Science.gov

Sample records for acoustic wave modes

  1. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  2. Surface acoustic wave mode conversion resonator

    NASA Astrophysics Data System (ADS)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  3. Coherence of acoustic modes propagating through shallow water internal waves

    NASA Astrophysics Data System (ADS)

    Rouseff, Daniel; Turgut, Altan; Wolf, Stephen N.; Finette, Steve; Orr, Marshall H.; Pasewark, Bruce H.; Apel, John R.; Badiey, Mohsen; Chiu, Ching-Sang; Headrick, Robert H.; Lynch, James F.; Kemp, John N.; Newhall, Arthur E.; von der Heydt, Keith; Tielbuerger, Dirk

    2002-04-01

    The 1995 Shallow Water Acoustics in a Random Medium (SWARM) experiment [Apel et al., IEEE J. Ocean. Eng. 22, 445-464 (1997)] was conducted off the New Jersey coast. The experiment featured two well-populated vertical receiving arrays, which permitted the measured acoustic field to be decomposed into its normal modes. The decomposition was repeated for successive transmissions allowing the amplitude of each mode to be tracked. The modal amplitudes were observed to decorrelate with time scales on the order of 100 s [Headrick et al., J. Acoust. Soc. Am. 107(1), 201-220 (2000)]. In the present work, a theoretical model is proposed to explain the observed decorrelation. Packets of intense internal waves are modeled as coherent structures moving along the acoustic propagation path without changing shape. The packets cause mode coupling and their motion results in a changing acoustic interference pattern. The model is consistent with the rapid decorrelation observed in SWARM. The model also predicts the observed partial recorrelation of the field at longer time scales. The model is first tested in simple continuous-wave simulations using canonical representations for the internal waves. More detailed time-domain simulations are presented mimicking the situation in SWARM. Modeling results are compared to experimental data.

  4. Dual mode acoustic wave sensor for precise pressure reading

    NASA Astrophysics Data System (ADS)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  5. Acoustic mode coupling induced by nonlinear internal waves: evaluation of the mode coupling matrices and applications.

    PubMed

    Yang, T C

    2014-02-01

    This paper applies the mode coupling equation to calculate the mode-coupling matrix for nonlinear internal waves appearing as a train of solitons. The calculation is applied to an individual soliton up to second order expansion in sound speed perturbation in the Dyson series. The expansion is valid so long as the fractional sound speed change due to a single soliton, integrated over range and depth, times the wavenumber is smaller than unity. Scattering between the solitons are included by coupling the mode coupling matrices between the solitons. Acoustic fields calculated using this mode-coupling matrix formulation are compared with that obtained using a parabolic equation (PE) code. The results agree very well in terms of the depth integrated acoustic energy at the receivers for moving solitary internal waves. The advantages of using the proposed approach are: (1) The effects of mode coupling can be studied as a function of range and time as the solitons travel along the propagation path, and (2) it allows speedy calculations of sound propagation through a packet or packets of solitons saving orders of magnitude computations compared with the PE code. The mode coupling theory is applied to at-sea data to illustrate the underlying physics.

  6. Dual-frequency modes of the dust acoustic surface wave in a semibounded system

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-07-01

    Dual-frequency modes of the dust acoustic surface waves propagating at the interface between a nonmagnetized multicomponent Lorentzian dusty plasma and a vacuum are investigated, including nonthermal and positron effects. The dispersion relation is kinetically derived by employing the specular reflection boundary condition and the dielectric permittivity for dusty plasma containing positrons. We found that there exist two modes of the dust acoustic surface wave; high- and low-frequency modes. We observe that both H and L modes are enhanced by the increase of the pair annihilation rate. However, the effects of positron density are twofold depending on the ratio of annihilated positrons. The effects of nonthermal plasmas are also investigated on the H and L modes of dust acoustic surface waves. We found that the nonthermal plasmas reduce the frequencies of both H and L modes.

  7. Dual-frequency modes of the dust acoustic surface wave in a semibounded system.

    PubMed

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-07-01

    Dual-frequency modes of the dust acoustic surface waves propagating at the interface between a nonmagnetized multicomponent Lorentzian dusty plasma and a vacuum are investigated, including nonthermal and positron effects. The dispersion relation is kinetically derived by employing the specular reflection boundary condition and the dielectric permittivity for dusty plasma containing positrons. We found that there exist two modes of the dust acoustic surface wave; high- and low-frequency modes. We observe that both H and L modes are enhanced by the increase of the pair annihilation rate. However, the effects of positron density are twofold depending on the ratio of annihilated positrons. The effects of nonthermal plasmas are also investigated on the H and L modes of dust acoustic surface waves. We found that the nonthermal plasmas reduce the frequencies of both H and L modes.

  8. Three-dimensional coupled mode analysis of internal-wave acoustic ducts.

    PubMed

    Shmelev, Alexey A; Lynch, James F; Lin, Ying-Tsong; Schmidt, Henrik

    2014-05-01

    A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting.

  9. Decay of electrostatic hydrogen cyclotron waves into ion acoustic modes in auroral field lines

    NASA Astrophysics Data System (ADS)

    Bergmann, R.; Hudson, M. K.

    1987-03-01

    The coherent three-wave decay of a linearly unstable electrostatic hydrogen cyclotron (EHC) wave into stable EHC and ion acoustic modes is considered. The general problem of the three weakly interacting electrostatic normal modes in a Maxwellian plasma is discussed. EHC is examined in a fluid description, and the results are used to guide a similar study in a Vlasov plasma system intended to model the aurora acceleration region parameters. The time dependence of the decay in a simple three-wave interaction is presented in order to show how wave saturation can arise.

  10. Decay of electrostatic hydrogen cyclotron waves into ion acoustic modes in auroral field lines

    NASA Technical Reports Server (NTRS)

    Bergmann, R.; Hudson, M. K.

    1987-01-01

    The coherent three-wave decay of a linearly unstable electrostatic hydrogen cyclotron (EHC) wave into stable EHC and ion acoustic modes is considered. The general problem of the three weakly interacting electrostatic normal modes in a Maxwellian plasma is discussed. EHC is examined in a fluid description, and the results are used to guide a similar study in a Vlasov plasma system intended to model the aurora acceleration region parameters. The time dependence of the decay in a simple three-wave interaction is presented in order to show how wave saturation can arise.

  11. MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS

    SciTech Connect

    Zhao, Hui; Chou, Dean-Yi

    2013-11-20

    We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |Δn|, where Δn ≡ n' – n. The scattered waves of Δn = ±1 are visible for n ≤ 1, and significant for n ≥ 2. For the scattered wave of Δn = ±2, only few cases are visible. None of the scattered waves of Δn = ±3 are visible. The properties of scattered waves for Δn = 0 and Δn ≠ 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for Δn = 0, while it increases with n for Δn ≠ 0. The scattered wave amplitudes of Δn = 0 are greater for the larger sunspot, while those of Δn ≠ 0 are insensitive to the sunspot size.

  12. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  13. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    SciTech Connect

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen E-mail: dongxiang87@gmail.com; Qi, Dong-Xiang E-mail: dongxiang87@gmail.com

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  14. Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves.

    PubMed

    Fan, Ying; Honarvar, Farhang; Sinclair, Anthony N; Jafari, Mohammad-Reza

    2003-01-01

    When an immersed solid elastic cylinder is insonified by an obliquely incident plane acoustic wave, some of the resonance modes of the cylinder are excited. These modes are directly related to the incidence angle of the insonifying wave. In this paper, the circumferential resonance modes of such immersed elastic cylinders are studied over a large range of incidence angles and frequencies and physical explanations are presented for singular features of the frequency-incidence angle plots. These features include the pairing of one axially guided mode with each transverse whispering gallery mode, the appearance of an anomalous pseudo-Rayleigh in the cylinder at incidence angles greater than the Rayleigh angle, and distortional effects of the longitudinal whispering gallery modes on the entire resonance spectrum of the cylinder. The physical explanations are derived from Resonance Scattering Theory (RST), which is employed to determine the interior displacement field of the cylinder and its dependence on insonification angle.

  15. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  16. Heating of Sunspot Chromospheres by Slow-mode Acoustic Shock Waves

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Yun, Hong Sik

    1985-06-01

    Making use of the arbitrary shock theory developed by Ulmschneider (1967, 1971) and Ulmscneider and Kalkofen (1978), we have calculated the dissipation rates of upward-traveling slow-mode acoustic shock waves in umbral chromospheres for two umbral chromosphere models, a plateau model by Avrett (1981) and a gradient model by Yun and Beebe (1984). The computed shock dissipation rates are compared with the radiative cooling rate given by Avrett(1981). The results show that the slow-mode acoustic shock waves with a period of about 20 seconds can heat the low umbral chromospheres traveling with a mechanical energy flux of 2.6*10^6 erg/cm^2s at a height of 300-400 km above the temperature minimum region.

  17. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave.

    PubMed

    Zhang, Wending; Huang, Ligang; Wei, Keyan; Li, Peng; Jiang, Biqiang; Mao, Dong; Gao, Feng; Mei, Ting; Zhang, Guoquan; Zhao, Jianlin

    2016-05-16

    Theoretical analysis and experimental demonstration are presented for the generation of cylindrical vector beams (CVBs) via mode conversion in fiber from HE11 mode to TM01 and TE01 modes, which have radial and azimuthal polarizations, respectively. Intermodal coupling is caused by an acoustic flexural wave applied on the fiber, whereas polarization control is necessary for the mode conversion, i.e. HE11x→TM01 and HE11y→TE01 for acoustic vibration along the x-axis. The frequency of the RF driving signal for actuating the acoustic wave is determined by the phase matching condition that the period of acoustic wave equals the beatlength of two coupled modes. With phase matching condition tunability, this approach can be used to generate different types of CVBs at the same wavelength over a broadband. Experimental demonstration was done in the visible and communication bands.

  18. Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2016-02-01

    Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.

  19. Thin plate model for transverse mode analysis of surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Chen, Jing; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2016-07-01

    In this paper, we propose a physical model for the analysis of transverse modes in surface acoustic wave (SAW) devices. It is mostly equivalent to the scalar potential (SP) theory, but sufficiently flexible to include various effects such as anisotropy, coupling between multiple modes, etc. First, fundamentals of the proposed model are established and procedures for determining the model parameters are given in detailed. Then the model is implemented in the partial differential equation mode of the commercial finite element analysis software COMSOL. The analysis is carried out for an infinitely long interdigital transducer on the 128°YX-LiNbO3 substrate. As a demonstration, it is shown how the energy leakage changes with the frequency and the device design.

  20. Stimulated scattering of a whistler wave off ion-cyclotron and ion-acoustic modes in a dusty plasma

    SciTech Connect

    Annou, R.; Tripathi, V.K.

    1998-01-01

    A whistler wave propagating through a magnetized dusty plasma undergoes stimulated Brillioun scattering off ion-cyclotron and ion-acoustic modes. The dust has little effect on nonlinear coupling. However, it reduces the growth rate by introducing linear damping on the low-frequency modes. {copyright} {ital 1998 American Institute of Physics.}

  1. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  2. Nonlinear Excitation of Acoustic Modes by Large-Amplitude Alfvén Waves in a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Carter, T. A.

    2013-05-01

    The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counterpropagating Alfvén waves from antennas placed at either end of the Large Plasma Device. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force.

  3. Enhanced acoustic mode coupling resulting from an internal solitary wave approaching the shelfbreak in the South China Sea.

    PubMed

    Chiu, Linus Y S; Reeder, D Benjamin; Chang, Yuan-Ying; Chen, Chi-Fang; Chiu, Ching-Sang; Lynch, James F

    2013-03-01

    Internal waves and bathymetric variation create time- and space-dependent alterations in the ocean acoustic waveguide, and cause subsequent coupling of acoustic energy between propagating normal modes. In this paper, the criterion for adiabatic invariance is extended to the case of an internal solitary wave (ISW) encountering a sloping bathymetry (i.e., continental shelfbreak). Predictions based on the extended criterion for adiabatic invariance are compared to experimental observations from the Asian Seas International Acoustics Experiment. Using a mode 1 starter field, results demonstrate time-dependent coupling of mode 1 energy to higher adjacent modes, followed by abrupt coupling of mode 5-7 energy to nonadjacent modes 8-20, produces enhanced mode coupling and higher received levels downrange of the oceanographic and bathymetric features. Numerical simulations demonstrate that increasing ISW amplitude and seafloor slope enhance the coupling of energy to adjacent and nonadjacent modes. This enhanced coupling is the direct result of the simultaneous influence of the ISW and its proximity to the shelfbreak, and, compared to the individual effect of the ISW or shelfbreak, has the capacity to scatter 2-4 times the amount of acoustic energy from below the thermocline into the upper water column beyond the shelfbreak in realistic environments.

  4. Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas

    SciTech Connect

    Qiu, Z.; Chen, L.; Zonca, F.

    2014-02-15

    Effects of system nonuniformities and kinetic dispersiveness on the spontaneous excitation of Geodesic Acoustic Mode (GAM) by Drift Wave (DW) turbulence are investigated based on nonlinear gyrokinetic theory. The coupled nonlinear equations describing parametric decay of DW into GAM and DW lower sideband are derived and then solved both analytically and numerically to investigate the effects on the parametric decay process due to system nonuniformities, such as nonuniform diamagnetic frequency, finite radial envelope of DW pump, and kinetic dispersiveness. It is found that the parametric decay process is a convective instability for typical tokamak parameters when finite group velocities of DW and GAM associated with kinetic dispersiveness and finite radial envelope are taken into account. When, however, nonuniformity of diamagnetic frequency is taken into account, the parametric decay process becomes, time asymptotically, a quasi-exponentially growing absolute instability.

  5. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  6. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave.

    PubMed

    Zhang, Wending; Huang, Ligang; Wei, Keyan; Li, Peng; Jiang, Biqiang; Mao, Dong; Gao, Feng; Mei, Ting; Zhang, Guoquan; Zhao, Jianlin

    2016-05-16

    Theoretical analysis and experimental demonstration are presented for the generation of cylindrical vector beams (CVBs) via mode conversion in fiber from HE11 mode to TM01 and TE01 modes, which have radial and azimuthal polarizations, respectively. Intermodal coupling is caused by an acoustic flexural wave applied on the fiber, whereas polarization control is necessary for the mode conversion, i.e. HE11x→TM01 and HE11y→TE01 for acoustic vibration along the x-axis. The frequency of the RF driving signal for actuating the acoustic wave is determined by the phase matching condition that the period of acoustic wave equals the beatlength of two coupled modes. With phase matching condition tunability, this approach can be used to generate different types of CVBs at the same wavelength over a broadband. Experimental demonstration was done in the visible and communication bands. PMID:27409861

  7. Shear mode bulk acoustic wave resonator based on c-axis oriented AlN thin film

    NASA Astrophysics Data System (ADS)

    Milyutin, Evgeny; Gentil, Sandrine; Muralt, Paul

    2008-10-01

    A shear mode resonator based on bulk waves trapped in c-axis oriented AlN thin films was fabricated, simulated, and tested. The active 1.55 μm thick AlN layer was deposited on top of an acoustic Bragg reflector composed of SiO2/AlN λ /4 layer pairs. The resonance was excited by means of interdigitated electrodes consisting of 150 nm thick Al lines. Analytical and simulation calculations show that the in-plane electric field excites bulk acoustic wave shear modes that are trapped in such an AlN film slab. The experimental frequency corresponds well to the theoretical one. The evaluated resonance of the fundamental shear mode at 1.86 GHz revealed a coupling of 0.15% and Q-factor of 870 in air and 260 in silicon oil.

  8. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  9. Non-linear Alfvén wave interaction leading to resonant excitation of an acoustic mode in the laboratory

    SciTech Connect

    Dorfman, S.; Carter, T. A.

    2015-05-15

    The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. A simple damped, driven oscillator model making use of the MHD equations well-predicts most of the observations, but the width of the resonance curve is still under investigation.

  10. Non-linear Alfvén wave interaction leading to resonant excitation of an acoustic mode in the laboratorya)

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Carter, T. A.

    2015-05-01

    The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. A simple damped, driven oscillator model making use of the MHD equations well-predicts most of the observations, but the width of the resonance curve is still under investigation.

  11. Excitation of Kinetic Geodesic Acoustic Modes by Drift Waves in Nonuniform Plasmas

    NASA Astrophysics Data System (ADS)

    Qiu, Zhiyong; Chen, Liu; Zonca, Fulvio

    2015-11-01

    Spontaneous excitation of geodesic acoustic mode (GAM) by drift wave turbulence (DW), which is expected to play an important role in the DW saturation process, is investigated including effects of system nonuniformities and kinetic plasma response. The coupled equations describing the fully nonlinear interaction between GAM and DW are derived based on the nonlinear gyrokinetic theory, and then we solved both analytically and numerically to investigate the spatial-temporal evolution of the coupled DW-GAM system. Kinetic effects as well as nonuniformities due to diamagnetic frequency profile, finite radial envelope width of DW pump and GAM continuum are systematically included in the analysis. It is found that the parametric decay process is a convective instability for typical tokamak parameters, when finite group velocities of DW and GAM associated with kinetic effects and finite radial envelope width are taken into account. The nonlinearly driven GAM propagates at a group velocity, that, due to coupling with DW, is typically much larger than that predicted by the linear theory of GAM. When, however, nonuniformity of diamagnetic frequency is taken into account, the parametric decay process becomes, time asymptotically, a quasi-exponentially growing absolute instab Work supported by US DoE, ITER-CN, NSFC and EUROfusion projects.

  12. Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading.

    PubMed

    García-Gancedo, L; Pedrós, J; Zhao, X B; Ashley, G M; Flewitt, A J; Milne, W I; Ford, C J B; Lu, J R; Luo, J K

    2012-01-01

    Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics.

  13. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  14. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1992-05-26

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes there between. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  15. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1988-04-29

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  16. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1992-01-01

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them.

  17. Dual-mode resonant instabilities of the surface dust-acoustic wave in a Lorentzian plasma slab

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-08-15

    The dual-mode resonant instabilities of the dust-acoustic surface wave propagating at the plasma-vacuum interfaces of the generalized Lorentzian dusty plasma slab are kinetically investigated. The dispersion relation is derived for the two propagation modes: symmetric and anti-symmetric waves. We have found that the temporal growth rate of the resonant instability increases with an increase of the slab thickness for both modes. Especially, the nonthermality of plasmas enhances the growth rate of the anti-symmetric resonant wave, and the nonthermal effect is enhanced as the slab thickness is increased. It is also found that the growth rate increases with increasing angular frequency of the rotating dust grain due to the enhanced resonant energy exchange.

  18. The Main Principles of Formation of the Transverse Modes in the Multilayered Waveguides of Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Sveshnikov, B. V.; Bagdasaryan, A. S.

    2016-07-01

    We develop a self-consistent model allowing one to analyze the properties of the interdigital transducer of the surface acoustic waves as a symmetric five-layered waveguide on a piezoelectric substrate with three possible values of the phase velocity of the acoustic-wave propagation along the longitudinal axis of the system. The transcendental dispersion relation for describing the waves in such a system is derived and the method for its instructive graphic analysis is proposed. The condition under which only the fundamental transverse mode is excited in the waveguide is formulated. The method for calculating the normalized power and the transverse distribution of the field of the continuous-spectrum waves radiated from the considered waveguide is described. It is shown that the characteristic spatial scale of the longitudinal damping of the amplitude of this field at the waveguide center can be a qualitative estimate of the transverse-mode formation length. The efficiency of a new method for suppressing the higher-order transverse waveguide modes is demonstrated.

  19. Stable Vortex Generation in Liquid Filled Wells by Mode Conversion of Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Landskron, Johannes; Schmidt, Katrin; Kufner, Maria; Lindner, Gerhard

    The formation of stable vortex flow pattern has been observed at liquid filled aluminum wells of 15 to 30 mm diameter when Lamb waves are excited on the bottom of the wells by piezoelectric transducers operated at a frequency of 1 MHz. The shape of the vortex pattern changed with the position of the transducer. Strong differences in mixing times were observed between water and ethanol when the filling level was changed and a remarkable reduction of mixing time was achieved by the addition of a small amount of detergent to water at small filling levels. Besides mixing of liquids thermal equilibration within a liquid volume was accelerated by acoustic streaming.

  20. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.

    PubMed

    Colosi, John A

    2008-09-01

    While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.

  1. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  2. Acoustic waves in medical imaging and diagnostics.

    PubMed

    Sarvazyan, Armen P; Urban, Matthew W; Greenleaf, James F

    2013-07-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term ultrasonography, or its abbreviated version sonography, meant an imaging modality based on the use of ultrasonic compressional bulk waves. Beginning in the 1990s, there started to emerge numerous acoustic imaging modalities based on the use of a different mode of acoustic wave: shear waves. Imaging with these waves was shown to provide very useful and very different information about the biological tissue being examined. We discuss the physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities and frequencies that have been used in different imaging applications is presented. We discuss the potential for future shear wave imaging applications.

  3. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  4. Scattering of the Transverse Waveguide Modes of Surface Acoustic Waves by the Finite-Aperture Electrode Structures

    NASA Astrophysics Data System (ADS)

    Sveshnikov, B. V.; Bagdasaryan, A. S.

    2016-08-01

    We develop a physical model allowing one to analyze reflection of the inhomogeneous beams of surface acoustic waves from metal strips in a planar waveguide on the piezoelectric substrate. Analytical relationships for determining the coefficients of scattering and mutual conversion of the transverse waveguide modes during their interaction with the spatially limited Bragg reflectors are obtained. The waveguide-reflector characteristics are shown to depend on the ratio of the waveguide aperture to its maximum value for which only the fundamental transverse mode is excited. It is established that the developed model strictly corresponds to the energy conservation law, i.e., in the absence of dissipation, the power of the inhomogeneous beam, which is incident on the finite reflector, is equal to the total power of all the scattered fields of the discrete and continuous waveguide spectra.

  5. The electron geodesic acoustic mode

    SciTech Connect

    Chakrabarti, N.; Kaw, P. K.

    2012-09-15

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  6. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  7. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  8. Disorder-induced absorption of far-infrared waves by acoustic modes in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Nenashev, A. V.; Wiemer, M.; Koch, M.; Dvurechenskii, A. V.; Gebhard, F.; Baranovskii, S. D.

    2016-08-01

    A mechanism of light absorption at THz frequencies in nematic liquid crystals based on intermolecular dynamics is proposed. In this mechanism, the energy conservation is supplied by acoustic phonons, whereas momentum conservation is provided by static spatial fluctuations of the director field. The mechanism predicts a continuous absorption spectrum in a broad frequency range.

  9. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  10. Ion acoustic traveling waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Burrows, R. H.; Ao, X.; Zank, G. P.; Zank

    2014-04-01

    Models for traveling waves in multi-fluid plasmas give essential insight into fully nonlinear wave structures in plasmas, not readily available from either numerical simulations or from weakly nonlinear wave theories. We illustrate these ideas using one of the simplest models of an electron-proton multi-fluid plasma for the case where there is no magnetic field or a constant normal magnetic field present. We show that the traveling waves can be reduced to a single first-order differential equation governing the dynamics. We also show that the equations admit a multi-symplectic Hamiltonian formulation in which both the space and time variables can act as the evolution variable. An integral equation useful for calculating adiabatic, electrostatic solitary wave signatures for multi-fluid plasmas with arbitrary mass ratios is presented. The integral equation arises naturally from a fluid dynamics approach for a two fluid plasma, with a given mass ratio of the two species (e.g. the plasma could be an electron-proton or an electron-positron plasma). Besides its intrinsic interest, the integral equation solution provides a useful analytical test for numerical codes that include a proton-electron mass ratio as a fundamental constant, such as for particle in cell (PIC) codes. The integral equation is used to delineate the physical characteristics of ion acoustic traveling waves consisting of hot electron and cold proton fluids.

  11. Dust-Acoustic Waves: Visible Sound Waves

    SciTech Connect

    Merlino, Robert L.

    2009-11-10

    A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.

  12. A hybrid wave-mode formulation for the vibro-acoustic analysis of 2D periodic structures

    NASA Astrophysics Data System (ADS)

    Droz, C.; Zhou, C.; Ichchou, M. N.; Lainé, J.-P.

    2016-02-01

    In the framework of vibrational analysis of 2D periodic waveguides, Floquet-Bloch theorem is widely applied for the determination of wave dispersion characteristics. In this context, the Wave Finite Element Method (WFEM) combines Periodic Structure Theory (PST) with standard FE packages, enabling wave dispersion analysis of waveguides involving structurally realistic unit-cells. For such applications, the computational efficiency of the WFEM depends on the choice of the formulation and can lead to numerical issues, worsen by extensive computational cost. This paper presents a coupled wave-mode approach for the determination of wave dispersion characteristics in structurally advanced periodic structures. It combines two scales of model order reduction. At the unit-cell's scale, Component Mode Synthesis (CMS) provides the displacement field associated with local resonances of the periodic structure, while the free wave propagation is considered using a spectral problem projection on a reduced set of shape functions associated with propagating waves, thus providing considerable reduction of the computational cost. An application is provided for a bi-directionally stiffened panel and the influence of reduction parameters is discussed, as well as the robustness of the numerical results.

  13. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  14. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  15. Acoustic modes in fluid networks

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.

    1992-01-01

    Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.

  16. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  17. Simulating acoustic waves in spotted stars

    NASA Astrophysics Data System (ADS)

    Papini, Emanuele; Birch, Aaron C.; Gizon, Laurent; Hanasoge, Shravan M.

    2015-05-01

    Acoustic modes of oscillation are affected by stellar activity, however it is unclear how starspots contribute to these changes. Here we investigate the nonmagnetic effects of starspots on global modes with angular degree ℓ ≤ 2 in highly active stars, and characterize the spot seismic signature on synthetic light curves. We perform 3D time-domain simulations of linear acoustic waves to study their interaction with a model starspot. We model the spot as a 3D change in the sound speed stratification with respect to a convectively stable stellar background, built from solar Model S. We perform a parametric study by considering different depths and perturbation amplitudes. Exact numerical simulations allow the investigation of the wavefield-spot interaction beyond first order perturbation theory. The interaction of the axisymmetric modes with the starspot is strongly nonlinear. As mode frequency increases, the frequency shifts for radial modes exceed the value predicted by linear theory, while the shifts for the ℓ = 2,m = 0 modes are smaller than predicted by linear theory, with avoided-crossing-like patterns forming between the m = 0 and m = 1 mode frequencies. The nonlinear behavior increases with increasing spot amplitude and/or decreasing depth. Linear theory still reproduces the correct shifts for nonaxisymmetric modes. In the nonlinear regime the mode eigenfunctions are not pure spherical harmonics, but rather a mixture of different spherical harmonics. This mode mixing, together with the frequency changes, may lead to misidentification of the modes in the observed acoustic power spectra.

  18. Electromagnetic effects on geodesic acoustic modes

    SciTech Connect

    Bashir, M. F.; Smolyakov, A. I.; Elfimov, A. G.; Melnikov, A. V.; Murtaza, G.

    2014-08-15

    By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m = 1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure β{sub e}, the safety factor q, and the temperature ratio τ on GAM dispersion are analyzed.

  19. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  20. Surface acoustic wave microfluidics.

    PubMed

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  1. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    SciTech Connect

    Rahman, Ata-ur-; Kerr, Michael Mc Kourakis, Ioannis; El-Taibany, Wael F.; Qamar, A.

    2015-02-15

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  2. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  3. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  4. Acoustic-Gravity Waves from Bolide Sources

    NASA Astrophysics Data System (ADS)

    Revelle, Douglas O.

    2008-06-01

    We have developed a new approach to modeling the acoustic-gravity wave (AGW) radiation from bolide sources. This first effort involves entry modeling of bolide sources that have available satellite data through procedures developed in ReVelle (Earth Moon Planets 95, 441-476, 2004a; in: A. Milani, G. Valsecchi, D. Vokrouhlicky (eds) NEO Fireball Diversity: Energetics-based Entry Modeling and Analysis Techniques, Near-earth Objects: Our Celestial Neighbors (IAU S236), 2007b). Results from the entry modeling are directly coupled to AGW production through line source blast wave theory for the initial wave amplitude and period at x=10 (at 10 blast wave radii and perpendicular to the trajectory). The second effort involves the prediction of the formation and or dominance of the propagation of the atmospheric Lamb, edge-wave composite mode in a viscous fluid (Pierce, J. Acoust. Soc. Amer. 35, 1798-1807, 1963) as a function of the source energy, horizontal range and source altitude using the Lamb wave frequency that was deduced directly during the entry modeling and that is used as a surrogate for the source energy. We have also determined that Lamb wave production by bolides at close range decreases dramatically as either the source energy decreases or the source altitude increases. Finally using procedures in Gill ( Atmospheric-Ocean Dynamics, 1982) and in Tolstoy ( Wave Propagation, 1973), we have analyzed two simple dispersion relationships and have calculated the expected dispersion for the Lamb edge-wave mode and for the excited, propagating internal acoustic waves. Finally, we have used the above formalism to fully evaluate these techniques for four large bolides, namely: the Tunguska bolide of June 30, 1908; the Revelstoke bolide of March 31, 1965; the Crete bolide of June 6, 2002 and the Antarctic bolide of September 3, 2004. Due to page limitations, we will only present results in detail for the Revelstoke bolide.

  5. Kinetic effect of toroidal rotation on the geodesic acoustic mode

    SciTech Connect

    Guo, W. Ye, L.; Zhou, D.; Xiao, X.; Wang, S.

    2015-01-15

    Kinetic effects of the toroidal rotation on the geodesic acoustic mode are theoretically investigated. It is found that when the toroidal rotation increases, the damping rate increases in the weak rotation regime due to the rotation enhancement of wave-particle interaction, and it decreases in the strong rotation regime due to the reduction of the number of resonant particles. Theoretical results are consistent with the behaviors of the geodesic acoustic mode recently observed in DIII-D and ASDEX-Upgrade. The kinetic damping effect of the rotation on the geodesic acoustic mode may shed light on the regulation of turbulence through the controlling the toroidal rotation.

  6. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  7. Sensitive acoustic vibration sensor using single-mode fiber tapers.

    PubMed

    Li, Yi; Wang, Xiaozhen; Bao, Xiaoyi

    2011-05-01

    Optical fiber sensors are a good alternative to piezoelectric devices in electromagnetic sensitive environments. In this study, we reported a fiber acoustic sensor based on single-mode fiber (SMF) tapers. The fiber taper is used as the sensing arm in a Mach-Zehnder interferometer. Benefiting from their micrometer dimensions, fiber tapers have shown higher sensitivities to the acoustic vibrations than SMFs. Under the same conditions, the thinnest fiber taper in this report, with a diameter of 1.7 µm, shows a 20 dB improvement in the signal to noise ratio as compared to that of an SMF. This acoustic vibration sensor can detect the acoustic waves over the frequencies of 30 Hz-40 kHz, which is limited by the acoustic wave generator in experiments. We also discussed the phase changes of fiber tapers with different diameters under acoustic vibrations.

  8. Multiple eigenmodes of geodesic acoustic mode in collisionless plasmas

    SciTech Connect

    Gao Zhe; Itoh, K.; Sanuki, H.; Dong, J. Q.

    2006-10-15

    We report a series of eigenmodes of the geodesic acoustic mode (GAM), which includes the standard GAM, a branch of low-frequency mode, and a series of ion sound wave-like modes. The case of T{sub i}>>T{sub e} is investigated, and eigenfrequencies of these modes are obtained analytically from a linear gyrokinetic model in collisionless plasmas with a rigid constant electrostatic potential around a magnetic surface.

  9. Solitary-wave emission fronts, spectral chirping, and coupling to beam acoustic modes in RPIC simulation of SRS backscatter.

    SciTech Connect

    DuBois, D. F.; Yin, L.; Daughton, W. S.; Bezzerides, B.; Dodd, E. S.; Vu, H. X.

    2004-01-01

    Detailed diagnostics of quasi-2D RPIC simulations of backward stimulated Raman scattering (BSRS), from single speckles under putative NIF conditions, reveal a complex spatio-temporal behavior. The scattered light consists of localized packets, tens of microns in width, traveling toward the laser at an appreciable fraction of the speed of light. Sub pico-second reflectivity pulses occur as these packets leave the system. The LW activity consists of a front traveling with the light packets with a wake of free LWs traveling in the laser direction. The parametric coupling occurs in the front where the scattered light and LW overlap and are strongest. As the light leaves the plasma the LW quickly decays, liberating its trapped electrons. The high frequency part of the |n{sub e}(k,{omega})|{sup 2} spectrum, where n{sub e} is the electron density fluctuation, consists of a narrow streak or straight line with a slope that is the velocity of the parametric front. The time dependence of |n{sub e}(k,t)|{sup 2}, shows that during each pulse the most intense value of k also 'chirps' to higher values, consistent with the k excursions seen in the |n{sub e}(k,{omega})|{sup 2} spectrum. But k does not always return, in the subsequent pulses, to the original parametrically matched value, indicating that, in spite of side loss, the electron distribution function does not return to its original Maxwellian form. Liberated pulses of hot electrons result in down-stream, bump on tail distributions that excite LWs and beam acoustic modes deeper in the plasma. The frequency broadened spectra are consistent with Thomson scatter spectra observed in TRIDENT single-hot-spot experiments in the high k{lambda}{sub D}, trapping regime. Further details including a comparison of results from full PIC simulations, and movies of the spatio-temporal behavior, will be given in the poster by L Yin et al.

  10. Theory of Acoustic Raman Modes in Proteins

    NASA Astrophysics Data System (ADS)

    DeWolf, Timothy; Gordon, Reuven

    2016-09-01

    We present a theoretical analysis that associates the resonances of extraordinary acoustic Raman (EAR) spectroscopy [Wheaton et al., Nat. Photonics 9, 68 (2015)] with the collective modes of proteins. The theory uses the anisotropic elastic network model to find the protein acoustic modes, and calculates Raman intensity by treating the protein as a polarizable ellipsoid. Reasonable agreement is found between EAR spectra and our theory. Protein acoustic modes have been extensively studied theoretically to assess the role they play in protein function; this result suggests EAR spectroscopy as a new experimental tool for studies of protein acoustic modes.

  11. Extraordinary transmission of gigahertz surface acoustic waves.

    PubMed

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H; Wright, Oliver B

    2016-09-19

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3-50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  12. Extraordinary transmission of gigahertz surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-09-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  13. Extraordinary transmission of gigahertz surface acoustic waves.

    PubMed

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H; Wright, Oliver B

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3-50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  14. Extraordinary transmission of gigahertz surface acoustic waves

    PubMed Central

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  15. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  16. Efficient coupling of acoustic modes in microfluidic channel devices.

    PubMed

    Bora, M; Shusteff, M

    2015-08-01

    This work introduces a new numerical simulation approach to acoustic microfluidic chip design based on coupled-resonator theory. A simplified acoustofluidic device operating in the transverse elastic mode is investigated and optimized for maximal pressure standing wave amplitude. This design approach provides insights into the symmetry and frequency characteristics of acoustic chip resonances that cannot be obtained from analysis based on wave propagation arguments. The new approach reveals that optimal performance requires spatial symmetry-matching and frequency-matching of the full device's elastic resonance to the channel's acoustic resonance. Symmetry selection is demonstrated for a three terminal piezoelectric transducer actuation scheme showing suppression of opposite-symmetry and enhancement of same-symmetry acoustic modes. Excitation of ultrasonic waves exhibits the anti-crossing behaviour predicted by coupled mode theory with the acoustic mode splitting into two distinct branches. Increased efficiency of energy transfer from the transducer into the fluid, with its corresponding increase in pressure amplitude, suggests a potential path toward significant increases in acoustic separator performance. PMID:26118358

  17. Quantitative Determination of Lateral Mode Dispersion in Film Bulk Acoustic Resonators through Laser Acoustic Imaging

    SciTech Connect

    Ken Telschow; John D. Larson III

    2006-10-01

    Film Bulk Acoustic Resonators are useful for many signal processing applications. Detailed knowledge of their operation properties are needed to optimize their design for specific applications. The finite size of these resonators precludes their use in single acoustic modes; rather, multiple wave modes, such as, lateral wave modes are always excited concurrently. In order to determine the contributions of these modes, we have been using a newly developed full-field laser acoustic imaging approach to directly measure their amplitude and phase throughout the resonator. This paper describes new results comparing modeling of both elastic and piezoelectric effects in the active material with imaging measurement of all excited modes. Fourier transformation of the acoustic amplitude and phase displacement images provides a quantitative determination of excited mode amplitude and wavenumber at any frequency. Images combined at several frequencies form a direct visualization of lateral mode excitation and dispersion for the device under test allowing mode identification and comparison with predicted operational properties. Discussion and analysis are presented for modes near the first longitudinal thickness resonance (~900 MHz) in an AlN thin film resonator. Plate wave modeling, taking account of material crystalline orientation, elastic and piezoelectric properties and overlayer metallic films, will be discussed in relation to direct image measurements.

  18. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  19. Millimeter Waves: Acoustic and Electromagnetic

    PubMed Central

    Ziskin, Marvin C.

    2012-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. PMID:22926874

  20. Millimeter waves: acoustic and electromagnetic.

    PubMed

    Ziskin, Marvin C

    2013-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects.

  1. Acoustic whispering gallery modes within the theory of elasticity

    NASA Astrophysics Data System (ADS)

    Sturman, Boris; Breunig, Ingo

    2015-07-01

    Investigations of nonlinear phenomena in optical whispering gallery mode (WGM) microresonators are booming because of rich physics and applications. Stimulated Brillouin scattering is one of the strongest processes in these devices. Here, the optical WGMs interact with acoustic counterparts. The acoustic WGMs are well known for resonators based on liquids and gases, where the sound waves are longitudinal. The situation with solid-state resonators is different because of the presence of the longitudinal (l) and transverse (t) sound waves with substantially different velocities v l , t . Moreover, the l- and t-parts of the acoustic displacement are coupled at the resonator surface breaking the separation of modes into longitudinal and transverse. Investigation of the acoustic WGMs is of high priority. Here, analytically and numerically we investigate the resonant frequencies and the eigenfunctions (displacement vector distributions) for acoustic WGMs in microresonators made of isotropic solid-state materials. Cylindrical and spherical resonators are considered. Each mode has the azimuth, radial, and orbital (for sphere) numbers m, q, and ℓ; its properties are controlled also by the ratio v l / v t . All modes are either transverse (t) or hybrid transverse-longitudinal (tl). Pure l-modes, providing the strongest interaction with optical modes in fibers and bulk crystals, are absent. The tl-modes include distorted Rayleigh waves, the modes with q ˜ 1 and dominating t-part, and pseudo-longitudinal modes with q ≫ 1 , closely spaced frequencies, and weakly localized t-part. They have no analogies to the optical WGMs and are of high relevance for Brillouin lasing in optical microresonators. The actual values of ℓ and m are 10 2 - 10 5 , and the lasing thresholds lie in the μW range. Our findings include exact dispersion equations for acoustic WGMs, which can be solved numerically for ℓ , m ≲ 10 4 , asymptotic tools for ℓ , m ≳ 10 3 , and particular

  2. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  3. Acoustic mode in numerical calculations of subsonic combustion

    SciTech Connect

    O'Rourke, P.J.

    1984-01-01

    A review is given of the methods for treating the acoustic mode in numerical calculations of subsonic combustion. In numerical calculations of subsonic combustion, treatment of the acoustic mode has been a problem for many researchers. It is widely believed that Mach number and acoustic wave effects are negligible in many subsonic combustion problems. Yet, the equations that are often solved contain the acoustic mode, and many numerical techniques for solving these equations are inefficient when the Mach number is much smaller than one. This paper reviews two general approaches to ameliorating this problem. In the first approach, equations are solved that ignore acoustic waves and Mach number effects. Section II of this paper gives two such formulations which are called the Elliptic Primitive and the Stream and Potential Function formulations. We tell how these formulations are obtained and give some advantages and disadvantages of solving them numerically. In the second approach to the problem of calculating subsonic combustion, the fully compressible equations are solved by numerical methods that are efficient, but treat the acoustic mode inaccurately, in low Mach number calculations. Section III of this paper introduces two of these numerical methods in the context of an analysis of their stability properties when applied to the acoustic wave equations. These are called the ICE and acoustic subcycling methods. It is shown that even though these methods are more efficient than traditional methods for solving subsonic combustion problems, they still can be inefficient when the Mach number is very small. Finally, a method called Pressure Gradient Scaling is described that, when used in conjunction with either the ICE or acoustic subcycling methods, allows for very efficient numerical solution of subsonic combustion problems. 11 refs.

  4. Nonlinear positron acoustic solitary waves

    SciTech Connect

    Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia

    2009-07-15

    The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.

  5. Thickness-shear and thickness-twist modes in an AT-cut quartz acoustic wave filter.

    PubMed

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin; Yang, Jiashi

    2015-04-01

    We studied thickness-shear and thickness-twist vibrations of a monolithic, two-pole crystal filter made from a plate of AT-cut quartz. The scalar differential equations derived by Tiersten and Smythe for electroded and unelectroded quartz plates were employed which are valid for both the fundamental and the overtone modes. Exact solutions for the free vibration resonant frequencies and modes were obtained from the equations. For a structurally symmetric filter, the modes can be separated into symmetric and antisymmetric ones. Trapped modes with vibrations mainly under the electrodes were found. The effect of the distance between the two pairs of electrodes was examined.

  6. Empirical mode decomposition for analyzing acoustical signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  7. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    SciTech Connect

    Tabrizian, R.; Ayazi, F.

    2015-06-29

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  8. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    NASA Astrophysics Data System (ADS)

    Tabrizian, R.; Ayazi, F.

    2015-06-01

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  9. Pseudo-continuous-wave acoustic instrument

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Stone, F. D.

    1978-01-01

    Simple, inexpensive, and portable ultrasonic device accurately measures acoustic properties of liquids, gases, and solids, using pseudo-continuous wave responses from samples to measure change in resonant frequency or amplitude in acoustic signal.

  10. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  11. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  12. Drift effects on electromagnetic geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Sgalla, R. J. F.

    2015-02-01

    A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ˜ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λr ˜ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs).

  13. Drift effects on electromagnetic geodesic acoustic modes

    SciTech Connect

    Sgalla, R. J. F.

    2015-02-15

    A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ∼ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λ{sub r} ∼ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs)

  14. Perturbation analysis of electromagnetic geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Ren, Haijun

    2014-06-01

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δBθ, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξθ. The parallel perturbation of magnetic field, δB∥, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δBθ to the leading order. The radial displacement ξr is of order O(βɛξθ) but plays a significant role in determining δB∥, where β is the plasma/magnetic pressure ratio and ɛ is the inverse aspect ratio.

  15. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  16. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  17. Localization of acoustic modes in periodic porous silicon structures

    PubMed Central

    2014-01-01

    The propagation of longitudinal acoustic waves in multilayer structures based on porous silicon and the experimental measurement of acoustic transmission for the structures in the gigahertz range are reported and studied theoretically. The considered structures exhibit band gaps in the transmission spectrum and these are localized modes inside the band gap, coming from defect layers introduced in periodic systems. The frequency at which the acoustic resonances appear can be tuned by changing the porosity and/or thickness of the defect layer. PMID:25206317

  18. Twisted electron-acoustic waves in plasmas

    NASA Astrophysics Data System (ADS)

    Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.

    2016-08-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  19. Ion Acoustic Modes in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Hartley, Nicholas; Monaco, Guilio; White, Thomas; Gregori, Gianluca; Graham, Peter; Fletcher, Luke; Appel, Karen; Tschentscher, Thomas; Lee, Hae Ja; Nagler, Bob; Galtier, Eric; Granados, Eduardo; Heimann, Philip; Zastrau, Ulf; Doeppner, Tilo; Gericke, Dirk; Lepape, Sebastien; Ma, Tammy; Pak, Art; Schropp, Andreas; Glenzer, Siegfried; Hastings, Jerry

    2015-06-01

    We present results that, for the first time, show scattering from ion acoustic modes in warm dense matter, representing an unprecedented level of energy resolution in the study of dense plasmas. The experiment was carried out at the LCLS facility in California on an aluminum sample at 7 g/cc and 5 eV. Using an X-ray probe at 8 keV, shifted peaks at +/-150 meV were observed. Although the energy shifts from interactions with the acoustic waves agree with predicted values from DFT-MD models, a central (elastic) peak was also observed, which did not appear in modelled spectra and may be due to the finite timescale of the simulation. Data fitting with a hydrodynamic form has proved able to match the observed spectrum, and provide measurements of some thermodynamic properties of the system, which mostly agree with predicted values. Suggest for further experiments to determine the cause of the disparity are also given.

  20. Separation of acoustic waves in isentropic flow perturbations

    SciTech Connect

    Henke, Christian

    2015-04-15

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given.

  1. Probing Acoustic Nonlinearity by Mixing Surface Acoustic Waves

    SciTech Connect

    Hurley, David Howard; Telschow, Kenneth Louis

    2000-07-01

    Measurement methods aimed at determining material properties through nonlinear wave propagation are sensitive to artifacts caused by background nonlinearities inherent in the ultrasonic generation and detection methods. The focus of this paper is to describe our investigation of nonlinear mixing of surface acoustic waves (SAWs) as a means to decrease sensitivity to background nonlinearity and increase spatial sensitivity to acoustic nonlinearity induced by material microstructure.

  2. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.; Lee, D. L.; Leja, I.

    1979-01-01

    Four areas of surface acoustic wave (SAW) controlled oscillators were investigated and a number of 401.2 MHz oscillators were constructed that showed improved performance. Aging studies on SAW devices packaged in HC36/U cold weld enclosures produced frequency drifts as low as 0.4 ppm in 35 weeks and drift rates well under 0.5 ppm/year. Temperature compensation circuits have substantially improved oscillator temperature stability, with a deviation of + or - 4 ppm observed over the range -45 C to + 40 C. High efficiency amplifiers were constructed for SAW oscillators and a dc to RF efficiency of 44 percent was obtained for an RF output of 25 mW. Shock and vibration tests were made on four oscillators and all survived 500 G shock pulses unchanged. Only when white noise vibration (20 Hz to 2000 Hz) levels of 20 G's rms were applied did some of the devices fail.

  3. Swimming using surface acoustic waves.

    PubMed

    Bourquin, Yannyk; Cooper, Jonathan M

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  4. Swimming using surface acoustic waves.

    PubMed

    Bourquin, Yannyk; Cooper, Jonathan M

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel.

  5. Swimming Using Surface Acoustic Waves

    PubMed Central

    Bourquin, Yannyk; Cooper, Jonathan M.

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  6. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.

    1978-01-01

    A number of 401.2 MHz surface acoustic wave (SAW) controlled oscillators were built and tested. The performance of these oscillators was evaluated for possible use as stable oscillators in communication systems. A short term frequency stability of better than 1 x 10 to the minus 9th power for one second was measured for the SAW oscillators. Long term frequency drift was measured and was found to be dependent on SAW design and packaging. Drift rates ranging from 15 ppm in twenty weeks to 2.5 ppm in twenty weeks were observed. Some further improvement was required. The temperature dependence of the saw oscillators was evaluated and it was concluded that some form of temperature compensation will be necessary to meet the requirements of some communication systems.

  7. MHD-model for low-frequency waves in a tokamak with toroidal plasma rotation and problem of existence of global geodesic acoustic modes

    SciTech Connect

    Lakhin, V. P.; Sorokina, E. A. E-mail: vilkiae@gmail.com; Ilgisonis, V. I.; Konovaltseva, L. V.

    2015-12-15

    A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.

  8. Temperature-controlled acoustic surface waves

    NASA Astrophysics Data System (ADS)

    Cselyuszka, Norbert; Sečujski, Milan; Engheta, Nader; Crnojević-Bengin, Vesna

    2016-10-01

    Conventional approaches to the control of acoustic waves propagating along boundaries between fluids and hard grooved surfaces are limited to the manipulation of surface geometry. Here we demonstrate for the first time, through theoretical analysis, numerical simulation as well as experimentally, that the velocity of acoustic surface waves, and consequently the direction of their propagation as well as the shape of their wave fronts, can be controlled by varying the temperature distribution over the surface. This significantly increases the versatility of applications such as sound trapping, acoustic spectral analysis and acoustic focusing, by providing a simple mechanism for modifying their behavior without any change in the geometry of the system. We further discuss that the dependence between the behavior of acoustic surface waves and the temperature of the fluid can be exploited conversely as well, which opens a way for potential application in the domain of temperature sensing.

  9. Eigenmode analysis of geodesic acoustic modes

    SciTech Connect

    Gao Zhe; Itoh, K.; Sanuki, H.; Dong, J. Q.

    2008-07-15

    Geodesic acoustic modes (GAMs) are studied as plasma eigenmodes when an electrostatic potential nearly constant around a magnetic surface is applied to collisionless toroidal plasmas. Besides the standard GAM, a branch of low frequency mode and an infinite series of ion sound wavelike modes are identified. Eigenfrequencies of these modes are obtained analytically and numerically from a linear gyrokinetic model. The finite gyroradius effect is found to enhance the collisionless damping of the standard GAM, while this enhancement is not monotonic as the safety factor varies. Moreover, additional damping due to higher-harmonic resonances becomes important when the safety factor increases. The mode structure of the GAM is also discussed.

  10. Quasinormal modes and classical wave propagation in analogue black holes

    SciTech Connect

    Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.

    2004-12-15

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.

  11. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  12. Monolithic ZnO SAW (Surface Acoustic Waves) structures

    NASA Astrophysics Data System (ADS)

    Gunshor, R. L.; Pierret, R. F.

    1983-07-01

    ZnO-on-silicon surface acoustic wave devices have been fabricated and tested. Electronic erasure of a stored correlator reference was demonstrated, the effect of laser annealing on propagation loss was examined, preliminary ageing studies were performed, and a conceptually new mode conversion resonator configuration was reported.

  13. Surface wave acoustics of granular packing under gravity

    SciTech Connect

    Clement, Eric; Andreotti, Bruno; Bonneau, Lenaic

    2009-06-18

    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. For a packing under gravity and in the presence of a free surface, bulk acoustic waves cannot propagate due to the inherent refraction toward the surface (the mirage effect). Thus, only modes corresponding to surface waves (Raleigh-Hertz modes) are able to propagate the acoustic signal. First, based on a non-linear elasticity model, we describe the main features associated to these surface waves. We show that under gravity, a granular packing is from the acoustic propagation point of view an index gradient waveguide that selects modes of two distinct families i.e. the sagittal and transverse waves localized in the vicinity of the free surface. A striking feature of these surface waves is the multi-modal propagation: for both transverse and sagittal waves, we show the existence of a infinite but discrete series of propagating modes. In each case, we determine the mode shape and and the corresponding dispersion relation. In the case of a finite size system, a geometric waveguide is superimposed to the index gradient wave guide. In this later case, the dispersion relations are modified by the appearance of a cut-off frequency that scales with depth. The second part is devoted to an experimental study of surface waves propagating in a granular packing confined in a long channel. This set-up allows to tune a monomodal emission by taking advantage of the geometric waveguide features combined with properly designed emitters. For both sagittal and transverses waves, we were able to isolate a single mode (the fundamental one) and to plot the dispersion relation. This measurements agree well with the Hertzian scaling law as predicted by meanfield models. Furthermore, it allows us to determine quantitatively relations on the elastic moduli. However, we observe that our data yield a shear modulus abnormally weak when compared to several meanfield predictions.

  14. Slow EIT waves as gravity modes

    SciTech Connect

    Vranjes, J.

    2011-06-15

    The EIT waves [named after the extreme-ultraviolet imaging telescope (EIT) onboard the solar and heliospheric observatory (SOHO)] are in the literature usually described as fast magneto-acoustic (FMA) modes. However, observations show that a large percentage of these events propagate with very slow speeds that may be as low as 20 km/s. This is far below the FMA wave speed which cannot be below the sound speed, the latter being typically larger than 10{sup 2} km/s in the corona. In the present study, it is shown that, to account for such low propagation speed, a different wave model should be used, based on the theory of gravity waves, both internal (IG) and surface (SG) ones. The gravity modes are physically completely different from the FMA mode, as they are essentially dispersive and in addition the IG wave is a transverse mode. Both the IG and the SG mode separately can provide proper propagation velocities in the whole low speed range.

  15. Ion heating via turbulent ion acoustic waves.

    NASA Technical Reports Server (NTRS)

    Taylor, R. J.; Coroniti, F. V.

    1972-01-01

    The ion acoustic turbulence in the turbulent-heating experiment reported is excited by the ion-ion beam instability. Graphs are presented, showing the spatial evolution of the parallel ion beam energy and the spatial evolution of the ion acoustic turbulent wave spectrum. The observed characteristics of test waves in a turbulent beam-plasma imply that wave saturation is a dynamic balance between the emission of waves by the beam and the destruction or damping of wave coherence by the turbulent diffusion of particle orbits.

  16. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  17. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  18. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  19. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  20. Dynamics of coupled light waves and electron-acoustic waves.

    PubMed

    Shukla, P K; Stenflo, L; Hellberg, M

    2002-08-01

    The nonlinear interaction between coherent light waves and electron-acoustic waves in a two-electron plasma is considered. The interaction is governed by a pair of equations comprising a Schrödinger-like equation for the light wave envelope and a driven (by the light pressure) electron-acoustic wave equation. The newly derived nonlinear equations are used to study the formation and dynamics of envelope light wave solitons and light wave collapse. The implications of our investigation to space and laser-produced plasmas are pointed out.

  1. Anisotropic diffraction of bulk acoustic wave beams in lithium niobate.

    PubMed

    Naumenko, Natalya F; Chizhikov, Sergey I; Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2015-12-01

    The formalism of planar diffraction tensor was applied to the analysis of anisotropy of bulk acoustic wave diffraction and to build a full map of anisotropic diffractional coefficients for three bulk acoustic wave modes propagating in lithium niobate. For arbitrary propagation direction the diffractional coefficients derived allow estimation of ultrasonic beam divergence in far-field. Analysis of obtained data revealed that the maxima of acousto-optic figure of merit for anisotropic diffraction in the YZ plane correspond to moderate diffractional spreading of the beams exceeding isotropic diffraction 2-3 times. PMID:26150402

  2. Acoustic waves switch based on meta-fluid phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Xue-Feng

    2012-08-01

    The acoustic waves switch based on meta-fluid phononic crystals (MEFL PCs) is theoretically investigated. The MEFL PCs consist of fluid matrix and fluid-like inclusions with extremely anisotropic-density. The dispersion relations are calculated via the plane wave expansion method, which are in good agreement with the transmitted sound pressure level spectra obtained by the finite element method. The results show that the width of absolute band gap in MEFL PCs depends sensitively upon the orientation of the extremely anisotropic-density inclusions and reaches maximum at the rotating angle of 45°, with the gap position nearly unchanged. Also, the inter-mode conversion inside anisotropic-density inclusions can be ignored due to large acoustic mismatch. The study gives a possibility to realize greater flexibility and stronger effects in tuning the acoustic band gaps, which is very significant in the enhanced control over sound waves and has potential applications in ultrasonic imaging and therapy.

  3. An acoustic mode measurement technique

    NASA Astrophysics Data System (ADS)

    Joppa, P. D.

    1984-10-01

    Turbomachinery noise propagates in aircraft jet engine ducts in a complicated manner. Measurement of this propagation is useful both to identify source mechanisms and to design efficient linings. A practical method of making these measurements has been developed, using linear arrays of equally spaced microphones mounted flush with the duct wall. Circumferential or axial arrays are analyzed by spatial Fourier transform, giving sound level as a function of spinning order or axial wavenumber respectively. Complex demodulation is used to acquire data in a modest bandwidth around a high frequency of interest. A joint NASA/Boeing test of the system used 32 microphones in a JT15D turbofan engine inlet. A 400-Hz bandwidth centered at blade passage frequency and at half blade passage frequency was studied. The theoretically predicted modes were clearly seen at blade passage frequency; broadband noise at half blade passage frequency was biased towards modes corotating with the fan. Interference between similar modes was not a significant problem. A lining design study indicated a 15 percent improvement in lining efficiency was possible when mode data were used, for this particular engine. The technique has proven reliable and useful for source diagnostics and lining design.

  4. Effect of Thermal Conduction on Acoustic Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.

    2006-05-01

    The influence of classical (Spitzer) thermal conduction on longitudinal acoustic waves in a coronal loop is determined through an idealized but exactly solvable model. The model consists of an isothermal, stratified (constant gravity) atmosphere in which a monochromatic acoustic wave, traveling in the direction of decreasing density, is imposed throughout the lower half of the atmosphere. Based on the linearized equations of motion, the complete steady state (t-->∞) solution is obtained. In addition to the imposed driving wave, the solution also contains reflected and transmitted acoustic and thermal conduction waves. The mode transformation and mixing occurs in the vicinity of the atmospheric layer where the gas pressure passes through a critical value set by the magnitude of the thermal conduction and other model parameters. For 5 minute waves in a million degree loop, this critical pressure is on the order of 8×10-4 in cgs units. Since the apex gas pressure of many coronal loops of current interest is thought to be comfortably in excess of this value, mode mixing and transformation is not likely to be a relevant factor for understanding acoustic waves in these structures. On the other hand, enhanced thermal conductivity as a result of plasma instabilities, for example, could revive the importance of this mechanism for coronal loops. If this mixing layer is present, the calculations show that the pair of thermal conduction waves invariably gains the overwhelming majority of the energy flux of the incoming acoustic wave. This energy is rapidly dissipated in the neighborhood of the mixing layer.

  5. Writing magnetic patterns with surface acoustic waves

    SciTech Connect

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  6. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  7. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  8. Acoustic emission signatures of damage modes in concrete

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Mpalaskas, A. C.; Matikas, T. E.; Van Hemelrijck, D.

    2014-03-01

    The characterization of the dominant fracture mode may assist in the prediction of the remaining life of a concrete structure due to the sequence between successive tensile and shear mechanisms. Acoustic emission sensors record the elastic responses after any fracture event converting them into electric waveforms. The characteristics of the waveforms vary according to the movement of the crack tips, enabling characterization of the original mode. In this study fracture experiments on concrete beams are conducted. The aim is to examine the typical acoustic signals emitted by different fracture modes (namely tension due to bending and shear) in a concrete matrix. This is an advancement of a recent study focusing on smaller scale mortar and marble specimens. The dominant stress field and ultimate fracture mode is controlled by modification of the four-point bending setup while acoustic emission is monitored by six sensors at fixed locations. Conclusions about how to distinguish the sources based on waveform parameters of time domain (duration, rise time) and frequency are drawn. Specifically, emissions during the shear loading exhibit lower frequencies and longer duration than tensile. Results show that, combination of AE features may help to characterize the shift between dominant fracture modes and contribute to the structural health monitoring of concrete. This offers the basis for in-situ application provided that the distortion of the signal due to heterogeneous wave path is accounted for.

  9. Acoustic one-way mode conversion and transmission by sonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping

    2016-09-01

    We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.

  10. Separation of acoustic waves in isentropic flow perturbations

    NASA Astrophysics Data System (ADS)

    Henke, Christian

    2015-04-01

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier-Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill's acoustic analogy. Moreover, we can define the deviations of the Navier-Stokes equation from the convective wave equation as "true" sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided.

  11. Ion Acoustic Waves in Ultracold Neutral Plasmas

    SciTech Connect

    Castro, J.; McQuillen, P.; Killian, T. C.

    2010-08-06

    We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbations oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.

  12. Classical acoustic waves in damped media.

    PubMed

    Albuquerque, E L; Mauriz, P W

    2003-05-01

    A Green function technique is employed to investigate the propagation of classical damped acoustic waves in complex media. The calculations are based on the linear response function approach, which is very convenient to deal with this kind of problem. Both the displacement and the gradient displacement Green functions are determined. All deformations in the media are supposed to be negligible, so the motions considered here are purely acoustic waves. The damping term gamma is included in a phenomenological way into the wave vector expression. By using the fluctuation-dissipation theorem, the power spectrum of the acoustic waves is also derived and has interesting properties, the most important of them being a possible relation with the analysis of seismic reflection data.

  13. Interaction of surface acoustic waves with moving vortex structures in superconducting films

    SciTech Connect

    Gutlyansky, E. D.

    2007-07-15

    A method is proposed for describing a moving film vortex structure and its interaction with surface acoustic waves. It is shown that the moving vortex structure can amplify (generate) surface acoustic waves. In contrast to a similar effect in semiconductor films, this effect can appear when the velocity of the vortex structure is much lower than the velocity of the surface acoustic waves. A unidirectional collective mode is shown to exist in the moving vortex structure. This mode gives rise to an acoustic analogue of the diode effect that is resonant in the velocity of the vortex structure. This acoustic effect is manifested as an anomalous attenuation of the surface acoustic waves in the direction of the vortex-structure motion and as the absence of this attenuation for the propagation in the opposite direction.

  14. Protein adsorption to organosiloxane surfaces studied by acoustic wave sensor.

    PubMed

    Cavic, B A; Thompson, M

    1998-10-01

    Surfaces of the two organosiloxanes, polymercaptopropylmethylsiloxane and octaphenylcyclotetrasiloxane, were prepared on the gold electrodes of thickness-shear mode acoustic wave sensors. Compounds containing the siloxane bond are important in the fabrication of medical implants. The flow-through adsorption of the proteins: human serum albumin, alpha-chymotripsinogen A, cytochrome c, fibrinogen, hemoglobin, immunoglobulin G and apo-transferrin to the two siloxane surfaces and a gold electrode were detected by acoustic network analysis. With the exception of minor wash-off by buffer flow, the adsorption of all proteins to the three surfaces is irreversible. Differences observed for the magnitudes of adsorption for the various cases are ascribed to the role played by molecular interactions at the liquid/solid interface. The results confirm that changes in series resonant frequencies caused by macromolecular adsorption differ significantly from the widely accepted "mass based" model usually employed to characterize the response of this type of acoustic wave device.

  15. Exciton transport by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Rudolph, J.; Hey, R.; Santos, P. V.

    2007-05-01

    Long-range acoustic transport of excitons in GaAs quantum wells (QWs) is demonstrated. The mobile strain field of a surface acoustic wave creates a dynamic lateral type I modulation of the conduction and valence bands in a double-quantum-well (DQW) structure. This mobile potential modulation transports long-living indirect excitons in the DQW over several hundreds of μm.

  16. Standing wave acoustic levitation on an annular plate

    NASA Astrophysics Data System (ADS)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  17. Imaging of Acoustic Waves in Sand

    SciTech Connect

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  18. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices.

  19. Topological charge pump by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Yi, Zheng; Shi-Ping, Feng; Shi-Jie, Yang

    2016-06-01

    Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves. Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

  20. Active micromixer using surface acoustic wave streaming

    SciTech Connect

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  1. Bleustein-Gulyaev-Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals.

    PubMed

    Hsu, Jin-Chen; Wu, Tsung-Tsong

    2006-06-01

    In this paper, we present a study on the existence of Bleustein-Gulyaev-Shimizu piezoelectric surface acoustic waves in a two-dimensional piezoelectric phononic crystal (zinc oxide, ZnO, and cadmium-sulfide, CdS) using the plane wave expansion method. In the configuration of ZnO (100)/CdS(100) phononic crystal, the calculated results show that this type of surface waves has higher acoustic wave velocities, high electromechanical coupling coefficients, and larger band gap width than those of the Rayleigh surface waves and pseudosurface waves. In addition, we find that the folded modes of the Bleustein-Gulyaev-Shimizu surface waves have higher coupling coefficients.

  2. Impact of Acoustic Standing Waves on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.

    2014-01-01

    For several decades large reverberant chambers and most recently direct field acoustic testing have been used in the aerospace industry to test larger structures with low surface densities such as solar arrays and reflectors to qualify them and to detect faults in the design and fabrication. It has been reported that in reverberant chamber and direct acoustic testing, standing acoustic modes may strongly couple with the fundamental structural modes of the test hardware (Reference 1). In this paper results from a recent reverberant chamber acoustic test of a composite reflector are discussed. These results provide further convincing evidence of the acoustic standing wave and structural modes coupling phenomenon. The purpose of this paper is to alert test organizations to this phenomenon so that they can account for the potential increase in structural responses and ensure that flight hardware undergoes safe testing. An understanding of the coupling phenomenon may also help minimize the over and/or under testing that could pose un-anticipated structural and flight qualification issues.

  3. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    SciTech Connect

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  4. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  5. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  6. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  7. Acoustic-gravity waves in atmospheric and oceanic waveguides.

    PubMed

    Godin, Oleg A

    2012-08-01

    A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.

  8. On fast radial propagation of parametrically excited geodesic acoustic mode

    SciTech Connect

    Qiu, Z.; Chen, L.; Zonca, F.

    2015-04-15

    The spatial and temporal evolution of parametrically excited geodesic acoustic mode (GAM) initial pulse is investigated both analytically and numerically. Our results show that the nonlinearly excited GAM propagates at a group velocity which is, typically, much larger than that due to finite ion Larmor radius as predicted by the linear theory. The nonlinear dispersion relation of GAM driven by a finite amplitude drift wave pump is also derived, showing a nonlinear frequency increment of GAM. Further implications of these findings for interpreting experimental observations are also discussed.

  9. Broadband acoustic cloak for ultrasound waves.

    PubMed

    Zhang, Shu; Xia, Chunguang; Fang, Nicholas

    2011-01-14

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely, serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Because of the nonresonant nature of the building elements, this low-loss (∼6  dB/m) cylindrical cloak exhibits invisibility over a broad frequency range from 52 to 64 kHz. Furthermore, our experimental study indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.

  10. Acoustic wave levitation: Handling of components

    NASA Astrophysics Data System (ADS)

    Vandaele, Vincent; Delchambre, Alain; Lambert, Pierre

    2011-06-01

    Apart from contact micromanipulation, there exists a large variety of levitation techniques among which standing wave levitation will be proposed as a way to handle (sub)millimetric components. This paper will compare analytical formulas to calculate the order of magnitude of the levitation force. It will then describe digital simulation and experimental levitation setup. Stable levitation of various components (cardboard, steel washer, ball, ceramic capacity, water droplet) was shown along 5 degrees of freedom: The only degree of freedom that could not be mastered was the rotation about the symmetry axis of the acoustic field. More importantly, the present work will show the modification of the orientation of the radial force component in the presence of an object disturbing the acoustic field. This property can be used as a new feeding strategy as it means that levitating components are spontaneously pushed toward grippers in an acoustic plane standing wave.

  11. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson

  12. Seismic waves from elephant vocalizations: A possible communication mode?

    NASA Astrophysics Data System (ADS)

    Günther, Roland H.; O'Connell-Rodwell, Caitlin E.; Klemperer, Simon L.

    2004-06-01

    We conducted experiments with trained African elephants that show that low-frequency elephant vocalizations produce Rayleigh waves. We model a potential range for these seismic waves, under ideal conditions, of c. 2 km. In appropriate conditions, surface waves from an elephant's infrasonic vocalizations might propagate further than airborne sound and provide advantages over acoustic communication. However, if we use the detection capabilities of the human ear as a benchmark for the signal-detection thresholds of elephants, our estimates of attenuation and ambient seismic noise suggest that the seismic detection range is unlikely to exceed the acoustic detection range under normal atmospheric conditions. We conclude that elephants may benefit from seismic detection in circumstances where the range of acoustic communication is limited, or in cases where multimodal communication is advantageous. Given our current understanding, elephants are unlikely to rely on seismic waves as their primary mode for long-range communication.

  13. Marble Ageing Characterization by Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  14. Volumetric measurements of a spatially growing dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, Jeremiah D.

    2012-11-01

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  15. Measuring Acoustic Nonlinearity by Collinear Mixing Waves

    NASA Astrophysics Data System (ADS)

    Liu, M.; Tang, G.; Jacobs, L. J.; Qu, J.

    2011-06-01

    It is well known that the acoustic nonlinearity parameter β is correlated to fatigue damage in metallic materials. Various methods have been developed to measure β. One of the most often used methods is the harmonic generation technique, in which β is obtained by measuring the magnitude of the second order harmonic waves. An inherent weakness of this method is the difficulty in distinguishing material nonlinearity from the nonlinearity of the measurement system. In this paper, we demonstrate the possibility of using collinear mixing waves to measure β. The wave mixing method is based on the interaction between two incident waves in a nonlinear medium. Under certain conditions, such interactions generate a third wave of different frequency. This generated third wave is also called resonant wave, because its amplitude is unbounded if the medium has no attenuation. Such resonant waves are less sensitive to the nonlinearity of the measurement system, and have the potential to identify the source location of the nonlinearity. In this work, we used a longitudinal wave and a shear wave as the incident waves. The resonant shear wave is measured experimentally on samples made of aluminum and steel, respectively. Numerical simulations of the tests were also performed using a finite difference method.

  16. On mode conversion and wave reflection in magnetic Ap stars

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Cunha, M. S.

    2008-05-01

    We investigate the effect of a strong large-scale magnetic field on the reflection of high-frequency acoustic modes in rapidly oscillating Ap stars. To that end, we consider a toy model composed of an isothermal atmosphere matched on to a polytropic interior and determine the numerical solution to the set of ideal magnetohydrodynamic equations in a local plane-parallel approximation with constant gravity. Using the numerical solution in combination with approximate analytical solutions that are valid in the limits where the magnetic and acoustic components are decoupled, we calculate the relative fraction of energy flux that is carried away in each oscillation cycle by running acoustic waves in the atmosphere and running magnetic waves in the interior. For oscillation frequencies above the acoustic cut-off, we show that most energy losses associated with the presence of running waves occur in regions where the magnetic field is close to vertical. Moreover, by considering the depth dependence of the energy associated with the magnetic component of the wave in the atmosphere we show that a fraction of the wave energy is kept in the oscillation every cycle. For frequencies above the acoustic cut-off frequency, such energy is concentrated in regions where the magnetic field is significantly inclined in relation to the local vertical. Even though our calculations were aimed at studying oscillations with frequencies above the acoustic cut-off frequency, based on our results we discuss what results may be expected for oscillations of lower frequency.

  17. Location Dependence of Mass Sensitivity for Acoustic Wave Devices.

    PubMed

    Zhang, Kewei; Chai, Yuesheng; Cheng, Z-Y

    2015-09-23

    It is introduced that the mass sensitivity (Sm) of an acoustic wave (AW) device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices.

  18. Location Dependence of Mass Sensitivity for Acoustic Wave Devices

    PubMed Central

    Zhang, Kewei; Chai, Yuesheng; Cheng, Z.-Y.

    2015-01-01

    It is introduced that the mass sensitivity (Sm) of an acoustic wave (AW) device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices. PMID:26404313

  19. Acoustic wave-equation-based earthquake location

    NASA Astrophysics Data System (ADS)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  20. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  1. Coupled perturbed modes and internal solitary waves.

    PubMed

    Higham, C J; Tindle, C T

    2003-05-01

    Coupled perturbed mode theory combines conventional coupled modes and perturbation theory. The theory is used to directly calculate mode coupling in a range-dependent shallow water problem involving propagation through continental shelf internal solitary waves. The solitary waves considered are thermocline depressions, separating well-mixed upper and lower layers. The method is fast and accurate. Results highlight mode coupling associated with internal solitary waves, and mode capture or loss to and from the discrete mode spectrum.

  2. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  3. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1986-01-01

    In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  4. Generation mechanism for electron acoustic solitary waves

    SciTech Connect

    Kakad, A. P.; Singh, S. V.; Reddy, R. V.; Lakhina, G. S.; Tagare, S. G.; Verheest, F.

    2007-05-15

    Nonlinear electron acoustic solitary waves (EASWs) are studied in a collisionless and unmagnetized plasma consisting of cold background electrons, cold beam electrons, and two different temperature ion species. Using pseudopotential analysis, the properties of arbitrary amplitude EASWs are investigated. The present model supports compressive as well as rarefactive electron acoustic solitary structures. Furthermore, there is an interesting possibility of the coexistence of compressive and rarefactive solitary structures in a specific plasma parameter range. The application of our results in interpreting the salient features of the broadband electrostatic noise in the plasma sheet boundary layer is discussed.

  5. Anomalous refraction of guided waves via embedded acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-04-01

    We illustrate the design of acoustic metasurfaces based on geometric tapers and embedded in thin-plate structures. The metasurface is an engineered discontinuity that enables anomalous refraction of guided wave modes according to the Generalized Snell's Law. Locally-resonant geometric torus-like tapers are designed in order to achieve metasurfaces having discrete phase-shift profiles that enable a high level of control of refraction of the wavefronts. Results of numerical simulations show that anomalous refraction can be achieved on transmitted anti-symmetric modes (A0) either when using a symmetric (S0) or anti-symmetric (A0) incident wave, where the former case clearly involves mode conversion mechanisms.

  6. Analysis of Rayleigh-Mode Spurious Response Using Finite Element Method/Spectrum Domain Analysis for Surface Acoustic Wave Resonator on Nonflat SiO2/Al/LiNbO3 Structure

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroyuki; Nakanishi, Hidekazu; Goto, Rei; Hashimoto, Ken-ya; Yamaguchi, Masatsune

    2010-07-01

    Because of their low insertion loss, high out-of-band rejection, and high power durability, miniature surface acoustic wave (SAW) duplexers are widely used in mobile phones. Substrate materials substantially limit and determine the performance of SAW duplexers; for their applications to Band I and Band IV systems with large pass-band widths and wide frequency separations between the transmitting and receiving frequency bands, a larger coupling coefficient (K2) is of primary importance. We have developed a shape-controlled SiO2 film/Al electrode/LiNbO3 substrate structure for their applications. It could lead to a large K2 and suppression of Rayleigh-mode spurious response. In this paper, we report the analysis using finite element method/spectrum domain analysis (FEM/SDA) for the SAW resonator on a nonflat SiO2 film/Al electrode/LiNbO3 structure. It was clarified that the shape-controlled SiO2 was effective in terms of achieving a large K2 for the SAW resonator with suppressed Rayleigh-mode spurious responses and bulk wave radiation. Furthermore, the experiment results showed a good agreement with the analysis results.

  7. Condition of resonant break-up of gas bubbles by an acoustic wave in liquid

    NASA Astrophysics Data System (ADS)

    Vanovskiy, V. V.; Petrov, A. G.

    2016-07-01

    The linear theory of damping of radial vibrations of a bubble in a liquid is constructed by taking into account the key dissipative mechanisms: thermal, viscous, and acoustic. The basic approximation of homobaricity made helps to obtain the results in a convenient and simple form. The results obtained for damping are used further in the description of the forced resonant oscillations of a bubble in an acoustic wave with the frequency equal to the eigenfrequency of the radial oscillation mode and twice as high as the frequency of the deformation oscillation mode (resonance 2:2:1). It is shown that the amplitude of deformation oscillations, which is reasonably large for breaking, is developed at a relatively small pressure amplitude of the exciting acoustic wave, and subharmonics arise in the acoustic-emission spectrum. The condition of bubble break-up is obtained for a fast and slow start of the acoustic wave.

  8. Acoustic Remote Sensing of Rogue Waves

    NASA Astrophysics Data System (ADS)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  9. Prufer Transformations for the Normal Modes in Ocean Acoustics

    SciTech Connect

    Baggeroer, Arthur B.

    2010-09-06

    In 1926 Prufer introduced a method of transforming the second order Sturm-Liouville (SL) equation into two nonlinear first order differential equations for the phase oe and ''magnitude'', |oe{sup 2}+oe{sup 2}| for a Poincare phase space representation, (oe,oe). The useful property is the phase equation decouples from the magnitude one which leads to a nonlinear, two point boundary value problem for the eigenvalues, or SL numbers. The transformation has been used both theoretically, e.g. Atkinson, [1960] to prove certain properties of SL equations as well as numerically e.g Bailey [1978]. This paper examines the utility of the Prufer transformation in the context of numerical solutions for modes of the ocean acoustic wave equation. (Its use is certainly not well known in the ocean acoustics community.) Equations for the phase, oe, and natural logarithm of the ''magnitude'', ln(|oe{sup 2}+oe{sup 2}|) lead to same decoupling and a fast and efficient numerical solution with the SL eigenvalues mapping to the horizontal wavenubers. The Prufer transformation has stabilty problems for low order modes at high frequecies, so a numerically stable method of integrating the phase equation is derived. This seems to be the first time the these stability issues have been highlighted to provide a robust algorthim for the modes.

  10. Helioseismology and asteroseismology: looking for gravitational waves in acoustic oscillations

    SciTech Connect

    Lopes, Ilídio; Silk, Joseph E-mail: ilopes@uevora.pt

    2014-10-10

    Current helioseismology observations allow the determination of the frequencies and surface velocity amplitudes of solar acoustic modes with exceptionally high precision. In some cases, the frequency accuracy is better than one part in a million. We show that there is a distinct possibility that quadrupole acoustic modes of low order could be excited by gravitational waves (GWs), if the GWs have a strain amplitude in the range 10{sup –20} h {sub –20} with h {sub –20} ∼ 1 or h {sub –20} ∼ 10{sup 3}, as predicted by several types of GW sources, such as galactic ultracompact binaries or extreme mass ratio inspirals and coalescence of black holes. If the damping rate at low order is 10{sup –3}η {sub N} μHz, with η {sub N} ∼ 10{sup –3}-1, as inferred from the theory of stellar pulsations, then GW radiation will lead to a maximum rms surface velocity amplitude of quadrupole modes of the order of h{sub −20}η{sub N}{sup −1}∼ 10{sup –9}-10{sup –3} cm s{sup –1}, on the verge of what is currently detectable via helioseismology. The frequency and sensitivity range probed by helioseismological acoustic modes overlap with, and complement, the capabilities of eLISA for the brightest resolved ultracompact galactic binaries.

  11. Helioseismology and Asteroseismology: Looking for Gravitational Waves in Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio; Silk, Joseph

    2014-10-01

    Current helioseismology observations allow the determination of the frequencies and surface velocity amplitudes of solar acoustic modes with exceptionally high precision. In some cases, the frequency accuracy is better than one part in a million. We show that there is a distinct possibility that quadrupole acoustic modes of low order could be excited by gravitational waves (GWs), if the GWs have a strain amplitude in the range 10-20 h -20 with h -20 ~ 1 or h -20 ~ 103, as predicted by several types of GW sources, such as galactic ultracompact binaries or extreme mass ratio inspirals and coalescence of black holes. If the damping rate at low order is 10-3η N μHz, with η N ~ 10-3-1, as inferred from the theory of stellar pulsations, then GW radiation will lead to a maximum rms surface velocity amplitude of quadrupole modes of the order of h_{-20}\\eta _N^{-1}\\sim 10-9-10-3 cm s-1, on the verge of what is currently detectable via helioseismology. The frequency and sensitivity range probed by helioseismological acoustic modes overlap with, and complement, the capabilities of eLISA for the brightest resolved ultracompact galactic binaries.

  12. Modified dust-acoustic waves in dusty plasma with Lennard-Jones potential

    NASA Astrophysics Data System (ADS)

    Qian, Y. Z.; Chen, H.; Yang, X. S.; Liu, S. Q.

    2015-10-01

    Dust-acoustic waves in a dusty plasma are investigated by solving the Vlasov equation including the effect of dust-dust interaction modeled by a Lennard-Jones-like potential. The latter contains a potential well and is applicable when thermionic or photo emission processes are important. It is shown that the excitation and linear dispersion of the dust-acoustic waves are strongly modified. In fact, the phase of the dust acoustic waves is shifted and a cut-off for the long-wavelength modes appears, leading to a purely growing instability.

  13. Collisional damping of the geodesic acoustic mode

    SciTech Connect

    Gao Zhe

    2013-03-15

    The frequency and damping rate of the geodesic acoustic mode (GAM) is revisited by using a gyrokinetic model with a number-conserving Krook collision operator. It is found that the damping rate of the GAM is non-monotonic as the collision rate increases. At low ion collision rate, the damping rate increases linearly with the collision rate; while as the ion collision rate is higher than v{sub ti}/R, where v{sub ti} and R are the ion thermal velocity and major radius, the damping rate decays with an increasing collision rate. At the same time, as the collision rate increases, the GAM frequency decreases from the (7/4+{tau})v{sub ti}/R to (1+{tau})v{sub ti}/R, where {tau} is the ratio of electron temperature to ion temperature.

  14. Support minimized inversion of acoustic and elastic wave scattering

    SciTech Connect

    Safaeinili, A.

    1994-04-24

    This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion.

  15. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  16. The Foley Acoustic Wave Front Slides

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2004-04-01

    In 1912 Arthur L. Foley of Indiana University published an article in Physical Review about his technique for photographing acoustic wave fronts. Subsequently, the Central Scientific Company published a series of glass lantern slides of his illustrations. These have been unavailable for about 60 years. Here I discuss how Foley made his slides and give examples of use to the present-day physics teacher.

  17. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  18. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  19. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  20. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  1. Matching Impedances and Modes in Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.

    1985-01-01

    Temperature differences accommodated with tunable coupler. Report discusses schemes for coupling sound efficiently from cool outside atmosphere into hot acoustic-levitation chamber. Theoretical studies have practical implications for material-processing systems that employ acoustic levitation.

  2. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    PubMed Central

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-01-01

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010

  3. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    SciTech Connect

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  4. Multidimensional Fourier Methods: Analysis of Internal Soliton Data and Acoustic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Osborne, A.

    2005-05-01

    The aggressive pursuit of a satisfactory level of physical understanding of nonlinear oceanic wave dynamics has lead to the use of multidimensional Fourier analysis as a tool for the time series analysis of both internal wave motion and acoustic wave propagation. These new tools have arisen naturally for studies using the inverse scattering transform to particular nonlinear wave equations. When applied to the Korteweg-deVries equation, for example, one finds that the approach can be extended to arbitrarily high order. There are several advantages for using multidimensional Fourier methods over ordinary Fourier analysis: (1) fully nonlinear wave dynamics can be studied, (2) solitons become a natural component in the theory and correspond to the diagonal elements of the "Riemann matrix", (3) nonlinear interactions are accounted for by the off-diagonal elements of this matrix, (4) nonlinear acoustic modes are found to also have an (albeit static) solitonic component. These surprising results lead to new interpretations of acoustic waves propagating in the presence of a nonlinear internal wave field. One of the most important results is the implication that new nonlinear filtering techniques allow for the spectral decomposition of both the internal wave field and of the acoustic field. With regard to the acoustic field, one can foresee the application of the method to the observations of phenomena in the "hidden zones", where one would normally conclude that acoustic wave propagation does not occur.

  5. An all fiber-optic sensor for surface acoustic wave measurements

    NASA Technical Reports Server (NTRS)

    Bowers, J. E.; Jungerman, R. L.; Khuri-Yakub, B. T.; Kino, G. S.

    1983-01-01

    A surface acoustic wave (SAW) sensor constructed from single-mode fiber-optic components is described. An analysis of reciprocal and nonreciprocal modes of operation of the sensor is presented. Results from measurements on a variety of SAW devices illustrate the use of the sensor. The amplitude sensitivity is 0.0003 A for an integration time of 0.1 s.

  6. Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey N.; Uralov, Arkadiy M.

    2016-05-01

    Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.

  7. Dust ion acoustic solitary waves in a collisional dusty plasma with dust grains having Gaussian distribution

    SciTech Connect

    Maitra, Sarit; Banerjee, Gadadhar

    2014-11-15

    The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented.

  8. Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows

    SciTech Connect

    Uchava, E. S.; Shergelashvili, B. M.; Tevzadze, A. G.; Poedts, S.

    2014-08-15

    We present a linear stability analysis of the perturbation modes in anisotropic magnetohydrodynamic (MHD) flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model that takes into account not only the effect of pressure anisotropy but also the effect of anisotropic heat fluxes. In this model, the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also important in astrophysical environments, where it will limit the maximal value of magnetic field that a low density ionized anisotropic flow can sustain.

  9. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    SciTech Connect

    Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen

    2015-10-28

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.

  10. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  11. Acoustic clouds: Standing sound waves around a black hole analogue

    NASA Astrophysics Data System (ADS)

    Benone, Carolina L.; Crispino, Luís C. B.; Herdeiro, Carlos; Radu, Eugen

    2015-05-01

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  12. Nonextensive dust-acoustic solitary waves

    SciTech Connect

    Tribeche, M.; Merriche, A.

    2011-03-15

    The seminal paper of Mamun et al. [Phys. Plasmas 3, 702 (1996)] is revisited within the theoretical framework of the Tsallis statistical mechanics. The nonextensivity may originate from the correlation or long-range interactions in the dusty plasma. It is found that depending on whether the nonextensive parameter q is positive or negative, the dust-acoustic (DA) soliton exhibits compression for q<0 and rarefaction for q>0. The lower limit of the Mach number for the existence of DA solitary waves is greater (smaller) than its Maxwellian counterpart in the case of superextensivity (subextensivity).

  13. Twisted dust acoustic waves in dusty plasmas

    SciTech Connect

    Shukla, P. K.

    2012-08-15

    We examine linear dust acoustic waves (DAWs) in a dusty plasma with strongly correlated dust grains, and discuss possibility of a twisted DA vortex beam carrying orbital angular momentum (OAM). For our purposes, we use the Boltzmann distributed electron and ion density perturbations, the dust continuity and generalized viscoelastic dust momentum equations, and Poisson's equation to obtain a dispersion relation for the modified DAWs. The effects of the polarization force, strong dust couplings, and dust charge fluctuations on the DAW spectrum are examined. Furthermore, we demonstrate that the DAW can propagate as a twisted vortex beam carrying OAM. A twisted DA vortex structure can trap and transport dust particles in dusty plasmas.

  14. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  15. Generation of inhomogeneous bulk plane acoustic modes by laser-induced thermoelastic grating near mechanically free surface

    SciTech Connect

    Gusev, Vitalyi

    2010-06-15

    The detailed theoretical description of how picosecond plane shear acoustic transients can be excited by ultrafast lasers in isotropic media is presented. The processes leading to excitation of inhomogeneous plane bulk compression/dilatation (c/d) and shear acoustic modes by transient laser interference pattern at a mechanically free surface of an elastically isotropic medium are analyzed. Both pure modes are dispersive. The modes can be evanescent or propagating. The mechanical displacement vector in both propagating modes is oriented obliquely to the mode propagation direction. Consequently the c/d mode is not purely longitudinal and shear mode is not purely transversal. Each of the propagating modes has a plane wave front parallel to the surface and the amplitude harmonically modulated along the surface. Inhomogeneous shear acoustic mode cannot be generated in isotropic medium by thermal expansion and is excited by mode conversion of laser-generated inhomogeneous c/d acoustic mode incident on the surface. The spectral transformation function of the laser radiation conversion into shear modes has one of its maxima at a frequency corresponding to transmission from laser-induced generation of propagating to laser-induced generation of evanescent c/d modes. At this particular frequency the shear waves are due to their Cherenkov emission by bulk longitudinal acoustic waves skimming along the laser-irradiated surface, which are generated by laser-induced gratings synchronously. There exists an interval of frequencies where only shear acoustic modes are launched in the material by laser-induced grating, while c/d modes generated by thermoelastic optoacoustic conversion are evanescent. Propagating picosecond plane shear acoustic fronts excited by interference pattern of fs-ps laser pulses can be applied for the determination of the shear rigidity by optoacoustic echoes diagnostics of thin films and coatings. Theoretical predictions are correlated with available results

  16. Microfluidic plug steering using surface acoustic waves.

    PubMed

    Sesen, Muhsincan; Alan, Tuncay; Neild, Adrian

    2015-07-21

    Digital microfluidic systems, in which isolated droplets are dispersed in a carrier medium, offer a method to study biological assays and chemical reactions highly efficiently. However, it's challenging to manipulate these droplets in closed microchannel devices. Here, we present a method to selectively steer plugs (droplets with diameters larger than the channel's width) at a specially designed Y-junction within a microfluidic chip. The method makes use of surface acoustic waves (SAWs) impinging on a multiphase interface in which an acoustic contrast is present. As a result, the liquid-liquid interface is subjected to acoustic radiation forces. These forces are exploited to steer plugs into selected branches of the Y-junction. Furthermore, the input power can be finely tuned to split a plug into two uneven plugs. The steering of plugs as a whole, based on plug volume and velocity is thoroughly characterized. The results indicate that there is a threshold plug volume after which the steering requires elevated electrical energy input. This plug steering method can easily be integrated to existing lab-on-a-chip devices and it offers a robust and active plug manipulation technique in closed microchannels.

  17. Microfluidic plug steering using surface acoustic waves.

    PubMed

    Sesen, Muhsincan; Alan, Tuncay; Neild, Adrian

    2015-07-21

    Digital microfluidic systems, in which isolated droplets are dispersed in a carrier medium, offer a method to study biological assays and chemical reactions highly efficiently. However, it's challenging to manipulate these droplets in closed microchannel devices. Here, we present a method to selectively steer plugs (droplets with diameters larger than the channel's width) at a specially designed Y-junction within a microfluidic chip. The method makes use of surface acoustic waves (SAWs) impinging on a multiphase interface in which an acoustic contrast is present. As a result, the liquid-liquid interface is subjected to acoustic radiation forces. These forces are exploited to steer plugs into selected branches of the Y-junction. Furthermore, the input power can be finely tuned to split a plug into two uneven plugs. The steering of plugs as a whole, based on plug volume and velocity is thoroughly characterized. The results indicate that there is a threshold plug volume after which the steering requires elevated electrical energy input. This plug steering method can easily be integrated to existing lab-on-a-chip devices and it offers a robust and active plug manipulation technique in closed microchannels. PMID:26079216

  18. Porous silicon bulk acoustic wave resonator with integrated transducer

    PubMed Central

    2012-01-01

    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697

  19. Interaction of surface and bulk acoustic waves with a two-dimensional semimetal

    SciTech Connect

    Kovalev, V. M. Chaplik, A. V.

    2015-02-15

    The interaction of a surface elastic Rayleigh wave with an electron-hole plasma in a two-dimensional semimetal has been theoretically studied as determined by the deformation potential and piezoelectric mechanisms. Dispersion equations describing the coupled plasmon-acoustic modes for both types of interaction are derived, and damping of the Rayleigh wave is calculated. The damping of the acoustic and optical plasmon modes, which is related to the sound emission by plasma oscillations into the substrate volume, is calculated and it is shown that this sound emission is predominantly determined by the acoustic plasmon mode in the case of a deformation potential mechanism and by the optical mode in the case of a piezoelectric mechanism.

  20. Dust Acoustic Mode Manifestations in Earth's Dusty Ionosphere

    SciTech Connect

    Kopnin, S.I.; Popel, S.I.

    2005-10-31

    Dust acoustic mode manifestations in the dusty ionosphere are studied. The reason for an appearance of the low-frequency radio noises associated with such meteor fluxes as Perseids, Orionids, Leonids, and Gemenids is determined.

  1. Novel limiting circle theory in acoustic wave scattering and absorption

    NASA Astrophysics Data System (ADS)

    Huang, Changzheng

    Wave scattering theory is the basis for many key technologies that have important military and commercial applications. The familiar examples are radar, sonar, and various ultrasound instruments commonly used in remote sensing, target identification, non-destructive evaluation, medical diagnosis, and many other areas. Their mathematical model involves the solution of the so- called inverse scattering problem where an incident wave is used to probe a remote or inaccessible object. From the scattered field measurement, the shape and/or the material composition of the object can be determined. A new wave scattering theory, termed limiting circle theory (LCT), has been developed in this dissertation based on a novel approach of decomposing the wave scattering matrix. LCT has rigorously proved that the scattered wave field from any penetrable object (of cylinder and sphere geometries) is composed of three contributions: a rigid background, a soft background, and a pure resonance. This is a significant modification to the existing resonance scattering theory (RST) which states that the scattered field is made up of only two components: a proper background (either rigid or soft), and a pure resonance. LCT formalism led to the discovery of the limiting circle patterns associated with all normal modes or partial waves. These patterns provide a clear understanding of the resonance behavior such as the resonance period and the resonance intensity. The analytical LCT approach could also be the key to solving the background problems for shell structures that have remained unsolved for many years in acoustics.

  2. Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field

    SciTech Connect

    Zhou, Deng

    2015-09-15

    The dispersion relation of geodesic acoustic modes in the tokamak plasma with an equilibrium radial electric field is derived and analyzed. Multiple branches of eigenmodes have been found, similar to the result given by the fluid model with a poloidal mass flow. Frequencies and damping rates of both the geodesic acoustic mode and the sound wave increase with respect to the strength of radial electric field, while the frequency and the damping rate of the lower frequency branch slightly decrease. Possible connection to the experimental observation is discussed.

  3. A conductive liquid-based surface acoustic wave device.

    PubMed

    Nam, Jeonghun; Lim, Chae Seung

    2016-10-01

    Surface acoustic wave-based microfluidic devices are popular for fluid and particle manipulation because of their noninvasiveness, low energy consumption, and easy integration with other systems. However, they have been limited by the use of patterned metal electrodes on a piezoelectric substrate, which requires expensive and complicated fabrication processes. Herein, we show a simpler and more cost-effective method for generating surface acoustic waves using eutectic gallium indium as a conductive liquid which can replace conventional patterned metal electrodes. We also demonstrate the comparable performance for acoustic streaming and mixing using conductive liquid-based surface acoustic wave devices. PMID:27528442

  4. A conductive liquid-based surface acoustic wave device.

    PubMed

    Nam, Jeonghun; Lim, Chae Seung

    2016-10-01

    Surface acoustic wave-based microfluidic devices are popular for fluid and particle manipulation because of their noninvasiveness, low energy consumption, and easy integration with other systems. However, they have been limited by the use of patterned metal electrodes on a piezoelectric substrate, which requires expensive and complicated fabrication processes. Herein, we show a simpler and more cost-effective method for generating surface acoustic waves using eutectic gallium indium as a conductive liquid which can replace conventional patterned metal electrodes. We also demonstrate the comparable performance for acoustic streaming and mixing using conductive liquid-based surface acoustic wave devices.

  5. Wave envelopes method for description of nonlinear acoustic wave propagation.

    PubMed

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  6. Wave envelopes method for description of nonlinear acoustic wave propagation.

    PubMed

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  7. Wave Forced Normal Modes on Fringing Reefs

    NASA Astrophysics Data System (ADS)

    Pequignet, A. N.; Becker, J. M.; Merrifield, M. M.; Aucan, J.

    2008-12-01

    In an effort to assess wave-driven coastal inundation at the shoreline of fringing reefs, pressure and current observations were collected at reefs on Guam (Ipan) and Oahu, Hawaii (Mokuleia) as part of the PILOT (Pacific Island Land-Ocean Typhoon) experiment. Similar to dissipative sandy beaches, nearshore surface elevation at both reefs is dominated by energy in the infragravity frequency band. Coherent infragravity oscillations across the reef tend to occur at discrete frequencies and with standing wave cross-shore structures that are consistent with open basin resonant modes. The modes are forced by swell wave groups, similar to a time-dependent setup. The resonant modes are most apparent during energetic wave events, in part because wave setup over the reef increases the low mode resonant frequencies to a range that is conducive to wave group forcing. Evidence of the excitation of resonant modes during tropical storm Man-Yi at Ipan, Guam is presented.

  8. Excitation of nonlinear ion acoustic waves in CH plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Xiao, C. Z.; Wang, Q.; He, X. T.

    2016-08-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number k λ D e increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of T i / T e < 0.2 in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with k λ D e increasing. When k λ D e is not large, such as k λ D e = 0.1 , 0.3 , 0.5 , the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when k λ D e is large, such as k λ D e = 0.7 , the linear frequency cannot be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.

  9. Wave theory of turbulence in compressible media (acoustic theory of turbulence)

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    The generation and the transmission of sound in turbulent flows are treated as one of the several aspects of wave propagation in turbulence. Fluid fluctuations are decomposed into orthogonal Fourier components, with five interacting modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. Wave interactions, governed by the inhomogeneous and nonlinear terms of the perturbed Navier-Stokes equations, are modeled by random functions which give the rates of change of wave amplitudes equal to the averaged interaction terms. The statistical framework adopted is a quantum-like formulation in terms of complex distribution functions. The spatial probability distributions are given by the squares of the absolute values of the complex characteristic functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation.

  10. Prediction of the thermal sensitivity of surface acoustic waves excited under a periodic grating of electrodes.

    PubMed

    Pastureaud, Thomas; Lardat, Raphael; Chamaly, Stéphane; Pénavaire, Louis; Ballandras, Sylvain

    2005-08-01

    The prediction of the temperature sensitivity of surface acoustic wave (SAW) devices still requires improvement because the nature of the implemented surface modes and the devices' complexity strongly change from the early basic Rayleigh-wave-based devices. To address this problem, a theoretical analysis and a numerical tool have been developed to predict the thermal dispersion of general electro-acoustic devices. The proposed model accounts for the electrode contribution to the frequency-temperature law. The computed thermal sensitivities are compared to experimental results for different kinds of substrates and waves.

  11. Mode tomography using signals from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX)

    NASA Astrophysics Data System (ADS)

    Chandrayadula, Tarun K.

    Ocean acoustic tomography uses acoustic signals to infer the environmental properties of the ocean. The procedure for tomography consists of low frequency acoustic transmissions at mid-water depths to receivers located at hundreds of kilometer ranges. The arrival times of the signal at the receiver are then inverted for the sound speed of the background environment. Using this principle, experiments such as the 2004 Long Range Ocean Acoustic Propagation EXperiment have used acoustic signals recorded across Vertical Line Arrays (VLAs) to infer the Sound Speed Profile (SSP) across depth. The acoustic signals across the VLAs can be represented in terms of orthonormal basis functions called modes. The lower modes of the basis set concentrated around mid-water propagate longer distances and can be inverted for mesoscale effects such as currents and eddies. In spite of these advantages, mode tomography has received less attention. One of the important reasons for this is that internal waves in the ocean cause significant amplitude and travel time fluctuations in the modes. The amplitude and travel time fluctuations cause errors in travel time estimates. The absence of a statistical model and the lack of signal processing techniques for internal wave effects have precluded the modes from being used in tomographic inversions. This thesis estimates a statistical model for modes affected by internal waves and then uses the estimated model to design appropriate signal processing methods to obtain tomographic observables for the low modes. In order to estimate a statistical model, this thesis uses both the LOAPEX signals and also numerical simulations. The statistical model describes the amplitude and phase coherence across different frequencies for modes at different ranges. The model suggests that Matched Subspace Detectors (MSDs) based on the amplitude statistics of the modes are the optimum detectors to make travel time estimates for modes up to 250 km. The mean of the

  12. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  13. Evolution of nonlinear ion-acoustic solitary wave propagation in rotating plasma

    SciTech Connect

    Das, G. C.; Nag, Apratim

    2006-08-15

    A simple unmagnetized plasma rotating around an axis at an angle {theta} with the propagation direction of the acoustic mode has been taken. The nonlinear wave mode has been derived as an equivalent Sagdeev potential equation. A special procedure, known as the tanh method, has been developed to study the nonlinear wave propagation in plasma dynamics. Further, under small amplitude approximation, the nonlinear plasma acoustic mode has been exploited to study the evolution of soliton propagation in the plasma. The main emphasis has been given to the interaction of Coriolis force on the changes of coherent structure of the soliton. The solitary wave solution finds the different nature of solitons called compressive and rarefactive solitons as well as its explosions or collapses along with soliton dynamics and these have been showing exciting observations in exhibiting a narrow wave packet with the generation of high electric pressure and the growth of high energy which, in turn, yields the phenomena of radiating soliton in dynamics.

  14. A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).

  15. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  16. Spatiotemporal mode structure of nonlinearly coupled drift wave modes

    SciTech Connect

    Brandt, Christian; Grulke, Olaf; Klinger, Thomas; Negrete, Jose Jr.; Bousselin, Guillaume; Brochard, Frederic; Bonhomme, Gerard; Oldenbuerger, Stella

    2011-11-15

    This paper presents full cross-section measurements of drift waves in the linear magnetized plasma of the Mirabelle device. Drift wave modes are studied in regimes of weakly developed turbulence. The drift wave modes develop azimuthal space-time structures of plasma density, plasma potential, and visible light fluctuations. A fast camera diagnostic is used to record visible light fluctuations of the plasma column in an azimuthal cross section with a temporal resolution of 10 {mu}s corresponding approximately to 10% of the typical drift wave period. Mode coupling and drift wave dispersion are studied by spatiotemporal Fourier decomposition of the camera frames. The observed coupling between modes is compared to calculations of nonlinearly coupled oscillators described by the Kuramoto model.

  17. Wave-wave interactions and deep ocean acoustics.

    PubMed

    Guralnik, Z; Bourdelais, J; Zabalgogeazcoa, X; Farrell, W E

    2013-10-01

    Deep ocean acoustics, in the absence of shipping and wildlife, is driven by surface processes. Best understood is the signal generated by non-linear surface wave interactions, the Longuet-Higgins mechanism, which dominates from 0.1 to 10 Hz, and may be significant for another octave. For this source, the spectral matrix of pressure and vector velocity is derived for points near the bottom of a deep ocean resting on an elastic half-space. In the absence of a bottom, the ratios of matrix elements are universal constants. Bottom effects vitiate the usual "standing wave approximation," but a weaker form of the approximation is shown to hold, and this is used for numerical calculations. In the weak standing wave approximation, the ratios of matrix elements are independent of the surface wave spectrum, but depend on frequency and the propagation environment. Data from the Hawaii-2 Observatory are in excellent accord with the theory for frequencies between 0.1 and 1 Hz, less so at higher frequencies. Insensitivity of the spectral ratios to wind, and presumably waves, is indeed observed in the data.

  18. Acoustic wave characterization of silicon phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Feng, Duan; Jiang, Wanli; Xu, Dehui; Xiong, Bin; Wang, Yuelin

    2015-08-01

    In this paper, characterization of megahertz Lamb waves in a silicon phononic crystal based asymmetry filter by laser Doppler vibrometer is demonstrated. The acoustic power from a piezoelectric substrate was transmitted into the silicon superstrate by fluid coupling method, and measured results show that the displacement amplitude of the acoustic wave in the superstrate was approximately one fifth of that in the piezoelectric substrate. Effect of the phononic bandgap on the propagation of Lamb wave in the silicon superstrate is also measured, and the result shows that the phononic crystal structure could reflect part of the acoustic waves back.

  19. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  20. Raising Photoemission Efficiency with Surface Acoustic Waves

    SciTech Connect

    A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

    2012-07-01

    We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.

  1. Perturbations From Ducts on the Modes of Acoustic Thermometers

    PubMed Central

    Gillis, K. A.; Lin, H.; Moldover, M. R.

    2009-01-01

    We examine the perturbations of the modes of an acoustic thermometer caused by circular ducts used either for gas flow or as acoustic waveguides coupled to remote transducers. We calculate the acoustic admittance of circular ducts using a model based on transmission line theory. The admittance is used to calculate the perturbations to the resonance frequencies and half-widths of the modes of spherical and cylindrical acoustic resonators as functions of the duct’s radius, length, and the locations of the transducers along the duct's length. To verify the model, we measured the complex acoustic admittances of a series of circular tubes as a function of length between 200 Hz and 10 kHz using a three-port acoustic coupler. The absolute magnitude of the specific acoustic admittance is approximately one. For a 1.4 mm inside-diameter, 1.4 m long tube, the root mean square difference between the measured and modeled specific admittances (both real and imaginary parts) over this frequency range was 0.018. We conclude by presenting design considerations for ducts connected to acoustic thermometers. PMID:27504227

  2. Field theory for zero sound and ion acoustic wave in astrophysical matter

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2016-02-01

    We set up a field theory model to describe the longitudinal low-energy modes in high density matter present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  3. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    SciTech Connect

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  4. Optomechanical characterization of acoustic modes in a mirror

    SciTech Connect

    Briant, T.; Cohadon, P.-F.; Heidmann, A.; Pinard, M.

    2003-09-01

    We present an experimental study of the internal mechanical vibration modes of a mirror. We determine the frequency repartition of acoustic resonances via a spectral analysis of the Brownian motion of the mirror, and the spatial profile of the acoustic modes by monitoring their mechanical response to a resonant radiation pressure force swept across the mirror surface. We have applied this technique to mirrors with cylindrical and plano-convex geometries, and compared the experimental results to theoretical predictions. We have in particular observed the Gaussian modes predicted for plano-convex mirrors.

  5. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  6. S-Wave Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2010-01-01

    Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.

  7. Dust-acoustic shock waves in an electron depleted nonextensive dusty plasma

    NASA Astrophysics Data System (ADS)

    Ferdousi, M.; Miah, M. R.; Sultana, S.; Mamun, A. A.

    2015-12-01

    A theoretical study of dust-acoustic (DA) shock waves has been carried out in an unmagnetized electron depleted dusty plasma containing inertial negatively charged dust grains and nonextensive positively charged ions. The normal mode analysis is used to examine the linear properties of DA waves. The reductive perturbation technique is employed in order to derive the nonlinear Burgers equation. The basic features (viz. polarity, amplitude, width, etc.) of the DA shock waves are investigated. Both polarity (positive and negative potential) shock waves are found to exists in the plasma under consideration in this manuscript. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas.

  8. Vehicle exhaust gas chemical sensors using acoustic wave resonators

    SciTech Connect

    Cernosek, R.W.; Small, J.H.; Sawyer, P.S.; Bigbie, J.R.; Anderson, M.T.

    1998-03-01

    Under Sandia`s Laboratory Directed Research and Development (LDRD) program, novel acoustic wave-based sensors were explored for detecting gaseous chemical species in vehicle exhaust streams. The need exists for on-line, real-time monitors to continuously analyze the toxic exhaust gases -- nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons (HC) -- for determining catalytic converter efficiency, documenting compliance to emission regulations, and optimizing engine performance through feedback control. In this project, the authors adapted existing acoustic wave chemical sensor technology to the high temperature environment and investigated new robust sensor materials for improving gas detection sensitivity and selectivity. This report describes one new sensor that has potential use as an exhaust stream residual hydrocarbon monitor. The sensor consists of a thickness shear mode (TSM) quartz resonator coated with a thin mesoporous silica layer ion-exchanged with palladium ions. When operated at temperatures above 300 C, the high surface area film catalyzes the combustion of the hydrocarbon vapors in the presence of oxygen. The sensor acts as a calorimeter as the exothermic reaction slightly increases the temperature, stressing the sensor surface, and producing a measurable deviation in the resonator frequency. Sensitivities as high as 0.44 (ppm-{Delta}f) and (ppm-gas) have been measured for propylene gas, with minimum detectable signals of < 50 ppm of propylene at 500 C.

  9. Direct experimental investigations of acoustic modes guided by a solid{endash}solid interface using optical interferometry

    SciTech Connect

    Matteie, C.; Jia, X.; Quentin, G.

    1997-09-01

    This paper presents direct field measurements of acoustic modes guided by the interface between two transparent solids. The measurement technique is based on the acousto-optical interaction inside the solid between the acoustic field and the probe laser beam of an interferometer. The main advantage of the method is its ability to measure acoustic strain fields in areas of difficult access with the classic detection methods. Moreover, it gives complete information about the dilatation strain field inside the solid, e.g., amplitude and phase. The propagation of a real velocity mode (Stoneley wave) is first illustrated. Then the situation of complex velocity modes is investigated for a Plexiglas{endash}fused quartz slip interface. This material combination supports two possible interface modes theoretically. These modes are simultaneously observed and the differences between their behavior are measured. {copyright} {ital 1997 Acoustical Society of America.}

  10. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  11. Phase mixing and nonlinearity in geodesic acoustic modes

    SciTech Connect

    Hung, C. P.; Hassam, A. B.

    2013-09-15

    Phase mixing and nonlinear resonance detuning of geodesic acoustic modes in a tokamak plasma are examined. Geodesic acoustic modes (GAMs) are tokamak normal modes with oscillations in poloidal flow constrained to lie within flux surfaces. The mode frequency is sonic, dependent on the local flux surface temperature. Consequently, mode oscillations between flux surfaces get rapidly out of phase, resulting in enhanced damping from the phase mixing. Damping rates are shown to scale as the negative 1/3 power of the large viscous Reynolds number. The effect of convective nonlinearities on the normal modes is also studied. The system of nonlinear GAM equations is shown to resemble the Duffing oscillator, which predicts resonance detuning of the oscillator. Resonant amplification is shown to be suppressed nonlinearly. All analyses are verified by numerical simulation. The findings are applied to a recently proposed GAM excitation experiment on the DIII-D tokamak.

  12. Phase mixing and nonlinearity in geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Hung, C. P.; Hassam, A. B.

    2013-09-01

    Phase mixing and nonlinear resonance detuning of geodesic acoustic modes in a tokamak plasma are examined. Geodesic acoustic modes (GAMs) are tokamak normal modes with oscillations in poloidal flow constrained to lie within flux surfaces. The mode frequency is sonic, dependent on the local flux surface temperature. Consequently, mode oscillations between flux surfaces get rapidly out of phase, resulting in enhanced damping from the phase mixing. Damping rates are shown to scale as the negative 1/3 power of the large viscous Reynolds number. The effect of convective nonlinearities on the normal modes is also studied. The system of nonlinear GAM equations is shown to resemble the Duffing oscillator, which predicts resonance detuning of the oscillator. Resonant amplification is shown to be suppressed nonlinearly. All analyses are verified by numerical simulation. The findings are applied to a recently proposed GAM excitation experiment on the DIII-D tokamak.

  13. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore » disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  14. Irregular Reflection of Acoustical Shock Waves and von Neumann Paradox

    NASA Astrophysics Data System (ADS)

    Baskar, S.; Coulouvrat, F.; Marchiano, R.

    2006-05-01

    We investigate the reflection of weak acoustical shock waves grazing over a rigid surface. We define a critical parameter and examine the different types of reflection structure depending on this parameter. The study of the step shock is then extended to both N-waves and periodic saw-tooth waves, which are more realistic from an acoustical point of view. The numerical simulations reveal new reflection structures for these two waves which are not observed for step shocks. The results of the model are finally compared for periodic saw-tooth waves to ultrasonic experiments.

  15. Surface acoustic wave opto-mechanical oscillator and frequency comb generator

    NASA Astrophysics Data System (ADS)

    Savchenkov, A. A.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2011-09-01

    We report on realization of an efficient triply resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyperparametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb by observing the modulation of the light escaping the resonator.

  16. Evidence for acoustic-wave coupling in the magnetostatic-wave-optical interaction

    NASA Astrophysics Data System (ADS)

    Bilaniuk, Nykolai; Stancil, Daniel D.

    1990-05-01

    We have observed the collinear interaction between optical guided modes and magnetostatic forward-volume waves in a film of yttrium iron garnet (YIG) with microwave frequencies between 500 MHz and 12 GHz. The interaction occurred in one of two 5.3-μm films of YIG on either side of a 470-μm substrate of gadolinium gallium garnet (GGG). The intensity of the diffracted optical beam was measured as the microwave frequency was swept about the center frequency, with magnetic bias field held constant. We refer to this measurement as the interaction passband. Below 1 GHz, we observed absorption notches in the interaction passband with a regular period of 3.7 MHz. These are interpreted as evidence of coupling to transverse acoustic resonances through the sample thickness. This spacing agrees with a simple calculation based on transverse acoustic velocities in YIG of 3843 m/s and GGG of 3568 m/s.

  17. Acoustic wave absorption as a probe of dynamical geometrical response of fractional quantum Hall liquids

    NASA Astrophysics Data System (ADS)

    Yang, Kun

    2016-04-01

    We show that an acoustic crystalline wave gives rise to an effect similar to that of a gravitational wave to an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime, this allows for experimental study of its intra-Landau level dynamical response in the long-wavelength limit. To study such response we generalize Haldane's geometrical description of fractional quantum Hall states to situations where the external metric is time dependent. We show that such time-dependent metric (generated by acoustic wave) couples to collective modes of the system, including a quadrapolar mode at long wavelength, and magnetoroton at finite wavelength. Energies of these modes can be revealed in spectroscopic measurements, controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic response.

  18. Creating and studying ion acoustic waves in ultracold neutral plasmas

    SciTech Connect

    Killian, T. C.; Castro, J.; McQuillen, P.; O'Neil, T. M.

    2012-05-15

    We excite ion acoustic waves in ultracold neutral plasmas by imprinting density modulations during plasma creation. Laser-induced fluorescence is used to observe the density and velocity perturbations created by the waves. The effect of expansion of the plasma on the evolution of the wave amplitude is described by treating the wave action as an adiabatic invariant. After accounting for this effect, we determine that the waves are weakly damped, but the damping is significantly faster than expected for Landau damping.

  19. Ultrafast microfluidics using surface acoustic waves

    PubMed Central

    Yeo, Leslie Y.; Friend, James R.

    2009-01-01

    We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions

  20. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    DOEpatents

    Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  1. Waveform inversion of acoustic waves for explosion yield estimation

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A.

    2016-07-01

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<˜30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  2. False Paradoxes of Superposition in Electric and Acoustic Waves.

    ERIC Educational Resources Information Center

    Levine, Richard C.

    1980-01-01

    Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)

  3. Spinning mode acoustic radiation from the flight inlet

    NASA Technical Reports Server (NTRS)

    Moss, W. F.

    1983-01-01

    A mathematical model was developed for spinning mode acoustic radiation from a thick wall duct without flow. This model is based on a series of experiments (with and without flow). A nearly pure azimuthal spinning mode was isolated and then reflection coefficients and far field pressure (amplitude and phase) were measured. In our model the governing boundary value problem for the Helmholtz equation is first converted into an integral equation for the unknown acoustic pressure over a disk, S1, near the mouth of the duct and over the exterior surface, S2, of the duct. Assuming a pure azimuthal mode excitation, the azimuthal dependence is integrated out which yields an integral equation over the generator C1 of S1 and the generator C2 of S2. The sound pressure on C1 was approximated by a truncated modal expansion of the interior acoustic pressure. Piecewise linear spline approximation on C2 was used.

  4. Isocurvature modes and Baryon Acoustic Oscillations

    SciTech Connect

    Mangilli, Anna; Verde, Licia; Beltran, Maria E-mail: licia.verde@icc.ub.edu

    2010-10-01

    The measurement of Baryonic Acoustic Oscillations from galaxy surveys is well known to be a robust and powerful tool to constrain dark energy. This method relies on the knowledge of the size of the acoustic horizon at radiation drag derived from Cosmic Microwave Background Anisotropy measurements. In this paper we quantify the effect of non-standard initial conditions in the form of an isocurvature component on the determination of dark energy parameters from future BAO surveys. In particular, if there is an isocurvature component (at a level still allowed by present data) but it is ignored in the CMB analysis, the sound horizon and cosmological parameters determination is biased, and, as a consequence, future surveys may incorrectly suggest deviations from a cosmological constant. In order to recover an unbiased determination of the sound horizon and dark energy parameters, a component of isocurvature perturbations must be included in the model when analyzing CMB data. Fortunately, doing so does not increase parameter errors significantly.

  5. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  6. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  7. Anisotropic Swirling Surface Acoustic Waves from Inverse Filtering for On-Chip Generation of Acoustic Vortices

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Thomas, Jean-Louis; Charron, Eric; Bussonnière, Adrien; Bou Matar, Olivier; Baudoin, Michael

    2015-09-01

    From radio-electronics signal analysis to biological sample actuation, surface acoustic waves (SAWs) are involved in a multitude of modern devices. However, only the most simple standing or progressive waves such as plane and focused waves have been explored so far. In this paper, we expand the SAW toolbox with a wave family named "swirling surface acoustic waves" which are the 2D anisotropic analogue of bulk acoustic vortices. Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. After the rigorous mathematical definition of these waves, we synthesize them experimentally through the inverse filtering technique revisited for surface waves. For this purpose, we design a setup combining arrays of interdigitated transducers and a multichannel electronic that enables one to synthesize any prescribed wave field compatible with the anisotropy of the substrate in a region called the "acoustic scene." This work opens prospects for the design of integrated acoustic vortex generators for on-chip selective acoustic tweezing.

  8. High-temperature bulk acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  9. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    PubMed Central

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael

    2016-01-01

    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  10. Effect of strong electrostatic interactions of microparticles on the dust acoustic waves

    SciTech Connect

    Yaroshenko, V. V.; Nosenko, V.; Morfill, G. E.

    2010-10-15

    It is shown that strong electrostatic interaction of highly charged microparticles (which is common for many laboratory experiments) can significantly modify the behavior of dust acoustic waves in a complex plasma giving rise to their transition, at large wave numbers, into a new regime similar to the dust thermal mode. Examples of the dispersion curves are calculated for realistic complex plasma parameters and a comparison with a recent experiment is presented. Excellent agreement is found between the theory and the experiment.

  11. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves

    PubMed Central

    Lin, Tzy-Rong; Lin, Chiang-Hsin; Hsu, Jin-Chen

    2015-01-01

    We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided hybridization of a highly confined plasmonic-photonic mode with a high quality factor and deep subwavelength mode volume. Efficient photon-phonon interaction occurs in the air gap through the SAW perturbation of the metal surface, strongly coupling the optical and acoustic frequencies. As a result, a large modulation bandwidth and optical resonance wavelength shift for the crystal nanocavity are demonstrated at telecommunication wavelengths. The proposed SAW-based modulation within the hybrid plasmonic-photonic crystal nanocavities beyond the diffraction limit provides opportunities for various applications in enhanced sound-light interaction and fast coherent acoustic control of optomechanical devices. PMID:26346448

  12. Nonlinear behavior of acoustic waves in combustion chambers

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1975-01-01

    The nonlinear growth and limiting amplitude of acoustic waves in a combustion chamber are considered. A formal framework is provided within which practical problems can be treated with a minimum of effort and expense. The general conservation equations were expanded in two small parameters, one characterizing the mean flow field and one measuring the amplitude of oscillations, and then combined to yield a nonlinear inhomogeneous wave equation. The unsteady pressure and velocity fields were expressed as syntheses of the normal modes of the chamber, but with unknown time-varying amplitudes. This procedure yielded a representation of a general unsteady field as a system of coupled nonlinear oscillators. The system of nonlinear equations was treated by the method of averaging to produce a set of coupled nonlinear first order differential equations for the amplitudes and phases of the modes. The analysis is applicable to any combustion chamber. The most interesting applications are probably to solid rockets, liquid rockets, or thrust augmentors on jet engines.

  13. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    NASA Astrophysics Data System (ADS)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  14. Nonlinear propagation and control of acoustic waves in phononic superlattices

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.

    2016-05-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"

  15. Whistler mode waves in the Jovian magnetosheath

    NASA Technical Reports Server (NTRS)

    Lin, Naiguo; Kellogg, P. J.; Thiessen, J. P.; Lengyel-Frey, D.; Tsurutani, B. T.; Phillips, J. L.

    1994-01-01

    During the Ulysses flyby of Jupiter in February 1992, the spacecraft traversed the Jovian magnetosheath for a few hours during the inbound pass and for aa few days during the outbound pass. Burstlike electomagnetic waves at frequencies of approximately 0.1-0.4 of the local electron cyclotron frequency have been observed by the Unified Radio and Plasma Wave (URAP) experiement. The waves were more often observed in the regions which were probably the outer or the middle magnetosheath, especially near the bow shock, and rarely seen in the magnetosphere/magnetosheath boundary layer. The propagation angles of the waves are estimated by comparing the measurements of the wave electric and magnetic fields in the spacecraft spin plane with the corresponding values calculated using the cold plasma dispersion relation under local field and plasma conditions. It is found that the waves propagate obliquely with wave angles between approximately 30 deg and 50 deg. These waves are likely to be the whistler mode waves which are excited by suprathermal electrons with a few hundred eV and a slight anisotropy (T(sub perp)/T(sub parallel) approximately 1.1-1.5). They are probably similar in nature to the lion roars observed in the Earth's magnetosheath. Signature of coupling between the mirror and the whistler mode have also been observed. The plasma conditions which favor the excitation of the whistler mode instability during the wave events exists as observed by the plasma experiement of Ulysses.

  16. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.

    PubMed

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-15

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  17. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.

    PubMed

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-15

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation. PMID:27472114

  18. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-01

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A0) either when using a symmetric (S0) or antisymmetric (A0) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  19. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  20. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  1. Surface acoustic wave devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  2. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  3. Probing thermomechanics at the nanoscale: impulsively excited pseudosurface acoustic waves in hypersonic phononic crystals.

    PubMed

    Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco

    2011-10-12

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths.

  4. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  5. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-01

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing.

  6. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    PubMed Central

    Rocha-Gaso, María-Isabel; March-Iborra, Carmen; Montoya-Baides, Ángel; Arnau-Vives, Antonio

    2009-01-01

    This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), Surface Transverse Wave (STW), Love Wave (LW), Flexural Plate Wave (FPW), Shear Horizontal Acoustic Plate Mode (SH-APM) and Layered Guided Acoustic Plate Mode (LG-APM) - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications. PMID:22346725

  7. Validation of an analytical compressed elastic tube model for acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Van Hirtum, A.; Blandin, R.; Pelorson, X.

    2015-12-01

    Acoustic wave propagation through a compressed elastic tube is a recurrent problem in engineering. Compression of the tube is achieved by pinching it between two parallel bars so that the pinching effort as well as the longitudinal position of pinching can be controlled. A stadium-based geometrical tube model is combined with a plane wave acoustic model in order to estimate acoustic wave propagation through the elastic tube as a function of pinching effort, pinching position, and outlet termination (flanged or unflanged). The model outcome is validated against experimental data obtained in a frequency range from 3.5 kHz up to 10 kHz by displacing an acoustic probe along the tube's centerline. Due to plane wave model assumptions and the decrease of the lowest higher order mode cut-on frequency with increasing pinching effort, the difference between modeled and measured data is analysed in three frequency bands, up to 5 kHz, 8 kHz, and 9.5 kHz, respectively. It is seen that the mean and standard error within each frequency band do not significantly vary with pinching effort, pinching position, or outlet termination. Therefore, it is concluded that the analytical tube model is suitable to approximate the elastic tube geometry when modeling acoustic wave propagation through the pinched elastic tube with either flanged or unflanged termination.

  8. Strong localization of an acoustic wave in a sub-wavelength slot between two plates.

    PubMed

    Cai, Feiyan; Li, Fei; Meng, Long; Wu, Junru; Zheng, Hairong

    2015-03-01

    The dispersion relation of the acoustic field in a sub-wavelength slot (its width is smaller than the acoustic wavelength) between two identical plates immersed in an inviscid liquid is theoretically analyzed. Each plate has a phononic crystal structure consisting of periodical grooves drilled in one of outer sides of each plate. It is found that highly localization of acoustic energy can be achieved in the sub-wavelength slot when a traveling acoustic wave is incident upon the slots. The associate physical principle is as follows: The lowest anti-symmetric non-leaky A0 mode of the Lamb wave of each individual thin plate propagating as an evanescent wave extends to the liquid from opposite direction; when the width of the slot is much smaller than the characteristic decay length of the evanescent wave in the liquid, the constructive interference of evanescent waves of the both plates takes place, leading to a strong acoustic field in the slot. This system has potential to serve as an excellent candidate for the ultrasensitive microscopic chemical/biological stimulators and sensors.

  9. Spin-wave modes of ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Arias, R. E.

    2016-10-01

    The spin-wave modes of ferromagnetic films have been studied for a long time experimentally as well as theoretically, either in the magnetostatic approximation or also considering the exchange interaction. A theoretical method is presented that allows one to determine with ease the exact frequency dispersion relations of dipole-exchange modes under general conditions: an obliquely applied magnetic field, and surface boundary conditions that allow for partial pinning, which may be of different origins. The method is a generalization of Green's theorem to the problem of solving the linear dynamics of ferromagnetic spin-wave modes. Convolution integral equations for the magnetization and the magnetostatic potential of the modes are derived on the surfaces of the film. For the translation-invariant film these become simple local algebraic equations at each in-plane wave vector. Eigenfrequencies result from imposing a 6 ×6 determinant to be null, and spin-wave modes follow everywhere through solving linear 6 ×6 inhomogeneous systems. An interpretation of the results is that the Green's functions represent six independent plane-wave solutions to the equations of motion, with six associated complex perpendicular wave vectors: volume modes correspond to the cases in which two of these are purely real at a given frequency. Furthermore, the convolution extinction equations enforce the boundary conditions: this is possible at specific eigenfrequencies for a given in-plane wave vector. Magnetostatic modes may also be obtained in detail. At low frequencies and for some obliquely applied magnetic fields, magnetostatic and dipole-exchange volume modes may have forward or backward character depending on the frequency range.

  10. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  11. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  12. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  13. Oblique propagation of ion acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons

    SciTech Connect

    Wang, Jian-Yong; Cheng, Xue-Ping; Tang, Xiao-Yan; Yang, Jian-Rong; Ren, Bo

    2014-03-15

    The oblique propagation of ion-acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons is studied. Linear dispersion relations of the fast and slow ion-acoustic modes are discussed under the weak and strong magnetic field situations. By means of the reductive perturbation approach, Korteweg-de Vries equations governing ion-acoustic waves of fast and slow modes are derived, respectively. Explicit interacting soliton-cnoidal wave solutions are obtained by the generalized truncated Painlevé expansion. It is found that every peak of a cnoidal wave elastically interacts with a usual soliton except for some phase shifts. The influence of the electron superthermality, positron concentration, and magnetic field obliqueness on the soliton-cnoidal wave are investigated in detail.

  14. Defect induced guided waves mode conversion

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw

    2016-04-01

    This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.

  15. The propagation and attenuation of complex acoustic waves in treated circular and annular ducts

    NASA Technical Reports Server (NTRS)

    Reethof, G.

    1976-01-01

    The propagation of plane waves and higher order acoustic modes in a circular multisectioned duct was studied. A unique source array consisting of two concentric rings of sources, providing phase and amplitude control in the radial, as well as circumferential direction, was developed to generate plane waves and both spinning and nonspinning higher order modes. Measurements of attenuation and radial mode shapes were taken with finite length liners between the hard wall sections of an anechoically terminated duct. Materials tested as liners included a glass fiber material and both sintered fiber metals and perforated sheet metals with a honeycomb backing. The fundamental acoustic properties of these materials were studied with emphasis on the attenuation of sound by the liners and the determination of local versus extended reaction behavior for the boundary condition. The experimental results were compared with a mathematical model for the multisectioned duct.

  16. Surface acoustic wave-assisted scanning probe microscopy—a summary

    NASA Astrophysics Data System (ADS)

    Hesjedal, Thorsten

    2010-01-01

    Elastic properties of nanoscopic materials, structures and thin films are important parameters controlling their growth, as well as their optical and electronic properties. Acoustic microscopy is a well-established method for elastic imaging. In order to overcome its micrometer-scale diffraction-limited lateral resolution, scanning probe microscopy-based acoustic near-field techniques have been developed. Among the acoustic modes used for microscopy, surface acoustic waves (SAWs) are especially suited for probing very small and thin objects due to their localization in the vicinity of the surface. Moreover, the study of SAWs is crucial for the design of frequency filter devices as well as for fundamental physical studies, for instance, the probing of composite fermions in two-dimensional electron systems. This review discusses the capabilities and limitations of SAW-based scanning probe microscopy techniques. Particular emphasis is laid on the review of surface acoustic waves and their interaction with elastic inhomogeneities. Scattering, diffraction and wave localization phenomena will be discussed in detail. Finally, the possibilities for quantitative acoustic microscopy of objects on the nanoscale, as well as practical applications, are presented.

  17. Dust acoustic waves in strongly coupled dusty plasmas

    SciTech Connect

    Rosenberg, M. Kalman, G.

    1997-12-01

    Dust grains, or solid particles of {mu}m to sub-{mu}m sizes, are observed in various low-temperature laboratory plasmas such as process plasmas and dust plasma crystals. The massive dust grains are generally highly charged, and it has been shown within the context of standard plasma theory that their presence can lead to new low-frequency modes such as dust acoustic waves. In certain laboratory plasmas, however, the dust may be strongly coupled, as characterized by the condition {Gamma}{sub d}=Q{sub d}{sup 2}exp({minus}d/{lambda}{sub D})/dT{sub d}{ge}1, where Q{sub d} is the dust charge, d is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. This paper investigates the dispersion relation for dust acoustic waves in a strongly coupled dusty plasma comprised of strongly coupled negatively charged dust grains, and weakly correlated classical ions and electrons. The dust grains are assumed to interact via a (screened Coulomb) Yukawa potential. The strongly coupled gas phase (liquid phase) is considered, and a quasilocalized charge approximation scheme is used, generalized to take into account electron and/or ion screening of the dust grains. The scheme relates the small-k dispersion to the total correlation energy of the system, which is obtained from the results of published numerical simulations. Some effects of collisions of charged particles with neutrals are taken into account. Applications to laboratory dusty plasmas are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  18. Application of surface acoustic wave devices to radio telemetry

    NASA Technical Reports Server (NTRS)

    Strasilla, U.

    1983-01-01

    Three experimental Surface Acoustic Wave Resonators (SAWR) are developed and evaluated. A desired center frequency is obtained by correct spacing of the Inter-Digital Transducers (IDT). Transmitting and receiving IDT's must be close for adequate coupling and a sufficient number of reflectors are required to create a high quality standing wave. A review of oscillator theory is given and current technology evaluated.

  19. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  20. Surface wave patterns on acoustically levitated viscous liquid alloys

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Yan, N.; Geng, D. L.; Wei, B.

    2014-04-01

    We demonstrate two different kinds of surface wave patterns on viscous liquid alloys, which are melted and solidified under acoustic levitation condition. These patterns are consistent with the morphologies of standing capillary waves and ensembles of oscillons, respectively. The rapid solidification of two-dimensional liquid alloy surfaces may hold them down.

  1. Nonlinear scattering of acoustic waves by vibrating obstacles

    NASA Astrophysics Data System (ADS)

    Piquette, J. C.

    1983-06-01

    The problem of the generation of sum- and difference-frequency waves produced via the scattering of an acoustic wave by an obstacle whose surface vibrates harmonically was studied both theoretically and experimentally. The theoretical approach involved solving the nonlinear wave equation, subject to appropriate boundary conditions, by the use of a perturbation expansion of the fields and a Green's function method. In addition to ordinary rigid-body scattering, Censor predicted nongrowing waves at frequencies equal to the sum and to the difference of the frequencies of the primary waves. The solution to the nonlinear wave equation also yields scattered waves at the sum and difference frequencies. However, the nonlinearity of the medium causes these waves to grow with increasing distance from the scatter's surface and, after a very small distance, dominate those predicted by Censor. The simple-source formulation of the second-order nonlinear wave equation for a lossless fluid medium has been derived for arbitrary primary wave fields. This equation was used to solve the problem of nonlinear scattering of acoustic waves by a vibrating obstacle for three geometries: (1) a plane-wave scattering by a vibrating plane, (2) cylindrical-wave scattering by a vibrating cylinder, and (3) plane-wave scattering by a vibrating cylinder. Successful experimental validation of the theory was inhibited by previously unexpected levels of nonlinearity in the hydrophones used. Such high levels of hydrophone nonlinearity appeared in hydrophones that, by their geometry of construction, were expected to be fairly linear.

  2. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    SciTech Connect

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  3. Linear and nonlinear acoustic wave propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping

    1988-01-01

    The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.

  4. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  5. Measurements of ion-ion collisional broadening of ion acoustic modes

    NASA Astrophysics Data System (ADS)

    Tierney, T. E.; Benage, J. F.; Montgomery, D. S.; Murillo, M. S.; Wysocki, F. J.; Rostoker, N.

    2002-10-01

    Although collisional plasmas are often encountered in inertial confinement fusion, dense plasma experiments and astrophysics, very few experiments have looked at the effects produced by the presence of these collisions. Ion-acoustic modes are predicted to broaden due to ion-ion collisions when the ion-ion mean free path, λ_ii, becomes comparable to the ion-acoustic wavelength, λ_iaw. This paper presents the first quantitative data of ion-acoustic wave broadening in moderately ion-ion collisional (0.05acoustic modes was observed using collective Thomson scattering and analyzed using a collisional model that includes, ion and electron Landau, inhomogeneity and instrumental broadening. The results indicate that standard collisional models do not adequately predict the degree of ion-acoustic damping when 0.1

  6. Standing wave pressure fields generated in an acoustic levitation chamber

    NASA Astrophysics Data System (ADS)

    Hancock, Andrew; Allen, John S.; Kruse, Dustin E.; Dayton, Paul A.; Kargel, Christian M.; Insana, Michael F.

    2001-05-01

    We are developing an acoustic levitation chamber for measuring adhesion force strengths among biological cells. Our research has four phases. Phase I, presented here, is concerned with the design and construction of a chamber for trapping cell-sized microbubbles with known properties in acoustic standing waves, and examines the theory that describes the standing wave field. A cylindrical chamber has been developed to generate a stable acoustic standing wave field. The pressure field was mapped using a 0.4-mm needle hydrophone, and experiments were performed using 100 micron diameter unencapsulated air bubbles, 9 micron diameter isobutane-filled microbubbles, and 3 micron diameter decafluorobutane (C4F10)-filled microbubbles, confirming that the net radiation force from the standing wave pressure field tends to band the microbubbles at pressure antinodes, in accordance with theory.

  7. Acoustic waves in random ensembles of magnetic fluxes

    SciTech Connect

    Ryutova, M.P.

    1995-10-10

    To analyze the observational data and provide the appropriate diagnostic procedure for photospheric manifestation of solar oscillations it is necessary to take into account strong inhomogeneity of solar atmosphere with respect to distribution of magnetic fields. We study the collective phenomena in the propagation of acoustic waves and unsteady wave-packets through quite regions, sunspots and plages, including time-dependent response of these regions to solar oscillations, the energy transfer mechanisms, frequency shift effects and reradiation of the acoustic waves in higher layers of atmosphere. We show that the dynamics of differently magnetized regions, their dispersion properties, and their response to the propagation of acoustic waves are completely different. We describe the effects caused by the specific distribution and randomness of magnetic flux tubes, which can be observed and which can provide the tools for diagnostic goals.

  8. The transmission of acoustic energy by a finite cylindrical shell excited by external plane waves

    NASA Astrophysics Data System (ADS)

    Cacciolati, C.; Gotteland, M.; Barbe, M.

    A qualitative method is presented for sensitivity analyses of acoustic coupling between cylindrical shells such as found in aerospace structures. The shells are excited by an exterior plane wave. The analysis is carried out in terms of coupling among the exterior and structural natural modes and the structural and cavity natural modes. Strong coupling is shown to be limited to cases of coincidence of resonance frequencies and when numerous identical incident waves arrive from multiple directions. Coupling will in any case be confined to low frequencies. Limits are defined for the necessary number of frequencies which must be considered when predicting whether or not coupling will occur.

  9. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  10. Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping

    NASA Astrophysics Data System (ADS)

    Gong, Xueyu; Xie, Baoyi; Guo, Wenfeng; Chen, You; Yu, Jiangmei; Yu, Jun

    2016-03-01

    With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.

  11. Wavemaker theories for acoustic-gravity waves over a finite depth

    NASA Astrophysics Data System (ADS)

    Tian, Miao; Kadri, Usama

    2016-04-01

    Acoustic-gravity waves (hereafter AGWs) in ocean have received much interest recently, mainly with respect to early detection of tsunamis as they travel at near the speed of sound in water which makes them ideal candidates for early detection of tsunamis. While the generation mechanisms of AGWs have been studied from the perspective of vertical oscillations of seafloor (Yamamoto, 1982; Stiassnie, 2010) and triad wave-wave interaction (Longuet-Higgins 1950; Kadri and Stiassnie 2013; Kadri and Akylas 2016), in the current study we are interested in their generation by wave-structure interaction with possible application to the energy sector. Here, we develop two wavemaker theories to analyze different wave modes generated by impermeable (the classic Havelock's theory) and porous (porous wavemaker theory) plates in weakly compressible fluids. Slight modification has been made to the porous theory so that, unlike the previous theory (Chwang, 1983), the new solution depends on the geometry of the plate. The expressions for three different types of plates (piston, flap, delta-function) are introduced. Analytical solutions are also derived for the potential amplitude of the gravity, evanescent, and acoustic-gravity waves, as well as the surface elevation, velocity distribution, and pressure for AGWs. Both theories reduce to previous results for incompressible flow when the compressibility is negligible. We also show numerical examples for AGW generated in a wave flume as well as in deep ocean. Our current study sets the theoretical background towards remote sensing by AGWs, for optimized deep ocean wave-power harnessing, among others. References Chwang, A.T. 1983 A porous-wavemaker theory. Journal of Fluid Mechanics, 132, 395- 406. Kadri, U., Stiassnie, M. 2013 Generation of an acoustic-gravity wave by two gravity waves, and their subsequent mutual interaction. J. Fluid Mech. 735, R6. Kadri U., Akylas T.R. 2016 On resonant triad interactions of acoustic-gravity waves. J

  12. A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid

    NASA Astrophysics Data System (ADS)

    Borah, B.; Haloi, A.; Karmakar, P. K.

    2016-05-01

    In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.

  13. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index

    SciTech Connect

    Addouche, Mahmoud Al-Lethawe, Mohammed A. Choujaa, Abdelkrim Khelif, Abdelkrim

    2014-07-14

    We demonstrate super resolution imaging for surface acoustic waves using a phononic structure displaying negative refractive index. This phononic structure is made of a monolithic square lattice of cylindrical pillars standing on a semi-infinite medium. The pillars act as acoustic resonator and induce a surface propagating wave with unusual dispersion. We found, under specific geometrical parameters, one propagating mode that exhibits negative refraction effect with negative effective index close to −1. Furthermore, a flat lens with finite number of pillars is designed to allow the focusing of an acoustic point source into an image with a resolution of (λ)/3 , overcoming the Rayleigh diffraction limit.

  14. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    PubMed Central

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  15. Gravity wave diagnosis using empirical normal modes

    NASA Astrophysics Data System (ADS)

    Charron, Martin

    We adapt the theory of Empirical Normal Modes (ENMs) to diagnose gravity waves generated by a relatively high resolution numerical model solving the primitive equations. The ENM approach is based on the Principal Component Analysis (which consists of finding the most efficient basis explaining the variance of a time series), except that it takes advantage of wave-activity conservation laws. In the present work, the small- amplitude version of the pseudoenergy is used to extract from data quasi-monochromatic three-dimensional empirical modes that describe atmospheric wave activity. The spatial distributions of these quasi-monochromatic modes are identical to the normal modes of the linearized primitive equations when the underlying dynamics can be described with a stochastic linear and forced model, thus establishing a bridge between statistics and dynamics. We use this diagnostic method to study inertia-gravity wave generation, propagation, transience, and breaking over the Rockies, the North Pacific, and Central America in the troposphere-stratosphere-mesosphere GFDL SKYHI general circulation model at a resolution of 1° of latitude by 1.2° of longitude. Besides the action of mountains in exciting orographic waves, inertia-gravity wave activity has been found to be generated at the jet stream level as a possible consequence of a sustained nonlinear and ageostrophic flow. In the Tropical region of the model, the ``obstacle effect'' has been found to be the major source of inertia-gravity waves. A significant proportion of these inertia-gravity waves was able to reach the model mesosphere without much dissipation and absorption.

  16. Identification of laser generated acoustic waves in the two-dimensional transient response of cylinders

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Rossignol, C.; Audoin, B.

    2005-06-01

    The published model [Appl. Phys. Lett. 82, 4379-4381 (2003)] for the two-dimensional transient wave propagation in a cylinder is modified to avoid the inherited integration of the numerical inverse scheme. The Fourier series expansion is introduced for one spatial coordinate to resolve the transient response problem: theoretical radial displacements in either the ablation or the thermoelastic regime are obtained with little numerical noise and short computation time. The normal mode expansion method fails to deliver results with the same accuracy. Acoustic waves are fully identified by the ray trajectory analysis. These identified waves are further verified on the experimental results observed with the laser ultrasonic technique. .

  17. Effect of nonadiabaticity of dust charge variation on dust acoustic waves: generation of dust acoustic shock waves.

    PubMed

    Gupta, M R; Sarkar, S; Ghosh, S; Debnath, M; Khan, M

    2001-04-01

    The effect of nonadiabaticity of dust charge variation arising due to small nonzero values of tau(ch)/tau(d) has been studied where tau(ch) and tau(d) are the dust charging and dust hydrodynamical time scales on the nonlinear propagation of dust acoustic waves. Analytical investigation shows that the propagation of a small amplitude wave is governed by a Korteweg-de Vries (KdV) Burger equation. Notwithstanding the soliton decay, the "soliton mass" is conserved, but the dissipative term leads to the development of a noise tail. Nonadiabaticity generated dissipative effect causes the generation of a dust acoustic shock wave having oscillatory behavior on the downstream side. Numerical investigations reveal that the propagation of a large amplitude dust acoustic shock wave with dust density enhancement may occur only for Mach numbers lying between a minimum and a maximum value whose dependence on the dusty plasma parameters is presented. PMID:11308955

  18. Dissipation of acoustic-gravity waves: an asymptotic approach.

    PubMed

    Godin, Oleg A

    2014-12-01

    Acoustic-gravity waves in the middle and upper atmosphere and long-range propagation of infrasound are strongly affected by air viscosity and thermal conductivity. To characterize the wave dissipation, it is typical to consider idealized environments, which admit plane-wave solutions. Here, an asymptotic approach is developed that relies instead on the assumption that spatial variations of environmental parameters are gradual. It is found that realistic assumptions about the atmosphere lead to rather different predictions for wave damping than do the plane-wave solutions. A modification to the Sutherland-Bass model of infrasound absorption is proposed. PMID:25480091

  19. Dissipation of acoustic-gravity waves: an asymptotic approach.

    PubMed

    Godin, Oleg A

    2014-12-01

    Acoustic-gravity waves in the middle and upper atmosphere and long-range propagation of infrasound are strongly affected by air viscosity and thermal conductivity. To characterize the wave dissipation, it is typical to consider idealized environments, which admit plane-wave solutions. Here, an asymptotic approach is developed that relies instead on the assumption that spatial variations of environmental parameters are gradual. It is found that realistic assumptions about the atmosphere lead to rather different predictions for wave damping than do the plane-wave solutions. A modification to the Sutherland-Bass model of infrasound absorption is proposed.

  20. A Study in Wedge Waves with Applications in Acoustic Delay- line

    NASA Astrophysics Data System (ADS)

    Tung, Po-Hsien; Wang, Wen-Chi; Yang, Che-Hua

    The acoustic delay line is usually used to supply protection from dangerous environment, to enhance signal intensity by fit geometry of analyte, or to achieve specific angle/focusing by Snell's law, but rarely to avoid noise from coupling agent and to raise spatial resolution by reducing contact area. This study is focused on wedge waves with applications in delay-line to solve the knot of traditionally transducer measurement. Wedge waves are guided acoustic waves propagating along the tip of a wedge. The advantages of wedge being used in acoustic delay line are wedge waves has large motion amplitude of anti-symmetric flexural (ASF) mode, low energy attenuation and the velocity of ASF more is regular weather frequency varied or not. According the characteristic of wedge wave and vibration direction of particle, the acoustical wedge delay line with high signal- noise-ratio, approximate point-like contact area, without coupling agent and in/out vibration measurement by specific experimental setup is developed.

  1. A violin shell model: vibrational modes and acoustics.

    PubMed

    Gough, Colin E

    2015-03-01

    A generic physical model for the vibro-acoustic modes of the violin is described treating the body shell as a shallow, thin-walled, guitar-shaped, box structure with doubly arched top and back plates. comsol finite element, shell structure, software is used to identify and understand the vibrational modes of a simply modeled violin. This identifies the relationship between the freely supported plate modes when coupled together by the ribs and the modes of the assembled body shell. Such coupling results in a relatively small number of eigenmodes or component shell modes, of which a single volume-changing breathing mode is shown to be responsible for almost all the sound radiated in the monopole signature mode regime below ∼1 kHz for the violin, whether directly or by excitation of the Helmholtz f-hole resonance. The computations describe the influence on such modes of material properties, arching, plate thickness, elastic anisotropy, f-holes cut into the top plate, the bass-bar, coupling to internal air modes, the rigid neck-fingerboard assembly, and, most importantly, the soundpost. Because the shell modes are largely determined by the symmetry of the guitar-shaped body, the model is applicable to all instruments of the violin family. PMID:25786935

  2. A violin shell model: vibrational modes and acoustics.

    PubMed

    Gough, Colin E

    2015-03-01

    A generic physical model for the vibro-acoustic modes of the violin is described treating the body shell as a shallow, thin-walled, guitar-shaped, box structure with doubly arched top and back plates. comsol finite element, shell structure, software is used to identify and understand the vibrational modes of a simply modeled violin. This identifies the relationship between the freely supported plate modes when coupled together by the ribs and the modes of the assembled body shell. Such coupling results in a relatively small number of eigenmodes or component shell modes, of which a single volume-changing breathing mode is shown to be responsible for almost all the sound radiated in the monopole signature mode regime below ∼1 kHz for the violin, whether directly or by excitation of the Helmholtz f-hole resonance. The computations describe the influence on such modes of material properties, arching, plate thickness, elastic anisotropy, f-holes cut into the top plate, the bass-bar, coupling to internal air modes, the rigid neck-fingerboard assembly, and, most importantly, the soundpost. Because the shell modes are largely determined by the symmetry of the guitar-shaped body, the model is applicable to all instruments of the violin family.

  3. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1993-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.

  4. Electron-acoustic solitary waves in a nonextensive plasma

    SciTech Connect

    Tribeche, Mouloud; Djebarni, Lyes

    2010-12-15

    The problem of arbitrary amplitude electron-acoustic solitary waves (EASWs) in a plasma having cold fluid electrons, hot nonextensive electrons, and stationary ions is addressed. It is found that the 'Maxwellianization' process of the hot nonextensive component does not favor the propagation of the EASWs. In contrast to superthermality, nonextensivity makes the electron-acoustic solitary structure less spiky. Our theoretical analysis brings a possibility to develop more refined theories of nonlinear solitary structures in astrophysical plasmas.

  5. The behavior of acoustic waves in the lakes bottom sediments.

    NASA Astrophysics Data System (ADS)

    Krylov, Pavel; Nourgaliev, Danis; Yasonov, Pavel

    2016-04-01

    Seismic studies are used for various tasks, such as the study of the bottom sediments properties, finding sunken objects, reconstruction the reservoir history, etc. Multiple acoustic waves are an enormous obstacle in obtaining full seismic record. Multiples from the bottom of a body of water (the surface of the base of water and the rock or sediment beneath it) and the air-water surface are common in lake seismic data. Multiple reflections on the seismic cross-sections are usually located on the double distance from the air/water surface. However, sometime multiple reflections from liquid deposits cannot be generated or they reflected from the deeper horizons. It is observed the phenomenon of changes in reflectance of the water/weakly consolidated sediments acoustic boundary under the influence of the acoustic wave. This phenomenon lies in the fact that after the first acoustic impact and reflection of acoustic wave for some time the reflectance of this boundary remains close to 0. This event on a cross-section can explain by the short-term changes in the properties of bottom sediments under the influence of shock? acoustic wave, with a further reduction of these properties to the next wave generation (generation period of 2 seconds). Perhaps in these deposits occurs thixotropic process. The paper presents the seismic acoustic cross-sections of Lake Balkhash (Kazakhstan), Turgoyak (Russia). The work was carried out according to the Russia Government's Program of Competitive Growth of Kazan Federal University, supported by the grant provided to the Kazan State University for performing the state program in the field of scientific research, and partially supported by the Russian Foundation for Basic research (grants № 14-05-00785, 16-35-00452).

  6. Picosecond Surface Acoustic Waves Using A Suboptical Wavelength Absorption Grating

    SciTech Connect

    Hurley, David Howard; Telschow, Kenneth Louis

    2002-10-01

    We have demonstrated laser generation and detection of Rayleigh surface acoustic waves (SAW’s) with acoustic wavelengths that are smaller than the optical wavelength of both the excitation and the detection beams. SAW generation was achieved using electron beam lithography to modulate the surface reflectivity and hence the lateral thermal gradients on a suboptical wavelength scale. The generation and detection characteristics of two material systems were investigated (aluminum absorption gratings on Si and GaAs substrates). The polarization sensitive absorption characteristics of the suboptical wavelength lithographic grating were exploited in order to explore various acoustic generation and detection schemes.

  7. Controllable optical transparency using an acoustic standing-wave device

    NASA Astrophysics Data System (ADS)

    Moradi, Kamran; El-Zahab, Bilal

    2015-09-01

    In this paper, a suspended-particle device with controllable light transmittance was developed based on acoustic stimuli. Using a glass compartment and carbon particle suspension in an organic solvent, the device responded to acoustic stimulation by alignment of particles. The alignment of light-absorbing carbon particles afforded an increase in light transmittance as high as 84.5% and was controllable based on the control of the frequency and amplitude of the acoustic waves. The device also demonstrated alignment memory rendering it energy-efficient.

  8. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    NASA Astrophysics Data System (ADS)

    Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2016-10-01

    We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W-1m-1 for backward and forward Brillouin scattering, respectively.

  9. Dispersion properties of electrostatic sound wave modes in carbon nanotubes

    SciTech Connect

    Moradi, Afshin

    2010-01-15

    The theoretical analysis of electrostatic sound wave modes in multiwalled carbon nanotubes is presented within the framework of the fluid theory in conjunction with the Poisson's equation. The electron and ion components of each wall of nanotubes are regarded as two-species plasma system, in which the perturbed electron number density is deduced by means of the quantum hydrodynamic model, while the ion density perturbation follows the classical expression. An analytical expression of the dispersion relation is obtained for the quantum ion-acoustic wave oscillations in the system. Numerical result is prepared for a two-walled carbon nanotube, giving rise to a splitting of the frequencies of the electrostatic oscillations due to the small coupling between the two cylinders.

  10. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGES

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  11. On acoustic wave generation in uniform shear flow

    NASA Astrophysics Data System (ADS)

    Gogoberidze, G.

    2016-07-01

    The linear dynamics of acoustic waves and vortices in uniform shear flow is studied. For flows with very low shear rates, the dynamics of perturbations is adiabatic and can be described by the WKB approximation. However, for flows with moderate and high shear rates the WKB approximation is not appropriate, and alternative analysis shows that two important phenomena occur: acoustic wave over-reflection and wave generation by vortices. The later phenomenon is a known linear mechanisms for sound generation in shear flows, a mechanism that is related to the continuous spectrum that arises in linear shear flow dynamics. A detailed analytical study of these phenomena is performed and the main quantitative and qualitative characteristics of the radiated acoustic field are obtained and analyzed.

  12. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    PubMed Central

    Greve, David W.; Chin, Tao-Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-01-01

    Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity. PMID:23708273

  13. Surface acoustic wave devices for harsh environment wireless sensing

    SciTech Connect

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  14. The propagation characteristics of the plate modes of acoustic emission waves in thin aluminum plates and thin graphite/epoxy composite plates and tubes. Ph.D. Thesis - Johns Hopkins Univ., 1991

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1991-01-01

    Acoustic emission was interpreted as modes of vibration in plates. Classical plate theory was used to predict dispersion curves for the two fundamental modes and to calculate the shapes of flexural waveforms produced by vertical step function loading. There was good agreement between theoretical and experimental results for aluminum. Composite materials required the use of a higher order plate theory (Reissner-Mindlin) to get good agreement with the measured velocities. Four composite plates with different laminate stacking sequences were studied. The dispersion curves were determined from phase spectra of the time dependent waveforms. Plate modes were shown to be useful for determining the direction of source motion. Aluminum plates were loaded by breaking a pencil lead against their surface. By machining slots at angles to the plane of a plate, the direction in which the force acted was varied. Changing the source motion direction produced regular variations in the waveforms. To demonstrate applicability beyond simple plates, waveforms produced by lead breaks on a thin walled composite tube were also shown to be interpretable as plate modes. The tube design was based on the type of struts proposed for Space Station Freedom's trussed structures.

  15. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  16. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  17. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2016-08-01

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron and acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.

  18. Nonlinear Wave-particle Interaction and Particle Trapping in Large Amplitude Dust Acoustic Waves

    SciTech Connect

    Chang, Mei-Chu; Teng, Lee-Wen; Lin, I.

    2011-11-29

    Large amplitude dust acoustic wave can be self-excited by the strong downward ion flow in a dusty plasma liquid formed by negatively charged dusts suspended in a weakly ionized low pressure discharge. In this work, we investigate experimentally the wave-particle phase space dynamics of the large amplitude dust acoustic wave by connecting the Lagrangian and Eulerian views, through directly tracking particle motion and measuring local dust density fluctuations. The microscopic pictures of wave steepening and breaking, resonant particle-wave crest trapping, and the absence of trough trapping observed in our experiment are constructed.

  19. Landau damping of geodesic acoustic mode in toroidally rotating tokamaks

    SciTech Connect

    Ren, Haijun; Cao, Jintao

    2015-06-15

    Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.

  20. Observations of acoustic surface waves in outdoor sound propagation

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2003-05-01

    Acoustic surface waves have been detected propagating outdoors under natural conditions. Two critical experimental conditions were employed to ensure the conclusive detection of these waves. First, acoustic pulses rather than a continuous wave source allowed an examination of the waveform shape and avoided the masking of wave arrivals. Second, a snow cover provided favorable ground impedance conditions for surface waves to exist. The acoustic pulses were generated by blank pistol shots fired 1 m above the snow. The resultant waveforms were measured using a vertical array of six microphones located 60 m away from the source at heights between 0.1 and 4.75 m. A strong, low frequency ``tail'' following the initial arrival was recorded near the snow surface. This tail, and its exponential decay with height (z) above the surface (~e-αz), are diagnostic features of surface waves. The measured attenuation coefficient α was 0.28 m-1. The identification of the surface wave is confirmed by comparing the measured waveforms with waveforms predicted by the theoretical evaluation of the explicit surface wave pole term using residue theory.

  1. Simulations of overstable inertial-acoustic modes in black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Fu, Wen; Lai, Dong

    2013-06-01

    We present two-dimensional inviscid hydrodynamic simulations of overstable inertial-acoustic oscillation modes (p modes) in black hole accretion discs. These global spiral waves are trapped in the innermost region of the disc, and are driven overstable by wave absorption at the corotation resonance (rc) when the gradient of the background disc vortensity (vorticity divided by surface density) at rc is positive and the disc inner boundary is sufficiently reflective. Previous linear calculations have shown that the growth rates of these modes can be as high as 10 per cent of the rotation frequency at the disc inner edge. We confirm these linear growth rates and the primary disc oscillation frequencies in our simulations when the mode amplitude undergoes exponential growth. We show that the mode growth saturates when the radial velocity perturbation becomes comparable to the disc sound speed. During the saturation stage, the primary disc oscillation frequency differs only slightly (by less than a few per cent) from the linear mode frequency. Sharp features in the fluid velocity profiles at this stage suggest that the saturation results from non-linear wave steepening and shock dissipation.

  2. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  3. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-29

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  4. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    PubMed Central

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429

  5. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    NASA Astrophysics Data System (ADS)

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  6. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429

  7. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    SciTech Connect

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-03-07

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11–54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types.

  8. Normal mode extraction and environmental inversion from underwater acoustic data

    NASA Astrophysics Data System (ADS)

    Neilsen, Tracianne Beesley

    2000-11-01

    The normal modes of acoustic propagation in the shallow ocean are extracted from sound recorded on a vertical line array (VLA) of hydrophones as a source travels nearby, and the extracted modes are used to invert for the environmental properties of the ocean. The mode extraction is accomplished by performing a singular value decomposition (SVD) of individual frequency components of the signal's temporally-averaged, spatial cross-spectral density matrix. The SVD produces a matrix containing a mutually orthogonal set of basis functions, which are proportional to the depth-dependent normal modes, and a diagonal matrix containing the singular values, which are proportional to the modal source excitations and mode eigenvalues. The extracted modes exist in the ocean at the time the signal is recorded and thus may be used to estimate the sound speed profile and bottom properties. The inversion scheme iteratively refines the environmental parameters using a Levenberg-Marquardt algorithm such that the modeled modes approach the data- extracted modes Simulations are performed to examine the robustness and practicality of the mode extraction and inversion techniques. Experimental data measured in the Hudson Canyon Area of the New Jersey Shelf are analyzed, and modes are successfully extracted at the frequencies of a towed source. Modes are also extracted from ambient noise recorded on the VLA during the experiment. Using data-extracted modes, inverted values of the water depth, the thickness of a thin first sediment layer, and the compressional sound speed at the top of the first layer are found to be in good agreement with historical values. The density, attenuation, and properties of the second layer are not well determined because the inversion method is only able to obtain reliable values for the parameters that influence the mode shapes in the water column.

  9. Precessional magnetization switching by a surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Thevenard, L.; Camara, I. S.; Majrab, S.; Bernard, M.; Rovillain, P.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.

    2016-04-01

    Precessional switching allows subnanosecond and deterministic reversal of magnetic data bits. It relies on triggering a large-angle, highly nonlinear precession of magnetic moments around a bias field. Here we demonstrate that a surface acoustic wave (SAW) propagating on a magnetostrictive semiconducting material produces an efficient torque that induces precessional switching. This is evidenced by Kerr microscopy and acoustic behavior analysis in a (Ga,Mn)(As,P) thin film. Using SAWs should therefore allow remote and wave control of individual magnetic bits at potentially GHz frequencies.

  10. A surface acoustic wave /SAW/ charge transfer imager

    NASA Technical Reports Server (NTRS)

    Papanicolauo, N. A.; Lin, H. C.

    1981-01-01

    An 80 MHz, 2-microsecond surface acoustic wave charge transfer device (SAW-CTD) has been fabricated in which surface acoustic waves are used to create traveling longitudinal electric fields in the silicon substrate and to replace the multiphase clocks of charge coupled devices. The traveling electric fields create potential wells which will carry along charges that may be stored in the wells; the charges may be injected into the wells by light. An optical application is proposed where the SAW-CTD structure is used in place of a conventional interline transfer design.

  11. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  12. Switching in multicore fibers using flexural acoustic waves.

    PubMed

    Fernandes, Gil M; Muga, Nelson J; Rocha, Ana M; Pinto, Armando N

    2015-10-01

    We propose an in-line wavelength selective core switch for multicore fiber (MCF) transmission systems, based on the acousto-optic effect. A theoretical model addressing the interaction between flexural acoustic waves and the optical signal in MCFs is developed. We show that an optical signal propagating in a particular core can be switched to any other core or distributed over all the cores. By tuning the acoustic wave amplitude, we can adjust the amount of optical power transferred between the cores. PMID:26480145

  13. Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin

    2008-09-07

    The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.

  14. Linear coupling of acoustic and cyclotron waves in plasma flows

    SciTech Connect

    Rogava, Andria; Gogoberidze, Grigol

    2005-05-15

    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are mathematically equal to the ones describing coupling of sound waves with internal gravity waves [Rogava and Mahajan, Phys. Rev. E 55, 1185 (1997)] in neutral fluids. For flows with low shearing rates a fully analytic, quantitative description of the coupling efficiency, based on a noteworthy quantum-mechanical analogy, is given and transformation coefficients are calculated.

  15. Automatic determination of important mode-mode correlations in many-mode vibrational wave functions

    NASA Astrophysics Data System (ADS)

    König, Carolin; Christiansen, Ove

    2015-04-01

    We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.

  16. Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Hellberg, Manfred A.; Maharaj, Shimul K.

    2014-07-15

    Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.

  17. Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J.; del Moro, D.; Berrilli, F.

    2016-07-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°-60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  18. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  19. Linear models of acoustic waves in sunspot umbrae

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Leibacher, J. W.

    1984-01-01

    The two-dimensional, linear hydrodynamics of quiet solar and umbral model atmospheres in a plane-parallel, adiabatic approximation are investigated. The 5.5-8.5 mHz oscillations observed in umbral chromospheres and transition regions are interpreted as acoustic waves propagating parallel, or nearly parallel, to the temperature gradient. These waves are not totally internally reflected by the steep temperature gradient and, thus, are not trapped. Partial reflections, however, are effective in modulating the transmission as a function of frequency. The resonant transmission mechanism of Zugzda, Locans, and Staude (1983) is found to produce a spectrum of resonances in the transmission of acoustic waves in any atmosphere with a temperature minimum. Since the observed umbral oscillations display power in only a narrow range of frequencies, characteristics of the umbral models, wave propagation, and observations that would tend to suppress the higher frequency resonances are examined.

  20. Chromospheric extents predicted by time-dependent acoustic wave models

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.

  1. Reflection and Transmission of Acoustic Waves at Semiconductor - Liquid Interface

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.; Sharma, A.

    2011-09-01

    The study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace underlying an inviscid liquid has been carried out. The reflection and transmission coefficients of reflected and transmitted waves have been obtained for quasi-longitudinal (qP) wave incident at the interface from fluid to semiconductor. The numerical computations of reflection and transmission coefficients have been carried out with the help of Gauss elimination method by using MATLAB programming for silicon (Si), germanium (Ge) and silicon nitride (Si3N4) semiconductors. In order to interpret and compare, the computer simulated results are plotted graphically. The study may be useful in semiconductors, seismology and surface acoustic wave (SAW) devices in addition to engines of the space shuttles.

  2. Ion-Acoustic Waves in Self-Gravitaing Dusty Plasma

    SciTech Connect

    Kumar, Nagendra; Kumar, Vinod; Kumar, Anil

    2008-09-07

    The propagation and damping of low frequency ion-acoustic waves in steady state, unmagnetised, self-gravitating dusty plasma are studied taking into account two important damping mechanisms creation damping and Tromso damping. It is found that imaginary part of wave number is independent of frequency in case of creation damping. But when we consider the case of creation and Tromso damping together, an additional contribution to damping appears with the increase in frequency attributed to Tromso effect.

  3. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect

    El-Shewy, E. K.; Abdelwahed, H. G.; Elmessary, M. A.

    2011-11-15

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  4. Ion-acoustic solitary waves in relativistic plasmas

    SciTech Connect

    Das, G.C.; Paul, S.N.

    1985-03-01

    This is a sequel to our earlier study on ion-acoustic waves studied through the augmentation to a modified Korteweg--deVries (K--dV) equation. We have derived a K--dV equation in a plasma, taking account of weakly relativistic effects, and the result shows that the solitary wave does exhibit the relativistic effect in the presence of ion streaming.

  5. S-Band Shallow Bulk Acoustic Wave (SBAW) microwave source

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques necessary to fabricate a high performance S-band microwave single source using state-of-the-art shallow bulk acoustic wave (SBAW) were explored. The bulk wave structures of the AlN/Al 2O3 were investigated for both the R plane and basal plane of sapphire. A 1.072 GHz SBAW delay line and oscillators were developed. A method of selecting and setting oscillator output frequency by selecting substrate orientation angle was also established.

  6. Interaction of acoustic waves generated by coupled plate

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    When two substructures are coupled, the acoustic field generated by the motion of each of the substructures will interact with the motion of the other substructure. This would be the case of a structure enclosing an acoustic cavity. A technique to model the interaction of the generated sound fields from the two components of a coupled structure, and the influence of this interaction on the vibration of the structural components is presented. Using a mobility power flow approach, each element of the substructure is treated independently both when developing the structural response and when determining the acoustic field generated by this component. The presence of the other substructural components is introduced by assuming these components to be rigid baffles. The excitation of one of the substructures is assumed to be by an incident acoustic wave which is dependent of the motion of the substructure. The sound field generated by the motion of the substructure is included in the solution of the response.

  7. Standing surface acoustic wave (SSAW)-based cell washing

    PubMed Central

    Li, Sixing; Ding, Xiaoyun; Mao, Zhangming; Chen, Yuchao; Nama, Nitesh; Guo, Feng; Li, Peng; Wang, Lin; Cameron, Craig E.; Huang, Tony Jun

    2014-01-01

    Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications. PMID:25372273

  8. Numerical modelling of nonlinear full-wave acoustic propagation

    SciTech Connect

    Velasco-Segura, Roberto Rendón, Pablo L.

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  9. Yellow Sea ocean-acoustic solitary wave modeling studies

    NASA Astrophysics Data System (ADS)

    Warn-Varnas, A. C.; Chin-Bing, S. A.; King, D. B.; Hawkins, J. A.; Lamb, K. G.; Teixeira, M.

    2005-08-01

    This study is in an area south of the Shandong peninsula, near the region where Zhou et al. (1991) observed anomalous drops in acoustical intensity. Solitary wave generation and propagation simulations are performed using the Lamb (1994) nonhydrostatic model. The model simulations show that, for summer conditions, the existing semi-diurnal tidal flow over the topographic variations formed internal bores and solitary waves. For the Shandong area, we analyzed summer observations from Synthetic Aperture Radar (SAR) that tracked solitary wave trains from their surface roughness signatures. The images contained seven events consisting of internal bores and solitary waves that traveled in a well-defined direction for 2.5 days. The origin of the trains appeared at a well-defined point along a steep topographic drop. The SAR observations guided and tuned the model simulations, by comparing spectra of observed and modeled wavelengths. The tuned model yields wavelengths within factors of 2, or less, of those derived from SAR data. Wavelength and amplitude dispersion analysis showed two dispersion regimes. Modeled phase speeds were at the lower limit of phase speeds deduced from SAR data, from about 0.8 to 1.0 m/s. Acoustical intensity calculations in the presence of solitary wave trains will be undertaken in a subsequent paper using a parabolic equation acoustical model along the path of solitary wave train propagation.

  10. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGES

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  11. Gasoline identifier based on SH0 plate acoustic waves.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible. PMID:27125559

  12. Thermal Acoustic Waves from Wall with Temporal Temperature Change

    NASA Astrophysics Data System (ADS)

    Sakaguchi, G.; Tsukamoto, M.; Sakurai, A.

    2011-05-01

    Although phenomenon of thermo-acoustic wave has been known for many years in some familiar experiences such as "singing flame" from Bunsen burner, recent trends of utilizing it for the industrial applications urge the understandings of basic details of the phenomenon itself. Here we consider, in this connection, the problem of acoustic wave generation from a particular heat source of solid wall whose temperature changes with time and the phenomenon of temperature change by standing wave oscillating in closed tube. For these we set a hollow tube whose temperature at its one end wall changes with time, and compute flow field inside using the molecular kinetic model, which is found to be more convenient for the boundary value fitting than the ordinary acoustic theory system to this problem. In practice, we use the Boltzmann equation with the BGK approximation, and compute two cases above in monotonic and sinusoidal temperature changes with time. Results of both cases show propagating density wave from the wall almost in acoustic velocity to the first case and the temperature decreases in average to the second case.

  13. Gasoline identifier based on SH0 plate acoustic waves.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible.

  14. Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials

    SciTech Connect

    Zhou, Xiaoming; Badreddine Assouar, M. Oudich, Mourad

    2014-11-21

    We present analytical and numerical analyses of a yet unseen lensing paradigm that is based on a solid metamaterial slab in which the wave excitation source is attached. We propose and demonstrate sub-diffraction-limited acoustic focusing induced by surface resonant states in doubly negative metamaterials. The enhancement of evanescent waves across the metamaterial slab produced by their resonant coupling to surface waves is evidenced and quantitatively determined. The effect of metamaterial parameters on surface states, transmission, and wavenumber bandwidth is clearly identified. Based on this concept consisting of a wave source attached on the metamaterial, a high resolution of λ/28.4 is obtained with the optimum effective physical parameters, opening then an exciting way to design acoustic metamaterials for ultrasonic focused imaging.

  15. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  16. The effects of a hot outer atmosphere on acoustic-gravity waves

    NASA Technical Reports Server (NTRS)

    Hindman, Bradley W.; Zweibel, Ellen G.

    1994-01-01

    We examine the effects of a hot chromosphere and corona on acoustic-gravity waves in the Sun. We use a simple solar model consisting of a neutrally stable polytrope smoothly matched to an isothermal chromosphere or corona. The temperature of the isothermal region is higher than the minimum temperature of the model. We ignore sphericity, magnetic fields, changes in the gravitational potential, and nonadiabatic effects. We find a family of atmospheric g-modes whose cavity is formed by the extremum in the buoyancy frequency at the transition region. The f-mode is the zero-order member of this family. For large values of the harmonic degree l, f-mode frequencies are below the classic f-mode frequency, mu=(gk)(exp 1/2), whereas at small values of l, the f-mode is identical to the classical f-mode solution. We also find a family of g-modes residing in the low chromosphere. Frequency shifts of p-modes can be positive or negative. When the frequency is less than the acoustic cutoff frequency of the upper isothermal atmsophere, the frequency of the upper isothermal atmosphere, the frequency shift is negative, but when the frequency is above this cutoff, the shifts can be positive. High-frequency acoustic waves which are not reflected by the photospheric cutoff are reflected at the corona by the high sound speed for moderate values of l and v. This result is independent of the solar model as long as the corona is very hot. The data are inconsistent with this result, and reasons for this discrepancy are discussed.

  17. Complex mode dynamics of coupled wave oscillators.

    PubMed

    Alexander, T J; Yan, D; Kevrekidis, P G

    2013-12-01

    We explore how nonlinear coherent waves localized in a few wells of a periodic potential can act analogously to a chain of coupled oscillators. We identify the small-amplitude oscillation modes of these "coupled wave oscillators" and find that they can be extended into the large amplitude regime, where some "ring" for long times. We also reveal the appearance of complex behavior such as the breakdown of Josephson-like oscillations, the destabilization of fundamental oscillation modes, and the emergence of chaotic oscillations for large amplitude excitations. We show that the dynamics may be accurately described by a discrete model with nearest-neighbor coupling, in which the lattice oscillators bear an effective mass.

  18. Fabrication, Operation and Flow Visualization in Surface-acoustic-wave-driven Acoustic-counterflow Microfluidics

    PubMed Central

    Travagliati, Marco; Shilton, Richie; Beltram, Fabio; Cecchini, Marco

    2013-01-01

    Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains. PMID:24022515

  19. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    SciTech Connect

    Xu, X. Q.; Xiong, Z.; Nevins, W. M.; Gao, Z.; McKee, G. R.

    2008-05-30

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon} scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  20. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Gao, Z.; Nevins, W. M.; McKee, G. R.

    2008-05-01

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio γ scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  1. Asymmetric Acoustic Propagation of Wave Packets Via the Self-Demodulation Effect

    NASA Astrophysics Data System (ADS)

    Devaux, Thibaut; Tournat, Vincent; Richoux, Olivier; Pagneux, Vincent

    2015-12-01

    This Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 1 06, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.

  2. Evaluation of an acoustic black hole’s structural characteristics using laser-generated Lamb waves

    NASA Astrophysics Data System (ADS)

    Yan, Shi-Ling; Lomonosov, A. M.; Shen, Zhong-Hua

    2016-02-01

    The interaction of laser-generated Lamb waves propagating in a thin aluminum plate with a two-dimensional (2D) acoustic black hole was studied experimentally and theoretically. The decrease in phase velocity due to the gradual decrease in thickness was validated. The focusing function of the structure was also studied in this work. Experiments were performed using a vibrometer. A scanning laser line source technique was used to generate a series of Lamb wave waveforms to obtain the dispersion spectrum through the 2D fast Fourier transform method. Using this method, the effect of structure on Lamb modes was studied.

  3. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.

  4. Nonlinear behavior of electron acoustic waves in an un-magnetized plasma

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Chakrabarti, Nikhil

    2011-10-15

    The nonlinear electron acoustic wave, which is found in the earth's magnetosphere by satellite observations, is studied analytically by Lagrangian fluid description. The basic linear mode is observed in a two temperature electron species plasma where ions form stationary charge neutral background. We have obtained nonlinear description of this mode, which depends on both time and space. A possible solution shows a soliton like structure, which is localized in space, and the amplitude increases with time in the absence of dispersion. Small dispersive correction, however, shows spread of the solution in space. This method can be generalized to study the nonlinear behavior of a general class of multispecies plasma.

  5. Nanometer stepping drives of surface acoustic wave motor.

    PubMed

    Shigematsu, Takashi; Kurosawa, Minoru Kuribayashi; Asai, Katsuhiko

    2003-04-01

    High resolution (from nanometer to subnanometer) stepping drives of a surface acoustic wave motor are presented. It was shown that step displacement was easily controlled by adjusting a number of driving waves, using a steel ball slider equipped with permanent magnet for preload. By means of this open loop control, the step displacement was controlled from centimeter-order to submicrometer-order. In this paper, using a silicon slider equipped with a ball bearing linear guide, the stepping motions of a surface acoustic wave motor were investigated. A laser interferometer equipped with a 2-picometer resolution displacement demodulator was introduced. Motions of the slider ranging from several hundreds of nanometers to several nanometers in each step displacement were observed. Reduction of the driving waves down to 25 cycles, under a 100 Vpeak driving voltage and a 30 N preload condition, generated about 2 nm stepping motion using our experimental setup under an open loop condition. We also demonstrated subnanometer step movements. These experimental results indicated that the surface acoustic wave motor has an ability of subnanometer positioning with a centimeter-level stroke. PMID:12744393

  6. Synchronization of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Suranga Ruhunusiri, W. D.; Goree, John

    2012-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. Dust acoustic wave synchronization has been experimentally studied previously in laboratory and in microgravity conditions, e.g. [Pilch PoP 2009] and [Menzel PRL 2010]. We perform a laboratory experiment to study synchronization of self-excited dust acoustic waves. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. Dust acoustic waves are self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the waves, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency.

  7. Surface acoustic wave depth profiling of a functionally graded material

    SciTech Connect

    Goossens, Jozefien; Leclaire, Philippe; Xu Xiaodong; Glorieux, Christ; Martinez, Loic; Sola, Antonella; Siligardi, Cristina; Cannillo, Valeria; Van der Donck, Tom; Celis, Jean-Pierre

    2007-09-01

    The potential and limitations of Rayleigh wave spectroscopy to characterize the elastic depth profile of heterogeneous functional gradient materials are investigated by comparing simulations of the surface acoustic wave dispersion curves of different profile-spectrum pairs. This inverse problem is shown to be quite ill posed. The method is then applied to extract information on the depth structure of a glass-ceramic (alumina) functionally graded material from experimental data. The surface acoustic wave analysis suggests the presence of a uniform coating region consisting of a mixture of Al{sub 2}O{sub 3} and glass, with a sharp transition between the coating and the substrate. This is confirmed by scanning electron microscope with energy dispersive x-ray analysis.

  8. Propagation of acoustic waves in the partly ionized interstellar medium

    NASA Astrophysics Data System (ADS)

    Chalov, S. V.

    2014-07-01

    The properties of linear acoustic waves propagating in the interstellar medium, which is a mixture of electron-proton plasma and hydrogen atoms, are studied analytically. The plasma component interacts with hydrogen atoms through resonant charge exchange between the atoms and protons. To make the problem tractable, only short-wavelength disturbances are considered. Namely, the wavelength is assumed to be small as compared with the mean free path of atoms with respect to charge exchange. It is shown that short waves are damped out due to the charge exchange process, and the magnitude of decrement increases with the cross-section for charge exchange, number density of atoms and sound speed. In the first approximation, decrement does not depend on the wavelength, and acoustic waves are dispersionless. The advantage of our model is fully kinetic treatment of the interstellar atom motion.

  9. Optimization of Surface Acoustic Wave-Based Rate Sensors

    PubMed Central

    Xu, Fangqian; Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liang, Yong

    2015-01-01

    The optimization of an surface acoustic wave (SAW)-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor. PMID:26473865

  10. Fast excitation of geodesic acoustic mode by energetic particle beams

    SciTech Connect

    Cao, Jintao; Qiu, Zhiyong; Zonca, Fulvio

    2015-12-15

    A new mechanism for geodesic acoustic mode (GAM) excitation by a not fully slowed down energetic particle (EP) beam is analyzed to explain experimental observations in Large Helical Device. It is shown that the positive velocity space gradient near the lower-energy end of the EP distribution function can strongly drive the GAM unstable. The new features of this EP-induced GAM (EGAM) are: (1) no instability threshold in the pitch angle; (2) the EGAM frequency can be higher than the local GAM frequency; and (3) the instability growth rate is much larger than that driven by a fully slowed down EP beam.

  11. Beam ion losses due to energetic particle geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Fisher, R. K.; Pace, D. C.; Kramer, G. J.; Van Zeeland, M. A.; Nazikian, R.; Heidbrink, W. W.; García-Muñoz, M.

    2012-12-01

    We report the first experimental observations of fast-ion loss in a tokamak due to energetic particle driven geodesic acoustic modes (EGAMs). A fast-ion loss detector installed on the DIII-D tokamak observes bursts of beam ion losses coherent with the EGAM frequency. The EGAM activity results in a significant loss of beam ions, comparable to the first orbit losses. The pitch angles and energies of the measured fast-ion losses agree with predictions from a full orbit simulation code SPIRAL, which includes scattering and slowing-down.

  12. Analytical collisionless damping rate of geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Ren, H.; Xu, X. Q.

    2016-10-01

    Collisionless damping of geodesic acoustic mode (GAM) is analytically investigated by considering the finite-orbit-width (FOW) resonance effect to the 3rd order in the gyro-kinetic equations. A concise and transparent expression for the damping rate is presented for the first time. Good agreement is found between the analytical damping rate and the previous TEMPEST simulation result (Xu 2008 et al Phys. Rev. Lett. 100 215001) for systematic q scans. Our result also shows that it is of sufficient accuracy and has to take into account the FOW effect to the 3rd order.

  13. An SU-8 liquid cell for surface acoustic wave biosensors

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; Friedt, Jean-Michel; Bartic, Carmen; Campitelli, Andrew

    2004-08-01

    One significant challenge facing biosensor development is packaging. For surface acoustic wave based biosensors, packaging influences the general sensing performance. The acoustic wave is generated and received thanks to interdigital transducers and the separation between the transducers defines the sensing area. Liquids used in biosensing experiments lead to an attenuation of the acoustic signal while in contact with the transducers. We have developed a liquid cell based on photodefinable epoxy SU-8 that prevents the presence of liquid on the transducers, has a small disturbance effect on the propagation of the acoustic wave, does not interfere with the biochemical sensing event, and leads to an integrated sensor system with reproducible properties. The liquid cell is achieved in two steps. In a first step, the SU-8 is precisely patterned around the transducers to define 120 μm thick walls. In a second step and after the dicing of the sensors, a glass capping is placed manually and glued on top of the SU-8 walls. This design approach is an improvement compared to the more classical solution consisting of a pre-molded cell that must be pressed against the device in order to avoid leaks, with negative consequences on the reproducibility of the experimental results. We demonstrate the effectiveness of our approach by protein adsorption monitoring. The packaging materials do not interfere with the biomolecules and have a high chemical resistance. For future developments, wafer level bonding of the quartz capping onto the SU-8 walls is envisioned.

  14. Acoustic wave reflection from thermal gradient regions in a gas

    NASA Astrophysics Data System (ADS)

    Tarau, Calin; Otugen, Volkan; Sheverev, Valeri; Vradis, George

    2003-11-01

    Acoustic wave reflection from thermal gradient regions in a gas Calin Tarau, Volkan Otugen, Valery Sheverev and George Vradis Polytechnic University Six Metrotech Center Brooklyn, NY 11201 Temperature gradients in a gas medium can cause reflection and refraction of acoustic waves. For large incidence angles and sharp temperature gradients, sound reflection from the high (or low) temperature zone can be significant. The present report evaluates the effectiveness of using small regions of hot gas inside an ambient environment as a sound barrier. The behavior of sound wave in the two extreme cases where the acoustic wavelength is either much larger or much smaller than the gradient region is well known. In the latter case, the reflection coefficient tends to be negligible while the maximum reflection is obtained for the former situation. The present is the intermediate case where Ü l L (Ü and L are the acoustic wavelength and length of gradient region, respectively). The compressible unsteady Euler's equations together with the perfect gas state equation are solved using higher order (both time and space) finite volume approach. The numerical results are compared with previous theoretical analysis and recent experimental results of sound propagation through glow discharge.

  15. Propagation of three-dimensional electron-acoustic solitary waves

    SciTech Connect

    Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.

    2011-06-15

    Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.

  16. Resonant interaction of acoustic waves with subaqueous bedforms: Sand dunes in the South China Sea.

    PubMed

    Chiu, Linus Y S; Chang, Andrea Y Y; Reeder, D Benjamin

    2015-12-01

    The large subaqueous sand dunes in the South China Sea are expected to produce the coupling of energy between acoustic normal modes. In this letter, resonant interaction between acoustic propagating modes and subaqueous bedforms are numerically investigated as a function of bedform wavelength, acoustic frequency and bedform packet length. The results demonstrate that bedform wavelength impacts acoustic mode coupling behavior, with the principal transfer of energy occurring between acoustic modes whose eigenvalue difference is equal to the peak value in the bedform wavenumber spectrum. The observed effect of wavelength is greater than that of acoustic frequency and bedform packet length.

  17. Relation between energetic and standard geodesic acoustic modes

    SciTech Connect

    Girardo, Jean-Baptiste; Dumont, Rémi; Garbet, Xavier; Sarazin, Yanick; Zarzoso, David; Sharapov, Sergei

    2014-09-15

    Geodesic Acoustic Modes (GAMs) are electrostatic, axisymmetric modes which are non-linearly excited by turbulence. They can also be excited linearly by fast-particles; they are then called Energetic-particle-driven GAMs (EGAMs). Do GAMs and EGAMs belong to the same mode branch? Through a linear, analytical model, in which the fast particles are represented by a Maxwellian bump-on-tail distribution function, we find that the answer depends on several parameters. For low values of the safety factor q and for high values of the fast ion energy, the EGAM originates from the GAM. On the contrary, for high values of q and for low values of the fast ion energy, the GAM is not the mode which becomes unstable when fast particles are added: the EGAM then originates from a distinct mode, which is strongly damped in the absence of fast particles. The impact of other parameters is further explored: ratio of the ion temperature to the electron temperature, width of the fast particle distribution, mass and charge of the fast ions. The ratio between the EGAM and the GAM frequencies was found in experiments (DIII-D) and in non-linear numerical simulations (code GYSELA) to be close to 1/2: the present analytical study allows one to recover this ratio.

  18. Superior analytical sensitivity of electromagnetic excitation compared to contact electrode instigation of transverse acoustic waves.

    PubMed

    Ballantyne, Scott M; Thompson, Michael

    2004-03-01

    Quartz disks incorporated into an electrolyte flow-through configuration have been excited by both direct electrode contact and electromagnetic fields to generate propagating transverse acoustic waves in to the fluid. The conventional thickness-mode device was operated at the first harmonic (9 MHz) whereas the EM excited structure functioned successfully at 453 MHz (nominal 49th harmonic). The nature of signals produced by the two devices and potential contributions to noise are evaluated. A comparison of the response of the higher frequency sensor to the introduction of the protein neutravidin to the system reveals at least a seven times higher signal-to-noise ratio than is the result for the conventional bulk-acoustic wave structure. This increase in sensitivity coupled with the possibilities for tuning the frequency of the electromagnetic device and its potential for non-contact excitation offer significant advantages in terms of analytical sensor technology.

  19. Development of an electromagnetic acoustic transducer (EMAT) for the noncontact excitation of guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2015-03-01

    Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.

  20. Observed features of acoustic gravity waves in the heterosphere

    NASA Astrophysics Data System (ADS)

    Fedorenko, A. K.; Kryuchkov, E. I.

    2014-01-01

    According to measurements on the Dynamic Explorer 2 satellite, features of the propagation of acoustic gravity waves (AGWs) in the multicomponent upper atmosphere have been investigated. In the altitude range 250-400 km in wave concentration variations of some atmospheric gases, amplitude and phase differences have been observed. Using the approach proposed in this paper, in different gases, AGW variations have been divided into components associated with elastic compression, adiabatic expansion, and the vertical background distribution. The amplitude and phase differences observed in different gases are explained on the basis of analyzing these components. It is shown how to use this effect in order to determine the wave propagation, the vertical displacement of the volume element, the wave frequency, and the spatial distribution of the wave energy density.

  1. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  2. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  3. Inverse Scattering Problems for Acoustic Waves in AN Inhomogeneous Medium.

    NASA Astrophysics Data System (ADS)

    Kedzierawski, Andrzej Wladyslaw

    1990-01-01

    This dissertation considers the inverse scattering problem of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far-field patterns of the scattered fields corresponding to many incident time -harmonic plane waves. First, we consider the inverse problem in the case when the scattering object is an inhomogeneous medium with complex refraction index having compact support. Our approach to this problem is the orthogonal projection method of Colton-Monk (cf. The inverse scattering problem for time acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math. 41 (1988), 97-125). After that, we prove the analogue of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. We then generalize some of these results to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. We solve the inverse impedance problem of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (cf. R. Kress, Linear Integral Equations, Springer-Verlag, New York, 1989).

  4. A frequency selective acoustic transducer for directional Lamb wave sensing.

    PubMed

    Senesi, Matteo; Ruzzene, Massimo

    2011-10-01

    A frequency selective acoustic transducer (FSAT) is proposed for directional sensing of guided waves. The considered FSAT design is characterized by a spiral configuration in wavenumber domain, which leads to a spatial arrangement of the sensing material producing output signals whose dominant frequency component is uniquely associated with the direction of incoming waves. The resulting spiral FSAT can be employed both for directional sensing and generation of guided waves, without relying on phasing and control of a large number of channels. The analytical expression of the shape of the spiral FSAT is obtained through the theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. Testing is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The discrete array approximates the continuous spiral FSAT geometry, and provides the flexibility to test several configurations. The experimental results demonstrate the strong frequency dependent directionality of the spiral FSAT and suggest its application for frequency selective acoustic sensors, to be employed for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health. PMID:21973344

  5. Analysis of Measured and Simulated Supraglottal Acoustic Waves.

    PubMed

    Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A

    2016-09-01

    To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. PMID:26377510

  6. Ion Acoustic Wave Broadening Observations in Moderately Coupled, Moderately Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Tierney, T. E.; Benage, J. F.; Montgomery, D. S.; Murillo, M. S.; Wysocki, F. J.; Johnson, R. P.

    2002-11-01

    Weakly coupled scattering theory breaks down as the ratio of Coulomb interaction energy to thermal kinetic energy, Γ _ii =(Ze)^2/a _iikT, approaches unity and/or as collisions become more frequent. Accurate modeling is required in order to fit collective Thomson scattering features from ion acoustic waves and determine plasma parameters Z, Te and Ti. The Trident Laser was used to produce Al, CH, CH2 laser-plasmas, where ne ˜ 10^20 cm-3, T_e ˜ 75-150 eV, Γ _ii ˜ 0.1-0.75 and N _D ˜ 100-500. A separate 351-nm beam was used as a low intensity probe for Thomson scattering. The scattered light was recorded by an imaging spectrograph to provide temporally and spatially -resolved spectral profiles of thermal ion acoustic waves and Langmuir waves. Ion acoustic waves are observed to be broadened to near the frequency shift, dω _ia/ω _ia ˜ 0.75-1.25. Using a collisionless model, we show that plasma inhomogeneities and instruments produce only ˜50% of the broadening. We conclude that collisions and/or coupling cannot be ignored in modeling of collective modes in warm dense plasmas.

  7. Focusing of the lowest-order antisymmetric Lamb mode behind a gradient-index acoustic metalens with local resonators

    NASA Astrophysics Data System (ADS)

    Zhao, Jinfeng; Bonello, Bernard; Boyko, Olga

    2016-05-01

    We have investigated the focusing of the lowest-order antisymmetric Lamb mode (A0) behind a positive gradient-index (GRIN) acoustic metalens consisting of air holes drilled in a silicon plate with silicon pillars erected on one face of the lens. We have analyzed the focusing in the near field as the result of the coupling between the flexural resonant mode of the pillars and the vibration mode of the air/silicon phononic crystal. We highlight the role played by the polarization coherence between the resonant mode and the vibration of the plate. We demonstrate both numerically and experimentally the focusing behind the lens over a spot less than half a wavelength, paving a way for performance of acoustic lenses beyond the diffraction limit. Our findings can be easily extended to other types of elastic wave.

  8. Optically tunable acoustic wave band-pass filter

    SciTech Connect

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-15

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  9. Optically tunable acoustic wave band-pass filter

    NASA Astrophysics Data System (ADS)

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-01

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  10. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Kaur, Daljeet; Gahlot, Ajay; Sharma, Jyotsna

    2014-10-15

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  11. Characterization of Ion-Acoustic Wave Reflection Off A Plasma Chamber Wall

    NASA Astrophysics Data System (ADS)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2015-11-01

    We present an experimental characterization of the ion acoustic wave reflection coefficient off a plasma chamber wall. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n ~ 1010cm-3 Te ~ 3 eV and B ~ 1 kG. The main diagnostics are laser-induced fluorescence and Langmuir probe measurements. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different wave excitation frequencies is obtained. Analysis of the reflection coefficient's dependence on the phase velocity and frequency of the wave is done through the characterization of waves utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under grant No. DOE DE-FG02-99ER54543.

  12. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators.

  13. Excitation and Damping of Acoustic Waves in Three-Dimensional Accretion Disks

    NASA Astrophysics Data System (ADS)

    Mosqueira, I.; Houben, H.

    2002-09-01

    The damping of acoustic waves plays a key role in determining the criterion for gap opening (see Estrada and Mosqueira, this conference). Because of the potential significance of gap-opening in regulating the rate of accretion and of radial migration, it is important to investigate all sources of wave damping in an accretion disk. Here we mainly discuss damping mechanisms arising from 3-D effects in disks with aspect ratio H/r ~ 0.1. A 2-D treatment is valid when the response of the disk is locally isothermal with adiabatic index γ = 1 and the vertical forcing is ignored. In that case, tidal forcing will generate a 2-D wave which is likely to damp due to wave steepening in a lengthscale of order ~ rL (with weak dependence on the mass of the pertuber), where rL is the radial location of the Lindblad resonance where the acoustic wave is launched (Goodman and Rafikov 2001; Rafikov 2002). On the other hand, vertically thermally stratified disks, as may be the case for active disks with high-optical depth, generate 3-D waves which damp due to non-linear dissipation in a lengthscale of order ~ rL/m, where m is the azimuthal wavenumber (Lubow and Ogilvie 1998). In this case, most of the angular momentum flux is carried by the f-mode; however, tidal forcing also excites other modes. Finally, in a vertically isothermal (but not radially) disk with γ = 5/3 horizontal tidal forcing excites buoyancy g waves that receive ~ 20 per cent of the energy flux for a m = 0 mode (Bate et al. 2002). These g-waves have non-zero vertical group velocity, and are excited primarily away from the midplane, where non-linear dissipation is more readily attained. The radial damping length for these waves is likely to be ~ H and only weakly dependent on the mass of the perturber. We generalize the problem to include the effects of vertical tidal forcing in a vertically isothermal atmosphere with γ > 1, and calculate the vertical flux of angular momentum of acoustic waves with m < r/H. The

  14. Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates

    NASA Astrophysics Data System (ADS)

    Ma, Qingzeng; Jiao, Jingpin; Hu, Ping; Zhong, Xi; Wu, Bin; He, Cunfu

    2014-03-01

    The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SH0-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern of PPM EMATs, and can be used for their parameter optimization.

  15. Kinetic instability of the dust acoustic mode in inhomogeneous, partially magnetized plasma with both positively and negatively charged grains

    SciTech Connect

    Vranjes, J.; Poedts, S.

    2010-08-15

    A purely kinetic instability of the dust acoustic mode in inhomogeneous plasmas is discussed. In the presence of a magnetic field, electrons and ions may be magnetized while at the same time dust grains may remain unmagnetized. Although the dynamics of the light species is strongly affected by the magnetic field, the dust acoustic mode may still propagate in practically any direction. The inhomogeneity implies a source of free energy for an instability that develops through the diamagnetic drift effects of the magnetized species. It is shown that this may be a powerful mechanism for the excitation of dust acoustic waves. The analysis presented in the work is also directly applicable to plasmas containing both positive and negative ions and electrons, provided that at least one of the two ion species is unmagnetized.

  16. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  17. Laser-generated acoustic wave studies on tattoo pigment

    NASA Astrophysics Data System (ADS)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  18. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  19. HF Doppler observations of acoustic waves excited by the earthquake

    NASA Technical Reports Server (NTRS)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  20. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  1. Microwave acoustics handbook. Volume 4: Bulk wave velocities: Numerical data

    NASA Astrophysics Data System (ADS)

    Slobodnik, A. J., Jr.; Delmonico, R. T.; Conway, E. D.

    1980-06-01

    Information useful for the design of acoustic delay lines, resonators, and other miniature, low-cost devices for use in communications and electronic sensing is given. Numerical data on bulk acoustic wave velocities and power flow angles are given for longitudinal, and two shear waves for various orientations of the following single crystalline materials: Ba2NaNb5O15, Bi12/geO20, CdS, Diamond, Eu3Fe5O15, GaAs, Gadolinium Gallium Garnet, Germanium, InSb, InAs, Lead Molybdate, PbS, LiNbO3, LiTaO3, MgO, Quartz, Rutile, Sapphire, Silicon, Spinel, TeO2, YAG, YGaG, YIG, and ZnO. This present volume is intended to be used as a supplement to Volume 3 whenever accurate numerical data is required rather than the more convenient graphical information.

  2. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed. PMID:26886982

  3. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  4. Surface acoustic wave probe implant for predicting epileptic seizures

    DOEpatents

    Gopalsami, Nachappa; Kulikov, Stanislav; Osorio, Ivan; Raptis, Apostolos C.

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  5. Space manufacturing of surface acoustic wave devices, appendix D

    NASA Technical Reports Server (NTRS)

    Sardella, G.

    1973-01-01

    Space manufacturing of transducers in a vibration free environment is discussed. Fabrication of the masks, and possible manufacturing of the surface acoustic wave components aboard a space laboratory would avoid the inherent ground vibrations and the frequency limitation imposed by a seismic isolator pad. The manufacturing vibration requirements are identified. The concepts of space manufacturing are analyzed. A development program for manufacturing transducers is recommended.

  6. Derivation of continuous wave mode output power from burst mode measurements in high-intensity ultrasound applications.

    PubMed

    Haller, Julian; Wilkens, Volker

    2014-03-01

    Measurement of the acoustic output power of transducers in burst mode and derivation of the results to the continuous wave (CW) case reduces heating problems during power measurements with radiation force balances and absorbing targets at high power levels, but requires the knowledge of an "effective duty factor," DReff. In this work, an alternative method for determining DReff is presented that allows the determination at any input voltage amplitude as it can be calculated from the input voltage rf signal in burst mode. Thus with this method, it is not necessary to apply CW signals at all.

  7. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection.

    PubMed

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  8. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection

    PubMed Central

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  9. Decay of transverse acoustic waves in a pulsed gas laser

    SciTech Connect

    Kulkarny, V.A.

    1980-11-01

    The long-term characteristics of transverse acoustic waves in the cavity of a pulsed gaseous laser were studied by analyzing them in a straight duct configuration with nonlinear techniques used in sonic boom problems. A decaying sawtooth waveform containing a shockwave reverberated in the cavity transverse to the flow direction. In the asymptotic decay, the relative pressure perturbation of the wave varies as the 2/5 power of the product of the relative overpressure from the pulse and the speed of sound in the gas.

  10. Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds

    NASA Astrophysics Data System (ADS)

    Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.

  11. Surface acoustic waves enhance neutrophil killing of bacteria.

    PubMed

    Loike, John D; Plitt, Anna; Kothari, Komal; Zumeris, Jona; Budhu, Sadna; Kavalus, Kaitlyn; Ray, Yonatan; Jacob, Harold

    2013-01-01

    Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW) on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm(2), significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria.

  12. EXCITATION OF ACOUSTIC WAVES BY VORTICES IN THE QUIET SUN

    SciTech Connect

    Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2011-02-01

    The five-minute oscillations are one of the basic properties of solar convection. Observations show a mixture of a large number of acoustic wave fronts propagating from their sources. We investigate the process of acoustic waves excitation from the point of view of individual events, by using a realistic three-dimensional radiative hydrodynamic simulation of the quiet Sun. The results show that the excitation events are related to the dynamics of vortex tubes (or swirls) in intergranular lanes of solar convection. These whirlpool-like flows are characterized by very strong horizontal velocities (7-11 km s{sup -1}) and downflows ({approx}7 km s{sup -1}), and are accompanied by strong decreases of temperature, density, and pressure at the surface and 0.5-1 Mm below the surface. High-speed whirlpool flows can attract and capture other vortices. According to our simulation results the processes of vortex interaction, such as vortex annihilation, can cause excitation of acoustic waves on the Sun.

  13. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  14. RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Bard, S.; Carlsson, M.

    2010-10-10

    We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.

  15. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  16. Characteristics of acoustic gravity waves obtained from Dynasonde data

    NASA Astrophysics Data System (ADS)

    Negrea, Cǎtǎlin; Zabotin, Nikolay; Bullett, Terrence; Fuller-Rowell, Tim; Fang, Tzu-Wei; Codrescu, Mihail

    2016-04-01

    Traveling ionospheric disturbances (TIDs) are ubiquitous in the thermosphere-ionosphere and are often assumed to be caused by acoustic gravity waves (AGWs). This study performs an analysis of the TID and AGW activity above Wallops Island, VA, during October 2013. The variations in electron density and ionospheric tilts obtained with the Dynasonde technique are used as primary indicators of wave activity. The temporal and spectral characteristics of the data are discussed in detail, using also results of the Whole Atmosphere Model (WAM) and the Global Ionosphere Plasmasphere Model (GIP). The full set of propagation parameters (frequency, and the vertical, zonal and meridional wave vector components) of the TIDs is determined over the 160-220 km height range. A test of the self-consistency of these results within the confines of the theoretical AGW dispersion relation is devised. This is applied to a sample data set of 24 October 2013. A remarkable agreement has been achieved for wave periods between 52 and 21 min, for which we can rigorously claim the TIDs are caused by underlying acoustic gravity waves. The Wallops Island Dynasonde can operate for extended periods at a 2 min cadence, allowing determination of the statistical distributions of propagation parameters. A dominant population of TIDs is identified in the frequency band below 1 mHz, and for it, the distributions of the horizontal wavelengths, vertical wavelengths, and horizontal phase speeds are obtained.

  17. Ion acoustic shock wave in collisional equal mass plasma

    NASA Astrophysics Data System (ADS)

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-01

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  18. Acoustic properties of multiple cavity resonance liner for absorbing higher-order duct modes.

    PubMed

    Zhou, Di; Wang, Xiaoyu; Jing, Xiaodong; Sun, Xiaofeng

    2016-08-01

    This paper describes analytical and experimental studies conducted to investigate the acoustic properties of axially non-uniform multiple cavity resonance liner for absorbing higher-order duct modes. A three-dimensional analytical model is proposed based upon transfer element method. The model is assessed by making a comparison with results of a liner performance experiment concerning higher-order modes propagation, and the agreement is good. According to the present results, it is found that the performance of multiple cavity resonance liner is related to the incident sound waves. Moreover, an analysis of the corresponding response of liner perforated panel-cavity system is performed, in which the features of resonance frequency and dissipation of the system under grazing or oblique incidence condition are revealed. The conclusions can be extended to typical non-locally reacting liners with single large back-cavity, and it would be beneficial for future non-locally reacting liner design to some extent. PMID:27586753

  19. Computational Simulation of Acoustic Modes in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.

    2004-01-01

    A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.

  20. Acoustic Wave Stimulated Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Reichmann, Sven; Giese, Rüdiger; Amro, Mohammed

    2013-04-01

    High demand and the finite oil deposits will be a problem in the future. To temper the impact of a shortage in crude oil, a lot of research in the field of enhanced oil recovery (EOR) is worldwide ongoing. Using seismic waves to stimulate recovery of oil is known as seismic-EOR. The development of a stimulation procedure using seismic sources and the evaluation of the obtained data in a real oil field is the aim of the project WAVE.O.R. The project is funded by the German scientific society for oil, gas and coal (DGMK). The Technical University of Freiberg (TUBAF) and the German Research Center for Geosciences (GFZ) in Potsdam developed a flooding cell connected with magnetostrictive actuators as sources for seismic energy. This device is eligible to survey the impact of different seismic stimulation parameter like frequency, alignment, amplitude and rock characteristics on oil recovery. The obtained laboratory data of flooding experiments using seismic waves were analyzed for key features like water breakthrough point, oil recovery and oil fraction. New approach has been developed, which consists of the connection of a principal component analysis with a clustering algorithm. This new technique allows us a better understanding and thus prediction of the recovery behavior of oil bearing sediments. The experiments show promising possibilities to enhance oil recovery with seismic stimulation. Especially the combination of different frequencies between 100 Hz and 4000 Hz had a positive impact on oil recovery. The responsible mechanisms were identified and discussed. Data obtained with the laboratory device will be applied in a field test using a borehole device developed by the GFZ in the project "Seismic Prediction While Drilling" (SPWD). For this purpose experiments are conducted to obtain the radiation pattern of the seismic sources used by the SPWD device in a borehole. In addition, the development of a control setup for the 1-D actuator array is an aim of the

  1. Energetic-particle-induced electromagnetic geodesic acoustic mode in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Lingfeng; Dong, J. Q.; He, Zhixiong; He, Hongda; Shen, Y.

    2014-07-01

    Energetic-particle-induced kinetic electromagnetic geodesic acoustic modes (EKEGAMs) are numerically studied in low β (=plasma pressure/magnetic pressure) tokamak plasmas. The parallel component of the perturbed vector potential is considered along with the electrostatic potential perturbation. The effects of finite Larmor radius and finite orbit width of the bulk and energetic ions as well as electron parallel dynamics are all taken into account in the dispersion relation. Systematic harmonic and ordering analysis are performed for frequency and growth rate spectra of the EKEGAMs, assuming ( k ρ i ) ˜ q - 3 ˜ β ≪ 1, where q, k, and ρi are the safety factor, radial component of the EKEGAMs wave vector, and the Larmor radius of the ions, respectively. It is found that there exist critical βh/βi values, which depend, in particular, on pitch angle of energetic ions and safety factor, for the mode to be driven unstable. The EKEGAMs may also be unstable for pitch angle λ 0 B < 0.4 in certain parameter regions. Finite β effect of the bulk ions is shown to have damping effect on the EKEGAMs. Modes with higher radial wave vectors have higher growth rates. The damping from electron dynamics is found decreasing with decrease of the temperature ratio Te/Ti. The modes are easily to be driven unstable in low safety factor q region and high temperature ratio Th/Ti region. The harmonic features of the EKEGAMs are discussed as well.

  2. Influence of surface acoustic waves induced acoustic streaming on the kinetics of electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Tietze, Sabrina; Schlemmer, Josefine; Lindner, Gerhard

    2013-12-01

    The kinetics of electrochemical reactions is controlled by diffusion processes of charge carriers across a boundary layer between the electrode and the electrolyte, which result in a shielding of the electric field inside the electrolyte and a concentration gradient across this boundary layer. In accumulators the diffusion rate determines the rather long time needed for charging, which is a major drawback for electric mobility. This diffusion boundary can be removed by acoustic streaming in the electrolyte induced by surface acoustic waves propagating of the electrode, which results in an increase of the charging current and thus in a reduction of the time needed for charging. For a quantitative study of the influence of acoustic streaming on the charge transport an electropolishing cell with vertically oriented copper electrodes and diluted H3PO4-Propanol electrolytes were used. Lamb waves with various excitation frequencies were exited on the anode with different piezoelectric transducers, which induced acoustic streaming in the overlaying electrolytic liquid. An increase of the polishing current of up to approximately 100 % has been obtained with such a set-up.

  3. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  4. Guided wave opto-acoustic device

    DOEpatents

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  5. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  6. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals.

    PubMed

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-05-01

    Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.

  7. Theoretical investigation of acoustic wave devices based on different piezoelectric films deposited on silicon carbide

    NASA Astrophysics Data System (ADS)

    Fan, Li; Zhang, Shu-yi; Ge, Huan; Zhang, Hui

    2013-07-01

    Performances of acoustic wave (AW) devices based on silicon carbide (SiC) substrates are theoretically studied, in which two types of piezoelectric films of ZnO and AlN deposited on 4H-SiC and 3C-SiC substrates are adopted. The phase velocities (PV), electromechanical coupling coefficients (ECC), and temperature coefficients of frequency (TCF) for three AW modes (Rayleigh wave, A0 and S0 modes of Lamb wave) often used in AW devices are calculated based on four types of configurations of interdigital transducers (IDTs). It is found that that the ZnO piezoelectric film is proper for the AW device operating in the low-frequency range because a high ECC can be realized using a thin ZnO film. The AlN piezoelectric film is proper for the device operating in the high-frequency range in virtue of the high PV of AlN, which can increase the finger width of the IDT. Generally, in the low-frequency Lamb wave devices using ZnO piezoelectric films with small normalized thicknesses of films to wavelengths hf/λ, thin SiC substrates can increase ECCs but induce high TCFs simultaneously. In the high-frequency device with a large hf/λ, the S0 mode of Lamb wave based on the AlN piezoelectric film deposited on a thick SiC substrate exhibits high performances by simultaneously considering the PV, ECC, and TCF.

  8. Interfacial destabilization and atomization driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Qi, Aisha; Yeo, Leslie Y.; Friend, James R.

    2008-07-01

    Surface acoustic wave atomization is a rapid means for generating micron and submicron aerosol droplets. Little, however, is understood about the mechanisms by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory, and simple numerical modeling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Using a millimeter-order fluid drop exposed to surface acoustic waves as it sits atop a single-crystal lithium niobate piezoelectric substrate, large aerosol droplets on the length scale of the parent drop dimension are ejected through a whipping and pinch-off phenomenon, which occurs at the asymmetrically formed crest of the drop due to leakage of acoustic radiation at the Rayleigh angle. Smaller micron order droplets, on the other hand, are formed due to the axisymmetric breakup of cylindrical liquid jets that are ejected as a consequence of interfacial destabilization. The 10μm droplet dimension correlates with the jet radius and the instability wavelength, both determined from a simple scaling argument involving a viscous-capillary dominant force balance. The results are further supported by numerical solution of the evolution equation governing the interfacial profile of a sessile drop along which an acoustic pressure wave is imposed. Viscous and capillary forces dominate in the bulk of the parent drop, but inertia is dominant in the ejected jets and within a thin boundary layer adjacent to the substrate where surface and interfacial accelerations are large. With the specific exception of parent drops that spread into thin films with thicknesses on the order of the boundary layer dimension prior to atomization, the free surface of the drop is always observed to vibrate at the capillary-viscous resonance frequency—even if the exciting frequency of the surface acoustic wave is several orders of magnitude larger—contrary to

  9. Switchable and Tunable Ferroelectric Bulk Acoustic Wave Resonators and Filters

    NASA Astrophysics Data System (ADS)

    Saddik, George Nabih

    Ferroelectric materials such as barium titanate (BaTiO 3 or BTO), strontium titanate (SrTiO3 or STO), and their solid solution barium strontium titanate (BaxSr1-xTiO 3 or BST) have been under investigation for over 50 years. BTO, STO, and BST are high-k dielectric materials, with a field dependent permittivity and a perovskite crystal structure. At room temperature BTO is a ferroelectric with a ferroelectric to paraelectric transition temperature of about 116°C (Curie temperature), while STO has no ferroelectric phase. The formation of a solid solution between BTO and STO allows for the engineering of the Curie temperature; the Curie temperature decreses as the mole ratio of barium decreases. Extensive research went into understanding the properties of BST and developing RF circuits such as tunable capacitors, tunable matching networks, tunable filters, phase shifters and harmonic generators. BST tunable capacitors have always had anomalous resonances in the one port scattering parameter measurements, although they are very small they degrade the quality factor of the device, and research went into reducing these resonances as much as possible. The goal of this thesis is to investigate these anomalous resonances and exploit them into RF devices and circuits. Careful investigation showed that these resonances were field induced piezoelectric resonance. Piezoelectric materials such as AlN, ZnO, and PZT are used in many applications, such as resonators, and filters. Thin film bulk acoustic wave resonators (FBAR) have been in use by research and industry since the early 1980s, and in high volume production for cell phone duplexers since early 2000s. FBAR filters and duplexers have several advantages over surface acoustic wave (SAW) and ceramic devices such as high quality factors necessary for sharp filter skirts, small size, high performance, and ease of integration. There are two approaches to designing bulk acoustic wave resonators. The first is an FBAR where a

  10. Collective modes in charge-density waves and long-range Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Virosztek, Attila; Maki, Kazumi

    1993-07-01

    We study theoretically the collective modes in charge-density waves in the presence of long-range Coulomb interaction. We find that earlier works by Takada and his collaborators are inadequate since they introduced inconsistent approximations in evaluating a variety of correlation functions. The amplitude mode is unaffected by the Coulomb interaction, while the phase mode splits into the phason with linear dispersion (i.e., acoustic mode) and the optical mode with an energy gap in the presence of the Coulomb interaction. In particular, we establish the temperature dependence of the phason velocity vφ. A comparison with recent neutron-scattering data on the phason velocity in the charge-density wave of a single crystal of blue bronze K0.3MoO3 indicates that mean-field theory which includes the long-range Coulomb interaction gives an excellent description of the observed phason velocity.

  11. Geodesic acoustic mode in toroidally rotating anisotropic tokamaks

    SciTech Connect

    Ren, Haijun

    2015-07-15

    Effects of anisotropy on the geodesic acoustic mode (GAM) are analyzed by using gyro-kinetic equations applicable to low-frequency microinstabilities in a toroidally rotating tokamak plasma. Dispersion relation in the presence of arbitrary Mach number M, anisotropy strength σ, and the temperature ration τ is analytically derived. It is shown that when σ is less than 3 + 2τ, the increased electron temperature with fixed ion parallel temperature increases the normalized GAM frequency. When σ is larger than 3 + 2τ, the increasing of electron temperature decreases the GAM frequency. The anisotropy σ always tends to enlarge the GAM frequency. The Landau damping rate is dramatically decreased by the increasing τ or σ.

  12. Geodesic acoustic mode in anisotropic plasma with heat flux

    SciTech Connect

    Ren, Haijun

    2015-10-15

    Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q{sup 2}, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.

  13. Simultaneous multipoint acoustic emission sensing using fibre acoustic wave grating sensors with identical spectrum

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ryul; Lee, Seung-Seok; Yoon, Dong-Jin

    2008-08-01

    This paper introduces the development of a simultaneous multipoint acoustic emission (AE) sensing system using a narrowband tuneable laser with high power and fibre acoustic wave grating sensors (FAWGSs). The demodulation technique is the same as that used in existing methods where the narrowband laser peak is tuned to one mid-reflection point in the main lobe of a fibre Bragg grating (FBG) spectrum. However, the sensor head is changed to an FAWGS for which a FBG is installed in a strain-free configuration so that it can detect AE waves in a structure not directly but in the form of a fibre-guided acoustic wave. Therefore since the structural strain cannot make the Bragg wavelength change, multiple FBGs with identical spectrum can be connected with multiple optical paths realized by equal light intensity dividers. The possible temperature difference between the multiple FAWGSs is passively resolved by using short FBGs which provide a wider operating temperature region. Consequently, we can resolve the problem that the FBG spectrum is easily deviated from the lasing wavelength because of the strain. In addition, the simultaneous multipoint sensing capability based on a single laser improves the cost-performance ratio of the optical system as well as reducing the structural inspection time, and enabling in situ health monitoring of real structures exposed to large and dynamic strains. The feasibility of the system is demonstrated in typical applications of in situ structural health monitoring based on AE techniques.

  14. Ion acoustic waves in a multi-ion plasma.

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; White, R. B.; Samec, T. K.

    1971-01-01

    An exact treatment of the multispecies ion acoustic dispersion relation is given for an argon/helium plasma. Phase velocity and damping are obtained as a function of ion-electron temperature ratio and relative densities of the two species. There are two important modes in the plasma, with quite different phase velocities, which are referred to as principal heavy ion mode and principal light ion mode. Which of these is dominant depends on the relative densities of the two components, but, in general, the light ion mode becomes important for surprisingly small light ion contamination. Approximate analytic expressions are derived from damping rates and phase velocities and their domains of validity are investigated. Relevance of the results for the investigation of collisionless shocks is discussed.

  15. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    PubMed

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R

    2015-08-01

    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure.

  16. On the existence of guided acoustic waves at rectangular anisotropic edges.

    PubMed

    Pupyrev, Pavel D; Lomonosov, Alexey M; Nikodijevic, Aleksandar; Mayer, Andreas P

    2016-09-01

    The existence of acoustic waves with displacements localized at the tip of an isotropic elastic wedge was rigorously proven by Kamotskii, Zavorokhin and Nazarov. This proof, which is based on a variational approach, is extended to rectangular anisotropic wedges. For two high-symmetry configurations of rectangular edges in elastic media with tetragonal symmetry, a criterion is derived that allows identifying the boundary between the regions of existence for wedge modes of even and odd symmetry in regions of parameter space, where even- and odd-symmetry modes do not exist simultaneously. Furthermore, rectangular edges with non-equivalent surfaces are analyzed, and it is shown that at rectangular edges of cubic elastic media with one (110) surface and one (001) surface, a tip-localized guided wave always exists, apart from special cases that are characterized. PMID:27447889

  17. Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices

    PubMed Central

    Fu, Y. Q.; Garcia-Gancedo, L.; Pang, H. F.; Porro, S.; Gu, Y. W.; Luo, J. K.; Zu, X. T.; Placido, F.; Wilson, J. I. B.; Flewitt, A. J.; Milne, W. I.

    2012-01-01

    Surface acoustic wave (SAW) devices with 64 μm wavelength were fabricated on a zinc oxide (ZnO) film deposited on top of an ultra-smooth nanocrystalline diamond (UNCD) layer. The smooth surface of the UNCD film allowed the growth of the ZnO film with excellent c-axis orientation and low surface roughness, suitable for SAW fabrication, and could restrain the wave from significantly dissipating into the substrate. The frequency response of the fabricated devices was characterized and a Rayleigh mode was observed at ∼65.4 MHz. This mode was utilised to demonstrate that the ZnO/UNCD SAW device can be successfully used for microfluidic applications. Streaming, pumping, and jetting using microdroplets of 0.5 and 20 μl were achieved and characterized under different powers applied to the SAW device, focusing more on the jetting behaviors induced by the ZnO SAW. PMID:22655016

  18. Bendable ZnO thin film surface acoustic wave devices on polyethylene terephthalate substrate

    SciTech Connect

    He, Xingli; Guo, Hongwei; Chen, Jinkai; Wang, Wenbo; Xuan, Weipeng; Xu, Yang E-mail: jl2@bolton.ac.uk; Luo, Jikui E-mail: jl2@bolton.ac.uk

    2014-05-26

    Bendable surface acoustic wave (SAW) devices were fabricated using high quality c-axis orientation ZnO films deposited on flexible polyethylene terephthalate substrates at 120 °C. Dual resonance modes, namely, the zero order pseudo asymmetric (A{sub 0}) and symmetric (S{sub 0}) Lamb wave modes, have been obtained from the SAW devices. The SAW devices perform well even after repeated flexion up to 2500 με for 100 times, demonstrating its suitability for flexible electronics application. The SAW devices are also highly sensitive to compressive and tensile strains, exhibiting excellent anti-strain deterioration property, thus, they are particularly suitable for sensing large strains.

  19. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    PubMed

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R

    2015-08-01

    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure. PMID:25819878

  20. Flow velocity measurement with the nonlinear acoustic wave scattering

    NASA Astrophysics Data System (ADS)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  1. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  2. Determination of hydrocarbon levels in water via laser-induced acoustics wave

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman

    2016-04-01

    Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.

  3. Collective Modes in Strongly Correlated Yukawa Liquids: Waves in Dusty Plasmas

    SciTech Connect

    Kalman, G.; Rosenberg, M.; DeWitt, H. E.

    2000-06-26

    We determine the collective mode structure of a strongly correlated Yukawa fluid, with the purpose of analyzing wave propagation in a strongly coupled dusty plasma. We identify a longitudinal plasmon and a transverse shear mode. The dispersion is characterized by a low-k acoustic behavior, a frequency maximum well below the plasma frequency, and a high-k merging of the two modes around the Einstein frequency of localized oscillations. The damping effect of collisions between neutrals and dust grains is estimated. (c) 2000 The American Physical Society.

  4. Synchronization of the dust acoustic wave under microgravity

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, W. D. Suranga; Goree, J.

    2013-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. To prepare for experiments under microgravity conditions using the PK-4 facility on the International Space Station, we perform a laboratory experiment to observe synchronization of the self-excited dust acoustic wave. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. The dust acoustic wave is self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the wave, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency. Supported by NASA's Physical Science Research Program.

  5. Wave-Particle Interactions in Electron Acoustic Waves in Pure Ion Plasmas

    SciTech Connect

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-03-06

    Electron acoustic waves (EAW) with a phase velocity less than twice the plasma thermal velocity are observed on pure ion plasma columns. At low excitation amplitudes, the EAW frequencies agree with theory, but at moderate excitation the EAW is more frequency variable than typical Langmuir waves, and at large excitations resonance is observed over a broad range. Laser induced fluorescence measurements of the wave-coherent ion velocity distribution show phase reversals and wave-particle trapping plateaus at {+-}v{sub ph}, as expected, and corroborate the unusual role of kinetic pressure in the EAW.

  6. Plane-wave analysis of solar acoustic-gravity waves: A (slightly) new approach

    NASA Technical Reports Server (NTRS)

    Bogart, Richard S.; Sa, L. A. D.; Duvall, Thomas L., Jr.; Haber, Deborah A.; Toomre, Juri; Hill, Frank

    1995-01-01

    The plane-wave decomposition of the acoustic-gravity wave effects observed in the photosphere provides a computationally efficient technique that probes the structure of the upper convective zone and boundary. In this region, the flat sun approximation is considered as being reasonably accurate. A technique to be used for the systematic plane-wave analysis of Michelson Doppler imager data, as part of the solar oscillations investigation, is described. Estimates of sensitivity are presented, and the effects of using different planar mappings are discussed. The technique is compared with previous approaches to the three dimensional plane-wave problem.

  7. Analytic studies of dispersive properties of shear Alfvén and acoustic wave spectra in tokamaks

    SciTech Connect

    Chavdarovski, Ilija; Zonca, Fulvio

    2014-05-15

    The properties of the low frequency shear Alfvén and acoustic wave spectra in toroidal geometry are examined analytically and numerically considering wave particle interactions with magnetically trapped and circulating particles, using the theoretical model described in [I. Chavdarovski and F. Zonca, Plasma Phys. Controlled Fusion 51, 115001 (2009)] and following the framework of the generalized fishbone-like dispersion relation. Effects of trapped particles as well as diamagnetic effects on the frequencies and damping rates of the beta-induced Alfvén eigenmodes, kinetic ballooning modes and beta-induced Alfvén-acoustic eigenmodes are discussed and shown to be crucial to give a proper assessment of mode structure and stability conditions. Present results also demonstrate the mutual coupling of these various branches and suggest that frequency as well as mode polarization are crucial for their identification on the basis of experimental evidence.

  8. Surface modification on acoustic wave biosensors for enhanced specificity.

    PubMed

    Onen, Onursal; Ahmad, Asad A; Guldiken, Rasim; Gallant, Nathan D

    2012-01-01

    Changes in mass loading on the surface of acoustic biosensors result in output frequency shifts which provide precise measurements of analytes. Therefore, to detect a particular biomarker, the sensor delay path must be judiciously designed to maximize sensitivity and specificity. B-cell lymphoma 2 protein (Bcl-2) found in urine is under investigation as a biomarker for non-invasive early detection of ovarian cancer. In this study, surface chemistry and biofunctionalization approaches were evaluated for their effectiveness in presenting antibodies for Bcl-2 capture while minimizing non-specific protein adsorption. The optimal combination of sequentially adsorbing protein A/G, anti-Bcl-2 IgG and Pluronic F127 onto a hydrophobic surface provided the greatest signal-to-noise ratio and enabled the reliable detection of Bcl-2 concentrations below that previously identified for early stage ovarian cancer as characterized by a modified ELISA method. Finally, the optimal surface modification was applied to a prototype acoustic device and the frequency shift for a range of Bcl-2 concentration was quantified to demonstrate the effectiveness in surface acoustic wave (SAW)-based detection applications. The surface functionalization approaches demonstrated here to specifically and sensitively detect Bcl-2 in a working ultrasonic MEMS biosensor prototype can easily be modified to detect additional biomarkers and enhance other acoustic biosensors.

  9. Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

    2004-01-01

    The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

  10. Convergence of intense aerial acoustic waves radiated by a rectangular transverse vibrating plate

    NASA Astrophysics Data System (ADS)

    Nakai, Tomoki; Asami, Takuya; Miura, Hikaru

    2016-07-01

    A stripe-mode rectangular transverse vibrating plate can be used as a sound source that emits intense ultrasonic waves in air by placing a jut driving point outside the vibrating plate. The aim of this research was to use this vibrating plate to focus sound waves in the direction perpendicular to the nodal lines of the vibrating plate, which differs from the conventional direction. In this study, we investigated new methods for focusing the emitted sound waves by arranging reflective plates around the vibrating plate, using a design equation for each node between nodes in the vibrating plate, and placing additional reflective plates at an outer position beyond the convergence point, and found that a powerful acoustic field can be formed at an arbitrary position.

  11. On the contribution of sunspots to the observed frequency shifts of solar acoustic modes

    NASA Astrophysics Data System (ADS)

    Santos, A. R. G.; Cunha, M. S.; Avelino, P. P.; Chaplin, W. J.; Campante, T. L.

    2016-09-01

    Activity-related variations in the solar oscillation properties have been known for 30 years. However, the relative importance of the different contributions to the observed variations is not yet fully understood. Our goal is to estimate the relative contribution from sunspots to the observed activity-related variations in the frequencies of the acoustic modes. We use a variational principle to relate the phase differences induced by sunspots on the acoustic waves to the corresponding changes in the frequencies of the global acoustic oscillations. From the sunspot properties (area and latitude as a function of time), we are able to estimate the spot-induced frequency shifts. These are then combined with a smooth frequency shift component, associated with long-term solar-cycle variations, and the results compared with the frequency shifts derived from the Global Oscillation Network Group data. The result of this comparison is consistent with a sunspot contribution to the observed frequency shifts of roughly 30 per cent, with the remaining 70 per cent resulting mostly from a global, non-stochastic variation, possibly related to the changes in the overall magnetic field. Moreover, analysis of the residuals obtained after the subtraction of the model frequency shifts from the observations indicates the presence of a 1.5-yr periodicity in the data in phase with the quasi-biennial variations reported in the literature.

  12. Dust acoustic solitary waves in a quantum plasma

    SciTech Connect

    Ali, S.; Shukla, P.K.

    2006-02-15

    By employing one-dimensional quantum hydrodynamic (QHD) model for a three species quantum plasma, nonlinear properties of dust acoustic solitary waves are studied. For this purpose a Korteweg-de Vries (KdV) equation is derived, incorporating quantum corrections. The quantum mechanical effects are also examined numerically both on the profiles of the amplitude and the width of dust acoustic solitary waves. It is found that the amplitude remains constant but the width shrinks for different values of a dimensionless electron quantum parameter H{sub e}={radical}((Z{sub d0}({Dirac_h}/2{pi}){sup 2}{omega}{sub pd}{sup 2})/m{sub e}m{sub d}C{sub d}{sup 4}), where Z{sub d0} is the dust charge state, ({Dirac_h}/2{pi}) is the Planck constant divided by 2{pi}, {omega}{sub pd} is the dust plasma frequency, m{sub e} (m{sub d}) is the electron (dust) mass, and C{sub d} is the dust acoustic speed.

  13. Microwave acoustics handbook. Volume 3: Bulk wave velocities

    NASA Astrophysics Data System (ADS)

    Slobodnik, A. J., Jr.; Delmonico, R. T.; Conway, E. D.

    1980-05-01

    Information useful for the design of acoustic delay lines, resonators, and other miniature, low cost, reliable devices for use in communications and electronic sensing is given in this report. Computations of bulk acoustic wave velocities, power flow angles, and coupling to electric fields are plotted for various orientations of the following single crystalline materials: Ba2NaNb5O15, Bi12GeO20, CdS, Diamond, Eu3Fe5O15, Gadolinium Gallium Garnet, GaAs, Germanium, InSb, InAs, Lead Molybdate, PbS, LiNbO3, LiTaO3, MgO, Quartz, Rutile, Sapphire, Silicon, Spinel, TeO2, YAG, YGaG, YIG, and ZnO. Particular cuts of interest, including cases for common metals, are then chosen for more detailed numerical calculations of mechanical and electrical parameters governing acoustic wave propagation in these media. A list of material constants is also included.

  14. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  15. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  16. Observation of multifractal intermittent dust-acoustic-wave turbulence

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Yi; Chang, Mei-Chu; I, Lin

    2012-10-01

    Intermittent dust acoustic wave turbulence self-excited by downward ion flow in dissipative dusty plasma is experimentally observed and investigated. The power spectra of the temporal dust density fluctuation show distinct bumps in the low-frequency regime and power-law scaling in the high-frequency regime. The structure-function analysis demonstrates the multifractal dynamics of the wave turbulence. Decreasing dissipation by decreasing neutral pressure leads to a more turbulent state with a less distinct low-frequency bump in the power spectrum, more stretched non-Gaussian tails in the histogram of the wave-height increment at a small time interval τ, and a higher degree of multifractality. The loss of long time memory with increasing τ for a more turbulent state causes a change from the distribution with stretched non-Gaussian tails to Gaussian with increasing τ.

  17. Ion acoustic solitary waves in magneto-rotating plasmas

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.

    2010-08-01

    Propagation of an ion acoustic wave (IAW) in a magnetized electron-ion plasma, which is rotating around an axis at an angle θ with the direction of magnetic field, is studied by incorporating the effects of trapped and untrapped electron distributions. Employing the perturbation scheme, Korteweg-deVries and Schamel's modified KdV equations are derived for the small angle θ which may support the nonlinear IAW on a slow time scale of ion motion. The amplitude and width of the solitary wave in both cases (trapped and untrapped electrons) have been discussed with the effects of oblique rotation and external magnetic field. It is shown that the nonlinear effects considerably influence the propagation of waves in rotating plasmas.

  18. Attenuation of 7 GHz surface acoustic waves on silicon

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Cahill, David G.

    2016-09-01

    We measured the attenuation of GHz frequency surface acoustic waves (SAWs) on the Si (001) surface using an optical pump-probe technique at temperatures between 300 and 600 K. SAWs are generated and detected by a 700 nm Al grating fabricated by nanoimprint lithography. The grating for SAW generation is separated from the grating for SAW detection by ≈150 μ m . The amplitude of SAWs is attenuated by coupling to bulk waves created by the Al grating, diffraction due to the finite size of the source, and the intrinsic relaxational Akhiezer damping of elastic waves in Si. Thermal phonon relaxation time and Grüneisen parameters are fitted using temperature-dependent measurement. The f Q product of a hypothetical micromechanical oscillator limited by Akhiezer damping at this frequency is ˜3 ×1013 Hz.

  19. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    NASA Astrophysics Data System (ADS)

    Li, Bing; Tan, K. T.

    2016-08-01

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted and mathematically controlled, which extends the design concept of unidirectional transmission devices.

  20. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  1. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  2. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum. PMID:27415357

  3. The Quest for B Modes from Inflationary Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kamionkowski, Marc; Kovetz, Ely D.

    2016-09-01

    The search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described. The canonical single-field slow-roll model of inflation is presented, and we explain the quantum production of primordial density perturbations and gravitational waves. It is shown how these gravitational waves then give rise to polarization in the CMB. We then describe the geometric decomposition of the CMB polarization pattern into a curl-free component (E mode) and curl component (B mode) and show explicitly that gravitational waves induce B modes. We discuss the B modes induced by gravitational lensing and by Galactic foregrounds and show how both are distinguished from those induced by inflationary gravitational waves. Issues involved in the experimental pursuit of these B modes are described, and we summarize some of the strategies being pursued. We close with a brief discussion of some other avenues toward detecting/characterizing the inflationary gravitational-wave background.

  4. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2016-07-01

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  5. Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams

    SciTech Connect

    Gras, S.; Blair, D. G.; Ju, L.

    2010-02-15

    To reduce the thermal noise in the future generation of gravitational wave detectors, flat-top beams have been proposed to replace conventional Gaussian beams, so as to obtain better averaging over the Brownian motion of the test masses. Here, we present a detailed investigation of the unwanted opto-acoustic interactions in such interferometers, which can lead to the phenomenon of parametric instability. Our results show that the increased overlap of the Mesa beams with the test masses leads to approximately 3 times as many unstable modes in comparison to a similar interferometer with Gaussian beams.

  6. Selective excitation of eigenmodes in a multilayer thin film resonator on bulk acoustic waves

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. K.; Ptashnik, S. V.; Kozyrev, A. B.

    2016-08-01

    We consider a method of control over the operating frequency of a resonator on bulk acoustic waves, which is based on the selective excitation of eigenmodes. The frequency switching is achieved by using several layers of a ferroelectric in the paraelectric state and applying a control voltage of appropriate magnitude and polarity to each layer. The principle of selectivity is formulated and the criterion function is defined, which ensure the most effective excitation of a selected eigenmode with the possible suppression of parasitic modes. An example of using this function for a resonator switched between four eigenmodes is presented.

  7. Theoretical study of the anisotropic diffraction of light waves by acoustic waves in lithium niobate crystals.

    PubMed

    Rouvaen, J M; Waxin, G; Gazalet, M G; Bridoux, E

    1990-03-20

    The anisotropic diffraction of light by high frequency longitudinal ultrasonic waves in the tangential phase matching configuration may present some definite advantages over the same interaction using transverse acoustic waves. A systematic search for favorable crystal cuts in lithium niobate was worked out. The main results of this study are reported here; they enable the choice of the best configuration for a given operating center frequency.

  8. Electrostatic Generation of Bulk Acoustic Waves and Electrical Parameters of Si-MEMS Resonators.

    PubMed

    Dulmet, Bernard; Ivan, Mihaela Eugenia; Ballandras, Sylvain

    2016-02-01

    This paper proposes an analytical approach to model the generation of bulk acoustic waves in an electrostatically excited silicon MEMS structure, as well as its electromechanical response in terms of static and dynamic displacements, electromechanical coupling, and motional current. The analysis pertains to the single-port electrostatic drive of trapped-energy thickness-extensional (TE) modes in thin plates. Both asymmetric single-side and symmetric double-side electrostatic gap configurations are modeled. Green's function is used to describe the characteristic of the static displacement of the driven surface of the structure versus the dc bias voltage, which allows us to determine the electrical response of the resonator. Optical and electrical characterizations have been performed on resonator samples operating at 10.3 MHz on the fundamental of TE mode under single-side electrostatic excitation. The various figures of merit depend on the dc bias voltage. Typical values of 9000 for the Q-factor, and of 10(-5) for the electromechanical coupling factor k(2) have been obtained with [Formula: see text] for [Formula: see text]-thick gaps. Here-considered modes have a typical temperature coefficients of frequency (TCF) close to -30 ppm/(°)C. We conclude that the practical usability of such electrostatically excited bulk acoustic waves (BAW) resonators essentially depends on the efficiency of the compensation of feed-through capacitance.

  9. Electrostatic Generation of Bulk Acoustic Waves and Electrical Parameters of Si-MEMS Resonators.

    PubMed

    Dulmet, Bernard; Ivan, Mihaela Eugenia; Ballandras, Sylvain

    2016-02-01

    This paper proposes an analytical approach to model the generation of bulk acoustic waves in an electrostatically excited silicon MEMS structure, as well as its electromechanical response in terms of static and dynamic displacements, electromechanical coupling, and motional current. The analysis pertains to the single-port electrostatic drive of trapped-energy thickness-extensional (TE) modes in thin plates. Both asymmetric single-side and symmetric double-side electrostatic gap configurations are modeled. Green's function is used to describe the characteristic of the static displacement of the driven surface of the structure versus the dc bias voltage, which allows us to determine the electrical response of the resonator. Optical and electrical characterizations have been performed on resonator samples operating at 10.3 MHz on the fundamental of TE mode under single-side electrostatic excitation. The various figures of merit depend on the dc bias voltage. Typical values of 9000 for the Q-factor, and of 10(-5) for the electromechanical coupling factor k(2) have been obtained with [Formula: see text] for [Formula: see text]-thick gaps. Here-considered modes have a typical temperature coefficients of frequency (TCF) close to -30 ppm/(°)C. We conclude that the practical usability of such electrostatically excited bulk acoustic waves (BAW) resonators essentially depends on the efficiency of the compensation of feed-through capacitance. PMID:26642450

  10. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Zhu, Qi; Shao, Hao; Chen, Changhua; Huang, Wenhua

    2015-03-01

    A dual-cavity TM02-TM01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM01 mode feedback.

  11. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  12. Visualization of Surface Acoustic Waves in Thin Liquid Films

    PubMed Central

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, J. M.; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  13. Visualization of Surface Acoustic Waves in Thin Liquid Films.

    PubMed

    Rambach, R W; Taiber, J; Scheck, C M L; Meyer, C; Reboud, J; Cooper, J M; Franke, T

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  14. Parallel acoustic wave propagation and generation of a seismic dataset

    SciTech Connect

    Oldfield, R.; Dyke, J.V.; Semeraro, B.D.

    1995-12-01

    The ultimate goal of this work is to construct a large seismic dataset that will be used to calibrate industrial seismic analysis codes. Seismic analysis is used in oil and gas exploration to deduce subterranean geological formations based on the reflection of acoustic waves from a source to an array of receivers placed on or near the surface. This work deals with the generation of a test set of acoustic data based on a known representative geological formation. Industrial users of the data will calibrate their codes by comparing their predicted geology to the know geology used to generate the test data. This is a cooperative effort involving Los Alamos, Sandia, Oak Ridge and Lawrence Livermore national labs as well as Institut Francais du Petrole and the Society of Exploration Geophysicists.

  15. Ion acoustic waves and related plasma observations in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Marsch, E.; Pilipp, W.; Schwenn, R.; Rosenbauer, H.

    1979-01-01

    The paper presents a study of the relationship between the interplanetary ion acoustic waves detected by Helios and the macroscopic and microscopic characteristics of the solar wind plasma. Two major mechanisms, an electron heat flux instability and a double-ion beam instability, are considered for generating the ion-acoustic-like waves observed in the solar wind. The results provide support to both mechanisms for generating the solar wind ion acoustic waves, although each mechanism has problems under certain conditions.

  16. Cylindrical and spherical ion acoustic waves in a plasma with nonthermal electrons and warm ions

    SciTech Connect

    Sahu, Biswajit; Roychoudhury, Rajkumar

    2005-05-15

    Using the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg-de Vries (KdV) and modified KdV equations are derived for ion acoustic waves in an unmagnetized plasma consisting of warm adiabatic ions and nonthermal electrons. The effects of nonthermally distributed electrons on cylindrical and spherical ion acoustic waves are investigated. It is found that the nonthermality has a very significant effect on the nature of ion acoustic waves.

  17. Dynamic index modulation mechanism in polarization-maintained fiber Bragg gratings induced by transverse acoustic waves.

    PubMed

    Miao, Ren; Zhang, Wei; Feng, Xue; Zhao, Jianhui; Liu, Xiaoming

    2009-08-20

    A novel index modulation mechanism of polarization-maintained fiber Bragg gratings based on the microbend of stress members induced by a transverse acoustic wave is proposed and investigated experimentally. The index modulation leads to a series of ghost gratings with specific polarization, whose wavelengths can be tuned by the acoustic wave frequency and whose intensities depend on the vibration direction of the transverse acoustic wave. Our method provides a novel way to achieve polarization-dependent narrowband acousto-optic tunable filters.

  18. Molding acoustic, electromagnetic and water waves with a single cloak.

    PubMed

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.

  19. Molding acoustic, electromagnetic and water waves with a single cloak

    PubMed Central

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-01-01

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934

  20. System and method for sonic wave measurements using an acoustic beam source

    SciTech Connect

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  1. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  2. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  3. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  4. Mode conversion by symmetry breaking of propagating spin waves.

    SciTech Connect

    Clausen, P.; Vogt, K.; Schultheiss, H.; Schafer, S.; Obry, B.; Wolf, G.; Pirro, P.; Leven, B.; Hillebrands, B.

    2011-10-01

    We study spin-wave transport in a microstructured Ni{sub 81}Fe{sub 19} waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n = 1, 3,... into a mixed set of symmetric and asymmetric modes. Due to the spatial homogeneity of the exciting field along the used microstrip antenna, quantized spin-wave modes with an even number n of antinodes across the stripe's width cannot be directly excited. We show that a break in translational symmetry may result in a partial conversion of even spin-wave waveguide modes.

  5. Evaluation of the resolution of a metamaterial acoustic leaky wave antenna.

    PubMed

    Naify, Christina J; Rogers, Jeffery S; Guild, Matthew D; Rohde, Charles A; Orris, Gregory J

    2016-06-01

    Acoustic antennas have long been utilized to directionally steer acoustic waves in both air and water. Typically, these antennas are comprised of arrays of active acoustic elements, which are electronically phased to steer the acoustic profile in the desired direction. A new technology, known as an acoustic leaky wave antenna (LWA), has recently been shown to achieve directional steering of acoustic waves using a single active transducer coupled to a transmission line passive aperture. The LWA steers acoustic energy by preferential coupling to an input frequency and can be designed to steer from backfire to endfire, including broadside. This paper provides an analysis of resolution as a function of both input frequency and antenna length. Additionally, the resolution is compared to that achieved using an array of active acoustic elements. PMID:27369149

  6. Inverse scattering problems for acoustic waves in an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Kedzierawski, Andrzej Wladyslaw

    The inverse scattering problem is considered of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far field patterns of the scattered field corresponding to many incident time-harmonic plane waves. First, the inverse problem is studied in the case when the scattering object is an inhomogeneous medium with complex refractive index having compact support. The approach to this problem is the orthogonal projection method of Colton-Monk (1988). After that, the analogue is proven of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. Some of these results are then generalized to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. The inverse impedance problem is solved of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (1989).

  7. Effect of strong coupling on dust acoustic waves and instabilities

    SciTech Connect

    Rosenberg, M.; Kalman, G.

    1998-10-21

    The presence of charged dust in a plasma can lead to very low frequency dust acoustic waves and instabilities. In certain laboratory plasmas the dust is strongly coupled, as characterized by the condition {gamma}{sub d}=Q{sub d}{sup 2} exp(-d/{lambda}{sub D})/dT{sub d}{>=}1, where Q{sub d} is the dust charge, d is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. When the dust is strongly coupled, the spatial correlation of the grains can affect the dispersion relation of these waves. We review our recent work [1] on the dispersion properties of dust acoustic waves in the strongly coupled (liquid) phase in a dusty plasma, including also the effects of dust-neutral collisions. We then discuss a preliminary analysis of the effect of strong dust coupling on an ion dust two-stream instability in a collisional dusty plasma. Applications to laboratory dusty plasmas are discussed.

  8. Effect of strong coupling on dust acoustic waves and instabilities

    SciTech Connect

    Rosenberg, M. Kalman, G.

    1998-10-01

    The presence of charged dust in a plasma can lead to very low frequency dust acoustic waves and instabilities. In certain laboratory plasmas the dust is strongly coupled, as characterized by the condition {Gamma}{sub d}=Q{sub d}{sup 2} exp({minus}d/{lambda}{sub D})/dT{sub d}{ge}1, where Q{sub d} is the dust charge, {ital d} is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. When the dust is strongly coupled, the spatial correlation of the grains can affect the dispersion relation of these waves. We review our recent work [1] on the dispersion properties of dust acoustic waves in the strongly coupled (liquid) phase in a dusty plasma, including also the effects of dust-neutral collisions. We then discuss a preliminary analysis of the effect of strong dust coupling on an ion dust two-stream instability in a collisional dusty plasma. Applications to laboratory dusty plasmas are discussed. {copyright} {ital 1998 American Institute of Physics.}

  9. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    SciTech Connect

    Mukherjee, Abhik; Janaki, M. S.; Bose, Anirban

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  10. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  11. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  12. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  13. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    NASA Astrophysics Data System (ADS)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  14. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  15. Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma

    SciTech Connect

    Bouzit, Omar; Tribeche, Mouloud

    2015-10-15

    The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic one (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.

  16. Influences of shear in the ion parallel drift velocity and of inhomogeneous perpendicular electric field on generation of oblique ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Ilyasov, Askar; Chernyshov, Alexander; Mogilevsky, Mikhail; Golovchanskaya, Irina; Kozelov, Boris

    2016-03-01

    It is well known that the broadband electrostatic turbulence observed in the topside auroral ionosphere can be identified with electrostatic ion cyclotron and/or oblique ion acoustic waves. Under certain conditions generation of the ion cyclotron modes is inhibited, so that the oblique ion acoustic waves become the prevailing part of the broadband noise. While generation of ion cyclotron waves by the inhomogeneous distribution of energy density (IEDD) instability has been actively studied in recent years, much less attention was paid to the excitation of ion acoustic waves by means of the IEDD instability. In this work, influence of shear in the ion parallel drift velocities and of inhomogeneous perpendicular electric field on generation of nonlocal oblique ion acoustic mode is studied. It is demonstrated that the shear of the ion parallel drift velocities can generate ion acoustic waves. It is shown that this mechanism of instability development provides broadband spectrum in the frequency range around 0.1 of ion gyrofrequency, and thus, this instability can be invoked to explain the observed broadband electrostatic turbulence in the auroral region. Effect of the main background plasma parameters on excitation of oblique ion acoustic waves is analyzed.

  17. GPS-Acoustic Seafloor Geodesy using a Wave Glider

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.

    2013-12-01

    The conventional approach to implement the GPS-Acoustic technique uses a ship or buoy for the interface between GPS and Acoustics. The high cost and limited availability of ships restricts occupations to infrequent campaign-style measurements. A new approach to address this problem uses a remote controlled, wave-powered sea surface vehicle, the Wave Glider. The Wave Glider uses sea-surface wave action for forward propulsion with both upward and downward motions producing forward thrust. It uses solar energy for power with solar panels charging the onboard 660 W-h battery for near continuous operation. It uses Iridium for communication providing command and control from shore plus status and user data via the satellite link. Given both the sea-surface wave action and solar energy are renewable, the vehicle can operate for extended periods (months) remotely. The vehicle can be launched from a small boat and can travel at ~ 1 kt to locations offshore. We have adapted a Wave Glider for seafloor geodesy by adding a dual frequency GPS receiver embedded in an Inertial Navigation Unit, a second GPS antenna/receiver to align the INU, and a high precision acoustic ranging system. We will report results of initial testing of the system conducted at SIO. In 2014, the new approach will be used for seafloor geodetic measurements of plate motion in the Cascadia Subduction Zone. The project is for a three-year effort to measure plate motion at three sites along an East-West profile at latitude 44.6 N, offshore Newport Oregon. One site will be located on the incoming plate to measure the present day convergence between the Juan de Fuca and North American plates and two additional sites will be located on the continental slope of NA to measure the elastic deformation due to stick-slip behavior on the mega-thrust fault. These new seafloor data will constrain existing models of slip behavior that presently are poorly constrained by land geodetic data 100 km from the deformation front.

  18. Group and energy velocities of acoustic surface waves in piezoelectrics

    NASA Astrophysics Data System (ADS)

    Chen, Yu

    1996-07-01

    This paper offers a simple proof of the equivalence of the energy velocity and the group velocity for acoustic waves on the flat surface of a piezoelectric half space in the usual quasistatic approximation. The interface conditions of free stresses and the open circuited electric condition are considered. Both the energy velocity and the group velocity are expressed in terms of a Lagrangian density. The energy velocity is obtained by the definition and the group velocity is derived by implicit differentiation from a dispersion equation in an implicit form.

  19. Obliquely propagating dust-acoustic waves in dense quantum magnetoplasmas

    SciTech Connect

    Khan, S. A.; Masood, W.; Siddiq, M.

    2009-01-15

    Two-dimensional, obliquely propagating nonlinear quantum dust-acoustic waves in dense magnetized plasmas are investigated on the basis of a quantum hydrodynamic model. In this regard, the Zakharov-Kuznetsov (ZK) equation is derived using the small amplitude approximation method. The extended hyperbolic tangent method is employed to obtain solitary and explosive solutions of the ZK equation. It is found that the quantum effects related to the Bohm potential, dust concentration, external magnetic field, and obliqueness significantly modify the amplitude and width of both solitary and explosive pulses. The relevance of the study to dense plasmas is also discussed.

  20. Modeling of a Surface Acoustic Wave Strain Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented