustic wave (SAW) device structures. However, little is known of the acoustic wave propagation properties of polycrystalline diamond grown by chemical vapour deposition (CVD) techniques, the commercially accessible form of this material. We report on propagation of laser-generated SAW on three forms of freestanding CVD diamond samples, "white" polycrystalline, "black" polycrystalline, and "highly oriented" diamond. Despite differing sample nature, SAW waves propagating along the smooth (nucleation) side of the diamond showed similar velocities in the range 10600-11900 ms(-1). These results are discussed in terms of the potential of each form of CVD diamond for SAW device fabrication.

  7. Acoustic waves switch based on meta-fluid phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Xue-Feng

    2012-08-01

    The acoustic waves switch based on meta-fluid phononic crystals (MEFL PCs) is theoretically investigated. The MEFL PCs consist of fluid matrix and fluid-like inclusions with extremely anisotropic-density. The dispersion relations are calculated via the plane wave expansion method, which are in good agreement with the transmitted sound pressure level spectra obtained by the finite element method. The results show that the width of absolute band gap in MEFL PCs depends sensitively upon the orientation of the extremely anisotropic-density inclusions and reaches maximum at the rotating angle of 45°, with the gap position nearly unchanged. Also, the inter-mode conversion inside anisotropic-density inclusions can be ignored due to large acoustic mismatch. The study gives a possibility to realize greater flexibility and stronger effects in tuning the acoustic band gaps, which is very significant in the enhanced control over sound waves and has potential applications in ultrasonic imaging and therapy.

  8. Utilization of polymer viscoelastic properties in acoustic wave sensor applications

    NASA Astrophysics Data System (ADS)

    Martin, Stephen J.; Ricco, Antonio J.; Frye, G. C.

    The changes which occur in polymer viscoelastic properties in response to cross-linking reactions and due to absorption of gas phase species were used advantageously in several acoustic wave-based sensor applications. When a polymer film is present on the surface of an acoustic wave device, changes in the visoelastic properties of the film induce changes in wave porpagation velocity and attenuation, providing two sensor responses. Film changes which occur polymer cross-linking allow photopolymerization to be monitored in real time using acoustic devices. A photoaction spectrum of photoresist reveals the cross-linking wavelength with maximum quantum yield. Changes in the viscoelastic properties of a polysiloxane film induces by vapor absorption are found to be unique for each of several species, enabling differentiation of species with a single film. A Maxwell model for polymer viscoelasticity, in combination with mass loading effects, provides a sound theoretical basis for explaining observed results for both polysiloxane and polybytadiene/polystyrene copolymer films.

  9. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  10. Broadband metamaterial for nonresonant matching of acoustic waves.

    PubMed

    D'Aguanno, G; Le, K Q; Trimm, R; Alù, A; Mattiucci, N; Mathias, A D; Aközbek, N; Bloemer, M J

    2012-01-01

    Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific.

  11. Negative bi-refraction of acoustic waves in sonic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Feng

    2008-03-01

    Optical birefringence and dichroism are classical and important effects originating from two independent polarizations of optical waves in anisotropic crystals. However, it is impossible for acoustic waves in the fluid to show such a birefringence because only the longitudinal mode exists. The emergence of an artificial sonic crystal (SC) has significantly broadened the range of acoustic materials in nature that can give rise to acoustic bandgaps and be used to control the propagation of acoustic waves. Recently, negative refraction has attracted a lot of attention and has been demonstrated in both left-handed materials and photonic crystals. Similar to left-handed materials and photonic crystals, negative refractions have also been found in SCs. Here we report the acoustic negative-birefraction phenomenon in a two-dimensional SC, even with the same frequency and the same `polarization' state. By means of this feature, double focusing images of a point source have been realized. This birefraction concept may be extended to other periodic systems corresponding to other forms of waves, for example, electron for semiconductors, photon for photonic crystals, and plasmon for plasmonic crystals, showing great impacts on both fundamental physics and device applications.

  12. Lagrangian-Eulerian micromotion and wave heating in nonlinear self-excited dust-acoustic waves.

    PubMed

    Liao, Chen-Ting; Teng, Lee-Wen; Tsai, Chen-Yu; Io, Chong-Wai; I, Lin

    2008-05-09

    We investigate particle-wave microdynamics in the large amplitude self-excited dust acoustic wave at the discrete level through direct visualization. The wave field induces dust oscillations which in turn sustain wave propagation. In the regular wave with increasing wave amplitude, dust-wave interaction with uncertain temporary crest trapping and dust-dust interaction lead to the transition from cyclic to disordered dust motion associated with the liquid to the gas transition, and anisotropic non-Gaussian heating. In the irregular wave, particle trough-trapping is also observed, and the heating is nearly Gaussian and less anisotropic.

  13. Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin

    2008-09-07

    The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.

  14. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-29

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  15. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    PubMed Central

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429

  16. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  17. Amplification of acoustic evanescent waves using metamaterial slabs.

    PubMed

    Park, Choon Mahn; Park, Jong Jin; Lee, Seung Hwan; Seo, Yong Mun; Kim, Chul Koo; Lee, Sam H

    2011-11-04

    We amplified acoustic evanescent waves using metamaterial slabs with a negative effective density. For the amplifying effect of the slab to overcome the dissipation, it is necessary that the imaginary part of the effective density is much smaller than the real part, a condition not satisfied so far. We report the construction of membrane-based two-dimensional negative-density metamaterials which exhibited remarkably small dissipation. Using a slab of this metamaterial we realized a 17-fold net amplitude gain at a remote distance from the evanescent wave source. Potential applications include acoustic superlensing.

  18. Imaging of Acoustic Waves in Piezoelectric Ceramics by Coulomb Coupling

    NASA Astrophysics Data System (ADS)

    Habib, Anowarul; Shelke, Amit; Pluta, Mieczyslaw; Kundu, Tribikram; Pietsch, Ullrich; Grill, Wolfgang

    2012-07-01

    The transport properties of bulk and guided acoustic waves travelling in a lead zirconate titanate (PZT) disc, originally manufactured to serve as ultrasonic transducer, have been monitored by scanned Coulomb coupling. The images are recorded by excitation and detection of ultrasound with local electric field probes via piezoelectric coupling. A narrow pulse has been used for excitation. Broadband coupling is achieved since neither mechanical nor electrical resonances are involved. The velocities of the traveling acoustic waves determined from the images are compared with characteristic velocities calculated from material properties listed by the manufacturer of the PZT plate.

  19. Anisotropic diffraction of bulk acoustic wave beams in lithium niobate.

    PubMed

    Naumenko, Natalya F; Chizhikov, Sergey I; Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2015-12-01

    The formalism of planar diffraction tensor was applied to the analysis of anisotropy of bulk acoustic wave diffraction and to build a full map of anisotropic diffractional coefficients for three bulk acoustic wave modes propagating in lithium niobate. For arbitrary propagation direction the diffractional coefficients derived allow estimation of ultrasonic beam divergence in far-field. Analysis of obtained data revealed that the maxima of acousto-optic figure of merit for anisotropic diffraction in the YZ plane correspond to moderate diffractional spreading of the beams exceeding isotropic diffraction 2-3 times.

  20. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  1. Coupling light into graphene plasmons through surface acoustic waves.

    PubMed

    Schiefele, Jürgen; Pedrós, Jorge; Sols, Fernando; Calle, Fernando; Guinea, Francisco

    2013-12-06

    We propose a scheme for coupling laser light into graphene plasmons with the help of electrically generated surface acoustic waves. The surface acoustic wave forms a diffraction grating which allows us to excite the long lived phononlike branch of the hybridized graphene plasmon-phonon dispersion with infrared laser light. Our approach avoids patterning the graphene sheet, does not rely on complicated optical near-field techniques, and allows us to electrically switch the coupling between far-field radiation and propagating graphene plasmons.

  2. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Acoustic carrier transportation induced by surface acoustic waves in graphene in solution

    NASA Astrophysics Data System (ADS)

    Okuda, Satoshi; Ikuta, Takashi; Kanai, Yasushi; Ono, Takao; Ogawa, Shinpei; Fujisawa, Daisuke; Shimatani, Masaaki; Inoue, Koichi; Maehashi, Kenzo; Matsumoto, Kazuhiko

    2016-04-01

    The acoustic charge transportation induced by surface acoustic wave (SAW) propagation in graphene in solution was investigated. The sign of acoustic current (I A) was found to switch when crossing the Dirac point because the major carrier was transitioned from holes to electrons by the change in electrolyte-gate voltage. I A also exhibited a peak value under conditions of both hole and electron conduction. These results can be explained on the basis of a change in the type of major carrier in graphene, as well as a change in the carrier mobility of graphene.

  4. Measurement of evanescent wave properties of a bulk acoustic wave resonator.

    PubMed

    Kokkonen, Kimmo; Meltaus, Johanna; Pensala, Tuomas; Kaivola, Matti

    2012-03-01

    Acoustic wave fields in a thin-film bulk acoustic wave resonator are studied using a heterodyne laser interferometer. The measurement area is extended outside the active electrode region of the resonator, so that wave fields in both the active and surrounding regions can be characterized. At frequencies at which the region surrounding the resonator does not support laterally propagating acoustic waves, the analysis of the measurement data shows exponentially decaying amplitude fields outside the active resonator area, as suggested by theory. The magnitude of the imaginary wave vectors is determined by fitting an exponential function to the measured amplitude data, and thereby the experimentally determined dispersion diagram is extended into the region of imaginary wave numbers.

  5. Acoustic measurements of air entrainment by breaking waves

    NASA Astrophysics Data System (ADS)

    Terrill, Eric James

    1998-11-01

    Wave breaking at the surface of the ocean plays an important role in air-sea interaction processes. Bubbles entrained by breaking waves not only enhance the transfer of atmospheric gases to the ocean, but also modify the phase speed and attenuation of acoustic waves propagating through the bubbly medium. The development of acoustic instruments to measure bubbles and the results obtained from a number of field and laboratory experiments are presented. The first part of this dissertation addresses sound speed measurements made in the North Atlantic as part of the Acoustic Surface Reverberation Experiment (ASREX). An autonomous buoy system that directly measures the sound speed in the surface wave layer was developed. Data obtained with the instrument spanned several storm cycles with wind speeds and significant wave heights reaching 20 m/s and 8 m, respectively. The use of Wood's relation (1946) allows the calculation of the void fraction of air based on the low-frequency sound speed measurements. The highly variable near-surface sound speed/void fraction field is analyzed with respect to wind and surface wave- breaking parameters. The second part of this dissertation presents the development of a broadband acoustic technique which simultaneously measures the phase speed and attenuation at acoustic frequencies ranging from 4-100 kHz. The acoustic data is inverted for the size distribution of bubbles using algorithms that are based upon the physics of sound propagation through a bubbly mixture. This acoustic technique was evaluated in the large wave channel at the Hydraulics Laboratory, Scripps Institution of Oceanography, using mechanically generated breaking waves in seawater. Field measurements of bubble concentrations that result from wave breaking were made in both shallow water off Scripps Pier, California and in deep water near Point Conception, California using the broadband technique. Significant variability is observed in the bubble field, characterized by

  6. Efficient counter-propagating wave acoustic micro-particle manipulation

    NASA Astrophysics Data System (ADS)

    Grinenko, A.; Ong, C. K.; Courtney, C. R. P.; Wilcox, P. D.; Drinkwater, B. W.

    2012-12-01

    A simple acoustic system consisting of a pair of parallel singe layered piezoelectric transducers submerged in a fluid used to form standing waves by a superposition of two counter-propagating waves is reported. The nodal positions of the standing wave are controlled by applying a variable phase difference to the transducers. This system was used to manipulate polystyrene micro-beads trapped at the nodal positions of the standing wave. The demonstrated good manipulation capability of the system is based on a lowering of the reflection coefficient in a narrow frequency band near the through-thickness resonance of the transducer plates.

  7. Linear coupling of acoustic and cyclotron waves in plasma flows

    SciTech Connect

    Rogava, Andria; Gogoberidze, Grigol

    2005-05-15

    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are mathematically equal to the ones describing coupling of sound waves with internal gravity waves [Rogava and Mahajan, Phys. Rev. E 55, 1185 (1997)] in neutral fluids. For flows with low shearing rates a fully analytic, quantitative description of the coupling efficiency, based on a noteworthy quantum-mechanical analogy, is given and transformation coefficients are calculated.

  8. Measuring acoustic nonlinearity parameter using collinear wave mixing

    NASA Astrophysics Data System (ADS)

    Liu, Minghe; Tang, Guangxin; Jacobs, Laurence J.; Qu, Jianmin

    2012-07-01

    This study introduces a new acoustic nonlinearity parameter βT. It is shown that βT is associated with the interaction between a longitudinal wave and a shear wave in isotropic elastic solids with quadratic nonlinearity. Experimental measurements are conducted to demonstrate that the collinear wave mixing technique is capable of measuring βT nondestructively. Further, it is shown that βT is well-correlated with the plastic deformation in Al-6061 alloys. These results indicate that collinear wave mixing is a promising method for nondestructive assessment of plastic deformation, and possibly, fatigue damage in metallic materials.

  9. Chromospheric extents predicted by time-dependent acoustic wave models

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.

  10. Chromospheric extents predicted by time-dependent acoustic wave models

    SciTech Connect

    Cuntz, M. Heidelberg Universitaet )

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.

  11. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  12. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson

  13. Asymptotic permanent profile of the ion acoustic wave driven by the Langmuir wave

    NASA Astrophysics Data System (ADS)

    Kaup, D. J.; Latifi, A.; Leon, J.

    1992-08-01

    We study the evolution of Langmuir waves coupled to the ion acoustic wave by means of the ponderomotive force in the Karpman limit (caviton equation). Using the spectral transform with singular dispersion relation, it is shown that the background noise (fluctuations in the ion density) is amplified and its time asymptotic behavior will be a static solution which is totally reflective for the Langmuir wave. Moreover, if the initial ion density contains a local depression, the asymptotic profile will contain a number of permanent localized density depressions (cavitons), static in the rest frame of the acoustic wave and entrained in its wake.

  14. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    DTIC Science & Technology

    1987-09-01

    develops a new technique for estimating quasi- homogeneous and quasi-stationary sea surface wave frequency-direction spectra using acoustic tomog...problems for the homogeneous and quasi- homogeneous frequency-direction spectrum are introduced. The theory is ap- plied tosynthetic data which simulate...thesis introduces a technique that estimates the quasi-stationary and quasi- homogeneous sea surface wave frequency-direction spectrum from the spectra of

  15. Adiabatic trapping in coupled kinetic Alfven-acoustic waves

    SciTech Connect

    Shah, H. A.; Ali, Z.; Masood, W.

    2013-03-15

    In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

  16. S-Band Shallow Bulk Acoustic Wave (SBAW) microwave source

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques necessary to fabricate a high performance S-band microwave single source using state-of-the-art shallow bulk acoustic wave (SBAW) were explored. The bulk wave structures of the AlN/Al 2O3 were investigated for both the R plane and basal plane of sapphire. A 1.072 GHz SBAW delay line and oscillators were developed. A method of selecting and setting oscillator output frequency by selecting substrate orientation angle was also established.

  17. Propagation of acoustic waves in a stratified atmosphere, 1

    NASA Technical Reports Server (NTRS)

    Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.

    1994-01-01

    This work is motivated by the chromospheric 3 minute oscillations observed in the K(sub 2v) bright points. We study acoustic gravity waves in a one-dimensional, gravitationally stratified, isothermal atmosphere. The oscillations are excited either by a velocity pulse imparted to a layer in an atmosphere of infinite vertical extent, or by a piston forming the lower boundary of a semi-infinite medium. We consider both linear and non-linear waves.

  18. Ion-Acoustic Waves in Self-Gravitaing Dusty Plasma

    SciTech Connect

    Kumar, Nagendra; Kumar, Vinod; Kumar, Anil

    2008-09-07

    The propagation and damping of low frequency ion-acoustic waves in steady state, unmagnetised, self-gravitating dusty plasma are studied taking into account two important damping mechanisms creation damping and Tromso damping. It is found that imaginary part of wave number is independent of frequency in case of creation damping. But when we consider the case of creation and Tromso damping together, an additional contribution to damping appears with the increase in frequency attributed to Tromso effect.

  19. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect

    El-Shewy, E. K.; Abdelwahed, H. G.; Elmessary, M. A.

    2011-11-15

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  20. Interaction of acoustic waves generated by coupled plate

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    When two substructures are coupled, the acoustic field generated by the motion of each of the substructures will interact with the motion of the other substructure. This would be the case of a structure enclosing an acoustic cavity. A technique to model the interaction of the generated sound fields from the two components of a coupled structure, and the influence of this interaction on the vibration of the structural components is presented. Using a mobility power flow approach, each element of the substructure is treated independently both when developing the structural response and when determining the acoustic field generated by this component. The presence of the other substructural components is introduced by assuming these components to be rigid baffles. The excitation of one of the substructures is assumed to be by an incident acoustic wave which is dependent of the motion of the substructure. The sound field generated by the motion of the substructure is included in the solution of the response.

  1. Standing surface acoustic wave (SSAW)-based cell washing

    PubMed Central

    Li, Sixing; Ding, Xiaoyun; Mao, Zhangming; Chen, Yuchao; Nama, Nitesh; Guo, Feng; Li, Peng; Wang, Lin; Cameron, Craig E.; Huang, Tony Jun

    2014-01-01

    Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications. PMID:25372273

  2. Numerical modelling of nonlinear full-wave acoustic propagation

    SciTech Connect

    Velasco-Segura, Roberto Rendón, Pablo L.

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  3. Numerical modelling of nonlinear full-wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendón, Pablo L.

    2015-10-01

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe's linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  4. Propagation of acoustic pulses in random gravity wave fields

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; de La Camara, Alvaro; Lott, François

    2015-11-01

    A linear solution modeling the interaction between an incoming acoustic wave and a randomly perturbed atmosphere is developed, using the normal mode method. The wave mode structure is determined by a sound speed profile that is confining. The environmental uncertainty is described by a stochastic field obtained with a multiwave stochastic parameterization of gravity waves (GW). Using the propagating modes of the unperturbed atmosphere, the wave propagation problem is reduced to solving a system of ordinary differential equations. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime. In this regime, the coupling between the acoustic pulse and the randomly perturbed waveguides is weak and the propagation distance must be large enough for the wave to experience significant scattering. A general expression for the pressure far-field is derived in terms of saddle-point contributions. The saddle-points are obtained from a WKB approximation of the vertical eigenvalue problem. We present preliminary results that show how statistics of the transmitted signal are related to some eigenvalues and how an ``optimal'' GW field can trigger large deviations in the acoustic signals. The present model is used to explain the variability of infrasound signals.

  5. Gasoline identifier based on SH0 plate acoustic waves.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible.

  6. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    SciTech Connect

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  7. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGES

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  8. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    PubMed

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  9. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  10. Novel Acoustic Wave Microsystems for Biophysical Studies of Cells

    NASA Astrophysics Data System (ADS)

    Senveli, Sukru Ufuk

    Single cell analysis is an important topic for understanding of diseases. In this understanding, biomechanics approach serves as an important tool as it relates and connects the mechanical properties of biological cells with diseases such as cancer. In this context, analysis methods based on ultrasonics are promising owing to their non-invasive nature and ease of use. However, there is a lack of miniature systems that provide accurate ultrasonic measurements on single cancer cells for diagnostic purposes. The platform presented in this study exploits high frequency acoustic interaction and uses direct coupling of Rayleigh type SAWs with various samples placed inside microcavities to analyze their structural properties. The samples used are aqueous glycerin solutions and polystyrene microbeads for demonstrating proper system operation, and lead up to biological cells. The microcavity is instrumental in trapping a predetermined volume of sample inside and facilitating the interaction of the surface waves with the sample in question via a resonance condition. Ultimately, the resultant SAW reaching the output transducer incurs a phase delay due to its interaction with the sample in the microcavity. The system operates in a different manner compared to similar systems as a result of multiple wave reflections in the small volume and coupling back to the piezoelectric substrate. The proposed microsystem was first analyzed using finite element methods. Liquid and solid media were modeled by considering frequency dependent characteristics. Similarly, mechanical behavior of cells with respect to different conditions is considered, and biological cells are modeled accordingly. Prototype devices were fabricated on quartz and lithium niobate in a cleanroom environment. Process steps were optimized separately for devices with microcavities. Precise fabrication, alignment, and bonding of PDMS microchannels were carried out. Soft microprobes were fabricated out of SU-8, a

  11. Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials

    SciTech Connect

    Zhou, Xiaoming; Badreddine Assouar, M. Oudich, Mourad

    2014-11-21

    We present analytical and numerical analyses of a yet unseen lensing paradigm that is based on a solid metamaterial slab in which the wave excitation source is attached. We propose and demonstrate sub-diffraction-limited acoustic focusing induced by surface resonant states in doubly negative metamaterials. The enhancement of evanescent waves across the metamaterial slab produced by their resonant coupling to surface waves is evidenced and quantitatively determined. The effect of metamaterial parameters on surface states, transmission, and wavenumber bandwidth is clearly identified. Based on this concept consisting of a wave source attached on the metamaterial, a high resolution of λ/28.4 is obtained with the optimum effective physical parameters, opening then an exciting way to design acoustic metamaterials for ultrasonic focused imaging.

  12. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  13. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  14. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    PubMed

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  15. Surface wave acoustics of granular packing under gravity

    SciTech Connect

    Clement, Eric; Andreotti, Bruno; Bonneau, Lenaic

    2009-06-18

    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. For a packing under gravity and in the presence of a free surface, bulk acoustic waves cannot propagate due to the inherent refraction toward the surface (the mirage effect). Thus, only modes corresponding to surface waves (Raleigh-Hertz modes) are able to propagate the acoustic signal. First, based on a non-linear elasticity model, we describe the main features associated to these surface waves. We show that under gravity, a granular packing is from the acoustic propagation point of view an index gradient waveguide that selects modes of two distinct families i.e. the sagittal and transverse waves localized in the vicinity of the free surface. A striking feature of these surface waves is the multi-modal propagation: for both transverse and sagittal waves, we show the existence of a infinite but discrete series of propagating modes. In each case, we determine the mode shape and and the corresponding dispersion relation. In the case of a finite size system, a geometric waveguide is superimposed to the index gradient wave guide. In this later case, the dispersion relations are modified by the appearance of a cut-off frequency that scales with depth. The second part is devoted to an experimental study of surface waves propagating in a granular packing confined in a long channel. This set-up allows to tune a monomodal emission by taking advantage of the geometric waveguide features combined with properly designed emitters. For both sagittal and transverses waves, we were able to isolate a single mode (the fundamental one) and to plot the dispersion relation. This measurements agree well with the Hertzian scaling law as predicted by meanfield models. Furthermore, it allows us to determine quantitatively relations on the elastic moduli. However, we observe that our data yield a shear modulus abnormally weak when compared to several meanfield predictions.

  16. Fabrication, Operation and Flow Visualization in Surface-acoustic-wave-driven Acoustic-counterflow Microfluidics

    PubMed Central

    Travagliati, Marco; Shilton, Richie; Beltram, Fabio; Cecchini, Marco

    2013-01-01

    Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains. PMID:24022515

  17. Synchronization of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Suranga Ruhunusiri, W. D.; Goree, John

    2012-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. Dust acoustic wave synchronization has been experimentally studied previously in laboratory and in microgravity conditions, e.g. [Pilch PoP 2009] and [Menzel PRL 2010]. We perform a laboratory experiment to study synchronization of self-excited dust acoustic waves. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. Dust acoustic waves are self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the waves, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency.

  18. Dislocation kinetics and the acoustic-wave approximation for liquids

    SciTech Connect

    Stout, R.B.

    1983-03-01

    A dislocation-dependent model for liquids describes the lattice deformation and the fluidity deformation as additive deformations. The lattice deformation represents distortions of an atom's potential energy structure and is a recoverable deformation response. The fluidity deformation represents discontinuous repositioning of atoms by dislocation kinetics in the lattice structure and is a nonrecoverable deformation response. From this model, one concludes that in liquids the acoustic-wave approximation is a description of a recoverable oscillation deformation that has dissipation because of dislocation kinetics. Other more-complex waves may exist, but such waves would rapidly disappear because of the small thermodynamic potential for dislocation kinetics in liquids.

  19. Homomorphic processing of the tube wave generated during acoustic logging

    SciTech Connect

    Ellefsen, K.J. ); Cheng, C.H. . Dept. of Earth, Atmospheric, and Planetary Sciences); Burns, D.R.

    1993-10-01

    The authors have developed a new method to process the tube wave, which is generated during acoustic logging, to obtain estimates for its wavenumber, attenuation coefficient, amplitude, and phase at every frequency. To improve the accuracy of the estimates, the method can use data from multiple sources and data collected at successive depths in the borehole. This new method has several advantages over other methods that are currently used to process acoustic logging data: the new method can obtain accurate estimates of the wavenumber and amplitude from only a few receivers; the receivers can be irregularly spaced; and no spurious estimates are generated. Nonetheless, this new method has one disadvantage compared to others: it can only estimate the parameters for one, high-amplitude wave like the tube wave. Also, like all other existing methods, the new method obtains only reasonable estimates for the attenuation coefficient when data from many receivers are processed.

  20. Image reconstruction with acoustic radiation force induced shear waves

    NASA Astrophysics Data System (ADS)

    McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.

    2003-05-01

    Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.

  1. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  2. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    SciTech Connect

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  3. Acoustic-wave localization in the presence of shear resonances

    NASA Astrophysics Data System (ADS)

    Graham, Ian S.; Piché, Luc; Levesque, Daniel; Grant, Martin

    1991-05-01

    We study, via both experiment and theory, localization of longitudinal-acoustic waves scattered from sites supporting transverse (shear) modes. The experimental system consists of a polymer melt solidifying by the growth of spherical semicrystalline nuclei. We excite this system with acoustic plane waves and measure the transmitted signal. For sufficiently high excitation frequencies we find renormalization of the sound speed and intense absorption peaks over a very narrow range of wave number. These data can be consistently interpreted as signs of localization within the sample. Standard theory, however does not predict localization in this system, since the longitudinal velocity in the scatterers is faster than that in the liquid. However, the solid scatterers support shear modes, which can significantly modify their scattering characteristics. We extend the theory of localization to allow for scatterers supporting shear. This model predicts shear-induced localization in the system we have studied.

  4. Analytical description of nonlinear acoustic waves in the solar chromosphere

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.; Chae, Jongchul

    2017-02-01

    Aims: Vertical propagation of acoustic waves of finite amplitude in an isothermal, gravitationally stratified atmosphere is considered. Methods: Methods of nonlinear acoustics are used to derive a dispersive solution, which is valid in a long-wavelength limit, and a non-dispersive solution, which is valid in a short-wavelength limit. The influence of the gravitational field on wave-front breaking and shock formation is described. The generation of a second harmonic at twice the driving wave frequency, previously detected in numerical simulations, is demonstrated analytically. Results: Application of the results to three-minute chromospheric oscillations, driven by velocity perturbations at the base of the solar atmosphere, is discussed. Numerical estimates suggest that the second harmonic signal should be detectable in an upper chromosphere by an instrument such as the Fast Imaging Solar Spectrograph installed at the 1.6-m New Solar Telescope of the Big Bear Observatory.

  5. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  6. Multiple-frequency surface acoustic wave devices as sensors

    NASA Astrophysics Data System (ADS)

    Ricco, Antonio J.; Martin, Stephen J.

    We have designed, fabricated, and tested a multiple-frequency acoustic wave (MUFAW) device on ST-cut quartz with nominal surface acoustic wave (SAW) center frequencies of 16, 40, 100, and 250 MHz. The four frequencies are obtained by patterning four sets of input and output interdigital transducers of differing periodicities on a single substrate. Such a device allows the frequency dependence of AW sensor perturbations to be examined, aiding in the elucidation of the operative interaction mechanism(s). Initial measurements of the SAW response to the vacuum deposition of a thin nickel film show the expected frequency dependence of mass sensitivity in addition to the expected frequency independence of the magnitude of the acoustoelectric effect. By measuring changes in both wave velocity and attenuation at multiple frequencies, extrinsic perturbations such as temperature and pressure changes are readily differentiated from one another and from changes in surface mass.

  7. Improved equivalent circuits for acoustic plate wave devices.

    PubMed

    Zaitsev, B D; Kuznetsova, I E; Joshi, S G

    2002-05-01

    This paper presents improved equivalent circuits for the analysis and design of acoustic plate wave devices. The method uses a mixed equivalent circuit for the interdigital transducer consisting of both active and passive sections placed on the surface of a piezoelectric plate. The values of the various circuit elements are obtained by carrying out a best fit between theoretical and experimental frequency dependence of the real and imaginary parts of transducer input impedance. Knowledge of the equivalent circuit parameters allows one to optimize design of the devices. The method has been successfully employed for the design of one-port shear-horizontal wave resonators on Y-X lithium niobate plates. The proposed method can also be utilized for determining acoustic wave velocity with high accuracy.

  8. Microfabricated Circuits for Terahertz Wave Amplification and Terahertz Biosensors

    NASA Astrophysics Data System (ADS)

    Fawole, Olutosin Charles

    The terahertz frequency band extends from deep infrared (100 THz) down to millimeter waves (0.4 THz), and this band was mostly inaccessible due to the lack of appropriate sources and detectors. Those with access to this band had to endure the small-intensity pulsed signals (nanowatts to microwatts) that the terahertz sources of those times could provide. In recent years, however, sufficient development has led to the availability of terahertz sources with sufficient power (1-100 muW) and the ease of use these sources has in turn enabled researchers to develop newer sources, detectors, and application areas. The terahertz regime is interesting because a) many molecules have vibrational, rotation and transition absorption bands in this regime, b) the terahertz electromagnetic wavelength is sufficiently small to resolve centimeter to millimeter scale objects, and c) scattering and absorption in metals in the terahertz regime make it very challenging to devise terahertz signal processing circuits. Thus, performing terahertz reflection/transmission measurements may enable precise identification of chemicals in a sample. Furthermore, small wavelengths and strong scattering by metallic objects make imaging with terahertz waves quite attractive. Finally, the ability to devise terahertz communication circuits and links will provide access to a frequency domain that is restricted and not available to others. One of the main objectives of this work is to develop 0.75 - 1.1 terahertz (free space wavelength 272 mum - 400 ?mum) amplifiers. Another objective of this work is to explore the suitability of terahertz waves in biological imaging and sensing. The terahertz amplifiers developed in this work consisted of distributed components such as rectangular waveguides and cylindrical dielectric resonators. In contrast to discrete amplifiers, which are based on solid-state devices, distributed traveling wave amplifiers can potentially handle and produce larger powers. Three

  9. Excitation of Ion Acoustic Waves by Electron Beams

    NASA Astrophysics Data System (ADS)

    Sydorenko, Dmytro; Tokluoglu, Erinc; Kaganovich, Igor; Startsev, Edward; Davidson, Ronald

    2012-10-01

    The interaction of electron beams with plasmas is of considerable importance particularly for hybrid DC/RF coupled plasma sources used in plasma processing [1]. An electron beam is formed by emission from one surface, is accelerated through a dc bias electric field and enters the bulk plasma. Emitted electrons excite electron plasma (Langmuir) waves through the two-stream instability. Due to the high localized plasmon pressure, ion acoustic waves are excited parametrically. The plasma waves saturate by non-linear wave trapping. Eventually coupling between electron plasma waves and ion acoustic waves deteriorates the Langmuir waves, which leads to a bursting behavior. The two-stream instability and the consequent ion fluctuations are studied over a wide range of system parameters using the particle-in-cell codes EDIPIC and LSP. The influenceof these instabilities on collisionless electron heating are presented for a hybrid RF-DC plasma source.[4pt] [1] Lin Xu, et al, Appl. Phys. Lett., 93, 261502 (2008).

  10. Nonlinear acoustic wave propagation in atmosphere TLSP - Final report

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1987-01-01

    In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  11. Synchronized photonic modulators driven by surface acoustic waves.

    PubMed

    Crespo-Poveda, A; Hey, R; Biermann, K; Tahraoui, A; Santos, P V; Gargallo, B; Muñoz, P; Cantarero, A; de Lima, M M

    2013-09-09

    Photonic modulators are one of the most important elements of integrated photonics. We have designed, fabricated, and characterized a tunable photonic modulator consisting of two 180°-dephased output waveguide channels, driven by a surface acoustic wave in the GHz frequency range built on (Al,Ga)As. Odd multiples of the fundamental driven frequency are enabled by adjusting the applied acoustic power. A good agreement between theory and experimental results is achieved. The device can be used as a building block for more complex integrated functionalities and can be implemented in several material platforms.

  12. Coupling between ion-acoustic waves and neutrino oscillations.

    PubMed

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  13. Coupling between ion-acoustic waves and neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  14. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  15. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.

    PubMed

    Liu, Shilei; Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong; Zhang, And Jie

    2017-07-19

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL(®) Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  16. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  17. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    PubMed

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  18. Diffraction of dust acoustic waves by a circular cylinder

    SciTech Connect

    Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.

    2008-09-15

    The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the 'obstacle' encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].

  19. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  20. Acoustic solitons: A robust tool to investigate the generation and detection of ultrafast acoustic waves

    NASA Astrophysics Data System (ADS)

    Péronne, Emmanuel; Chuecos, Nicolas; Thevenard, Laura; Perrin, Bernard

    2017-02-01

    Solitons are self-preserving traveling waves of great interest in nonlinear physics but hard to observe experimentally. In this report an experimental setup is designed to observe and characterize acoustic solitons in a GaAs(001) substrate. It is based on careful temperature control of the sample and an interferometric detection scheme. Ultrashort acoustic solitons, such as the one predicted by the Korteweg-de Vries equation, are observed and fully characterized. Their particlelike nature is clearly evidenced and their unique properties are thoroughly checked. The spatial averaging of the soliton wave front is shown to account for the differences between the theoretical and experimental soliton profile. It appears that ultrafast acoustic experiments provide a precise measurement of the soliton velocity. It allows for absolute calibration of the setup as well as the response function analysis of the detection layer. Moreover, the temporal distribution of the solitons is also analyzed with the help of the inverse scattering method. It shows how the initial acoustic pulse profile which gives birth to solitons after nonlinear propagation can be retrieved. Such investigations provide a new tool to probe transient properties of highly excited matter through the study of the emitted acoustic pulse after laser excitation.

  1. Numerics of surface acoustic wave (SAW) driven acoustic streaming and radiation force

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Kahler, Christian; Costanzo, Francesco; Jun Huang, Tony

    2015-11-01

    Recently, surface acoustic wave (SAW) based systems have shown great potential for various lab-on-a-chip applications. However, the physical understanding of the precise acoustic fields and associated acoustophoresis is rather limited. In this work, we present a numerical study of the acoustophoretic particle motion inside a SAW-actuated, liquid-filled polydimethylsiloxane (PDMS) microchannel. We utilize a perturbation approach to divide the flow variables into first- and second-order components. The first-order fields result in a time-averaged acoustic radiation force on suspended particles, as well as the time-averaged body force terms that drive the second-order fields. We model the SAW actuation by a displacement function while we utilize impedance boundary conditions to model the PDMS walls. We identify the precise acoustic fields generated inside the microchannel and investigate a range of particle sizes to characterize the transition from streaming-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Lastly, we demonstrate the ability of SAW devices to tune the position of vertical pressure node inside the microchannel by tuning the phase difference between the two incoming surface acoustic waves.

  2. Inverse Scattering Problems for Acoustic Waves in AN Inhomogeneous Medium.

    NASA Astrophysics Data System (ADS)

    Kedzierawski, Andrzej Wladyslaw

    1990-01-01

    This dissertation considers the inverse scattering problem of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far-field patterns of the scattered fields corresponding to many incident time -harmonic plane waves. First, we consider the inverse problem in the case when the scattering object is an inhomogeneous medium with complex refraction index having compact support. Our approach to this problem is the orthogonal projection method of Colton-Monk (cf. The inverse scattering problem for time acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math. 41 (1988), 97-125). After that, we prove the analogue of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. We then generalize some of these results to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. We solve the inverse impedance problem of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (cf. R. Kress, Linear Integral Equations, Springer-Verlag, New York, 1989).

  3. Internal-wave time evolution effect on ocean acoustic rays.

    PubMed

    Flatté, Stanley M; Vera, Michael D

    2002-10-01

    A range-dependent field of sound speed in the ocean, c(x,z), caused by internal waves, can give rise to instabilities in acoustic ray paths. Past work has shown the importance of the background, range-independent, sound-speed profile; the ray initial conditions; the source-receiver geometry (depths and range); and the strength of the internal waves. However, in the past the time evolution of the internal waves has been ignored on the grounds that the speed of internal waves is much slower than the speed of the acoustic wave. It is shown here by numerical simulation that two rays with identical initial conditions, traveling through an ocean with the same background profile and the same random realization of internal waves, but with the internal waves frozen in one case and evolving in the other, travel significantly different trajectories. The dependence of this "frozen-unfrozen" difference on the initial ray launch angle, the background profile, and the strength of the internal-wave spectrum, is investigated. The launch-angle difference that generates similar arrival-depth differences to those induced by internal-wave time evolution is on the order of 100 microrad. The pattern of differences is measured here by the arrival depth at the final range of 1000 km. The observed pattern as a function of launch angle, change in the background profile, and change in internal-wave strength is found to be nearly the same for "frozen-unfrozen" change as for a slight change in launch angle.

  4. Envelope solitons of acoustic plate modes and surface waves.

    PubMed

    Mayer, Andreas P; Kovalev, Alexander S

    2003-06-01

    The problem of the existence of evelope solitons in elastic plates and at solid surfaces covered by an elastic film is revisited with special attention paid to nonlinear long-wave short-wave interactions. Using asymptotic expansions and multiple scales, conditions for the existence of envelope solitons are established and it is shown how their parameters can be expressed in terms of the elastic moduli and mass densities of the materials involved. In addition to homogeneous plates, weak periodic modulation of the plate's material parameters are also considered. In the case of wave propagation in an elastic plate, modulations of weakly nonlinear carrier waves are governed by a coupled system of partial differential equations consisting of evolution equations for the complex amplitude of the carrier wave (the nonlinear Schrödinger equation for envelope solitons and the Mills-Trullinger equations for gap solitons), and the wave equation for long-wavelength acoustic plate modes. In contrast to this situation, envelope solitons of surface acoustic waves in a layered structure are normally described by the nonlinear Schrödinger equation alone. However, at higher orders of the carrier wave amplitude, the envelope soliton is found to be accompanied by a quasistatic long-wavelength strain field, which may be localized at the surface with penetration depth into the substrate of the order of the inverse amplitude or which may radiate energy into the bulk. A new set of modulation equations is derived for the resonant case of the carrier wave's group velocity being equal to the phase velocity of long-wavelength Rayleigh waves of the uncoated substrate.

  5. Standing wave acoustic levitation on an annular plate

    NASA Astrophysics Data System (ADS)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  6. Deconvolution of acoustically detected bubble-collapse shock waves.

    PubMed

    Johansen, Kristoffer; Song, Jae Hee; Johnston, Keith; Prentice, Paul

    2017-01-01

    The shock wave emitted by the collapse of a laser-induced bubble is detected at propagation distances of 30, 40and50mm, using a PVdF needle hydrophone, with a non-flat end-of-cable frequency response, calibrated for magnitude and phase, from 125kHz to 20MHz. High-speed shadowgraphic imaging at 5×10(6) frames per second, 10nstemporal resolution and 256 frames per sequence, records the bubble deflation from maximum to minimum radius, the collapse and shock wave generation, and the subsequent rebound in unprecedented detail, for a single sequence of an individual bubble. The Gilmore equation for bubble oscillation is solved according to the resolved bubble collapse, and simulated shock wave profiles deduced from the acoustic emissions, for comparison to the hydrophone recordings. The effects of single-frequency calibration, magnitude-only and full waveform deconvolution of the experimental data are presented, in both time and frequency domains. Magnitude-only deconvolution increases the peak pressure amplitude of the measured shock wave by approximately 9%, from single-frequency calibration, with full waveform deconvolution increasing it by a further 3%. Full waveform deconvolution generates a shock wave profile that is in agreement with the simulated profile, filtered according to the calibration bandwidth. Implications for the detection and monitoring of acoustic cavitation, where the role of periodic bubble collapse shock waves has recently been realised, are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    PubMed

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  8. Numerical Investigations of High Pressure Acoustic Waves in Resonators

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.

  9. Optically tunable acoustic wave band-pass filter

    SciTech Connect

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-15

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  10. Optically tunable acoustic wave band-pass filter

    NASA Astrophysics Data System (ADS)

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-01

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  11. Dust acoustic waves in strongly coupled dissipative plasmas

    NASA Astrophysics Data System (ADS)

    Xie, B. S.; Yu, M. Y.

    2000-12-01

    The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.

  12. HF Doppler observations of acoustic waves excited by the earthquake

    NASA Technical Reports Server (NTRS)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  13. Scanning Michelson interferometer for imaging surface acoustic wave fields.

    PubMed

    Knuuttila, J V; Tikka, P T; Salomaa, M M

    2000-05-01

    A scanning homodyne Michelson interferometer is constructed for two-dimensional imaging of high-frequency surface acoustic wave (SAW) fields in SAW devices. The interferometer possesses a sensitivity of ~10(-5)nm/ radicalHz , and it is capable of directly measuring SAW's with frequencies ranging from 0.5 MHz up to 1 GHz. The fast scheme used for locating the optimum operation point of the interferometer facilitates high measuring speeds, up to 50,000 points/h. The measured field image has a lateral resolution of better than 1 mu;m . The fully optical noninvasive scanning system can be applied to SAW device development and research, providing information on acoustic wave distribution that cannot be obtained by merely electrical measurements.

  14. Reflection and transmission of acoustic waves from a moving layer

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Singh, J. J.

    1972-01-01

    The refraction of acoustic waves by a moving medium layer is theoretically treated and the expressions for reflection and transmission coefficients are determined. The moving medium layer velocity is assumed to have a space dependence in one direction. A partitioning of the moving medium layer into constant-velocity sublayers is introduced and the number of sublayers is allowed to increase until the reflection and transmission coefficients converage to their respective values. Numerical results for several sublayer approximations of Poiseuille's flow are presented as functions of the moving layer velocity for several angles of incidence of the acoustic wave. The degenerate case of single constant-velocity layer is also treated, both theoretically and by a numerical analysis.

  15. Laser-generated acoustic wave studies on tattoo pigment

    NASA Astrophysics Data System (ADS)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  16. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  17. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  18. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    DTIC Science & Technology

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...eliminating acoustic radiation losses. We pro- pose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces

  19. On-line surveillance of lubricants in bearings by means of surface acoustic waves.

    PubMed

    Lindner, Gerhard; Schmitt, Martin; Schubert, Josephine; Krempel, Sandro; Faustmann, Hendrik

    2010-01-01

    The acoustic wave propagation in bearings filled with lubricants and driven by pulsed excitation of surface acoustic waves has been investigated with respect to the presence and the distribution of different lubricants. Experimental setups, which are based on the mode conversion between surface acoustic waves and compression waves at the interface between a solid substrate of the bearing and a lubricant are described. The results of preliminary measurements at linear friction bearings, rotation ball bearings and axial cylinder roller bearings are presented.

  20. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  1. Acoustic field of a ballistic shock wave therapy device.

    PubMed

    Cleveland, Robin O; Chitnis, Parag V; McClure, Scott R

    2007-08-01

    Shock wave therapy (SWT) refers to the use of focused shock waves for treatment of musculoskeletal indications including plantar fascitis and dystrophic mineralization of tendons and joint capsules. Measurements were made of a SWT device that uses a ballistic source. The ballistic source consists of a handpiece within which compressed air (1-4 bar) is used to fire a projectile that strikes a metal applicator placed on the skin. The projectile generates stress waves in the applicator that transmit as pressure waves into tissue. The acoustic fields from two applicators were measured: one applicator was 15 mm in diameter and the surface slightly convex and the second was 12 mm in diameter the surface was concave. Measurements were made in a water tank and both applicators generated a similar pressure pulse consisting of a rectangular positive phase (4 micros duration and up to 8 MPa peak pressure) followed by a predominantly negative tail (duration of 20 micros and peak negative pressure of -6 MPa), with many oscillations. The rise times of the waveforms were around 1 micros and were shown to be too long for the pulses to be considered shock waves. Measurements of the field indicated that region of high pressure was restricted to the near-field (20-40 mm) of the source and was consistent with the Rayleigh distance. The measured acoustic field did not display focusing supported by calculations, which demonstrated that the radius of curvature of the concave surface was too large to effect a focusing gain. Other SWT devices use electrohydraulic, electromagnetic and piezoelectric sources that do result in focused shock waves. This difference in the acoustic fields means there is potentially a significant mechanistic difference between a ballistic source and other SWT devices.

  2. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Peterson, A. M.

    1979-01-01

    In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.

  3. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions.

  4. Impact of Acoustic Standing Waves on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.

    2014-01-01

    For several decades large reverberant chambers and most recently direct field acoustic testing have been used in the aerospace industry to test larger structures with low surface densities such as solar arrays and reflectors to qualify them and to detect faults in the design and fabrication. It has been reported that in reverberant chamber and direct acoustic testing, standing acoustic modes may strongly couple with the fundamental structural modes of the test hardware (Reference 1). In this paper results from a recent reverberant chamber acoustic test of a composite reflector are discussed. These results provide further convincing evidence of the acoustic standing wave and structural modes coupling phenomenon. The purpose of this paper is to alert test organizations to this phenomenon so that they can account for the potential increase in structural responses and ensure that flight hardware undergoes safe testing. An understanding of the coupling phenomenon may also help minimize the over and/or under testing that could pose un-anticipated structural and flight qualification issues.

  5. Application of guided acoustic waves to delamination detection

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.

    1992-01-01

    Guided plate waves are able to interact with structural flaws such as delaminations and cracks due to their propagation properties highly sensitive to the thickness change in materials. A technique which employs an acoustic damper to probe the results of this interaction and then to locate flaws in a relatively short period of time is developed. With its technical advantages, this technique shows its potential application to large area structural integrity assessment.

  6. Optimizing surface acoustic wave sensors for trace chemical detection

    SciTech Connect

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  7. Space manufacturing of surface acoustic wave devices, appendix D

    NASA Technical Reports Server (NTRS)

    Sardella, G.

    1973-01-01

    Space manufacturing of transducers in a vibration free environment is discussed. Fabrication of the masks, and possible manufacturing of the surface acoustic wave components aboard a space laboratory would avoid the inherent ground vibrations and the frequency limitation imposed by a seismic isolator pad. The manufacturing vibration requirements are identified. The concepts of space manufacturing are analyzed. A development program for manufacturing transducers is recommended.

  8. Cavitations Development In a Liquid Behind Strong Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Voronin, D. V.; Teslenko, V. S.

    2008-06-01

    The generation of bubbles behind an acoustic pulse is theoretically and experimentally investigated in the paper. It was found out that at growth of the amplitude of falling wave two different modes of cavitations development occur: "chain" mechanism of duplication of cavitations germs is replaced by mechanism of "real" liquid cavitations, when the liquid is initially filled with a set of cavitations nuclei and apparent bubble occurrence is caused by different periods of nucleus growth from them.

  9. Monolithic GaAs surface acoustic wave chemical microsensor array

    SciTech Connect

    HIETALA,VINCENT M.; CASALNUOVO,STEPHEN A.; HELLER,EDWIN J.; WENDT,JOEL R.; FRYE-MASON,GREGORY CHARLES; BACA,ALBERT G.

    2000-03-09

    A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

  10. Optimum contact conditions for miniaturized surface acoustic wave linear motor

    PubMed

    Takasaki; Kurosawa; Higuchi

    2000-03-01

    This paper reports the successful operation of a 70 MHz driving surface acoustic wave (SAW) linear motor with a miniaturized stator transducer. This paper also deals with an investigation into an optimized slider design for the miniaturized SAW linear motor. The performance of three silicon type sliders, with different projection size, was compared. Output forces of the three sliders were measured with change of pre-load. It was found that the slider with smaller projection tended to produce greater output force.

  11. Surface acoustic wave probe implant for predicting epileptic seizures

    DOEpatents

    Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  12. Nonlinear Acoustic Wave Interactions in Layered Media.

    DTIC Science & Technology

    1980-03-06

    give rise to leaky wave modes which are more thoroughly discussed 17 18 by Kapany and Burke, and by Marcuse . Leaky modes are C.C. Ghizoni, J.M...1977), 843-848. 1 7N.S. Kapany and J.J. Burke, Optical Waveeeuides, (New York: Academic Press, 1972), pp. 24-34. D. Marcuse , Theory of Dielectric Optical...Linear Differential Operators. London: D. Van Nostrand Co., Ltd., 1961. Marcuse , D. Theory of Dielectric Optical Waveguides. New York: Academic Press

  13. Oblique ion acoustic shock waves in a magnetized plasma

    SciTech Connect

    Shahmansouri, M.; Mamun, A. A.

    2013-08-15

    Ion acoustic (IA) shock waves are studied in a magnetized plasma consisting of a cold viscous ion fluid and Maxwellian electrons. The Korteweg–de Vries–Burgers equation is derived by using the reductive perturbation method. It is shown that the combined effects of external magnetic field and obliqueness significantly modify the basic properties (viz., amplitude, width, speed, etc.) of the IA shock waves. It is observed that the ion-viscosity is a source of dissipation, and is responsible for the formation of IA shock structures. The implications of our results in some space and laboratory plasma situations are discussed.

  14. Acoustic charge transport induced by the surface acoustic wave in chemical doped graphene

    NASA Astrophysics Data System (ADS)

    Zheng, Shijun; Zhang, Hao; Feng, Zhihong; Yu, Yuanyuan; Zhang, Rui; Sun, Chongling; Liu, Jing; Duan, Xuexin; Pang, Wei; Zhang, Daihua

    2016-10-01

    A graphene/LiNbO3 hybrid device is used to investigate the acoustic induced charge transport in chemical doped graphene. The chemical doping of graphene via its physisorption of gas molecules affects the surface acoustic wave (SAW) charge carrier transport in a manner different from electric field drift. That transport induces doping dependent macroscopic acoustoelectric current. The chemical doping can manipulate majority carriers and induces unique acoustoelectric features. The observation is explained by a classical relaxation model. Eventually the device based on acoustoelectric current is proved to outperform the common chemiresistor for chemicals. Our finding provides insight into acoustic charge carrier transport during chemical doping. The doping affects interaction of carriers with SAW phonon and facilitates the understanding of nanoscale acoustoelectric effect. The exploration inspires potential acoustoelectric application for chemical detection involving emerging 2D nanomaterials.

  15. Wave propagation in one-dimensional nonlinear acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Bonello, Bernard; Yin, Jianfei; Yu, Dianlong

    2017-05-01

    The propagation of waves in nonlinear acoustic metamaterial (NAM) is fundamentally different from that in conventional linear ones. In this article we consider two one-dimensional (1D) NAM systems featuring respectively a diatomic and a tetratomic meta unit-cell. We investigate the attenuation of waves, band structures, and bifurcations to demonstrate novel nonlinear effects, which can significantly expand the bandwidth for elastic wave suppression and cause nonlinear wave phenomena. The harmonic averaging approach, continuation algorithm, and Lyapunov exponents (LEs) are combined to study the frequency responses, nonlinear modes, bifurcations of periodic solutions, and chaos. The nonlinear resonances are studied, and the influence of damping on hyperchaotic attractors is evaluated. Moreover, a ‘quantum’ behavior is found between the low-energy and high-energy orbits. This work provides a theoretical base for furthering understandings and applications of NAMs.

  16. Dust-acoustic rogue waves in a nonextensive plasma

    SciTech Connect

    Moslem, W. M.; Shukla, P. K.; Sabry, R.; El-Labany, S. K.

    2011-12-15

    We present an investigation for the generation of a dust-acoustic rogue wave in a dusty plasma composed of negatively charged dust grains, as well as nonextensive electrons and ions. For this purpose, the reductive perturbation technique is used to obtain a nonlinear Schroedinger equation. The critical wave-number threshold k{sub c}, which indicates where the modulational instability sets in, has been determined precisely for various regimes. Two different behaviors of k{sub c} against the nonextensive parameter q are found. For small k{sub c}, it is found that increasing q would lead to an increase of k{sub c} until q approaches a certain value q{sub c}, then further increase of q beyond q{sub c} decreases the value of k{sub c}. For large k{sub c}, the critical wave-number threshold k{sub c} is always increasing with q. Within the modulational instability region, a random perturbation of the amplitude grows and thus creates dust-acoustic rogue waves. In order to show that the characteristics of the rogue waves are influenced by the plasma parameters, the relevant numerical analysis of the appropriate nonlinear solution is presented. The nonlinear structure, as reported here, could be useful for controlling and maximizing highly energetic pulses in dusty plasmas.

  17. Dust-acoustic rogue waves in a nonextensive plasma.

    PubMed

    Moslem, W M; Sabry, R; El-Labany, S K; Shukla, P K

    2011-12-01

    We present an investigation for the generation of a dust-acoustic rogue wave in a dusty plasma composed of negatively charged dust grains, as well as nonextensive electrons and ions. For this purpose, the reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave-number threshold k(c), which indicates where the modulational instability sets in, has been determined precisely for various regimes. Two different behaviors of k(c) against the nonextensive parameter q are found. For small k(c), it is found that increasing q would lead to an increase of k(c) until q approaches a certain value q(c), then further increase of q beyond q(c) decreases the value of k(c). For large k(c), the critical wave-number threshold k(c) is always increasing with q. Within the modulational instability region, a random perturbation of the amplitude grows and thus creates dust-acoustic rogue waves. In order to show that the characteristics of the rogue waves are influenced by the plasma parameters, the relevant numerical analysis of the appropriate nonlinear solution is presented. The nonlinear structure, as reported here, could be useful for controlling and maximizing highly energetic pulses in dusty plasmas.

  18. RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Bard, S.; Carlsson, M.

    2010-10-10

    We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.

  19. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  20. Dual mode acoustic wave sensor for precise pressure reading

    NASA Astrophysics Data System (ADS)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  1. Characteristics of acoustic gravity waves obtained from Dynasonde data

    NASA Astrophysics Data System (ADS)

    Negrea, Cǎtǎlin; Zabotin, Nikolay; Bullett, Terrence; Fuller-Rowell, Tim; Fang, Tzu-Wei; Codrescu, Mihail

    2016-04-01

    Traveling ionospheric disturbances (TIDs) are ubiquitous in the thermosphere-ionosphere and are often assumed to be caused by acoustic gravity waves (AGWs). This study performs an analysis of the TID and AGW activity above Wallops Island, VA, during October 2013. The variations in electron density and ionospheric tilts obtained with the Dynasonde technique are used as primary indicators of wave activity. The temporal and spectral characteristics of the data are discussed in detail, using also results of the Whole Atmosphere Model (WAM) and the Global Ionosphere Plasmasphere Model (GIP). The full set of propagation parameters (frequency, and the vertical, zonal and meridional wave vector components) of the TIDs is determined over the 160-220 km height range. A test of the self-consistency of these results within the confines of the theoretical AGW dispersion relation is devised. This is applied to a sample data set of 24 October 2013. A remarkable agreement has been achieved for wave periods between 52 and 21 min, for which we can rigorously claim the TIDs are caused by underlying acoustic gravity waves. The Wallops Island Dynasonde can operate for extended periods at a 2 min cadence, allowing determination of the statistical distributions of propagation parameters. A dominant population of TIDs is identified in the frequency band below 1 mHz, and for it, the distributions of the horizontal wavelengths, vertical wavelengths, and horizontal phase speeds are obtained.

  2. Acoustic waves in tilted fiber Bragg gratings for sensing applications

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Alberto, Nélia J.; Domingues, Fátima; Leitão, Cátia; Antunes, Paulo; Pinto, João. L.; André, Paulo

    2017-05-01

    Tilted fiber Bragg gratings (TFBGs) are one of the most attractive kind of optical fiber sensor technology due to their intrinsic properties. On the other hand, the acousto-optic effect is an important, fast and accurate mechanism that can be used to change and control several properties of fiber gratings in silica and polymer optical fiber. Several all-optical devices for optical communications and sensing have been successfully designed and constructed using this effect. In this work, we present the recent results regarding the production of optical sensors, through the acousto-optic effect in TFBGs. The cladding and core modes amplitude of a TFBG can be controlled by means of the power levels from acoustic wave source. Also, the cladding modes of a TFBG can be coupled back to the core mode by launching acoustic waves. Induced bands are created on the left side of the original Bragg wavelength due to phase matching to be satisfied. The refractive index (RI) is analyzed in detail when acoustic waves are turned on using saccharose solutions with different RI from 1.33 to 1.43.

  3. Surface Acoustic Waves Enhance Neutrophil Killing of Bacteria

    PubMed Central

    Loike, John D.; Plitt, Anna; Kothari, Komal; Zumeris, Jona; Budhu, Sadna; Kavalus, Kaitlyn; Ray, Yonatan; Jacob, Harold

    2013-01-01

    Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW) on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm2, significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria. PMID:23936303

  4. Numerical study of nonlinear full wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendon, Pablo L.

    2013-11-01

    With the aim of describing nonlinear acoustic phenomena, a form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite-volume method using Roe's linearization has been implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is written for parallel execution on a GPU and improves performance by a factor of over 50 when compared to the standard CLAWPACK Fortran code. This code can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from modest models of diagnostic and therapeutic HIFU, parametric acoustic arrays, to acoustic wave guides. A couple of examples will be presented showing shock formation and oblique interaction. DGAPA PAPIIT IN110411, PAEP UNAM 2013.

  5. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    1985-12-01

    The first surfce acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposted on the acoustic progagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectric coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in N2 has been demonstrated.

  6. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    The first surface acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposited on the acoustic propagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectic coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in Ne was demonstrated.

  7. Surface acoustic waves enhance neutrophil killing of bacteria.

    PubMed

    Loike, John D; Plitt, Anna; Kothari, Komal; Zumeris, Jona; Budhu, Sadna; Kavalus, Kaitlyn; Ray, Yonatan; Jacob, Harold

    2013-01-01

    Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW) on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm(2), significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria.

  8. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  9. Attenuation of acoustic waves in glacial ice and salt domes

    NASA Astrophysics Data System (ADS)

    Price, P. B.

    2006-02-01

    Two classes of natural solid media, glacial ice and salt domes, are under consideration as media in which to deploy instruments for detection of neutrinos with energy ≥1018 eV. Though insensitive to 1011 to 1016 eV neutrinos for which observatories (e.g., AMANDA and IceCube) that utilize optical Cherenkov radiation detectors are designed, radio and acoustic methods are suited for searches for the very low fluxes of neutrinos with energies >1017 eV. This is because owing to the very long attenuation lengths of radio and acoustic waves produced by interactions of such neutrinos in ice and salt, detection modules can be spaced at horizontal distances ˜1 km, in contrast to the 0.12 km distances between strings of IceCube modules. In this paper, I calculate the absorption and scattering coefficients as a function of frequency and grain size for acoustic waves in glacial ice and salt domes and show that experimental measurements on laboratory samples and in glacial ice and salt domes are consistent with theory. For South Pole ice with grain size ˜0.2 cm at depths ≤600 m, scattering lengths are calculated to be 2000 and 25 km at frequencies 10 and 30 kHz, respectively; for grain size ˜0.4 cm at 1500 m (the maximum depth to be instrumented acoustically), scattering lengths are calculated to be 250 and 3 km. These are within the range of frequencies where most of the energy of the acoustic wave is concentrated. The absorption length is calculated to be 9 ± 3 km at all frequencies above ˜100 Hz. For NaCl (rock salt) with grain size 0.75 cm, scattering lengths are calculated to be 120 and 1.4 km at 10 and 30 kHz, and absorption lengths are calculated to be 3 × 104 and 3300 km at 10 and 30 kHz. Existing measurements are consistent with theory. For ice, absorption is the limiting factor; for salt, scattering is the limiting factor. Both media would be suitable for detection of acoustic waves from ultrahigh-energy neutrino interactions.

  10. Acoustic Wave Stimulated Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Reichmann, Sven; Giese, Rüdiger; Amro, Mohammed

    2013-04-01

    High demand and the finite oil deposits will be a problem in the future. To temper the impact of a shortage in crude oil, a lot of research in the field of enhanced oil recovery (EOR) is worldwide ongoing. Using seismic waves to stimulate recovery of oil is known as seismic-EOR. The development of a stimulation procedure using seismic sources and the evaluation of the obtained data in a real oil field is the aim of the project WAVE.O.R. The project is funded by the German scientific society for oil, gas and coal (DGMK). The Technical University of Freiberg (TUBAF) and the German Research Center for Geosciences (GFZ) in Potsdam developed a flooding cell connected with magnetostrictive actuators as sources for seismic energy. This device is eligible to survey the impact of different seismic stimulation parameter like frequency, alignment, amplitude and rock characteristics on oil recovery. The obtained laboratory data of flooding experiments using seismic waves were analyzed for key features like water breakthrough point, oil recovery and oil fraction. New approach has been developed, which consists of the connection of a principal component analysis with a clustering algorithm. This new technique allows us a better understanding and thus prediction of the recovery behavior of oil bearing sediments. The experiments show promising possibilities to enhance oil recovery with seismic stimulation. Especially the combination of different frequencies between 100 Hz and 4000 Hz had a positive impact on oil recovery. The responsible mechanisms were identified and discussed. Data obtained with the laboratory device will be applied in a field test using a borehole device developed by the GFZ in the project "Seismic Prediction While Drilling" (SPWD). For this purpose experiments are conducted to obtain the radiation pattern of the seismic sources used by the SPWD device in a borehole. In addition, the development of a control setup for the 1-D actuator array is an aim of the

  11. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  12. Guided wave opto-acoustic device

    DOEpatents

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  13. Acoustic waves undetectable by transient reflectivity measurements

    NASA Astrophysics Data System (ADS)

    He, Chuan; Ristow, Oliver; Grossmann, Martin; Brick, Delia; Guo, Yuning; Schubert, Martin; Hettich, Mike; Gusev, Vitalyi; Dekorsy, Thomas

    2017-05-01

    A free-standing GaAs membrane is investigated by pump-probe reflectivity measurements with femtosecond laser pulses of 400-nm wavelength. It is found that the detected wide spectrum of laser-generated coherent strain waves in the membrane does not contain a specific hypersonic frequency. Theoretical analysis reveals that this effect is related to zero sensitivity of the acousto-optic detection at a particular frequency defined by the wavelength of the probe laser pulse on the mechanical free surface of the GaAs membrane. We predict that a similar behavior is expected in Si and Au membranes and films, indicating that the presence of zeros in the spectral transformation function of acousto-optic conversion is a rather general phenomenon in picosecond ultrasonics that has so far been neglected.

  14. Near Field Ocean Surface Waves Acoustic Radiation Observation and Modeling

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Peureux, C.; Royer, J. Y.

    2016-12-01

    The acoustic noise generation by nonlinearly interacting surface gravity waves has been studied for a long time both theoretically and experimentally [Longuet-Higgins 1951]. The associated far field noise is continuously measured by a vast network of seismometers at the ocean bottom and on the continents. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean.The pressure field at depths less than an acoustic wave length to the surface is made of evanescent modes which vanish away from their sources (near field) [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, where pressure measurements are performed at the ocean bottom (ca. 100 m) and at 300 m water depth respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modeling framework help assessing its performances and can be used to help future model improvements.References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.

  15. FROM THE CURRENT LITERATURE: Laser excitation of surface acoustic waves: a new direction in opto-acoustic spectroscopy of a solid

    NASA Astrophysics Data System (ADS)

    Karabutov, Aleksander A.

    1985-11-01

    Studies in thermo-optic excitation of surface acoustic waves are reviewed. The excitation of periodic and pulse signals is discussed, using nonmoving and moving beams. Most attention is paid to application of this effect for purposes of opto-acoustic spectroscopy of a solid. The possibilities and promises of using opto-acoustic spectroscopy (OAS) employing surface acoustic waves (SAW) are analyzed

  16. Acoustic systems containing curved duct sections. [numerical analysis of wave propagation in acoustic ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1975-01-01

    The analysis of waves in bends in acoustical ducting of rectangular cross section was extended to the study of motion near discontinuities. This included determination of the characteristics of the tangential and radial components of the nonpropagating modes. It is established that attenuation of the nonpropagating modes strongly depends on frequency and that, in general, the sharper the bend, the less attenuation may be expected. Evaluation of a bend's impedance and of impedance-generated reflections is also presented in detail.

  17. Switchable and Tunable Ferroelectric Bulk Acoustic Wave Resonators and Filters

    NASA Astrophysics Data System (ADS)

    Saddik, George Nabih

    Ferroelectric materials such as barium titanate (BaTiO 3 or BTO), strontium titanate (SrTiO3 or STO), and their solid solution barium strontium titanate (BaxSr1-xTiO 3 or BST) have been under investigation for over 50 years. BTO, STO, and BST are high-k dielectric materials, with a field dependent permittivity and a perovskite crystal structure. At room temperature BTO is a ferroelectric with a ferroelectric to paraelectric transition temperature of about 116°C (Curie temperature), while STO has no ferroelectric phase. The formation of a solid solution between BTO and STO allows for the engineering of the Curie temperature; the Curie temperature decreses as the mole ratio of barium decreases. Extensive research went into understanding the properties of BST and developing RF circuits such as tunable capacitors, tunable matching networks, tunable filters, phase shifters and harmonic generators. BST tunable capacitors have always had anomalous resonances in the one port scattering parameter measurements, although they are very small they degrade the quality factor of the device, and research went into reducing these resonances as much as possible. The goal of this thesis is to investigate these anomalous resonances and exploit them into RF devices and circuits. Careful investigation showed that these resonances were field induced piezoelectric resonance. Piezoelectric materials such as AlN, ZnO, and PZT are used in many applications, such as resonators, and filters. Thin film bulk acoustic wave resonators (FBAR) have been in use by research and industry since the early 1980s, and in high volume production for cell phone duplexers since early 2000s. FBAR filters and duplexers have several advantages over surface acoustic wave (SAW) and ceramic devices such as high quality factors necessary for sharp filter skirts, small size, high performance, and ease of integration. There are two approaches to designing bulk acoustic wave resonators. The first is an FBAR where a

  18. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  19. Determination of hydrocarbon levels in water via laser-induced acoustics wave

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman

    2016-04-01

    Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.

  20. Plane-wave analysis of solar acoustic-gravity waves: A (slightly) new approach

    NASA Technical Reports Server (NTRS)

    Bogart, Richard S.; Sa, L. A. D.; Duvall, Thomas L., Jr.; Haber, Deborah A.; Toomre, Juri; Hill, Frank

    1995-01-01

    The plane-wave decomposition of the acoustic-gravity wave effects observed in the photosphere provides a computationally efficient technique that probes the structure of the upper convective zone and boundary. In this region, the flat sun approximation is considered as being reasonably accurate. A technique to be used for the systematic plane-wave analysis of Michelson Doppler imager data, as part of the solar oscillations investigation, is described. Estimates of sensitivity are presented, and the effects of using different planar mappings are discussed. The technique is compared with previous approaches to the three dimensional plane-wave problem.

  1. Sensitivity of surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Filipiak, Jerzy; Zubko, Konrad

    2001-08-01

    The SAW devices are widely used as filters, delay lines, resonators and gas sensors. It is possible to use it as mechanical force. The paper describes sensitivity of acceleration sensor based on SAW using the Rayleigh wave propagation. Since characteristic of acceleration SAW sensors are largely determined by piezoelectric materials, it is very important to select substrate with required characteristics. Researches and numerical modeling based on simply sensor model include piezoelectric beam with unilateral free end. An aggregated mass is connected to the one. The dimension and aggregated mass are various. In this case a buckling stress and sensitivity are changed. Sensitivity in main and perpendicular axis are compare for three sensor based on SiO2, LiNbO3, Li2B4O7. Influences of phase velocity, electro-mechanical coupling constant and density on sensitivity are investigated. Some mechanical parameters of the substrates in dynamic work mode are researched using sensor model and Rayleigh model of vibrations without vibration damping. The model is useful because it simply determines dependencies between sensor parameters and substrate parameters. Differences between measured and evaluated quantities are less than 5 percent. Researches based on sensor modes, which fulfilled mechanical specifications similarly to aircraft navigation.

  2. Kinetic ion-acoustic solitary waves in collisional plasmas

    NASA Astrophysics Data System (ADS)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2014-05-01

    The excitation and the propagation of solitary waves of ion-acoustic nature are analyzed by means of kinetic Eulerian simulations, in both collision-free and collisional plasmas, composed of kinetic warm protons and linear Boltzmannian electrons. The process of soliton formation is discussed in detail through the description of the time evolution of the electrostatic potential and of the associated phase space portraits of the proton distribution function. We study the effects of collisions on the propagation of solitary waves, by modeling proton-proton interactions through the one-dimensional nonlinear Dougherty operator, which is a collisional operator of the Fokker-Planck type. We show how, in a case of non-negligible collisionality, short spatial scales in the electrostatic potential are dissipated in time and the phase space structures, observed in the distribution function in absence of collisions, are significantly smoothed out. Finally, by exploiting the analogy between ion-acoustic waves in neutral infinite plasma and Trivelpiece-Gould waves in nonneutral plasmas columns, a recipe to observe solitary structures in nonneutral plasma devices is proposed.

  3. Diffraction correction for precision surface acoustic wave velocity measurements

    NASA Astrophysics Data System (ADS)

    Ruiz M., Alberto; Nagy, Peter B.

    2002-09-01

    Surface wave dispersion measurements can be used to nondestructively characterize shot-peened, laser shock-peened, burnished, and otherwise surface-treated specimens. In recent years, there have been numerous efforts to separate the contribution of surface roughness from those of near-surface material variations, such as residual stress, texture, and increased dislocation density. As the accuracy of the dispersion measurements was gradually increased using state-of-the-art laser-ultrasonic scanning and sophisticated digital signal processing methods, it was recognized that a perceivable dispersive effect, similar to the one found on rough shot-peened specimens, is exhibited by untreated smooth surfaces as well. This dispersion effect is on the order of 0.1%, that is significantly higher than the experimental error associated with the measurements and comparable to the expected velocity change produced by near-surface compressive residual stresses in metals below their yield point. This paper demonstrates that the cause of this apparent dispersion is the diffraction of the surface acoustic wave (SAW) as it travels over the surface of the specimen. The results suggest that a diffraction correction may be introduced to increase the accuracy of surface wave dispersion measurements. A simple diffraction correction model was developed for surface waves and this correction was subsequently validated by laser-interferometric velocity measurements on aluminum specimens. copyright 2002 Acoustical Society of America.

  4. Synchronization of the dust acoustic wave under microgravity

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, W. D. Suranga; Goree, J.

    2013-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. To prepare for experiments under microgravity conditions using the PK-4 facility on the International Space Station, we perform a laboratory experiment to observe synchronization of the self-excited dust acoustic wave. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. The dust acoustic wave is self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the wave, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency. Supported by NASA's Physical Science Research Program.

  5. Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

    2004-01-01

    The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

  6. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  7. Nonlinear response and bistability of driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  8. Acoustic solitary waves in a magnetized degenerate quantum plasma

    NASA Astrophysics Data System (ADS)

    Hasan, M. M.; Hossen, M. A.; Mamun, A. A.

    2017-07-01

    The obliquely propagating electron-ion (EI) acoustic solitary waves in a degenerate quantum plasma (containing relativistic magnetized quantum electrons and light ions in the presence of stationary heavy ions) have been theoretically investigated. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations are derived by adopting the reductive perturbation method. Their stationary solutions are derived and analyzed analytically as well as numerically to study some new basic features of the EI acoustic solitary structures that are commonly found to exist in degenerate quantum plasmas. It is found that the basic properties (viz., amplitude, width, and phase speed) of the EI acoustic waves are significantly modified by the effects of relativistically degenerate electrons and light ions, quantum pressure, number densities of plasma particles, and external magnetic field. The results of this theoretical investigation may be useful for understanding the formation and features of the solitary structures in astrophysical compact objects such as white dwarfs and neutron stars.

  9. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  10. Nonlinear standing waves in 2-D acoustic resonators.

    PubMed

    Cervenka, Milan; Bednarik, Michal

    2006-12-22

    This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.

  11. Investigation of high efficiency large TBW line acoustic wave convolvers

    NASA Astrophysics Data System (ADS)

    Hunsinger, B. J.; Miller, R. L.; Pieters, G. C.

    1983-10-01

    Line acoustic waves (LAW) are guided modes which follow the sharp edge of a crystal substrate. They offer non-dispersive propagation, tight acoustic energy confinement, and the availability of a signal pickup geometry which can be much more efficient than that of surface acoustic wave (SAW) beamwidth compressor devices. The objective of this program was to carry out theoretical and experimental investigation leading to wide bandwidth LAW transducers and to explore the feasibility of large time-bandwidth LAW convolvers. Broadband LAW generation was performed by converting SAWs to LAWs in multistrip mode converters (MSMCs). An MSMC having a bandwidth of 25% and conversion loss of 5 dB has been demonstrated. Theoretical comparisons between LAW and SAW convolvers indicate that the LAW convolvers should have significantly higher efficiency once they are fully developed. Fabrication of long, straight, chip-free edges was investigated. Improved techniques for cleaving crystals are described and significant progress toward a versatile new technique for sawing high quality edges is reported. Areas requiring additional work are identified and potential applications of LAW devices are discussed.

  12. Dust acoustic solitary waves in a quantum plasma

    SciTech Connect

    Ali, S.; Shukla, P.K.

    2006-02-15

    By employing one-dimensional quantum hydrodynamic (QHD) model for a three species quantum plasma, nonlinear properties of dust acoustic solitary waves are studied. For this purpose a Korteweg-de Vries (KdV) equation is derived, incorporating quantum corrections. The quantum mechanical effects are also examined numerically both on the profiles of the amplitude and the width of dust acoustic solitary waves. It is found that the amplitude remains constant but the width shrinks for different values of a dimensionless electron quantum parameter H{sub e}={radical}((Z{sub d0}({Dirac_h}/2{pi}){sup 2}{omega}{sub pd}{sup 2})/m{sub e}m{sub d}C{sub d}{sup 4}), where Z{sub d0} is the dust charge state, ({Dirac_h}/2{pi}) is the Planck constant divided by 2{pi}, {omega}{sub pd} is the dust plasma frequency, m{sub e} (m{sub d}) is the electron (dust) mass, and C{sub d} is the dust acoustic speed.

  13. Theory of Guided Acoustic Waves in Piezoelectric Solids.

    DTIC Science & Technology

    1979-07-01

    LABORATORY LEYE * THEORY OF GUIDED ACOUSTIC 0 WAVES IN PIEZOELECTRIC SOLIDS SUPRIYO DATTA 1I 717 I APPROVED FOR PUBLIC NLEASE. DISTRIBUTION UNLIMITD...Lcts til2 re.".C)Iiseo sturFace, wave filcers. transduce,-rs and ecetrs DD ~ � k. ’. io 455 G5O~EUNCLASSIFIE /-- SECURITYi CU-Ai3l𔃻-CAT;ON 0...h .-rL s . e 1 ie ve that t h s p rov Ld es- a s im pl1e un i fl ied pic tu re ot wave -f,) ’-- io hat w ill oro)v us--ul in t-he tre2at me nt o f

  14. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    SciTech Connect

    Li, Bing; Tan, K. T.

    2016-08-21

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted and mathematically controlled, which extends the design concept of unidirectional transmission devices.

  15. Attenuation of 7 GHz surface acoustic waves on silicon

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Cahill, David G.

    2016-09-01

    We measured the attenuation of GHz frequency surface acoustic waves (SAWs) on the Si (001) surface using an optical pump-probe technique at temperatures between 300 and 600 K. SAWs are generated and detected by a 700 nm Al grating fabricated by nanoimprint lithography. The grating for SAW generation is separated from the grating for SAW detection by ≈150 μ m . The amplitude of SAWs is attenuated by coupling to bulk waves created by the Al grating, diffraction due to the finite size of the source, and the intrinsic relaxational Akhiezer damping of elastic waves in Si. Thermal phonon relaxation time and Grüneisen parameters are fitted using temperature-dependent measurement. The f Q product of a hypothetical micromechanical oscillator limited by Akhiezer damping at this frequency is ˜3 ×1013 Hz.

  16. Langasite surface acoustic wave gas sensors: modeling and verification

    SciTech Connect

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  17. Adsorption-Mediated Mass Streaming in a Standing Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Weltsch, Oren; Offner, Avshalom; Liberzon, Dan; Ramon, Guy Z.

    2017-06-01

    Oscillating flows can generate nonzero, time-averaged fluxes despite the velocity averaging zero over an oscillation cycle. Here, we report such a flux, a nonlinear resultant of the interaction between oscillating velocity and concentration fields. Specifically, we study a gas mixture sustaining a standing acoustic wave, where an adsorbent coats the solid boundary in contact with the gas mixture. It is found that the sound wave produces a significant, time-averaged preferential flux of a "reactive" component that undergoes a reversible sorption process. This effect is measured experimentally for an air-water vapor mixture. An approximate model is shown to be in good agreement with the experimental observations, and further reveals the interplay between the sound-wave characteristics and the properties of the gas-solid sorbate-sorbent pair. The preferential flux generated by this mechanism may have potential in separation processes.

  18. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    NASA Astrophysics Data System (ADS)

    Li, Bing; Tan, K. T.

    2016-08-01

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted and mathematically controlled, which extends the design concept of unidirectional transmission devices.

  19. Nonextensive dust acoustic waves in a charge varying dusty plasma

    NASA Astrophysics Data System (ADS)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  20. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  1. Adsorption-Mediated Mass Streaming in a Standing Acoustic Wave.

    PubMed

    Weltsch, Oren; Offner, Avshalom; Liberzon, Dan; Ramon, Guy Z

    2017-06-16

    Oscillating flows can generate nonzero, time-averaged fluxes despite the velocity averaging zero over an oscillation cycle. Here, we report such a flux, a nonlinear resultant of the interaction between oscillating velocity and concentration fields. Specifically, we study a gas mixture sustaining a standing acoustic wave, where an adsorbent coats the solid boundary in contact with the gas mixture. It is found that the sound wave produces a significant, time-averaged preferential flux of a "reactive" component that undergoes a reversible sorption process. This effect is measured experimentally for an air-water vapor mixture. An approximate model is shown to be in good agreement with the experimental observations, and further reveals the interplay between the sound-wave characteristics and the properties of the gas-solid sorbate-sorbent pair. The preferential flux generated by this mechanism may have potential in separation processes.

  2. A fractional calculus model of anomalous dispersion of acoustic waves.

    PubMed

    Wharmby, Andrew W

    2016-09-01

    An empirical formula based on viscoelastic analysis techniques that employs concepts from the fractional calculus that was used to model the dielectric behavior of materials exposed to oscillating electromagnetic fields in the radiofrequency, terahertz, and infrared bands. This work adapts and applies the formula to model viscoelastic behavior of materials that show an apparent increase of phase velocity of vibration with an increase in frequency, otherwise known as anomalous dispersion. A fractional order wave equation is derived through the application of the classic elastic-viscoelastic correspondence principle whose analytical solution is used to describe absorption and dispersion of acoustic waves in the viscoelastic material displaying anomalous dispersion in a specific frequency range. A brief discussion and comparison of an alternative fractional order wave equation recently formulated is also included.

  3. Localized packets of acoustic gravity waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Skorokhod, T. V.; Lizunov, G. V.

    2012-02-01

    Using mass-spectrometric measurement data from the Dynamics Explorer 2 satellite, we investigated the distribution of medium-scale acoustic gravity waves (AGWs) at altitudes of the F-region of the ionosphere. It is shown that the planetary field of AGWs contains a regular and a sporadic component. The regular distribution of AGWs involves active polar areas (where the ionosphere is highly disturbed) and a relatively calm equatorial area. Sporadic AGWs are isolated and spatially localized wave packets that are distinguished against the background of the regular distribution of the wave field. We generated a directory containing observations of sporadic AGW for the period January-February 1983 and performed a statistical analysis of their relation to earthquakes.

  4. Cylindrical and spherical ion acoustic waves in a plasma with nonthermal electrons and warm ions

    SciTech Connect

    Sahu, Biswajit; Roychoudhury, Rajkumar

    2005-05-15

    Using the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg-de Vries (KdV) and modified KdV equations are derived for ion acoustic waves in an unmagnetized plasma consisting of warm adiabatic ions and nonthermal electrons. The effects of nonthermally distributed electrons on cylindrical and spherical ion acoustic waves are investigated. It is found that the nonthermality has a very significant effect on the nature of ion acoustic waves.

  5. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    PubMed

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  6. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  7. Surface acoustic wave unidirectional transducers for quantum applications

    NASA Astrophysics Data System (ADS)

    Ekström, Maria K.; Aref, Thomas; Runeson, Johan; Björck, Johan; Boström, Isac; Delsing, Per

    2017-02-01

    The conversion efficiency of electric microwave signals into surface acoustic waves in different types of superconducting transducers is studied with the aim of quantum applications. We compare delay lines containing either conventional symmetric transducers (IDTs) or unidirectional transducers (UDTs) at 2.3 GHz and 10 mK. The UDT delay lines improve the insertion loss with 4.7 dB and a directivity of 22 dB is found for each UDT, indicating that 99.4% of the acoustic power goes in the desired direction. The power lost in the undesired direction accounts for more than 90% of the total loss in IDT delay lines, but only ˜3% of the total loss in the floating electrode unidirectional transducer delay lines.

  8. Visualization of Surface Acoustic Waves in Thin Liquid Films

    PubMed Central

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, J. M.; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  9. Absorption of surface acoustic waves by topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Xu, W.

    2014-08-01

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  10. Visualization of Surface Acoustic Waves in Thin Liquid Films.

    PubMed

    Rambach, R W; Taiber, J; Scheck, C M L; Meyer, C; Reboud, J; Cooper, J M; Franke, T

    2016-02-26

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect.

  11. Visualization of Surface Acoustic Waves in Thin Liquid Films

    NASA Astrophysics Data System (ADS)

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, J. M.; Franke, T.

    2016-02-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect.

  12. Effect of tidal internal wave fields on shallow water acoustic propagation

    NASA Astrophysics Data System (ADS)

    Lin, Ju; Wang, Huan; Sun, Junping

    2010-09-01

    Internal waves are one of the most pronounced oceanic phenomenons to the oceanographer. During past decades much effort has been made to investigate the effect of internal waves on shallow water acoustic propagation. Even though many field observations, such as SWARM '95, have provided fruitful information about the relation between internal waves and acoustic propagation, it is necessary to conduct more numerical simulations due to their extensive feasibility. In this study, the shallow water internal wave environment is constructed by using a non-hydrostatic ocean model, the open boundary forcing is set by considering single or several internal wave modes at the M2 tidal frequency. In order to show the mode coupling caused by the internal wave field more clearly, the acoustic starting field with different single normal modes is adopted. The acoustic simulation can be used to check whether a specific combination of internal wave modes is related to the mode coupling, and which mode pair will be affected. The combination of internal wave modes can be separated into several groups. Even though the internal wave fields are different among every case in each group, the acoustic field structure and the mode coupling are similar. Different acoustic normal mode coupling occurs due to the different combinations of internal wave mode forcing. When the parameters of internal wave mode are modified gently, the acoustic mode coupling becomes quite different. It is interesting and important to investigate the sensitivity of acoustic fields to the variability of the internal mode combination.

  13. Tuning of acoustic wave dispersion in ferroelectrics—A theoretical study

    NASA Astrophysics Data System (ADS)

    Chang, Wontae

    2017-02-01

    Tuning of acoustic wave dispersion in ferroelectrics due to its electrostrictive effect is theoretically investigated. As the acoustic wave is excited electrically in ferroelectrics, the elastic stiffness tensor can be modified by both the linear piezoelectric and nonlinear electrostrictive electromechanical couplings depending on the wave excitation direction of the crystal, where the linear piezoelectric modification has been well characterized and extensively used for the application of piezoelectric-based acoustic wave devices over the past 50 years, but the nonlinear electrostrictive modification, determining the tuning of acoustic wave dispersion in the medium, is still too premature to use the properties in application. For the tuning application, it is essential to know how the electrostrictive strain actually tunes the propagation and displacement of the ferroelectrically active acoustic waves, and this information is currently unavailable. In this paper, the ferroelectrically active acoustic wave propagation and displacement in conjunction with the nonlinear electrostrictive modification are calculated using the plane wave expansion method, and the tunable wave properties associated with the propagation and displacement, are discussed. The electrically excited acoustic wave properties in ferroelectrics are largely modified from the electrostrictive effect, e.g., tuned, excited, vanished, coupled, decoupled, etc., and this should be taken into account in the development of ferroelectric-based acoustic wave devices.

  14. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  15. Molding acoustic, electromagnetic and water waves with a single cloak

    PubMed Central

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-01-01

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934

  16. Molding acoustic, electromagnetic and water waves with a single cloak.

    PubMed

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.

  17. Evaluation of the resolution of a metamaterial acoustic leaky wave antenna.

    PubMed

    Naify, Christina J; Rogers, Jeffery S; Guild, Matthew D; Rohde, Charles A; Orris, Gregory J

    2016-06-01

    Acoustic antennas have long been utilized to directionally steer acoustic waves in both air and water. Typically, these antennas are comprised of arrays of active acoustic elements, which are electronically phased to steer the acoustic profile in the desired direction. A new technology, known as an acoustic leaky wave antenna (LWA), has recently been shown to achieve directional steering of acoustic waves using a single active transducer coupled to a transmission line passive aperture. The LWA steers acoustic energy by preferential coupling to an input frequency and can be designed to steer from backfire to endfire, including broadside. This paper provides an analysis of resolution as a function of both input frequency and antenna length. Additionally, the resolution is compared to that achieved using an array of active acoustic elements.

  18. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-09

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  19. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    NASA Astrophysics Data System (ADS)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  20. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    SciTech Connect

    Yan, Shiling; Shen, Zhonghua; Lomonosov, Alexey M.

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  1. Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications

    NASA Astrophysics Data System (ADS)

    Kalantar-Zadeh, Kourosh; Trinchi, Adrian; Wlodarski, Wojtek; Holland, Anthony; Galatsis, Kosmas

    2001-11-01

    Layered Surface Acoustic Wave (SAW) devices that allow the propagation of Love mode acoustic waves will be studied in this paper. In these devices, the substrate allows the propagation of Surface Skimming Bulks Waves (SSBWs). By depositing layers, that the speed of Shear Horizontal (SH) acoustic wave propagation is less than that of the substrate, the propagation mode transforms to Love mode. Love mode devices which will be studied in this paper, have SiO2 and ZnO acoustic guiding layers. As Love mode of propagation has no movement of particles component normal to the active sensor surface, they can be employed for the sensing applications in the liquid media.

  2. Generation, detection, and propagation of nano-acoustic waves in piezoelectric semiconductors (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Lin, Kung-Hsuan; Hsieh, Chia-Lung; Yu, Cheng-Ta; Pan, Chang-Chi; Chyi, Jen-Inn; Keller, Stacia K.; DenBaars, Steven P.; Sun, Chi-Kuang

    2005-04-01

    Piezoelectric semiconductor with heterostructure can be treated as a piezoelectric transducer for the generation of acoustic waves with wavelength less than 10 nm (nano-acoustic waves) by optical technique. This optical piezoelectric transducer has also been utilized for the detection of the nano-acoustic waves (NAW). In this paper, we discuss the generation, detection, and propagation of nano-acoustic waves in piezoelectric semiconductors. We demonstrate that the acoustic frequency of the NAW can be tuned by an optical control technique. Besides, we have also developed an acoustic sensor with THz bandwidth which can be used to study NAW propagation control devices such as nano-phononic bandgap crystal. We demonstrated that the roughness of an interface can be evaluated by the NAW with a resolution less than 1 nm through the acoustic phasefront distortion effect. With the optical piezoelectric transducer, nano-ultrasonics, which is analogous to typical ultrasonics but on the nanometer scale, has been successfully developed.

  3. Experimental quiescent drifting dusty plasmas and temporal dust acoustic wave growth

    SciTech Connect

    Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L.

    2011-11-15

    We report on dust acoustic wave growth rate measurements taken in a dc (anode glow) discharge plasma device. By introducing a mesh with a variable bias 12-17 cm from the anode, we developed a technique to produce a drifting dusty plasma. A secondary dust cloud, free of dust acoustic waves, was trapped adjacent to the anode side of the mesh. When the mesh was returned to its floating potential, the secondary cloud was released and streamed towards the anode and primary dust cloud, spontaneously exciting dust acoustic waves. The amplitude growth of the excited dust acoustic waves was measured directly along with the wavelength and Doppler shifted frequency. These measurements were compared to fluid and kinetic dust acoustic wave theories. As the wave growth saturated a transition from linear to nonlinear waves was observed. The merging of the secondary and primary dust clouds was also observed.

  4. Experimental quiescent drifting dusty plasmas and temporal dust acoustic wave growth

    NASA Astrophysics Data System (ADS)

    Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L.

    2011-11-01

    We report on dust acoustic wave growth rate measurements taken in a dc (anode glow) discharge plasma device. By introducing a mesh with a variable bias 12-17 cm from the anode, we developed a technique to produce a drifting dusty plasma. A secondary dust cloud, free of dust acoustic waves, was trapped adjacent to the anode side of the mesh. When the mesh was returned to its floating potential, the secondary cloud was released and streamed towards the anode and primary dust cloud, spontaneously exciting dust acoustic waves. The amplitude growth of the excited dust acoustic waves was measured directly along with the wavelength and Doppler shifted frequency. These measurements were compared to fluid and kinetic dust acoustic wave theories. As the wave growth saturated a transition from linear to nonlinear waves was observed. The merging of the secondary and primary dust clouds was also observed.

  5. Re-radiation of acoustic waves from the A0 wave on a submerged elastic shell.

    PubMed

    Ahyi, A C; Cao, Hui; Raju, P K; Uberall, Herbert

    2005-07-01

    We consider evacuated thin semi-infinite shells immersed in a fluid, which may be either of cylindrical shape with a hemispherical shell endcap, or formed two-dimensionally by semi-infinite parallel plates joined together by a semi-cylinder. The connected shell portions are joined in a manner to satisfy continuity but with a discontinuous radius of curvature. Acoustic waves are considered incident along the axis of symmetry (say the z axis) onto the curved portion of the shell, where they, at the critical angle of coincidence, generate Lamb and Stoneley-type waves in the shell. Computations were carried out using a code developed by Cao et al. [Chinese J. Acoust. 14, 317 (1995)] and was used in order to computationally visualize the waves in the fluid that have been re-radiated by the shell waves a the critical angle. The frequency range was below that of the lowest Lamb wave, and only the A0 wave (and partly the S0 wave) was observed to re-radiate into the fluid under our assumptions. The results will be compared to experimental results in which the re-radiated waves are optically visualized by the Schardin-Cranz schlieren method.

  6. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-07-01

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.

  7. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  8. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  9. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    SciTech Connect

    Mukherjee, Abhik; Janaki, M. S.; Bose, Anirban

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  10. Inverse scattering problems for acoustic waves in an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Kedzierawski, Andrzej Wladyslaw

    The inverse scattering problem is considered of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far field patterns of the scattered field corresponding to many incident time-harmonic plane waves. First, the inverse problem is studied in the case when the scattering object is an inhomogeneous medium with complex refractive index having compact support. The approach to this problem is the orthogonal projection method of Colton-Monk (1988). After that, the analogue is proven of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. Some of these results are then generalized to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. The inverse impedance problem is solved of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (1989).

  11. The evaluation and control of acoustical standing waves1

    PubMed Central

    Krasnegor, Norman A.; Hodos, William

    1974-01-01

    Calibration of a standard pigeon box subsequently modified for use as an acoustical chamber in a frequency discrimination experiment revealed that the enclosure was not acoustically “flat”. Standing waves were detected at each of the six frequencies measured. To ascertain whether the maximum standing waves recorded (3.0 dB) could serve as an added or alternative cue for pigeons tested in the chamber on a frequency discrimination problem, pure-tone intensity difference thresholds were determined for two pigeons at 1.0, 2.0, and 3.0 KHz. The results of the experiment indicated that the smallest intensity difference detectable was 10.0 dB, a value that was 7.0 dB above the maximum standing wave measured in the box. These data suggest that the modified pigeon chamber is suitable to test pure-tone frequency discriminations in pigeons in the range of 1.0 to 3.0 KHz. PMID:16811783

  12. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  13. High frequency acoustic wave scattering from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Narra, Venkateswarlu

    This thesis describes an experimental investigation of high frequency acoustic wave scattering from turbulent premixed flames. The objective of this work was to characterize the scattered incoherent acoustic field and determine its parametric dependence on frequency, flame brush thickness, incident and measurement angles, mean velocity and flame speed. The experimental facility consists of a slot burner with a flat flame sheet that is approximately 15 cm wide and 12 cm tall. The baseline cold flow characteristics and flame sheet statistics were extensively characterized. Studies were performed over a wide range of frequencies (1-24 kHz) in order to characterize the role of the incident acoustic wave length. The spectrum of the scattered acoustic field showed distinct incoherent spectral sidebands on either side of the driving frequency. The scattered incoherent field was characterized in terms of the incoherent field strength and spectral bandwidth and related to the theoretical predictions. The role of the flame front wrinkling scale, i.e., flame brush thickness, was also studied. Flame brush thickness was varied independent of the mean velocity and flame speed by using a variable turbulence generator. Results are reported for five flame brush thickness cases, ranging from 1.2 mm to 5.2 mm. Some dependence of scattered field characteristics on flame brush thickness was observed, but the magnitude of the effect was much smaller than expected from theoretical considerations. The spatial dependence of the scattered field was investigated by measuring the scattered field at four measurement angles and exciting the flame at four incident angles. Theory predicts that these variations influence the spatial scale of the acoustic wave normal to the flame, a result confirmed by the measurements. Measurements were performed for multiple combinations of mean velocities and flame speeds. The scattered field was observed to depend strongly on the flame speed. Further analysis

  14. Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma

    NASA Astrophysics Data System (ADS)

    Bouzit, Omar; Tribeche, Mouloud

    2015-10-01

    The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ˜ 1, i.e., as the polarization force becomes close to the electrostatic one (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.

  15. Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma

    SciTech Connect

    Bouzit, Omar; Tribeche, Mouloud

    2015-10-15

    The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic one (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.

  16. Semiconductor Characterization with Acoustic and Thermal waves on Picosecond Timescales

    NASA Astrophysics Data System (ADS)

    Wright, Oliver B.

    1997-03-01

    Ultrafast optical techniques for semiconductor characterization can probe the dynamics of photoexcited carriers, leading to applications in, for example, in-line monitoring of semiconductor processing and optimization of materials for sub-picosecond electronic switches or for nanoscale electronic devices.(Semiconductors Probed by Ultrafast Laser Spectroscopy, edited by R. R. Alfano (Academic, New York, 1984).) Picosecond or femtosecond optical pulses excite electrons to higher electronic bands, producing a nonequilibrium electron-hole distribution. Various physical effects result from the relaxation of this distribution. Luminescence or photoelectron emission are examples. In the present study the focus is on acoustic and thermal effects. The change in electron and hole occupation probabilities induces an electronic stress distributed throughout the carrier penetration depth. A temperature change of the lattice and an associated thermal stress are also produced. The combined stress distribution launches a strain pulse that propagates into the sample as a longitudinally polarized acoustic wave in the present experiments. Its reflection from sub-surface boundaries, interfaces or defects can be detected at the surface by another, weaker optical probe pulse. During this time the temperature distribution in the semiconductor also changes due to thermal wave propagation,(Photoacoustic and Thermal Wave Phenomena in Semiconductors, edited by Andreas Mandelis (North Holland, New York, 1987).) and this simultaneously influences the optical probe pulse. Both reflectance modulation and beam deflection methods for probing were used to investigate crystalline and amorphous silicon samples.(O. B. Wright, U. Zammit, M. Marinelli, and V. Gusev, Appl. Phys. Lett. 69, 553 (1996).) (O. B. Wright and V. E. Gusev, Appl. Phys. Lett. 66, 1190 (1995).) (O. B. Wright and K. Kawashima, Phonon Scattering in Condensed Matter VII, edited by R. O. Pohl and M. Meissner, Springer Verlag, Berlin

  17. Structural configuration study for an acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Biaobiao

    A continuous structure has several response characteristics that make it a candidate for a sensor used to locate an acoustic source. Primary goals in developing such a sensor structure are to ensure that the response is rich enough to provide information about the impinging acoustic wave and to detect the direction of travel without being too sensitive to background noise. As such, there are several factors that must be examined with regard to sensor configuration and measurement requirements. This dissertation describes a set of studies that examine various configuration requirements for such a sensor. Some of the parameters of interest include the size, or aperture of the structure, boundary conditions, material properties, and thickness. The response of the structure to transient sinusoidal wave excitations will be examined analytically. The time-domain response of an Euler-Bernoulli beam excited by a traveling sinusoidal excitation is obtained based on modal superposition and verified by using a finite element method. Then, an approach using simple basis functions will be applied to achieve the goal of more efficient response and force identification. The moving force is identified in the time domain by extending previous inverse approaches. The Tikhonov regularization technique provides bounds to the ill-conditioned results in the identification problem. Both simulated displacement and velocity are considered for use in the inverse. To evaluate the method and examine various configurations, simulations with different numbers of sinusoidal half-cycles exciting the sensor structure are studied. Various levels of random noise are also added to the simulated displacements and velocities responses in order to study the effect of noise in moving wave load identification. Such a new approach in acoustic sensing has applications in the areas of security and disaster recovery.

  18. An analysis of beam parameters on proton-acoustic waves through an analytic approach

    NASA Astrophysics Data System (ADS)

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Burcin Unlu, Mehmet

    2017-06-01

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  19. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet

    2017-03-02

    It has been reported that acoustic waves are generated when a high energy pulsed proton beam is deposited in a small volume within tissue. One possible application of the proton induced acoustics is to get a real-time feedback for intratreatment adjustments by monitoring such acoustic waves. High spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution to the proton induced acoustic wave is presented to reveal the dependence of signal on beam parameters, and then combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration, and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of proton-acoustic signals. Our results show that smaller spill time of proton beam upsurges the amplitude of acoustic wave for constant number of protons, and hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  20. Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu

    2017-03-01

    Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.

  1. GPS-Acoustic Seafloor Geodesy using a Wave Glider

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.

    2013-12-01

    The conventional approach to implement the GPS-Acoustic technique uses a ship or buoy for the interface between GPS and Acoustics. The high cost and limited availability of ships restricts occupations to infrequent campaign-style measurements. A new approach to address this problem uses a remote controlled, wave-powered sea surface vehicle, the Wave Glider. The Wave Glider uses sea-surface wave action for forward propulsion with both upward and downward motions producing forward thrust. It uses solar energy for power with solar panels charging the onboard 660 W-h battery for near continuous operation. It uses Iridium for communication providing command and control from shore plus status and user data via the satellite link. Given both the sea-surface wave action and solar energy are renewable, the vehicle can operate for extended periods (months) remotely. The vehicle can be launched from a small boat and can travel at ~ 1 kt to locations offshore. We have adapted a Wave Glider for seafloor geodesy by adding a dual frequency GPS receiver embedded in an Inertial Navigation Unit, a second GPS antenna/receiver to align the INU, and a high precision acoustic ranging system. We will report results of initial testing of the system conducted at SIO. In 2014, the new approach will be used for seafloor geodetic measurements of plate motion in the Cascadia Subduction Zone. The project is for a three-year effort to measure plate motion at three sites along an East-West profile at latitude 44.6 N, offshore Newport Oregon. One site will be located on the incoming plate to measure the present day convergence between the Juan de Fuca and North American plates and two additional sites will be located on the continental slope of NA to measure the elastic deformation due to stick-slip behavior on the mega-thrust fault. These new seafloor data will constrain existing models of slip behavior that presently are poorly constrained by land geodetic data 100 km from the deformation front.

  2. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    PubMed

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  3. Dual output acoustic wave sensor for molecular identification

    DOEpatents

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  4. The study of surface acoustic wave charge transfer device

    NASA Technical Reports Server (NTRS)

    Papanicolaou, N.; Lin, H. C.

    1978-01-01

    A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.

  5. Hydrogen Adsorption Studies Using Surface Acoustic Waves on Nanoparticles

    SciTech Connect

    A.B. Phillips; G. Myneni; B.S. Shivaram

    2005-06-13

    Vanadium nanoparticles, on the order of 20 nm, were deposited on a quartz crystal surface acoustic wave resonator (SAW) using a Nd:YAG pulsed laser deposition system. Due to the high Q and resonant frequency of the SAW, mass changes on the order of 0.1 nanogram can be quantitatively measured. Roughly 60 nanogram of V was deposited on the SAW for these experiments. The SAW was then moved into a hydrogen high pressure cell.At room temperature and 1 atmosphere of hydrogen pressure, 1 wt% H, or H/V {approx} 0.5 (atomic ratio) absorption was measured.

  6. Modeling of a Surface Acoustic Wave Strain Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  7. Adaptive spread spectrum receiver using acoustic surface wave technology

    NASA Astrophysics Data System (ADS)

    Das, P.; Milstein, L. B.

    1981-01-01

    The objective of this research project can be broadly classified as theoretical study and implementation of spread spectrum communication systems using surface acoustic wave technology. Significant progress has been made in the last 39 months towards this goal. Some of these are: (1) Measurement of the probability of error curve for a spread spectrum receiver implemented with real time SAW Fourier transformer, and (2) Theoretical study of the receiver including the removal of narrowband jamming. The details of this research have been published in 14 papers and one report and presented at 11 technical conferences.

  8. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  9. Longitudinal and Transverse Instability of Ion Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chapman, T.; Berger, R. L.; Cohen, B. I.; Banks, J. W.; Brunner, S.

    2017-08-01

    Ion acoustic waves are found to be susceptible to at least two distinct decay processes. Which process dominates depends on the parameters. In the cases examined, the decay channel where daughter modes propagate parallel to the mother mode is found to dominate at larger amplitudes, while the decay channel where the daughter modes propagate at angles to the mother mode dominates at smaller amplitudes. Both decay processes may occur simultaneously and with onset thresholds below those suggested by fluid theory, resulting in the eventual multidimensional collapse of the mother mode to a turbulent state.

  10. Numerical investigation of diffraction of acoustic waves by phononic crystals

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent

    2012-05-01

    Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.

  11. Surface acoustic wave vapor sensors based on resonator devices

    NASA Astrophysics Data System (ADS)

    Grate, Jay W.; Klusty, Mark

    1991-05-01

    Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.

  12. Surface acoustic wave devices including Langmuir-Blodgett films (Review)

    NASA Astrophysics Data System (ADS)

    Plesskii, V. P.

    1991-06-01

    Recent theoretical and experimental research related to the use of Langmuir-Blodgett (LB) films in surface acoustic wave (SAW) devices is reviewed. The sensitivity of the different cuts of quartz and lithium niobate to inertial loading is investigated, and it is shown that some cuts in lithium niobate are twice as sensitive to mass loading than the commonly used YZ-cut. The large variety of organic compounds suitable for the production of LB films makes it possible to create SAW sensors reacting selectively to certain substances. The existing SAW sensors based on LB films are characterized by high sensitivity and fast response.

  13. The integrated extinction for broadband scattering of acoustic waves.

    PubMed

    Sohl, Christian; Gustafsson, Mats; Kristensson, Gerhard

    2007-12-01

    In this paper, physical bounds on scattering of acoustic waves over a frequency interval are discussed based on the holomorphic properties of the scattering amplitude in the forward direction. The result is given by a dispersion relation for the extinction cross section which yields an upper bound on the product of the extinction cross section and the associated bandwidth of any frequency interval. The upper bound is shown to depend only on the geometry and the material properties of the scatterer in the static or low-frequency limit. The results are exemplified by permeable and impermeable scatterers with homogeneous and isotropic material properties.

  14. Surface Acoustic Wave Microwave Oscillator and Frequency Synthesizer.

    DTIC Science & Technology

    1980-06-01

    AD-A086 336 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/ A /5 SURFACE ACOUSTIC WAVE MICROWA VE OSC ILLATOR AND FR EQUENCY SYNTME--ETC(U...DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703 HISAŕ 78 UNCLASSIFIED 6 URTSfaceIO A si WHS ae Micowvef scilltr nermepteOt󈧫 BEFORE COEPETINFOR RE~~~ a ...D OKUI UBRj~ ~~n SpaReT ParkWCAIO OP T05HIS A .11eu.0t13..... IINCLASSTFTF[ gCUNTY CLASSIFICATION OF THIS PAOI(Whin DEla AIRIm Fminimum frequency step

  15. Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves

    PubMed Central

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2012-01-01

    Ultrasonic sensors can be used to determine physical fluid parameters like viscosity, density, and speed of sound. In this contribution, we present the concept for an integrated sensor utilizing pressure waves to sense the characteristic acoustic impedance of a fluid. We note that the basic setup generally allows to determine the longitudinal viscosity and the speed of sound if it is operated in a resonant mode as will be discussed elsewhere. In this contribution, we particularly focus on a modified setup where interferences are suppressed by introducing a wedge reflector. This enables sensing of the liquid's characteristic acoustic impedance, which can serve as parameter in condition monitoring applications. We present a device model, experimental results and their evaluation. PMID:23565036

  16. Solar wind implication on dust ion acoustic rogue waves

    SciTech Connect

    Abdelghany, A. M. Abd El-Razek, H. N. El-Labany, S. K.; Moslem, W. M.

    2016-06-15

    The relevance of the solar wind with the magnetosphere of Jupiter that contains positively charged dust grains is investigated. The perturbation/excitation caused by streaming ions and electron beams from the solar wind could form different nonlinear structures such as rogue waves, depending on the dominant role of the plasma parameters. Using the reductive perturbation method, the basic set of fluid equations is reduced to modified Korteweg-de Vries (KdV) and further modified (KdV) equation. Assuming that the frequency of the carrier wave is much smaller than the ion plasma frequency, these equations are transformed into nonlinear Schrödinger equations with appropriate coefficients. Rational solution of the nonlinear Schrödinger equation shows that rogue wave envelopes are supported by the present plasma model. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming temperatures for both the ions and electrons. The dependence of the maximum rogue wave envelope amplitude on the system parameters has been investigated.

  17. Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers

    NASA Astrophysics Data System (ADS)

    Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian

    2016-12-01

    In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).

  18. Solar wind implication on dust ion acoustic rogue waves

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Abd El-Razek, H. N.; Moslem, W. M.; El-Labany, S. K.

    2016-06-01

    The relevance of the solar wind with the magnetosphere of Jupiter that contains positively charged dust grains is investigated. The perturbation/excitation caused by streaming ions and electron beams from the solar wind could form different nonlinear structures such as rogue waves, depending on the dominant role of the plasma parameters. Using the reductive perturbation method, the basic set of fluid equations is reduced to modified Korteweg-de Vries (KdV) and further modified (KdV) equation. Assuming that the frequency of the carrier wave is much smaller than the ion plasma frequency, these equations are transformed into nonlinear Schrödinger equations with appropriate coefficients. Rational solution of the nonlinear Schrödinger equation shows that rogue wave envelopes are supported by the present plasma model. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming temperatures for both the ions and electrons. The dependence of the maximum rogue wave envelope amplitude on the system parameters has been investigated.

  19. Nonlinear Electron Acoustic Waves in Dissipative Plasma with Superthermal Electrons

    NASA Astrophysics Data System (ADS)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Kassem, A. I.; Darweesh, H. F.

    2016-01-01

    The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of solution which is a combination between shock and soliton waves is obtained. The topology of phase portrait and potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can predict different classes of the travelling wave solutions according to different phase orbits. The obtained results may be helpful in better understanding of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  20. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  1. Weakly dissipative dust-ion acoustic wave modulation

    NASA Astrophysics Data System (ADS)

    Alinejad, H.; Mahdavi, M.; Shahmansouri, M.

    2016-02-01

    The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.

  2. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  3. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2016-12-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  4. Acoustic-gravity waves in atmospheric and oceanic waveguides.

    PubMed

    Godin, Oleg A

    2012-08-01

    A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.

  5. Anomalous refraction of guided waves via embedded acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-04-01

    We illustrate the design of acoustic metasurfaces based on geometric tapers and embedded in thin-plate structures. The metasurface is an engineered discontinuity that enables anomalous refraction of guided wave modes according to the Generalized Snell's Law. Locally-resonant geometric torus-like tapers are designed in order to achieve metasurfaces having discrete phase-shift profiles that enable a high level of control of refraction of the wavefronts. Results of numerical simulations show that anomalous refraction can be achieved on transmitted anti-symmetric modes (A0) either when using a symmetric (S0) or anti-symmetric (A0) incident wave, where the former case clearly involves mode conversion mechanisms.

  6. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    NASA Astrophysics Data System (ADS)

    Gelda, Dhruv; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif; Sinha, Sanjiv

    2016-04-01

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1-100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ˜100 GHz.

  7. Mechanical Properties Based Particle Separation via Traveling Surface Acoustic Wave.

    PubMed

    Ma, Zhichao; Collins, David J; Guo, Jinhong; Ai, Ye

    2016-12-06

    Most microfluidics-based sorting methodologies utilize size differences between suspended micro-objects as the defining characteristic by which they are sorted. Sorting based on mechanical properties, however, would provide a new avenue for sample preparation, detection and diagnosis for a number of emerging biological and medical analyses. In this study, we demonstrate separation of polystyrene (PS) and poly(methyl methacrylate) (PMMA) microspheres based entirely on their difference in mechanical properties using traveling surface acoustic waves (TSAWs). We theoretically examine the correlation of the applied TSAW frequency, particle density and sound speed with respect to the resultant acoustic radiation force (ARF) that acts to translate particles, and experimentally corroborate these predictions by translating PS and PMMA particles simultaneously in a stationary flow. Even when PS and PMMA particles have the same diameters, they exhibit strongly nonlinear and distinct acoustophoretic responses as a function of their mechanical properties and the applied TSAW frequency. By specifically matching the appropriate acoustic frequency to the desired particle size, each particle population can be selectively translated and sorted. We demonstrate that this mechanical property based sorting can continuously separate these particle populations with at least 95% efficiency in the mixed 10/15 μm diameter PS and PMMA particle solutions tested.

  8. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    SciTech Connect

    Gelda, Dhruv Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif; Sinha, Sanjiv

    2016-04-28

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1–100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ∼100 GHz.

  9. Acoustic wave filter based on periodically poled lithium niobate.

    PubMed

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  10. Helioseismology and asteroseismology: looking for gravitational waves in acoustic oscillations

    SciTech Connect

    Lopes, Ilídio; Silk, Joseph E-mail: ilopes@uevora.pt

    2014-10-10

    Current helioseismology observations allow the determination of the frequencies and surface velocity amplitudes of solar acoustic modes with exceptionally high precision. In some cases, the frequency accuracy is better than one part in a million. We show that there is a distinct possibility that quadrupole acoustic modes of low order could be excited by gravitational waves (GWs), if the GWs have a strain amplitude in the range 10{sup –20} h {sub –20} with h {sub –20} ∼ 1 or h {sub –20} ∼ 10{sup 3}, as predicted by several types of GW sources, such as galactic ultracompact binaries or extreme mass ratio inspirals and coalescence of black holes. If the damping rate at low order is 10{sup –3}η {sub N} μHz, with η {sub N} ∼ 10{sup –3}-1, as inferred from the theory of stellar pulsations, then GW radiation will lead to a maximum rms surface velocity amplitude of quadrupole modes of the order of h{sub −20}η{sub N}{sup −1}∼ 10{sup –9}-10{sup –3} cm s{sup –1}, on the verge of what is currently detectable via helioseismology. The frequency and sensitivity range probed by helioseismological acoustic modes overlap with, and complement, the capabilities of eLISA for the brightest resolved ultracompact galactic binaries.

  11. Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Yuan, Baoguo; Cheng, Ying; Liu, Xiaojun

    2016-02-01

    We have realized the acoustic rainbow trapping in the low frequency region (200-500 Hz) through micro Mie resonance-based structures. The structure has eight channels with a high refractive index obtained by coiling space, that can excite strong interactions with incident waves and support various orders of multipoles due to the Mie resonances of the microstructure. By utilizing the structure, the precise spatial modulation of the acoustic wave is demonstrated both theoretically and experimentally. The effect of trapping broadband acoustic waves and spatially separating different frequency components are ascribed to the monopolar Mie resonances of the structures. The trapping frequency is derived and the trapping positions can be tuned arbitrarily. With enhanced wave-structure interactions and tailored frequency responses, such micro structures show precise spectral-spatial control of acoustic waves and open a diverse venue for high performance acoustic wave detection, sensing, filtering, and a nondestructive test.

  12. Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.

  13. Formation of ion acoustic solitary waves upstream of the earth's bow shock. [in solar wind

    NASA Technical Reports Server (NTRS)

    Pangia, M. J.; Lee, N. C.; Parks, G. K.

    1985-01-01

    The turbulent plasma development of Lee and Parks is applied to the solar wind approaching the earth's bow shock region. The ponderomotive force contribution is due to ion acoustic waves propagating in the direction of the ambient magnetic field. In this case, the envelope of the ion acoustic wave is shown to satisfy the cubic Schroedinger equation. Modulational instabilities exist for waves in the solar wind, thereby predicting the generation of solitary waves. This analysis further identifies that the ion acoustic waves which exhibit this instability have short wavelengths.

  14. Modulation instability and rogue wave structures of positron-acoustic waves in q-nonextensive plasmas

    NASA Astrophysics Data System (ADS)

    Bains, A. S.; Tribeche, Mouloud; Saini, N. S.; Gill, T. S.

    2017-01-01

    A theoretical investigation is made to study envelope excitations and rogue wave structures of the newly predicted positron-acoustic waves (PAWs) in a plasma with nonextensive electrons and nonextensive hot positrons. The reductive perturbation technique (RPT) is used to derive a nonlinear Schrödinger equation-like (NLSE) which governs the modulational instability (MI) of the PAWs. The NLSE admits localized envelope solitary wave solutions of bright and dark type. These envelope solutions depend upon the intrinsic plasma parameters. It is found that the MI of the PAWs is significantly affected by nonextensivity and other plasma parameters. Further, the analysis is extended for the rogue wave structures of the PAWs. The findings of the present investigation should be useful in understanding the acceleration mechanism of stable electrostatic wave packets in four components nonextensive plasmas.

  15. Coupling of acoustic waves to clouds in the jovian troposphere

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick; Mosser, Benoît

    2005-11-01

    Seismology is the best tool for investigating the interior structure of stars and giant planets. This paper deals with a photometric study of jovian global oscillations. The propagation of acoustic waves in the jovian troposphere is revisited in order to estimate their effects on the planetary albedo. According to the standard model of the jovian cloud structure there are three major ice cloud layers (e.g., [Atreya et al., 1999. A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet Space Sci. 47, 1243-1262]). We consider only the highest layers, composed of ammonia ice, in the region where acoustic waves are trapped in Jupiter's atmosphere. For a vertical wave propagating in a plane parallel atmosphere with an ammonia ice cloud layer, we calculate first the relative variations of the reflected solar flux due to the smooth oscillations at about the ppm level. We then determine the phase transitions induced by the seismic waves in the clouds. These phase changes, linked to ice particle growth, are limited by kinetics. A Mie model [Mishchenko et al., 2002. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge Univ. Press, Cambridge, pp. 158-190] coupled with a simple radiation transfer model allows us to estimate that the albedo fluctuations of the cloud perturbed by a seismic wave reach relative variations of 70 ppm for a 3-mHz wave. This albedo fluctuation is amplified by a factor of ˜70 relative to the previously published estimates that exclude the effect of the wave on cloud properties. Our computed amplifications imply that jovian oscillations can be detected with very precise photometry, as proposed by the microsatellite JOVIS project, which is dedicated to photometric seismology [Mosser et al., 2004. JOVIS: A microsatellite dedicated to the seismic analysis of Jupiter. In: Combes, F., Barret, D., Contini, T., Meynadier, F., Pagani, L. (Eds.), SF2A-2004

  16. Standing surface acoustic wave (SSAW)-based microfluidic cytometer

    PubMed Central

    Chen, Yuchao; Nawaz, Ahmad Ahsan; Zhao, Yanhui; Huang, Po-Hsun; McCoy, J. Phillip; Levine, Stewart; Wang, Lin; Huang, Tony Jun

    2014-01-01

    The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events/s when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles. PMID:24406848

  17. Tunable Nanowire Patterning Using Standing Surface Acoustic Waves

    PubMed Central

    Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun

    2014-01-01

    Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330

  18. Matrix methods applied to acoustic waves in multilayers

    NASA Astrophysics Data System (ADS)

    Adler, Eric L.

    1990-11-01

    Matrix methods for analyzing the electroacoustic characteristics of anisotropic piezoelectric multilayers are described. The conceptual usefulness of the methods is demonstrated in a tutorial fashion by examples showing how formal statements of propagation, transduction, and boundary-value problems in complicated acoustic layered geometries such as those which occur in surface acoustic wave (SAW) devices, in multicomponent laminates, and in bulk-wave composite transducers are simplified. The formulation given reduces the electroacoustic equations to a set of first-order matrix differential equations, one for each layer, in the variables that must be continuous across interfaces. The solution to these equations is a transfer matrix that maps the variables from one layer face to the other. Interface boundary conditions for a planar multilayer are automatically satisfied by multiplying the individual transfer matrices in the appropriate order, thus reducing the problem to just having to impose boundary conditions appropriate to the remaining two surfaces. The computational advantages of the matrix method result from the fact that the problem rank is independent of the number of layers, and from the availability of personal computer software that makes interactive numerical experimentation with complex layered structures practical.

  19. Guided wave acoustic monitoring of corrosion in recovery boiler tubing

    SciTech Connect

    Quarry, M J; Chinn, D J

    2004-02-19

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  20. Ferroelectric film bulk acoustic wave resonators for liquid viscosity sensing

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Gevorgian, S.

    2013-08-01

    A concept of accurate liquid viscosity sensing, using bulk acoustic wave (BAW) resonators, is proposed. The proposed BAW resonators use thin ferroelectric films with the dc field induced piezoelectric effect allowing for generation of pure longitudinal acoustic waves in the thickness excitation mode. This makes it possible to utilize exclusively shear liquid particle displacement at the resonator side walls and, therefore, accurate viscosity evaluation. The BAW resonators with the dc field induced piezoelectric effect in 0.67BiFeO3-0.33BaTiO3 ferroelectric films are fabricated and their liquid viscosity sensing properties are characterized. The resonator response is analyzed using simple model of a harmonic oscillator damped by a viscous force. It is shown that the resonator Q-factor is inversely proportional to the square root of the viscosity-density product. The viscosity measurement resolution is estimated to be as high as 0.005 mPa.s, which is 0.5% of the water viscosity.