Science.gov

Sample records for acoustic wave modes

  1. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  2. Dual mode acoustic wave sensor for precise pressure reading

    NASA Astrophysics Data System (ADS)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  3. Acoustic wave flow sensor using quartz thickness shear mode resonator.

    PubMed

    Qin, Lifeng; Zeng, Zijing; Cheng, Hongbin; Wang, Qing-Ming

    2009-09-01

    A quartz thickness shear mode (TSM) bulk acoustic wave resonator was used for in situ and real-time detection of liquid flow rate in this study. A special flow chamber made of 2 parallel acrylic plates was designed for flow measurement. The flow chamber has a rectangular flow channel, 2 flow reservoirs for stabilizing the fluid flow, a sensor mounting port for resonator holding, one inlet port, and one outlet port for pipe connection. A 5-MHz TSM quartz resonator was edge-bonded to the sensor mounting port with one side exposed to the flowing liquid and other side exposed to air. The electrical impedance spectra of the quartz resonator at different volumetric flow rate conditions were measured by an impedance analyzer for the extraction of the resonant frequency through a data-fitting method. The fundamental, 3rd, 5th, 7th, and 9th resonant frequency shifts were found to be around 920, 3572, 5947, 8228, and 10,300 Hz for flow rate variation from 0 to 3000 mL/min, which had a corresponding Reynolds number change from 0 to 822. The resonant frequency shifts of different modes are found to be quadratic with flow rate, which is attributed to the nonlinear effect of quartz resonator due to the effective normal pressure imposing on the resonator sensor by the flowing fluid. The results indicate that quartz TSM resonators can be used for flow sensors with characteristics of simplicity, fast response, and good repeatability. PMID:19811997

  4. Three-dimensional coupled mode analysis of internal-wave acoustic ducts.

    PubMed

    Shmelev, Alexey A; Lynch, James F; Lin, Ying-Tsong; Schmidt, Henrik

    2014-05-01

    A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting. PMID:24815234

  5. Decay of electrostatic hydrogen cyclotron waves into ion acoustic modes in auroral field lines

    NASA Astrophysics Data System (ADS)

    Bergmann, R.; Hudson, M. K.

    1987-03-01

    The coherent three-wave decay of a linearly unstable electrostatic hydrogen cyclotron (EHC) wave into stable EHC and ion acoustic modes is considered. The general problem of the three weakly interacting electrostatic normal modes in a Maxwellian plasma is discussed. EHC is examined in a fluid description, and the results are used to guide a similar study in a Vlasov plasma system intended to model the aurora acceleration region parameters. The time dependence of the decay in a simple three-wave interaction is presented in order to show how wave saturation can arise.

  6. The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-05-01

    The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-charge wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.

  7. MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS

    SciTech Connect

    Zhao, Hui; Chou, Dean-Yi

    2013-11-20

    We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |Δn|, where Δn ≡ n' – n. The scattered waves of Δn = ±1 are visible for n ≤ 1, and significant for n ≥ 2. For the scattered wave of Δn = ±2, only few cases are visible. None of the scattered waves of Δn = ±3 are visible. The properties of scattered waves for Δn = 0 and Δn ≠ 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for Δn = 0, while it increases with n for Δn ≠ 0. The scattered wave amplitudes of Δn = 0 are greater for the larger sunspot, while those of Δn ≠ 0 are insensitive to the sunspot size.

  8. Normal mode solutions for seismo-acoustic propagation resulting from shear and combined wave point sources.

    PubMed

    Nealy, Jennifer L; Collis, Jon M; Frank, Scott D

    2016-04-01

    Normal mode solutions to range-independent seismo-acoustic problems are benchmarked against elastic parabolic equation solutions and then used to benchmark the shear elastic parabolic equation self-starter [Frank, Odom, and Collis, J. Acoust. Soc. Am. 133, 1358-1367 (2013)]. The Pekeris waveguide with an elastic seafloor is considered for a point source located in the ocean emitting compressional waves, or in the seafloor, emitting both compressional and shear waves. Accurate solutions are obtained when the source is in the seafloor, and when the source is at the interface between the fluid and elastic layers. PMID:27106346

  9. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  10. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    SciTech Connect

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen E-mail: dongxiang87@gmail.com; Qi, Dong-Xiang E-mail: dongxiang87@gmail.com

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  11. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  12. Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2016-02-01

    Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.

  13. Integrated high-temperature piezoelectric plate acoustic wave transducers using mode conversion.

    PubMed

    Wu, Kuo-Ting; Kobayashi, Makiko; Jen, Cheng-Kuei

    2009-06-01

    Piezoelectric thick (>66 microm) films have been directly coated onto aluminum (Al) substrates using a sol-gel spray technique. With top electrode, these films serve as integrated ultrasonic transducers (IUT), which normally operate as thickness longitudinal wave transducers. When such IUT are located at the edges of the metallic plates, they can excite and detect symmetrical, antisymmetric and shear horizontal types of plate acoustic waves (PAW) using mode conversion methods. In 2 mm thick Al plates, 2 line defects of 1 mm width and 1 mm depth were clearly detected at temperatures up to 150 degrees C in pulse-echo mode. Results indicated that, for 2 mm thick aluminum plates, shear horizontal PAW were the best for the line defect detection. Also, the experimental results agree well with those obtained by a finite-difference-based method. PMID:19574129

  14. Thin plate model for transverse mode analysis of surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Chen, Jing; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2016-07-01

    In this paper, we propose a physical model for the analysis of transverse modes in surface acoustic wave (SAW) devices. It is mostly equivalent to the scalar potential (SP) theory, but sufficiently flexible to include various effects such as anisotropy, coupling between multiple modes, etc. First, fundamentals of the proposed model are established and procedures for determining the model parameters are given in detailed. Then the model is implemented in the partial differential equation mode of the commercial finite element analysis software COMSOL. The analysis is carried out for an infinitely long interdigital transducer on the 128°YX-LiNbO3 substrate. As a demonstration, it is shown how the energy leakage changes with the frequency and the device design.

  15. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  16. Single mode acoustic fiber waveguide

    NASA Technical Reports Server (NTRS)

    Jackson, B. S.; May, R. G.; Claus, R. O.

    1984-01-01

    The single mode operation of a clad rod acoustic waveguide is described. Unlike conventional clad optical and acoustic waveguiding structures which use modes confined to a central core surrounded by a cladding, this guide supports neither core nor cladding modes but a single interface wave field on the core-cladding boundary. The propagation of this bound field and the potential improved freedom from spurious responses is discussed.

  17. Energy trapping of thickness-extensional modes in thin film bulk acoustic wave filters

    NASA Astrophysics Data System (ADS)

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin

    2016-01-01

    This paper presents the thickness-extensional vibration of a rectangular piezoelectric thin film bulk acoustic wave filter with two pairs of electrodes symmetrically deposited on the center of the zinc oxide film. The two-dimensional scalar differential equations which were first derived to describe in-plane vibration distribution by Tiersten and Stevens are employed. The Ritz method with trigonometric functions as basis functions is used based on a variational formulation developed in our previous paper. Free vibration resonant frequencies and corresponding modes are obtained. The modes may separate into symmetric and antisymmetric ones for such a structurally symmetric filter. Trapped modes with vibrations mainly under the driving electrodes are exhibited. The six corner-type regions of the filter neglected by Tiersten and Stevens for an approximation are taken into account in our analysis. Results show that their approximation can lead to an inaccuracy on the order of dozens of ppm for the fundamental mode, which is quite significant in filter operation and application.

  18. Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas

    SciTech Connect

    Qiu, Z.; Chen, L.; Zonca, F.

    2014-02-15

    Effects of system nonuniformities and kinetic dispersiveness on the spontaneous excitation of Geodesic Acoustic Mode (GAM) by Drift Wave (DW) turbulence are investigated based on nonlinear gyrokinetic theory. The coupled nonlinear equations describing parametric decay of DW into GAM and DW lower sideband are derived and then solved both analytically and numerically to investigate the effects on the parametric decay process due to system nonuniformities, such as nonuniform diamagnetic frequency, finite radial envelope of DW pump, and kinetic dispersiveness. It is found that the parametric decay process is a convective instability for typical tokamak parameters when finite group velocities of DW and GAM associated with kinetic dispersiveness and finite radial envelope are taken into account. When, however, nonuniformity of diamagnetic frequency is taken into account, the parametric decay process becomes, time asymptotically, a quasi-exponentially growing absolute instability.

  19. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  20. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave.

    PubMed

    Zhang, Wending; Huang, Ligang; Wei, Keyan; Li, Peng; Jiang, Biqiang; Mao, Dong; Gao, Feng; Mei, Ting; Zhang, Guoquan; Zhao, Jianlin

    2016-05-16

    Theoretical analysis and experimental demonstration are presented for the generation of cylindrical vector beams (CVBs) via mode conversion in fiber from HE11 mode to TM01 and TE01 modes, which have radial and azimuthal polarizations, respectively. Intermodal coupling is caused by an acoustic flexural wave applied on the fiber, whereas polarization control is necessary for the mode conversion, i.e. HE11x→TM01 and HE11y→TE01 for acoustic vibration along the x-axis. The frequency of the RF driving signal for actuating the acoustic wave is determined by the phase matching condition that the period of acoustic wave equals the beatlength of two coupled modes. With phase matching condition tunability, this approach can be used to generate different types of CVBs at the same wavelength over a broadband. Experimental demonstration was done in the visible and communication bands. PMID:27409861

  1. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz. PMID:24116520

  2. Non-linear Alfvén wave interaction leading to resonant excitation of an acoustic mode in the laboratorya)

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Carter, T. A.

    2015-05-01

    The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. A simple damped, driven oscillator model making use of the MHD equations well-predicts most of the observations, but the width of the resonance curve is still under investigation.

  3. Non-linear Alfvén wave interaction leading to resonant excitation of an acoustic mode in the laboratory

    SciTech Connect

    Dorfman, S.; Carter, T. A.

    2015-05-15

    The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. A simple damped, driven oscillator model making use of the MHD equations well-predicts most of the observations, but the width of the resonance curve is still under investigation.

  4. A thickness mode acoustic wave sensor for measuring interface stiffness between two elastic materials.

    PubMed

    Chen, Jiankang; Wang, Wencai; Wang, Ji; Yang, Zengtao; Yang, Jiashi

    2008-08-01

    We studied thickness vibration of 2 elastic layers with an elastic interface mounted on a plate piezoelectric resonator. The effect of the interface elasticity on resonant frequencies was examined. The result obtained suggests an acoustic wave sensor for measuring the elastic property of an interface between 2 materials. PMID:18986911

  5. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1992-01-01

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them.

  6. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1988-04-29

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  7. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1992-05-26

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes there between. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  8. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  9. Dual-mode resonant instabilities of the surface dust-acoustic wave in a Lorentzian plasma slab

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-08-15

    The dual-mode resonant instabilities of the dust-acoustic surface wave propagating at the plasma-vacuum interfaces of the generalized Lorentzian dusty plasma slab are kinetically investigated. The dispersion relation is derived for the two propagation modes: symmetric and anti-symmetric waves. We have found that the temporal growth rate of the resonant instability increases with an increase of the slab thickness for both modes. Especially, the nonthermality of plasmas enhances the growth rate of the anti-symmetric resonant wave, and the nonthermal effect is enhanced as the slab thickness is increased. It is also found that the growth rate increases with increasing angular frequency of the rotating dust grain due to the enhanced resonant energy exchange.

  10. Surface acoustic waves in two-dimensional phononic crystals: Dispersion relation and the eigenfield distribution of surface modes

    SciTech Connect

    Zhao Degang; Liu Zhengyou; Qiu Chunyin; He Zhaojian; Cai Feiyan; Ke Manzhu

    2007-10-01

    In this paper, we have demonstrated the existence of surface acoustic waves in two-dimensional phononic crystals with fluid matrix, which is composed of a square array of steel cylinders put in air background. By using the supercell method, we investigate the dispersion relation and the eigenfield distribution of surface modes. Surface waves can be easily excited at the surface of a finite size phononic crystal by line source or Gaussian beam placed in or launched from the background medium, and they propagate along the surface with the form of 'beat.' Taking advantage of these surface modes, we can obtain a highly directional emission wave beam by introducing an appropriate corrugation layer on the surface of a waveguide exit.

  11. Surface acoustic waves in two-dimensional phononic crystals: Dispersion relation and the eigenfield distribution of surface modes

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Liu, Zhengyou; Qiu, Chunyin; He, Zhaojian; Cai, Feiyan; Ke, Manzhu

    2007-10-01

    In this paper, we have demonstrated the existence of surface acoustic waves in two-dimensional phononic crystals with fluid matrix, which is composed of a square array of steel cylinders put in air background. By using the supercell method, we investigate the dispersion relation and the eigenfield distribution of surface modes. Surface waves can be easily excited at the surface of a finite size phononic crystal by line source or Gaussian beam placed in or launched from the background medium, and they propagate along the surface with the form of “beat.” Taking advantage of these surface modes, we can obtain a highly directional emission wave beam by introducing an appropriate corrugation layer on the surface of a waveguide exit.

  12. Stable Vortex Generation in Liquid Filled Wells by Mode Conversion of Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Landskron, Johannes; Schmidt, Katrin; Kufner, Maria; Lindner, Gerhard

    The formation of stable vortex flow pattern has been observed at liquid filled aluminum wells of 15 to 30 mm diameter when Lamb waves are excited on the bottom of the wells by piezoelectric transducers operated at a frequency of 1 MHz. The shape of the vortex pattern changed with the position of the transducer. Strong differences in mixing times were observed between water and ethanol when the filling level was changed and a remarkable reduction of mixing time was achieved by the addition of a small amount of detergent to water at small filling levels. Besides mixing of liquids thermal equilibration within a liquid volume was accelerated by acoustic streaming.

  13. CONTROL OF LASER RADIATION PARAMETERS. GENERATION OF ULTRASHORT PULSES: Analysis of mode locking in a laser with a traveling-acoustic-wave modulator

    NASA Astrophysics Data System (ADS)

    Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.

    1990-12-01

    A theoretical analysis is made of active mode locking in a solid-state laser with an acoustooptic modulator based on traveling acoustic waves. It is postulated that the acoustooptic modulator is placed in a V-shaped resonator so that diffraction feedback is established in the modulator. It is found that the transmission coefficient of the acoustooptic modulator is a function of time. The mode locking achieved in a V-shaped resonator is equivalent to that observed in lasers with intracavity frequency modulation of the radiation. An investigation is made of the stability of mode locking in a resonator with a traveling-acoustic-wave acoustooptic modulator.

  14. The leaking mode problem in atmospheric acoustic-gravity wave propagation

    NASA Technical Reports Server (NTRS)

    Kinney, W. A.; Pierce, A. D.

    1976-01-01

    The problem of predicting the transient acoustic pressure pulse at long horizontal distances from large explosions in the atmosphere is examined. Account is taken of poles off the real axis and of branch line integrals in the general integral governing the transient waveform. Perturbation techniques are described for the computation of the imaginary ordinate of the poles and numerical studies are described for a model atmosphere terminated by a halfspace with c = 478 m/sec above 125 km. For frequencies less than 0.0125 rad/sec, the GR sub 1 mode, for example, is found to have a frequency dependent amplitude decay of the order of 0.0001 nepers/km. Examples of numerically synthesized transient waveforms are exhibited with and without the inclusion of leaking modes. The inclusion of leaking modes results in waveforms with a more marked beginning rather than a low frequency oscillating precursor of gradually increasing amplitude. Also, the revised computations indicate that waveforms invariably begin with a pressure rise, a result supported by other theoretical considerations and by experimental data.

  15. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  16. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  17. Acoustic and electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Jones, Douglas Samuel

    Theoretical models of EM and acoustic wave propagation are presented in an introductory text intended for intermediate-level science and engineering students. Chapters are devoted to the mathematical representation of acoustic and EM fields, the special theory of relativity, radiation, resonators, waveguide theory, refraction, surface waves, scattering by smooth objects, diffraction by edges, and transient waves. The mathematical tools required for the analysis (Bessel, Legendre, Mathieu, parabolic-cylinder, and spheroidal functions; tensor calculus; and the asymptotic evaluation of integrals) are covered in appendices.

  18. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  19. Strong acoustic wave action

    NASA Astrophysics Data System (ADS)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  20. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  1. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors.

    PubMed

    Grate, J W; Kaganove, S N; Bhethanabotla, V R

    1998-01-01

    Apparent partition coefficients, K, for the sorption of toluene by four different polymer thin films on thickness shear mode (TSM) and surface acoustic wave (SAW) devices are compared. The polymers examined were poly(isobutylene) (PIB), poly(epichlorohydrin) (PECH), poly(butadiene) (PBD), and poly(dimethylsiloxane) (PDMS). Independent data on partition coefficients for toluene in these polymers were compiled for comparison, and TSM sensor measurements were made using both oscillator and impedance analysis methods. K values from SAW sensor measurements were about twice those calculated from TSM sensor measurements when the polymers were PIB and PECH, and they were also at least twice the values of the independent partition coefficient data, which is interpreted as indicating that the SAW sensor responds to polymer modulus changes as well as to mass changes. K values from SAW and TSM measurements were in agreement with each other and with independent data when the polymer was PBD. Similarly, K values from the PDMS-coated SAW sensor were not much larger than values from independent measurements. These results indicate that modulus effects were not contributing to the SAW sensor responses in the cases of PBD and PDMS. However, K values from the PDMS-coated TSM device were larger than the values from the SAW device or independent measurements, and the impedance analyzer results indicated that this sensor using our sample of PDMS at the applied thickness did not behave as a simple mass sensor. Differences in behavior among the test polymers on SAW devices are interpreted in terms of their differing viscoelastic properties. PMID:21644612

  2. Dust-Acoustic Waves: Visible Sound Waves

    SciTech Connect

    Merlino, Robert L.

    2009-11-10

    A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.

  3. A hybrid wave-mode formulation for the vibro-acoustic analysis of 2D periodic structures

    NASA Astrophysics Data System (ADS)

    Droz, C.; Zhou, C.; Ichchou, M. N.; Lainé, J.-P.

    2016-02-01

    In the framework of vibrational analysis of 2D periodic waveguides, Floquet-Bloch theorem is widely applied for the determination of wave dispersion characteristics. In this context, the Wave Finite Element Method (WFEM) combines Periodic Structure Theory (PST) with standard FE packages, enabling wave dispersion analysis of waveguides involving structurally realistic unit-cells. For such applications, the computational efficiency of the WFEM depends on the choice of the formulation and can lead to numerical issues, worsen by extensive computational cost. This paper presents a coupled wave-mode approach for the determination of wave dispersion characteristics in structurally advanced periodic structures. It combines two scales of model order reduction. At the unit-cell's scale, Component Mode Synthesis (CMS) provides the displacement field associated with local resonances of the periodic structure, while the free wave propagation is considered using a spectral problem projection on a reduced set of shape functions associated with propagating waves, thus providing considerable reduction of the computational cost. An application is provided for a bi-directionally stiffened panel and the influence of reduction parameters is discussed, as well as the robustness of the numerical results.

  4. Geodesic Acoustic Modes Induced by Energetic Particles

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchun; Berk, Herbert

    2009-11-01

    A global geodesic acoustic mode driven by energetic particles (EGAM) has been observed in JET[1, 2] and DIII D[3, 4]. The mode is to be treated fully kinetically. The descriptions of the background electrons and ions are based on standard high and low bounce frequency expansion respectively with respect to the mode frequency. However, the energetic ions must be treated without any expansion of ratio between their bounce frequency and the mode frequency since they are comparable. Under electrostatic perturbation, we construct a quadratic form for the wave amplitude, from which an integro-differential equation is derived. In the limit where the drift orbit width is small comparison with the mode width, a differential equation for perturbed electrostatic field is obtained. Solution is obtained both analytically and numerically. We find that beam counterinjection enhances the instability of the mode. Landau damping due to thermal species is investigated.

  5. Geodesic Acoustic Modes Induced by Energetic Particles

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchun; Berk, Herbert

    2009-05-01

    A global geodesic acoustic mode driven by energetic particles (EGAM) has been observed in JET[1, 2] and DIII D[3, 4]. The mode is to be treated fully kinetically. The descriptions of the background electrons and ions are based on standard high and low bounce frequency expansion respectively with respect to the mode frequency. However, the energetic ions must be treated without any expansion of ratio between their bounce frequency and the mode frequency since they are comparable. Under electrostatic perturbation, we construct a quadratic form for the wave amplitude, from which an integro-differential equation is derived. In the limit where the drift orbit width is small comparison with the mode width, a differential equation for perturbed electrostatic field is obtained. Solution is obtained both analytically and numerically. We find that beam counterinjection enhances the instability of the mode

  6. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  7. Tunable damper for an acoustic wave guide

    SciTech Connect

    Rogers, S.C.

    1984-06-05

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  8. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  9. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  10. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  11. Electromagnetic effects on geodesic acoustic modes

    SciTech Connect

    Bashir, M. F.; Smolyakov, A. I.; Elfimov, A. G.; Melnikov, A. V.; Murtaza, G.

    2014-08-15

    By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m = 1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure β{sub e}, the safety factor q, and the temperature ratio τ on GAM dispersion are analyzed.

  12. Propagation of spinning acoustic modes in partially choked converging ducts

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.; Kelly, J. J.; Watson, L. T.

    1982-04-01

    A computer model based on the wave-envelope technique is used to study the propagation of spinning acoustic modes in converging hard-walled and lined circular ducts carrying near sonic mean flows. The results show that with increasing spinning mode number the intensification of the acoustic signal at the throat decreases for upstream propagation. The influence of the throat Mach number, frequency, boundary-layer thickness, and liner admittance on the propagation of spinning modes is considered.

  13. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  14. General properties of the acoustic plate modes at different temperatures.

    PubMed

    Anisimkin, V I; Anisimkin, I V; Voronova, N V; Puсhkov, Yu V

    2015-09-01

    Using acoustic plate modes with SH-polarization and quartz crystal with Euler angles 0°, 132.75°, 90°, as an example, general properties of the acoustic plate modes at different temperatures are studied theoretically and experimentally in the range from -40 to +80°C. It is shown that in addition to well-known parameters responsible for temperature characteristics of acoustic waves the temperature coefficients of the acoustic plate modes depend on the mode order n, plate thickness h/λ, and expansion of the plate in direction of its thickness (h - thickness, λ - acoustic wavelength). These properties permit the mode sensitivity to be increased or decreased without replacing plate material and orientation. PMID:26002698

  15. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    SciTech Connect

    Rahman, Ata-ur-; Kerr, Michael Mc Kourakis, Ioannis; El-Taibany, Wael F.; Qamar, A.

    2015-02-15

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  16. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  17. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  18. Kinetic effect of toroidal rotation on the geodesic acoustic mode

    SciTech Connect

    Guo, W. Ye, L.; Zhou, D.; Xiao, X.; Wang, S.

    2015-01-15

    Kinetic effects of the toroidal rotation on the geodesic acoustic mode are theoretically investigated. It is found that when the toroidal rotation increases, the damping rate increases in the weak rotation regime due to the rotation enhancement of wave-particle interaction, and it decreases in the strong rotation regime due to the reduction of the number of resonant particles. Theoretical results are consistent with the behaviors of the geodesic acoustic mode recently observed in DIII-D and ASDEX-Upgrade. The kinetic damping effect of the rotation on the geodesic acoustic mode may shed light on the regulation of turbulence through the controlling the toroidal rotation.

  19. Sagittal acoustic waves in finite solid-fluid superlattices: Band-gap structure, surface and confined modes, and omnidirectional reflection and selective transmission

    NASA Astrophysics Data System (ADS)

    El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.; Aynaou, H.

    2008-11-01

    Using a Green’s function method, we present a comprehensive theoretical analysis of the propagation of sagittal acoustic waves in superlattices (SLs) made of alternating elastic solid and ideal fluid layers. This structure may exhibit very narrow pass bands separated by large stop bands. In comparison with solid-solid SLs, we show that the band gaps originate both from the periodicity of the system (Bragg-type gaps) and the transmission zeros induced by the presence of the solid layers immersed in the fluid. The width of the band gaps strongly depends on the thickness and the contrast between the elastic parameters of the two constituting layers. In addition to the usual crossing of subsequent bands, solid-fluid SLs may present a closing of the bands, giving rise to large gaps separated by flat bands for which the group velocity vanishes. Also, we give an analytical expression that relates the density of states and the transmission and reflection group delay times in finite-size systems embedded between two fluids. In particular, we show that the transmission zeros may give rise to a phase drop of π in the transmission phase, and therefore, a negative delta peak in the delay time when the absorption is taken into account in the system. A rule on the confined and surface modes in a finite SL made of N cells with free surfaces is demonstrated, namely, there are always N-1 modes in the allowed bands, whereas there is one and only one mode corresponding to each band gap. Finally, we present a theoretical analysis of the occurrence of omnidirectional reflection in a layered media made of alternating solid and fluid layers. We discuss the conditions for such a structure to exhibit total reflection of acoustic incident waves in a given frequency range for all incident angles. Also, we show how this structure can be used as an acoustic filter that may transmit selectively certain frequencies within the omnidirectional gaps. In particular, we show the possibility of

  20. Acoustic-Gravity Waves from Bolide Sources

    NASA Astrophysics Data System (ADS)

    Revelle, Douglas O.

    2008-06-01

    We have developed a new approach to modeling the acoustic-gravity wave (AGW) radiation from bolide sources. This first effort involves entry modeling of bolide sources that have available satellite data through procedures developed in ReVelle (Earth Moon Planets 95, 441-476, 2004a; in: A. Milani, G. Valsecchi, D. Vokrouhlicky (eds) NEO Fireball Diversity: Energetics-based Entry Modeling and Analysis Techniques, Near-earth Objects: Our Celestial Neighbors (IAU S236), 2007b). Results from the entry modeling are directly coupled to AGW production through line source blast wave theory for the initial wave amplitude and period at x=10 (at 10 blast wave radii and perpendicular to the trajectory). The second effort involves the prediction of the formation and or dominance of the propagation of the atmospheric Lamb, edge-wave composite mode in a viscous fluid (Pierce, J. Acoust. Soc. Amer. 35, 1798-1807, 1963) as a function of the source energy, horizontal range and source altitude using the Lamb wave frequency that was deduced directly during the entry modeling and that is used as a surrogate for the source energy. We have also determined that Lamb wave production by bolides at close range decreases dramatically as either the source energy decreases or the source altitude increases. Finally using procedures in Gill ( Atmospheric-Ocean Dynamics, 1982) and in Tolstoy ( Wave Propagation, 1973), we have analyzed two simple dispersion relationships and have calculated the expected dispersion for the Lamb edge-wave mode and for the excited, propagating internal acoustic waves. Finally, we have used the above formalism to fully evaluate these techniques for four large bolides, namely: the Tunguska bolide of June 30, 1908; the Revelstoke bolide of March 31, 1965; the Crete bolide of June 6, 2002 and the Antarctic bolide of September 3, 2004. Due to page limitations, we will only present results in detail for the Revelstoke bolide.

  1. Propagation of plate acoustic waves in contact with fluid medium

    NASA Astrophysics Data System (ADS)

    Ghatadi Suraji, Nagaraj

    The characteristics of acoustic waves propagating in thin piezoelectric plates in the presence of a fluid medium contacting one or both of the plate surfaces are investigated. If the velocity of plate wave in the substrate is greater than velocity of bulk wave in the fluid, then a plate acoustic wave (PAW) traveling in the substrate will radiate a bulk acoustic wave (BAW) in the fluid. It is found that, under proper conditions, efficient conversion of energy from plate acoustic waves to bulk acoustic waves and vice versa can be obtained. For example, using the fundamental anti symmetric plate wave mode (A0 mode) propagating in a lithium niobate substrate and water as the fluid, total mode conversion loss (PAW to BAW and back from BAW to PAW) of less than 3 dB has been obtained. This mode conversion principle can be used to realize miniature, high efficiency transducers for use in ultrasonic flow meters. Similar type of transducer based on conversion of energy from surface acoustic wave (SAW) to bulk acoustic wave (BAW) has been developed previously. The use of plate waves has several advantages. Since the energy of plate waves is present on both plate surfaces, the inter digital transducer (IDT) can be on the surface opposite from that which is in contact with the fluid. This protects the IDT from possible damage due to the fluid and also simplifies the job of making electrical connections to the IDT. Another advantage is that one has wider choice of substrate materials with plate waves than is the case with SAWs. Preliminary calculations indicate that the mode conversion principle can also be used to generate and detect ultrasonic waves in air. This has potential applications for realizing transducers for use in non-contact ultrasonic's. The design of an ASIC (Application Specific Integrated Circuit) chip containing an amplifier and frequency counter for use with ultrasonic transducers is also presented in this thesis.

  2. Laser Acoustic Imaging of Film Bulk Acoustic Resonator (FBAR) Lateral Mode Dispersion

    SciTech Connect

    Ken L. Telschow

    2004-07-01

    A laser acoustic imaging microscope has been developed that measures acoustic motion with high spatial resolution without scanning. Images are recorded at normal video frame rates and heterodyne principles are used to allow operation at any frequency from Hz to GHz. Fourier transformation of the acoustic amplitude and phase displacement images provides a direct quantitative determination of excited mode wavenumbers at any frequency. Results are presented at frequencies near the first longitudinal thickness mode (~ 900 MHz) demonstrating simultaneous excitation of lateral modes with nonzero wavenumbers in an electrically driven AlN thin film acoustic resonator. Images combined at several frequencies form a direct visualization of lateral mode dispersion relations for the device under test allowing mode identification and a direct measure of specific lateral mode properties. Discussion and analysis of the results are presented in comparison with plate wave modeling of these devices taking account for material anisotropy and multilayer films.

  3. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  4. Effect of tidal internal wave fields on shallow water acoustic propagation

    NASA Astrophysics Data System (ADS)

    Lin, Ju; Wang, Huan; Sun, Junping

    2010-09-01

    Internal waves are one of the most pronounced oceanic phenomenons to the oceanographer. During past decades much effort has been made to investigate the effect of internal waves on shallow water acoustic propagation. Even though many field observations, such as SWARM '95, have provided fruitful information about the relation between internal waves and acoustic propagation, it is necessary to conduct more numerical simulations due to their extensive feasibility. In this study, the shallow water internal wave environment is constructed by using a non-hydrostatic ocean model, the open boundary forcing is set by considering single or several internal wave modes at the M2 tidal frequency. In order to show the mode coupling caused by the internal wave field more clearly, the acoustic starting field with different single normal modes is adopted. The acoustic simulation can be used to check whether a specific combination of internal wave modes is related to the mode coupling, and which mode pair will be affected. The combination of internal wave modes can be separated into several groups. Even though the internal wave fields are different among every case in each group, the acoustic field structure and the mode coupling are similar. Different acoustic normal mode coupling occurs due to the different combinations of internal wave mode forcing. When the parameters of internal wave mode are modified gently, the acoustic mode coupling becomes quite different. It is interesting and important to investigate the sensitivity of acoustic fields to the variability of the internal mode combination.

  5. On the Synchronization of Acoustic Gravity Waves

    NASA Astrophysics Data System (ADS)

    Lonngren, Karl E.; Bai, Er-Wei

    Using the model proposed by Stenflo, we demonstrate that acoustic gravity waves found in one region of space can be synchronized with acoustic gravity waves found in another region of space using techniques from modern control theory.

  6. Producing undistorted acoustic sine waves.

    PubMed

    Boutin, Henri; Smith, John; Wolfe, Joe

    2014-04-01

    A simple digital method is described that can produce an undistorted acoustic sine wave using an amplifier and loudspeaker having considerable intrinsic distortion, a common situation at low frequencies and high power. The method involves, first, using a pure sine wave as the input and measuring the distortion products. An iterative procedure then progressively adds harmonics with appropriate amplitude and phase to cancel any distortion products. The method is illustrated by producing a pure 52 Hz sine wave at 107 dB sound pressure level with harmonic distortion reduced over the audible range to >65 dB below the fundamental. PMID:25234964

  7. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  8. Quantitative Determination of Lateral Mode Dispersion in Film Bulk Acoustic Resonators through Laser Acoustic Imaging

    SciTech Connect

    Ken Telschow; John D. Larson III

    2006-10-01

    Film Bulk Acoustic Resonators are useful for many signal processing applications. Detailed knowledge of their operation properties are needed to optimize their design for specific applications. The finite size of these resonators precludes their use in single acoustic modes; rather, multiple wave modes, such as, lateral wave modes are always excited concurrently. In order to determine the contributions of these modes, we have been using a newly developed full-field laser acoustic imaging approach to directly measure their amplitude and phase throughout the resonator. This paper describes new results comparing modeling of both elastic and piezoelectric effects in the active material with imaging measurement of all excited modes. Fourier transformation of the acoustic amplitude and phase displacement images provides a quantitative determination of excited mode amplitude and wavenumber at any frequency. Images combined at several frequencies form a direct visualization of lateral mode excitation and dispersion for the device under test allowing mode identification and comparison with predicted operational properties. Discussion and analysis are presented for modes near the first longitudinal thickness resonance (~900 MHz) in an AlN thin film resonator. Plate wave modeling, taking account of material crystalline orientation, elastic and piezoelectric properties and overlayer metallic films, will be discussed in relation to direct image measurements.

  9. Acoustic mode in numerical calculations of subsonic combustion

    SciTech Connect

    O'Rourke, P.J.

    1984-01-01

    A review is given of the methods for treating the acoustic mode in numerical calculations of subsonic combustion. In numerical calculations of subsonic combustion, treatment of the acoustic mode has been a problem for many researchers. It is widely believed that Mach number and acoustic wave effects are negligible in many subsonic combustion problems. Yet, the equations that are often solved contain the acoustic mode, and many numerical techniques for solving these equations are inefficient when the Mach number is much smaller than one. This paper reviews two general approaches to ameliorating this problem. In the first approach, equations are solved that ignore acoustic waves and Mach number effects. Section II of this paper gives two such formulations which are called the Elliptic Primitive and the Stream and Potential Function formulations. We tell how these formulations are obtained and give some advantages and disadvantages of solving them numerically. In the second approach to the problem of calculating subsonic combustion, the fully compressible equations are solved by numerical methods that are efficient, but treat the acoustic mode inaccurately, in low Mach number calculations. Section III of this paper introduces two of these numerical methods in the context of an analysis of their stability properties when applied to the acoustic wave equations. These are called the ICE and acoustic subcycling methods. It is shown that even though these methods are more efficient than traditional methods for solving subsonic combustion problems, they still can be inefficient when the Mach number is very small. Finally, a method called Pressure Gradient Scaling is described that, when used in conjunction with either the ICE or acoustic subcycling methods, allows for very efficient numerical solution of subsonic combustion problems. 11 refs.

  10. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  11. Relationship between dust acoustic waves in two and three dimensions

    SciTech Connect

    Piel, A.; Goree, J.

    2006-10-15

    Low frequency electrostatic waves are investigated for a monolayer suspension of dust particles that are shielded by an ambient plasma of three-dimensional extension. The dispersion of the resulting dust acoustic surface waves is compared with dust acoustic waves in three dimensions and with lattice modes in two dimensions. It is found that the wave dispersion is determined by shielding of electric fields by electrons and ions on either side of the dust monolayer; this differs from previously studied cases of charged sheets in a vacuum. The phase velocity of these surface waves suggests the definition of a proper dust plasma frequency for monolayer systems.

  12. Relationship between dust acoustic waves in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Piel, A.; Goree, J.

    2006-10-01

    Low frequency electrostatic waves are investigated for a monolayer suspension of dust particles that are shielded by an ambient plasma of three-dimensional extension. The dispersion of the resulting dust acoustic surface waves is compared with dust acoustic waves in three dimensions and with lattice modes in two dimensions. It is found that the wave dispersion is determined by shielding of electric fields by electrons and ions on either side of the dust monolayer; this differs from previously studied cases of charged sheets in a vacuum. The phase velocity of these surface waves suggests the definition of a proper dust plasma frequency for monolayer systems.

  13. Empirical mode decomposition for analyzing acoustical signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  14. Nonlinear positron acoustic solitary waves

    SciTech Connect

    Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia

    2009-07-15

    The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.

  15. Acoustic power absorption and enhancement generated by slow and fast MHD waves. Evidence of solar cycle velocity/intensity amplitude changes consistent with the mode conversion theory

    NASA Astrophysics Data System (ADS)

    Simoniello, R.; Finsterle, W.; García, R. A.; Salabert, D.; Jiménez, A.; Elsworth, Y.; Schunker, H.

    2010-06-01

    We used long duration, high quality, unresolved (Sun-as-a star) observations collected by the ground based network BiSON and by the instruments GOLF and VIRGO on board the ESA/NASA SOHO satellite to search for solar-cycle-related changes in mode characteristics in velocity and continuum intensity for the frequency range between 2.5 mHz <ν< 6.8 mHz. Over the ascending phase of solar cycle 23 we found a suppression in the p-mode amplitudes both in the velocity and intensity data between 2.5 mHz <ν< 4.5 mHz with a maximum suppression for frequencies in the range between 2.5 mHz <ν< 3.5 mHz. The size of the amplitude suppression is 13 ± 2 per cent for the velocity and 9 ± 2 per cent for the intensity observations. Over the range of 4.5 mHz <ν< 5.5 mHz the findings hint within the errors to a null change both in the velocity and intensity amplitudes. At still higher frequencies, in the so called High-frequency Interference Peaks (HIPs) between 5.8 mHz <ν< 6.8 mHz, we found an enhancement in the velocity amplitudes with the maximum 36 ± 7 per cent occurring for 6.3 mHz <ν< 6.8 mHz. However, in intensity observations we found a rather smaller enhancement of about 5 ± 2 per cent in the same interval. There is evidence that the frequency dependence of solar-cycle velocity amplitude changes is consistent with the theory behind the mode conversion of acoustic waves in a non-vertical magnetic field, but there are some problems with the intensity data, which may be due to the height in the solar atmosphere at which the VIRGO data are taken.

  16. Drift effects on electromagnetic geodesic acoustic modes

    SciTech Connect

    Sgalla, R. J. F.

    2015-02-15

    A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ∼ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λ{sub r} ∼ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs)

  17. Drift effects on electromagnetic geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Sgalla, R. J. F.

    2015-02-01

    A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ˜ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λr ˜ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs).

  18. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  19. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    NASA Astrophysics Data System (ADS)

    Tabrizian, R.; Ayazi, F.

    2015-06-01

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  20. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    SciTech Connect

    Tabrizian, R.; Ayazi, F.

    2015-06-29

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  1. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  2. Localization of acoustic modes in periodic porous silicon structures

    PubMed Central

    2014-01-01

    The propagation of longitudinal acoustic waves in multilayer structures based on porous silicon and the experimental measurement of acoustic transmission for the structures in the gigahertz range are reported and studied theoretically. The considered structures exhibit band gaps in the transmission spectrum and these are localized modes inside the band gap, coming from defect layers introduced in periodic systems. The frequency at which the acoustic resonances appear can be tuned by changing the porosity and/or thickness of the defect layer. PMID:25206317

  3. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  4. Reflection properties of gravito-acoustic waves

    NASA Astrophysics Data System (ADS)

    Jovanović, Gordana

    2016-03-01

    We derive the dispersion equation for gravito-acoustic waves in an isothermal gravitationally stratified nonmagnetized atmosphere. In this model, with constant sound speed, it is possible to derive analytically the equations for gravito-acoustic waves. The large value of the viscous Reynolds number in the solar atmosphere imply that the dissipative terms in HD (hydrodynamics) equations are negligible. We consider the plane boundary z = 0 between two isothermal atmosphere regions and using the boundary conditions we derive the equation for the reflection coeffcient of gravito-acoustic waves. For the frequencies much greater than acoustic cutoff frequency, the reflection coefficient of the acoustic waves modified by gravity is the same as in the case of the pure acoustic waves. Reflection coefficient for the gravity waves is very high, R ≈ 1.

  5. Rotating Microphone Rake Measures Spinning Acoustic Modes

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Hausmann, Clifford R.

    1996-01-01

    Rotating rake of pressure transducers developed for use in experimental studies of sources and propagation of noise generated by subsonic fan engines. Pressure transducers used as microphones to measure acoustic modes generated by, and spin with, fans. Versatility of control software used in rake-drive system enables measurements of acoustic modes on wide range of test-engine configurations. Rake-drive hardware easily adapted to different engines because not mechanically coupled to engine under test.

  6. Characterization of energy trapping in a bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Kokkonen, Kimmo; Meltaus, Johanna; Pensala, Tuomas; Kaivola, Matti

    2010-12-01

    Acoustic wave fields both within the active electrode area of a solidly mounted 1.8 GHz bulk acoustic wave resonator, and around it in the surrounding region, are measured using a heterodyne laser interferometer. Plate-wave dispersion diagrams for both regions are extracted from the measurement data. The experimental dispersion data reveal the cutoff frequencies of the acoustic vibration modes in the region surrounding the resonator, and, therefore, the energy trapping range of the resonator can readily be determined. The measured dispersion properties of the surrounding region, together with the abruptly diminishing amplitude of the dispersion curves in the resonator, signal the onset of acoustic leakage from the resonator. This information is important for verifying and further developing the simulation tools used for the design of the resonators. Experimental wave field images, dispersion diagrams for both regions, and the threshold for energy leakage are discussed.

  7. Separation of acoustic waves in isentropic flow perturbations

    SciTech Connect

    Henke, Christian

    2015-04-15

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given.

  8. Robust acoustic wave manipulation of bubbly liquids

    NASA Astrophysics Data System (ADS)

    Gumerov, N. A.; Akhatov, I. S.; Ohl, C.-D.; Sametov, S. P.; Khazimullin, M. V.; Gonzalez-Avila, S. R.

    2016-03-01

    Experiments with water-air bubbly liquids when exposed to acoustic fields of frequency ˜100 kHz and intensity below the cavitation threshold demonstrate that bubbles ˜30 μm in diameter can be "pushed" away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  9. On the dispersion of geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Smolyakov, A. I.; Bashir, M. F.; Elfimov, A. G.; Yagi, M.; Miyato, N.

    2016-05-01

    The problem of dispersion of geodesic acoustic modes is revisited with two different methods for the solution of the kinetic equation. The dispersive corrections to the mode frequency are calculated by including the m = 2 poloidal harmonics. Our obtained results agree with some earlier results but differ in various ways with other previous works. Limitations and advantages of different approaches are discussed.

  10. Backward propagating acoustic waves in single gold nanobeams

    NASA Astrophysics Data System (ADS)

    Jean, Cyril; Belliard, Laurent; Becerra, Loïc; Perrin, Bernard

    2015-11-01

    Femtosecond pump-probe spectroscopy has been carried out on suspended gold nanostructures with a rectangular cross section lithographed on a silicon substrate. With a thickness fixed to 110 nm and a width ranging from 200 nm to 800 nm , size dependent measurements are used to distinguish which confined acoustic modes are detected. Furthermore, in order to avoid any ambiguity due to the measurement uncertainties on both the frequency and size, pump and probe beams are also spatially shifted to detect guided acoustic phonons. This leads us to the observation of backward propagating acoustic phonons in the gigahertz range ( ˜3 GHz ) in such nanostructures. While backward wave propagation in elastic waveguides has been predicted and already observed at the macroscale, very few studies have been done at the nanoscale. Here, we show that these backward waves can be used as the unique signature of the width dilatational acoustic mode.

  11. MHD-model for low-frequency waves in a tokamak with toroidal plasma rotation and problem of existence of global geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Sorokina, E. A.; Ilgisonis, V. I.; Konovaltseva, L. V.

    2015-12-01

    A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.

  12. MHD-model for low-frequency waves in a tokamak with toroidal plasma rotation and problem of existence of global geodesic acoustic modes

    SciTech Connect

    Lakhin, V. P.; Sorokina, E. A. E-mail: vilkiae@gmail.com; Ilgisonis, V. I.; Konovaltseva, L. V.

    2015-12-15

    A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.

  13. Swimming using surface acoustic waves.

    PubMed

    Bourquin, Yannyk; Cooper, Jonathan M

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  14. Acoustic wave coupled magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Gao, J. S.; Zhang, N.

    2016-07-01

    Magnetoelectric (ME) coupling by acoustic waveguide was developed. Longitudinal and transversal ME effects of larger than 44 and 6 (V cm-1 Oe-1) were obtained with the waveguide-coupled ME device, respectively. Several resonant points were observed in the range of frequency lower than 47 kHz. Analysis showed that the standing waves in the waveguide were responsible for those resonances. The frequency and size dependence of the ME effects were investigated. A resonant condition about the geometrical size of the waveguide was obtained. Theory and experiments showed the resonant frequencies were closely influenced by the diameter and length of the waveguide. A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially.

  15. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.

    1978-01-01

    A number of 401.2 MHz surface acoustic wave (SAW) controlled oscillators were built and tested. The performance of these oscillators was evaluated for possible use as stable oscillators in communication systems. A short term frequency stability of better than 1 x 10 to the minus 9th power for one second was measured for the SAW oscillators. Long term frequency drift was measured and was found to be dependent on SAW design and packaging. Drift rates ranging from 15 ppm in twenty weeks to 2.5 ppm in twenty weeks were observed. Some further improvement was required. The temperature dependence of the saw oscillators was evaluated and it was concluded that some form of temperature compensation will be necessary to meet the requirements of some communication systems.

  16. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.; Lee, D. L.; Leja, I.

    1979-01-01

    Four areas of surface acoustic wave (SAW) controlled oscillators were investigated and a number of 401.2 MHz oscillators were constructed that showed improved performance. Aging studies on SAW devices packaged in HC36/U cold weld enclosures produced frequency drifts as low as 0.4 ppm in 35 weeks and drift rates well under 0.5 ppm/year. Temperature compensation circuits have substantially improved oscillator temperature stability, with a deviation of + or - 4 ppm observed over the range -45 C to + 40 C. High efficiency amplifiers were constructed for SAW oscillators and a dc to RF efficiency of 44 percent was obtained for an RF output of 25 mW. Shock and vibration tests were made on four oscillators and all survived 500 G shock pulses unchanged. Only when white noise vibration (20 Hz to 2000 Hz) levels of 20 G's rms were applied did some of the devices fail.

  17. Swimming Using Surface Acoustic Waves

    PubMed Central

    Bourquin, Yannyk; Cooper, Jonathan M.

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  18. Quasinormal modes and classical wave propagation in analogue black holes

    SciTech Connect

    Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.

    2004-12-15

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.

  19. Energetic Particle-induced Geodesic Acoustic Mode

    SciTech Connect

    Fu, G.Y.

    2008-09-12

    A new energetic particle-induced Geodesic Acoustic Mode (EGAM) is shown to exist. The mode frequency, mode structure, and mode destabilization are determined non-perturbatively by energetic particle kinetic effects. In particular the EGAM frequency is found to be substantially lower than the standard GAM frequency. The radial mode width is determined by the energetic particle drift orbit width and can be fairly large for high energetic particle pressure and large safety factor. These results are consistent with the recent experimental observation of the beam- driven n=0 mode in DIII-D. The new mode is important since it can degrade energetic particle confinement as shown in the DIII-D experiments. The new mode may also affect the thermal plasma confinement via its interaction with plasma micro-turbulence.

  20. Slow EIT waves as gravity modes

    SciTech Connect

    Vranjes, J.

    2011-06-15

    The EIT waves [named after the extreme-ultraviolet imaging telescope (EIT) onboard the solar and heliospheric observatory (SOHO)] are in the literature usually described as fast magneto-acoustic (FMA) modes. However, observations show that a large percentage of these events propagate with very slow speeds that may be as low as 20 km/s. This is far below the FMA wave speed which cannot be below the sound speed, the latter being typically larger than 10{sup 2} km/s in the corona. In the present study, it is shown that, to account for such low propagation speed, a different wave model should be used, based on the theory of gravity waves, both internal (IG) and surface (SG) ones. The gravity modes are physically completely different from the FMA mode, as they are essentially dispersive and in addition the IG wave is a transverse mode. Both the IG and the SG mode separately can provide proper propagation velocities in the whole low speed range.

  1. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  2. Surface wave acoustics of granular packing under gravity

    NASA Astrophysics Data System (ADS)

    Clement, Eric; Bonneau, Lenaic; Andreotti, Bruno

    2009-06-01

    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. For a packing under gravity and in the presence of a free surface, bulk acoustic waves cannot propagate due to the inherent refraction toward the surface (the mirage effect). Thus, only modes corresponding to surface waves (Raleigh-Hertz modes) are able to propagate the acoustic signal. First, based on a non-linear elasticity model, we describe the main features associated to these surface waves. We show that under gravity, a granular packing is from the acoustic propagation point of view an index gradient waveguide that selects modes of two distinct families i.e. the sagittal and transverse waves localized in the vicinity of the free surface. A striking feature of these surface waves is the multi-modal propagation: for both transverse and sagittal waves, we show the existence of a infinite but discrete series of propagating modes. In each case, we determine the mode shape and and the corresponding dispersion relation. In the case of a finite size system, a geometric waveguide is superimposed to the index gradient wave guide. In this later case, the dispersion relations are modified by the appearance of a cut-off frequency that scales with depth. The second part is devoted to an experimental study of surface waves propagating in a granular packing confined in a long channel. This set-up allows to tune a monomodal emission by taking advantage of the geometric waveguide features combined with properly designed emitters. For both sagittal and transverses waves, we were able to isolate a single mode (the fundamental one) and to plot the dispersion relation. This measurements agree well with the Hertzian scaling law as predicted by meanfield models. Furthermore, it allows us to determine quantitatively relations on the elastic moduli. However, we observe that our data yield a shear modulus abnormally weak when compared to several meanfield predictions.

  3. Surface wave acoustics of granular packing under gravity

    SciTech Connect

    Clement, Eric; Andreotti, Bruno; Bonneau, Lenaic

    2009-06-18

    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. For a packing under gravity and in the presence of a free surface, bulk acoustic waves cannot propagate due to the inherent refraction toward the surface (the mirage effect). Thus, only modes corresponding to surface waves (Raleigh-Hertz modes) are able to propagate the acoustic signal. First, based on a non-linear elasticity model, we describe the main features associated to these surface waves. We show that under gravity, a granular packing is from the acoustic propagation point of view an index gradient waveguide that selects modes of two distinct families i.e. the sagittal and transverse waves localized in the vicinity of the free surface. A striking feature of these surface waves is the multi-modal propagation: for both transverse and sagittal waves, we show the existence of a infinite but discrete series of propagating modes. In each case, we determine the mode shape and and the corresponding dispersion relation. In the case of a finite size system, a geometric waveguide is superimposed to the index gradient wave guide. In this later case, the dispersion relations are modified by the appearance of a cut-off frequency that scales with depth. The second part is devoted to an experimental study of surface waves propagating in a granular packing confined in a long channel. This set-up allows to tune a monomodal emission by taking advantage of the geometric waveguide features combined with properly designed emitters. For both sagittal and transverses waves, we were able to isolate a single mode (the fundamental one) and to plot the dispersion relation. This measurements agree well with the Hertzian scaling law as predicted by meanfield models. Furthermore, it allows us to determine quantitatively relations on the elastic moduli. However, we observe that our data yield a shear modulus abnormally weak when compared to several meanfield predictions.

  4. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  5. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  6. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  7. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  8. Universal Quantum Transducers Based on Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Schuetz, M. J. A.; Kessler, E. M.; Giedke, G.; Vandersypen, L. M. K.; Lukin, M. D.; Cirac, J. I.

    2015-07-01

    We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits, including quantum dots, trapped ions, nitrogen-vacancy centers, or superconducting qubits. The quantized modes of surface acoustic waves lie in the gigahertz range and can be strongly confined close to the surface in phononic cavities and guided in acoustic waveguides. We show that this type of surface acoustic excitation can be utilized efficiently as a quantum bus, serving as an on-chip, mechanical cavity-QED equivalent of microwave photons and enabling long-range coupling of a wide range of qubits.

  9. Propagation of acoustic pulses in random gravity wave fields

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; de La Camara, Alvaro; Lott, François

    2015-11-01

    A linear solution modeling the interaction between an incoming acoustic wave and a randomly perturbed atmosphere is developed, using the normal mode method. The wave mode structure is determined by a sound speed profile that is confining. The environmental uncertainty is described by a stochastic field obtained with a multiwave stochastic parameterization of gravity waves (GW). Using the propagating modes of the unperturbed atmosphere, the wave propagation problem is reduced to solving a system of ordinary differential equations. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime. In this regime, the coupling between the acoustic pulse and the randomly perturbed waveguides is weak and the propagation distance must be large enough for the wave to experience significant scattering. A general expression for the pressure far-field is derived in terms of saddle-point contributions. The saddle-points are obtained from a WKB approximation of the vertical eigenvalue problem. We present preliminary results that show how statistics of the transmitted signal are related to some eigenvalues and how an ``optimal'' GW field can trigger large deviations in the acoustic signals. The present model is used to explain the variability of infrasound signals.

  10. Drift and ion acoustic wave driven vortices with superthermal electrons

    SciTech Connect

    Ali Shan, S.; Haque, Q.

    2012-08-15

    Linear and nonlinear analysis of coupled drift and acoustic mode is presented in an inhomogeneous electron-ion plasma with {kappa}-distributed electrons. A linear dispersion relation is found which shows that the phase speed of both the drift wave and the ion acoustic wave decreases in the presence of superthermal electrons. Several limiting cases are also discussed. In the nonlinear regime, stationary solutions in the form of dipolar and monopolar vortices are obtained. It is shown that the condition for the boundedness of the solution implies that the speed of drift wave driven vortices reduces with increase in superthermality effect. Ignoring density inhomogeniety, it is investigated that the lower and upper limits on the speed of the ion acoustic driven vortices spread with the inclusion of high energy electrons. The importance of results with reference to space plasmas is also pointed out.

  11. Oxygen acoustic solitary waves in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Qian, S.; Lotko, W.; Hudson, M. K.

    1989-01-01

    Ion-acoustic solitary waves in a magnetized plasma containing an arbitrary mixture of H(+) and O(+) ions are studied. A nonlinear wave equation has been derived from the Poisson-Vlasov equations, including a uniform magnetic field and dissipation due to reflected electrons. When dissipation is ignored, the equation has soliton solutions associated with both oxygen and hydrogen acoustic modes, which can be either rarefactive or compressive depending on the ion concentrations and the electron/ion temperature ratio and, more weakly, on the bulk drifts of the species. If electron reflection is included, the solitary wave can be intensified. Under somewhat restrictive conditions the oxygen solitary wave is rarefactive and propagates with a velocity comparable to that observed by the Viking satellite. The three-dimensional solitons obey a relation of scales parallel to the magnetic field and in the transverse direction. Computer simulations of one-dimensional versions of the nonlinear wave equation are presented.

  12. Acoustic emission signatures of damage modes in concrete

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Mpalaskas, A. C.; Matikas, T. E.; Van Hemelrijck, D.

    2014-03-01

    The characterization of the dominant fracture mode may assist in the prediction of the remaining life of a concrete structure due to the sequence between successive tensile and shear mechanisms. Acoustic emission sensors record the elastic responses after any fracture event converting them into electric waveforms. The characteristics of the waveforms vary according to the movement of the crack tips, enabling characterization of the original mode. In this study fracture experiments on concrete beams are conducted. The aim is to examine the typical acoustic signals emitted by different fracture modes (namely tension due to bending and shear) in a concrete matrix. This is an advancement of a recent study focusing on smaller scale mortar and marble specimens. The dominant stress field and ultimate fracture mode is controlled by modification of the four-point bending setup while acoustic emission is monitored by six sensors at fixed locations. Conclusions about how to distinguish the sources based on waveform parameters of time domain (duration, rise time) and frequency are drawn. Specifically, emissions during the shear loading exhibit lower frequencies and longer duration than tensile. Results show that, combination of AE features may help to characterize the shift between dominant fracture modes and contribute to the structural health monitoring of concrete. This offers the basis for in-situ application provided that the distortion of the signal due to heterogeneous wave path is accounted for.

  13. Effect of Thermal Conduction on Acoustic Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.

    2006-05-01

    The influence of classical (Spitzer) thermal conduction on longitudinal acoustic waves in a coronal loop is determined through an idealized but exactly solvable model. The model consists of an isothermal, stratified (constant gravity) atmosphere in which a monochromatic acoustic wave, traveling in the direction of decreasing density, is imposed throughout the lower half of the atmosphere. Based on the linearized equations of motion, the complete steady state (t-->∞) solution is obtained. In addition to the imposed driving wave, the solution also contains reflected and transmitted acoustic and thermal conduction waves. The mode transformation and mixing occurs in the vicinity of the atmospheric layer where the gas pressure passes through a critical value set by the magnitude of the thermal conduction and other model parameters. For 5 minute waves in a million degree loop, this critical pressure is on the order of 8×10-4 in cgs units. Since the apex gas pressure of many coronal loops of current interest is thought to be comfortably in excess of this value, mode mixing and transformation is not likely to be a relevant factor for understanding acoustic waves in these structures. On the other hand, enhanced thermal conductivity as a result of plasma instabilities, for example, could revive the importance of this mechanism for coronal loops. If this mixing layer is present, the calculations show that the pair of thermal conduction waves invariably gains the overwhelming majority of the energy flux of the incoming acoustic wave. This energy is rapidly dissipated in the neighborhood of the mixing layer.

  14. Writing magnetic patterns with surface acoustic waves

    SciTech Connect

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  15. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  16. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  17. Ion Acoustic Waves in Ultracold Neutral Plasmas

    SciTech Connect

    Castro, J.; McQuillen, P.; Killian, T. C.

    2010-08-06

    We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbations oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.

  18. Ion acoustic shock waves in degenerate plasmas

    SciTech Connect

    Akhtar, N.; Hussain, S.

    2011-07-15

    Korteweg de Vries Burgers equation for negative ion degenerate dissipative plasma has been derived using reductive perturbation technique. The quantum hydrodynamic model is used to study the quantum ion acoustic shock waves. The effects of different parameters on quantum ion acoustic shock waves are studied. It is found that quantum parameter, electrons Fermi temperature, temperature of positive and negative ions, mass ratio of positive to negative ions, viscosity, and density ratio have significant impact on the shock wave structure in negative ion degenerate plasma.

  19. Interaction of surface acoustic waves with moving vortex structures in superconducting films

    SciTech Connect

    Gutlyansky, E. D.

    2007-07-15

    A method is proposed for describing a moving film vortex structure and its interaction with surface acoustic waves. It is shown that the moving vortex structure can amplify (generate) surface acoustic waves. In contrast to a similar effect in semiconductor films, this effect can appear when the velocity of the vortex structure is much lower than the velocity of the surface acoustic waves. A unidirectional collective mode is shown to exist in the moving vortex structure. This mode gives rise to an acoustic analogue of the diode effect that is resonant in the velocity of the vortex structure. This acoustic effect is manifested as an anomalous attenuation of the surface acoustic waves in the direction of the vortex-structure motion and as the absence of this attenuation for the propagation in the opposite direction.

  20. Exciton transport by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Rudolph, J.; Hey, R.; Santos, P. V.

    2007-05-01

    Long-range acoustic transport of excitons in GaAs quantum wells (QWs) is demonstrated. The mobile strain field of a surface acoustic wave creates a dynamic lateral type I modulation of the conduction and valence bands in a double-quantum-well (DQW) structure. This mobile potential modulation transports long-living indirect excitons in the DQW over several hundreds of μm.

  1. Imaging of Acoustic Waves in Sand

    SciTech Connect

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  2. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices. PMID:25643594

  3. Topological charge pump by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Yi, Zheng; Shi-Ping, Feng; Shi-Jie, Yang

    2016-06-01

    Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves. Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

  4. Potential wells for classical acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Lin, ShuYu; Mo, RunYang; Fu, ZhiQiang

    2014-01-01

    The acceleration theorem of Bloch waves is utilized to construct random potential wells for classical acoustic waves in systems composed of alternating `cavities' and `couplers'. One prominent advantage of this method is these `cavities' and `couplers' are all monolayer structures. It allows forming more compact classical potential wells, which leads to the miniaturization of acoustic devices. We systematically investigate properties of harmonic, tangent, hyperbolic function, and square classical potential wells in quasi-periodic superlattices. Results show these classical potential wells are analogues of quantum potential wells. Thus some technologies and concepts in quantum potential well fields may be generalized to classical acoustic wave fields. In addition, some abnormal cases regarding forming classical potential wells are also found.

  5. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  6. Impact of Acoustic Standing Waves on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.

    2014-01-01

    For several decades large reverberant chambers and most recently direct field acoustic testing have been used in the aerospace industry to test larger structures with low surface densities such as solar arrays and reflectors to qualify them and to detect faults in the design and fabrication. It has been reported that in reverberant chamber and direct acoustic testing, standing acoustic modes may strongly couple with the fundamental structural modes of the test hardware (Reference 1). In this paper results from a recent reverberant chamber acoustic test of a composite reflector are discussed. These results provide further convincing evidence of the acoustic standing wave and structural modes coupling phenomenon. The purpose of this paper is to alert test organizations to this phenomenon so that they can account for the potential increase in structural responses and ensure that flight hardware undergoes safe testing. An understanding of the coupling phenomenon may also help minimize the over and/or under testing that could pose un-anticipated structural and flight qualification issues.

  7. On fast radial propagation of parametrically excited geodesic acoustic mode

    SciTech Connect

    Qiu, Z.; Chen, L.; Zonca, F.

    2015-04-15

    The spatial and temporal evolution of parametrically excited geodesic acoustic mode (GAM) initial pulse is investigated both analytically and numerically. Our results show that the nonlinearly excited GAM propagates at a group velocity which is, typically, much larger than that due to finite ion Larmor radius as predicted by the linear theory. The nonlinear dispersion relation of GAM driven by a finite amplitude drift wave pump is also derived, showing a nonlinear frequency increment of GAM. Further implications of these findings for interpreting experimental observations are also discussed.

  8. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    SciTech Connect

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  9. Oscillational instabilities in single mode acoustics levitators

    NASA Technical Reports Server (NTRS)

    Rudnick, J.; Barmatz, Martin

    1990-01-01

    An extention of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The authors' results are consistent with those of experimental investigators. The present approach accounts for the effects of time delays in the response of a cavity to the motion of an object inside of it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of ability to levitate are discussed.

  10. Acoustic microscopy with mixed-mode transducers

    SciTech Connect

    Chou, C.H.; Parent, P.; Khuri-Yakub, B.T.

    1988-12-31

    The new amplitude-phase acoustic microscope is versatile; it operates in a wide frequency range 1--200 MHz, with selection of longitudinal, shear, and mixed modes. This enables it to be used in many NDE applications for different kinds of materials. Besides the application examples presented in this paper (bulk defect imaging of lossy materials or at deep locations; leads of IC chip in epoxy package; amplitude images of surface crack on Si nitride ball bearing; thin Au film on quartz), this system can also be applied for residual stress and anisotropy mapping with high accuracy and good spatial resolution. 7 refs, 6 figs.

  11. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  12. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  13. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data. PMID:21476621

  14. Prospects for coupling Surface Acoustic Waves to superconducting qubits

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin

    2013-03-01

    Recent years have seen great development in the quantum control of mechanical resonators. These usually consist of membranes, cantilevers or suspended beams, whose vibrational modes can be cooled to the quantum ground state. This presentation will focus on a different kind of micromechanical system, where the motion is not confined to a mode with fixed boundaries, but propagates along the surface of a microchip. These modes are known as Surface Acoustic Waves (SAWs), and superficially resemble ripples on water, moving with low loss along the surfaces of solids. On a piezoelectric substrate, electrode gratings known as Interdigital Transducers (IDTs) can be used to convert power between the electric and acoustic domains. Devices based on this effect are of profound technological importance as filters and analog signal processors in the RF domain. In the realm of quantum information processing, SAWs have primarily been used to transport carriers and excitons through piezoelectric semiconductors, in the electric potential wells propagating along with the mechanical wave. Our approach, however, is different in that we aim to explore the mechanical wave itself as a carrier of quantum information. We have previously shown that a single-electron transistor can be used as a local probe for SAWs, with encouraging sensitivity levels. Building on this, we now investigate the prospects for coupling a SAW beam directly to a superconducting qubit. By merging a circuit model for an IDT with a quasi-classical description of a transmon qubit, we estimate that the qubit can couple to an acoustic transmission line with approximately the same strength as to an electrical one. This type of coupling opens for acoustic analogs of recent experiments in microwave quantum optics, including the generation of non-classical acoustic states.

  15. Acoustic waves superimposed on incompressible flows

    NASA Technical Reports Server (NTRS)

    Hodge, Steve

    1990-01-01

    The use of incompressible approximations in deriving solutions to the Lighthill wave equation was investigated for problems where an analytical solution could be found. A particular model problem involves the determination of the sound field of a spherical oscillating bubble in an ideal fluid. It is found that use of incompressible boundary conditions leads to good approximations in the important region of high acoustic wave number.

  16. Acoustic wave levitation: Handling of components

    NASA Astrophysics Data System (ADS)

    Vandaele, Vincent; Delchambre, Alain; Lambert, Pierre

    2011-06-01

    Apart from contact micromanipulation, there exists a large variety of levitation techniques among which standing wave levitation will be proposed as a way to handle (sub)millimetric components. This paper will compare analytical formulas to calculate the order of magnitude of the levitation force. It will then describe digital simulation and experimental levitation setup. Stable levitation of various components (cardboard, steel washer, ball, ceramic capacity, water droplet) was shown along 5 degrees of freedom: The only degree of freedom that could not be mastered was the rotation about the symmetry axis of the acoustic field. More importantly, the present work will show the modification of the orientation of the radial force component in the presence of an object disturbing the acoustic field. This property can be used as a new feeding strategy as it means that levitating components are spontaneously pushed toward grippers in an acoustic plane standing wave.

  17. Seismic waves from elephant vocalizations: A possible communication mode?

    NASA Astrophysics Data System (ADS)

    Günther, Roland H.; O'Connell-Rodwell, Caitlin E.; Klemperer, Simon L.

    2004-06-01

    We conducted experiments with trained African elephants that show that low-frequency elephant vocalizations produce Rayleigh waves. We model a potential range for these seismic waves, under ideal conditions, of c. 2 km. In appropriate conditions, surface waves from an elephant's infrasonic vocalizations might propagate further than airborne sound and provide advantages over acoustic communication. However, if we use the detection capabilities of the human ear as a benchmark for the signal-detection thresholds of elephants, our estimates of attenuation and ambient seismic noise suggest that the seismic detection range is unlikely to exceed the acoustic detection range under normal atmospheric conditions. We conclude that elephants may benefit from seismic detection in circumstances where the range of acoustic communication is limited, or in cases where multimodal communication is advantageous. Given our current understanding, elephants are unlikely to rely on seismic waves as their primary mode for long-range communication.

  18. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson

  19. Transverse-Mode Spurious Suppression Technique for Surface Acoustic Wave Resonator with Zero Temperature Coefficient of Frequency on a SiO2/Al/LiNbO3 Structure

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hidekazu; Nakamura, Hiroyuki; Tsurunari, Tetsuya; Fujiwara, Joji; Hamaoka, Yosuke; Hashimoto, Ken-ya

    2012-07-01

    In this paper, we describe a suppression technique of transverse-mode spurious responses for a surface acoustic wave (SAW) resonator with a near zero temperature coefficient of frequency (TCF) on a SiO2/Al/LiNbO3 structure. We investigated the thinning of SiO2 on the dummy electrode region and studied how the transverse-mode responses change with remaining SiO2 thickness h on the dummy electrode region. As the results, we clarified that the remaining SiO2 thickness h on the dummy electrode region has an optimum value and could suppress the transverse-mode spurious responses completely when H and h are set at 0.35 λ and 0.20 λ, respectively. It was demonstrated that the selective SiO2 removal technique is effective to suppress transverse-mode spurious responses for SAW resonators employing the SiO2/Al/LiNbO3 structure for a wide range of SiO2 thicknesses, provided that the SiO2 thickness at the dummy electrode region is adjusted properly.

  20. Tapered acoustical directional couplers for integrated acousto-optical mode converters with weighted coupling

    NASA Astrophysics Data System (ADS)

    Herrmann, Harald; Rust, Ulrich; Schafer, Klaus

    1995-03-01

    Weighted coupling for strong sidelobe suppression of integrated acoustooptical mode converters in LiNbO3 using acoustical directional couplers has been studied theoretically and experimentally. A parameter free model for the propagation of surface acoustic waves in guiding structures has been developed based on a step-like variation of the acoustic velocity. Comparisons of theoretical results with experimental ones for acoustic waveguides and directional coupler structures confirm the applicability of the model. A coupled mode description of the acousto-optical polarization conversion in converters with acoustical directional couplers has been developed and applied to several tapered acoustical directional couplers. The model reveals that the conversion characteristics are usually strongly asymmetric. If the directional coupler is appropriately designed, a sidelobe suppression of about 30 dB can be achieved. First experimental results with tapered directional couplers confirm within some limits the theoretical predictions.

  1. Marble Ageing Characterization by Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  2. Volumetric measurements of a spatially growing dust acoustic wave

    SciTech Connect

    Williams, Jeremiah D.

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  3. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    NASA Astrophysics Data System (ADS)

    Arshad, Kashif; Aman-ur-Rehman, Mahmood, Shahzad

    2016-05-01

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions are also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.

  4. Location Dependence of Mass Sensitivity for Acoustic Wave Devices

    PubMed Central

    Zhang, Kewei; Chai, Yuesheng; Cheng, Z.-Y.

    2015-01-01

    It is introduced that the mass sensitivity (Sm) of an acoustic wave (AW) device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices. PMID:26404313

  5. Acoustic wave-equation-based earthquake location

    NASA Astrophysics Data System (ADS)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  6. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1984-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have refined our modulated radiation pressure technique for characterizing the interfaces between liquids so that we can automatically track changes in interfacial tension over time due to contaminants, surfactants, etc. (2) We have improved and simplified our acoustic scattering apparatus for measuring distributions of the properties of microparticle samples, which will allow us to distinguish particulates in liquids by size, compressibility, and density. (3) We are continuing work on theoretical approaches to nonlinear acoustics which should permit us to cast problems with geometric and other complexities into a manageable form. (4) Our studies of cavitation have enabled us to derive an analytic expression which predicts the acoustic pressure threshold for cavitation at the micrometer scale - where surface tension effects are important. This work has relevance to the consideration of possible bioeffects from diagnostic ultrasound. (5) Other projects include the calibration of hydrophones using acoustically levitated samples, and the investigation of solitary waves of the sort discovered by Wu, Keolian and Rudnick.

  7. Analysis of Rayleigh-Mode Spurious Response Using Finite Element Method/Spectrum Domain Analysis for Surface Acoustic Wave Resonator on Nonflat SiO2/Al/LiNbO3 Structure

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroyuki; Nakanishi, Hidekazu; Goto, Rei; Hashimoto, Ken-ya; Yamaguchi, Masatsune

    2010-07-01

    Because of their low insertion loss, high out-of-band rejection, and high power durability, miniature surface acoustic wave (SAW) duplexers are widely used in mobile phones. Substrate materials substantially limit and determine the performance of SAW duplexers; for their applications to Band I and Band IV systems with large pass-band widths and wide frequency separations between the transmitting and receiving frequency bands, a larger coupling coefficient (K2) is of primary importance. We have developed a shape-controlled SiO2 film/Al electrode/LiNbO3 substrate structure for their applications. It could lead to a large K2 and suppression of Rayleigh-mode spurious response. In this paper, we report the analysis using finite element method/spectrum domain analysis (FEM/SDA) for the SAW resonator on a nonflat SiO2 film/Al electrode/LiNbO3 structure. It was clarified that the shape-controlled SiO2 was effective in terms of achieving a large K2 for the SAW resonator with suppressed Rayleigh-mode spurious responses and bulk wave radiation. Furthermore, the experiment results showed a good agreement with the analysis results.

  8. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  9. Multilayer magnetostrictive structure based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Talbi, A.; Tiercelin, N.; Bou Matar, O.

    2014-03-01

    This study addresses the experimental and theoretical investigations of guided elastic waves propagation in piezo-magnetic multi-layered structure. The structure is composed of a 20×TbCo2(5nm)/FeCo(5nm) nanostructured multi-layer deposited between two Aluminum (Al) Inter-Digitals Transducers forming a surface acoustic wave delay line, on a Y-cut LiNbO3 substrate. We compare the calculated and measured phase velocity variation under the action of the external magnetic field orientation and magnitude. We find quantitative agreement between the measured and modeled phase velocity shift for all external magnetic field configurations (hard axis and easy axis) and for different shape modes of elastic waves at their first and third harmonic operation frequencies. The shear horizontal mode exhibits a maximum phase velocity shift close to 20% for a ratio close to 1 between magneto-elastic film thickness and wavelength.

  10. Nonlinear waves and shocks in a rigid acoustical guide.

    PubMed

    Fernando, Rasika; Druon, Yann; Coulouvrat, François; Marchiano, Régis

    2011-02-01

    A model is developed for the propagation of finite amplitude acoustical waves and weak shocks in a straight duct of arbitrary cross section. It generalizes the linear modal solution, assuming mode amplitudes slowly vary along the guide axis under the influence of nonlinearities. Using orthogonality properties, the model finally reduces to a set of ordinary differential equations for each mode at each of the harmonics of the input frequency. The theory is then applied to a two-dimensional waveguide. Dispersion relations indicate that there can be two types of nonlinear interactions either called "resonant" or "non-resonant." Resonant interactions occur dominantly for modes propagating at a rather large angle with respect to the axis and involve mostly modes propagating with the same phase velocity. In this case, guided propagation is similar to nonlinear plane wave propagation, with the progressive steepening up to shock formation of the two waves that constitute the mode and reflect onto the guide walls. Non-resonant interactions can be observed as the input modes propagate at a small angle, in which case, nonlinear interactions involve many adjacent modes having close phase velocities. Grazing propagation can also lead to more complex phenomena such as wavefront curvature and irregular reflection. PMID:21361419

  11. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  12. Nonlinear holography for acoustic wave detection

    NASA Astrophysics Data System (ADS)

    Bortolozzo, U.; Dolfi, D.; Huignard, J. P.; Molin, S.; Peigné, A.; Residori, S.

    2015-03-01

    A liquid crystal medium is used to perform nonlinear dynamic holography and is coupled with multimode optical fibers for optical sensing applications. Thanks to the adaptive character of the nonlinear holography, and to the sensitivity of the multimode fibers, we demonstrate that the system is able to perform efficient acoustic wave detection even with noisy signals. The detection limit is estimated and multimode versus monomode optical fiber are compared. Finally, a wavelength multiplexing protocol is implemented for the spatial localization of the acoustic disturbances.

  13. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1986-01-01

    In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  14. Anomalous refraction of guided waves via embedded acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-04-01

    We illustrate the design of acoustic metasurfaces based on geometric tapers and embedded in thin-plate structures. The metasurface is an engineered discontinuity that enables anomalous refraction of guided wave modes according to the Generalized Snell's Law. Locally-resonant geometric torus-like tapers are designed in order to achieve metasurfaces having discrete phase-shift profiles that enable a high level of control of refraction of the wavefronts. Results of numerical simulations show that anomalous refraction can be achieved on transmitted anti-symmetric modes (A0) either when using a symmetric (S0) or anti-symmetric (A0) incident wave, where the former case clearly involves mode conversion mechanisms.

  15. Prufer Transformations for the Normal Modes in Ocean Acoustics

    SciTech Connect

    Baggeroer, Arthur B.

    2010-09-06

    In 1926 Prufer introduced a method of transforming the second order Sturm-Liouville (SL) equation into two nonlinear first order differential equations for the phase oe and ''magnitude'', |oe{sup 2}+oe{sup 2}| for a Poincare phase space representation, (oe,oe). The useful property is the phase equation decouples from the magnitude one which leads to a nonlinear, two point boundary value problem for the eigenvalues, or SL numbers. The transformation has been used both theoretically, e.g. Atkinson, [1960] to prove certain properties of SL equations as well as numerically e.g Bailey [1978]. This paper examines the utility of the Prufer transformation in the context of numerical solutions for modes of the ocean acoustic wave equation. (Its use is certainly not well known in the ocean acoustics community.) Equations for the phase, oe, and natural logarithm of the ''magnitude'', ln(|oe{sup 2}+oe{sup 2}|) lead to same decoupling and a fast and efficient numerical solution with the SL eigenvalues mapping to the horizontal wavenubers. The Prufer transformation has stabilty problems for low order modes at high frequecies, so a numerically stable method of integrating the phase equation is derived. This seems to be the first time the these stability issues have been highlighted to provide a robust algorthim for the modes.

  16. Prufer Transformations for the Normal Modes in Ocean Acoustics

    NASA Astrophysics Data System (ADS)

    Baggeroer, Arthur B.

    2010-09-01

    In 1926 Prufer introduced a method of transforming the second order Sturm-Liouville (SL) equation into two nonlinear first order differential equations for the phase o/ and "magnitude", |o/2+o/2| for a Poincare phase space representation, (o/,o/). The useful property is the phase equation decouples from the magnitude one which leads to a nonlinear, two point boundary value problem for the eigenvalues, or SL numbers. The transformation has been used both theoretically, e.g. Atkinson, [1960] to prove certain properties of SL equations as well as numerically e.g Bailey [1978]. This paper examines the utility of the Prufer transformation in the context of numerical solutions for modes of the ocean acoustic wave equation. (Its use is certainly not well known in the ocean acoustics community.) Equations for the phase, o/, and natural logarithm of the "magnitude", ln(|o/2+o/2|) lead to same decoupling and a fast and efficient numerical solution with the SL eigenvalues mapping to the horizontal wavenubers. The Prufer transformation has stabilty problems for low order modes at high frequecies, so a numerically stable method of integrating the phase equation is derived. This seems to be the first time the these stability issues have been highlighted to provide a robust algorthim for the modes.

  17. Condition of resonant break-up of gas bubbles by an acoustic wave in liquid

    NASA Astrophysics Data System (ADS)

    Vanovskiy, V. V.; Petrov, A. G.

    2016-07-01

    The linear theory of damping of radial vibrations of a bubble in a liquid is constructed by taking into account the key dissipative mechanisms: thermal, viscous, and acoustic. The basic approximation of homobaricity made helps to obtain the results in a convenient and simple form. The results obtained for damping are used further in the description of the forced resonant oscillations of a bubble in an acoustic wave with the frequency equal to the eigenfrequency of the radial oscillation mode and twice as high as the frequency of the deformation oscillation mode (resonance 2:2:1). It is shown that the amplitude of deformation oscillations, which is reasonably large for breaking, is developed at a relatively small pressure amplitude of the exciting acoustic wave, and subharmonics arise in the acoustic-emission spectrum. The condition of bubble break-up is obtained for a fast and slow start of the acoustic wave.

  18. Acoustic Remote Sensing of Rogue Waves

    NASA Astrophysics Data System (ADS)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  19. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1985-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have derived a theory, and tested it on tissues, for predicting the composition of composite materials using mixture rules, such as the one we derived for the nonlinear parameter two years ago; (2) We have published one article and another is in review on our use of modulated acoustic radiation pressure on levitated drops to characterize interfaces with and without surfactants. We have begun to study in a systematic way the nonlinear dynamics of drops, including drop fission: (3) we have improved apparatus for 30 MHz ultrasonic scattering from microparticles (approx. micron size), which should allow us to discriminate between different microparticles in a liquid; (4) We have begun to study the nonlinear mechanics of hydrodynamic solitons in cylindrical (2-d) geometry; and (5) We have been studying the use of acoustic levitation for transducer calibration.

  20. Helioseismology and asteroseismology: looking for gravitational waves in acoustic oscillations

    SciTech Connect

    Lopes, Ilídio; Silk, Joseph E-mail: ilopes@uevora.pt

    2014-10-10

    Current helioseismology observations allow the determination of the frequencies and surface velocity amplitudes of solar acoustic modes with exceptionally high precision. In some cases, the frequency accuracy is better than one part in a million. We show that there is a distinct possibility that quadrupole acoustic modes of low order could be excited by gravitational waves (GWs), if the GWs have a strain amplitude in the range 10{sup –20} h {sub –20} with h {sub –20} ∼ 1 or h {sub –20} ∼ 10{sup 3}, as predicted by several types of GW sources, such as galactic ultracompact binaries or extreme mass ratio inspirals and coalescence of black holes. If the damping rate at low order is 10{sup –3}η {sub N} μHz, with η {sub N} ∼ 10{sup –3}-1, as inferred from the theory of stellar pulsations, then GW radiation will lead to a maximum rms surface velocity amplitude of quadrupole modes of the order of h{sub −20}η{sub N}{sup −1}∼ 10{sup –9}-10{sup –3} cm s{sup –1}, on the verge of what is currently detectable via helioseismology. The frequency and sensitivity range probed by helioseismological acoustic modes overlap with, and complement, the capabilities of eLISA for the brightest resolved ultracompact galactic binaries.

  1. Helioseismology and Asteroseismology: Looking for Gravitational Waves in Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio; Silk, Joseph

    2014-10-01

    Current helioseismology observations allow the determination of the frequencies and surface velocity amplitudes of solar acoustic modes with exceptionally high precision. In some cases, the frequency accuracy is better than one part in a million. We show that there is a distinct possibility that quadrupole acoustic modes of low order could be excited by gravitational waves (GWs), if the GWs have a strain amplitude in the range 10-20 h -20 with h -20 ~ 1 or h -20 ~ 103, as predicted by several types of GW sources, such as galactic ultracompact binaries or extreme mass ratio inspirals and coalescence of black holes. If the damping rate at low order is 10-3η N μHz, with η N ~ 10-3-1, as inferred from the theory of stellar pulsations, then GW radiation will lead to a maximum rms surface velocity amplitude of quadrupole modes of the order of h_{-20}\\eta _N^{-1}\\sim 10-9-10-3 cm s-1, on the verge of what is currently detectable via helioseismology. The frequency and sensitivity range probed by helioseismological acoustic modes overlap with, and complement, the capabilities of eLISA for the brightest resolved ultracompact galactic binaries.

  2. Selective optical generation of a coherent acoustic nanocavity mode

    NASA Astrophysics Data System (ADS)

    Pascual Winter, M. F.; Rozas, G.; Jusserand, B.; Perrin, B.; Fainstein, A.; Vaccaro, P. O.; Saravanan, S.

    2007-04-01

    We report the first experimental evidence of selective generation of a confined acoustic mode in a Ga0.85In0.15As nanocavity enclosed by two Ga0.85In0.15As/AlAs phonon Bragg mirrors. Femtosecond pump-probe experiments reveal the generation of a cavity mode within the acoustic mini-gap of the mirrors, in addition to their folded acoustic modes. Selective generation of the confined mode alone is achievable for certain energies below the absorption of the quantum wells in the phonon mirrors. These energies are experimentally identified with the cavity spacer electronic transitions. The amplitude of the acoustic nanocavity mode can be controlled by detuning the excitation from the spacer transitions. The present work finds a direct interest in the seek of monochromatic MHz-THz acoustic sources.

  3. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  4. Terahertz acoustic wave on piezoelectric semiconductor film via large-scale molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hikata, Ryo; Tsuruta, Kenji; Ishikawa, Atsushi; Fujimori, Kazuhiro

    2015-07-01

    By atomistic simulation, we investigate an acoustic wave at THz frequencies in nanoscale thin films of aluminum-nitride piezoelectric material. A mode analysis reveals that the thickness longitudinal mode along the [0001] direction exists stably at the atomic level. To control the acoustic wave, we introduce a phononic crystal (PC) structure in the films. We determine the band-gap frequency in the phonon dispersion of the PC structure and confirm via molecular dynamics simulation that the acoustic wave within the band-gap frequency can be confined by a waveguide structure with a PC. The possibility of designing and controlling a THz acoustic wave in a nanoscale thin film with a PC is thereby demonstrated.

  5. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  6. Support minimized inversion of acoustic and elastic wave scattering

    SciTech Connect

    Safaeinili, A.

    1994-04-24

    This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion.

  7. Acoustic mode vibrational anharmonicity of hexahelometallate crystals

    NASA Astrophysics Data System (ADS)

    Jain, Sanjeev Kumar; Goyal, R. P.; Gupta, B. R. K.

    1992-11-01

    The vibrational anharmonicity and Grüneisen parameters of hexahelometallate A 2MX 6 single crystals have been determined theoretically by making use of phonon lattice theory. The potential model employed to calculate these properties consists of long range coulomb, three body interactions, short range overlap repulsion effective upto the nearest neighbour ions and phonon-lattice interactions. These antifluorite structure compounds contain large MX 2-6- ions and as the interionic spacings are much greater than those of the alkaline-earth fluorite structure halides, their elastic constants are correspondingly smaller. The hydrostatic pressure derivatives of the second order elastic constants (SOEC) calculated for K 2SnCl 6, K 2ReCl 6, (NH 4) 2SnCl 6, (NH 4) 2TeCl 6, (NH 4) 2SnBr 6, and (NH 4) 2TeBr 6, are found to be positive and close to the experimental values. The vibrational anharmonicities of the long-wavelength modes are explained in terms of the acoustic mode Grüneisen parameters.

  8. Torsional waves excited by electromagnetic-acoustic transducers during guided-wave acoustic inspection of pipelines

    NASA Astrophysics Data System (ADS)

    Murav'eva, O. V.; Len'kov, S. V.; Murashov, S. A.

    2016-01-01

    A theory of propagation of torsional waves excited by an electromagnetic-acoustic transducer in a pipe is proposed. This theory takes into account the excitation parameters, geometry, viscosity, and the elastic characteristics of an object. The main testing parameters (the frequency and geometry of the transducer) that determine the possibilities of guided-wave testing of pipelines of various dimensions using torsional waves are theoretically substantiated.

  9. Isomorphic surface acoustic waves on multilayer structures

    NASA Astrophysics Data System (ADS)

    Hunt, William D.

    2001-03-01

    There has been growing interest in recent years over the investigation of bulk acoustic waves (BAWs) which propagate along certain directions in anisotropic crystals with a minimum of diffraction. One application of these BAWs is for multichannel acousto-optic devices. The fact that the beams propagate with the minimum diffraction implies that the channels in such a device can be closely packed. Since surface acoustic waves (SAWs) are constrained to be within roughly one acoustic wavelength from the surface, the possibility exists to deposit thin films of isotropic or anisotropic material on the substrate and embue the aggregate multilayer structure with properties not present in the beginning substrate material. The characteristic investigated in this article is the velocity anisotropy which, as is known, predominates SAW diffraction. Specifically, we present a method whereby self-collimating SAWs can be generated on surfaces even though the substrate material itself does not exhibit this behavior. We discuss the particular case of a ZnO layer on (001)-cut <110>-propagating GaAs for which a fair amount of slowness surface data exists. Finally, using angular spectrum of plane waves diffraction theory, we present data which substantiate the claim that self-collimating can more accurately be viewed as isomorphic because the SAW beam profile can propagate without changing its shape.

  10. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  11. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  12. Preliminary measurements of thermal effects in the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, Jeremiah

    2009-11-01

    A complex (dusty) plasma (CDP) is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of the microparticles gives rise to new plasma phenomena, including collective modes such as the dust acoustic wave. Recent measurements of the dispersion relationship of this wave mode [E. Thomas, Jr., et. al., Phys. Plasmas 14, 123701 (2007), J.D. Williams, et. al., Phys. Plasmas 15, 043704 (2008)] have shown that, over a range of neutral gas pressures, it is necessary to include thermal effects to accurately fit the measured dispersion relations. In this work, initial measurements of the dispersion relation in a new dusty plasma experiment, the Wittenberg University DUsty Plasma Experiment (WUDUPE), will be presented. In particular, the dependence of the kinetic dust temperature on the neutral gas pressure will be presented.

  13. Gravitational wave detection with high frequency phonon trapping acoustic cavities

    NASA Astrophysics Data System (ADS)

    Goryachev, Maxim; Tobar, Michael E.

    2014-11-01

    There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency (1 06-1 09 Hz ) gravitation waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultrahigh quality factor quartz bulk acoustic wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at 20 mK. We show that spectral strain sensitivities reaching 1 0-22 per √{Hz } per mode is possible, which in principle can cover the frequency range with multiple (>100 ) modes with quality factors varying between 1 06 and 1 010 allowing wide bandwidth detection. Due to its compactness and well-established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.

  14. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  15. A superconducting qubit coupled to propagating acoustic waves

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin V.; Aref, Thomas; Frisk Kockum, Anton; Ekström, Maria K.; Johansson, Göran; Delsing, Per

    2015-03-01

    Mechanical devices in the quantum regime have so far consisted mainly of suspended resonators, where standing modes can be populated with quanta of vibrational energy. We present a fundamentally different system, where the mechanical excitation is not restricted to a specific mode and location. Instead, we demonstrate strong non-classical coupling between propagating phonons and a superconducting qubit. The qubit is fabricated on a piezoelectric substrate, and is designed to interact with Surface Acoustic Waves (SAWs) in the gigahertz frequency range. A separate on-chip transducer allows us to launch SAWs toward the qubit from a distance and pick up SAW phonons that the qubit reflects and emits. In a series of experiments where the qubit is addressed both electrically and acoustically, we show that the qubit couples much more strongly to SAWs than to any electrical modes. The low speed of sound sets phonons apart from photons as a medium for transporting quantum information, and should enable real-time manipulation of propagating quanta. The short acoustic wavelength and strong piezoelectric coupling should also allows regimes of interaction to be explored which cannot be reached in photonic systems.

  16. Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey N.; Uralov, Arkadiy M.

    2016-05-01

    Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.

  17. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    PubMed Central

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-01-01

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010

  18. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    SciTech Connect

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  19. Ultrahigh Q Bulk Acoustic Wave Cavities at the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Tobar, Michael; Goryachev, Maxim; Ivanov, Eugene; van Kann, Frank; Galliou, Serge

    2015-03-01

    A Fabry-Perot cavity is an optical resonator, which can store photons for milliseconds and enhance interaction between light and matter. The acoustics analogue (phonon trapping), is the Bulk Acoustic Wave device (in thin film or crystal lattice). Measurements provide the ultimate material loss regimes, minimizing clamping losses and achieving record high Q.f products, allowing observation of various loss mechanisms such as Landau-Rumer, phonon-phonon dissipation and Rayleigh phonon scattering, as well as previously non-observed non-linear effects. This presentation will summarize our recent work towards cooling such modes to the ground state and operating the device at the Quantum Limit. This includes the first measurements of the Nyquist noise near at 4K, as well as details on using such devices to test fundamental physics. Funded by ARC Grant No. CE110001013.

  20. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  1. Dust ion acoustic solitary waves in a collisional dusty plasma with dust grains having Gaussian distribution

    SciTech Connect

    Maitra, Sarit; Banerjee, Gadadhar

    2014-11-15

    The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented.

  2. Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows

    SciTech Connect

    Uchava, E. S.; Shergelashvili, B. M.; Tevzadze, A. G.; Poedts, S.

    2014-08-15

    We present a linear stability analysis of the perturbation modes in anisotropic magnetohydrodynamic (MHD) flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model that takes into account not only the effect of pressure anisotropy but also the effect of anisotropic heat fluxes. In this model, the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also important in astrophysical environments, where it will limit the maximal value of magnetic field that a low density ionized anisotropic flow can sustain.

  3. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    SciTech Connect

    Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen

    2015-10-28

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.

  4. Observations of dust acoustic waves driven at high frequencies: Finite dust temperature effects and wave interference

    SciTech Connect

    Thomas, Edward Jr.; Fisher, Ross; Merlino, Robert L.

    2007-12-15

    An experiment has been performed to study the behavior of dust acoustic waves driven at high frequencies (f>100 Hz), extending the range of previous work. In this study, two previously unreported phenomena are observed--interference effects between naturally excited dust acoustic waves and driven dust acoustic waves, and the observation of finite dust temperature effects on the dispersion relation.

  5. Nonextensive dust-acoustic solitary waves

    SciTech Connect

    Tribeche, M.; Merriche, A.

    2011-03-15

    The seminal paper of Mamun et al. [Phys. Plasmas 3, 702 (1996)] is revisited within the theoretical framework of the Tsallis statistical mechanics. The nonextensivity may originate from the correlation or long-range interactions in the dusty plasma. It is found that depending on whether the nonextensive parameter q is positive or negative, the dust-acoustic (DA) soliton exhibits compression for q<0 and rarefaction for q>0. The lower limit of the Mach number for the existence of DA solitary waves is greater (smaller) than its Maxwellian counterpart in the case of superextensivity (subextensivity).

  6. Simulation of dust-acoustic waves

    SciTech Connect

    Winske, D.; Murillo, M.S.; Rosenberg, M.

    1998-12-01

    The authors use molecular dynamics (MD) and particle-in-cell (PIC) simulation methods to investigate the dispersion relation of dust-acoustic waves in a one-dimensional, strongly coupled (Coulomb coupling parameter = {Lambda} = ratio of the Coulomb energy to the thermal energy = 120) dusty plasma. They study both cases where the dust is represented by a small number of simulation particles that form into a regular array structure (crystal limit) as well as where the dust is represented by a much larger number of particles (fluid limit).

  7. Acoustic gravity waves: A computational approach

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Dutt, P. K.

    1987-01-01

    This paper discusses numerical solutions of a hyperbolic initial boundary value problem that arises from acoustic wave propagation in the atmosphere. Field equations are derived from the atmospheric fluid flow governed by the Euler equations. The resulting original problem is nonlinear. A first order linearized version of the problem is used for computational purposes. The main difficulty in the problem as with any open boundary problem is in obtaining stable boundary conditions. Approximate boundary conditions are derived and shown to be stable. Numerical results are presented to verify the effectiveness of these boundary conditions.

  8. Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves

    PubMed Central

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2012-01-01

    Ultrasonic sensors can be used to determine physical fluid parameters like viscosity, density, and speed of sound. In this contribution, we present the concept for an integrated sensor utilizing pressure waves to sense the characteristic acoustic impedance of a fluid. We note that the basic setup generally allows to determine the longitudinal viscosity and the speed of sound if it is operated in a resonant mode as will be discussed elsewhere. In this contribution, we particularly focus on a modified setup where interferences are suppressed by introducing a wedge reflector. This enables sensing of the liquid's characteristic acoustic impedance, which can serve as parameter in condition monitoring applications. We present a device model, experimental results and their evaluation. PMID:23565036

  9. An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization

    NASA Astrophysics Data System (ADS)

    Noguchi, Y.; Yamada, T.; Otomori, M.; Izui, K.; Nishiwaki, S.

    2015-11-01

    This letter presents an acoustic metasurface that converts longitudinal acoustic waves into transverse elastic waves in an acoustic-elastic coupled system. Metasurface configurations are obtained by a level set-based topology optimization method, and we describe the mechanism that changes the direction of the wave motion. Numerical examples of 2D problems with prescribed frequencies of incident acoustic waves are provided, and transverse elastic wave amplitudes are maximized by manipulating the propagation of the acoustic waves. Frequency analysis reveals that each of the different metasurface designs obtained for different wavelengths of incident waves provides peak response at the target frequency.

  10. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  11. Dust Acoustic Mode Manifestations in Earth's Dusty Ionosphere

    SciTech Connect

    Kopnin, S.I.; Popel, S.I.

    2005-10-31

    Dust acoustic mode manifestations in the dusty ionosphere are studied. The reason for an appearance of the low-frequency radio noises associated with such meteor fluxes as Perseids, Orionids, Leonids, and Gemenids is determined.

  12. Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field

    SciTech Connect

    Zhou, Deng

    2015-09-15

    The dispersion relation of geodesic acoustic modes in the tokamak plasma with an equilibrium radial electric field is derived and analyzed. Multiple branches of eigenmodes have been found, similar to the result given by the fluid model with a poloidal mass flow. Frequencies and damping rates of both the geodesic acoustic mode and the sound wave increase with respect to the strength of radial electric field, while the frequency and the damping rate of the lower frequency branch slightly decrease. Possible connection to the experimental observation is discussed.

  13. Interaction of surface and bulk acoustic waves with a two-dimensional semimetal

    SciTech Connect

    Kovalev, V. M. Chaplik, A. V.

    2015-02-15

    The interaction of a surface elastic Rayleigh wave with an electron-hole plasma in a two-dimensional semimetal has been theoretically studied as determined by the deformation potential and piezoelectric mechanisms. Dispersion equations describing the coupled plasmon-acoustic modes for both types of interaction are derived, and damping of the Rayleigh wave is calculated. The damping of the acoustic and optical plasmon modes, which is related to the sound emission by plasma oscillations into the substrate volume, is calculated and it is shown that this sound emission is predominantly determined by the acoustic plasmon mode in the case of a deformation potential mechanism and by the optical mode in the case of a piezoelectric mechanism.

  14. Porous silicon bulk acoustic wave resonator with integrated transducer

    PubMed Central

    2012-01-01

    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697

  15. Wave Forced Normal Modes on Fringing Reefs

    NASA Astrophysics Data System (ADS)

    Pequignet, A. N.; Becker, J. M.; Merrifield, M. M.; Aucan, J.

    2008-12-01

    In an effort to assess wave-driven coastal inundation at the shoreline of fringing reefs, pressure and current observations were collected at reefs on Guam (Ipan) and Oahu, Hawaii (Mokuleia) as part of the PILOT (Pacific Island Land-Ocean Typhoon) experiment. Similar to dissipative sandy beaches, nearshore surface elevation at both reefs is dominated by energy in the infragravity frequency band. Coherent infragravity oscillations across the reef tend to occur at discrete frequencies and with standing wave cross-shore structures that are consistent with open basin resonant modes. The modes are forced by swell wave groups, similar to a time-dependent setup. The resonant modes are most apparent during energetic wave events, in part because wave setup over the reef increases the low mode resonant frequencies to a range that is conducive to wave group forcing. Evidence of the excitation of resonant modes during tropical storm Man-Yi at Ipan, Guam is presented.

  16. Microwave-Field Driven Acoustic Modes in Selected DNA Molecules

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn Steven

    The direct coupling of a microwave field to selected DNA molecules is demonstrated using standard dielectrometry. The absorption is resonant with a typical lifetime of 300 picoseconds. Such a long lifetime is unexpected for DNA in aqueous solution at room temperature and has interesting implications for microscopic considerations in future models of solvent damping. Resonant absorption at fundamental and harmonic frequencies for both supercoiled circular and linear DNA agrees with an acoustic mode model. Our associated acoustic velocities for linear DNA are very close to the acoustic velocity of the longitudinal acoustic mode independently observed on DNA fibers using Brillouin Spectroscopy. The difference in acoustic velocities for supercoiled circular and linear DNA is discussed in terms of a conformation dependent model. *This research has been funded by the Office of Naval Research, the Center for Devices and Radiological Health, and the National Science Foundation.

  17. Mode tomography using signals from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX)

    NASA Astrophysics Data System (ADS)

    Chandrayadula, Tarun K.

    Ocean acoustic tomography uses acoustic signals to infer the environmental properties of the ocean. The procedure for tomography consists of low frequency acoustic transmissions at mid-water depths to receivers located at hundreds of kilometer ranges. The arrival times of the signal at the receiver are then inverted for the sound speed of the background environment. Using this principle, experiments such as the 2004 Long Range Ocean Acoustic Propagation EXperiment have used acoustic signals recorded across Vertical Line Arrays (VLAs) to infer the Sound Speed Profile (SSP) across depth. The acoustic signals across the VLAs can be represented in terms of orthonormal basis functions called modes. The lower modes of the basis set concentrated around mid-water propagate longer distances and can be inverted for mesoscale effects such as currents and eddies. In spite of these advantages, mode tomography has received less attention. One of the important reasons for this is that internal waves in the ocean cause significant amplitude and travel time fluctuations in the modes. The amplitude and travel time fluctuations cause errors in travel time estimates. The absence of a statistical model and the lack of signal processing techniques for internal wave effects have precluded the modes from being used in tomographic inversions. This thesis estimates a statistical model for modes affected by internal waves and then uses the estimated model to design appropriate signal processing methods to obtain tomographic observables for the low modes. In order to estimate a statistical model, this thesis uses both the LOAPEX signals and also numerical simulations. The statistical model describes the amplitude and phase coherence across different frequencies for modes at different ranges. The model suggests that Matched Subspace Detectors (MSDs) based on the amplitude statistics of the modes are the optimum detectors to make travel time estimates for modes up to 250 km. The mean of the

  18. Wave envelopes method for description of nonlinear acoustic wave propagation.

    PubMed

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  19. Spatiotemporal mode structure of nonlinearly coupled drift wave modes

    SciTech Connect

    Brandt, Christian; Grulke, Olaf; Klinger, Thomas; Negrete, Jose Jr.; Bousselin, Guillaume; Brochard, Frederic; Bonhomme, Gerard; Oldenbuerger, Stella

    2011-11-15

    This paper presents full cross-section measurements of drift waves in the linear magnetized plasma of the Mirabelle device. Drift wave modes are studied in regimes of weakly developed turbulence. The drift wave modes develop azimuthal space-time structures of plasma density, plasma potential, and visible light fluctuations. A fast camera diagnostic is used to record visible light fluctuations of the plasma column in an azimuthal cross section with a temporal resolution of 10 {mu}s corresponding approximately to 10% of the typical drift wave period. Mode coupling and drift wave dispersion are studied by spatiotemporal Fourier decomposition of the camera frames. The observed coupling between modes is compared to calculations of nonlinearly coupled oscillators described by the Kuramoto model.

  20. Excitation of nonlinear ion acoustic waves in CH plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Xiao, C. Z.; Wang, Q.; He, X. T.

    2016-08-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number k λ D e increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of T i / T e < 0.2 in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with k λ D e increasing. When k λ D e is not large, such as k λ D e = 0.1 , 0.3 , 0.5 , the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when k λ D e is large, such as k λ D e = 0.7 , the linear frequency cannot be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.

  1. Wave theory of turbulence in compressible media (acoustic theory of turbulence)

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    The generation and the transmission of sound in turbulent flows are treated as one of the several aspects of wave propagation in turbulence. Fluid fluctuations are decomposed into orthogonal Fourier components, with five interacting modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. Wave interactions, governed by the inhomogeneous and nonlinear terms of the perturbed Navier-Stokes equations, are modeled by random functions which give the rates of change of wave amplitudes equal to the averaged interaction terms. The statistical framework adopted is a quantum-like formulation in terms of complex distribution functions. The spatial probability distributions are given by the squares of the absolute values of the complex characteristic functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation.

  2. Finite element approach analysis for characteristics of electromagnetic acoustic Lamb wave

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoming; Li, Songsong

    2016-04-01

    The electromagnetic acoustic Lamb wave, with the advantages of quickly detecting the defect and sensitivity to the defects, is widely used in non-destructive testing of thin sheet. In this paper, the directivity of sound field, Phase velocity, group velocity and particle displacement amplitude of Lamb wave are study based on finite element analysis method. The results show that, for 1mm aluminum, when the excitation frequency 0.64MHz, the displacement amplitude of A0 mode is minimum, and the displacement amplitude S0 mode is largest. Appropriate to increase the displacement amplitude of a mode, while reducing displacement amplitude of another mode, to achieve the excitation of a single mode Lamb wave. It is helpful to the Optimization of transducer parameters, the choice of Lamb wave modes and providing optimal excitation frequency.

  3. Evolution of nonlinear ion-acoustic solitary wave propagation in rotating plasma

    SciTech Connect

    Das, G. C.; Nag, Apratim

    2006-08-15

    A simple unmagnetized plasma rotating around an axis at an angle {theta} with the propagation direction of the acoustic mode has been taken. The nonlinear wave mode has been derived as an equivalent Sagdeev potential equation. A special procedure, known as the tanh method, has been developed to study the nonlinear wave propagation in plasma dynamics. Further, under small amplitude approximation, the nonlinear plasma acoustic mode has been exploited to study the evolution of soliton propagation in the plasma. The main emphasis has been given to the interaction of Coriolis force on the changes of coherent structure of the soliton. The solitary wave solution finds the different nature of solitons called compressive and rarefactive solitons as well as its explosions or collapses along with soliton dynamics and these have been showing exciting observations in exhibiting a narrow wave packet with the generation of high electric pressure and the growth of high energy which, in turn, yields the phenomena of radiating soliton in dynamics.

  4. Nonlinear surface acoustic waves in cubic crystals

    NASA Astrophysics Data System (ADS)

    Kumon, Ronald Edward

    Model equations developed by Hamilton, Il'inskii, and Zabolotskaya [J. Acoust. Soc. Am. 105, 639-651 (1999)] are used to perform theoretical and numerical studies of nonlinear surface acoustic waves in a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, quasilinear solutions of the equations are derived, and expressions are developed for the shock formation distance and nonlinearity coefficient. A time-domain equation corresponding to the frequency-domain model equations is derived and shown to reduce to a time-domain equation introduced previously for Rayleigh waves [E. A. Zabolotskaya, J. Acoust. Soc. Am. 91, 2569-2575 (1992)]. Numerical calculations are performed to predict the evolution of initially monofrequency surface waves in the (001), (110), and (111) planes of the crystals RbCl, KCl, NaCl, CaF2, SrF2, BaF2, C (diamond), Si, Ge, Al, Ni, Cu in the moverline 3m point group, and the crystals Cs-alum, NH4- alum, and K-alum in the moverline 3 point group. The calculations are based on measured second- and third- order elastic constants taken from the literature. Nonlinearity matrix elements which describe the coupling strength of harmonic interactions are shown to provide a powerful tool for characterizing waveform distortion. Simulations in the (001) and (110) planes show that in certain directions the velocity waveform distortion may change in sign, generation of one or more harmonies may be suppressed and shock formation postponed, or energy may be transferred rapidly to the highest harmonics and shock formation enhanced. Simulations in the (111) plane show that the nonlinearity matrix elements are generally complex-valued, which may lead to asymmetric distortion and the appearance of low frequency oscillations near the peaks and shocks in the velocity waveforms. A simple transformation based on the phase of the nonlinearity matrix is shown to provide a reasonable approximation of asymmetric waveform

  5. Guided wave modes in porous cylinders: Theory.

    PubMed

    Wisse, C J; Smeulders, D M J; Chao, G; van Dongen, M E H

    2007-10-01

    The classical theory of wave propagation in elastic cylinders is extended to poro-elastic mandrel modes. The classical theory predicts the existence of undamped L modes and damped C, I, and Z modes. These waves also appear in poro-elastic mandrels, but all of them become damped because of viscous effects. The presence of the Biot slow bulk wave in the poro-elastic material is responsible for the generation of additional mandrel modes. One of them was already discussed by Feng and Johnson, and the others can be grouped together as so-called D modes. The damping of these D modes is at least as high as the damping of the free-field slow wave. PMID:17902842

  6. Perturbations From Ducts on the Modes of Acoustic Thermometers

    PubMed Central

    Gillis, K. A.; Lin, H.; Moldover, M. R.

    2009-01-01

    We examine the perturbations of the modes of an acoustic thermometer caused by circular ducts used either for gas flow or as acoustic waveguides coupled to remote transducers. We calculate the acoustic admittance of circular ducts using a model based on transmission line theory. The admittance is used to calculate the perturbations to the resonance frequencies and half-widths of the modes of spherical and cylindrical acoustic resonators as functions of the duct’s radius, length, and the locations of the transducers along the duct's length. To verify the model, we measured the complex acoustic admittances of a series of circular tubes as a function of length between 200 Hz and 10 kHz using a three-port acoustic coupler. The absolute magnitude of the specific acoustic admittance is approximately one. For a 1.4 mm inside-diameter, 1.4 m long tube, the root mean square difference between the measured and modeled specific admittances (both real and imaginary parts) over this frequency range was 0.018. We conclude by presenting design considerations for ducts connected to acoustic thermometers.

  7. Confined aquifer as wave-guide and its responses to geo-acoustic waves

    NASA Astrophysics Data System (ADS)

    Jian, Wen-Bin; Chen, Bao-Ren; Lu, Hua-Fu

    1997-05-01

    On the basis of the hydro-geological model of a confined aquifer, the propagation mechanism of geo-acoustic waves along the confined aquifer outlined as a plate wave-guide is proposed. The harmonic frequency equation for geo-acoustic propagation along confined aquifer as waveguide is derived from Biot theory. The basic frequency of the confined aquifer with a deep well for geo-acoustic observation, located at Juxian county, Shandong province, China, is 35.0 Hz. By Wigner distribution of geo-acoustic signals observed at Juxian geo-acoustic well, the frequencies of geo-acoustics are basically the integral multiple of the basic frequency. The results show that the responses of the confined aquifer to geo-acoustic waves are characterized by frequency selection and frequency dependence. Only the waves whose frequency f is the integral multiple of basic frequency can propagate as guide waves in the aquifer, that is, the aquifer responds to the waves.

  8. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  9. A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).

  10. Optomechanical characterization of acoustic modes in a mirror

    SciTech Connect

    Briant, T.; Cohadon, P.-F.; Heidmann, A.; Pinard, M.

    2003-09-01

    We present an experimental study of the internal mechanical vibration modes of a mirror. We determine the frequency repartition of acoustic resonances via a spectral analysis of the Brownian motion of the mirror, and the spatial profile of the acoustic modes by monitoring their mechanical response to a resonant radiation pressure force swept across the mirror surface. We have applied this technique to mirrors with cylindrical and plano-convex geometries, and compared the experimental results to theoretical predictions. We have in particular observed the Gaussian modes predicted for plano-convex mirrors.

  11. Generation of currents in the solar atmosphere by acoustic waves

    NASA Astrophysics Data System (ADS)

    Riutov, D. D.; Riutova, M. P.

    The novel mechanism presented for current and magnetic field generation by acoustic-wave fluxes in solar plasmas is especially potent in the region where acoustic-wave damping is due to such nonlinear effects as weak-shock formation. An evaluation is made of the significance of this effect for the solar atmosphere, under the proviso that this treatment is restricted to effects due to the usual acoustic waves. Wave absorption is governed by the classical collisional effects of thermal conductivity, viscosity, and ohmic losses.

  12. Magnetoelectric coupling by acoustic wave guide

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Liu, J.; Zhang, N.

    2016-04-01

    Magnetoelectric (ME) coupling by acoustic waveguide was developed. A very strong axial ME response was observed. The dependences of the sample size and the frequency of the ac field on the ME coupling were investigated. Several resonant points were observed in the frequency range applied (<50 kHz). Analysis shows that the standing waves transmitted in the waveguide were responsible for those resonances. And the resonant frequencies were closely influenced by the geometrical size of the waveguide. A resonant condition related to the size of the sample was obtained. The axial (or longitudinal) and transversal ME coefficients were observed to be up to 62 and 6 (V cm-1 Oe-1) at resonant points, respectively, indicating that the axial ME effect in this device was much higher than its transversal ones. A series of double-peak curves of axial ME coefficient versus magnetic field were observed. The significance of the double-peak curves was discussed.

  13. Raising Photoemission Efficiency with Surface Acoustic Waves

    SciTech Connect

    A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

    2012-07-01

    We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.

  14. S-Wave Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2010-01-01

    Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.

  15. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  16. Dual output acoustic wave sensor for molecular identification

    SciTech Connect

    Frye, G.C.; Martin, S.J.

    1990-10-03

    The invention comprises a method for the identification and quantification of sorbed chemical species onto a coating of a device capable of generating and receiving an acoustic wave, by measuring the changes in the velocity of the acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating and by measuring the changes in the attenuation of an acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating. The inventive method further correlates the magnitudes of the changes of velocity with respect to changes of the attenuation of the acoustic wave to identify the sorbed chemical species. The absolute magnitudes of the velocity changes or the absolute magnitude of the attenuation changes are used to determine the concentration of the identified chemical species.

  17. Phase mixing and nonlinearity in geodesic acoustic modes

    SciTech Connect

    Hung, C. P.; Hassam, A. B.

    2013-09-15

    Phase mixing and nonlinear resonance detuning of geodesic acoustic modes in a tokamak plasma are examined. Geodesic acoustic modes (GAMs) are tokamak normal modes with oscillations in poloidal flow constrained to lie within flux surfaces. The mode frequency is sonic, dependent on the local flux surface temperature. Consequently, mode oscillations between flux surfaces get rapidly out of phase, resulting in enhanced damping from the phase mixing. Damping rates are shown to scale as the negative 1/3 power of the large viscous Reynolds number. The effect of convective nonlinearities on the normal modes is also studied. The system of nonlinear GAM equations is shown to resemble the Duffing oscillator, which predicts resonance detuning of the oscillator. Resonant amplification is shown to be suppressed nonlinearly. All analyses are verified by numerical simulation. The findings are applied to a recently proposed GAM excitation experiment on the DIII-D tokamak.

  18. Collective Modes and f-Wave Pairing Interactions in Superfluid {sup 3}He

    SciTech Connect

    Davis, J. P.; Choi, H.; Pollanen, J.; Halperin, W. P.

    2006-09-15

    Precision measurements of collective mode frequencies in superfluid {sup 3}He-B are sensitive to quasiparticle and f-wave pairing interactions. Measurements were performed at various pressures using interference of transverse sound in an acoustic cavity. We fit the measured collective mode frequencies, which depend on the strength of f-wave pairing and the Fermi liquid parameter F{sub 2}{sup s}, to theoretical predictions and discuss what implications these values have for observing new order parameter collective modes.

  19. Field theory for zero sound and ion acoustic wave in astrophysical matter

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2016-02-01

    We set up a field theory model to describe the longitudinal low-energy modes in high density matter present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  20. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    NASA Astrophysics Data System (ADS)

    Lay, Erin H.; Shao, Xuan-Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-01

    Acoustic waves with periods of 2-4 min and gravity waves with periods of 6-16 min have been detected at ionospheric heights (250-350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May-July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  1. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    SciTech Connect

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  2. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  3. Kinetic instability of ion acoustic mode in permeating plasmas

    SciTech Connect

    Vranjes, J.; Poedts, S.; Ehsan, Zahida

    2009-07-15

    In plasmas with electron drift (current) relative to static ions, the ion acoustic wave is subject to the kinetic instability which takes place if the directed electron speed exceeds the ion acoustic speed. The instability threshold becomes different in the case of one quasineutral electron-ion plasma propagating through another static quasineutral (target) plasma. The threshold velocity of the propagating plasma may be well below the ion acoustic speed of the static plasma. Such a currentless instability may frequently be expected in space and astrophysical plasmas.

  4. Wind, waves, and acoustic background levels at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Duennebier, Fred K.; Lukas, Roger; Nosal, Eva-Marie; Aucan, JéRome; Weller, Robert A.

    2012-03-01

    Frequency spectra from deep-ocean near-bottom acoustic measurements obtained contemporaneously with wind, wave, and seismic data are described and used to determine the correlations among these data and to discuss possible causal relationships. Microseism energy appears to originate in four distinct regions relative to the hydrophone: wind waves above the sensors contribute microseism energy observed on the ocean floor; a fraction of this local wave energy propagates as seismic waves laterally, and provides a spatially integrated contribution to microseisms observed both in the ocean and on land; waves in storms generate microseism energy in deep water that travels as seismic waves to the sensor; and waves reflected from shorelines provide opposing waves that add to the microseism energy. Correlations of local wind speed with acoustic and seismic spectral time series suggest that the local Longuet-Higgins mechanism is visible in the acoustic spectrum from about 0.4 Hz to 80 Hz. Wind speed and acoustic levels at the hydrophone are poorly correlated below 0.4 Hz, implying that the microseism energy below 0.4 Hz is not typically generated by local winds. Correlation of ocean floor acoustic energy with seismic spectra from Oahu and with wave spectra near Oahu imply that wave reflections from Hawaiian coasts, wave interactions in the deep ocean near Hawaii, and storms far from Hawaii contribute energy to the seismic and acoustic spectra below 0.4 Hz. Wavefield directionality strongly influences the acoustic spectrum at frequencies below about 2 Hz, above which the acoustic levels imply near-isotropic surface wave directionality.

  5. Wave modes facilitating fast magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Singh, N.

    2011-12-01

    Whistler and kinetic Alfven waves are often invoked to explain fast magnetic reconnection in collsionless plasmas. But how these wave modes facilitate the reconnection has remained unclear. An important unanswered question deals with the meaning of the wave frequency in the context of magnetic reconnection. New measurement on a fast explosive reconnection event in the Versatile Toroidal Facility (VTF) at MIT provides an interesting example of the meaning of the wave mode and the associated frequency directly related to the time scale of the impulsive reconnection. We examine the measurements in VTF in view of the whistler wave mode, showing that the explosive growth in the reconnection is related to the thinning of the current sheet to a few electron skin depths. We further demonstrate that the fastest measured time scale (~ 3 microseconds) and the largest normalized reconnection rate (~0.35) agree with those predicted from the whistler mode dispersion relation.

  6. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  7. Spinning mode acoustic radiation from the flight inlet

    NASA Technical Reports Server (NTRS)

    Moss, W. F.

    1983-01-01

    A mathematical model was developed for spinning mode acoustic radiation from a thick wall duct without flow. This model is based on a series of experiments (with and without flow). A nearly pure azimuthal spinning mode was isolated and then reflection coefficients and far field pressure (amplitude and phase) were measured. In our model the governing boundary value problem for the Helmholtz equation is first converted into an integral equation for the unknown acoustic pressure over a disk, S1, near the mouth of the duct and over the exterior surface, S2, of the duct. Assuming a pure azimuthal mode excitation, the azimuthal dependence is integrated out which yields an integral equation over the generator C1 of S1 and the generator C2 of S2. The sound pressure on C1 was approximated by a truncated modal expansion of the interior acoustic pressure. Piecewise linear spline approximation on C2 was used.

  8. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    DOEpatents

    Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  9. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGESBeta

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore » disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  10. Controlling acoustic-wave propagation through material anisotropy

    NASA Astrophysics Data System (ADS)

    Tehranian, Aref; Amirkhizi, Alireza V.; Irion, Jeffrey; Isaacs, Jon; Nemat-Nasser, Sia

    2009-03-01

    Acoustic-wave velocity is strongly direction dependent in an anisotropic medium. This can be used to design composites with preferred acoustic-energy transport characteristics. In a unidirectional fiber-glass composite, for example, the preferred direction corresponds to the fiber orientation which is associated with the highest stiffness and which can be used to guide the momentum and energy of the acoustic waves either away from or toward a region within the material, depending on whether one wishes to avoid or harvest the corresponding stress waves. The main focus of this work is to illustrate this phenomenon using numerical simulations and then check the results experimentally.

  11. Acoustic wave absorption as a probe of dynamical geometrical response of fractional quantum Hall liquids

    NASA Astrophysics Data System (ADS)

    Yang, Kun

    2016-04-01

    We show that an acoustic crystalline wave gives rise to an effect similar to that of a gravitational wave to an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime, this allows for experimental study of its intra-Landau level dynamical response in the long-wavelength limit. To study such response we generalize Haldane's geometrical description of fractional quantum Hall states to situations where the external metric is time dependent. We show that such time-dependent metric (generated by acoustic wave) couples to collective modes of the system, including a quadrapolar mode at long wavelength, and magnetoroton at finite wavelength. Energies of these modes can be revealed in spectroscopic measurements, controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic response.

  12. Ultrafast microfluidics using surface acoustic waves

    PubMed Central

    Yeo, Leslie Y.; Friend, James R.

    2009-01-01

    We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions

  13. Waveform inversion of acoustic waves for explosion yield estimation

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A.

    2016-07-01

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<˜30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  14. Ion beam driven ion-acoustic waves in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Walia, Ritu; Sharma, Kavita

    2012-07-15

    An ion beam propagating through a magnetized potassium plasma cylinder having negatively charged dust grains drives electrostatic ion-acoustic waves to instability via Cerenkov interaction. The phase velocity of sound wave increases with the relative density of negatively charged dust grains. The unstable wave frequencies and the growth rate increase, with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales as one-third power of the beam density. The real part of frequency of the unstable mode increases with the beam energy and scales as almost the one-half power of the beam energy.

  15. False Paradoxes of Superposition in Electric and Acoustic Waves.

    ERIC Educational Resources Information Center

    Levine, Richard C.

    1980-01-01

    Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)

  16. Charge Fluctuation of Dust Grain and Its Impact on Dusty-Acoustic Wave Damping

    SciTech Connect

    Atamaniuk, B.; Zuchowski, K.

    2005-10-31

    We consider the influence of dust charge fluctuations on damping of the dust-ion-acoustic waves. It is assumed that all grains have equal masses but charges are not constant in time -- they may fluctuate in time. The dust charges are not really independent of the variations in the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the wave mode. In the case considered here, when the temperature of electrons is much greater than the temperature of the ions and the temperature of electrons is not great enough for further ionization of the ions, we show that attenuation of the acoustic wave depends only on one phenomenological coefficient.

  17. Low-dispersion finite difference methods for acoustic waves in a pipe

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1991-01-01

    A new algorithm for computing one-dimensional acoustic waves in a pipe is demonstrated by solving the acoustic equations as an initial-boundary-value problem. Conventional dissipation-free second-order finite difference methods suffer severe phase distortion for grids with less that about ten mesh points per wavelength. Using the signal generation by a piston in a duct as an example, transient acoustic computations are presented using a new compact three-point algorithm which allows about 60 percent fewer mesh points per wavelength. Both pulse and harmonic excitation are considered. Coupling of the acoustic signal with the pipe resonant modes is shown to generate a complex transient wave with rich harmonic content.

  18. Anisotropic Swirling Surface Acoustic Waves from Inverse Filtering for On-Chip Generation of Acoustic Vortices

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Thomas, Jean-Louis; Charron, Eric; Bussonnière, Adrien; Bou Matar, Olivier; Baudoin, Michael

    2015-09-01

    From radio-electronics signal analysis to biological sample actuation, surface acoustic waves (SAWs) are involved in a multitude of modern devices. However, only the most simple standing or progressive waves such as plane and focused waves have been explored so far. In this paper, we expand the SAW toolbox with a wave family named "swirling surface acoustic waves" which are the 2D anisotropic analogue of bulk acoustic vortices. Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. After the rigorous mathematical definition of these waves, we synthesize them experimentally through the inverse filtering technique revisited for surface waves. For this purpose, we design a setup combining arrays of interdigitated transducers and a multichannel electronic that enables one to synthesize any prescribed wave field compatible with the anisotropy of the substrate in a region called the "acoustic scene." This work opens prospects for the design of integrated acoustic vortex generators for on-chip selective acoustic tweezing.

  19. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  20. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  1. Geodesic Acoustic Mode Induced by Toroidal Rotation in Tokamaks

    SciTech Connect

    Wahlberg, C.

    2008-09-12

    The effect of toroidal rotation on the geodesic acoustic mode (GAM) in a tokamak is studied. It is shown that, in addition to a small frequency upshift of the ordinary GAM, another GAM, with much lower frequency, is induced by the rotation. The new GAM appears as a consequence of the nonuniform plasma density and pressure created by the centrifugal force on the magnetic surfaces. Both GAMs in a rotating plasma are shown to exist both as continuum modes with finite mode numbers m and n at the rational surfaces q=m/n as well as in the form of axisymmetric modes with m=n=0.

  2. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    PubMed Central

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael

    2016-01-01

    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  3. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves

    PubMed Central

    Lin, Tzy-Rong; Lin, Chiang-Hsin; Hsu, Jin-Chen

    2015-01-01

    We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided hybridization of a highly confined plasmonic-photonic mode with a high quality factor and deep subwavelength mode volume. Efficient photon-phonon interaction occurs in the air gap through the SAW perturbation of the metal surface, strongly coupling the optical and acoustic frequencies. As a result, a large modulation bandwidth and optical resonance wavelength shift for the crystal nanocavity are demonstrated at telecommunication wavelengths. The proposed SAW-based modulation within the hybrid plasmonic-photonic crystal nanocavities beyond the diffraction limit provides opportunities for various applications in enhanced sound-light interaction and fast coherent acoustic control of optomechanical devices. PMID:26346448

  4. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    NASA Astrophysics Data System (ADS)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  5. Refraction of acoustic duct waveguide modes by exhaust jets.

    NASA Technical Reports Server (NTRS)

    Mani, R.

    1973-01-01

    The refraction of acoustic duct waveguide modes emitted from the open end of a semiinfinite rectangular duct by a jet-like exhaust flow is studied theoretically. The problem is formulated as a Wiener-Hopf problem and is ultimately solved by an approximate method due to Carrier and Koiter. Continuity of transverse acoustic particle displacement and of acoustic pressure is assumed at the jet/still-air interface. The solution exhibits several features of the acoustics of moving media such as a source convection effect, zones of relative silence, and simple refraction. Plots of far-field directivity patterns are presented for several cases and show refraction effects to be important even at modest exhaust Mach numbers of order 0.3. Only subsonic exhaust Mach numbers are considered.

  6. Nonlinear propagation and control of acoustic waves in phononic superlattices

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.

    2016-05-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"

  7. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-01

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A0) either when using a symmetric (S0) or antisymmetric (A0) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  8. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.

    PubMed

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-15

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation. PMID:27472114

  9. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  10. Spectral solution of acoustic wave-propagation problems

    NASA Technical Reports Server (NTRS)

    Kopriva, David A.

    1990-01-01

    The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.

  11. Surface acoustic wave devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  12. Nozzleless Spray Cooling Using Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Ang, Kar Man; Yeo, Leslie; Friend, James; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Due to its reliability and portability, surface acoustic wave (SAW) atomization is an attractive approach for the generation of monodispersed microdroplets in microfluidics devices. Here, we present a nozzleless spray cooling technique via SAW atomization with key advantage of downward scalability by simply increasing the excitation frequency. With generation of micron size droplets through surface destabilization using SAW, the clogging issues commonly encountered by spraying nozzle can be neutralized. Using deionised water, cooling is improved when the atomization rate is increased and the position of the device is optimized such that the atomized droplets can be easily seeded into the upstream of the flow circulation. Cooling is further improved with the use of nanofluids; a suspension of nanoparticles in water. By increasing nanoparticle mass concentration from 1% to 3%, cooling is enhanced due to the deposition and formation of nanoparticle clusters on heated surface and eventually increase the surface area. However, further increase the concentration to 10% reduces the cooling efficiency due to drastic increase in viscosity μ that leads to lower atomization rate which scales as ṁ ~μ - 1 / 2 .

  13. Surface Acoustic Wave (SAW) Vibration Sensors

    PubMed Central

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  14. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  15. Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.

    2015-11-01

    We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.

  16. Acoustic wave generation by microwaves and applications to nondestructive evaluation.

    PubMed

    Hosten, Bernard; Bacon, Christophe; Guilliorit, Emmanuel

    2002-05-01

    Although acoustic wave generation by electromagnetic waves has been widely studied in the case of laser-generated ultrasounds, the literature on acoustic wave generation by thermal effects due to electromagnetic microwaves is very sparse. Several mechanisms have been suggested to explain the phenomenon of microwave generation, i.e. radiation pressure, electrostriction or thermal expansion. Now it is known that the main cause is the thermal expansion due to the microwave absorption. This paper will review the recent advances in the theory and experiments that introduce a new way to generate ultrasonic waves without contact for the purpose of nondestructive evaluation and control. The unidirectional theory based on Maxwell's equations, heat equation and thermoviscoelasticity predicts the generation of acoustic waves at interfaces and inside stratified materials. Acoustic waves are generated by a pulsed electromagnetic wave or a burst at a chosen frequency such that materials can be excited with a broad or narrow frequency range. Experiments show the generation of acoustic waves in water, viscoelastic polymers and composite materials shaped as rod and plates. From the computed and measured accelerations at interfaces, the viscoelastic and electromagnetic properties of materials such as polymers and composites can be evaluated (NDE). Preliminary examples of non-destructive testing applications are presented. PMID:12159977

  17. Probing thermomechanics at the nanoscale: impulsively excited pseudosurface acoustic waves in hypersonic phononic crystals.

    PubMed

    Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco

    2011-10-12

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  18. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  19. Surface spin-electron acoustic waves in magnetically ordered metals

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.; Kuz'menkov, L. S.

    2016-05-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.

  20. Nano-optomechanical system based on microwave frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic

  1. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    PubMed Central

    Rocha-Gaso, María-Isabel; March-Iborra, Carmen; Montoya-Baides, Ángel; Arnau-Vives, Antonio

    2009-01-01

    This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), Surface Transverse Wave (STW), Love Wave (LW), Flexural Plate Wave (FPW), Shear Horizontal Acoustic Plate Mode (SH-APM) and Layered Guided Acoustic Plate Mode (LG-APM) - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications. PMID:22346725

  2. Defect induced guided waves mode conversion

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw

    2016-04-01

    This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.

  3. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  4. Dispersion correction and identification of ocean acoustic normal modes

    NASA Astrophysics Data System (ADS)

    Poplawski, James Edward

    1998-08-01

    The average temperature of the ocean can be determined by measuring the traveltimes of acoustic signals from a source to a receiver. In the temperate deep ocean, a narrow acoustic pulse transmitted from a source results in a reception at long ranges consisting of many (possibly overlapping) arrivals. One of the mathematical structures used to describe and interpret acoustic propagation in the ocean is normal mode theory. The identification of individual normal mode arrivals in a reception is difficult because modal arrivals are spread in time by geometric dispersion causing them to overlap and interfere with each other. Current signal processing methods aimed at identifying individual normal mode arrivals require the use of vertical arrays of receivers which are rare because they are very expensive to build and deploy. A new signal processing method using phase-only filters to compensate for the geometric dispersion of normal mode arrivals is presented. This compensation increases the peak signal to noise ratio of the individual modal arrivals while simultaneously compressing them in time, helping to isolate them and their arrival times from overlapping neighbors. The properties of the phase-only filters and their ability to help isolate and identify modal arrivals is investigated through the processing of computer simulated receptions. By processing a reception with a bank of phase-only filters characterized by different amounts of dispersion compensation, a plot dubbed the Dispersion Diagnostic (DD) Display is generated. The use of phase-only filters does not require vertical arrays of receivers because modal phase is constant across depth. DD Displays generated for a reception from a receiver at a single depth show compressed modes which are isolated from their neighbors and for which traveltimes can be determined. Thus, the dispersion processing opens up the use of horizontal arrays or single hydrophones in mode identification, broadening the capabilities of

  5. Oblique propagation of ion acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons

    SciTech Connect

    Wang, Jian-Yong; Cheng, Xue-Ping; Tang, Xiao-Yan; Yang, Jian-Rong; Ren, Bo

    2014-03-15

    The oblique propagation of ion-acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons is studied. Linear dispersion relations of the fast and slow ion-acoustic modes are discussed under the weak and strong magnetic field situations. By means of the reductive perturbation approach, Korteweg-de Vries equations governing ion-acoustic waves of fast and slow modes are derived, respectively. Explicit interacting soliton-cnoidal wave solutions are obtained by the generalized truncated Painlevé expansion. It is found that every peak of a cnoidal wave elastically interacts with a usual soliton except for some phase shifts. The influence of the electron superthermality, positron concentration, and magnetic field obliqueness on the soliton-cnoidal wave are investigated in detail.

  6. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  7. Influence of exit impedance on finite difference solutions of transient acoustic mode propagation in ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1981-01-01

    The cutoff mode instability problem associated with a transient finite difference solution to the wave equation is explained. The steady-state impedance boundary condition is found to produce acoustic reflections during the initial transient, which cause finite instabilities in the cutoff modes. The stability problem is resolved by extending the duct length to prevent transient reflections. Numerical calculations are presented at forcing frequencies above, below, and nearly at the cutoff frequency, and exit impedance models are presented for use in the practical design of turbofan inlets.

  8. Dust acoustic waves in strongly coupled dusty plasmas

    SciTech Connect

    Rosenberg, M. Kalman, G.

    1997-12-01

    Dust grains, or solid particles of {mu}m to sub-{mu}m sizes, are observed in various low-temperature laboratory plasmas such as process plasmas and dust plasma crystals. The massive dust grains are generally highly charged, and it has been shown within the context of standard plasma theory that their presence can lead to new low-frequency modes such as dust acoustic waves. In certain laboratory plasmas, however, the dust may be strongly coupled, as characterized by the condition {Gamma}{sub d}=Q{sub d}{sup 2}exp({minus}d/{lambda}{sub D})/dT{sub d}{ge}1, where Q{sub d} is the dust charge, d is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. This paper investigates the dispersion relation for dust acoustic waves in a strongly coupled dusty plasma comprised of strongly coupled negatively charged dust grains, and weakly correlated classical ions and electrons. The dust grains are assumed to interact via a (screened Coulomb) Yukawa potential. The strongly coupled gas phase (liquid phase) is considered, and a quasilocalized charge approximation scheme is used, generalized to take into account electron and/or ion screening of the dust grains. The scheme relates the small-k dispersion to the total correlation energy of the system, which is obtained from the results of published numerical simulations. Some effects of collisions of charged particles with neutrals are taken into account. Applications to laboratory dusty plasmas are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  9. Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping

    NASA Astrophysics Data System (ADS)

    Gong, Xueyu; Xie, Baoyi; Guo, Wenfeng; Chen, You; Yu, Jiangmei; Yu, Jun

    2016-03-01

    With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.

  10. Interaction of acoustic-gravity waves with an elastic shelf-break

    NASA Astrophysics Data System (ADS)

    Tian, Miao; Kadri, Usama

    2016-04-01

    In contrast to surface gravity waves that induce flow field which decays exponentially with depth, acoustic-gravity waves oscillate throughout the water column. Their oscillatory profile exerts stresses to the ground which provides a natural explanation for the earth's microseism (Longuet-Higgins, 1950). This work is an extension of the shelf-break problem by Kadri and Stiassnie (2012) who considered the sea floor and the shelf-break to be rigid, and the elastic problem by Eyov et al. (2013) who illustrated the importance of the sea-floor elasticity. In this study we formulate and solve the two-dimensional problem of an incident acoustic-gravity wave mode propagating over an elastic wall and interacting with a shelf-break in a weakly compressible fluid. As the modes approach the shelf-break, part of the energy is reflected whereas the other part is transmitted. A mathematical model is formulated by matching particular solutions for each subregion of constant depth along vertical boundaries; the resulting matrix equation is then solved numerically. The physical properties of these waves are studied, and compared with those for waves over a rigid bottom. The present work broadens our knowledge of acoustic-gravity-waves propagation in realistic environment and can potentially benefit the early detection of tsunami, generated from landslides or submarine earthquakes. References Eyov E., Klar A., Kadri U. , Stiassnie M. 2013 Progressive waves in a compressible-ocean with an elastic bottom. Wave Motion 50, 929-939. Kadri, U., and M. Stiassnie, 2012 Acoustic-Gravity waves interacting with the shelf break. J. Geophys. Res. 117, C03035. Longuet-Higgins, M.S. 1950 A theory of the origin of microseisms. Philos. Trans. R. Soc. Lond. A 243, 1-35.

  11. Application of surface acoustic wave devices to radio telemetry

    NASA Technical Reports Server (NTRS)

    Strasilla, U.

    1983-01-01

    Three experimental Surface Acoustic Wave Resonators (SAWR) are developed and evaluated. A desired center frequency is obtained by correct spacing of the Inter-Digital Transducers (IDT). Transmitting and receiving IDT's must be close for adequate coupling and a sufficient number of reflectors are required to create a high quality standing wave. A review of oscillator theory is given and current technology evaluated.

  12. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  13. Observation of the coupling of the driven dust acoustic wave

    SciTech Connect

    Williams, Jeremiah D.; Duff, James

    2010-03-15

    In this study, the coupling between the naturally occurring dust acoustic wave (DAW) and the discharge current modulation is examined. It is confirmed that, when the wave is driven by modulating the discharge current, the DAW is driven at the same frequency as the current modulation.

  14. Surface wave patterns on acoustically levitated viscous liquid alloys

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Yan, N.; Geng, D. L.; Wei, B.

    2014-04-01

    We demonstrate two different kinds of surface wave patterns on viscous liquid alloys, which are melted and solidified under acoustic levitation condition. These patterns are consistent with the morphologies of standing capillary waves and ensembles of oscillons, respectively. The rapid solidification of two-dimensional liquid alloy surfaces may hold them down.

  15. Feasibility of using nonlinear guided waves to measure acoustic nonlinearity of aluminum

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Qu, Jianmin

    2011-04-01

    This research investigates the feasibility of measuring acoustic nonlinearity in aluminum with different ultrasonic guided wave modes. Acoustic nonlinearity is manifested by generation of a second harmonic component in an originally monochromatic ultrasonic wave signal, and previous research has shown this correlates to an intrinsic material property. This parameter has been shown to increase with accumulated material damage - specifically in low- and high-cycle fatigue - prior to crack initiation, whereas other ultrasonic nondestructive evaluation (NDE) techniques measuring linear parameters are unable to detect damage prior to crack initiation. In structural components such as jet engines and aircraft structures subjected to fatigue damage, crack initiation does not occur until ~80% of a component's life. Thus, there is a need for structural health monitoring (SHM) techniques that can characterize material damage state prior to crack initiation, and therefore nonlinear ultrasonic techniques have the potential to be powerful NDE and SHM tools. Experimental results using Rayleigh and Lamb guided wave modes to measure acoustic nonlinearity in undamaged aluminum 6061 samples are presented, and a comparison of the efficiency of these modes to measure acoustic nonlinearity is given.

  16. Nonlinear scattering of acoustic waves by vibrating obstacles

    NASA Astrophysics Data System (ADS)

    Piquette, J. C.

    1983-06-01

    The problem of the generation of sum- and difference-frequency waves produced via the scattering of an acoustic wave by an obstacle whose surface vibrates harmonically was studied both theoretically and experimentally. The theoretical approach involved solving the nonlinear wave equation, subject to appropriate boundary conditions, by the use of a perturbation expansion of the fields and a Green's function method. In addition to ordinary rigid-body scattering, Censor predicted nongrowing waves at frequencies equal to the sum and to the difference of the frequencies of the primary waves. The solution to the nonlinear wave equation also yields scattered waves at the sum and difference frequencies. However, the nonlinearity of the medium causes these waves to grow with increasing distance from the scatter's surface and, after a very small distance, dominate those predicted by Censor. The simple-source formulation of the second-order nonlinear wave equation for a lossless fluid medium has been derived for arbitrary primary wave fields. This equation was used to solve the problem of nonlinear scattering of acoustic waves by a vibrating obstacle for three geometries: (1) a plane-wave scattering by a vibrating plane, (2) cylindrical-wave scattering by a vibrating cylinder, and (3) plane-wave scattering by a vibrating cylinder. Successful experimental validation of the theory was inhibited by previously unexpected levels of nonlinearity in the hydrophones used. Such high levels of hydrophone nonlinearity appeared in hydrophones that, by their geometry of construction, were expected to be fairly linear.

  17. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    SciTech Connect

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  18. Linear and nonlinear acoustic wave propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping

    1988-01-01

    The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.

  19. Onset condition of the subcritical geodesic acoustic mode instability in the presence of energetic-particle-driven geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Itoh, K.; Itoh, S.-I.; Kosuga, Y.; Lesur, M.; Ido, T.

    2016-05-01

    An analytic model is developed for understanding the abrupt onset of geodesic acoustic mode (GAM) in the presence of chirping energetic-particle-driven GAM (EGAM). This abrupt excitation phenomenon has been observed on LHD plasma. Threshold conditions for the onset of abrupt growth of GAM are derived, and the period doubling phenomenon is explained. The phase relation between the mother mode (EGAM) and the daughter mode (GAM) is also discussed. This result contributes to the understanding of "trigger problems" of laboratory and nature plasmas.

  20. Three mode interaction noise in laser interferometer gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Ju, Li; Zhao, Chunnong; Ma, Yiqiu; Blair, David; Danilishin, Stefan L.; Gras, Slawek

    2014-07-01

    Triply resonant three mode interactions in long optical cavities have been shown to lead to enhanced scattering of carrier light by the ultrasonic acoustic modes of the test mass mirrors. At high optical power, this can lead to parametric instability (parametric gain R>1) for a few acoustic modes with strong spectral and spatial overlap. Numerous \\sim {{10}^{3}} acoustic modes of the test masses are predicted to have R>{{10}^{-2}}. Experimental studies have shown that such modes also strongly scatter the carrier light, enabling very sensitive readout of the acoustic modes. The three-mode scattering from the thermal fluctuation of large population of ultrasonic modes would causes random changes in occupation number of the carrier light and cavity transverse optical modes. Because the thermal fluctuation time scale (set by the acoustic mode relaxation times) is typically a few seconds, the noise spectrum from thermally induced photon number fluctuations is strongly peaked at low frequency. The noise level depends on the acoustic mode structure and acoustic losses of the test masses, the transverse optical mode spectrum of the optical cavities and on the test mass temperature. We theoretically investigate the possible effect of this noise and show that in advanced detectors under construction three mode interaction noise is below the standard quantum limit, but could set limits on future low frequency detectors that aim to exceed the free mass standard quantum limit.

  1. A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid

    NASA Astrophysics Data System (ADS)

    Borah, B.; Haloi, A.; Karmakar, P. K.

    2016-05-01

    In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.

  2. Nonlinear electron-acoustic waves in quantum plasma

    SciTech Connect

    Sah, O. P.; Manta, J.

    2009-03-15

    The nonlinear wave structure of electron-acoustic waves (EAWs) is investigated in a three component unmagnetized dense quantum plasma consisting of two distinct groups of electrons (one inertial cold electron, and other inertialess hot electrons) and immobile ions. By employing one dimensional quantum hydrodynamic model and standard reductive perturbation technique, a Korteweg-de-Vries equation governing the dynamics of EAWs is derived. Both compressive and rarefactive solitons along with periodical potential structures are found to exist for various ranges of dimensionless quantum parameter H. The quantum mechanical effects are also examined numerically on the profiles of the amplitude and the width of electron-acoustic solitary waves. It is observed that both the amplitude and the width of electron-acoustic solitary waves are significantly affected by the parameter H. The relevance of the present investigation to the astrophysical ultradense plasmas is also discussed.

  3. Ionospheric signatures of acoustic waves generated by transient tropospheric forcing

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2013-10-01

    Acoustic waves generated by tropospheric sources may attain significant amplitudes in the thermosphere and overlying ionosphere. Although they are weak precursors to gravity waves in the mesosphere below, acoustic waves may achieve temperature and vertical wind perturbations on the order of approximately tens of Kelvin and m/s throughout the E and F regions. Their perturbations to total electron content are predicted to be detectable by ground-based radar and GPS receivers; they also drive field-aligned currents that may be detectable in situ via magnetometers. Although transient and short lived, ionospheric signatures of acoustic waves may provide new and quantitative insight into the forcing of the upper atmosphere from below.

  4. Transverse mode imaging of guided matter waves

    SciTech Connect

    Dall, R. G.; Hodgman, S. S.; Johnsson, M. T.; Baldwin, K. G. H.; Truscott, A. G.

    2010-01-15

    Ultracold atoms whose de Broglie wavelength is of the same order as an extended confining potential can experience waveguiding along the potential. When the transverse kinetic energy of the atoms is sufficiently low, they can be guided in the lowest order mode of the confining potential by analogy with light guided by a single mode optical fiber. We have obtained the first images of the transverse mode structure of guided matter waves in a confining potential with up to 65% of atoms in the lowest order mode. The coherence of the guided atomic de Broglie waves is demonstrated by the diffraction pattern produced when incident upon a two dimensional periodic structure. Such coherent waveguides will be important atom optic components in devices with applications such as atom holography and atom interferometry.

  5. Collective modes in strongly correlated yukawa liquids: waves in dusty plasmas.

    PubMed

    Kalman, G; Rosenberg, M; DeWitt, H E

    2000-06-26

    We determine the collective mode structure of a strongly correlated Yukawa fluid, with the purpose of analyzing wave propagation in a strongly coupled dusty plasma. We identify a longitudinal plasmon and a transverse shear mode. The dispersion is characterized by a low- k acoustic behavior, a frequency maximum well below the plasma frequency, and a high- k merging of the two modes around the Einstein frequency of localized oscillations. The damping effect of collisions between neutrals and dust grains is estimated. PMID:10991116

  6. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  7. A violin shell model: vibrational modes and acoustics.

    PubMed

    Gough, Colin E

    2015-03-01

    A generic physical model for the vibro-acoustic modes of the violin is described treating the body shell as a shallow, thin-walled, guitar-shaped, box structure with doubly arched top and back plates. comsol finite element, shell structure, software is used to identify and understand the vibrational modes of a simply modeled violin. This identifies the relationship between the freely supported plate modes when coupled together by the ribs and the modes of the assembled body shell. Such coupling results in a relatively small number of eigenmodes or component shell modes, of which a single volume-changing breathing mode is shown to be responsible for almost all the sound radiated in the monopole signature mode regime below ∼1 kHz for the violin, whether directly or by excitation of the Helmholtz f-hole resonance. The computations describe the influence on such modes of material properties, arching, plate thickness, elastic anisotropy, f-holes cut into the top plate, the bass-bar, coupling to internal air modes, the rigid neck-fingerboard assembly, and, most importantly, the soundpost. Because the shell modes are largely determined by the symmetry of the guitar-shaped body, the model is applicable to all instruments of the violin family. PMID:25786935

  8. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1993-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.

  9. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, D. H.; Fleeter, S.

    1994-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes, which have detrimental effects on the experimental results. Acoustic treatment is proposed to rectify this problem.

  10. Recent advances on pipe inspection using guided waves generated by electromagnetic acoustic transducers

    NASA Astrophysics Data System (ADS)

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-03-01

    For several years guided waves have been used for pipe wall defect detection. Guided waves have become popular for monitoring large structures because of the capability of these waves to propagate long distances along pipes, plates, interfaces and structural boundaries before loosing their strengths. The current technological challenges are to detect small defects in the pipe wall and estimate their dimensions using appropriate guided wave modes and to generate those modes relatively easily for field applications. Electro-Magnetic Acoustic Transducers (EMAT) can generate guided waves in pipes in the field environment. This paper shows how small defects in the pipe wall can be detected and their dimensions can be estimated by appropriate signal processing technique applied to the signals generated and received by the EMAT.

  11. Wavemaker theories for acoustic-gravity waves over a finite depth

    NASA Astrophysics Data System (ADS)

    Tian, Miao; Kadri, Usama

    2016-04-01

    Acoustic-gravity waves (hereafter AGWs) in ocean have received much interest recently, mainly with respect to early detection of tsunamis as they travel at near the speed of sound in water which makes them ideal candidates for early detection of tsunamis. While the generation mechanisms of AGWs have been studied from the perspective of vertical oscillations of seafloor (Yamamoto, 1982; Stiassnie, 2010) and triad wave-wave interaction (Longuet-Higgins 1950; Kadri and Stiassnie 2013; Kadri and Akylas 2016), in the current study we are interested in their generation by wave-structure interaction with possible application to the energy sector. Here, we develop two wavemaker theories to analyze different wave modes generated by impermeable (the classic Havelock's theory) and porous (porous wavemaker theory) plates in weakly compressible fluids. Slight modification has been made to the porous theory so that, unlike the previous theory (Chwang, 1983), the new solution depends on the geometry of the plate. The expressions for three different types of plates (piston, flap, delta-function) are introduced. Analytical solutions are also derived for the potential amplitude of the gravity, evanescent, and acoustic-gravity waves, as well as the surface elevation, velocity distribution, and pressure for AGWs. Both theories reduce to previous results for incompressible flow when the compressibility is negligible. We also show numerical examples for AGW generated in a wave flume as well as in deep ocean. Our current study sets the theoretical background towards remote sensing by AGWs, for optimized deep ocean wave-power harnessing, among others. References Chwang, A.T. 1983 A porous-wavemaker theory. Journal of Fluid Mechanics, 132, 395- 406. Kadri, U., Stiassnie, M. 2013 Generation of an acoustic-gravity wave by two gravity waves, and their subsequent mutual interaction. J. Fluid Mech. 735, R6. Kadri U., Akylas T.R. 2016 On resonant triad interactions of acoustic-gravity waves. J

  12. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    PubMed Central

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  13. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  14. Dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media

    SciTech Connect

    Parra, J.O.; Xu, P. )

    1994-01-01

    The analysis of acoustic wave propagation in fluid-filled porous media based on Biot and homogenization theories has been adapted to calculate dispersion and attenuation of guided waves trapped in low-velocity layered media. Constitutive relations, the balance equation, and the generalized Darcy law of the modified Biot theory yield a coupled system of differential equations which governs the wave motion in each layer. The displacement and stress fields satisfy the boundary conditions of continuity of displacements and tractions across each interface, and the radiation condition at infinity. To avoid precision problems caused by the growing exponential in individual matrices for large wave numbers, the global matrix method was implemented as an alternative to the traditional propagation approach to determine the periodic equations. The complex wave numbers of the guided wave modes were determined using a combination of two-dimensional bracketing and minimization techniques. The results of this work indicate that the acoustic guided wave attenuation is sensitive to the [ital in] [ital situ] permeability. In particular, the attenuation changes significantly as the [ital in] [ital situ] permeability of the low-velocity layer is varied at the frequency corresponding to the minimum group velocity (Airy phase). Alternatively, the attenuation of the wave modes are practically unaffected by those permeability variations in the layer at the frequency corresponding to the maximum group velocity.

  15. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index

    SciTech Connect

    Addouche, Mahmoud Al-Lethawe, Mohammed A. Choujaa, Abdelkrim Khelif, Abdelkrim

    2014-07-14

    We demonstrate super resolution imaging for surface acoustic waves using a phononic structure displaying negative refractive index. This phononic structure is made of a monolithic square lattice of cylindrical pillars standing on a semi-infinite medium. The pillars act as acoustic resonator and induce a surface propagating wave with unusual dispersion. We found, under specific geometrical parameters, one propagating mode that exhibits negative refraction effect with negative effective index close to −1. Furthermore, a flat lens with finite number of pillars is designed to allow the focusing of an acoustic point source into an image with a resolution of (λ)/3 , overcoming the Rayleigh diffraction limit.

  16. Landau damping of geodesic acoustic mode in toroidally rotating tokamaks

    SciTech Connect

    Ren, Haijun; Cao, Jintao

    2015-06-15

    Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.

  17. Identification of laser generated acoustic waves in the two-dimensional transient response of cylinders

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Rossignol, C.; Audoin, B.

    2005-06-01

    The published model [Appl. Phys. Lett. 82, 4379-4381 (2003)] for the two-dimensional transient wave propagation in a cylinder is modified to avoid the inherited integration of the numerical inverse scheme. The Fourier series expansion is introduced for one spatial coordinate to resolve the transient response problem: theoretical radial displacements in either the ablation or the thermoelastic regime are obtained with little numerical noise and short computation time. The normal mode expansion method fails to deliver results with the same accuracy. Acoustic waves are fully identified by the ray trajectory analysis. These identified waves are further verified on the experimental results observed with the laser ultrasonic technique. .

  18. Effect of nonadiabaticity of dust charge variation on dust acoustic waves: generation of dust acoustic shock waves.

    PubMed

    Gupta, M R; Sarkar, S; Ghosh, S; Debnath, M; Khan, M

    2001-04-01

    The effect of nonadiabaticity of dust charge variation arising due to small nonzero values of tau(ch)/tau(d) has been studied where tau(ch) and tau(d) are the dust charging and dust hydrodynamical time scales on the nonlinear propagation of dust acoustic waves. Analytical investigation shows that the propagation of a small amplitude wave is governed by a Korteweg-de Vries (KdV) Burger equation. Notwithstanding the soliton decay, the "soliton mass" is conserved, but the dissipative term leads to the development of a noise tail. Nonadiabaticity generated dissipative effect causes the generation of a dust acoustic shock wave having oscillatory behavior on the downstream side. Numerical investigations reveal that the propagation of a large amplitude dust acoustic shock wave with dust density enhancement may occur only for Mach numbers lying between a minimum and a maximum value whose dependence on the dusty plasma parameters is presented. PMID:11308955

  19. Ion wake field effects on the dust-ion-acoustic surface mode in a semi-bounded Lorentzian dusty plasma

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-03-01

    The dispersion relation for the dust ion-acoustic surface waves propagating at the interface of semi-bounded Lorentzian dusty plasma with supersonic ion flow has been kinetically derived to investigate the nonthermal property and the ion wake field effect. We found that the supersonic ion flow creates the upper and the lower modes. The increase in the nonthermal particles decreases the wave frequency for the upper mode whereas it increases the frequency for the lower mode. The increase in the supersonic ion flow velocity is found to enhance the wave frequency for both modes. We also found that the increase in nonthermal plasmas is found to enhance the group velocity of the upper mode. However, the nonthermal particles suppress the lower mode group velocity. The nonthermal effects on the group velocity will be reduced in the limit of small or large wavelength limit.

  20. The propagation characteristics of the plate modes of acoustic emission waves in thin aluminum plates and thin graphite/epoxy composite plates and tubes. Ph.D. Thesis - Johns Hopkins Univ., 1991

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1991-01-01

    Acoustic emission was interpreted as modes of vibration in plates. Classical plate theory was used to predict dispersion curves for the two fundamental modes and to calculate the shapes of flexural waveforms produced by vertical step function loading. There was good agreement between theoretical and experimental results for aluminum. Composite materials required the use of a higher order plate theory (Reissner-Mindlin) to get good agreement with the measured velocities. Four composite plates with different laminate stacking sequences were studied. The dispersion curves were determined from phase spectra of the time dependent waveforms. Plate modes were shown to be useful for determining the direction of source motion. Aluminum plates were loaded by breaking a pencil lead against their surface. By machining slots at angles to the plane of a plate, the direction in which the force acted was varied. Changing the source motion direction produced regular variations in the waveforms. To demonstrate applicability beyond simple plates, waveforms produced by lead breaks on a thin walled composite tube were also shown to be interpretable as plate modes. The tube design was based on the type of struts proposed for Space Station Freedom's trussed structures.

  1. Dissipation of acoustic-gravity waves: an asymptotic approach.

    PubMed

    Godin, Oleg A

    2014-12-01

    Acoustic-gravity waves in the middle and upper atmosphere and long-range propagation of infrasound are strongly affected by air viscosity and thermal conductivity. To characterize the wave dissipation, it is typical to consider idealized environments, which admit plane-wave solutions. Here, an asymptotic approach is developed that relies instead on the assumption that spatial variations of environmental parameters are gradual. It is found that realistic assumptions about the atmosphere lead to rather different predictions for wave damping than do the plane-wave solutions. A modification to the Sutherland-Bass model of infrasound absorption is proposed. PMID:25480091

  2. Dispersion properties of electrostatic sound wave modes in carbon nanotubes

    SciTech Connect

    Moradi, Afshin

    2010-01-15

    The theoretical analysis of electrostatic sound wave modes in multiwalled carbon nanotubes is presented within the framework of the fluid theory in conjunction with the Poisson's equation. The electron and ion components of each wall of nanotubes are regarded as two-species plasma system, in which the perturbed electron number density is deduced by means of the quantum hydrodynamic model, while the ion density perturbation follows the classical expression. An analytical expression of the dispersion relation is obtained for the quantum ion-acoustic wave oscillations in the system. Numerical result is prepared for a two-walled carbon nanotube, giving rise to a splitting of the frequencies of the electrostatic oscillations due to the small coupling between the two cylinders.

  3. Reciprocity in the scattering coefficients of acoustic waveguide modes.

    PubMed

    Tong, Yuhui; Pan, Jie

    2013-09-01

    In this Letter, a proof is provided for the reciprocity between modal scattering coefficients of the acoustic waveguides connected by a junction enclosure. The result holds for all waveguide modes and for junction enclosures with locally reactive boundary conditions away from the interfaces between the junction and waveguides. Also provided is a physical interpretation of the reciprocity of the modal scattering coefficients. The scattering of two-dimensional waveguide modes by a right-angled bend in a rectangular duct is used as an illustrating example. PMID:23967907

  4. Electron-acoustic solitary waves in a nonextensive plasma

    SciTech Connect

    Tribeche, Mouloud; Djebarni, Lyes

    2010-12-15

    The problem of arbitrary amplitude electron-acoustic solitary waves (EASWs) in a plasma having cold fluid electrons, hot nonextensive electrons, and stationary ions is addressed. It is found that the 'Maxwellianization' process of the hot nonextensive component does not favor the propagation of the EASWs. In contrast to superthermality, nonextensivity makes the electron-acoustic solitary structure less spiky. Our theoretical analysis brings a possibility to develop more refined theories of nonlinear solitary structures in astrophysical plasmas.

  5. The behavior of acoustic waves in the lakes bottom sediments.

    NASA Astrophysics Data System (ADS)

    Krylov, Pavel; Nourgaliev, Danis; Yasonov, Pavel

    2016-04-01

    Seismic studies are used for various tasks, such as the study of the bottom sediments properties, finding sunken objects, reconstruction the reservoir history, etc. Multiple acoustic waves are an enormous obstacle in obtaining full seismic record. Multiples from the bottom of a body of water (the surface of the base of water and the rock or sediment beneath it) and the air-water surface are common in lake seismic data. Multiple reflections on the seismic cross-sections are usually located on the double distance from the air/water surface. However, sometime multiple reflections from liquid deposits cannot be generated or they reflected from the deeper horizons. It is observed the phenomenon of changes in reflectance of the water/weakly consolidated sediments acoustic boundary under the influence of the acoustic wave. This phenomenon lies in the fact that after the first acoustic impact and reflection of acoustic wave for some time the reflectance of this boundary remains close to 0. This event on a cross-section can explain by the short-term changes in the properties of bottom sediments under the influence of shock? acoustic wave, with a further reduction of these properties to the next wave generation (generation period of 2 seconds). Perhaps in these deposits occurs thixotropic process. The paper presents the seismic acoustic cross-sections of Lake Balkhash (Kazakhstan), Turgoyak (Russia). The work was carried out according to the Russia Government's Program of Competitive Growth of Kazan Federal University, supported by the grant provided to the Kazan State University for performing the state program in the field of scientific research, and partially supported by the Russian Foundation for Basic research (grants № 14-05-00785, 16-35-00452).

  6. Controllable optical transparency using an acoustic standing-wave device

    NASA Astrophysics Data System (ADS)

    Moradi, Kamran; El-Zahab, Bilal

    2015-09-01

    In this paper, a suspended-particle device with controllable light transmittance was developed based on acoustic stimuli. Using a glass compartment and carbon particle suspension in an organic solvent, the device responded to acoustic stimulation by alignment of particles. The alignment of light-absorbing carbon particles afforded an increase in light transmittance as high as 84.5% and was controllable based on the control of the frequency and amplitude of the acoustic waves. The device also demonstrated alignment memory rendering it energy-efficient.

  7. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Frankel, M. S.; Peterson, A. M.

    1977-01-01

    This paper considers the interaction of electromagnetic and acoustic waves where a Radio Acoustic Sounding System (RASS) is operated in a stochastic environment characterized by turbulence, winds and mean-temperature gradients. It has been shown that for a RASS operating at acoustic frequencies below a few kilohertz propagating under typical atmospheric conditions, turbulence has little effect on the strength of the received radio signal scattered from the pulse at heights up to a few kilometers. This result implies that the received RF signal level (power) is primarily a function of sound intensity which decreases as x exp minus 2 where x is the altitude.

  8. Spatiotemporal chaos and the dynamics of coupled Langmuir and ion-acoustic waves in plasmas.

    PubMed

    Banerjee, S; Misra, A P; Shukla, P K; Rondoni, L

    2010-04-01

    A simulation study is performed to investigate the dynamics of coupled Langmuir waves (LWs) and ion-acoustic waves (IAWs) in an unmagnetized plasma. The effects of dispersion due to charge separation and the density nonlinearity associated with the IAWs are considered to modify the properties of Langmuir solitons, as well as to model the dynamics of relatively large amplitude wave envelopes. It is found that the Langmuir wave electric field, indeed, increases by the effect of ion-wave nonlinearity (IWN). Use of a low-dimensional model, based on three Fourier modes, shows that a transition to temporal chaos is possible, when the length scale of the linearly excited modes is larger than that of the most unstable ones. The chaotic behaviors of the unstable modes are identified by the analysis of Lyapunov exponent spectra. The space-time evolution of the coupled LWs and IAWs shows that the IWN can cause the excitation of many unstable harmonic modes and can lead to strong IAW emission. This occurs when the initial wave field is relatively large or the length scale of IAWs is larger than the soliton characteristic size. Numerical simulation also reveals that many solitary patterns can be excited and generated through the modulational instability of unstable harmonic modes. As time goes on, these solitons are seen to appear in the spatially partial coherence state due to the free ion-acoustic radiation as well as in the state of spatiotemporal chaos due to collision and fusion in the stochastic motion. The latter results in the redistribution of initial wave energy into a few modes with small length scales, which may lead to the onset of Langmuir turbulence in laboratory as well as space plasmas. PMID:20481845

  9. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2016-08-01

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron and acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.

  10. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  11. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    PubMed Central

    Greve, David W.; Chin, Tao-Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-01-01

    Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity. PMID:23708273

  12. On acoustic wave generation in uniform shear flow

    NASA Astrophysics Data System (ADS)

    Gogoberidze, G.

    2016-07-01

    The linear dynamics of acoustic waves and vortices in uniform shear flow is studied. For flows with very low shear rates, the dynamics of perturbations is adiabatic and can be described by the WKB approximation. However, for flows with moderate and high shear rates the WKB approximation is not appropriate, and alternative analysis shows that two important phenomena occur: acoustic wave over-reflection and wave generation by vortices. The later phenomenon is a known linear mechanisms for sound generation in shear flows, a mechanism that is related to the continuous spectrum that arises in linear shear flow dynamics. A detailed analytical study of these phenomena is performed and the main quantitative and qualitative characteristics of the radiated acoustic field are obtained and analyzed.

  13. Surface acoustic wave devices for harsh environment wireless sensing

    SciTech Connect

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  14. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGESBeta

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  15. Broadband metamaterial for nonresonant matching of acoustic waves

    NASA Astrophysics Data System (ADS)

    D'Aguanno, G.; Le, K. Q.; Trimm, R.; Alù, A.; Mattiucci, N.; Mathias, A. D.; Aközbek, N.; Bloemer, M. J.

    2012-03-01

    Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific.

  16. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure. PMID:26520322

  17. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  18. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  19. Optimal Masks for Low-Degree Solar Acoustic Modes.

    PubMed

    Toutain; Kosovichev

    2000-05-10

    We suggest a solution to an important problem in observational helioseismology of the separation of lines of solar acoustic (p) modes of low angular degree in oscillation power spectra by constructing optimal masks for Doppler images of the Sun. Accurate measurements of oscillation frequencies of low-degree modes are essential for the determination of the structure and rotation of the solar core. However, these measurements for a particular mode are often affected by leakage of other p-modes arising when the Doppler images are projected on to spherical harmonic masks. The leakage results in overlapping peaks corresponding to different oscillation modes in the power spectra. In this Letter, we present a method for calculating optimal masks for a given (target) mode by minimizing the signals of other modes appearing in its vicinity. We apply this method to time series of 2 yr obtained from the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory space mission and demonstrate its ability to reduce efficiently the mode leakage. PMID:10813685

  20. Observations of acoustic surface waves in outdoor sound propagation

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2003-05-01

    Acoustic surface waves have been detected propagating outdoors under natural conditions. Two critical experimental conditions were employed to ensure the conclusive detection of these waves. First, acoustic pulses rather than a continuous wave source allowed an examination of the waveform shape and avoided the masking of wave arrivals. Second, a snow cover provided favorable ground impedance conditions for surface waves to exist. The acoustic pulses were generated by blank pistol shots fired 1 m above the snow. The resultant waveforms were measured using a vertical array of six microphones located 60 m away from the source at heights between 0.1 and 4.75 m. A strong, low frequency ``tail'' following the initial arrival was recorded near the snow surface. This tail, and its exponential decay with height (z) above the surface (~e-αz), are diagnostic features of surface waves. The measured attenuation coefficient α was 0.28 m-1. The identification of the surface wave is confirmed by comparing the measured waveforms with waveforms predicted by the theoretical evaluation of the explicit surface wave pole term using residue theory.

  1. Automatic determination of important mode-mode correlations in many-mode vibrational wave functions

    NASA Astrophysics Data System (ADS)

    König, Carolin; Christiansen, Ove

    2015-04-01

    We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.

  2. Mode-locking of acoustic resonators and its application to vibration cancellation in acoustic heat engines

    SciTech Connect

    Spoor, P.S.; Swift, G.W. )

    1999-09-01

    Vibration induced in engine hardware by a working fluid can be very significant in high-power, high-amplitude acoustic heat engines, and is a serious impediment to their practical use. This vibration can cause fatigue and destruction of engine components as well as fuel lines, cooling lines, and sensor wires. The forces involved make anchoring such an engine to an [open quotes]immovable[close quotes] object impractical. Rigidly attaching two such engines together, and acoustically coupling them with a duct of such a length and diameter that the two engines mode-lock in antiphase (thus canceling the longitudinal vibration) appears to be an inexpensive, viable solution. This paper describes in detail experiments demonstrating the feasibility of this idea, and the underlying theory. [copyright] [ital 1999 Acoustical Society of America.] < --[HEB] -->

  3. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging. PMID:24180758

  4. Modeling of acoustic and gravity waves propagation through the atmosphere with spectral element method

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2014-12-01

    Low-frequency events such as tsunamis generate acoustic and gravity waves which quickly propagate in the atmosphere. Since the atmospheric density decreases exponentially as the altitude increases and from the conservation of the kinetic energy, those waves see their amplitude raise (to the order of 105 at 200km of altitude), allowing their detection in the upper atmosphere. Various tools have been developed through years to model this propagation, such as normal modes modeling or to a greater extent time-reversal techniques, but none offer a low-frequency multi-dimensional atmospheric wave modelling.A modeling tool is worthy interest since there are many different phenomena, from quakes to atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool.Starting from the SPECFEM program that already propagate waves in solid, porous or fluid media using a spectral element method, this work offers a tool with the ability to model acoustic and gravity waves propagation in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source.Atmospheric attenuation is required in a proper modeling framework since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals. The bottom forcing feature has been implemented due to its ability to easily model the coupling with the Earth's or ocean's surface (that vibrates when a surface wave go through it) but also huge atmospheric events.

  5. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429

  6. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    NASA Astrophysics Data System (ADS)

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  7. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    PubMed Central

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429

  8. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    SciTech Connect

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-03-07

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11–54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types.

  9. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  10. A pseudo-spin surface-acoustic-wave quantum computer.

    PubMed

    Barnes, C H W

    2003-07-15

    A modification to the surface-acoustic-wave quantum computer is described. The use of pseudo-spin qubits is introduced as a way to simplify the fabrication and programming of the computer. A form of optical readout that relies on the electrons in each surface-acoustic-wave minimum recombining with holes in a two-dimensional hole gas is suggested as a means to measure the output. The suggested modification would allow the quantum computer to be made smaller and to operate faster. PMID:12869323

  11. Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin

    2008-09-07

    The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.

  12. Arbitrary amplitude dust ion acoustic solitary waves in a magnetized suprathermal dusty plasma

    SciTech Connect

    Shahmansouri, M.; Alinejad, H.

    2012-12-15

    The linear and nonlinear dust-ion-acoustic (DIA) wave propagating obliquely with respect to an external magnetic field is studied in a magnetized complex plasma which consists of a cold ion fluid, superthermal electrons, and static dust particles. The propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron suprathermality and the electron population decrease the phase velocities of both modes, while obliqueness leads to increase of separation between two modes. An energy-like equation derived to describe the nonlinear evolution of DIA solitary waves. The influences of electron suprathermality, obliqueness, and electron population on the existence domain of solitary waves and the soliton characteristics are examined. It is shown that the existence domain of the DIA soliton and its profile are significantly depending on the deviation of electrons from thermodynamic equilibrium, electrons population, and obliqueness. It is also found that the suprathermal plasma supports the DIA solitons with larger amplitude.

  13. Effect of multiperforated plates on the acoustic modes in combustors

    NASA Astrophysics Data System (ADS)

    Gullaud, Elsa; Mendez, Simon; Sensiau, Claude; Nicoud, Franck; Poinsot, Thierry

    2009-06-01

    The analytical model derived by Howe assessing the acoustic effect of perforated plates has been implemented in a 3D Helmholtz solver. This solver allows one to compute the acoustic modes of industrial chambers taking into account the multiperforated plates present for the cooling of the walls. An academic test case consisting of two coaxial cylinders, with the inner one being perforated is used to validate the implementation in the general purpose AVSP code. This case is also used to show the effects of the presence of the plates. In particular, the sensitivity of the acoustic damping to the bias flow speed will be studied. A maximum absorption speed is shown, and the behaviour towards an infinite speed will be illustrated by the academic case. Computations are also conducted in the case of an industrial helicopter chamber. The value of the maximum absorption speed is discussed to explain why the modes are in fact not much absorbed by the perforated plates, and that the frequencies are the same as for walls. To cite this article: E. Gullaud et al., C. R. Mecanique 337 (2009).

  14. Linear coupling of acoustic and cyclotron waves in plasma flows

    SciTech Connect

    Rogava, Andria; Gogoberidze, Grigol

    2005-05-15

    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are mathematically equal to the ones describing coupling of sound waves with internal gravity waves [Rogava and Mahajan, Phys. Rev. E 55, 1185 (1997)] in neutral fluids. For flows with low shearing rates a fully analytic, quantitative description of the coupling efficiency, based on a noteworthy quantum-mechanical analogy, is given and transformation coefficients are calculated.

  15. Trapping and Frequency Variability in Electron Acoustic Waves

    SciTech Connect

    Driscoll, C. F.; Anderegg, F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-10

    Electron Acoustic Waves (EAWs) with a phase velocity less than twice the plasma thermal velocity are observed on pure ion plasma columns. At low excitation amplitudes, the EAW frequencies agree with theory; but at moderate excitation the EAW is more frequency-variable than typical Langmuir waves, and at large excitations resonance is observed over a broad range. Laser Induced Fluorescence measurements of the wave-coherent ion velocity distribution show phase-reversals and wave-particle trapping plateaux at {+-}v{sub ph}, as expected, and corroborate the unusual role of kinetic pressure in the EAW.

  16. Linear coupling of acoustic and cyclotron waves in plasma flows

    NASA Astrophysics Data System (ADS)

    Rogava, Andria; Gogoberidze, Grigol

    2005-05-01

    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are mathematically equal to the ones describing coupling of sound waves with internal gravity waves [Rogava and Mahajan, Phys. Rev. E 55, 1185 (1997)] in neutral fluids. For flows with low shearing rates a fully analytic, quantitative description of the coupling efficiency, based on a noteworthy quantum-mechanical analogy, is given and transformation coefficients are calculated.

  17. Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Hellberg, Manfred A.; Maharaj, Shimul K.

    2014-07-15

    Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.

  18. Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J.; del Moro, D.; Berrilli, F.

    2016-07-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  19. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGESBeta

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  20. Chromospheric extents predicted by time-dependent acoustic wave models

    SciTech Connect

    Cuntz, M. Heidelberg Universitaet )

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.

  1. Chromospheric extents predicted by time-dependent acoustic wave models

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.

  2. Numerical modeling of acoustic and gravity waves propagation in the atmosphere using a spectral element method

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Brissaud, Quentin; Garcia, Raphael; Komatitsch, Dimitri

    2015-04-01

    During low-frequency events such as tsunamis, acoustic and gravity waves are generated and quickly propagate in the atmosphere. Due to the exponential decrease of the atmospheric density with the altitude, the conservation of the kinetic energy imposes that the amplitude of those waves increases (to the order of 105 at 200km of altitude), which allows their detection in the upper atmosphere. This propagation bas been modelled for years with different tools, such as normal modes modeling or to a greater extent time-reversal techniques, but a low-frequency multi-dimensional atmospheric wave modelling is still crucially needed. A modeling tool is worth of interest since there are many different sources, as earthquakes or atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool. By adding some developments to the SPECFEM package that already models wave propagation in solid, porous or fluid media using a spectral element method, we show here that acoustic and gravity waves propagation can now be modelled in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source. The bottom forcing feature has been implemented to easily model the coupling with the Earth's or ocean's vibrating surfaces but also huge atmospheric events. Atmospheric attenuation is also introduced since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals.

  3. Adiabatic trapping in coupled kinetic Alfven-acoustic waves

    SciTech Connect

    Shah, H. A.; Ali, Z.; Masood, W.

    2013-03-15

    In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

  4. Ion-Acoustic Waves in Self-Gravitaing Dusty Plasma

    SciTech Connect

    Kumar, Nagendra; Kumar, Vinod; Kumar, Anil

    2008-09-07

    The propagation and damping of low frequency ion-acoustic waves in steady state, unmagnetised, self-gravitating dusty plasma are studied taking into account two important damping mechanisms creation damping and Tromso damping. It is found that imaginary part of wave number is independent of frequency in case of creation damping. But when we consider the case of creation and Tromso damping together, an additional contribution to damping appears with the increase in frequency attributed to Tromso effect.

  5. S-Band Shallow Bulk Acoustic Wave (SBAW) microwave source

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques necessary to fabricate a high performance S-band microwave single source using state-of-the-art shallow bulk acoustic wave (SBAW) were explored. The bulk wave structures of the AlN/Al 2O3 were investigated for both the R plane and basal plane of sapphire. A 1.072 GHz SBAW delay line and oscillators were developed. A method of selecting and setting oscillator output frequency by selecting substrate orientation angle was also established.

  6. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect

    El-Shewy, E. K.; Abdelwahed, H. G.; Elmessary, M. A.

    2011-11-15

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  7. Interaction of acoustic waves generated by coupled plate

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    When two substructures are coupled, the acoustic field generated by the motion of each of the substructures will interact with the motion of the other substructure. This would be the case of a structure enclosing an acoustic cavity. A technique to model the interaction of the generated sound fields from the two components of a coupled structure, and the influence of this interaction on the vibration of the structural components is presented. Using a mobility power flow approach, each element of the substructure is treated independently both when developing the structural response and when determining the acoustic field generated by this component. The presence of the other substructural components is introduced by assuming these components to be rigid baffles. The excitation of one of the substructures is assumed to be by an incident acoustic wave which is dependent of the motion of the substructure. The sound field generated by the motion of the substructure is included in the solution of the response.

  8. Numerical modelling of nonlinear full-wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendón, Pablo L.

    2015-10-01

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe's linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  9. Numerical modelling of nonlinear full-wave acoustic propagation

    SciTech Connect

    Velasco-Segura, Roberto Rendón, Pablo L.

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  10. Standing surface acoustic wave (SSAW)-based cell washing

    PubMed Central

    Li, Sixing; Ding, Xiaoyun; Mao, Zhangming; Chen, Yuchao; Nama, Nitesh; Guo, Feng; Li, Peng; Wang, Lin; Cameron, Craig E.; Huang, Tony Jun

    2014-01-01

    Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications. PMID:25372273

  11. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    SciTech Connect

    Xu, X. Q.; Xiong, Z.; Nevins, W. M.; Gao, Z.; McKee, G. R.

    2008-05-30

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon} scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  12. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Gao, Z.; Nevins, W. M.; McKee, G. R.

    2008-05-01

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio γ scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  13. Traveling surface spin-wave resonance spectroscopy using surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Gowtham, P. G.; Moriyama, T.; Ralph, D. C.; Buhrman, R. A.

    2015-12-01

    Coherent gigahertz-frequency surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, via the magnetoelastic interaction, resonantly excite traveling surface spin waves in an adjacent thin-film ferromagnet. These excited surface spin waves, traveling with a definite in-plane wave-vector q ∥ enforced by the SAW, can be detected by measuring changes in the electro-acoustical transmission of a SAW delay line. Here, we provide a demonstration that such measurements constitute a precise and quantitative technique for spin-wave spectroscopy, providing a means to determine both isotropic and anisotropic contributions to the spin-wave dispersion and damping. We demonstrate the effectiveness of this spectroscopic technique by measuring the spin-wave properties of a Ni thin film for a large range of wave vectors, | q ∥ | = 2.5 × 104-8 × 104 cm-1, over which anisotropic dipolar interactions vary from being negligible to quite significant.

  14. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGESBeta

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  15. Gas dynamical approach to study dust acoustic solitary waves

    SciTech Connect

    Maitra, Sarit; Roychoudhury, Rajkumar

    2005-06-15

    Dust acoustic nonlinear waves are studied using gas dynamical approach. The structure equation for dust fluid has been obtained using the conservation laws for mass flux and momentum. The role of dust sonic point for the formation of soliton has been discussed. Conditions for the existence of soliton have been derived in terms of collective Mach number, taking into account the dust charge variation.

  16. Gasoline identifier based on SH0 plate acoustic waves.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible. PMID:27125559

  17. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.

  18. A wave superposition method formulated in digital acoustic space

    NASA Astrophysics Data System (ADS)

    Hwang, Yong-Sin

    In this thesis, a new formulation of the Wave Superposition method is proposed wherein the conventional mesh approach is replaced by a simple 3-D digital work space that easily accommodates shape optimization for minimizing or maximizing radiation efficiency. As sound quality is in demand in almost all product designs and also because of fierce competition between product manufacturers, faster and accurate computational method for shape optimization is always desired. Because the conventional Wave Superposition method relies solely on mesh geometry, it cannot accommodate fast shape changes in the design stage of a consumer product or machinery, where many iterations of shape changes are required. Since the use of a mesh hinders easy shape changes, a new approach for representing geometry is introduced by constructing a uniform lattice in a 3-D digital work space. A voxel (a portmanteau, a new word made from combining the sound and meaning, of the words, volumetric and pixel) is essentially a volume element defined by the uniform lattice, and does not require separate connectivity information as a mesh element does. In the presented method, geometry is represented with voxels that can easily adapt to shape changes, therefore it is more suitable for shape optimization. The new method was validated by computing radiated sound power of structures of simple and complex geometries and complex mode shapes. It was shown that matching volume velocity is a key component to an accurate analysis. A sensitivity study showed that it required at least 6 elements per acoustic wavelength, and a complexity study showed a minimal reduction in computational time.

  19. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  20. Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials

    SciTech Connect

    Zhou, Xiaoming; Badreddine Assouar, M. Oudich, Mourad

    2014-11-21

    We present analytical and numerical analyses of a yet unseen lensing paradigm that is based on a solid metamaterial slab in which the wave excitation source is attached. We propose and demonstrate sub-diffraction-limited acoustic focusing induced by surface resonant states in doubly negative metamaterials. The enhancement of evanescent waves across the metamaterial slab produced by their resonant coupling to surface waves is evidenced and quantitatively determined. The effect of metamaterial parameters on surface states, transmission, and wavenumber bandwidth is clearly identified. Based on this concept consisting of a wave source attached on the metamaterial, a high resolution of λ/28.4 is obtained with the optimum effective physical parameters, opening then an exciting way to design acoustic metamaterials for ultrasonic focused imaging.

  1. The effects of a hot outer atmosphere on acoustic-gravity waves

    NASA Technical Reports Server (NTRS)

    Hindman, Bradley W.; Zweibel, Ellen G.

    1994-01-01

    We examine the effects of a hot chromosphere and corona on acoustic-gravity waves in the Sun. We use a simple solar model consisting of a neutrally stable polytrope smoothly matched to an isothermal chromosphere or corona. The temperature of the isothermal region is higher than the minimum temperature of the model. We ignore sphericity, magnetic fields, changes in the gravitational potential, and nonadiabatic effects. We find a family of atmospheric g-modes whose cavity is formed by the extremum in the buoyancy frequency at the transition region. The f-mode is the zero-order member of this family. For large values of the harmonic degree l, f-mode frequencies are below the classic f-mode frequency, mu=(gk)(exp 1/2), whereas at small values of l, the f-mode is identical to the classical f-mode solution. We also find a family of g-modes residing in the low chromosphere. Frequency shifts of p-modes can be positive or negative. When the frequency is less than the acoustic cutoff frequency of the upper isothermal atmsophere, the frequency of the upper isothermal atmosphere, the frequency shift is negative, but when the frequency is above this cutoff, the shifts can be positive. High-frequency acoustic waves which are not reflected by the photospheric cutoff are reflected at the corona by the high sound speed for moderate values of l and v. This result is independent of the solar model as long as the corona is very hot. The data are inconsistent with this result, and reasons for this discrepancy are discussed.

  2. Oscillational instabilities in single-mode acoustic levitators

    NASA Technical Reports Server (NTRS)

    Rudnick, Joseph; Barmatz, M.

    1990-01-01

    An extension of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The results are consistent with experimental investigations. The present approach accounts for the effect of time delays on the response of a cavity to the motion of an object inside it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of the ability to levitate are discussed.

  3. Fast excitation of geodesic acoustic mode by energetic particle beams

    SciTech Connect

    Cao, Jintao; Qiu, Zhiyong; Zonca, Fulvio

    2015-12-15

    A new mechanism for geodesic acoustic mode (GAM) excitation by a not fully slowed down energetic particle (EP) beam is analyzed to explain experimental observations in Large Helical Device. It is shown that the positive velocity space gradient near the lower-energy end of the EP distribution function can strongly drive the GAM unstable. The new features of this EP-induced GAM (EGAM) are: (1) no instability threshold in the pitch angle; (2) the EGAM frequency can be higher than the local GAM frequency; and (3) the instability growth rate is much larger than that driven by a fully slowed down EP beam.

  4. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.

    PubMed

    Travagliati, Marco; Shilton, Richie; Beltram, Fabio; Cecchini, Marco

    2013-01-01

    Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains. PMID:24022515

  5. Fabrication, Operation and Flow Visualization in Surface-acoustic-wave-driven Acoustic-counterflow Microfluidics

    PubMed Central

    Travagliati, Marco; Shilton, Richie; Beltram, Fabio; Cecchini, Marco

    2013-01-01

    Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains. PMID:24022515

  6. Asymmetric Acoustic Propagation of Wave Packets Via the Self-Demodulation Effect.

    PubMed

    Devaux, Thibaut; Tournat, Vincent; Richoux, Olivier; Pagneux, Vincent

    2015-12-01

    This Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 10^{6}, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems. PMID:26684119

  7. Asymmetric Acoustic Propagation of Wave Packets Via the Self-Demodulation Effect

    NASA Astrophysics Data System (ADS)

    Devaux, Thibaut; Tournat, Vincent; Richoux, Olivier; Pagneux, Vincent

    2015-12-01

    This Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 1 06, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.

  8. Relation between energetic and standard geodesic acoustic modes

    SciTech Connect

    Girardo, Jean-Baptiste; Dumont, Rémi; Garbet, Xavier; Sarazin, Yanick; Zarzoso, David; Sharapov, Sergei

    2014-09-15

    Geodesic Acoustic Modes (GAMs) are electrostatic, axisymmetric modes which are non-linearly excited by turbulence. They can also be excited linearly by fast-particles; they are then called Energetic-particle-driven GAMs (EGAMs). Do GAMs and EGAMs belong to the same mode branch? Through a linear, analytical model, in which the fast particles are represented by a Maxwellian bump-on-tail distribution function, we find that the answer depends on several parameters. For low values of the safety factor q and for high values of the fast ion energy, the EGAM originates from the GAM. On the contrary, for high values of q and for low values of the fast ion energy, the GAM is not the mode which becomes unstable when fast particles are added: the EGAM then originates from a distinct mode, which is strongly damped in the absence of fast particles. The impact of other parameters is further explored: ratio of the ion temperature to the electron temperature, width of the fast particle distribution, mass and charge of the fast ions. The ratio between the EGAM and the GAM frequencies was found in experiments (DIII-D) and in non-linear numerical simulations (code GYSELA) to be close to 1/2: the present analytical study allows one to recover this ratio.

  9. PHENOMENOLOGICAL STUDY OF INTERACTION BETWEEN SOLAR ACOUSTIC WAVES AND SUNSPOTS FROM MEASURED SCATTERED WAVEFUNCTIONS

    SciTech Connect

    Yang, Ming-Hsu; Chou, Dean-Yi; Liang, Zhi-Chao; Zhao Hui

    2012-08-10

    The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their

  10. Nonlinear behavior of electron acoustic waves in an un-magnetized plasma

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Chakrabarti, Nikhil

    2011-10-15

    The nonlinear electron acoustic wave, which is found in the earth's magnetosphere by satellite observations, is studied analytically by Lagrangian fluid description. The basic linear mode is observed in a two temperature electron species plasma where ions form stationary charge neutral background. We have obtained nonlinear description of this mode, which depends on both time and space. A possible solution shows a soliton like structure, which is localized in space, and the amplitude increases with time in the absence of dispersion. Small dispersive correction, however, shows spread of the solution in space. This method can be generalized to study the nonlinear behavior of a general class of multispecies plasma.

  11. The Frequency and Damping of Ion Acoustic Waves in Collisional and Collisionless Two-species Plasma

    SciTech Connect

    R.L. Berger; E.J. Valeo

    2004-08-18

    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub th} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub th} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.

  12. Depolarized guided acoustic wave Brillouin scattering in hollow-core photonic crystal fibers.

    PubMed

    Zhong, Wenjia Elser née; Stiller, Birgit; Elser, Dominique; Heim, Bettina; Marquardt, Christoph; Leuchs, Gerd

    2015-10-19

    By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure. PMID:26480433

  13. Reconstructing surface wave profiles from reflected acoustic pulses.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2013-05-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals. The acoustic signals (of nominal frequency 200 kHz) are forward scattered from the underside of surface waves that are generated in a wave tank and scaled to model smooth ocean swell. An inverse processing algorithm is designed and implemented to reconstruct the surface displacement profiles of the waves over one complete period. The inverse processing uses the surface scattered pulses collected at the receiver, an initial wave profile (two are considered), and a broadband forward scattering model based on Kirchhoff's diffraction formula to iteratively adjust the surface until it is considered optimized or reconstructed. Two physical length scales over which information can be known about the surface are confirmed. An outer length scale, the Fresnel zone surrounding each specular reflection point, is the only region where optimized surfaces resulting from each initial profile converge within a resolution set by the inner length scale, a quarter-wavelength of the acoustic pulse. The statistical confidence of each optimized surface is also highest within a Fresnel zone. Future design considerations are suggested such as an array of receivers that increases the region of surface reconstruction by a factor of 2 to 3. PMID:23654368

  14. Synchronization of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Suranga Ruhunusiri, W. D.; Goree, John

    2012-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. Dust acoustic wave synchronization has been experimentally studied previously in laboratory and in microgravity conditions, e.g. [Pilch PoP 2009] and [Menzel PRL 2010]. We perform a laboratory experiment to study synchronization of self-excited dust acoustic waves. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. Dust acoustic waves are self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the waves, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency.

  15. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. PMID:26070191

  16. Optimization of surface acoustic wave-based rate sensors.

    PubMed

    Xu, Fangqian; Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liang, Yong

    2015-01-01

    The optimization of an surface acoustic wave (SAW)-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO₃, and a thicker Au dot array, and low operation frequency were used to structure the sensor. PMID:26473865

  17. Optimization of Surface Acoustic Wave-Based Rate Sensors

    PubMed Central

    Xu, Fangqian; Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liang, Yong

    2015-01-01

    The optimization of an surface acoustic wave (SAW)-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor. PMID:26473865

  18. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Jamil, M.; Shahid, M.; Ali, Waris; Salimullah, M.; Shah, H. A.; Murtaza, G.

    2011-06-01

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfvén waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfvén waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B0. It is noted that the growth rate is proportional to the unperturbed electron number density noe and is independent of inhomogeneity beyond Le=2 cm. An extraordinary growth rate is observed with the quantum effect.

  19. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    SciTech Connect

    Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.

    2011-06-15

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B{sub 0}. It is noted that the growth rate is proportional to the unperturbed electron number density n{sub oe} and is independent of inhomogeneity beyond L{sub e}=2 cm. An extraordinary growth rate is observed with the quantum effect.

  20. Propagation of three-dimensional electron-acoustic solitary waves

    SciTech Connect

    Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.

    2011-06-15

    Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.

  1. Landau damping of the dust-acoustic surface waves in a Lorentzian dusty plasma slab

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-01-01

    Landau damping of a dust-acoustic surface wave propagating at the interfaces of generalized Lorentzian dusty plasma slab bounded by a vacuum is kinetically derived as the surface wave displays the symmetric and the anti-symmetric mode in a plasma slab. In the limiting case of small scaled wave number, we have found that Landau damping is enhanced as the slab thickness is increased. In particular, the damping of anti-symmetric mode is much stronger for a Lorentzian plasma than for a Maxwellian plasma. We have also found that the damping is more affected by superthermal particles in a Lorentzian plasma than by a Maxwellian plasma for both of the symmetric and the anti-symmetric cases. The variations of Landau damping with various parameters are also discussed.

  2. Mapped orthogonal functions method applied to acoustic waves-based devices

    NASA Astrophysics Data System (ADS)

    Lefebvre, J. E.; Yu, J. G.; Ratolojanahary, F. E.; Elmaimouni, L.; Xu, W. J.; Gryba, T.

    2016-06-01

    This work presents the modelling of acoustic wave-based devices of various geometries through a mapped orthogonal functions method. A specificity of the method, namely the automatic incorporation of boundary conditions into equations of motion through position-dependent physical constants, is presented in detail. Formulations are given for two classes of problems: (i) problems with guided mode propagation and (ii) problems with stationary waves. The method's interest is demonstrated by several examples, a seven-layered plate, a 2D rectangular resonator and a 3D cylindrical resonator, showing how it is easy to obtain either dispersion curves and field profiles for devices with guided mode propagation or electrical response for devices with stationary waves. Extensions and possible further developments are also given.

  3. Synchronized photonic modulators driven by surface acoustic waves.

    PubMed

    Crespo-Poveda, A; Hey, R; Biermann, K; Tahraoui, A; Santos, P V; Gargallo, B; Muñoz, P; Cantarero, A; de Lima, M M

    2013-09-01

    Photonic modulators are one of the most important elements of integrated photonics. We have designed, fabricated, and characterized a tunable photonic modulator consisting of two 180°-dephased output waveguide channels, driven by a surface acoustic wave in the GHz frequency range built on (Al,Ga)As. Odd multiples of the fundamental driven frequency are enabled by adjusting the applied acoustic power. A good agreement between theory and experimental results is achieved. The device can be used as a building block for more complex integrated functionalities and can be implemented in several material platforms. PMID:24104040

  4. Resonant interaction of acoustic waves with subaqueous bedforms: Sand dunes in the South China Sea.

    PubMed

    Chiu, Linus Y S; Chang, Andrea Y Y; Reeder, D Benjamin

    2015-12-01

    The large subaqueous sand dunes in the South China Sea are expected to produce the coupling of energy between acoustic normal modes. In this letter, resonant interaction between acoustic propagating modes and subaqueous bedforms are numerically investigated as a function of bedform wavelength, acoustic frequency and bedform packet length. The results demonstrate that bedform wavelength impacts acoustic mode coupling behavior, with the principal transfer of energy occurring between acoustic modes whose eigenvalue difference is equal to the peak value in the bedform wavenumber spectrum. The observed effect of wavelength is greater than that of acoustic frequency and bedform packet length. PMID:26723360

  5. Focusing of the lowest-order antisymmetric Lamb mode behind a gradient-index acoustic metalens with local resonators

    NASA Astrophysics Data System (ADS)

    Zhao, Jinfeng; Bonello, Bernard; Boyko, Olga

    2016-05-01

    We have investigated the focusing of the lowest-order antisymmetric Lamb mode (A0) behind a positive gradient-index (GRIN) acoustic metalens consisting of air holes drilled in a silicon plate with silicon pillars erected on one face of the lens. We have analyzed the focusing in the near field as the result of the coupling between the flexural resonant mode of the pillars and the vibration mode of the air/silicon phononic crystal. We highlight the role played by the polarization coherence between the resonant mode and the vibration of the plate. We demonstrate both numerically and experimentally the focusing behind the lens over a spot less than half a wavelength, paving a way for performance of acoustic lenses beyond the diffraction limit. Our findings can be easily extended to other types of elastic wave.

  6. Numerics of surface acoustic wave (SAW) driven acoustic streaming and radiation force

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Kahler, Christian; Costanzo, Francesco; Jun Huang, Tony

    2015-11-01

    Recently, surface acoustic wave (SAW) based systems have shown great potential for various lab-on-a-chip applications. However, the physical understanding of the precise acoustic fields and associated acoustophoresis is rather limited. In this work, we present a numerical study of the acoustophoretic particle motion inside a SAW-actuated, liquid-filled polydimethylsiloxane (PDMS) microchannel. We utilize a perturbation approach to divide the flow variables into first- and second-order components. The first-order fields result in a time-averaged acoustic radiation force on suspended particles, as well as the time-averaged body force terms that drive the second-order fields. We model the SAW actuation by a displacement function while we utilize impedance boundary conditions to model the PDMS walls. We identify the precise acoustic fields generated inside the microchannel and investigate a range of particle sizes to characterize the transition from streaming-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Lastly, we demonstrate the ability of SAW devices to tune the position of vertical pressure node inside the microchannel by tuning the phase difference between the two incoming surface acoustic waves.

  7. Development of an electromagnetic acoustic transducer (EMAT) for the noncontact excitation of guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2015-03-01

    Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.

  8. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  9. Use of anisotropy to guide acoustic waves along desired trajectories

    NASA Astrophysics Data System (ADS)

    Tehranian, Aref; Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2010-03-01

    Acoustic stress waves can be guided to follow pre-determined paths in solids, using elastic anisotropy. Recently, there has been intense interest to design materials and structures that can shield specific regions within the material by redirecting the incident stress-waves along desired paths. Some of the proposed techniques involve variable mass density and stiffness. We have designed a material with isotropic mass density but highly anisotropic elasticity that can guide incident waves along desired trajectories. Harmonic excitations are imposed, and it is shown that the stress-wave energy would travel around a protected central region. The model is also evaluated using numerical simulations, which confirm that majority of the stress-wave energy is guided around the central cavity and is delivered exactly to the opposing face in a location corresponding to the incident excitation location.

  10. Diffraction of dust acoustic waves by a circular cylinder

    SciTech Connect

    Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.

    2008-09-15

    The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the 'obstacle' encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].

  11. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  12. Dispersion and mirror transmission characteristics of bulk acoustic wave resonators.

    PubMed

    Kokkonen, Kimmo; Pensala, Tuomas; Kaivola, Matti

    2011-01-01

    A heterodyne laser interferometer is used for a detailed study of the acoustic wave fields excited in a 932-MHz solidly mounted ZnO thin-film BAW resonator. The sample is manufactured on a glass substrate, which also allows direct measurement of the vibration fields from the bottom of the acoustic mirror. Vibration fields are measured both on top of the resonator and at the mirror-substrate interface in a frequency range of 350 to 1200 MHz. Plate wave dispersion diagrams are calculated from the experimental data in both cases and the transmission characteristics of the acoustic mirror are determined as a function of both frequency and lateral wave number. The experimental data are compared with 1-D and 2-D simulations to evaluate the validity of the modeling tools commonly used in mirror design. All the major features observed in the 1-D model are identified in the measured dispersion diagrams, and the mirror transmission characteristics predicted for the longitudinal waves, by both the 1-D and the 2-D models, match the measured values well. PMID:21244989

  13. Kinetic instability of the dust acoustic mode in inhomogeneous, partially magnetized plasma with both positively and negatively charged grains

    SciTech Connect

    Vranjes, J.; Poedts, S.

    2010-08-15

    A purely kinetic instability of the dust acoustic mode in inhomogeneous plasmas is discussed. In the presence of a magnetic field, electrons and ions may be magnetized while at the same time dust grains may remain unmagnetized. Although the dynamics of the light species is strongly affected by the magnetic field, the dust acoustic mode may still propagate in practically any direction. The inhomogeneity implies a source of free energy for an instability that develops through the diamagnetic drift effects of the magnetized species. It is shown that this may be a powerful mechanism for the excitation of dust acoustic waves. The analysis presented in the work is also directly applicable to plasmas containing both positive and negative ions and electrons, provided that at least one of the two ion species is unmagnetized.

  14. Analysis of Measured and Simulated Supraglottal Acoustic Waves.

    PubMed

    Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A

    2016-09-01

    To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. PMID:26377510

  15. Optically tunable acoustic wave band-pass filter

    SciTech Connect

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-15

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  16. TeO2 slow surface acoustic wave Bragg cell

    NASA Astrophysics Data System (ADS)

    Yao, Shi-Kay

    1991-08-01

    A newly discovered slow acoustic surface wave (SAW) on a (-110) cut TeO2 surface is reported focusing on its properties studied using a PC based numerical method. It is concluded that the slow SAW is rather tolerant to crystal surface orientation errors and has unusually deep penetration of its shear component into the thickness of substrate, about 47 wavelengths for a half amplitude point. The deep shear field is considered to be beneficial for surface acoustooptic interaction with free propagating focused laser beams. Rotation of the substrate about the z-axis makes it possible to adjust a slow SAW velocity with the potential advantage of trading acoustic velocity for less acoustic attenuation. Wider-bandwidth long signal processing time Bragg cells may be feasible utilizing this trade-off. The slow SAW device is characterized by an extremely low power consumption which might be useful for compact portable or avionics signal processing equipment applications.

  17. Numerical Investigations of High Pressure Acoustic Waves in Resonators

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.

  18. Surface Acoustic Waves on Piezoelectrics: The KGBS Connection

    NASA Astrophysics Data System (ADS)

    Hickernell, Fred S.

    2003-10-01

    In December of 1968 Jeffrey Bleustein of Yale University published an article in Applied Physics Letters predicting the existence of a new type of transverse surface acoustic wave that could propagate on the surface of a piezoelectric crystal. This was followed within 20 days by an article published in Soviet Physics JETP Letters by Yuri Gulyaev in January of 1969 predicting the same basic property. The wave took on the name Bleustein-Gulyaev or BG-wave, joining the names of Rayleigh, Love, Sezawa, and Stonely for distinct types of surface acoustic waves. But is there more to the story than this? Did Kagonov and Sklovskaya anticipate this development in a publication as early as 1966? Also, what about the work of Shimizu, Nakamura, and Ohta, who in April of 1969 published both theoretical and experimental verification of the existence of such a wave independent of the knowledge of the Bleustein and Gulyaev papers? This presentation explores the early roots and characteristics of what could be called the KGBS wave.

  19. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Kaur, Daljeet; Gahlot, Ajay; Sharma, Jyotsna

    2014-10-15

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  20. The condition of the resonant break-up of a gas bubble subjected to an acoustic wave in liquid

    NASA Astrophysics Data System (ADS)

    Vanovskiy, V. V.; Petrov, A. G.

    2015-12-01

    The problem of a gas bubble break-up in liquid is considered in the conditions of the frequencies resonance of the radial and nth axially symmetric deformational mode 2:1. The nonlinear energy transfer between the modes is described using an efficient Krylov-Bogolyubov averaging technique. It is shown that the deformational mode magnitude can be some orders larger than the radial mode magnitude which is damped by the thermal, viscous and acoustic dissipation. The estimative criterion of bubble break-up is obtained in the cases of slow and fast acoustic wave start. The obtained pressure magnitudes in the wave for break-up are very small and the mechanism can have strong medical and technical applications.

  1. Characterization of Ion-Acoustic Wave Reflection Off A Plasma Chamber Wall

    NASA Astrophysics Data System (ADS)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2015-11-01

    We present an experimental characterization of the ion acoustic wave reflection coefficient off a plasma chamber wall. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n ~ 1010cm-3 Te ~ 3 eV and B ~ 1 kG. The main diagnostics are laser-induced fluorescence and Langmuir probe measurements. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different wave excitation frequencies is obtained. Analysis of the reflection coefficient's dependence on the phase velocity and frequency of the wave is done through the characterization of waves utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under grant No. DOE DE-FG02-99ER54543.

  2. Stability of magneto-acoustic waves in a thermally conducting compressible fluid

    NASA Astrophysics Data System (ADS)

    Antia, H. M.; Chitre, S. M.

    1980-03-01

    The stability of magneto-acoustic waves in an inviscid, perfectly conducting isothermal fluid, stratified under constant gravity and subjected to a horizontal magnetic field is investigated, where mathematically tractable equations are provided. Both an isothermal atmosphere and a polytropic fluid are considered in the presence of thermal dissipation, with the magnetic field having pressure proportional to the gas pressure. It is found that, for both cases, the fluid can be convectively unstable for all values of gamma (the ratio of specific heats) and GB in the case of waves with small wave number or waves travelling in a direction nearly perpendicular to the magnetic field. The oscillatory modes, however, are overstable when the temperature gradient is superadiabatic.

  3. Excitation and Damping of Acoustic Waves in Three-Dimensional Accretion Disks

    NASA Astrophysics Data System (ADS)

    Mosqueira, I.; Houben, H.

    2002-09-01

    The damping of acoustic waves plays a key role in determining the criterion for gap opening (see Estrada and Mosqueira, this conference). Because of the potential significance of gap-opening in regulating the rate of accretion and of radial migration, it is important to investigate all sources of wave damping in an accretion disk. Here we mainly discuss damping mechanisms arising from 3-D effects in disks with aspect ratio H/r ~ 0.1. A 2-D treatment is valid when the response of the disk is locally isothermal with adiabatic index γ = 1 and the vertical forcing is ignored. In that case, tidal forcing will generate a 2-D wave which is likely to damp due to wave steepening in a lengthscale of order ~ rL (with weak dependence on the mass of the pertuber), where rL is the radial location of the Lindblad resonance where the acoustic wave is launched (Goodman and Rafikov 2001; Rafikov 2002). On the other hand, vertically thermally stratified disks, as may be the case for active disks with high-optical depth, generate 3-D waves which damp due to non-linear dissipation in a lengthscale of order ~ rL/m, where m is the azimuthal wavenumber (Lubow and Ogilvie 1998). In this case, most of the angular momentum flux is carried by the f-mode; however, tidal forcing also excites other modes. Finally, in a vertically isothermal (but not radially) disk with γ = 5/3 horizontal tidal forcing excites buoyancy g waves that receive ~ 20 per cent of the energy flux for a m = 0 mode (Bate et al. 2002). These g-waves have non-zero vertical group velocity, and are excited primarily away from the midplane, where non-linear dissipation is more readily attained. The radial damping length for these waves is likely to be ~ H and only weakly dependent on the mass of the perturber. We generalize the problem to include the effects of vertical tidal forcing in a vertically isothermal atmosphere with γ > 1, and calculate the vertical flux of angular momentum of acoustic waves with m < r/H. The

  4. Rayleigh wave interaction and mode conversion in a delamination

    NASA Astrophysics Data System (ADS)

    Chakrapani, Sunil Kishore; Dayal, Vinay; Dunt, Jamie

    2014-02-01

    The interaction of Rayleigh waves with a delamination in a fiber reinforced composite plate was analyzed in the present work. Rayleigh waves interacting with delamination, mode convert into Lamb waves in the delamination zone. These guided Lamb modes have the capability to mode convert back into Rayleigh modes when they interact with the edge of the delamination. Unidirectional glass/epoxy laminate with delamination of known size was fabricated and tested using air-coupled ultrasonics. Finite element models were developed to understand the various mode conversions. Experimental and numerical A-Scans, mode velocities were used to identify each mode. A good correlation between experimental and numerical results was observed.

  5. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection

    PubMed Central

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  6. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection.

    PubMed

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  7. Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates

    NASA Astrophysics Data System (ADS)

    Ma, Qingzeng; Jiao, Jingpin; Hu, Ping; Zhong, Xi; Wu, Bin; He, Cunfu

    2014-03-01

    The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SH0-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern of PPM EMATs, and can be used for their parameter optimization.

  8. Computational Simulation of Acoustic Modes in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.

    2004-01-01

    A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.

  9. Acoustic properties of multiple cavity resonance liner for absorbing higher-order duct modes.

    PubMed

    Zhou, Di; Wang, Xiaoyu; Jing, Xiaodong; Sun, Xiaofeng

    2016-08-01

    This paper describes analytical and experimental studies conducted to investigate the acoustic properties of axially non-uniform multiple cavity resonance liner for absorbing higher-order duct modes. A three-dimensional analytical model is proposed based upon transfer element method. The model is assessed by making a comparison with results of a liner performance experiment concerning higher-order modes propagation, and the agreement is good. According to the present results, it is found that the performance of multiple cavity resonance liner is related to the incident sound waves. Moreover, an analysis of the corresponding response of liner perforated panel-cavity system is performed, in which the features of resonance frequency and dissipation of the system under grazing or oblique incidence condition are revealed. The conclusions can be extended to typical non-locally reacting liners with single large back-cavity, and it would be beneficial for future non-locally reacting liner design to some extent. PMID:27586753

  10. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  11. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  12. HF Doppler observations of acoustic waves excited by the earthquake

    NASA Technical Reports Server (NTRS)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  13. A Statistical Study of Mid-latitude Thunderstorm Characteristics associated with Acoustic and Gravity Waves

    NASA Astrophysics Data System (ADS)

    Lay, E. H.; Shao, X. M.; Kendrick, A.

    2014-12-01

    Gravity waves with periods greater than 5 minutes and acoustic waves with periods between 3 and 5 minutes have been detected at ionospheric heights (250-350 km) and associated with severe thunderstorms. Modeling results support these findings, indicating that acoustic waves should be able to reach 250-350 km within ~250 km horizontally of the source, and gravity waves should be able to propagate significantly further. However, the mechanism by which the acoustic waves are generated and the ubiquity of occurrence of both types of wave is unknown. We use GPS total electron content measurements to detect gravity and acoustic waves in the ionosphere. We perform a statistical study from 2005 May - July to compare the occurrence rate and horizontal extent of the waves to storm size and convective height from NEXRAD radar measurements. It is found that both gravity waves and acoustic wave horizontal extent is primarily associated with storm size and not convective height.

  14. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions. PMID:27262557

  15. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Peterson, A. M.

    1979-01-01

    In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.

  16. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  17. R&D 100 Winner 2010: Acoustic Wave Biosensors

    ScienceCinema

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-06-29

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures ? viruses, bacteria, proteins, and DNA ? at clinically relevant levels. This detection occurs within minutes ? not hours ? at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  18. Application of guided acoustic waves to delamination detection

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.

    1992-01-01

    Guided plate waves are able to interact with structural flaws such as delaminations and cracks due to their propagation properties highly sensitive to the thickness change in materials. A technique which employs an acoustic damper to probe the results of this interaction and then to locate flaws in a relatively short period of time is developed. With its technical advantages, this technique shows its potential application to large area structural integrity assessment.

  19. Surface acoustic wave probe implant for predicting epileptic seizures

    DOEpatents

    Gopalsami, Nachappa; Kulikov, Stanislav; Osorio, Ivan; Raptis, Apostolos C.

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  20. Surface acoustic wave-driven planar light-emitting device

    NASA Astrophysics Data System (ADS)

    Cecchini, Marco; De Simoni, Giorgio; Piazza, Vincenzo; Beltram, Fabio; Beere, H. E.; Ritchie, D. A.

    2004-10-01

    Electroluminescence emission controlled by means of surface acoustic waves (SAWs) in planar light-emitting diodes (pLEDs) is demonstrated. Interdigital transducers for SAW generation were integrated onto pLEDs fabricated following the scheme which we have recently developed [Cecchini et al., Appl. Phys. Lett. 82, 636 (2003)]. Current-voltage, light-voltage, and photoluminescence characteristics are presented at cryogenic temperatures. We argue that this scheme represents a valuable building block for advanced optoelectronic architectures.

  1. Space manufacturing of surface acoustic wave devices, appendix D

    NASA Technical Reports Server (NTRS)

    Sardella, G.

    1973-01-01

    Space manufacturing of transducers in a vibration free environment is discussed. Fabrication of the masks, and possible manufacturing of the surface acoustic wave components aboard a space laboratory would avoid the inherent ground vibrations and the frequency limitation imposed by a seismic isolator pad. The manufacturing vibration requirements are identified. The concepts of space manufacturing are analyzed. A development program for manufacturing transducers is recommended.

  2. Optimizing surface acoustic wave sensors for trace chemical detection

    SciTech Connect

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  3. Decay of transverse acoustic waves in a pulsed gas laser

    SciTech Connect

    Kulkarny, V.A.

    1980-11-01

    The long-term characteristics of transverse acoustic waves in the cavity of a pulsed gaseous laser were studied by analyzing them in a straight duct configuration with nonlinear techniques used in sonic boom problems. A decaying sawtooth waveform containing a shockwave reverberated in the cavity transverse to the flow direction. In the asymptotic decay, the relative pressure perturbation of the wave varies as the 2/5 power of the product of the relative overpressure from the pulse and the speed of sound in the gas.

  4. Geodesic acoustic mode in toroidally rotating anisotropic tokamaks

    SciTech Connect

    Ren, Haijun

    2015-07-15

    Effects of anisotropy on the geodesic acoustic mode (GAM) are analyzed by using gyro-kinetic equations applicable to low-frequency microinstabilities in a toroidally rotating tokamak plasma. Dispersion relation in the presence of arbitrary Mach number M, anisotropy strength σ, and the temperature ration τ is analytically derived. It is shown that when σ is less than 3 + 2τ, the increased electron temperature with fixed ion parallel temperature increases the normalized GAM frequency. When σ is larger than 3 + 2τ, the increasing of electron temperature decreases the GAM frequency. The anisotropy σ always tends to enlarge the GAM frequency. The Landau damping rate is dramatically decreased by the increasing τ or σ.

  5. Geodesic acoustic mode in anisotropic plasma with heat flux

    SciTech Connect

    Ren, Haijun

    2015-10-15

    Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q{sup 2}, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.

  6. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies.

    PubMed

    Tadesse, Semere Ayalew; Li, Mo

    2014-01-01

    Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally, these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct, wideband link between optical and microwave photons for microwave photonics and quantum optomechanics. PMID:25400144

  7. Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds

    NASA Astrophysics Data System (ADS)

    Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.

  8. Numerical study of nonlinear full wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendon, Pablo L.

    2013-11-01

    With the aim of describing nonlinear acoustic phenomena, a form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite-volume method using Roe's linearization has been implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is written for parallel execution on a GPU and improves performance by a factor of over 50 when compared to the standard CLAWPACK Fortran code. This code can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from modest models of diagnostic and therapeutic HIFU, parametric acoustic arrays, to acoustic wave guides. A couple of examples will be presented showing shock formation and oblique interaction. DGAPA PAPIIT IN110411, PAEP UNAM 2013.

  9. EXCITATION OF ACOUSTIC WAVES BY VORTICES IN THE QUIET SUN

    SciTech Connect

    Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2011-02-01

    The five-minute oscillations are one of the basic properties of solar convection. Observations show a mixture of a large number of acoustic wave fronts propagating from their sources. We investigate the process of acoustic waves excitation from the point of view of individual events, by using a realistic three-dimensional radiative hydrodynamic simulation of the quiet Sun. The results show that the excitation events are related to the dynamics of vortex tubes (or swirls) in intergranular lanes of solar convection. These whirlpool-like flows are characterized by very strong horizontal velocities (7-11 km s{sup -1}) and downflows ({approx}7 km s{sup -1}), and are accompanied by strong decreases of temperature, density, and pressure at the surface and 0.5-1 Mm below the surface. High-speed whirlpool flows can attract and capture other vortices. According to our simulation results the processes of vortex interaction, such as vortex annihilation, can cause excitation of acoustic waves on the Sun.

  10. Nonlinear progressive acoustic-gravity waves: Exact solutions

    NASA Astrophysics Data System (ADS)

    Godin, Oleg

    2013-04-01

    We consider finite-amplitude mechanical waves in an inhomogeneous, compressible fluid in a uniform gravity field. The fluid is assumed to be inviscid, and wave motion is considered as an adiabatic thermodynamic process. The fluid either occupies an unbounded domain or has free and/or rigid boundaries. Wave motion is described by the momentum, continuity, and state equations in Lagrangian coordinates. We consider generic inhomogeneous fluids; no specific assumptions are made regarding the equation of state or spatial variations of the mass density or the sound speed in the absence of waves. The density and the sound speed are piece-wise continuous functions of position. The discontinuities represent fluid-fluid interfaces, such as the air-sea interface. Following a recent work on linear acoustic-gravity waves [O. A. Godin, Incompressible wave motion of compressible fluids, Phys. Rev. Lett., 108, 194501 (2012)], here we investigate a particular class of non-linear wave motions in fluids, in which pressure remains constant in each moving fluid parcel. Exact, analytic solutions of the non-linear hydrodynamics equations are obtained for two distinct scenarios. In the first scenario, the fluid is either unbounded or has a free surface. In the latter case, the exact analytic solution can be interpreted as a progressive surface wave. In the second scenario, the fluid has a free surface and a sloping, plane rigid boundary. Then the exact analytic solution represents an edge wave propagating horizontally along the rigid boundary. In both scenarios, the flow field associated with the finite-amplitude waves is rotational. When the sound speed tends to infinity, our results reduce to well-known finite-amplitude waves in incompressible fluids. In another limit, when the wave amplitude tends to zero, the exact solutions reduce to known results for linear waves in compressible fluids. The possibility of extending the theory to rotating fluids and fluids with a shearing background

  11. Dust-acoustic rogue waves in a nonextensive plasma

    SciTech Connect

    Moslem, W. M.; Shukla, P. K.; Sabry, R.; El-Labany, S. K.

    2011-12-15

    We present an investigation for the generation of a dust-acoustic rogue wave in a dusty plasma composed of negatively charged dust grains, as well as nonextensive electrons and ions. For this purpose, the reductive perturbation technique is used to obtain a nonlinear Schroedinger equation. The critical wave-number threshold k{sub c}, which indicates where the modulational instability sets in, has been determined precisely for various regimes. Two different behaviors of k{sub c} against the nonextensive parameter q are found. For small k{sub c}, it is found that increasing q would lead to an increase of k{sub c} until q approaches a certain value q{sub c}, then further increase of q beyond q{sub c} decreases the value of k{sub c}. For large k{sub c}, the critical wave-number threshold k{sub c} is always increasing with q. Within the modulational instability region, a random perturbation of the amplitude grows and thus creates dust-acoustic rogue waves. In order to show that the characteristics of the rogue waves are influenced by the plasma parameters, the relevant numerical analysis of the appropriate nonlinear solution is presented. The nonlinear structure, as reported here, could be useful for controlling and maximizing highly energetic pulses in dusty plasmas.

  12. Dust-acoustic rogue waves in a nonextensive plasma.

    PubMed

    Moslem, W M; Sabry, R; El-Labany, S K; Shukla, P K

    2011-12-01

    We present an investigation for the generation of a dust-acoustic rogue wave in a dusty plasma composed of negatively charged dust grains, as well as nonextensive electrons and ions. For this purpose, the reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave-number threshold k(c), which indicates where the modulational instability sets in, has been determined precisely for various regimes. Two different behaviors of k(c) against the nonextensive parameter q are found. For small k(c), it is found that increasing q would lead to an increase of k(c) until q approaches a certain value q(c), then further increase of q beyond q(c) decreases the value of k(c). For large k(c), the critical wave-number threshold k(c) is always increasing with q. Within the modulational instability region, a random perturbation of the amplitude grows and thus creates dust-acoustic rogue waves. In order to show that the characteristics of the rogue waves are influenced by the plasma parameters, the relevant numerical analysis of the appropriate nonlinear solution is presented. The nonlinear structure, as reported here, could be useful for controlling and maximizing highly energetic pulses in dusty plasmas. PMID:22304203

  13. Ion acoustic shock wave in collisional equal mass plasma

    NASA Astrophysics Data System (ADS)

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-01

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  14. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  15. Acoustic nonlinear periodic waves in pair-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mahmood, Shahzad; Kaladze, Tamaz; Ur-Rehman, Hafeez

    2013-09-01

    Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of same mass and oppositely charged ion species with different temperatures. Using reductive perturbation method and appropriate boundary conditions, the Korteweg-de Vries (KdV) equation is derived. The analytical solutions of both cnoidal wave and soliton solutions are discussed in detail. The phase plane plots of cnoidal and soliton structures are shown. It is found that both compressive and rarefactive cnoidal wave and soliton structures are formed depending on the temperature ratio of positive and negative ions in pair-ion plasmas. In the special case, it is revealed that the amplitude of soliton may become larger than it is allowed by the nonlinear stationary wave theory which is equal to the quantum tunneling by particle through a potential barrier effect. The serious flaws in the earlier published results by Yadav et al., [PRE 52, 3045 (1995)] and Chawla and Misra [Phys. Plasmas 17, 102315 (2010)] of studying ion acoustic nonlinear periodic waves are also pointed out.

  16. RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Bard, S.; Carlsson, M.

    2010-10-10

    We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.

  17. Characteristics of acoustic gravity waves obtained from Dynasonde data

    NASA Astrophysics Data System (ADS)

    Negrea, Cǎtǎlin; Zabotin, Nikolay; Bullett, Terrence; Fuller-Rowell, Tim; Fang, Tzu-Wei; Codrescu, Mihail

    2016-04-01

    Traveling ionospheric disturbances (TIDs) are ubiquitous in the thermosphere-ionosphere and are often assumed to be caused by acoustic gravity waves (AGWs). This study performs an analysis of the TID and AGW activity above Wallops Island, VA, during October 2013. The variations in electron density and ionospheric tilts obtained with the Dynasonde technique are used as primary indicators of wave activity. The temporal and spectral characteristics of the data are discussed in detail, using also results of the Whole Atmosphere Model (WAM) and the Global Ionosphere Plasmasphere Model (GIP). The full set of propagation parameters (frequency, and the vertical, zonal and meridional wave vector components) of the TIDs is determined over the 160-220 km height range. A test of the self-consistency of these results within the confines of the theoretical AGW dispersion relation is devised. This is applied to a sample data set of 24 October 2013. A remarkable agreement has been achieved for wave periods between 52 and 21 min, for which we can rigorously claim the TIDs are caused by underlying acoustic gravity waves. The Wallops Island Dynasonde can operate for extended periods at a 2 min cadence, allowing determination of the statistical distributions of propagation parameters. A dominant population of TIDs is identified in the frequency band below 1 mHz, and for it, the distributions of the horizontal wavelengths, vertical wavelengths, and horizontal phase speeds are obtained.

  18. Influence of surface acoustic waves induced acoustic streaming on the kinetics of electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Tietze, Sabrina; Schlemmer, Josefine; Lindner, Gerhard

    2013-12-01

    The kinetics of electrochemical reactions is controlled by diffusion processes of charge carriers across a boundary layer between the electrode and the electrolyte, which result in a shielding of the electric field inside the electrolyte and a concentration gradient across this boundary layer. In accumulators the diffusion rate determines the rather long time needed for charging, which is a major drawback for electric mobility. This diffusion boundary can be removed by acoustic streaming in the electrolyte induced by surface acoustic waves propagating of the electrode, which results in an increase of the charging current and thus in a reduction of the time needed for charging. For a quantitative study of the influence of acoustic streaming on the charge transport an electropolishing cell with vertically oriented copper electrodes and diluted H3PO4-Propanol electrolytes were used. Lamb waves with various excitation frequencies were exited on the anode with different piezoelectric transducers, which induced acoustic streaming in the overlaying electrolytic liquid. An increase of the polishing current of up to approximately 100 % has been obtained with such a set-up.

  19. Guided wave opto-acoustic device

    DOEpatents

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  20. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  1. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  2. Collective modes in charge-density waves and long-range Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Virosztek, Attila; Maki, Kazumi

    1993-07-01

    We study theoretically the collective modes in charge-density waves in the presence of long-range Coulomb interaction. We find that earlier works by Takada and his collaborators are inadequate since they introduced inconsistent approximations in evaluating a variety of correlation functions. The amplitude mode is unaffected by the Coulomb interaction, while the phase mode splits into the phason with linear dispersion (i.e., acoustic mode) and the optical mode with an energy gap in the presence of the Coulomb interaction. In particular, we establish the temperature dependence of the phason velocity vφ. A comparison with recent neutron-scattering data on the phason velocity in the charge-density wave of a single crystal of blue bronze K0.3MoO3 indicates that mean-field theory which includes the long-range Coulomb interaction gives an excellent description of the observed phason velocity.

  3. Anisotropy-induced coupling in borehole acoustic modes

    NASA Astrophysics Data System (ADS)

    Norris, Andrew N.; Sinha, Bikash K.

    1996-07-01

    The guided wave modes of a circular borehole in a weakly anisotropic formation are composed of linear superpositions of the associated modes for an isotropic formation. At moderate frequencies the major modes of concern are the quasi-Stoneley and quasi-flexural modes. These guided modes in anisotropic formations can be estimated from a perturbation analysis in terms of the unperturbed solutions for an isotropic formation. When the formation anisotropy is of monoclinic or lower symmetry, the normal and shear stresses become functions of both normal and shear strains through some additional anisotropic constants that are not present in materials with orthorhombic or higher symmetry. These additional elastic constants cause a coupling between the Stoneley and flexural modes. Under these circumstances, an on-axis monopole or dipole source excites both modes. Coupling coefficients account for the excitation of quasi-flexural motion by a monopole source, and of the quasi-Stoneley mode by a dipole. A transversely isotropic (TI) formation with its symmetry axis obliquely inclined with the borehole exhibits monoclinic symmetry in its rotated constants referred to the borehole axis. The monoclinic symmetry of the surrounding formation in such cases causes a coupling between the Stoneley and flexural modes. Computational results show that a borehole inclined at an angle of 60° from the symmetry axis of Austin chalk, a slow TI medium, exhibits coupling between the Stoneley and qSV-polarized flexural mode acceleration amplitudes of the order of 20 dB or less in the frequency range of interest. A similar obliquely inclined borehole in Bakken shale, a fast TI formation, exhibits a far weaker coupling between the Stoneley and qSV-polarized flexural modes. The stronger coupling in the case of Austin chalk is a result of relatively large anisotropic constants together with close proximity of the Stoneley and qSV-polarized flexural dispersions. On the other hand, weaker coupling in

  4. Ion beam driven ion-acoustic waves in a plasma cylinder with negative ions

    SciTech Connect

    Sharma, Suresh C.; Gahlot, Ajay

    2008-07-15

    An ion beam propagating through a magnetized plasma cylinder containing K{sup +} positive ions, electrons, and SF{sub 6}{sup -} negative ions drives electrostatic ion-acoustic (IA) waves to instability via Cerenkov interaction. Two electrostatic IA wave modes in presence of K{sup +} and SF{sub 6}{sup -} ions are studied. The phase velocity of the sound wave in presence of positive and negative ions increase with the relative density of negative ions. The unstable wave frequencies and the growth rate of both the modes in presence of positive and negative ions increase with the relative density of negative ions. The growth rate of both the unstable modes in presence of SF{sub 6}{sup -} and K{sup +} ions scales as the one-third power of the beam density. Numerical calculations of the phase velocity, growth rate, and mode frequencies have been carried out for the parameters of the experiment of Song et al. [Phys. Fluids B 3, 284 (1991)].

  5. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer.

    PubMed

    Ding, Xu; Wu, Xinjun; Wang, Yugang

    2014-03-01

    A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts. PMID:24289900

  6. Theoretical investigation of acoustic wave devices based on different piezoelectric films deposited on silicon carbide

    NASA Astrophysics Data System (ADS)

    Fan, Li; Zhang, Shu-yi; Ge, Huan; Zhang, Hui

    2013-07-01

    Performances of acoustic wave (AW) devices based on silicon carbide (SiC) substrates are theoretically studied, in which two types of piezoelectric films of ZnO and AlN deposited on 4H-SiC and 3C-SiC substrates are adopted. The phase velocities (PV), electromechanical coupling coefficients (ECC), and temperature coefficients of frequency (TCF) for three AW modes (Rayleigh wave, A0 and S0 modes of Lamb wave) often used in AW devices are calculated based on four types of configurations of interdigital transducers (IDTs). It is found that that the ZnO piezoelectric film is proper for the AW device operating in the low-frequency range because a high ECC can be realized using a thin ZnO film. The AlN piezoelectric film is proper for the device operating in the high-frequency range in virtue of the high PV of AlN, which can increase the finger width of the IDT. Generally, in the low-frequency Lamb wave devices using ZnO piezoelectric films with small normalized thicknesses of films to wavelengths hf/λ, thin SiC substrates can increase ECCs but induce high TCFs simultaneously. In the high-frequency device with a large hf/λ, the S0 mode of Lamb wave based on the AlN piezoelectric film deposited on a thick SiC substrate exhibits high performances by simultaneously considering the PV, ECC, and TCF.

  7. Interfacial destabilization and atomization driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Qi, Aisha; Yeo, Leslie Y.; Friend, James R.

    2008-07-01

    Surface acoustic wave atomization is a rapid means for generating micron and submicron aerosol droplets. Little, however, is understood about the mechanisms by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory, and simple numerical modeling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Using a millimeter-order fluid drop exposed to surface acoustic waves as it sits atop a single-crystal lithium niobate piezoelectric substrate, large aerosol droplets on the length scale of the parent drop dimension are ejected through a whipping and pinch-off phenomenon, which occurs at the asymmetrically formed crest of the drop due to leakage of acoustic radiation at the Rayleigh angle. Smaller micron order droplets, on the other hand, are formed due to the axisymmetric breakup of cylindrical liquid jets that are ejected as a consequence of interfacial destabilization. The 10μm droplet dimension correlates with the jet radius and the instability wavelength, both determined from a simple scaling argument involving a viscous-capillary dominant force balance. The results are further supported by numerical solution of the evolution equation governing the interfacial profile of a sessile drop along which an acoustic pressure wave is imposed. Viscous and capillary forces dominate in the bulk of the parent drop, but inertia is dominant in the ejected jets and within a thin boundary layer adjacent to the substrate where surface and interfacial accelerations are large. With the specific exception of parent drops that spread into thin films with thicknesses on the order of the boundary layer dimension prior to atomization, the free surface of the drop is always observed to vibrate at the capillary-viscous resonance frequency—even if the exciting frequency of the surface acoustic wave is several orders of magnitude larger—contrary to

  8. Collective Modes in Strongly Correlated Yukawa Liquids: Waves in Dusty Plasmas

    SciTech Connect

    Kalman, G.; Rosenberg, M.; DeWitt, H. E.

    2000-06-26

    We determine the collective mode structure of a strongly correlated Yukawa fluid, with the purpose of analyzing wave propagation in a strongly coupled dusty plasma. We identify a longitudinal plasmon and a transverse shear mode. The dispersion is characterized by a low-k acoustic behavior, a frequency maximum well below the plasma frequency, and a high-k merging of the two modes around the Einstein frequency of localized oscillations. The damping effect of collisions between neutrals and dust grains is estimated. (c) 2000 The American Physical Society.

  9. High-sensitivity open-loop electronics for gravimetric acoustic-wave-based sensors.

    PubMed

    Rabus, David; Friedt, Jean-Michel; Ballandras, Sylvain; Martin, Gilles; Carry, Emile; Blondeau-Patissier, Virginie

    2013-06-01

    Detecting chemical species in gas phase has recently received an increasing interest mainly for security control, trying to implement new systems allowing for extended dynamics and reactivity. In this work, an open-loop interrogation strategy is proposed to use radio-frequency acoustic transducers as micro-balances for that purpose. The resulting system is dedicated to the monitoring of chemical compounds in gaseous or liquid-phase state. A 16 Hz standard deviation is demonstrated at 125 MHz, with a working frequency band in the 60 to 133 MHz range, answering the requirements for using Rayleigh- and Love-wave-based delay lines operating with 40-μm acoustic wavelength transducers. Moreover, this electronic setup was used to interrogate a high-overtone bulk acoustic wave resonator (HBAR) microbalance, a new sensor class allowing for multi-mode interrogation for gravimetric measurement improvement. The noise source still limiting the system performance is due to the analog-to-digital converter of the microcontroller, thus leaving open degrees-of-freedom for improving the obtained results by optimizing the voltage reference and board layout. The operation of the system is illustrated using a calibrated galvanic deposition at the surface of Love-wave delay lines to assess theoretical predictions of their gravimetric sensitivity and to compare them with HBAR-based sensor sensitivity. PMID:25004485

  10. Ultrafast strain gauge: Observation of THz radiation coherently generated by acoustic waves

    SciTech Connect

    Armstrong, M; Reed, E; Kim, K; Glownia, J; Howard, W M; Piner, E; Roberts, J

    2008-08-14

    The study of nanoscale, terahertz frequency (THz) acoustic waves has great potential for elucidating material and chemical interactions as well as nanostructure characterization. Here we report the first observation of terahertz radiation coherently generated by an acoustic wave. Such emission is directly related to the time-dependence of the stress as the acoustic wave crosses an interface between materials of differing piezoelectric response. This phenomenon enables a new class of strain wave metrology that is fundamentally distinct from optical approaches, providing passive remote sensing of the dynamics of acoustic waves with ultrafast time resolution. The new mechanism presented here enables nanostructure measurements not possible using existing optical or x-ray approaches.

  11. On the existence of guided acoustic waves at rectangular anisotropic edges.

    PubMed

    Pupyrev, Pavel D; Lomonosov, Alexey M; Nikodijevic, Aleksandar; Mayer, Andreas P

    2016-09-01

    The existence of acoustic waves with displacements localized at the tip of an isotropic elastic wedge was rigorously proven by Kamotskii, Zavorokhin and Nazarov. This proof, which is based on a variational approach, is extended to rectangular anisotropic wedges. For two high-symmetry configurations of rectangular edges in elastic media with tetragonal symmetry, a criterion is derived that allows identifying the boundary between the regions of existence for wedge modes of even and odd symmetry in regions of parameter space, where even- and odd-symmetry modes do not exist simultaneously. Furthermore, rectangular edges with non-equivalent surfaces are analyzed, and it is shown that at rectangular edges of cubic elastic media with one (110) surface and one (001) surface, a tip-localized guided wave always exists, apart from special cases that are characterized. PMID:27447889

  12. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    PubMed

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R

    2015-08-01

    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure. PMID:25819878

  13. Bendable ZnO thin film surface acoustic wave devices on polyethylene terephthalate substrate

    SciTech Connect

    He, Xingli; Guo, Hongwei; Chen, Jinkai; Wang, Wenbo; Xuan, Weipeng; Xu, Yang E-mail: jl2@bolton.ac.uk; Luo, Jikui E-mail: jl2@bolton.ac.uk

    2014-05-26

    Bendable surface acoustic wave (SAW) devices were fabricated using high quality c-axis orientation ZnO films deposited on flexible polyethylene terephthalate substrates at 120 °C. Dual resonance modes, namely, the zero order pseudo asymmetric (A{sub 0}) and symmetric (S{sub 0}) Lamb wave modes, have been obtained from the SAW devices. The SAW devices perform well even after repeated flexion up to 2500 με for 100 times, demonstrating its suitability for flexible electronics application. The SAW devices are also highly sensitive to compressive and tensile strains, exhibiting excellent anti-strain deterioration property, thus, they are particularly suitable for sensing large strains.

  14. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  15. Flow velocity measurement with the nonlinear acoustic wave scattering

    NASA Astrophysics Data System (ADS)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  16. On the contribution of sunspots to the observed frequency shifts of solar acoustic modes

    NASA Astrophysics Data System (ADS)

    Santos, A. R. G.; Cunha, M. S.; Avelino, P. P.; Chaplin, W. J.; Campante, T. L.

    2016-06-01

    Activity-related variations in the solar oscillation properties have been known for 30 years. However, the relative importance of the different contributions to the observed variations is not yet fully understood. Our goal is to estimate the relative contribution from sunspots to the observed activity-related variations in the frequencies of the acoustic modes. We use a variational principle to relate the phase differences induced by sunspots on the acoustic waves to the corresponding changes in the frequencies of the global acoustic oscillations. From the sunspot properties (area and latitude as a function of time), we are able to estimate the spot-induced frequency shifts. These are then combined with a smooth frequency shift component, associated with long-term solar-cycle variations, and the results compared with the frequency shifts derived from the Global Oscillation Network Group (GONG) data. The result of this comparison is consistent with a sunspot contribution to the observed frequency shifts of roughly 30%, with the remaining 70% resulting mostly from a global, non-stochastic variation, possibly related to the changes in the overall magnetic field. Moreover, analysis of the residuals obtained after the subtraction of the model frequency shifts from the observations indicates the presence of a 1.5-yr periodicity in the data in phase with the quasi-biennial variations reported in the literature.

  17. On the contribution of sunspots to the observed frequency shifts of solar acoustic modes

    NASA Astrophysics Data System (ADS)

    Santos, A. R. G.; Cunha, M. S.; Avelino, P. P.; Chaplin, W. J.; Campante, T. L.

    2016-09-01

    Activity-related variations in the solar oscillation properties have been known for 30 years. However, the relative importance of the different contributions to the observed variations is not yet fully understood. Our goal is to estimate the relative contribution from sunspots to the observed activity-related variations in the frequencies of the acoustic modes. We use a variational principle to relate the phase differences induced by sunspots on the acoustic waves to the corresponding changes in the frequencies of the global acoustic oscillations. From the sunspot properties (area and latitude as a function of time), we are able to estimate the spot-induced frequency shifts. These are then combined with a smooth frequency shift component, associated with long-term solar-cycle variations, and the results compared with the frequency shifts derived from the Global Oscillation Network Group data. The result of this comparison is consistent with a sunspot contribution to the observed frequency shifts of roughly 30 per cent, with the remaining 70 per cent resulting mostly from a global, non-stochastic variation, possibly related to the changes in the overall magnetic field. Moreover, analysis of the residuals obtained after the subtraction of the model frequency shifts from the observations indicates the presence of a 1.5-yr periodicity in the data in phase with the quasi-biennial variations reported in the literature.

  18. Experimental determination of the particle motions associated with the low order acoustic modes in enclosures

    NASA Technical Reports Server (NTRS)

    Byrne, K. P.; Marshall, S. E.

    1983-01-01

    A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.

  19. A New Acoustic Lens Design for Electromagnetic Shock Wave Lithotripters

    NASA Astrophysics Data System (ADS)

    Zhong, Pei; Smith, Nathan; Simmons, Neal W.; Sankin, Georgy

    2011-09-01

    The 3rd-generation electromagnetic (EM) shock wave lithotripters often have narrow focal width and high peak pressure compared to the original Dornier HM-3. In addition, the pressure waveform produced by a typical EM lithotripter has a secondary compressive wave following the tensile component that suppresses lithotripter pulse induced cavitation, which may impact negatively on stone comminution. These characteristic changes in the modern EM lithotripters may contribute in part to their reduced effectiveness observed clinically. To overcome these two drawbacks, we have designed a new acoustic lens for the Siemens Modularis EM lithotripter that produces an idealized pressure waveform similar to that of the HM-3 with broad focal width and low peak pressure. At acoustic pulse energy of 53 mJ, the new lens design enlarges the -6 dB focal width of the Modularis by 47% while significantly reducing the second compressive wave in the lithotripter pulse throughout its focal plane. After 2000 shocks, in vitro comminution produced by the original and new lens designs are 100% and 99% at the lithotripter focus, and 52±16% and 77±8% (p<0.001) at 10 mm off axis, respectively. Corresponding values for stones that are translated to mimic respiratory motion during shock wave lithotripsy are 83±4% and 91±1% (p<0.01), demonstrating the significant performance improvement provided by the new lens design.

  20. Synchronization of the dust acoustic wave under microgravity

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, W. D. Suranga; Goree, J.

    2013-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. To prepare for experiments under microgravity conditions using the PK-4 facility on the International Space Station, we perform a laboratory experiment to observe synchronization of the self-excited dust acoustic wave. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. The dust acoustic wave is self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the wave, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency. Supported by NASA's Physical Science Research Program.

  1. Determination of hydrocarbon levels in water via laser-induced acoustics wave

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman

    2016-04-01

    Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.

  2. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2016-07-01

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  3. Analytic studies of dispersive properties of shear Alfvén and acoustic wave spectra in tokamaks

    SciTech Connect

    Chavdarovski, Ilija; Zonca, Fulvio

    2014-05-15

    The properties of the low frequency shear Alfvén and acoustic wave spectra in toroidal geometry are examined analytically and numerically considering wave particle interactions with magnetically trapped and circulating particles, using the theoretical model described in [I. Chavdarovski and F. Zonca, Plasma Phys. Controlled Fusion 51, 115001 (2009)] and following the framework of the generalized fishbone-like dispersion relation. Effects of trapped particles as well as diamagnetic effects on the frequencies and damping rates of the beta-induced Alfvén eigenmodes, kinetic ballooning modes and beta-induced Alfvén-acoustic eigenmodes are discussed and shown to be crucial to give a proper assessment of mode structure and stability conditions. Present results also demonstrate the mutual coupling of these various branches and suggest that frequency as well as mode polarization are crucial for their identification on the basis of experimental evidence.

  4. The ionization instability and resonant acoustic modes suppression by charge space effects in a dusty plasma

    SciTech Connect

    Conde, L.

    2006-03-15

    The large wavenumber suppression of unstable modes by space charge effects of the ionization instability in a weakly ionized and unmagnetized dusty plasma is investigated. The charge losses in the initial equilibrium state are balanced by electron impact ionizations originated by both the thermal electron populations and an additional monoenergetic electron beam. The multifluid dimensionless equations are deduced by using the time and length scales for elastic collisions between ions and neutral atoms and the Poisson equation relates the plasma potential fluctuations with charged particle densities instead of the quasineutral approximation. A general dimensionless dispersion relation is obtained from the linearized transport equations, where the ratios between the characteristic velocities, as the dust ion acoustic (IA), dust acoustic (DA), ion sound, and thermal speeds permits us to evaluate the weight of the different terms. In the long wavelength limit the results obtained using the quasineutral approximation are recovered. The differences found between roots of both dispersion equations are discussed, as well as those of previous models. The unstable mode of the linear ionization instability is originated by the imbalance between ion and electron densities in the rest state caused by the negative charging of dust grains. Contrary to dust free plasmas, the unstable mode exists, even in the absence of the ionizing electron beam. The numerical calculations of the roots of the full dispersion equation present a maximum unstable wavenumber not predicted by the quasineutral approximation, which is related with the minimum allowed length for space charge fluctuations within a fluid model. This upper limit of unstable wave numbers hinders the predicted resonant coupling in the long wavenumber regime between the DA and DIA waves.

  5. Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

    2004-01-01

    The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

  6. Combined action of phase-mixing and Landau damping causing strong decay of geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Palermo, F.; Biancalani, A.; Angioni, C.; Zonca, F.; Bottino, A.

    2016-07-01

    We report evidence of a new mechanism able to damp very efficiently geodesic acoustic mode (GAM) in the presence of a nonuniform temperature profile in a toroidally confined plasma. This represents a particular case of a general mechanism that we have found and that can be observed whenever the phase-mixing acts in the presence of a damping effect that depends on the wave number k r . Here, in particular, the combined effect of the Landau and continuum damping is found to quickly redistribute the GAM energy in phase-space, due to the synergy of the finite orbit width of the passing ions and the cascade in wave number given by the phase-mixing. This damping mechanism is investigated analytically and numerically by means of global gyrokinetic simulations. When realistic parameter values of plasmas at the edge of a tokamak are used, damping rates up to 2 orders of magnitude higher than the Landau damping alone are obtained. We find in particular that, for temperature and density profiles characteristic of the high confinement mode, the so-called H-mode, the GAM decay time becomes comparable to or lower than the nonlinear drive time, consistently with experimental observations (Conway G. D. et al., Phys. Rev. Lett., 106 (2011) 065001).

  7. Dust acoustic solitary waves in a quantum plasma

    SciTech Connect

    Ali, S.; Shukla, P.K.

    2006-02-15

    By employing one-dimensional quantum hydrodynamic (QHD) model for a three species quantum plasma, nonlinear properties of dust acoustic solitary waves are studied. For this purpose a Korteweg-de Vries (KdV) equation is derived, incorporating quantum corrections. The quantum mechanical effects are also examined numerically both on the profiles of the amplitude and the width of dust acoustic solitary waves. It is found that the amplitude remains constant but the width shrinks for different values of a dimensionless electron quantum parameter H{sub e}={radical}((Z{sub d0}({Dirac_h}/2{pi}){sup 2}{omega}{sub pd}{sup 2})/m{sub e}m{sub d}C{sub d}{sup 4}), where Z{sub d0} is the dust charge state, ({Dirac_h}/2{pi}) is the Planck constant divided by 2{pi}, {omega}{sub pd} is the dust plasma frequency, m{sub e} (m{sub d}) is the electron (dust) mass, and C{sub d} is the dust acoustic speed.

  8. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  9. Kinetic theory of dust ion acoustic waves in a kappa-distributed plasma

    NASA Astrophysics Data System (ADS)

    Baluku, T. K.; Hellberg, M. A.

    2015-08-01

    Using a kinetic theory approach, dust ion acoustic (DIA) waves are investigated in an unmagnetized collisionless plasma with kappa-distributed electrons and ions, and Maxwellian dust grains of constant charge. Both analytical and numerical results, the latter following from the full solution of the associated dispersion relation, are presented, and a comparison is made. The effects of the ion and electron spectral indices, as well as the species' density ( ne/ni ) and temperature ( Te/Ti ) ratios, on the dispersion and damping of the waves are considered. In the long wavelength regime, increases in both the electron spectral index (κe) and the dust density fraction (reduced f =ne/ni ) lead to an increase in phase velocity. The range in wavelength over which modes are weakly damped increases with an increase in Te/Ti . However, the ion spectral index, κi, does not have a significant effect on the dispersion or damping of DIA waves.

  10. Convergence of intense aerial acoustic waves radiated by a rectangular transverse vibrating plate

    NASA Astrophysics Data System (ADS)

    Nakai, Tomoki; Asami, Takuya; Miura, Hikaru

    2016-07-01

    A stripe-mode rectangular transverse vibrating plate can be used as a sound source that emits intense ultrasonic waves in air by placing a jut driving point outside the vibrating plate. The aim of this research was to use this vibrating plate to focus sound waves in the direction perpendicular to the nodal lines of the vibrating plate, which differs from the conventional direction. In this study, we investigated new methods for focusing the emitted sound waves by arranging reflective plates around the vibrating plate, using a design equation for each node between nodes in the vibrating plate, and placing additional reflective plates at an outer position beyond the convergence point, and found that a powerful acoustic field can be formed at an arbitrary position.

  11. Whistler wave mode conversion to lower hybrid waves at a density striation

    SciTech Connect

    Bamber, J.F.; Gekelman, W.; Maggs, J.E. )

    1994-11-28

    The first observation of mode conversion of whistler waves to lower hybrid waves at a density striation has been made in a laboratory plasma. The observed lower hybrid wavelength is consistent with that predicted by linear mode coupling. The lower hybrid waves have amplitudes up to 20% of the incident whistler waves.

  12. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  13. Piezoelectric tube rotation effect owing to surface acoustic wave excitation

    NASA Astrophysics Data System (ADS)

    Biryukov, Sergey V.; Sotnikov, Andrei; Schmidt, Hagen

    2016-03-01

    It is shown experimentally that a macroscopic cylindrical solid shaped like a piezoelectric tube can be rotated due to the excitation of surface acoustic waves (SAWs) with different amplitudes propagating in opposite directions along the solid's surface. A unidirectional SAW transducer covering the whole cylindrical surface has been used for ac voltage excitation of waves with unequal amplitudes in both directions. The pattern of such a transducer consists of a periodic comb structure with two electrodes of different width per period. An external torque is not applied to the tube and, from the outside, its movement looks like a motion under the action of an internal force. The observed mechanical response of the piezoelectric cylindrical tube to excitation of waves is due to an angular momentum of SAWs, the value of which has been directly calculated from experimental results.

  14. Mode conversion by symmetry breaking of propagating spin waves.

    SciTech Connect

    Clausen, P.; Vogt, K.; Schultheiss, H.; Schafer, S.; Obry, B.; Wolf, G.; Pirro, P.; Leven, B.; Hillebrands, B.

    2011-10-01

    We study spin-wave transport in a microstructured Ni{sub 81}Fe{sub 19} waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n = 1, 3,... into a mixed set of symmetric and asymmetric modes. Due to the spatial homogeneity of the exciting field along the used microstrip antenna, quantized spin-wave modes with an even number n of antinodes across the stripe's width cannot be directly excited. We show that a break in translational symmetry may result in a partial conversion of even spin-wave waveguide modes.

  15. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  16. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  17. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    NASA Astrophysics Data System (ADS)

    Maeda, Kazuki; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Colonius, Tim; Bailey, Michael

    2015-12-01

    Cavitation bubbles initiated by focused ultrasound waves are investigated through experiments and modeling. Pulses of focused ultrasound with a frequency of 335 kHz and a peak negative pressure of 8 MPa is generated in a water tank by a piezoelectric transducer to initiate cavitation. The pressure field is modeled by solving the Euler equations and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by highspeed photography qualitatively agree with the simulation results. Finally, bubble clouds are captured using acoustic B-mode imaging that works synchronized with high-speed photography.

  18. Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams

    SciTech Connect

    Gras, S.; Blair, D. G.; Ju, L.

    2010-02-15

    To reduce the thermal noise in the future generation of gravitational wave detectors, flat-top beams have been proposed to replace conventional Gaussian beams, so as to obtain better averaging over the Brownian motion of the test masses. Here, we present a detailed investigation of the unwanted opto-acoustic interactions in such interferometers, which can lead to the phenomenon of parametric instability. Our results show that the increased overlap of the Mesa beams with the test masses leads to approximately 3 times as many unstable modes in comparison to a similar interferometer with Gaussian beams.

  19. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  20. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum. PMID:27415357

  1. Electrostatic Generation of Bulk Acoustic Waves and Electrical Parameters of Si-MEMS Resonators.

    PubMed

    Dulmet, Bernard; Ivan, Mihaela Eugenia; Ballandras, Sylvain

    2016-02-01

    This paper proposes an analytical approach to model the generation of bulk acoustic waves in an electrostatically excited silicon MEMS structure, as well as its electromechanical response in terms of static and dynamic displacements, electromechanical coupling, and motional current. The analysis pertains to the single-port electrostatic drive of trapped-energy thickness-extensional (TE) modes in thin plates. Both asymmetric single-side and symmetric double-side electrostatic gap configurations are modeled. Green's function is used to describe the characteristic of the static displacement of the driven surface of the structure versus the dc bias voltage, which allows us to determine the electrical response of the resonator. Optical and electrical characterizations have been performed on resonator samples operating at 10.3 MHz on the fundamental of TE mode under single-side electrostatic excitation. The various figures of merit depend on the dc bias voltage. Typical values of 9000 for the Q-factor, and of 10(-5) for the electromechanical coupling factor k(2) have been obtained with [Formula: see text] for [Formula: see text]-thick gaps. Here-considered modes have a typical temperature coefficients of frequency (TCF) close to -30 ppm/(°)C. We conclude that the practical usability of such electrostatically excited bulk acoustic waves (BAW) resonators essentially depends on the efficiency of the compensation of feed-through capacitance. PMID:26642450

  2. Inspection of Pipelines Using the First Longitudinal Guided Wave Mode

    NASA Astrophysics Data System (ADS)

    Lowe, P. S.; Sanderson, R.; Pedram, S. K.; Boulgouris, N. V.; Mudge, P.

    Inspection of cylindrical structures using the first longitudinal Ultrasonic Guided Wave (UGW) mode has so far been predominantly neglected. This is due to its attenuative and dispersive behaviour, at common UGW operating frequencies (20-100 kHz). However, with the current knowledge on the level of attenuation in the first longitudinal wave mode and dispersion compensation techniques, the first longitudinal guided wave mode no longer need to be neglected. Furthermore, the first longitudinal guided wave mode has higher number of non-axisymmetric modes compared to other axisymmetric modes in the operating frequency. This will enhance the flaw sizing capability which makes the first longitudinal guided wave mode a viable prospect for UGW inspection of cylindrical structures. This study has been performed to investigate the potential of exciting the first longitudinal guided wave mode in isolation. Numerical investigations have been conducted to investigate the pure excitation of the first longitudinal guided wave mode. It has been shown that the first longitudinal guided wave mode can be used in UGW inspection effectively in isolation by adopting transducers with out of plane vibration for excitation. This can reduces the cost and weight of UGW inspection tooling. Numerical results are empirically validated.

  3. Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  4. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  5. Visualization of Surface Acoustic Waves in Thin Liquid Films

    PubMed Central

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, J. M.; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  6. Visualization of Surface Acoustic Waves in Thin Liquid Films.

    PubMed

    Rambach, R W; Taiber, J; Scheck, C M L; Meyer, C; Reboud, J; Cooper, J M; Franke, T

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  7. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  8. Visualization of Surface Acoustic Waves in Thin Liquid Films

    NASA Astrophysics Data System (ADS)

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, J. M.; Franke, T.

    2016-02-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect.

  9. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  10. Defect states of acoustic waves in a two-dimensional lattice of solid cylinders

    SciTech Connect

    Sigalas, M.M.

    1998-09-01

    Using the plane-wave expansion method, we study the propagation of acoustic waves through two-dimensional (2D) periodic composites consisting of solid cylinders in air. Defect in those structures create localized states inside the band gaps. We study both single and line defects. Line defects can act as a waveguide for acoustic waves while single defects can be used as acoustical filters. {copyright} {ital 1998 American Institute of Physics.}

  11. Cylindrical and spherical ion acoustic waves in a plasma with nonthermal electrons and warm ions

    SciTech Connect

    Sahu, Biswajit; Roychoudhury, Rajkumar

    2005-05-15

    Using the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg-de Vries (KdV) and modified KdV equations are derived for ion acoustic waves in an unmagnetized plasma consisting of warm adiabatic ions and nonthermal electrons. The effects of nonthermally distributed electrons on cylindrical and spherical ion acoustic waves are investigated. It is found that the nonthermality has a very significant effect on the nature of ion acoustic waves.

  12. Ion acoustic waves and related plasma observations in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Marsch, E.; Pilipp, W.; Schwenn, R.; Rosenbauer, H.

    1979-01-01

    The paper presents a study of the relationship between the interplanetary ion acoustic waves detected by Helios and the macroscopic and microscopic characteristics of the solar wind plasma. Two major mechanisms, an electron heat flux instability and a double-ion beam instability, are considered for generating the ion-acoustic-like waves observed in the solar wind. The results provide support to both mechanisms for generating the solar wind ion acoustic waves, although each mechanism has problems under certain conditions.

  13. Molding acoustic, electromagnetic and water waves with a single cloak.

    PubMed

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-01-01

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934

  14. Molding acoustic, electromagnetic and water waves with a single cloak

    PubMed Central

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-01-01

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934

  15. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  16. Mode Conversion of SH Guided Waves at Defects for Pipeline Inspection

    NASA Astrophysics Data System (ADS)

    Uribe, S. A.; Nakamura, N.; Ogi, H.; Hirao, M.

    2009-03-01

    At present, pipeline inspection by electromagnetic acoustic transducers (EMATs) uses amplitude change of the reflection signals from defects. We here intend to develop a more reliable and quantitative method for pipeline inspection, relying on the group-velocity change of the shear-horizontal (SH) plate modes, which occurs when they impinge on defected area. The group velocities of SH modes highly depend on the plate thickness, and there exists the cut-off thickness, below which the corresponding mode cannot propagate. For this, the propagation time of the SH wave will change depending upon the depth and the length of the flaw, when it travels though an affected area. The experimental results showed that the group velocity of SH modes varied with the depth of the defects, and when the thickness became thinner than the cut-off thickness, it suddenly decreased because of the mode conversion from a higher SH mode to a lower one.

  17. Deep ocean circulation by acoustic-gravity waves: from snowball to greenhouse earth

    NASA Astrophysics Data System (ADS)

    Kadri, Usama

    2015-04-01

    Acoustic-gravity waves are compression-type waves propagating with amplitudes governed by the restoring force of gravity. They are generated, among others, by wind-wave interactions, surface waves interactions, submarine earthquakes, and movements of ice-blocks. We show that acoustic-gravity waves contribute to deep ocean water transport through different climate timelines: from snowball to greenhouse earth; they cause chaotic flow trajectories of individual water parcels, which can be transported up to a few centimetres per second.

  18. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  19. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  20. On the role of ion-temperature anisotropy on the propagation of shear-modified ion-acoustic waves

    NASA Astrophysics Data System (ADS)

    Koepke, M. E.; Teodorescu, C.; Reynolds, E. W.

    2002-11-01

    Oblique ion-acoustic waves, excited by the combination of magnetic-field-aligned (parallel) electron drift and sheared parallel ion flow, are investigated in magnetized laboratory plasma that is characterized by ion-temperature anisotropy. Direct measurements of the parallel and perpendicular ion temperatures, parallel and perpendicular ion drift velocities, electron temperature and parallel electron drift velocity, parallel and perpendicular wavevector components, and mode frequency and growth rate are used to document an observed correlation between ion-temperature anisotropy and wave-propagation angle. Experimental measurements show that anisotropy significantly influences the propagation angle. These results support the ion-acoustic wave interpretation of broadband waves in the auroral energization region where shear and anisotropy are known to exist and may have ramifications for many space plasmas in which anisotropy exists in the electron-temperature or ion-temperature.