Science.gov

Sample records for acoustic waveguide sensor

  1. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    PubMed Central

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-01-01

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010

  2. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    PubMed

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  3. Modeling of Acoustic Emission Signal Propagation in Waveguides

    PubMed Central

    Zelenyak, Andreea-Manuela; Hamstad, Marvin A.; Sause, Markus G. R.

    2015-01-01

    Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing. PMID:26007731

  4. Fiber waveguide sensors for intelligent materials

    NASA Technical Reports Server (NTRS)

    Flax, A. R.; Claus, R. O.

    1988-01-01

    This report, an addendum to the six month report submitted to NASA Langley Research Center in December 1987, covers research performed by the Fiber and Electro-Optics Research Center (FEORC) at Virginia Tech for the NASA Langley Research Center, Grant NAG1-780, for the period from December 1987 to June 1988. This final report discusses the research performed in the following four areas as described in the proposal: Fabrication of Sensor Fibers Optimized for Embedding in Advanced Composites; Fabrication of Sensor Fiber with In-Line Splices and Evaluation via OTR methods; Modal Domain Optical Fiber Sensor Analysis; and Acoustic Fiber Waveguide Implementation.

  5. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  6. Reconfigurable origami-inspired acoustic waveguides.

    PubMed

    Babaee, Sahab; Overvelde, Johannes T B; Chen, Elizabeth R; Tournat, Vincent; Bertoldi, Katia

    2016-11-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems.

  7. Reconfigurable origami-inspired acoustic waveguides

    PubMed Central

    Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia

    2016-01-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527

  8. Directional Acoustic Density Sensor

    DTIC Science & Technology

    2010-09-13

    fluctuations of fluid density at a point . (2) DESCRIPTION OF THE PRIOR ART [0004] Conventional vector sensors measure particle velocity, v (vx,Vytvz...dipole-type or first order sensor that is realized by measuring particle velocity at a point , (which is the vector sensor sensing approach for...underwater sensors), or by measuring the gradient of the acoustic pressure at two closely spaced (less than the wavelength of an acoustic wave) points as it

  9. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  10. Ring waveguide resonator on surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Martin, G.; Weihnacht, M.

    2007-04-01

    A simple regular electrode structure for surface acoustic wave (SAW) devices is proposed. The structure consists of an interdigital transducer in the form of a ring placed on the Z cut of a hexagonal piezoelectric crystal. Finite thickness electrodes produce the known slowing effect for a SAW in comparison with this SAW on a free surface. The closed "slow" electrode region with the "fast" surrounding region forms an open waveguide resonator structure with the acoustic field concentrated in the electrode region. If the radius of the structure is large enough for a given wavelength, an acceptable level of radiation losses can be reached. The electrical admittance of such resonator does not have sidelobes.

  11. Transversal Anderson localization of sound in acoustic waveguide arrays.

    PubMed

    Ye, Yangtao; Ke, Manzhu; Feng, Junheng; Wang, Mudi; Qiu, Chunyin; Liu, Zhengyou

    2015-04-22

    We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions.

  12. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  13. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  14. Waveguide-based optical chemical sensor

    SciTech Connect

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  15. Elliptical Acoustic Particle Motion in Underwater Waveguides

    DTIC Science & Technology

    2013-03-27

    approximation to the degree of circularity. This approximation, applied to acoustic pressure measurements from two closely spaced hydrophones made in...elliptical motion in the vertical plane can be approximated by vertical line array of closely spaced pressure sensors. We demonstrate in this paper how the...an approximate measure of circular- ity. Most importantly, Θ̃ can be formed from two closely spaced (< λ/4) hydrophones, extending this analysis of

  16. Nonlinear ball chain waveguides for acoustic emission and ultrasound sensing of ablation

    NASA Astrophysics Data System (ADS)

    Pearson, Stephen H.

    Harsh environment acoustic emission and ultrasonic wave sensing applications often benefit from placing the sensor in a remote and more benign physical location by using waveguides to transmit elastic waves between the structural location under test and the transducer. Waveguides are normally designed to have high fidelity over broad frequency ranges to minimize distortion -- often difficult to achieve in practice. This thesis reports on an examination of using nonlinear ball chain waveguides for the transmission of acoustic emission and ultrasonic waves for the monitoring of thermal protection systems undergoing severe heat loading, leading to ablation and similar processes. Experiments test the nonlinear propagation of solitary, harmonic and mixed harmonic elastic waves through a copper tube filled with steel and elastomer balls and various other waveguides. Triangulation of pencil lead breaks occurs on a steel plate. Data are collected concerning the usage of linear waveguides and a water-cooled linear waveguide. Data are collected from a second water-cooled waveguide monitoring Atmospheric Reentry Materials in UVM's Inductively-Coupled Plasma Torch Facility. The motion of the particles in the dimer waveguides is linearly modeled with a three ball and spring chain model and the results are compared per particle. A theoretical nonlinear model is presented which is capable of exactly modeling the motion of the dimer chains. The shape of the waveform propagating through the dimer chain is modeled in a sonic vacuum. Mechanical pulses of varying time widths and amplitudes are launched into one end of the ball chain waveguide and observed at the other end in both time and frequency domains. Similarly, harmonic and mixed harmonic mechanical loads are applied to one end of the waveguide. Balls of different materials are analyzed and discriminated into categories. A copper tube packed with six steel particles, nine steel or marble particles and a longer copper tube

  17. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  18. Acoustic/Magnetic Stress Sensor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Namkung, M.

    1986-01-01

    High-resolution sensor fast, portable, does not require permanent bonding to structure. Sensor measures nondestructively type (compressive or tensile) and magnitude of stresses and stress gradients present in class of materials. Includes precise high-resolution acoustic interferometer, sending acoustic transducer, receiving acoustic transducer, electromagnet coil and core, power supply, and magnetic-field-measuring device such as Hall probe. This measurement especially important for construction and applications where steel is widely used. Sensor useful especially for nondestructive evaluation of stress in steel members because of portability, rapid testing, and nonpermanent installation.

  19. Computer Modeling for Optical Waveguide Sensors.

    DTIC Science & Technology

    1987-12-15

    COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and cleritify by DIock numnerl FIEL GRUP SB-GOUP Optical waveguide sensors Computer...reflection. The resultant probe beam transmission may be plotted as a function of changes in the refractive index of the surrounding fluid medium. BASIC...all angles of incidence about the critical angle ecr. It should be noted that N in equation (3) is a function of e, since = sin - l sin 8 , see

  20. Polymeric slot waveguide interferometer for sensor applications.

    PubMed

    Hiltunen, Marianne; Hiltunen, Jussi; Stenberg, Petri; Aikio, Sanna; Kurki, Lauri; Vahimaa, Pasi; Karioja, Pentti

    2014-03-24

    A refractive index sensor based on slot waveguide Young interferometer was developed in this work. The interferometer was fabricated on a polymer platform and operates at a visible wavelength of 633 nm. The phase shift of the interference pattern was measured with various concentrations of glucose-water solutions, utilizing both TE and TM polarization states. The sensor was experimentally observed to detect a refractive index difference of 6.4 × 10(-6) RIU. Furthermore, the slot Young interferometer was found to compensate for temperature variations. The results of this work demonstrate that high performance sensing capability can be obtained with a polymeric slot Young interferometer, which can be fabricated by a simple molding process.

  1. A new waveguide PBG chemical sensor

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Ching; Lai, Chih-Chou; Tsao, Shyh-Lin

    2005-08-01

    In this paper, a novel detection method of sample in liquid is proposed1. The new idea uses improved Low Pass Filter (LPF) Photonic Band Gap (PBG) cell structure which is layout on Printed Circuit Board (PCB) board2-3. The disclosed method in this paper demonstrates the method can be applied to measure the concentration of chemical material with advantages of low cost. The observable frequency response experimental results are presented. We also measure all the scattering parameters for the novel waveguide PBG chemical sensor. The disclosed method in this paper demonstrates the possibility for applying photonic band gap structure in designing a frequency division multi-sensor device. A novel coplanar waveguide (CPW) Frequency Division Multiplexer (FDM) applying Photonic Band Gap (PBG) cell combination is designed for L, S, and C-band bandpass outputs on a FR4 substrate. The observable frequency responses of experimental results are presented. The three-band CPW-PBG FDM can be used effectively as a microwave filter component in monolithic microwave integrated circuits (MMIC) for size reduction and rejection of unwanted frequency.

  2. Neural processing-type displacement sensor employing multimode waveguide

    NASA Astrophysics Data System (ADS)

    Aisawa, Shigeki; Noguchi, Kazuhiro; Matsumoto, Takao

    1991-04-01

    A novel neural processing-type displacement sensor, consisting of a multimode waveguide and a neural network, is demonstrated. This sensor detects displacement using changes in the interference output image of the waveguide. The interference image is directly processed by a three-layer perceptron neural network. Environmental change, such as the intensity fluctuation, and change of the temperature can be followed by training the neural network. Experimental results show that the sensor has a resolution of 1 micron.

  3. Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells

    NASA Astrophysics Data System (ADS)

    Kwon, Byung-Jin; Jung, Jin-Young; Lee, Dooho; Park, Kwang-Chun; Oh, Il-Kwon

    2015-10-01

    We propose a new class of acoustic waveguides with tunable bandgaps (TBs) by using vibro-acoustic metamaterials with shunted periodic piezoelectric unit cells. The unit metamaterial cells that consist of a single crystal piezoelectric transducer and an electrical shunt circuit are designed to induce a strong vibro-acousto-electrical coupling, resulting in a tunable acoustic bandgap as well as local structural resonance and Bragg scattering bandgaps. The present results show that the TB frequency can be actively controlled and the transmission loss of the acoustic wave can be greatly improved by simply changing the inductance values in the shunt circuit.

  4. Waveguide ring resonator as integrated optics for rotation sensor

    NASA Astrophysics Data System (ADS)

    Tang, Quan'an; Zheng, Ludi; Ma, Xinyu; Zhang, Yanshen

    1996-09-01

    To obtain a micro optic rotation sensor (MORS), a passive ring resonator (PRR) based on channel waveguide was designed and investigated. The waveguide structure of the resonator includes a ring waveguide as well as two directional couplers. The theoretical resolution and transfer functions of the MORS are discussed, and the PRR parameters are determined. According to the sensitivity requirement, the PRR frequency detecting system is discussed, and different detecting schemes are compared.

  5. Effects of beryllium coating layer on performance of the ultrasonic waveguide sensor.

    PubMed

    Joo, Young-Sang; Bae, Jin-Ho; Kim, Jong-Bum; Kim, Jin-Yeon

    2013-02-01

    Under-sodium viewing is one of the critical technical issues and requirements for the in-service inspection of the sodium-cooled fast reactor (SFR) that is currently under development. The waveguide sensor that uses leaky A(0) mode Lamb waves has shown its potential for high-resolution viewing/scanning of the reactor core and in-vessel structures. However, a few problems arise under a liquid sodium environment due to high sound speed in liquid sodium and dispersion in the long waveguide plate, which simultaneously deteriorate the reconstructed C-scan images. This paper proposes coating the surface of the waveguide sensor plate with a thin layer of material that has a very high ultrasonic wave velocity. It is shown that this coating layer can largely reduce the size (width) and radiation angle of the acoustic beam from the waveguide sensor. This paper precisely analyzes the effects of coating parameters on the beam quality. The proposed idea is validated through ultrasonic experiments in which the radiation beam profiles and group velocities in waveguide sensors with different surface treatments are measured and compared.

  6. On the Coriolis effect in acoustic waveguides.

    PubMed

    Wegert, Henry; Reindl, Leonard M; Ruile, Werner; Mayer, Andreas P

    2012-05-01

    Rotation of an elastic medium gives rise to a shift of frequency of its acoustic modes, i.e., the time-period vibrations that exist in it. This frequency shift is investigated by applying perturbation theory in the regime of small ratios of the rotation velocity and the frequency of the acoustic mode. In an expansion of the relative frequency shift in powers of this ratio, upper bounds are derived for the first-order and the second-order terms. The derivation of the theoretical upper bounds of the first-order term is presented for linear vibration modes as well as for stable nonlinear vibrations with periodic time dependence that can be represented by a Fourier series.

  7. Fluorescence-lifetime-based sensors using inhomogeneous waveguiding

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Kieslinger, Dietmar; Trznadel, Karolina; Lippitsch, Max E.

    1996-12-01

    Most intrinsic fiberoptic sensors are based on the evanescent-wave scheme, where the evanescent field of modes guided in a fiber reaches out into a chemically sensitive coating. In the commonly used multimode waveguides, the evanescent field contains only a small part of the total energy, however, thus making evanescent-wave sensors rather insensitive. Combining a transparent substrate and a transparent sensing layer of rather similar refractive index into a common waveguiding structure produces an inhomogeneous waveguide, where a large portion of the total energy transverses the sensing layer. This yields much superior sensor performance. The transmission through a waveguide is subject to various disturbing influences. Thus it is advantageous to combine the inhomogeneous waveguiding approach with a measuring scheme that is not prone to those disturbances. Such a scheme is available with fluorescence lifetime-based sensors. The fluorescence lifetime of an indicator incorporated into the sensing layer is changed by the presence of the respective analyte. This lifetime is independent of the transmission through the waveguide. Thus inhomogeneous waveguiding together with fluorescence lifetime measurement paves the way for optical chemical sensors with high analyte sensitivity and immunity to external disturbances.

  8. Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.

    2001-01-01

    Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.

  9. Frustrated total internal reflection acoustic field sensor

    DOEpatents

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  10. Acoustic Scattering in Flexible Waveguide Involving Step Discontinuity

    PubMed Central

    Afzal, Muhammad; Nawaz, Rab; Ayub, Muhammad; Wahab, Abdul

    2014-01-01

    In this paper, the propagation and scattering of acoustic waves in a flexible wave-guide involving step discontinuity at an interface is considered. The emerging boundary value problem is non-Sturm-Liouville and is solved by employing a hybrid mode-matching technique. The physical scattering process and attenuation of duct modes versus frequency regime and change of height is studied. Moreover, the mode-matching solution is validated through a series of numerical experiments by testifying the power conservation identity and matching interface conditions. PMID:25084019

  11. Ultralow-loss waveguide crossings for the integration of microfluidics and optical waveguide sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Yan, Hai; Wang, Zongxing; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Subbaraman, Harish; Tang, Naimei; Xu, Xiaochuan; Fan, D. L.; Wang, Alan X.; Chen, Ray T.

    2015-03-01

    Integrating photonic waveguide sensors with microfluidics is promising in achieving high-sensitivity and cost-effective biological and chemical sensing applications. One challenge in the integration is that an air gap would exist between the microfluidic channel and the photonic waveguide when the micro-channel and the waveguide intersect. The air gap creates a path for the fluid to leak out of the micro-channel. Potential solutions, such as oxide deposition followed by surface planarization, would introduce additional fabrication steps and thus are ineffective in cost. Here we propose a reliable and efficient approach for achieving closed microfluidic channels on a waveguide sensing chip. The core of the employed technique is to add waveguide crossings, i.e., perpendicularly intersecting waveguides, to block the etched trenches and prevent the fluid from leaking through the air gap. The waveguide crossings offer a smooth interface for microfluidic channel bonding while bring negligible additional propagation loss (0.024 dB/crossing based on simulation). They are also efficient in fabrication, which are patterned and fabricated in the same step with waveguides. We experimentally integrated microfluidic channels with photonic crystal (PC) microcavity sensor chips on silicon-on-insulator substrate and demonstrated leak-free sensing measurement with waveguide crossings. The microfluidic channel was made from polydimethylsiloxane (PDMS) and pressure bonded to the silicon chip. The tested flow rates can be varied from 0.2 μL/min to 200 μL/min. Strong resonances from the PC cavity were observed from the transmission spectra. The spectra also show that the waveguide crossings did not induce any significant additional loss or alter the resonances.

  12. High-sensitivity fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  13. Modeling of slot waveguide sensors based on polymeric materials.

    PubMed

    Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M N; Pavesi, Lorenzo

    2011-01-01

    Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies.

  14. Transparent and flexible force sensor array based on optical waveguide.

    PubMed

    Kim, Youngsung; Park, Suntak; Park, Seung Koo; Yun, Sungryul; Kyung, Ki-Uk; Sun, Kyung

    2012-06-18

    This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to -13.2 dB.

  15. Optical Sensors based on single arm thin film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    1998-01-01

    The second achievement meets the second objective for the second year. We choose adjustable prism couplers for connecting the sensor to optical fiber lines in our design of a breadboard prototype of the sensor. These couplers have good coupling efficiency at relatively low cost comparing to any other alternatives such as grating couplers. The third accomplishment meets the third objective for the second year. We performed testing the breadboard prototype of the sensor using heating as a technique of changing its refractive index. The only difference is that we ruled out the channel waveguides as irrelevant to the final goals of the project. The feasibility of the sensor can be shown for the slab waveguide configuration without usage of relatively expensive technologies of channel waveguide delineation.

  16. Acoustic pressure-vector sensor array

    NASA Astrophysics Data System (ADS)

    Huang, Dehua; Elswick, Roy C.; McEachern, James F.

    2004-05-01

    Pressure-vector sensors measure both scalar and vector components of the acoustic field. December 2003 measurements at the NUWC Seneca Lake test facility verify previous observations that acoustic ambient noise spectrum levels measured by acoustic intensity sensors are reduced relative to either acoustic pressure or acoustic vector sensor spectrum levels. The Seneca measurements indicate a reduction by as much as 15 dB at the upper measurement frequency of 2500 Hz. A nonlinear array synthesis theory for pressure-vector sensors will be introduced that allows smaller apertures to achieve narrow beams. The significantly reduced ambient noise of individual pressure-vector elements observed in the ocean by others, and now at Seneca Lake, should allow a nonlinearly combined array to detect significantly lower levels than has been observed in previous multiplicative processing of pressure sensors alone. Nonlinear array synthesis of pressure-vector sensors differs from conventional super-directive algorithms that linearly combine pressure elements with positive and negative weights, thereby reducing the sensitivity of conventional super-directive arrays. The much smaller aperture of acoustic pressure-vector sensor arrays will be attractive for acoustic systems on underwater vehicles, as well as for other applications that require narrow beam acoustic receivers. [The authors gratefully acknowledge the support of ONR and NUWC.

  17. Acoustic Environment Simulation Study; Acoustic Intrusion Sensor Performance.

    DTIC Science & Technology

    1983-01-01

    RD-R149 245 ACOUSTIC ENVIRONMENT SIMULATION STUDY; ACOUSTIC is INTRUSION SENSOR PERFORMANCE(U) TIME SERIES ASSOCIATES PALO ALTO CA L ENOCHSON ET AL...ACOUSTIC ENVIRONMENT SIMULATION STUDY PREPARED BY: LOREN ENOCHSON TIME SERIES ASSOCIATES 920 WEST 33RD AVENUE SPOKANE, WA 99203 PREPARED FOR: NAVAL... TIME COVERED 5A0pA OF 1 jeamonth, Day) S, 54 ( 4UNT ,inal; .. na, F ROM TO o . !L,,Nv; REJa- ,GE U -. ,16. SUPPLEMENTARY NOTATION COSATI CODES 18

  18. Improved Calibration Of Acoustic Plethysmographic Sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Davis, David C.

    1993-01-01

    Improved method of calibration of acoustic plethysmographic sensors involves acoustic-impedance test conditions like those encountered in use. Clamped aluminum tube holds source of sound (hydrophone) inside balloon. Test and reference sensors attached to outside of balloon. Sensors used to measure blood flow, blood pressure, heart rate, breathing sounds, and other vital signs from surfaces of human bodies. Attached to torsos or limbs by straps or adhesives.

  19. Invention of a tunable damper for use with an acoustic waveguide in hostile environments

    SciTech Connect

    Rogers, S.C.

    1984-06-01

    A damper was invented to remove undesirable stress pulses from an acoustic waveguide. Designed to be tunable, the damper was constructed to withstand a corrosive or otherwise hostile environment. It serves to simplify the design and enhance the performance of a water-level measurement system, of which the damper and acoustic waveguide are integral parts. An experimental damper was constructed and applied to an existing level probe and measurement system. The resulting damper, properly tuned, causes acoustic stress pulses that pass into it along the waveguide to be attenuated.

  20. Waveguide sensors for liquid using gapped optical fibers

    NASA Astrophysics Data System (ADS)

    Baba, Kazutaka; Chiba, Keita

    2014-03-01

    A waveguide sensor using a gapped optical fiber for measurements of refractive index and absorptance of liquid has been theoretically investigated. The gap formed in the single mode optical fiber is filled with the liquid whose optical characteristics are to be measured. An optical loss of the gapped optical fiber depends on the refractive index and absorptance of the liquid in the gap. The optical loss becomes smaller with the refractive index of the liquid as the light beam greatly expands in the media with smaller refractive index because of diffraction. On the other hand, the optical loss becomes larger with the absorptance of the liquid. Therefore, the refractive index and absorptance can be measured by using two waveguide sensors with different gap width. In the previous work, we investigated the theoretical characteristics of the sensors by using the two-dimensional slab waveguide for simplification. In this work, we have derived an equation for evaluation of the optical losses by approximating the fundamental mode in the optical fiber by a Gaussian function for practical use. And we clearly show the relationship between the optical loss and the refractive index of liquid filled into the gap for various gapped optical waveguides. The optical loss more greatly changes in the gaped optical fiber in comparison with the gaped slab waveguide. We have designed a saccharimeter for the liquid with Brix scale 0-20% by using the gapped waveguide. For example, the optimum gap widths are evaluated as 1.8 mm for the spot sizes of 0.01 mm. We have also designed waveguide sensor for measurements of not only refractive index but also absorptance of liquid.

  1. Evanescent field sensors and the implementation of waveguiding nanostructures

    SciTech Connect

    Boerner, Sandra; Orghici, Rozalia; Waldvogel, Siegfried R.; Willer, Ulrike; Schade, Wolfgang

    2009-02-01

    Conventional fiber optic evanescent-field gas sensors are based on a high number of total reflections while the gas is passing the active bare core fiber and of course a suitable laser light source. The use of miniaturized laser sources for sensitive detection of CO2 in gaseous and water-dissolved phase for environmental monitoring are studied for signal enhancing purposes. Additionally, the fiber optic sensor, consisting of a coiled bare multimode fiber core, was sensitized by an active polymer coating for the detection of explosive TNT. The implementation of ZnO waveguiding nanowires is discussed for surface and sensitivity enhancing coating of waveguiding elements, considering computational and experimental results.

  2. Invariant currents in lossy acoustic waveguides with complete local symmetry

    NASA Astrophysics Data System (ADS)

    Kalozoumis, P. A.; Richoux, O.; Diakonos, F. K.; Theocharis, G.; Schmelcher, P.

    2015-07-01

    We implement the concept of complete local symmetry in lossy acoustic waveguides. Despite the presence of losses, the existence of a spatially invariant current is shown theoretically and observed experimentally. We demonstrate how this invariant current leads to the generalization of the Bloch and parity theorems for lossy systems defining a mapping of the pressure field between symmetry-related spatial domains. Using experimental data, we verify this mapping with remarkable accuracy. For the performed experiment, we employ a construction technique based on local symmetries that allows the design of setups with prescribed perfect transmission resonances in the lossless case. Our results reveal the fundamental role of symmetries in restricted spatial domains, and they clearly indicate that completely locally symmetric devices constitute a promising class of setups with regard to the manipulation of wave propagation.

  3. Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.

    PubMed

    Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J

    2015-02-01

    We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations.

  4. Angular output of hollow, metal-lined, waveguide Raman sensors

    SciTech Connect

    Biedrzycki, Stephen; Buric, Michael P.; Falk, Joel; Woodruff, Steven D.

    2012-04-20

    Hollow, metal-lined waveguides used as gas sensors based on spontaneous Raman scattering are capable of large angular collection. The collection of light from a large solid angle implies the collection of a large number of waveguide modes. An accurate estimation of the propagation losses for these modes is required to predict the total collected Raman power. We report a theory/experimental comparison of the Raman power collected as a function of the solid angle and waveguide length. New theoretical observations are compared with previous theory appropriate only for low-order modes. A cutback experiment is demonstrated to verify the validity of either theory. The angular distribution of Raman light is measured using aluminum and silver-lined waveguides of varying lengths.

  5. Variety of neutron sensors based on scintillating glass waveguides

    NASA Astrophysics Data System (ADS)

    Bliss, Mary; Craig, Richard A.

    1995-04-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate glass scintillating fiber waveguide neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e-1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors.

  6. Gas Sensors Based on Single-Arm Waveguide Interferometers

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey; Curley, Michael; Diggs, Darnell; Adamovsky, Grigory

    1998-01-01

    Various optical technologies can be implemented in chemical sensing. Sensitive, rugged, and compact systems will be more likely built using interferometric waveguide sensors. Currently existing sensors comprise dual-arm systems with external reference arm, dual-arm devices with internal reference arm such as integrated Mach-Zehnder interferometer, and single-arm systems which employ the interference between different waveguide modes. These latter ones are the most compact and rugged but still sensitive enough to monitor volatile pollutants such as NH3 coming out of industrial refrigerators and fertilizer plants and stocks, NO, NO2, SO2, emitted by industrial burning processes. Single-arm devices in planar waveguide configuration most frequently use two orthogonally polarized modes TE (sub i) and TM (sub i) of the same order i. Sensing effect is based on the difference in propagation conditions for the modes caused by the environment. However, dual-mode single-order interferometers still have relatively low sensitivity with respect to the environment related changes in the waveguide core because of small difference between propagation constants of TE (sub i) and TM (sub i) modes of the same order. Substantial sensitivity improvement without significant complication can be achieved for planar waveguide interferometers using modes of different orders with much greater difference between propagation constants.

  7. Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Tian, Ye; Zuo, Shu-Yu; Cheng, Ying; Liu, Xiao-Jun

    2017-03-01

    Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.

  8. The Parray as an Acoustic Sensor.

    DTIC Science & Technology

    1980-07-07

    AD-A87 071 TEXAS UV Al AUSTIN APPLIED RESEARCH LABS F/B 17/1 HE PARRAY S N ACOUSTIC SENSOR.IU JUL 80 T B GOLOSBERRY N00039-78-C 0209 UNCLASSIFIED...ARLTRSDW CPY s THE PARRAY M* lACOUSIC SENSOR TOMMY G. Gotdv APPLIED RESEARCH_ LABORATORIES Pmopme x~mAUST. TEXA Wig - APPROVED FOR PUBLIC RELEASE...DEPARTMENT OF THE NAVY WASHINGTON, DC 2M0 La -I2 - I , " " .C ’ THE PARRAY AS AN ACOUSTIC SENSOR • J by Tommy G i Goldsberry APPLIED RESEAkRCH

  9. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  10. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  11. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  12. Waveguide sensor for detection of HNS degradation

    NASA Astrophysics Data System (ADS)

    Alam, M. Kathleen; Martin, Laura; Beechem, Thomas E.; Schmitt, Randal L.; Ten Eyck, Gregory A.

    2009-08-01

    Hexanitrostilbene (HNS) is a secondary explosive widely used in a variety of commercial and military applications, due in part to its high heat resistivity. Degradation of HNS is known to occur through exposure to a variety of sources including heat, UV radiation, and certain chemical compounds, all of which may lead to reduced performance. Detecting the degradation of HNS within a device, however, has required destructive analyses of the entire device while probing the HNS in only an indirect fashion. Specifically, the common methods of investigating this degradation include wet chemical, surface area and performance testing of the devices incorporating HNS rather than a direct interrogation of the material itself. For example, chemical tests frequently utilized, such as volatility, conductivity, and contaminant trapping, provide information on contaminants present in the system rather than the chemical stability of the HNS. To instead probe the material directly, we have pursued the use of optical methods, in particular infrared (IR) spectroscopy, in order to assess changes within the HNS itself. In addition, by successfully implementing miniature silicon (Si) waveguides fabricated at Sandia National Laboratories to facilitate this spectroscopic approach, we have demonstrated that HNS degradation monitoring may take place in a non-destructive, in-situ fashion. Furthermore, as these waveguides may be manufactured in a variety of configurations, this direct, non-destructive, approach holds promise for incorporation into a variety of devices.

  13. Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure.

    PubMed

    Wang, Xiaomin; Fujimaki, Makoto; Kato, Takafumi; Nomura, Ken-Ichi; Awazu, Koichi; Ohki, Yoshimichi

    2011-10-10

    Optical planar waveguide-mode sensor is a promising candidate for highly sensitive biosensing techniques in fields such as protein adsorption, receptor-ligand interaction and surface bacteria adhesion. To make the waveguide-mode sensor system more realistic, a spectral readout type waveguide sensor is proposed to take advantage of its high speed, compactness and low cost. Based on our previously proposed monolithic waveguide-mode sensor composed of a SiO2 waveguide layer and a single crystalline Si layer [1], the mechanism for achieving high sensitivity is revealed by numerical simulations. The optimal achievable sensitivities for a series of waveguide structures are summarized in a contour map, and they are found to be better than those of previously reported angle-scan type waveguide sensors.

  14. Integrated optic polymer waveguide devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Paul, Dilip K.

    1994-11-01

    Organic polymeric materials and devices have attracted considerable attention in recent years. Non-linear optical polymers have show promise of very high electro-optical coefficients and useful device characteristics with compatible device processing on semiconductor wafers leading to development of compact, high reliability OEICs. In this paper, the state-of-the-art technology and performance of polymeric integrated optical waveguide devices will be received and feasibility of using these devices as sensor elements (e.g., to measure temperature, pressure, displacement, vibration, chemical analysis, etc.) and also as components in optical sensor subsystems (e.g., optical gyro chip) explored.

  15. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    SciTech Connect

    Pantea, Cristian

    2012-05-04

    The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.

  16. Sensor layers and waveguide layers produced in sol-gel technology

    NASA Astrophysics Data System (ADS)

    Karasinski, Pawel; Zielonka, Iwona

    2003-04-01

    The paper presents the results of investigation studies on the application of sol-gel technology for the production of sensor layers and waveguide layers for the system of planar waveguide sensors. The sensor layers are made up by silica SiO2, which is playing the role of a matrix fixing bromocresol purpole. These layers are sensitive to ammonia. The waveguide layers are produced in a two-component system SiO2:TiO2.

  17. Observation of low-loss broadband supermode propagation in coupled acoustic waveguide complex

    PubMed Central

    Shen, Ya-Xi; Peng, Yu-Gui; Chen, Xin-Cheng; Zhao, De-Gang; Zhu, Xue-Feng

    2017-01-01

    We investigate analytically, numerically, and experimentally the low-loss supermode propagation in a coupled acoustic waveguide complex within a broadband. The waveguide complex is implemented with air channels coupled via an ultrathin metafluid layer. We analytically derive the field distribution of incident sound needed for producing acoustic supermodes, and verify the periodically revival propagation in coupled waveguide systems numerically and experimentally. We find out that the supermode wavelength becomes longer for higher mode order or lower frequency. We have also demonstrated the robust propagation of supermodes in broadband. Our scheme can in principle be extended to three dimensions and the ultrasound regime with simplicity and may promote applications of high-fidelity signal transfer in complicated acoustic networks. PMID:28349953

  18. Observation of low-loss broadband supermode propagation in coupled acoustic waveguide complex.

    PubMed

    Shen, Ya-Xi; Peng, Yu-Gui; Chen, Xin-Cheng; Zhao, De-Gang; Zhu, Xue-Feng

    2017-03-28

    We investigate analytically, numerically, and experimentally the low-loss supermode propagation in a coupled acoustic waveguide complex within a broadband. The waveguide complex is implemented with air channels coupled via an ultrathin metafluid layer. We analytically derive the field distribution of incident sound needed for producing acoustic supermodes, and verify the periodically revival propagation in coupled waveguide systems numerically and experimentally. We find out that the supermode wavelength becomes longer for higher mode order or lower frequency. We have also demonstrated the robust propagation of supermodes in broadband. Our scheme can in principle be extended to three dimensions and the ultrasound regime with simplicity and may promote applications of high-fidelity signal transfer in complicated acoustic networks.

  19. Acoustic Sensor for Voice with Embedded Physiology

    DTIC Science & Technology

    1999-01-01

    1.0 BACKGROUND ARL has developed a new method to measure human physiology and monitor health and performance parameters. This consists of an...conforms to the human body, and enhances the signal-to-noise-ratio (SNR) of human physiology to that of ambient noise. An acoustic sensor of this type

  20. A Substrate Integrated Waveguide Sensor for Measurement of Dielectric Properties of Biomass Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Substrate integrated waveguide- based sensors balance the performance and well known design techniques of classical waveguides with the cheaper and more adaptable aspects of planar circuits. Propagation characteristics are similar to waveguides with the design retaining many positive aspects of wave...

  1. WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics

    NASA Technical Reports Server (NTRS)

    Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir

    2007-01-01

    Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).

  2. Multi-band asymmetric acoustic transmission in a bended waveguide with multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, Yu-lei; Sun, Hong-xiang; Xia, Jian-ping; Yuan, Shou-qi; Ding, Xin-lei

    2016-07-01

    We report the realization of a multi-band device of the asymmetric acoustic transmission by placing a phononic crystal inside a bended waveguide immersed in water, as determined both experimentally and numerically. The asymmetric acoustic transmission exists in three frequency bands below 500 kHz induced by multiple mechanisms. Besides the band gap of the phononic crystal, we also introduce the deaf mode and interaction between the phononic crystal and waveguide. More importantly, this asymmetric transmission can be systematically controlled by mechanically rotating the square rods of the phononic crystal. The device has the advantages of multiple band, broader bandwidth, and adjustable property, showing promising applications in ultrasonic devices.

  3. Acoustic sensor networks for woodpecker localization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, C. E.; Ali, A.; Asgari, S.; Hudson, R. E.; Yao, K.; Estrin, D.; Taylor, C.

    2005-08-01

    Sensor network technology can revolutionize the study of animal ecology by providing a means of non-intrusive, simultaneous monitoring of interaction among multiple animals. In this paper, we investigate design, analysis, and testing of acoustic arrays for localizing acorn woodpeckers using their vocalizations. Each acoustic array consists of four microphones arranged in a square. All four audio channels within the same acoustic array are finely synchronized within a few micro seconds. We apply the approximate maximum likelihood (AML) method to synchronized audio channels of each acoustic array for estimating the direction-of-arrival (DOA) of woodpecker vocalizations. The woodpecker location is estimated by applying least square (LS) methods to DOA bearing crossings of multiple acoustic arrays. We have revealed the critical relation between microphone spacing of acoustic arrays and robustness of beamforming of woodpecker vocalizations. Woodpecker localization experiments using robust array element spacing in different types of environments are conducted and compared. Practical issues about calibration of acoustic array orientation are also discussed.

  4. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  5. Longitudinal bulk acoustic mass sensor

    SciTech Connect

    Hales, J. H.; Teva, J.; Boisen, A.; Davis, Z. J.

    2009-07-20

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10{sup -15} g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise in the currently applied measurement system allows for a minimum detectable mass of 0.5 fg in air.

  6. Longitudinal bulk acoustic mass sensor

    NASA Astrophysics Data System (ADS)

    Hales, J. H.; Teva, J.; Boisen, A.; Davis, Z. J.

    2009-07-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10-15 g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise in the currently applied measurement system allows for a minimum detectable mass of 0.5 fg in air.

  7. Fiber based photonic-crystal acoustic sensor

    NASA Astrophysics Data System (ADS)

    Kilic, Onur

    Photonic-crystal slabs are two-dimensional photonic crystals etched into a dielectric layer such as silicon. Standard micro fabrication techniques can be employed to manufacture these structures, which makes it feasible to produce them in large areas, usually an important criterion for practical applications. An appealing feature of these structures is that they can be employed as free-space optical devices such as broadband reflectors. The small thickness of the slab (usually in the vicinity of half a micron) also makes it deflectable. These combined optical and mechanical properties make it possible to employ photonic-crystal slabs in a range of practical applications, including displacement sensors, which in turn can be used for example to detect acoustic waves. An additional benefit of employing a photonic-crystal slab is that it is possible to tailor its optical and mechanical properties by adjusting the geometrical parameters of the structure such as hole radius or shape, pitch, and the slab thickness. By altering the hole radius and pitch, it is possible to make broadband reflectors or sharp transmission filters out of these structures. Adjusting the thickness also affects its deformability, making it possible to make broadband mirrors compliant to acoustic waves. Altering the hole shape, for example by introducing an asymmetry, extends the functionalities of photonic-crystal slabs even further. Breaking the symmetry by introducing asymmetric holes enables polarization-sensitive devices such as retarders, polarization beam splitters, and photonic crystals with additional non-degenerate resonances useful for increased sensitivity in sensors. All these practical advantages of photonic-crystal slabs makes them suitable as key components in micromachined sensor applications. We report one such example of an application of photonic-crystal slabs in the form of a micromachined acoustic sensor. It consists of a Fabry-Perot interferometer made of a photonic

  8. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  9. Planar waveguide Bragg grating sensors for composite monitoring

    NASA Astrophysics Data System (ADS)

    Teigell Benéitez, Nuria; Missinne, Jeroen; Chiesura, Gabriele; Luyckx, Geert; Degrieck, Joris; Van Steenberge, Geert

    2016-04-01

    Composite materials are extensively used in a wide array of application markets by virtue of their strength, stiffness and lightness. Many composite structures are replaced today not only after failure but also before, for precautionary reasons. Adding optical sensing intelligence to these structures not only prolongs their lifetime but also significantly reduces the use of raw materials and energy. The use of optical based sensors offer numerous advantages i.e. integrability, high sensitivity, compactness and electromagnetic immunity. Most sensors integrated in composites are based on silica fibers with Bragg gratings. However, polymers are an interesting alternative because they present several advantages. They have high values in the opticalconstants involved in sensing, are cost-effective and allow larger elongations than silica. Moreover, planar optical waveguides represent an interesting approach to be further integrated e.g. in circuits. We present a comparison between Ormocer®-based and epoxy-based polymer waveguide Bragg grating sensors. Both polymers were screened for their compatibility with composite production processes and for their sensitivity to measure temperature and stress. Ormocer®-based sensors were found to exhibit a very high sensitivity (-250 pm/°C) for temperature sensing, while the epoxy-based sensors, although less sensitive (-90 pm/°C) were more compatible with the epoxy-based composite production process. In terms of sensitivity to measure stress, both materials were found to be analogous with measured values of (2.98 pm/μepsilon) for the epoxy-based and (3.00 pm/μepsilon) for Ormocer®-based sensors.

  10. Demonstration of acoustic waveguiding and tight bending in phononic crystals

    DOE PAGES

    Ghasemi Baboly, M.; Raza, A.; Brady, J.; ...

    2016-10-31

    The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (–1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. Lastly, this manuscript shows the complete design processmore » for an engineered 90° bend PnC waveguide from inception to experimental demonstration.« less

  11. Demonstration of acoustic waveguiding and tight bending in phononic crystals

    SciTech Connect

    Ghasemi Baboly, M.; Raza, A.; Brady, J.; Reinke, C. M.; Leseman, Z. C.; El-Kady, I.

    2016-10-31

    The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (–1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. Lastly, this manuscript shows the complete design process for an engineered 90° bend PnC waveguide from inception to experimental demonstration.

  12. Acoustic response of a rectangular waveguide with a strong transverse temperature gradient

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    An acoustic wave equation was developed for a perfect gas with spatially-variable temperature. The strong-gradient wave equation was used to analyze the response of a rectangular wave guide containing a thermally-stratified gas. It was assumed that the temperature gradient is constant, representing one-dimensional heat transfer with a constant coefficient of conductivity. The analysis of the waveguide shows that the resonant frequencies of the waveguide are shifted away from the values that would be expected from the average temperature of the waveguide. For small gradients, the frequency shift is proportional to the square of the gradient. The factor of proportionality is a quadratic function of the natural frequency of the waveguide with uniform temperature. An experiment is designed to verify the essential features of the strong-gradient theory.

  13. Performance test of a plate-type ultrasonic waveguide sensor in sodium

    NASA Astrophysics Data System (ADS)

    Joo, Young-Sang; Bae, Jin-Ho; Kim, Hoe-Woong; Kim, Jong-Bum

    2013-01-01

    A plate-type ultrasonic waveguide sensor that uses the A0-mode leaky Lamb waves has been developed for under-sodium viewing of the reactor core and in-vessel structures in the sodiumcooled fast reactor. A new ultrasonic waveguide sensor that has beryllium (Be) and nickel (Ni) coating layers on its surfaces is proposed for the enhancement of the ultrasonic beam radiation and wetting capabilities in sodium. The sodium test facility with a glove box system and a sodium test loop has been designed and constructed to carry out the performance test of the developed ultrasonic waveguide sensor in a sodium environment. A 1.7 m long ultrasonic waveguide sensor with beryllium and nickel coating layers was designed and manufactured. The performance tests were carried out to evaluate the ultrasonic beam radiation characteristics and C-scan imaging resolution of the plate-type ultrasonic waveguide sensor in sodium.

  14. Study of piezo based sensors for acoustic particle detection

    NASA Astrophysics Data System (ADS)

    Anton, G.; Graf, K.; Hößl, J.; Kappes, A.; Karg, T.; Katz, U.; Kretschmer, W.; Kuch, S.; Lahmann, R.; Naumann, C.; Salomon, K.

    2006-11-01

    We present a characterisation of piezo sensors for acoustic particle detection. Electrical impedance, mechanical displacement and the sensitivity of piezo sensors were measured and modelled using a simple equivalent circuit diagram. In addition, finite element simulations were performed to describe the behaviour of the sensors. Their application for acoustic particle detection is discussed.

  15. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

    PubMed Central

    Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian

    2008-01-01

    Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731

  16. Decoupling of multiple coupled phononic crystal waveguides: application to acoustic demultiplexing

    NASA Astrophysics Data System (ADS)

    Zou, Qiushun; Liu, Wenxing; Yu, Tianbao; Liu, Nianhua; Wang, Tongbiao; Liao, Qinghua

    2017-03-01

    We show that the decoupling of two coupled phononic crystal waveguides (PnCWs) by a proper design can be achieved. And this decoupling property can be extended to the coupling of any number of parallel coupled PnCWs. The acoustic wavelength for decoupling is insensitive to the number of coupled PnCWs. Decoupling induces the extinction of neighbor PnCWs’ power transfer and makes the design of compact acoustic components easier. As a possible application of our work, a new kind of 1-to-2 acoustic demultiplexers are numerically demonstrated by employing the decoupling at the crossing-point frequency in two and three coupled PnCWs. This design concept provides a novel method and compact model for acoustic demultiplexing and can present practical applications in future acoustic wave circuits.

  17. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2001-01-01

    Single-arm double-mode double-order optical waveguide interferometer utilizes interference between two propagating modes of different orders. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric slab structure containing a dye-doped polymer film onto a fused quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional), TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TM(sub 1) or TE(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye sensitive to a particular gas. Change of optical absorption spectrum of the dye caused by the gaseous pollutant results change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As an indicator dyes, we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate, which shows a reversible growth of the absorption peak neat 600 nm after exposure to wet ammonia. We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed sensitivity to temperature change of the order of 2 C per one full oscillation of the signal. The sensitivity of the sensor to the presence of wet ammonia is 200 ppm per one full oscillation of the signal. The further improvements include switching to a longer wavelength laser source (750-nm semiconductor laser), substitution of poly(methyl) methacrylate with hydrophilic

  18. Photonic nanowires: from subwavelength waveguides to optical sensors.

    PubMed

    Guo, Xin; Ying, Yibin; Tong, Limin

    2014-02-18

    fabricate a nanowire with low optical loss? How can we activate a passive nanowire for optical sensing? And lastly, how can we adapt mature optical measurement technology onto a nanowire? In this Account, we highlight our initial attempts to address the above-mentioned challenges. First, we introduce the fabrication and functionalization of low-loss photonic nanowires. We show that nanowires fabricated by either top-down physical drawing (e.g., for amorphous nanowires) or bottom-up chemical growth (e.g., for crystalline nanowires) can yield excellent geometric and structural uniformities with surface roughness down to atomic level and minimize the scattering loss for subwavelength optical or plasmonic waveguiding. Then, relying on a near-field fiber-probe micromanipulation, we demonstrate optical launching of single nanowires by evanescent coupling, with coupling efficiency up to 90% for dielectric nanowires and 80% for plasmonic nanowires. Third, we discuss the waveguiding properties of nanowires and emphasize their outstanding capability of waveguiding tightly confined optical fields with high fractional evanescent fields. In addition, we briefly show a balance between the loss, confinement, and bandwidth in a waveguiding nanowire. Fourthly, we present promising approaches to single-nanowire optical sensors. By measuring optical absorption or spectral transmission of a nanowire and activating nanowires with sensitive dopants, we demonstrate a single-nanowire optical sensor with high sensitivity, fast response, and low optical power. This may lead to a novel platform for optical sensing at nanoscale. Finally, we conclude with an outlook for future challenges in the light manipulation and sensing applications of photonic nanowires.

  19. Microwave corrosion detection using open ended rectangular waveguide sensors

    SciTech Connect

    Qaddoumi, N.; Handjojo, L.; Bigelow, T.; Easter, J.; Bray, A.; Zoughi, R.

    2000-02-01

    The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulates the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.

  20. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  1. Resonant Biochemical Sensors Based on Photonic Bandgap Waveguides and Fibers

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, Maksim

    I describe photonic bandgap (PBG) fiber-based resonant optical sensors of analyte's refractive index which have recently invoked strong interest due to the development of novel fiber types and of techniques for the activation of fiber microstructure with functional materials. Particularly, I consider two sensors types. One employs hollow-core photonic bandgap fibers where the core-guided mode is confined in the analyte's filled core through resonant effect in the surrounding periodic reflector. The other employs metallized photonic bandgap waveguides and fibers, where core-guided mode is phase-matched with a plasmon wave propagating at the fiber/analyte interface. In resonant sensors, one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte's refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers-Kronig relation, this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte's refractive index ( {10^{ - 6}} - {10^{ - 4}}{ RIU} ) and in the imaginary part of the analyte's refractive index in the vicinity of absorption lines. Although the operational principle of almost all PBG fiber-based sensors relies on strong sensitivity of the PBG fiber losses to the value of the analyte's refractive index, particular transduction mechanisms for biodetection vary significantly. Finally, I detail various sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for biosensing applications.

  2. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  3. Partial-aperture array imaging in acoustic waveguides

    NASA Astrophysics Data System (ADS)

    Tsogka, Chrysoula; Mitsoudis, Dimitrios A.; Papadimitropoulos, Symeon

    2016-12-01

    We consider the problem of imaging extended reflectors in waveguides using partial-aperture array, i.e. an array that does not span the whole depth of the waveguide. For this imaging, we employ a method that back-propagates a weighted modal projection of the usual array response matrix. The challenge in this setup is to correctly define this projection matrix in order to maintain good energy concentration properties for the imaging method, which were obtained previously by Tsogka et al (2013 SIAM J. Imaging Sci. 6 2714-39) for the full-aperture case. In this paper we propose a way of achieving this and study the properties of the resulting imaging method.

  4. Acoustic Bloch Wave Propagation in a Periodic Waveguide

    DTIC Science & Technology

    1991-07-24

    electrical conductivity. In the quantum theory, the electron is represented by De Broglie/ Schr ~ dinger matter waves which propagate in an electrical conductor...waveguide loaded with a periodic array of rigid spheres. They based their approach on the Webster horn equation and compared the results of a strained...governing equations , we simply use the dissi- pative equations in the limit as the heat conductivity and viscosity approach zero. In such a limit the

  5. Surface acoustic wave devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  6. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  7. Cooperative implementation of a high temperature acoustic sensor

    NASA Technical Reports Server (NTRS)

    Baldini, S. E.; Nowakowski, Edward; Smith, Herbert G.; Friebele, E. J.; Putnam, Martin A.; Rogowski, Robert; Melvin, Leland D.; Claus, Richard O.; Tran, Tuan; Holben, Milford S., Jr.

    1991-01-01

    The current status and results of a cooperative program aimed at the implementation of a high-temperature acoustic/strain sensor onto metallic structures are reported. The sensor systems that are to be implemented under this program will measure thermal expansion, maneuver loads, aircraft buffet, sonic fatigue, and acoustic emissions in environments that approach 1800 F. The discussion covers fiber development, fabrication of an extrinsic Fabry-Perot interferometer acoustic sensor, sensor mounting/integration, and results of an evaluation of the sensor capabilities.

  8. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  9. Analytical study of the propagation of fast longitudinal modes along wz-BN/AlN thin acoustic waveguides.

    PubMed

    Caliendo, Cinzia

    2015-01-23

    The propagation of the fundamental symmetric Lamb mode S0 along wz-BN/AlN thin composite plates suitable for telecommunication and sensing applications is studied. The investigation of the acoustic field profile across the plate thickness revealed the presence of modes having longitudinal polarization, the Anisimkin Jr. plate modes (AMs), travelling at a phase velocity close to that of the wz-BN longitudinal bulk acoustic wave propagating in the same direction. The study of the S0 mode phase velocity and coupling coefficient (K2) dispersion curves, for different electrical boundary conditions, has shown that eight different coupling configurations are allowable that exhibit a K2 as high as about 4% and very high phase velocity (up to about 16,700 m/s). The effect of the thickness and material type of the metal floating electrode on the K2 dispersion curves has also been investigated, specifically addressing the design of an enhanced coupling device. The gravimetric sensitivity of the BN/AlN-based acoustic waveguides was then calculated for both the AMs and elliptically polarized S0 modes; the AM-based sensor velocity and attenuation shifts due to the viscosity of a surrounding liquid was theoretically predicted. The performed investigation suggests that wz-BN/AlN is a very promising substrate material suitable for developing GHz band devices with enhanced electroacoustic coupling efficiency and suitable for application in telecommunications and sensing fields.

  10. Analytical Study of the Propagation of Fast Longitudinal Modes along wz-BN/AlN Thin Acoustic Waveguides

    PubMed Central

    Caliendo, Cinzia

    2015-01-01

    The propagation of the fundamental symmetric Lamb mode S0 along wz-BN/AlN thin composite plates suitable for telecommunication and sensing applications is studied. The investigation of the acoustic field profile across the plate thickness revealed the presence of modes having longitudinal polarization, the Anisimkin Jr. plate modes (AMs), travelling at a phase velocity close to that of the wz-BN longitudinal bulk acoustic wave propagating in the same direction. The study of the S0 mode phase velocity and coupling coefficient (K2) dispersion curves, for different electrical boundary conditions, has shown that eight different coupling configurations are allowable that exhibit a K2 as high as about 4% and very high phase velocity (up to about 16,700 m/s). The effect of the thickness and material type of the metal floating electrode on the K2 dispersion curves has also been investigated, specifically addressing the design of an enhanced coupling device. The gravimetric sensitivity of the BN/AlN-based acoustic waveguides was then calculated for both the AMs and elliptically polarized S0 modes; the AM-based sensor velocity and attenuation shifts due to the viscosity of a surrounding liquid was theoretically predicted. The performed investigation suggests that wz-BN/AlN is a very promising substrate material suitable for developing GHz band devices with enhanced electroacoustic coupling efficiency and suitable for application in telecommunications and sensing fields. PMID:25625904

  11. Broadband Field Directionally Mapping using Maneuverable Acoustic Sensor Arrays

    DTIC Science & Technology

    2015-09-30

    Maneuverable Acoustic Sensor Arrays David Smith Dept. of Electrical and Computer Engineering Duke University, Box 90291 Durham, NC 27708 phone: (919) 660... acoustic arrays to resolve targets from interferers, and 2) improve the target detection, localization, and tracking performance of long arrays during tow...splines) EM algorithm. Both algorithms were run using a simulated 30 element acoustic vector sensor array with 900 snapshots. Attention has also

  12. Magnetic nanowires for acoustic sensors (invited)

    NASA Astrophysics Data System (ADS)

    McGary, Patrick D.; Tan, Liwen; Zou, Jia; Stadler, Bethanie J. H.; Downey, Patrick R.; Flatau, Alison B.

    2006-04-01

    Tiny hairlike sensors or cilia play a very important role in detection for many biological species, including humans. This research took inspiration from the packaging and transduction processes of the inner ear's cochlea and cilia to design acoustic sensors. Specifically, this work uses nanowires of magnetostrictive materials as artificial cilia to sense acoustic signals. Anodic aluminum oxide (AAO) templates with hexagonal spacings were fabricated using a two-step anodization process as well as nanoimprint assisted self-assembly and were characterized using atomic force microscopy. Patterned microelectrodes were also fabricated at the backside of several templates using photolithography. Ni, Co, and Galfenol (Fe1-xGax0.1<=x<=0.25 at. %) nanowires were fabricated using electrochemical deposition into nanoporous AAO templates where the pores had various geometries and some had large-area ordering as dictated by nanoimprinting. High aspect ratio nanowires with diameters varying from 10 to 200 nm and lengths up to 60 μm were fabricated in arrays and were collectively and individually characterized using scanning electron microscopy. Galfenol thin films, fabricated electrochemically using a Hull cell, were characterized using x-ray diffraction and energy dispersive x-ray spectroscopy to determine the optimum current density for deposition. The magnetic response of millimeter-scale cantilevered beams to dynamic bending loads was also measured and compared to constitutive and free-energy models. A giant magnetoresistive sensor behind the beam measured the magnetic response of mechanical excitation applied to the tip of each rod and validated the models. Potenial applications of these nanowire cilia include sonar arrays, underwater cameras, and medical devices.

  13. Application of acoustic feedback to target detection in a waveguide: experimental demonstration at the ultrasonic scale.

    PubMed

    Roux, Philippe; Marandet, Christian; La Rizza, Patrick; Kuperman, W A

    2011-07-01

    People are familiar with the acoustic feedback phenomenon, which results in a loud sound that is heard when a musician plays an electric instrument directly into a speaker. Acoustic feedback occurs when a source and a receiver are connected both acoustically through the propagation medium and electrically through an amplifier, such that the amplified received signal is continuously re-emitted by the source. The acoustic feedback can be initiated from a continuous sine wave. When the emitter and the receiver are in phase, resonance is obtained, which appears to be highly sensitive to any fluctuation of the propagation medium. Another procedure consists in initiating the acoustic feedback from a continuous loop of ambient noise. It then generates an unstable self-sustained feedback oscillator (SFO) that is tested here as a method for monitoring temperature fluctuations of a shallow-water oceanic environment. The goal of the present study is to reproduce and study the SFO at the laboratory scale in an ultrasonic waveguide. The experimental results demonstrate the potential applications of the SFO for the detection of a target in the framework of the acoustic-barrier problem in shallow-water acoustics.

  14. Theoretical investigation of single wavelength hollow waveguide sensor for chemical materials sensing

    NASA Astrophysics Data System (ADS)

    Ben-David, M.; Braunstein, I.; Gannot, I.

    2008-02-01

    Hazardous material sensing such as chemical agents, has become an important issue due to terrorist threats. In this work we examine the possibility of using a hollow waveguide as a sensor for chemical material sensing using only one wavelength. We propose to coat the waveguide with a dielectric layer that is sensitive to a certain chemical agent. Once such an agent interacts with the dielectric layer, it changes the index of refraction of the layer and therefore the waveguides transmission at the chosen wavelength. Using our ray model we have conducted a theoretical investigation of the suggested sensor and applied it to three chemical agents; Tabun, Ammonia and Hydrogen Cyanide.

  15. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  16. Optimized sensitivity of Silicon-on-Insulator (SOI) strip waveguide resonator sensor

    PubMed Central

    TalebiFard, Sahba; Schmidt, Shon; Shi, Wei; Wu, WenXuan; Jaeger, Nicolas A. F.; Kwok, Ezra; Ratner, Daniel M.; Chrostowski, Lukas

    2017-01-01

    Evanescent field sensors have shown promise for biological sensing applications. In particular, Silicon-on-Insulator (SOI)-nano-photonic based resonator sensors have many advantages for lab-on-chip diagnostics, including high sensitivity for molecular detection and compatibility with CMOS foundries for high volume manufacturing. We have investigated the optimum design parameters within the fabrication constraints of Multi-Project Wafer (MPW) foundries that result in the highest sensitivity for a resonator sensor. We have demonstrated the optimum waveguide thickness needed to achieve the maximum bulk sensitivity with SOI-based resonator sensors to be 165 nm using the quasi-TM guided mode. The closest thickness offered by MPW foundry services is 150 nm. Therefore, resonators with 150 nm thick silicon waveguides were fabricated resulting in sensitivities as high as 270 nm/RIU, whereas a similar resonator sensor with a 220 nm thick waveguide demonstrated sensitivities of approximately 200 nm/RIU. PMID:28270963

  17. An acoustic bending waveguide designed by anisotropic density-near-zero metamaterial

    NASA Astrophysics Data System (ADS)

    Wang, Yang-Yang; Ding, Er-Liang; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-12-01

    Anisotropic metamaterial with only one component of the mass density tensor near zero (ADNZ) is proposed to control the sound wave propagation. We find that such an anisotropic metamaterial can be used to realize perfect bending waveguides. According to a coordinate transformation, the surface waves on the input and output interfaces of the ADNZ metamaterial induces the sound energy flow to be redistributed and match smoothly with the propagating modes inside the metamaterial waveguide. According to the theory of bending waveguide, we realize the “T”-type sound shunting and convergence, as well as acoustic channel selection by embedding small-sized defects. Numerical calculations are performed to confirm the above effects. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant No. 11474160), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201609), and the Priority Academic Program Development of Jiangsu Higher Education Institution, China.

  18. Tunability of acoustic phonon transmission and thermal conductance in three dimensional quasi-periodically stubbed waveguides

    NASA Astrophysics Data System (ADS)

    Xie, Zhong-Xiang; Liu, Jing-Zhong; Yu, Xia; Wang, Hai-Bin; Deng, Yuan-Xiang; Li, Ke-Min; Zhang, Yong

    2015-03-01

    We investigate acoustic phonon transmission and thermal conductance in three dimensional (3D) quasi-periodically stubbed waveguides according to the Fibonacci sequence. Results show that the transmission coefficient exhibits the periodic oscillation upon varying the length of stub/waveguide at low frequency, and the period of such oscillation is tunably decreased with increasing the Fibonacci number N. Interestingly, there also exist some anti-resonant dips that gradually develop into wide stop-frequency gaps with increasing N. As the temperature goes up, a transition of the thermal conductance from the decrease to the increase occurs in these systems. When N is increased, the thermal conductance is approximately decreased with a linear trend. Moreover, the decreasing degree sensitively depends on the variation of temperature. A brief analysis of these results is given.

  19. Sol-gel derived planar waveguides for sensor applications

    NASA Astrophysics Data System (ADS)

    Karasinski, Pawel; Zielonka, Iwona

    2003-09-01

    The paper presents investigation results on the application of sol-gel technology for the production of planar waveguides. These waveguides are produced in a two-component system SiO2:TiO2. We discussed application potentials of the produced layers and presented the results of theoretical analysis involving future structures.

  20. Study of optical waveguide sensor using metamaterial as buffer layer with non-linear cladding and substrate

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Kumari, Anamika; Raghuwanshi, Sanjeev K.

    2015-05-01

    In this paper, dispersion equation of optical waveguide using metamaterial as buffer layer with non-linear cladding and substrate is pointed. The sensitivity of TE in metamaterial optical waveguide sensor is computed mathematically. The impacts of buffer layer with non-linear cladding and substrate on metamaterial optical waveguide sensor are also tried out. The effects of various parameters on sensitivity of sensor are obtained through MATLAB. It is expected that metamaterial as buffer layer with non-linear cladding and substrate profile has a huge application in leaky fibre sensor, gas sensor and chemical sensor for oil and under grounds mining industries.

  1. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    SciTech Connect

    Siwak, N. P.; Fan, X. Z.; Ghodssi, R.; Kanakaraju, S.; Richardson, C. J. K.

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We have fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.

  2. Analysis of dispersion diagram for high performance refractive index sensor based on photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Dutta, Hemant Sankar; Goyal, Amit Kumar; Pal, Suchandan

    2017-02-01

    Photonic crystal waveguide, to be used as a highly sensitive platform for refractive index based sensing applications, has been analyzed in this paper. The sensing performance is estimated by using dispersion diagram through using plane wave expansion simulations. The dispersion diagram is used to obtain transmittance and cut-off wavelengths for analyzing the sensor characteristics. It has been proposed that the photonic crystal waveguide with ring-type line defect provides a better perspective for sensing applications as compared to the conventional photonic crystal waveguide. An optimized ring-type photonic crystal waveguide structure with a defect filling factor of 50% shows a refractive index sensitivity of 450 nm/RIU having almost double the output signal strength compared to hole-type line defect waveguide with the same filling factor.

  3. Advanced Gas Sensors Using SERS-Activated Waveguides

    NASA Astrophysics Data System (ADS)

    Lascola, Robert; McWhorter, Scott; Murph, Simona Hunyadi

    2010-08-01

    This contribution describes progress towards the development and testing of a functionalized capillary that will provide detection of low-concentration gas-phase analytes through SERS. Measurement inside a waveguide allows interrogation of a large surface area, potentially overcoming the short distance dependence of the SERS effect. The possible use of Raman spectroscopy for gas detection is attractive for IR-inactive molecules or scenarios where infrared technology is inconvenient. However, the weakness of Raman scattering limits the use of the technique to situations where low detection limits are not required or large gas pressures are present. With surface-enhanced Raman spectroscopy (SERS), signal enhancements of 106 are often claimed, and higher values are seen in specific instances. However, most of the examples of SERS analysis are on liquid-phase samples, where the molecular density is high, usually combined with some sort of sample concentration at the surface. Neither of these factors is present in gas-phase samples. Because the laser is focused to a small point in the typical experimental setup, and the spatial extent of the effect above the surface is small (microns), the excitation volume is miniscule. Thus, exceptionally large enhancements are required to generate a signal comparable to that obtained by conventional Raman measurements. A reflective waveguide offers a way to increase the interaction volume of the laser with a SERS-modified surface. The use of a waveguide to enhance classical Raman measurements was recently demonstrated by S.M. Angel and coworkers, who obtained 12- to 30-fold sensitivity improvements for nonabsorbing gases (CO2, CH4) with a silvered capillary (no SERS enhancement). Shi et al.. demonstrated 10-to 100-fold enhancement of aqueous Rhodamine 6G in a capillary coated with silver nanoparticles. They observed enhancements of 10- to 100-fold compared to direct sampling, but this relied on a "double substrate", which required

  4. waveguides

    NASA Astrophysics Data System (ADS)

    Bauters, Jared F.; Adleman, James R.; Heck, Martijn J. R.; Bowers, John E.

    2014-08-01

    Planar waveguides with ultra-low propagation loss are necessary for integrating optoelectronic systems that require long optical time delay or narrowband optical filters. In this paper, we review an ultra-low loss planar waveguide platform that uses thin (<150 nm) Si3N4 cores and thick (>8 μm) SiO2 cladding layers. In particular, we discuss the performance of arrayed waveguide gratings (AWGs) fabricated with the platform. We propose the use of a practical design method that takes the statistical nature of worst-case crosstalk into account. We also demonstrate the measurement of amplitude and phase error distributions in an AWG using an optical backscatter reflectometer. We show that the waveguides have phase errors small enough to achieve AWG crosstalk below -30 dB, while crosstalk below -40 dB should also be possible with optimization of the component design.

  5. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    PubMed

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  6. Tracking Moving Acoustic Sources With a Network of Sensors

    DTIC Science & Technology

    2002-10-01

    Tracking Moving Acoustic Sources With a Network of Sensors by Richard J. Kozick and Brian M. Sadler ARL-TR-2750 October 2002 Approved for public...October 2002 Tracking Moving Acoustic Sources With a Network of Sensors Richard J. Kozick Bucknell University, Electrical Engineering Department Brian M...Model for a Nonmoving Source 4 2.1 Cramér-Rao Bound (CRB) . . . . . . . . . . . . . . . . . . . . 6 2.2 Examples

  7. Fiber optic acoustic emission sensors for harsh environment health monitoring

    NASA Astrophysics Data System (ADS)

    Borinski, Jason W.; Duke, John C., Jr.; Horne, Michael R.

    2001-07-01

    Optical fiber sensors are rapidly emerging as viable alternatives to piezoelectric devices as effective means of detecting and quantifying acoustic emission (AE). Compared to traditional piezoelectric-based sensors, optical fiber sensors offer much smaller size, reduced weight, ability to operate at temperatures up to 2000 degree(s)C, immunity to electromagnetic interference, resistance to corrosive environments, inherent safety within flammable environments, and the ability to multiplex multiple sensors on a single fiber. The authors have investigated low-profile fiber optic-based AE sensors for non-destructive evaluation (NDE) systems. In particular, broadband and resonant type optical fiber sensors were developed for monitoring acoustic emission for NDE of pressurized composite vessels and commercial airframe structures. The authors developed an in-plane, broadband sensor design based on optical strain gage technology. In addition, an out-of-plane, resonant sensor was developed using micromachining techniques. The sensors have been evaluated for performance using swept frequency and impulse excitation techniques and compared to conventional piezoelectric transducers. Further, application experiments were conducted using these sensors on both aluminum lap-joints and composite fracture coupons, with collocated piezoelectric transducers. The results indicate that optical fiber AE sensors can be used as transducers sensitive to acoustic events and the indication of imminent failure of a structure, making these sensors useful in many applications where conventional piezoelectric transducers are not well suited.

  8. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors.

    PubMed

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-06-10

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L).

  9. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors

    PubMed Central

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L). PMID:27294937

  10. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    SciTech Connect

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-10-25

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation.

  11. Speaker verification using combined acoustic and EM sensor signal processing

    SciTech Connect

    Ng, L C; Gable, T J; Holzrichter, J F

    2000-11-10

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantity of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. SOC. Am . 103 ( 1) 622 (1998). By combining the Glottal-EM-Sensor (GEMS) with the Acoustic-signals, we've demonstrated an almost 10 fold reduction in error rates from a speaker verification system experiment under a moderate noisy environment (-10dB).

  12. Ultrasonic Waveguide Sensor Using a Leaky Lamb Wave for Under-Sodium Viewing

    NASA Astrophysics Data System (ADS)

    Joo, Young-Sang; Lee, Jae-Han

    2010-02-01

    A plate-type ultrasonic waveguide sensor using a leaky Lamb wave has been developed for the under-sodium viewing of a reactor core and in-vessel structures of a sodium-cooled fast reactor (SFR). An A0 Lamb wave mode is utilized in the waveguide sensor for the single mode generation and the effective radiation capability in a fluid. A radiation beam steering technique is presented which is achieved by the frequency tuning of the excitation pulse in the frequency range of the A0 Lamb wave mode which the group velocity is not dispersive and the phase velocity is dispersive. The long distance propagation ability and C-scan imaging performance have been demonstrated successfully by experimental feasibility tests of the waveguide sensor.

  13. Optical waveguide lightmode spectroscopy (OWLS) as a sensor for thin film and quantum dot corrosion.

    PubMed

    Yu, Hao; Eggleston, Carrick M; Chen, Jiajun; Wang, Wenyong; Dai, Qilin; Tang, Jinke

    2012-12-13

    Optical waveguide lightmode spectroscopy (OWLS) is usually applied as a biosensor system to the sorption-desorption of proteins to waveguide surfaces. Here, we show that OWLS can be used to monitor the quality of oxide thin film materials and of coatings of pulsed laser deposition synthesized CdSe quantum dots (QDs) intended for solar energy applications. In addition to changes in data treatment and experimental procedure, oxide- or QD-coated waveguide sensors must be synthesized. We synthesized zinc stannate (Zn(2)SnO(4)) coated (Si,Ti)O(2) waveguide sensors, and used OWLS to monitor the relative mass of the film over time. Films lost mass over time, though at different rates due to variation in fluid flow and its physical effect on removal of film material. The Pulsed Laser Deposition (PLD) technique was used to deposit CdSe QD coatings on waveguides. Sensors exposed to pH 2 solution lost mass over time in an expected, roughly exponential manner. Sensors at pH 10, in contrast, were stable over time. Results were confirmed with atomic force microscopy imaging. Limiting factors in the use of OWLS in this manner include limitations on the annealing temperature that maybe used to synthesize the oxide film, and limitations on the thickness of the film to be studied. Nevertheless, the technique overcomes a number of difficulties in monitoring the quality of thin films in-situ in liquid environments.

  14. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.

    PubMed

    Lee, Dong-Jin; Yim, Hae-Dong; Lee, Seung-Gol; O, Beom-Hoan

    2011-10-10

    We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.

  15. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    PubMed Central

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  16. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks.

    PubMed

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-05-18

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones.

  17. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  18. Monitoring of acoustic emission activity using thin wafer piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei; Meisner, Daniel; Momeni, Sepand

    2014-03-01

    Acoustic emission (AE) is a well-known technique for monitoring onset and propagation of material damage. The technique has demonstrated utility in assessment of metallic and composite materials in applications ranging from civil structures to aerospace vehicles. While over the course of few decades AE hardware has changed dramatically with the sensors experiencing little changes. A traditional acoustic emission sensor solution utilizes a thickness resonance of the internal piezoelectric element which, coupled with internal amplification circuit, results in relatively large sensor footprint. Thin wafer piezoelectric sensors are small and unobtrusive, but they have seen limited AE applications due to low signal-to-noise ratio and other operation difficulties. In this contribution, issues and possible solutions pertaining to the utility of thin wafer piezoelectrics as AE sensors are discussed. Results of AE monitoring of fatigue damage using thin wafer piezoelectric and conventional AE sensors are presented.

  19. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.

    PubMed

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-03-22

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  20. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    SciTech Connect

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  1. Continuous Monitoring of Fish Population and Behavior by Instantaneous Continental-Shelf-Scale Imaging with Ocean-Waveguide Acoustics

    DTIC Science & Technology

    2008-01-01

    Nero, Mike Jech, Olav Rune Godø, Sunwoong Lee, Purnima Ratilal, and Nicholas Makris, “Ocean Acoustic Waveguide Remote Sensing (OAWRS) of Marine...Srinivasan Jagannathan, Deanelle Symonds, Ioannis Bertsatos, Tianrun Chen, Hector Pena, Ruben Patel, Olav Rune Godø, Redwood W. 6 7 Nero, J

  2. Modeling of a Surface Acoustic Wave Strain Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  3. Biomimetic smart sensors for autonomous robotic behavior I: acoustic processing

    NASA Astrophysics Data System (ADS)

    Deligeorges, Socrates; Xue, Shuwan; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Robotics are rapidly becoming an integral tool on the battlefield and in homeland security, replacing humans in hazardous conditions. To enhance the effectiveness of robotic assets and their interaction with human operators, smart sensors are required to give more autonomous function to robotic platforms. Biologically inspired sensors are an essential part of this development of autonomous behavior and can increase both capability and performance of robotic systems. Smart, biologically inspired acoustic sensors have the potential to extend autonomous capabilities of robotic platforms to include sniper detection, vehicle tracking, personnel detection, and general acoustic monitoring. The key to enabling these capabilities is biomimetic acoustic processing using a time domain processing method based on the neural structures of the mammalian auditory system. These biologically inspired algorithms replicate the extremely adaptive processing of the auditory system yielding high sensitivity over broad dynamic range. The algorithms provide tremendous robustness in noisy and echoic spaces; properties necessary for autonomous function in real world acoustic environments. These biomimetic acoustic algorithms also provide highly accurate localization of both persistent and transient sounds over a wide frequency range, using baselines on the order of only inches. A specialized smart sensor has been developed to interface with an iRobot Packbot® platform specifically to enhance its autonomous behaviors in response to personnel and gunfire. The low power, highly parallel biomimetic processor, in conjunction with a biomimetic vestibular system (discussed in the companion paper), has shown the system's autonomous response to gunfire in complicated acoustic environments to be highly effective.

  4. Acoustic sensors in the helmet detect voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-09-01

    The Army Research Laboratory has developed body-contacting acoustic sensors that detect diverse physiological sounds such as heartbeats and breaths, high quality speech, and activity. These sensors use an acoustic impedance-matching gel contained in a soft, compliant pad to enhance the body borne sounds, yet significantly repel airborne noises due to an acoustic impedance mismatch. The signals from such a sensor can be used as a microphone with embedded physiology, or a dedicated digital signal processor can process packetized data to separate physiological parameters from voice, and log parameter trends for performance surveillance. Acoustic sensors were placed inside soldier helmets to monitor voice, physiology, activity, and situational awareness clues such as bullet shockwaves from sniper activity and explosions. The sensors were also incorporated into firefighter breathing masks, neck and wrist straps, and other protective equipment. Heart rate, breath rate, blood pressure, voice and activity can be derived from these sensors (reports at www.arl.army.mil/acoustics). Having numerous sensors at various locations provides a means for array processing to reduce motion artifacts, calculate pulse transit time for passive blood pressure measurement, and the origin of blunt/penetrating traumas such as ballistic wounding. These types of sensors give us the ability to monitor soldiers and civilian emergency first-responders in demanding environments, and provide vital signs information to assess their health status and how that person is interacting with the environment and mission at hand. The Objective Force Warrior, Scorpion, Land Warrior, Warrior Medic, and other military and civilian programs can potentially benefit from these sensors.

  5. Remote Sensing of Marine Life and Submerged Target Motions with Ocean Waveguide Acoustics

    NASA Astrophysics Data System (ADS)

    Gong, Zheng

    Many species of fish that inhabit the continental shelf waters can cause significant acoustic scattering at low- to mid-frequencies due to the large impedance contrast between their air-filled swimbladders and the surrounding water. In this thesis, we investigate the acoustic resonance scattering response from distributed fish groups both experimentally and theoretically including the effects of multiple scattering, attenuation, and dispersion in a random range-dependent ocean waveguide using an instantaneous wide-area imaging system. In navy sonar operations, the biological organisms can cause high false alarm rates or missed target detections since the biological scattering can be confused with or camouflage the returns from other discrete and distributed objects, such as underwater vehicles and geologic features. From an ecological perspective, the ability to instantaneously survey fish populations distributed over wide areas is important for fisheries management. The low-frequency target strength of shoaling Atlantic herring ( Clupea harengus) in the Gulf of Maine during their Autumn 2006 spawning season is estimated from experimental data acquired simultaneously at multiple frequencies in the 300 to 1200 Hz range using (1) a low-frequency ocean acoustic waveguide remote sensing (OAWRS) system, (2) areal population density calibration with several conventional fish finding sonar (CFFS) systems, and (3) low-frequency transmission loss measurements. The OAWRS system's instantaneous imaging diameter of 100 km and regular updating enabled unaliased monitoring of fish populations over ecosystem scales including shoals of Atlantic herring containing as many as 200 million individuals, as estimated based on single scattering assumption and confirmed by concurrent trawl and CFFS sampling. The mean scattering cross-section of an individual shoaling herring is found to consistently exhibit a strong, roughly 20 dB/octave roll-off with decreasing frequency over all days of

  6. End tidal carbon dioxide measurement using an electro acoustic sensor.

    PubMed

    Folke, M; Hok, B; Ekstrom, M; Backlund, Y

    2004-01-01

    End tidal carbon dioxide measurement with an electro-acoustic sensor is demonstrated. The sensor consists of an acoustic resonator coupled to a low cost electro-acoustic element. By simultaneous measurements with a reference sensor, the new device was tested on subjects performing exercise, hypo- and hyperventilation whereby the CO2concentration ranged from 2.1 to 7.0 kPa. The output from the experimental device correlated well with the reference CO2readings with a correlation coefficient of 0.976. Response time for expiration less than 0.8 seconds was noted. The new device could be useful in situations where selectivity to other gases is not important.

  7. Sensitivity enhancement of fiber optic FBG sensor for acoustic emission

    NASA Astrophysics Data System (ADS)

    Seo, Dae-Cheol; Yoon, Dong-Jin; Kwon, Il-Bum; Lee, Seung-Suk

    2009-03-01

    A fiber optic Bragg grating based acoustic emission sensor system is developed to provide on-line monitoring of cracks or leaks in reactor vessel head penetration of nuclear power plants. Various type of fiber Bragg grating sensor including the variable length of sensing part was fabricated and prototype sensor system was tested by using PZT pulser and pencil lead break sources. In this study, we developed a cantilever type fiber sensor to enhance the sensitivity and to resonant frequency control. Two types of sensor attachment were used. First, the fiber Bragg grating sensor was fully bonded to the surface using bonding agent. Second one is that one part of fiber was partially bonded to surface and the other part of fiber will be remained freely. The resonant frequency of the fiber Bragg grating sensor will depend on the length of sensing part. Various kinds of resonant type fiber Bragg grating acoustic emission sensors were developed. Also several efforts were done to enhance the sensitivity of FBG AE sensor, which include FBG spectrum optimization and electrical and optical noise reduction. Finally, based on the self-developed acquisition system, a series of tests demonstrate the ability of the developed fiber sensor system to detect a pencil lead break event and continuous leak signal.

  8. Acoustic emission monitoring using a multimode optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Vandenplas, Steve; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine

    2004-07-01

    Permanent damage in various materials and constructions often causes high-energy high-frequency acoustic waves. To detect those so called `acoustic emission (AE) events', in most cases ultrasonic transducers are embedded in the structure or attached to its surface. However, for many applications where event localization is less important, an embedded low-cost multimode optical fiber sensor configured for event counting may be a better alternative due to its corrosion resistance, immunity to electromagnetic interference and light-weight. The sensing part of this intensity-modulated sensor consists of a multimode optical fiber. The sensing principle now relies on refractive index variations, microbending and mode-mode interferences by the action of the acoustic pressure wave. A photodiode is used to monitor the intensity of the optical signal and transient signal detection techniques (filtering, frame-to-frame analysis, recursive noise estimation, power detector estimator) on the photodiode output are applied to detect the events. In this work, the acoustic emission monitoring capabilities of the multimode optical fiber sensor are demonstrated with the fiber sensor embedded in the liner of a Power Data Transmission (PDT) coil to detect damage (delamination, matrix cracking and fiber breaking) while bending the coil. With the Hankel Total Least Square (HTLS) technique, it is shown that both the acoustic emission signal and optical signal can be modeled with a sum of exponentially damped complex sinusoids with common poles.

  9. Dual output acoustic wave sensor for molecular identification

    DOEpatents

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  10. Wave propagation in a 2D nonlinear structural acoustic waveguide using asymptotic expansions of wavenumbers

    NASA Astrophysics Data System (ADS)

    Vijay Prakash, S.; Sonti, Venkata R.

    2016-02-01

    Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrödinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions.

  11. Acoustic mapping of ocean currents using networked distributed sensors.

    PubMed

    Huang, Chen-Fen; Yang, T C; Liu, Jin-Yuan; Schindall, Jeff

    2013-09-01

    Distributed underwater sensors are expected to provide oceanographic monitoring over large areas. As fabrication technology advances, low cost sensors will be available for many uses. The sensors communicate to each other and are networked using acoustic communications. This paper first studies the performance of such systems for current measurements using tomographic inversion approaches to compare with that of a conventional system which distributes the sensors on the periphery of the area of interest. It then proposes two simple signal processing methods for ocean current mapping (using distributed networked sensors) aimed at real-time in-buoy processing. Tomographic inversion generally requires solving a challenging high dimensional inverse problem, involving substantial computations. Given distributed sensors, currents can be constructed locally based on data from neighboring sensors. It is shown using simulated data that similar results are obtained using distributed processing as using conventional tomographic approaches. The advantage for distributed systems is that by increasing the number of nodes, one gains a much more improved performance. Furthermore, distributed systems use much less energy than a conventional tomographic system for the same area coverage. Experimental data from an acoustic communication and networking experiment are used to demonstrate the feasibility of acoustic current mapping.

  12. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity

    PubMed Central

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-01-01

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO2) waveguide–based, 36 degree–rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO3) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO2 layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection. PMID:28327504

  13. Optimizing surface acoustic wave sensors for trace chemical detection

    SciTech Connect

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  14. Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides.

    PubMed

    Lin, Pao Tai; Singh, Vivek; Hu, Juejun; Richardson, Kathleen; Musgraves, J David; Luzinov, Igor; Hensley, Joel; Kimerling, Lionel C; Agarwal, Anu

    2013-06-07

    Towards a future lab-on-a-chip spectrometer, we demonstrate a compact chip-scale air-clad silicon pedestal waveguide as a Mid-Infrared (Mid-IR) sensor capable of in situ monitoring of organic solvents. The sensor is a planar crystalline silicon waveguide, which is highly transparent, between λ = 1.3 and 6.5 μm, so that its operational spectral range covers most characteristic chemical absorption bands due to bonds such as C-H, N-H, O-H, C-C, N-O, C=O, and C≡N, as opposed to conventional UV, Vis, Near-IR sensors, which use weaker overtones of these fundamental bands. To extend light transmission beyond λ = 3.7 μm, a spectral region where a typical silicon dioxide under-clad is absorbing, we fabricate a unique air-clad silicon pedestal waveguide. The sensing mechanism of our Mid-IR waveguide sensor is based on evanescent wave absorption by functional groups of the surrounding chemical molecules, which selectively absorb specific wavelengths in the mid-IR, depending on the nature of their chemical bonds. From a measurement of the waveguide mode intensities, we demonstrate in situ identification of chemical compositions and concentrations of organic solvents. For instance, we show that when testing at λ = 3.55 μm, the Mid-IR sensor can distinguish hexane from the rest of the tested analytes (methanol, toluene, carbon tetrachloride, ethanol and acetone), since hexane has a strong absorption from the aliphatic C-H stretch at λ = 3.55 μm. Analogously, applying the same technique at λ = 3.3 μm, the Mid-IR sensor is able to determine the concentration of toluene dissolved in carbon tetrachloride, because toluene has a strong absorption at λ = 3.3 μm from the aromatic C-H stretch. With our demonstration of an air-clad silicon pedestal waveguide sensor, we move closer towards the ultimate goal of an ultra-compact portable spectrometer-on-a-chip.

  15. Temperature-compensated Love wave based gas sensor on waveguide structure of SiO2/36° YX LiTaO3

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Xie, Xiao; Chen, Gui; Liu, Jiuling; He, Shitang

    2015-06-01

    A temperature-compensated Love wave device was proposed for gas sensing utilizing a waveguide structure of SiO2/36° YX LiTaO3. Significant improvement in the temperature stability of the hybrid Love wave device was implemented by varying the guiding layer thickness. The optimal values yielding low cross-sensitivity to temperature and high mass sensitivity in gas sorption were determined theoretically by solving the coupled electromechanical field equation in layered media. The theoretical analysis was confirmed experimentally in dimethylmethylphosphonate (DMMP) detection by using a fluoroalcoholpolysiloxane (SXFA) coated Love wave sensor. The experimental results indicate that better sensitivity and excellent temperature stability were obtained from the developed Love wave gas sensor over the Rayleigh surface acoustic wave (R-SAW) sensors.

  16. A wireless acoustic emission sensor remotely powered by light

    NASA Astrophysics Data System (ADS)

    Zahedi, F.; Huang, H.

    2014-03-01

    In this paper, wireless sensing of acoustic emission (AE) signals using a battery-free sensor node remotely powered by light is presented. The wireless sensor consists of a piezoelectric wafer active sensor (PWAS) for AE signal acquisition and a wireless transponder that performs signal conditioning, frequency conversion, and wireless transmission. For signal conditioning, a voltage follower that consumes less than 2 mW was introduced to buffer the high impedance of the PWAS from the low impedance of the wireless transponder. A photocell-based energy harvester with a stable voltage output was developed to power the voltage follower so that the wireless AE sensor can operate without an external power source. The principle of operation of the battery-free wireless AE sensor node and the sensor interrogation system is described, followed by a detailed description of the hardware implementation. The voltage follower and the wireless channel were characterized by ultrasound pitch-catch and pencil lead break experiments.

  17. Bio-Inspired Micromechanical Directional Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  18. Generalized concept of shear horizontal acoustic plate mode and Love wave sensors

    NASA Astrophysics Data System (ADS)

    McHale, Glen

    2003-11-01

    An approach to mass and liquid sensitivity for both the phase velocity and insertion loss of shear mode acoustic wave sensors based on the dispersion equations for layered systems is outlined. The approach is sufficiently general to allow for viscoelastic guiding layers. An equation for the phase velocity and insertion loss sensitivities is given which depends on the slope of the complex phase velocity dispersion curves. This equation contains the equivalent of the Sauerbrey and Kanazawa equations for loading of a quartz crystal microbalance by rigid mass and Newtonian liquids, respectively, and also describes surface loading by viscoelastic layers. The theoretical approach can be applied to a four-layer system, with any of the four layers being viscoelastic, so that mass deposition from a liquid can also be modelled. The theoretical dispersion equation based approach to layer-guided shear horizontal acoustic wave modes on finite substrates presented in this work provides a unified view of Love wave and shear horizontal acoustic plate mode (SH-APM) devices, which have been generally regarded as distinct in sensor research. It is argued that SH-APMs with guiding layers possessing shear acoustic speeds lower than that of the substrate and Love waves are two branches of solution of the same dispersion equation. The layer guided SH-APMs have a phase velocity higher than that of the substrate and the Love waves a phase velocity lower than that of the substrate. Higher-order Love wave modes are continuations of the layer-guided SH-APMs. The generalized concept of SH-APMs and Love waves provides a basis for understanding the change in sensitivity with higher-frequency operation and the relationship between multiple modes in Love wave sensors. It also explains why a relatively thick layer of a high-loss polymer can be used as a waveguide layer and so extends the range of materials that can be considered experimentally. Moreover, it is predicted that a new type of sensor, a

  19. Practical acoustic thermometry with twin-tube and single-tube sensors

    SciTech Connect

    De Podesta, M.; Sutton, G.; Edwards, G.; Stanger, L.; Preece, H.

    2015-07-01

    Accurate measurement of high temperatures in a nuclear environment presents unique challenges. All secondary techniques inevitably drift because the thermometric materials in thermocouples and resistance sensors are sensitive not just to temperature, but also their own chemical and physical composition. The solution is to use primary methods that rely on fundamental links between measurable physical properties and temperature. In the nuclear field the best known technique is the measurement of Johnson Noise in a resistor (See Paper 80 at this conference). In this paper we describe the measurement of temperature in terms of the speed of sound in a gas confined in a tube - an acoustic waveguide. Acoustic thermometry is the most accurate technique of primary thermometry ever devised with the best uncertainty of measurement below 0.001 C. In contrast, the acoustic technique described in this work has a much larger uncertainty, approximately 1 deg. C. But the cost and ease of use are improved by several orders of magnitude, making implementation eminently practical. We first describe the basic construction and method of operation of thermometers using twin-tubes and single tubes. We then present results using a twin-tube design showing that showing long term stability (i.e. no detectable drift) at 700 deg. C over periods of several weeks. We then outline how the technique may be developed for different nuclear applications. (authors)

  20. Miniature fiber acoustic sensors using a photonic-crystal membrane

    NASA Astrophysics Data System (ADS)

    Jo, Wonuk; Akkaya, Onur C.; Solgaard, Olav; Digonnet, Michel J. F.

    2013-12-01

    This paper discusses recent developments in fiber acoustic sensors utilizing a miniature Fabry-Perot (FP) interferometer fabricated at the tip of a fiber. The FP is made of a high-reflectivity photonic-crystal membrane placed ˜30 μm from the reflective end of a single-mode fiber. When exposed to an acoustic wave the compliant membrane vibrates, and this vibration is detected as a modulation of the optical power reflected by the FP. The interferometer is enclosed in a sensor head designed, with the assistance of an electro-mechanical model, to minimize squeezed-film damping of the thin air gap between the reflectors and obtain a good acoustic response. The sensor head is fabricated out of silica elements and assembled with silicate bonding to minimize thermal expansion and ensure thermal stability. In the first sensor of this type the reflector at the fiber tip is a gold coating. It exhibits an average minimum detectable pressure (MDP) of 33 μPa/√Hz (1-30 kHz), a high thermal stability, and a weak polarization dependence. The second sensor incorporates several improvements, including a larger membrane for increased vibration amplitude, and higher reflectivity mirrors (PC and fiber tip) for increased displacement sensitivity. Its measured response is flat between ˜600 Hz and 20 kHz, with a normalized sensitivity as high as ˜0.17 Pa-1. Between 1 kHz and 30 kHz its average MDP is ˜2.6 μPa/√Hz, the lowest reported value for a fiber acoustic sensor this small. These results demonstrate the promising potential of this class of stable and compact optical sensors for highly sensitive detection in the audible range.

  1. Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids.

    PubMed

    Josse, F; Bender, F; Cernose, R W

    2001-12-15

    The design and performance of guided shear horizontal surface acoustic wave (guided SH-SAW) devices on LiTaO3 substrates are investigated for high-sensitivity chemical and biochemical sensors in liquids. Despite their structural similarity to Rayleigh SAW, SH-SAWs often propagate slightly deeper within the substrate, hence preventing the implementation of high-sensitivity detectors. The device sensitivity to mass and viscoelastic loading is increased using a thin guiding layer on the device surface. Because of their relatively low shear wave velocity, various polymers including poly(methyl methacrylate) (PMMA) and cyanoethyl cellulose (cured or cross-linked) are investigated as the guiding layers to trap the acoustic energy near the sensing surface. The devices have been tested in biosensing and chemical sensing experiments. Suitable design principles for these applications are discussed with regard to wave guidance, electrical passivation of the interdigital transducers from the liquid environments, acoustic loss, and sensor signal distortion. In biosensing experiments, using near-optimal PMMA thickness of approximately 2 microm, mass sensitivity greater than 1500 Hz/(ng/mm2) is demonstrated, resulting in a minimum detection limit less than 20 pg/mm2. For chemical sensor experiments, it is found that optimal waveguide thickness must be modified to account for the chemically sensitive layer which also acts to guide the SH-SAW. A detection limit of 780 (3 x peak-to-peak noise) or 180 ppb (3 x rms noise) is estimated from the present measurements for some organic compounds in water.

  2. Demonstration of a liquid core optical ring resonator sensor coupled with an ARROW waveguide array

    NASA Astrophysics Data System (ADS)

    White, Ian M.; Oveys, Hesam; Fan, Xudong; Smith, Terry L.; Zhang, Junying

    2007-02-01

    The liquid core optical ring resonator (LCORR) sensor is a newly developed capillary-based ring resonator that integrates microfluidics with photonic sensing technology. The circular cross-section of the capillary forms a ring resonator that supports whispering gallery modes (WGM). The WGM evanescent field is exposed to the capillary core and detects the aqueous samples conducted by the capillary using a label-free protocol. The high-Q of the WGM allows for repetitive light-analyte interaction, resulting in excellent sensitivity. Recently a detection limit of the LCORR on the order of 10 -6 refractive index units was reported. In this work, we have further integrated the LCORR with an anti-resonant reflective optical waveguide (ARROW) array for multiplexed sensor development. The ARROW, with an array of 8 waveguides separated by 250 microns each, consists of a core and a lower reflective double-layer with alternating high and low refractive index, and thus has a significant evanescent field above the waveguide. The WGM is excited at each LCORR/ARROW junction simultaneously when the LCORR is brought into contact with the ARROW array. We experimentally investigated the optimal waveguide geometry for WGM excitation using a range of waveguide heights from 2 to 5 microns. Furthermore, the LCORR/ARROW system is utilized for a biomolecule sensing demonstration. The LCORR/ARROW system is not only essential for assembling a robust, practical, and densely multiplexed sensor array, but also enables on-capillary flow analysis that has broad applications in capillary electrophoresis, chromatography, and lab-on-a-chip development.

  3. Optical sensor instrumentation using absorption- and fluorescence-based capillary waveguide optrodes

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, H.; Trettnak, Wolfgang; Wolfbeis, Otto S.; Lippitsch, Max E.

    1995-09-01

    An analytical instrument comprising absorption- and fluorescence-based capillary waveguide optrodes (CWOs) is described. Glass capillaries with a chemically sensitive coating on the inner surface are used for optical chemical sensing in gaseous and liquid samples. In case of absorption-based CWOs, light from a LED is coupled into and out of the capillary under a defined angle via a rigid waveguide and an immersion coupler. The coated glass capillary forms an inhomogeneous waveguide, in which the light is guided in both the glass and the coating. The portion of the light which is absorbed in the chemically sensitive coating is proportional to a chemcial concentration or activity. This principle is demonstrated with a pCO2-sensitive inner coating. Typical relative light intensity signal changes with this type of optical interrogation are 98%, with an active capillary length of 10 mm. For fluorescence- based CWOs, the excitation light from an LED is coupled diffusely into the glass capillary and the optical sensor layer. A major portion of the excited fluorescence light is then collected within the coated capillary, and guided to the photodiode, which is located on the distal end of the capillary waveguide. Hereby, the excitation light is separated very efficiently from the fluorescent light. As an example, a CWO for pO2 is described. By applying this optical geometry, it was possible to utilize fluorescence decay time of the sensor layer as the transducer signal even when using solid state components (LEDs and photodiodes).

  4. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  5. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  6. Direction Finding Using Multiple MEMS Acoustic Sensors

    DTIC Science & Technology

    2015-09-01

    research is that it is possible to operate this microelectromechanical direction-finding sensor assembly to find the bearing of a signal on...sensor assembly to find the bearing of a signal on resonance over an angular range of 120° with a maximum uncertainty of 3.4°. vi THIS PAGE...documentation boasts an accuracy of plus or minus 7.5 degrees bearing accuracy within < 1 second with detection ranges greater than 400 m. Output is provided

  7. On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array.

    PubMed

    Gylfason, Kristinn B; Carlborg, Carl Fredrik; Kaźmierczak, Andrzej; Dortu, Fabian; Sohlström, Hans; Vivien, Laurent; Barrios, Carlos A; van der Wijngaart, Wouter; Stemme, Göran

    2010-02-15

    We present an experimental study of an integrated slot-waveguide refractive index sensor array fabricated in silicon nitride on silica. We study the temperature dependence of the slot-waveguide ring resonator sensors and find that they show a low temperature dependence of -16.6 pm/K, while at the same time a large refractive index sensitivity of 240 nm per refractive index unit. Furthermore, by using on-chip temperature referencing, a differential temperature sensitivity of only 0.3 pm/K is obtained, without individual sensor calibration. This low value indicates good sensor-to-sensor repeatability, thus enabling use in highly parallel chemical assays. We demonstrate refractive index measurements during temperature drift and show a detection limit of 8.8 x 10-6 refractive index units in a 7 K temperature operating window, without external temperature control. Finally, we suggest the possibility of athermal slot-waveguide sensor design.

  8. Hollow Waveguide Gas Sensor for Mid-Infrared Trace Gas Analysis

    SciTech Connect

    Kim, S; Young, C; Chan, J; Carter, C; Mizaikoff, B

    2007-07-12

    A hollow waveguide mid-infrared gas sensor operating from 1000 cm{sup -1} to 4000 cm{sup -1} has been developed, optimized, and its performance characterized by combining a FT-IR spectrometer with Ag/Ag-halide hollow core optical fibers. The hollow core waveguide simultaneously serves as a light guide and miniature gas cell. CH{sub 4} was used as test analyte during exponential dilution experiments for accurate determination of the achievable limit of detection (LOD). It is shown that the optimized integration of an optical gas sensor module with FT-IR spectroscopy provides trace sensitivity at the few hundreds of parts-per-billion concentration range (ppb, v/v) for CH{sub 4}.

  9. Single-Arm Double-Mode Double-Order Planar Waveguide Interferometric Sensor

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    2000-01-01

    We have met the goals stated in section one for the project. We have demonstrated the feasibility of a single-arm double-mode double-order waveguide interferometer as a cost efficient alternative to an optical chemical sensor. Experimental prototype was built as a dye-doped polymer waveguide with propagating modes of orders <<0>> and <<1>> of the same TM polarization. The prototype demonstrated sensitivity to ammonia of the order of 200 ppm per one full oscillation of the signal. Sensor based on polyimide doped with BCP can operate at elevated temperature up to 150 C. Upon the future funding, we are planning to optimize the light source, material and the design in order to achieve sensitivity of the order of 1 ppm per full oscillations.

  10. Optical waveguide BTX gas sensor based on polyacrylate resin thin film.

    PubMed

    Kadir, Razak; Yimit, Abliz; Ablat, Hayrensa; Mahmut, Mamtimin; Itoh, Kiminori

    2009-07-01

    An optical sensor sensitive to BTX has been developed by spin coating a thin film of polyacrylate resin onto a tin- diffused glass optical waveguide. A pair of prism coupler was employed for optical coupling matched with diiodomethane (CH2l2). The guided wave transmits in waveguide layer and passes through the film as an evanescent wave. Polyacrylate film has a strong capacity of absorbing oil gases. The film is stable in N2 but benzene exposure at room temperature can result in rapid and reversible changes of transmittance (7) and refractive index (n1) of this film. It has been demonstrated that the sensor containing a 10 mm boardand about a hundred nanometers thick resin film can detect lower than 8 ppm BTX.

  11. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    PubMed Central

    Dini, Gianluca; Duca, Angelica Lo

    2012-01-01

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead. PMID:23202204

  12. Coded acoustic wave sensors and system using time diversity

    NASA Technical Reports Server (NTRS)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  13. High-resolution surface plasmon resonance sensor with Fano resonance in waveguide-coupled multilayer structures

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Cong, Jiawei; Xu, Linhua; Wang, Jicheng

    2017-04-01

    An ultra-high resolution refractive-index sensor with the Kretschmann configuration was proposed and experimentally demonstrated. The Fano resonance (FR) in the attenuated total reflection curve arose from the interactions between the surface plasmon polariton and planar waveguide modes. It was shown to depend strongly on the structural parameters that governed the position of the FR and to be in good agreement with the results of electromagnetic calculations. The sensitivity by intensity was estimated to be 3.56 × 102-fold higher than that of conventional surface plasmon resonance sensors.

  14. Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor.

    PubMed

    Toccafondo, V; García-Rupérez, J; Bañuls, M J; Griol, A; Castelló, J G; Peransi-Llopis, S; Maquieira, A

    2010-11-01

    We report an experimental demonstration of single-strand DNA (ssDNA) detection at room temperature using a photonic-crystal-waveguide-based optical sensor. The sensor surface was previously biofunctionalized with ssDNA probes to be used as specific target receptors. Our experiments showed that it is possible to detect these hybridization events using planar photonic-crystal structures, reaching an estimated detection limit as low as 19.8 nM for the detection of the complementary DNA strand.

  15. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    1997-01-01

    All the goals of the research effort for the first year were met by the accomplishments. Additional efforts were done to speed up the process of development and construction of the experimental gas chamber which will be completed by the end of 1997. This chamber incorporates vacuum sealed multimode optical fiber lines which connect the sensor to the remote light source and signal processing equipment. This optical fiber line is a prototype of actual optical communication links connecting real sensors to a control unit within an aircraft or spacecraft. An important problem which we are planning to focus on during the second year is coupling of optical fiber line to the sensor. Currently this problem is solved using focusing optics and prism couplers. More reliable solutions are planned to be investigated.

  16. An invisible acoustic sensor based on parity-time symmetry

    NASA Astrophysics Data System (ADS)

    Fleury, Romain; Sounas, Dimitrios; Alù, Andrea

    2015-01-01

    Sensing an incoming signal is typically associated with absorbing a portion of its energy, inherently perturbing the measurement and creating reflections and shadows. Here, in contrast, we demonstrate a non-invasive, shadow-free, invisible sensor for airborne sound waves at audible frequencies, which fully absorbs the impinging signal, without at the same time perturbing its own measurement or creating a shadow. This unique sensing device is based on the unusual scattering properties of a parity-time (PT) symmetric metamaterial device formed by a pair of electro-acoustic resonators loaded with suitably tailored non-Foster electrical circuits, constituting the acoustic equivalent of a coherent perfect absorber coupled to a coherent laser. Beyond the specific application to non-invasive sensing, our work broadly demonstrates the unique relevance of PT-symmetric metamaterials for acoustics, loss compensation and extraordinary wave manipulation.

  17. An invisible acoustic sensor based on parity-time symmetry.

    PubMed

    Fleury, Romain; Sounas, Dimitrios; Alù, Andrea

    2015-01-06

    Sensing an incoming signal is typically associated with absorbing a portion of its energy, inherently perturbing the measurement and creating reflections and shadows. Here, in contrast, we demonstrate a non-invasive, shadow-free, invisible sensor for airborne sound waves at audible frequencies, which fully absorbs the impinging signal, without at the same time perturbing its own measurement or creating a shadow. This unique sensing device is based on the unusual scattering properties of a parity-time (PT) symmetric metamaterial device formed by a pair of electro-acoustic resonators loaded with suitably tailored non-Foster electrical circuits, constituting the acoustic equivalent of a coherent perfect absorber coupled to a coherent laser. Beyond the specific application to non-invasive sensing, our work broadly demonstrates the unique relevance of PT-symmetric metamaterials for acoustics, loss compensation and extraordinary wave manipulation.

  18. Quasi-residual strain and moduli measurements in materials using embedded acoustic waveguides

    NASA Astrophysics Data System (ADS)

    Harrold, Ronald T.; Sanjana, Zal N.; Raju, Basavaraju B.

    1996-11-01

    Following the processing and manufacture of resin and composite parts and during their lifetime, the distribution of internal residual strain and any variations in moduli are generally unknown. Real-time information on these parameters would be valuable for improving material performance and reliability. It is believed that measurements related to material residual stresses or strain and moduli can be obtained by measuring the longitudinal wave velocities within acoustic waveguides (AWG) embedded within a material. The concept is that the wave velocities within embedded AWG are related to the material bulk modulus, density and Poisson's Ratio which are all in some degree related to the material state of cure, and finally the internal residual stresses. Based on this concept it is shown that the AWG of different diameters embedded within the same resin part of uniform internal stress distribution, the AWG wave velocities should vary in relation to the square root of the AWG diameter. Experimental results using AWG of 5, 10, 16, 20, 40 and 62 mil diameter Nichrome embedded within Shell 815 clear resin with optically measured uniform strain, demonstrate a direct relationship between AWG velocities and the square root of the AWG diameter. Consequently, it is reasoned that for a part with several embedded AWG, each of the same diameter, then differences in the AWG velocities would yield information on differences in the residual strain and moduli within the part.

  19. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    PubMed Central

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-01-01

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677

  20. Optical fiber waveguide sensor for the colorimetric detection of ammonia

    NASA Astrophysics Data System (ADS)

    Schmitt, Katrin; Rist, Jonas; Peter, Carolin; Wöllenstein, Jürgen

    2011-06-01

    We present the development and characterization of a fiber-optic colorimetric gas sensor combined with the electronic circuitry for measurement control and RFID communication. The gas sensor detects ammonia using a 300 μm polyolefin fiber coated with a gas-sensitive polymer film. The spectral and time-dependent sensitivity of various polymer films was tested in transmission measurements. Light from a standard LED at λ = 590 nm was coupled into the polyolefin fiber through the front face. A prototype of the gas sensor with the direct coupling method was tested under realistic measurement conditions, i.e. battery-driven and in a completely autonomous mode. The sensor system showed good sensitivity to the ammonia concentrations and response times in the order of minutes. The achievable power consumption was below 100μW.The films contained the pH-sensitive dyes bromocresol purple or bromophenol blue embedded in either ethyl cellulose or polyvinyl butyral, and optionally tributyl phosphate as plasticizer. The bromophenol blue based films showed a strong reaction to ammonia, with saturation concentrations around 1000 ppm and response times of about 15 seconds to 100ppm. The colorimetric reaction was simulated using a simple kinetic model which was in good agreement with the experimental results.

  1. Ultra-sensitive acoustic fiber sensors utilizing nano-membranes

    NASA Astrophysics Data System (ADS)

    Jo, Wonuk; Digonnet, M. J. F.

    2015-09-01

    A new, highly sensitive, compact fiber acoustic sensor is reported that implements a micro-fabricated silicon membrane with a π/2 phase step combined to a single-mode fiber to form a simple interferometric sensor head. Compared to high-sensitivity membrane-based fiber Fabry-Perot (FP) sensors, it has a similar pressure resolution, it operates over a much broad range of wavelengths (~+/-150 nm vs. ~+/-1 nm), and fabrication is simpler. A prototype is reported with an average minimum detectable pressure (MDP) as low as 5.4 μPa/√Hz (1-30 kHz), in agreement with a model. A state-of-the-art FP fiber sensor with an average MDP about twice as low is described for comparison.

  2. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  3. Understanding Piezo Based Sensors for Acoustic Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Naumann, C. L.; Anton, G.; Graf, K.; Höβl, J.; Kappes, A.; Katz, U. F.; Lahmann, R.; Salomon, K.

    2007-09-01

    The ANTARES collaboration is currently installing a neutrino telescope off the French Mediterranean coast to measure diffuse fluxes and point sources of high energy cosmic neutrinos. The complete detector will consist of 900 photomultipliers on 12 detector lines, using 0.01km3 of sea water as target material[1]. As part of the ANTARES deep-sea research infrastructure, the Erlangen group is planning to modify several ANTARES storeys by fitting them with acoustic receivers to study the feasibility of acoustic neutrino detection in the deep sea. In this paper, studies of the electromechanical properties of piezoelectric sensors are presented, based on an equivalent circuit diagram for the coupled mechanical and electrical oscillations of a piezoelectric element. A method for obtaining the system parameters as well as derivations of sensor properties like pressure sensitivity and intrinsic noise are treated and results compared to measurements. Finally, a possible application of these results for simulating system response and optimising reconstruction algorithms is discussed.

  4. A large fiber sensor network for an acoustic neutrino telescope

    NASA Astrophysics Data System (ADS)

    Buis, Ernst-Jan; Doppenberg, Ed; Lahmann, Robert; Toet, Peter

    2017-03-01

    The scientific prospects of detecting neutrinos with an energy close or even higher than the GKZ cut-off energy has been discussed extensively in literature. It is clear that due to their expected low flux, the detection of these ultra-high energy neutrinos (Ev > 1018 eV) requires a telescope larger than 100 km3. Acoustic detection may provide a way to observe these ultra-high energy cosmic neutrinos, as sound that they induce in the deep sea when neutrinos lose their energy travels undisturbed for many kilometers. To realize a large scale acoustic neutrino telescope, dedicated technology must be developed that allows for a deep sea sensor network. Fiber optic hydrophone technology provides a promising means to establish a large scale sensor network [1] with the proper sensitivity to detect the small signals from the neutrino interactions.

  5. Intelligent Detection of Cracks in Metallic Surfaces Using a Waveguide Sensor Loaded with Metamaterial Elements

    PubMed Central

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar M.

    2015-01-01

    This work presents a real-life experiment implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impacts in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing the data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks, and the experimental results showed good crack classification accuracy rates. PMID:25988871

  6. Surface acoustic wave vapor sensors based on resonator devices

    NASA Astrophysics Data System (ADS)

    Grate, Jay W.; Klusty, Mark

    1991-05-01

    Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.

  7. Dual mode acoustic wave sensor for precise pressure reading

    NASA Astrophysics Data System (ADS)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  8. Relaxation of Distributed Data Aggregation for Underwater Acoustic Sensor Networks

    DTIC Science & Technology

    2014-03-31

    Acoustic Sensor Networks Contract Report # AMBUSH.1.2 Contract # W7707-145675 M. Rabbat, M. Coates McGill University ( Montreal , QC, Canada) Fiscal...challenging. Chan- nel conditions change rapidly and high data-rate communications are generally not possi- ble. Consequently, protocols and mechanisms...Üstebay, D., and Coates, M. (2014), Distributed ensemble Kalman filtering, (Technical Report) McGill University, Montreal , Quebec. [8] Evensen, G

  9. An Acoustic Plate Mode Sensor for Biowarfare Toxins, Phase II

    DTIC Science & Technology

    1997-10-01

    Biological agents -- such as bacteria , bacterial toxins and viruses -- must be detected rapidly to allow their neutralization or the quick treatment of...Mode Sensor for Biowarfare Toxins PRINCIPAL INVESTIGATOR: Douglas J. McAllister, Ph.D. CONTRACTING ORGANIZATION: Biode, Incorporated Bangor, Maine...OF PAGES Acoustic Plate Mode, Biowarfare Toxins 54 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

  10. DECAF - Density Estimation for Cetaceans from Passive Acoustic Fixed Sensors

    DTIC Science & Technology

    2010-01-01

    DECAF – Density Estimation for Cetaceans from passive Acoustic Fixed sensors Len Thomas CREEM, University of St Andrews, St Andrews, Fife, Scotland...REPORT DATE 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE DECAF - Density Estimation for Cetaceans from...Prescribed by ANSI Std Z39-18 LONG-TERM GOALS Determining the spatial density and distribution of cetacean (whale and dolphin) species is fundamental to

  11. 3D Underwater Imaging Using Vector Acoustic Sensors

    DTIC Science & Technology

    2007-12-01

    infidelity. Direc- tionality also can be lost when two waves from different directions arrive simultaneously. Figure 3 shows a hodograph of the direct...red) deviated substantially from the axis. The *-direction -0.2 -0.1 0 0.1 0.2 X-axis response Figure 3. Hodograph of the x...the sensor motions caused by the scattered waves from the targets. This hodograph illustrates the directional informa- tion in vector acoustic data

  12. High-sensitivity acoustic sensors from nanofibre webs

    PubMed Central

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-01-01

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa−1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors. PMID:27005010

  13. Love wave acoustic sensor for testing in liquids

    NASA Astrophysics Data System (ADS)

    Pan, Haifeng; Zhu, Huizhong; Feng, Guanping

    2001-09-01

    Love wave is one type of the surface acoustic waves (SAWs). It is guided acoustic mode propagating in ta thin layer deposited on a substrate. Because of its advantages of high mass sensitivity, low noise level and being fit for operating in liquids, Love wave acoustic sensors have become one of the hot spots in the research of biosensor nowadays. In this paper the Love wave devices with the substrate of ST-cut quartz and the guiding layers of PMMA and fused quartz were fabricated successfully. By measuring the transfer function S21 and the insertion loss of the devices, the characteristics of the Rayleigh wave device and the Love wave devices with different guiding layers in gas phase and liquid phase were compared. It was validated that the Love wave sensor is suitable for testing in liquids but the Rayleigh wave sensor is not. What's more, SiO2 is the more proper material for the guiding layer of the Love wave device.

  14. Microstructured polymer optical fibre sensors for opto-acoustic endoscopy

    NASA Astrophysics Data System (ADS)

    Broadway, Christian; Gallego, Daniel; Pospori, Andreas; Zubel, Michal; Webb, David J.; Sugden, Kate; Carpintero, Guillermo; Lamela, Horacio

    2016-04-01

    Opto-acoustic imaging is a growing field of research in recent years, providing functional imaging of physiological biomarkers, such as the oxygenation of haemoglobin. Piezo electric transducers are the industry standard detector for ultrasonics, but their limited bandwidth, susceptibility to electromagnetic interference and their inversely proportional sensitivity to size all affect the detector performance. Sensors based on polymer optical fibres (POF) are immune to electromagnetic interference, have lower acoustic impedance and a reduced Young's Modulus compared to silica fibres. Furthermore, POF enables the possibility of a wideband sensor and a size appropriate to endoscopy. Micro-structured POF (mPOF) used in an interferometric detector has been shown to be an order of magnitude more sensitive than silica fibre at 1 MHz and 3 times more sensitive at 10 MHz. We present the first opto-acoustic measurements obtained using a 4.7mm PMMA mPOF Bragg grating with a fibre diameter of 130 μm and present the lateral directivity pattern of a PMMA mPOF FBG ultrasound sensor over a frequency range of 1-50 MHz. We discuss the impact of the pattern with respect to the targeted application and draw conclusions on how to mitigate the problems encountered.

  15. Distribution theory approach to implementing directional acoustic sensors.

    PubMed

    Schmidlin, Dean J

    2010-01-01

    The objective of directional acoustic sensors is to provide high directivity while occupying a small amount of space. An idealized point sensor achieves this objective from a knowledge of the spatial partial derivatives of acoustic pressure at a point in space. Direct measurement of these derivatives is difficult in practice. Consequently, it is expedient to come up with indirect methods. The use of pressure sensors to construct finite-difference approximations is an example of such a method. This paper utilizes the theory of distributions to derive another indirect method for estimating the various spatial partial derivatives of the pressure. This alternate method is then used to construct a multichannel filter which processes the acoustic pressure by mean of three-dimensional integral transforms throughout a 6epsilon-length cube centered at the origin. The output of the multichannel filter is a spatially and temporally filtered version of the pressure at the origin. The temporal filter is a lowpass Gaussian filter whose bandwidth is inversely proportional to epsilon. Finally, the lattice method for numerical multiple integration is utilized to develop a discrete-spatial version of the multichannel filter.

  16. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    1985-12-01

    The first surfce acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposted on the acoustic progagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectric coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in N2 has been demonstrated.

  17. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    The first surface acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposited on the acoustic propagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectic coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in Ne was demonstrated.

  18. Sensitivity enhancement of evanescent waveguide optical sensor for detecting adulterant traces in petroleum products using SiON technology

    NASA Astrophysics Data System (ADS)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha Pratim

    2013-11-01

    The development of an evanescent waveguide optical sensor incorporating planar waveguide geometry using silicon oxynitride as the core layer on silica-silicon wafer and its implementation for detection of adulterant traces in petroleum products is presented in this paper. This work focuses on enhancement of sensitivity and analyzed by using Simple Effective Index Method (SEIM), based on sinusoidal modes. The embedded waveguide of length ~ 10,000 μm and core width ~ 50 μm have been developed using SiON technology and applied for checking adulteration so as to ensure the purity of the fuel such that the engine will give the desired performance including low emissions yielding better accuracy and high sensitivity within a very short pulse. The thin cladding layer acts as the analytes (mixture of adulterated fuel) that supports the waveguiding film having a refractive index smaller than that of the core. The main aim of this present work is to encompass a speedy choice to the time-consuming existing methods for detecting adulterated fuels, which generally requires some time to give the consequence. The developed sensor allows spot determination of the percentage concentration of adulterant in pure petrol without involving any chemical analysis. The waveguide based sensor is polarization independent and the sensitivity of the waveguide sensor is ~10 times more than that of the existing planar waveguide sensors and also 5 times more than that of asymmetric waveguide structure. Advantages include high sensitivity, simple fabrication and easy interrogation without involving the use of solvents or toxic chemicals.

  19. Method for Fabricating Piezoelectric Polymer Acoustic Sensors

    NASA Technical Reports Server (NTRS)

    Hall, Thomas E., Jr. (Inventor); Bryant, Timothy D. (Inventor)

    1998-01-01

    A method for forming a sensor includes providing a first and a second film and bonding an internal connection tab there between. The internal connection tab is positioned between the inner surfaces of the first and second film. Then, a conductive adhesive is applied to either the tab or to the inner film surfaces such that the inner surfaces of the film and the tab are electrically connected. Finally, the films are pressed together to bond the film together with the internal connection tab in between.

  20. Counting cells with a low-cost integrated microfluidics-waveguide sensor.

    PubMed

    Garcia, Daniel; Ghansah, Isaac; Leblanc, John; Butte, Manish J

    2012-03-01

    The capability to count cells from biofluids at low cost has important diagnostic implications in resource-poor settings. Many approaches have been developed to address this important need, and while most envision a low per-test cost, the detector instrument can be quite expensive. In this report, we present a novel device that enables low-cost and rapid counting of cells from a drop of blood. We demonstrate a shallow, buried, planar waveguide fabricated by ion exchange in glass that underlies a microfluidic structure for capturing cells. Laser light transmitted through the waveguide was attenuated by the number of metal nanoparticles tagged to the cells because of the interaction of the metal particles with the evanescent field of the waveguide. Calibration of the sensor using bead-tagged lymphocytes captured from human blood showed that the sensor could semi-quantitatively count as few as 100 cells/µL of blood. This technology enables the enumeration of specifically captured cells, allowing for a point-of-care, hand-held device for fast and affordable cell counting in screening, remote, or resource-poor settings.

  1. Development of a MEMS acoustic emission sensor system

    NASA Astrophysics Data System (ADS)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first

  2. Structural configuration study for an acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Biaobiao

    A continuous structure has several response characteristics that make it a candidate for a sensor used to locate an acoustic source. Primary goals in developing such a sensor structure are to ensure that the response is rich enough to provide information about the impinging acoustic wave and to detect the direction of travel without being too sensitive to background noise. As such, there are several factors that must be examined with regard to sensor configuration and measurement requirements. This dissertation describes a set of studies that examine various configuration requirements for such a sensor. Some of the parameters of interest include the size, or aperture of the structure, boundary conditions, material properties, and thickness. The response of the structure to transient sinusoidal wave excitations will be examined analytically. The time-domain response of an Euler-Bernoulli beam excited by a traveling sinusoidal excitation is obtained based on modal superposition and verified by using a finite element method. Then, an approach using simple basis functions will be applied to achieve the goal of more efficient response and force identification. The moving force is identified in the time domain by extending previous inverse approaches. The Tikhonov regularization technique provides bounds to the ill-conditioned results in the identification problem. Both simulated displacement and velocity are considered for use in the inverse. To evaluate the method and examine various configurations, simulations with different numbers of sinusoidal half-cycles exciting the sensor structure are studied. Various levels of random noise are also added to the simulated displacements and velocities responses in order to study the effect of noise in moving wave load identification. Such a new approach in acoustic sensing has applications in the areas of security and disaster recovery.

  3. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack

  4. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  5. Localization with a mobile beacon in underwater acoustic sensor networks.

    PubMed

    Lee, Sangho; Kim, Kiseon

    2012-01-01

    Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.

  6. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  7. Polymer waveguide sensor with tin oxide thin film integrated onto optical-electrical printed circuit board

    NASA Astrophysics Data System (ADS)

    Lim, Jung Woon; Kim, Seon Hoon; Kim, Jong-Sup; Kim, Jeong Ho; Kim, Yune Hyoun; Lim, Ju Young; Im, Young-Eun; Park, Jong Bok; Hann, Swook

    2014-05-01

    In this study, we proposed and fabricated optical sensor module integrated onto optical-electrical printed circuit board (PCB) for gas detection based on polymer waveguide with tin oxide thin film. Their potential application as gas sensors are confirmed through computational simulation using the two dimensional finite-difference time-domain method (2DFDTD). Optical-electrical PCB was integrated into vertical cavity surface emitting laser (VCSEL), photodiode and polymeric sensing device was fabricated by the nano-imprint lithography technique. SnO2 thin film of 100nm thickness was placed on the surface of core layer exposed by removing the specific area of the upper cladding layer of 300 μm length and 50 μm width. The performance of the device was measured experimentally. Initial study on the sensor performance for carbon monoxide gas detection indicated good sensitivity.

  8. Following butter flavour deterioration with an acoustic wave sensor.

    PubMed

    Gaspar, Cláudia R B S; Gomes, M Teresa S R

    2012-09-15

    Off-flavours develop naturally in butter and the process is accelerated by heat. An acoustic wave sensor was used to detect the aroma compounds evolved from heated butter and the results have shown that registered marked changes were coincident to odour changes detected by sensory analysis. The flavour compounds have also been analysed by GC/MS for identification. The response of the sensor was fully characterized in terms of the sensitivity to each of the identified compounds, and sensitivities of the system SPME/sensor were compared with the sensitivities of the system SPME/GC/MS. It was found that the sensor analytical system was more sensitive to methylketones than to fatty acids. The SPME/GC/MS system also showed the highest sensitivity to 2-heptanone, followed by 2-nonanone, but third place was occupied by undecanone and butanoic acid, to which the sensor showed moderate sensitivity. 2-heptanone was found to be an appropriate model compound to follow odour changes till the 500 h, and the lower sensitivity of the sensor to butanoic acid showed to be a positive characteristic, as saturation was prevented, and other more subtle changes in the flavour could be perceived.

  9. Adaptation of PWAS transducers to acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Momeni, Sepandarmaz; Godinez, Valery; Giurgiutiu, Victor

    2011-04-01

    Piezoelectric wafer active sensors (PWAS) are non-intrusive transducers that can convert mechanical energy into electrical energy, and vice versa. They are well known for their dual use as either actuators or sensors. Though PWAS has shown great potential for active sensing, its capability for acoustic emission (AE) detection has not yet been exploited. In the reported work, we have explored the implementation of PWAS transducers for both passive (AE sensors) and active (in-situ ultrasonic transducers) sensing using a single PWAS network. The objective of the work presented in this paper is to adapt PWAS as AE sensors and compare it to the commercially available AE transducers such as PAC R15. An experiment has been designed to show how PWAS can be used for AE detection and the results were compared to a standard AE sensor, PAC R15I. Tests on compact tension specimens have also been conducted to show PWAS capability to pick up AE events during fatigue loading. PWAS field installation technology has been tested with packaging similar to that used for traditional strain gauges. The performance of packaged PWAS has been compared with that of conventional AE transducers R15I. We have found that PWAS not only can detect the presence of AE events but also can provide a wide frequency bandwidth. At this stage, PWAS underperforms the commercial AE sensors. To make PWAS ready for field test, signal to noise ratio needs to be significantly improved.

  10. Highly sensitive biochemical sensor utilizing Bragg grating in submicron Si/SiO2 waveguides

    NASA Astrophysics Data System (ADS)

    Tripathi, Saurabh Mani; Kumar, Arun; Meunier, Jean-Pierre; Marin, Emmanuel

    2009-05-01

    We present a novel highly sensitive biochemical sensor based on a Bragg grating written in the cladding region of a submicron planar Si/SiO2 waveguide. Owing to the high refractive index contrast at the Si/SiO2 boundary the TM modal power is relatively high in low refractive index sensing region, leading to higher sensitivity in this configuration [1]. Waveguide parameters have been optimized to obtain maximum modal power in the sensing region (PSe) and an optimum core width corresponding to maximum sensitivity is found to exist while operating in TM mode configuration, as has been shown in Fig. 1. It has been found that operating in TM mode configuration at optimum core width the structure exhibits extremely high sensitivity, ~ 5×10-6 RIU - 1.35×10-6 RIU for the ambient refractive indices between 1.33 - 1.63. Such high sensitivities are typically attainable for Surface Plasmon Polariton (SPP) based biosensors and is much higher than any non SPP based sensors. Being free from any metallic layer or bulky prism the structure is easy to realize. Owing to its simple structure and small dimensions the proposed sensor can be integrated with planar lightwave circuits and could be used in handy lab-on-a-chip devices. The device may find application in highly sensitive biological/chemical sensing areas in civil and defense sectors where analyzing the samples at the point of need is required rather than sending it to some centralized laboratory.

  11. Soldier detection using unattended acoustic and seismic sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Hengy, S.; Hamery, P.

    2012-06-01

    During recent military conflicts, as well as for security interventions, the urban zone has taken a preponderant place. Studies have been initiated in national and in international programs to stimulate the technical innovations for these specific scenarios. For example joint field experiments have been organized by the NATO group SET-142 to evaluate the capability for the detection and localization of snipers, mortars or artillery guns using acoustic devices. Another important operational need corresponds to the protection of military sites or buildings. In this context, unattended acoustic and seismic sensors are envisaged to contribute to the survey of specific points by the detection of approaching enemy soldiers. This paper describes some measurements done in an anechoic chamber and in free field to characterize typical sounds generated by the soldier activities (walking, crawling, weapon handling, radio communication, clothing noises...). Footstep, speech and some specific impulsive sounds are detectable at various distances from the source. Such detection algorithms may be easily merged with the existing weapon firing detection algorithms to provide a more generic "battlefield acoustic" early warning system. Results obtained in various conditions (grassy terrain, gravel path, road, forest) will be presented. A method to extrapolate the distances of detection has been developed, based on an acoustic propagation model and applied to the laboratory measurements.

  12. PREDICTIVE MODELING OF ACOUSTIC SIGNALS FROM THERMOACOUSTIC POWER SENSORS (TAPS)

    SciTech Connect

    Dumm, Christopher M.; Vipperman, Jeffrey S.

    2016-06-30

    Thermoacoustic Power Sensor (TAPS) technology offers the potential for self-powered, wireless measurement of nuclear reactor core operating conditions. TAPS are based on thermoacoustic engines, which harness thermal energy from fission reactions to generate acoustic waves by virtue of gas motion through a porous stack of thermally nonconductive material. TAPS can be placed in the core, where they generate acoustic waves whose frequency and amplitude are proportional to the local temperature and radiation flux, respectively. TAPS acoustic signals are not measured directly at the TAPS; rather, they propagate wirelessly from an individual TAPS through the reactor, and ultimately to a low-power receiver network on the vessel’s exterior. In order to rely on TAPS as primary instrumentation, reactor-specific models which account for geometric/acoustic complexities in the signal propagation environment must be used to predict the amplitude and frequency of TAPS signals at receiver locations. The reactor state may then be derived by comparing receiver signals to the reference levels established by predictive modeling. In this paper, we develop and experimentally benchmark a methodology for predictive modeling of the signals generated by a TAPS system, with the intent of subsequently extending these efforts to modeling of TAPS in a liquid sodium environmen

  13. Nonlinear Acoustics: Long Range Underwater Propagation, Air-Filled Porous Materials, and Noncollinear Interaction in a Waveguide.

    DTIC Science & Technology

    1985-10-28

    degree December 1985. 3. A. TenCate , Ph.D. student in Mechanical Engineering. " ’-. I. Sw J -- - . II. PROJECTS 1. Nonlinear effects in long range...interaction in a rectangular waveguide. (Hamilton and TenCate ). This work is an outgrowth of Hamilton’s Ph.D. research (84-6,7) and TenCate’s M.S...Ph.D. dissertation research topics. TenCate has begun work on an acoustical chaos experiment, intense standing waves in a closed tube. His initial

  14. Rapid detection of hemagglutination using restrictive microfluidic channels equipped with waveguide-mode sensors

    NASA Astrophysics Data System (ADS)

    Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Fu, Mengying; Ohki, Yoshimichi; Tanaka, Torahiko; Makishima, Makoto

    2016-02-01

    Hemagglutination is utilized for various immunological assays, including blood typing and virus detection. Herein, we describe a method of rapid hemagglutination detection based on a microfluidic channel installed on an optical waveguide-mode sensor. Human blood samples mixed with hemagglutinating antibodies associated with different blood groups were injected into the microfluidic channel, and reflectance spectra of the samples were measured after stopping the flow. The agglutinated and nonagglutinated samples were distinguishable by the alterations in their reflectance spectra with time; the microfluidic channels worked as spatial restraints for agglutinated red blood cells. The demonstrated system allowed rapid hemagglutination detection within 1 min. The suitable height of the channels was also discussed.

  15. Registration of heavy metal ions and pesticides with ATR planar waveguide enzyme sensors

    NASA Astrophysics Data System (ADS)

    Nabok, Alexei; Haron, Saharudin; Ray, Asim

    2004-11-01

    The proposed novel type of enzyme optical sensors is based on a combination of SiO2/Si3N4/SiO2 planar waveguide ATR (attenuated total reflection) transducer, fabricated by standard silicon planar technology, with the composite polyelectrolyte self-assembled coating containing both organic chromophores and enzyme molecules. Such devices were deployed to monitor typical industrial and agricultural water pollutants, such as heavy metal ions and pesticides, acting as inhibitors of enzyme reactions. The sensitivity of registration of these pollutants in the range of 1 ppb was achieved. The use of different enzymes in the sensitive membrane provides a background for pattern recognition of the above pollutants.

  16. Unique gel-coupled acoustic sensor array monitors human voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael

    2002-11-01

    The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. The Army Research Laboratory's gel-coupled acoustic physiological monitoring sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. Acoustic signal processing detects physiological events such as heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. Acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that sometimes obscure meaningful physiology. A noise-canceling sensor array configuration helps remove motion noise by using two acoustic sensors on the front sides of the neck and 2 additional acoustic sensors on each wrist. The motion noise detected on all 4 sensors will be dissimilar and out of phase, yet the physiology on all 4 sensors is covariant. Pulse wave transit time between neck and wrist will indicate systolic blood pressure. Data from a firefighter experiment will be presented.

  17. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    SciTech Connect

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  18. Single-sensor multispeaker listening with acoustic metamaterials

    PubMed Central

    Xie, Yangbo; Tsai, Tsung-Han; Konneker, Adam; Popa, Bogdan-Ioan; Brady, David J.; Cummer, Steven A.

    2015-01-01

    Designing a “cocktail party listener” that functionally mimics the selective perception of a human auditory system has been pursued over the past decades. By exploiting acoustic metamaterials and compressive sensing, we present here a single-sensor listening device that separates simultaneous overlapping sounds from different sources. The device with a compact array of resonant metamaterials is demonstrated to distinguish three overlapping and independent sources with 96.67% correct audio recognition. Segregation of the audio signals is achieved using physical layer encoding without relying on source characteristics. This hardware approach to multichannel source separation can be applied to robust speech recognition and hearing aids and may be extended to other acoustic imaging and sensing applications. PMID:26261314

  19. Current capability of a matured disposable acoustic sensor network

    NASA Astrophysics Data System (ADS)

    Beale, D. A. R.; Geddes, N. J., II; Hume, A.; Gray, A. J.

    2006-05-01

    In response to the needs of the UK MOD QinetiQ have designed, developed and trialled an ad-hoc, self organising network of acoustic nodes for in-depth deployment that can detect and track military targets in a range of environments and for all types of weapon locating. Research conducted has shown that disposable technologies are sufficiently mature to provide a useful military capability. Work this year has included a 3 month series of trials to exercise the prototype equipment and has provided an indication of in-service capability across a broad range of environments. This paper will discuss the scientific approach that was applied to the development of the equipment, from early laboratory development through to the prototype sensor network deployment in operationally representative environments. Highlights from the trials have been provided. New findings from the fusion of a low cost thermal imager that can be cued by the acoustic network are also discussed.

  20. Multiple-frequency surface acoustic wave devices as sensors

    NASA Astrophysics Data System (ADS)

    Ricco, Antonio J.; Martin, Stephen J.

    We have designed, fabricated, and tested a multiple-frequency acoustic wave (MUFAW) device on ST-cut quartz with nominal surface acoustic wave (SAW) center frequencies of 16, 40, 100, and 250 MHz. The four frequencies are obtained by patterning four sets of input and output interdigital transducers of differing periodicities on a single substrate. Such a device allows the frequency dependence of AW sensor perturbations to be examined, aiding in the elucidation of the operative interaction mechanism(s). Initial measurements of the SAW response to the vacuum deposition of a thin nickel film show the expected frequency dependence of mass sensitivity in addition to the expected frequency independence of the magnitude of the acoustoelectric effect. By measuring changes in both wave velocity and attenuation at multiple frequencies, extrinsic perturbations such as temperature and pressure changes are readily differentiated from one another and from changes in surface mass.

  1. Vibro-acoustic control with a distributed sensor network.

    PubMed

    Frampton, Kenneth D

    2006-04-01

    The purpose of this work is to demonstrate the ability of a distributed control system, based on a smart sensor network, to reduce acoustic radiation from a vibrating structure. The platform from which control is effected consists of a network of smart sensors, each referred to as a node. Each node possesses its own computational capability, sensor, actuator and the ability to communicate with other nodes via a wired or wireless network. The primary focus of this work is to employ existing group management middleware concepts to enable vibro-acoustic control with such a distributed network. Group management middleware is distributed software that provides for the establishment and maintenance of groups of distributed nodes and that provides for the network communication among such groups. The control objective is met by designing distributed feedback compensators that take advantage of node groups in order to effect their control. The node groups are formed based on physical proximity. The global control objective is to minimize the radiated sound power from a rectangular plate. Results of this investigation demonstrate that such a distributed control system can achieve attenuations comparable to those achieved by a centralized controller.

  2. Calibration of sensors for acoustic detection of neutrinos

    NASA Astrophysics Data System (ADS)

    Ardid, M.; Bou-Cabo, M.; Espinosa, V.; Martínez-Mora, J.; Camarena, F.; Alba, J.

    2007-09-01

    Calibration of sensors is an important task for the acoustic detection of neutrinos. Different approaches have been tried and used (calibrated hydrophones, resistors, powerful lasers, light bulbs explosion, etc.) We propose some methods for calibration that can be used in both the lab and the telescope ("in situ"). In this paper, different studies following these methods and their results are reported. First, we describe the reciprocity calibration method for acoustic sensors. Since it is a simple method and calibrated hydrophones are not needed, this technique is accessible for any lab. Moreover, the technique could be used to calibrate the sensors of a neutrino telescope just by using themselves (reciprocally). A comparison of this technique using different kind of signals (MLS, TSP, tone bursts, white noise), and in different propagation conditions is presented. The limitations of the technique are shown, as well as some possibilities to overcome them. The second aspect treated is the obtaining of neutrinolike signals for calibration. Probably, the most convenient way to do it would be to generate these signals from transducers directly. Since transducers do not usually have a flat frequency response, distortion is produced, and neutrino-like signals could be difficult to achieve. We present some equalization techniques to offset this effect. In this sense, the use of inverse filter based in Mourjopoulos theory seems to be quite convenient.

  3. Structural tests using a MEMS acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Oppenheim, Irving J.; Greve, David W.; Ozevin, Didem; Hay, D. Robert; Hay, Thomas R.; Pessiki, Stephen P.; Tyson, Nathan L.

    2006-03-01

    In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained

  4. Acoustic Sensors for Fission Gas Characterization in MTR Harsh Environment

    NASA Astrophysics Data System (ADS)

    Very, F.; Rosenkrantz, E.; Fourmentel, D.; Destouches, C.; Villard, J. F.; Combette, P.; Ferrandis, J. Y.

    Our group is now working for more than 15 years, in a close partnership with CEA, on the development of acoustic sensors devoted to the characterization of fission gas release for in-pile experiments in Material Testing Reactor. First of all, we will present the main principle of the method and the result of a first succeed experiment called REMORA 3 used to differentiate helium and fission gas released kinetics under transient operating condition [1]. Then we will present our new researches involving thick film transducers produced by screen-printing process in order to propose piezoelectric structures for harsh temperature and irradiation measurements in new MTR reactor.

  5. Simulation and Experimental Elaboration of Acoustic Sensors for Mobile Robots

    DTIC Science & Technology

    2005-05-01

    Wheeled mobile robot “ Argonaut -2” equipped with acoustic audition systems is shown on Fig. 1. The left picture shows the 1st release of a system, and the...2 RTO-MP-SET-092 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 1: The “ Argonaut -2” Mobile Robot Equipped with Audition Sensors. 2.1...onboard part of control system is given on Fig. 2. Figure 2: Control System of a Robot “ Argonaut -2”. Simulation and Experimental Elaboration of

  6. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    PubMed Central

    Aggelis, Dimitrios. G.; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648

  7. Nanoscale temperature sensor based on Fano resonance in metal-insulator-metal waveguide

    NASA Astrophysics Data System (ADS)

    Kong, Yan; Wei, Qi; Liu, Cheng; Wang, Shouyu

    2017-02-01

    In order to realize temperature measurements with high sensitivity using compact structure, a nanoscale metal-insulator-metal waveguide based sensor combining with Fano resonance is proposed in this paper. Sealed ethanol in resonant cavity is adopted to further improve sensing performance. Additionally, dual resonant cavity based configuration is designed to generate a Fano-based sharp and asymmetric spectrum, providing high figure of merit in measurements. Moreover, structural parameters are optimized considering both transmission rate and spectral peak width. Certified by numerical calculation, sensitivity of 0.36 nm/°C is acquired with the optimized structure, indicating the designed sensor can play an important role in the nano-integrated plasmonic devices for high-accurate temperature detection.

  8. Millimeter-Wave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity

    PubMed Central

    Memon, Muhammad Usman; Lim, Sungjoon

    2016-01-01

    This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure. PMID:27809240

  9. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  10. Improved Biomolecular Thin-Film Sensor based on Plasmon Waveguide Resonance

    NASA Astrophysics Data System (ADS)

    Byard, Courtney; Aslan, Mustafa; Mendes, Sergio

    2009-05-01

    The design, fabrication, and characterization of a plasmon waveguide resonance (PWR) sensor are presented. Glass substrates are coated with a 35 nm gold film using electron beam evaporation, and then covered with a 143 nm aluminum oxide waveguide using an atomic layer deposition process, creating a smooth, highly transparent dielectric film. When probed in the Kretschmann configuration, the structure allows for an efficient conversion of an incident optical beam into a surface wave, which is mainly confined in the dielectric layer and exhibits a deep and narrow angular resonance. The performance (reflectance vs. incidence angle in TE polarization) is modeled using a transfer-matrix approach implemented into a Mathematica code. Our simulations and experimental data are compared with that of surface plasmon resonance (SPR) sensor using the same criteria. We show that the resolution of PWR is approximately ten times better than SPR, opening opportunities for more sensitive studies in various applications including research in protein interactions, pharmaceutical drug development, and food analysis.

  11. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    NASA Technical Reports Server (NTRS)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  12. A Survey on Underwater Acoustic Sensor Network Routing Protocols

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-01-01

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research. PMID:27011193

  13. A Survey on Underwater Acoustic Sensor Network Routing Protocols.

    PubMed

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-03-22

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

  14. Acoustic sensors on small robots for the urban environment

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2005-05-01

    As the Army transforms to the Future Force, particular attention must be paid to operations in Complex and Urban Terrain. Because our adversaries realize that we don't have battlefield dominance in the urban environment, and because population growth and migration to urban environments is still on the increase, our adversaries will continue to draw us into operations in the urban environment. The Army Research Laboratory (ARL) is developing technology to equip our soldiers for the urban operations of the future. Sophisticated small robotic platforms with diverse sensor suites will be an integral part of the Future Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The use of acoustic sensors on robotic platforms, as shown in this paper, will greatly aid the soldiers of the future force in performing numerous types of missions including Reconnaissance, Surveillance, and Target Acquisition (RSTA) by providing situational awareness, particularly to the dismounted soldier operating in the urban environment. The work conducted by the Army Research Laboratory, discussed in this paper will be transitioned to the FCS-Small Unattended Ground Vehicle (SUGV) program and FFW. The Army Research Laboratory is already working with these programs to ensure a feasible migration path. This paper focuses on four areas relating to acoustic sensing on robots for the urban environment as demonstrated at the DoD Horizontal Fusion Portfolio"s Warriors Edge (WE) Quantum Leap II (QL II) demonstration at Ft Benning, GA in August, 2004: small (man-portable) robot detection, mule-sized robot detection, sensor fusion across multiple platforms, and soldier/robot team interaction.

  15. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide

    PubMed Central

    Zhan, Shiping; Peng, Yongyi; He, Zhihui; Li, Boxun; Chen, Zhiquan; Xu, Hui; Li, Hongjian

    2016-01-01

    We first report a simple nanoplasmonic sensor for both universal and slow-light sensing in a Fano resonance-based waveguide system. A theoretical model based on the coupling of resonant modes is provided for the inside physics mechanism, which is supported by the numerical FDTD results. The revealed evolution of the sensing property shows that the Fano asymmetric factor p plays an important role in adjusting the FOM of sensor, and a maximum of ~4800 is obtained when p = 1. Finally, the slow-light sensing in such nanoplasmonic sensor is also investigated. It is found that the contradiction between the sensing width with slow-light (SWS) and the relevant sensitivity can be resolved by tuning the Fano asymmetric factor p and the quality factor of the superradiant mode. The presented theoretical model and the pronounced features of this simple nanoplasmonic sensor, such as the tunable sensing and convenient integration, have significant applications in integrated plasmonic devices. PMID:26932299

  16. Proceedings of the Workshop on Directional Acoustic Sensors Held in Newport, Rhode Island on 17-18 April 2001

    DTIC Science & Technology

    2001-04-18

    Corporation EDO Directional Acoustic Sensor Technology Dr. Bruce Abraham, Anteon Corporation Directional Hydrophones in Towed System 01... EDO Directional Acoustic Sensor Technology P. David Baird Systems Engineering Department EDO Electro-Ceramics Products...Salt Lake City, Utah 84115 1 EDO Directional Acoustic Sensor Technology P. David Baird Systems Engineering Department EDO Electro

  17. A waveguide-on-access-tube (WOAT) TDR sensor for deep soil water content and bulk EC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waveguide-on-access-tube (WOAT) TDR sensor was invented and the design optimized through a combination of electromagnetic modeling and several rounds of prototyping and testing in air, water, mixtures of water and ethylene glycol, sand, and silty clay loam soils over a range of water contents and ...

  18. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    DOEpatents

    Martinez, Jennifer S.; Swanson, Basil I.; Shively, John E.; Li, Lin

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  19. Optical Sensors Based on Single on Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2000-01-01

    Single-arm dual-mode optical waveguide interferometer utilizes interference between two modes of different order. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric structure containing a dye-doped polymer film onto a quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional) TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TE(sub 1) or TM(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye targeting a particular gaseous reagent. Change of the optical absorption spectrum of the dye caused by the gaseous pollutant results in change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As indicator dyes we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate that is sensitive to small concentrations of ammonia. The indicator dye demonstrated an irreversible increase in optical absorption near the peak at 350 nm being exposed to 5% ammonia in pure nitrogen at 600 Torr. The dye also showed reversible growth of the absorption peak near 600 nm after exposure to a vapor of standard medical ammonia spirit (65% alcohol). We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed a sensitivity to temperature change of the order of 2 C per 2pi phase shift. The sensitivity of the sensor to the presence of dTy ammonia is

  20. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    NASA Technical Reports Server (NTRS)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  1. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  2. Novel aspect in grain size control of nanocrystalline diamond film for thin film waveguide mode resonance sensor application.

    PubMed

    Lee, Hak-Joo; Lee, Kyeong-Seok; Cho, Jung-Min; Lee, Taek-Sung; Kim, Inho; Jeong, Doo Seok; Lee, Wook-Seong

    2013-11-27

    Nanocrystalline diamond (NCD) thin film growth was systematically investigated for application for the thin film waveguide mode resonance sensor. The NCD thin film was grown on the Si wafer or on the SiO2-coated sapphire substrate using the hot filament chemical vapor deposition (HFCVD). The structural/optical properties of the samples were characterized by the high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), near edge X-ray absorption fine structure (NEXAFS), X-ray diffraction (XRD), and ultraviolet-visible (UV-vis) spectroscopy. The waveguide modes of the NCD layer were studied by prism coupler technique using laser (wavelength: 632.8 nm) with varying incident angle. A novel aspect was disclosed in the grain size dependence on the growth temperature at the relatively low methane concentration in the precursor gas, which was important for optical property: the grain size increased with decreasing growth temperature, which was contrary to the conventional knowledge prevailing in the microcrystalline diamond (MCD) domain. We have provided discussions to reconcile such observation. An optical waveguide mode resonance was demonstrated in the visible region using the microstructure-controlled transparent NCD thin film waveguide, which provided a strong potential for the waveguide mode resonance sensor applications.

  3. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.

    PubMed

    Tang, Yue; Zhang, Zhidong; Wang, Ruibing; Hai, Zhenyin; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2017-04-06

    A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.

  4. Highly sensitive compact refractive index sensor based on phase-shifted sidewall Bragg gratings in slot waveguide.

    PubMed

    Wang, Xin; Madsen, Christi K

    2014-01-01

    The geometrical and physical parameters of phase-shifted sidewall Bragg gratings in a silicon slot waveguide are optimized to possess performance characteristics desirable for integrated optical sensors. By tailoring the spectral response of such phase-shifted sidewall gratings, highly sensitive compact refractive index sensors detecting the resonance wavelength shift or the variation of light intensity are designed with the transfer matrix method. Both refractive index sensors have a minimum detection limit on the order of 10(-6), and a linear response and a compact structure dimension as small as 11.7 μm, offering the capabilities for sensor array and lab-on-a-chip integration. The resonance-shift sensor has a much wider detection range of 1.32 refractive index units than the intensity-measurement sensor. The performance parameters are compared with other refractive index sensors, including Mach-Zehnder interferometers, ring resonators, surface gratings, and phase-shifted gratings in silicon nanowire.

  5. Acoustic emission location on aluminum alloy structure by using FBG sensors and PSO method

    NASA Astrophysics Data System (ADS)

    Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Dong, Huijun; Sai, Yaozhang; Jia, Lei

    2016-04-01

    Acoustic emission location is important for finding the structural crack and ensuring the structural safety. In this paper, an acoustic emission location method by using fiber Bragg grating (FBG) sensors and particle swarm optimization (PSO) algorithm were investigated. Four FBG sensors were used to form a sensing network to detect the acoustic emission signals. According to the signals, the quadrilateral array location equations were established. By analyzing the acoustic emission signal propagation characteristics, the solution of location equations was converted to an optimization problem. Thus, acoustic emission location can be achieved by using an improved PSO algorithm, which was realized by using the information fusion of multiple standards PSO, to solve the optimization problem. Finally, acoustic emission location system was established and verified on an aluminum alloy plate. The experimental results showed that the average location error was 0.010 m. This paper provided a reliable method for aluminum alloy structural acoustic emission location.

  6. Langasite surface acoustic wave gas sensors: modeling and verification

    SciTech Connect

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  7. Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices

    SciTech Connect

    Hughes, R.C.; Moreno, D.J.; Jenkins, M.W.; Rodriguez, J.L.

    1993-10-01

    Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

  8. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  9. Surface acoustic wave properties of proton-exchanged LiNbO3 waveguides with SiO2 film.

    PubMed

    Kao, Kuo-Sheng; Cheng, Chien-Chuan; Chung, Chung-Jen; Chen, Ying-Chung

    2005-03-01

    Surface acoustic wave (SAW) properties of proton-exchanged (PE) z-cut lithium niobate (LiNbO3) waveguides with silicon dioxide (SiO2) film layers were investigated using octanoic acid. The distribution of hydrogen measured by secondary ion mass spectrometry (SIMS) showed a step-like profile, which was assumed to be equal to the waveguide depth (d). The SiO2 film was deposited on z-cut LiNbO3 waveguide by radio frequency (rf) magnetron sputtering. We investigated the important parameters for the design of SAW devices such as phase velocity (Vp), insertion loss (IL) and temperature coefficient of frequency (TCF) by a network analyzer using thin-film aluminum interdigital transducer electrodes on the upper SiO2 film surface. The experimental results showed that the Vp of SAW decreased slightly with the increase of h/lambda, where h was the thickness of SiO2 films and lambda was the wavelength. The IL of SAW increased with increased h/lambda. The TCF of SAW calculated from the frequency change of the output of SAW delay line showed an evident decrease with the increase of h/lambda. The TCF for PE z-cut LiNbO3 was measured to be about -54.72 ppm/degreees C at h/lambda = 0.08. It revealed that the SiO2 films could compensate and improve the temperature stability as compared with the TCF of SAW on PE samples without SiO2 film.

  10. Control of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Griffin, James M.; Diaz, Fernanda; Geerling, Edgar; Clasing, Matias; Ponce, Vicente; Taylor, Chris; Turner, Sam; Michael, Ernest A.; Patricio Mena, F.; Bronfman, Leonardo

    2017-02-01

    By using acoustic emission (AE) it is possible to control deviations and surface quality during micro milling operations. The method of micro milling is used to manufacture a submillimetre waveguide where micro machining is employed to achieve the required superior finish and geometrical tolerances. Submillimetre waveguide technology is used in deep space signal retrieval where highest detection efficiencies are needed and therefore every possible signal loss in the receiver has to be avoided and stringent tolerances achieved. With a sub-standard surface finish the signals travelling along the waveguides dissipate away faster than with perfect surfaces where the residual roughness becomes comparable with the electromagnetic skin depth. Therefore, the higher the radio frequency the more critical this becomes. The method of time-frequency analysis (STFT) is used to transfer raw AE into more meaningful salient signal features (SF). This information was then correlated against the measured geometrical deviations and, the onset of catastrophic tool wear. Such deviations can be offset from different AE signals (different deviations from subsequent tests) and feedback for a final spring cut ensuring the geometrical accuracies are met. Geometrical differences can impact on the required transfer of AE signals (change in cut off frequencies and diminished SNR at the interface) and therefore errors have to be minimised to within 1 μm. Rules based on both Classification and Regression Trees (CART) and Neural Networks (NN) were used to implement a simulation displaying how such a control regime could be used as a real time controller, be it corrective measures (via spring cuts) over several initial machining passes or, with a micron cut introducing a level plain measure for allowing setup corrective measures (similar to a spirit level).

  11. An all fiber-optic sensor for surface acoustic wave measurements

    NASA Technical Reports Server (NTRS)

    Bowers, J. E.; Jungerman, R. L.; Khuri-Yakub, B. T.; Kino, G. S.

    1983-01-01

    A surface acoustic wave (SAW) sensor constructed from single-mode fiber-optic components is described. An analysis of reciprocal and nonreciprocal modes of operation of the sensor is presented. Results from measurements on a variety of SAW devices illustrate the use of the sensor. The amplitude sensitivity is 0.0003 A for an integration time of 0.1 s.

  12. Characterization and Simulation of an Acoustic Source Moving through an Oceanic Waveguide

    DTIC Science & Technology

    1994-09-01

    algorithms, classical spectrum estimation methods are employed [1, 2] to estimate the auto- and cross-spectra of data received at the array of...Acoust. Soc. Am., 65(3):675-681 (March). [4] Rao, Kodali V., Thomas M. Michaud, and Henrik Schmidt. 1991. "Doppler shifts in underwater acoustics using

  13. Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications

    PubMed Central

    Perera, Chamanei; Cheng, Elliot; Sathian, Juna; Jaatinen, Esa; Davis, Timothy

    2016-01-01

    Summary In this paper we report the design and experimental realisation of a novel refractive index sensor based on coupling between three nanoscale stripe waveguides. The sensor is highly compact and designed to operate at a single wavelength. We demonstrate that the sensor exhibits linear response with a resolution of 6 × 10−4 RIU (refractive index unit) for a change in relative output intensity of 1%. Authors expect that the outcome of this paper will prove beneficial in highly compact, label-free and highly sensitive refractive index analysis. PMID:27335763

  14. Starch viscoelastic properties studied with an acoustic wave sensor.

    PubMed

    Santos, M D; Gomes, M T S R

    2014-01-01

    Gelatinization and retrogradation of starch was followed in real time with an acoustic wave sensor. This study relies on the monitorization of the frequency of oscillation of a piezoelectric quartz crystal in contact with a 2.5% emulsion of a commercial maize starch, during heating and cooling. The technique showed to be very powerful and sensitive to most of the changes described in the literature, which have been elucidated by some other techniques. The value for the temperature of gelatinization found using the sensor was confirmed by the analysis of the same starch emulsion by polarized light microscopy. Temperatures of gelatinization were found to vary with the sample heating rate, as follows: 73.5 °C at 2.0 °C/min, 66.0 °C at 1.0 °C/min, and 65.0 °C at 0.5 °C/min. Hysteresis of the studied system was evidenced by the frequency shift before heating and after cooling till the initial temperature. Analysis performed on a 1.5% emulsion of a rice starch heated at 2.0 °C/min and cooled as before, evidenced no hysteresis and showed complete reversibility, in which concerns to the series frequency of the piezoelectric quartz crystal.

  15. Active structural acoustic control using the remote sensor method

    NASA Astrophysics Data System (ADS)

    Cheer, Jordan; Daley, Steve

    2016-09-01

    Active structural acoustic control (ASAC) is an effective method of reducing the sound radiation from vibrating structures. In order to implement ASAC systems using only structural actuators and sensors, it is necessary to employ a model of the sound radiation from the structure. Such models have been presented in the literature for simple structures, such as baffled rectangular plates, and methods of determining the radiation modes of more complex practical structures using experimental data have also been explored. A similar problem arises in the context of active noise control, where cancellation of a disturbance is required at positions in space where it is not possible to locate a physical error microphone. In this case the signals at the cancellation points can be estimated from the outputs of remotely located measurement sensors using the “remote microphone method”. This remote microphone method is extended here to the ASAC problem, in which the pressures at a number of microphone locations must be estimated from measurements on the structure of the radiating system. The control and estimation strategies are described and the performance is assessed for a typical structural radiation problem.

  16. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  17. Characterization of a Functional Hydrogel Layer on a Silicon-Based Grating Waveguide for a Biochemical Sensor

    PubMed Central

    Hong, Yoo-Seung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-01-01

    We numerically demonstrated the characteristics of a functional hydrogel layer on a silicon-based grating waveguide for a simple, cost-effective refractive index (RI) biochemical sensor. The RI of the functional hydrogel layer changes when a specific biochemical interaction occurs between the hydrogel-linked receptors and injected ligand molecules. The transmission spectral profile of the grating waveguide shifts depends on the amount of RI change caused by the functional layer. Our characterization includes the effective RI change caused by the thickness, functional volume ratio, and functional strength of the hydrogel layer. The results confirm the feasibility of, and set design rules for, hydrogel-assisted silicon-based grating waveguides. PMID:27322286

  18. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    SciTech Connect

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y.; Fourmentel, D.; Destouches, C.; Villard, J.F.

    2015-07-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in

  19. A Coplanar Waveguide Resonator Based In-Line Material Characterization Sensor for Bulk and Metallized Dielectrics

    NASA Astrophysics Data System (ADS)

    Talai, Armin; Gold, Gerald; Frank, Martin; Mann, Sebastian; Weigel, Robert; Koelpin, Alexander

    2017-03-01

    Microwave Materials such as Rogers RO3003 are subject to process-related fluctuations in terms of the relative permittivity and dielectric loss. The behavior of high frequency circuits like patch-antenna arrays and their distribution networks is dependent on the effective wavelength. Therefore, fluctuations of the complex permittivity will influence the resonance frequency and beam direction of the antennas. This paper presents a grounded coplanar waveguide based sensor, which can measure the complex permittivity at 77 GHz, as well as at other resonance frequencies, by applying it on top of the manufactured depaneling. The relative permittivity of the material under test (MUT) is a function of the resonance frequency shift and the dielectric loss of the MUT can be determined by transmission amplitude variations at the resonances. In addition, the sensor is robust against floating ground metallizations on inner printed circuit board layers, which are typically distributed over the entire surface below antennas. Furthermore, the impact from conductor surface roughness on the measured permittivity values is determined using the Gradient Model.

  20. Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Wan, Lele

    2016-08-01

    In this paper, a tunable broadband unidirectional acoustic transmission (UAT) device composed of a bended tube and a superlattice with square columns is proposed and numerically investigated by using finite element method. The UAT is realized in the proposed UAT device within two wide frequency ranges. And the effectiveness of the UAT device is demonstrated by analyzing the sound pressure distributions when the acoustic waves are incident from different directions. The unidirectional band gaps can be effectively tuned by mechanically rotating the square columns, which is a highlight of this paper. Besides, a bidirectional acoustic isolation (BAI) device is obtained by placing two superlattices in the bended tube, in which the acoustic waves cannot propagate along any directions. The physical mechanisms of the proposed UAT device and BAI device are simply discussed. The proposed models show potential applications in some areas, such as unidirectional sonic barrier or noise insulation.

  1. Identification of cavitation signatures using both optical and PZT acoustic sensors

    NASA Astrophysics Data System (ADS)

    Vidakovic, M.; Armakolas, I.; Sun, T.; Carlton, J.; Grattan, K. T. V.

    2015-09-01

    This paper presents the results obtained from monitoring a simulated material cavitation process using both a fibre Bragg grating (FBG)-based acoustic sensor system developed at City University London and a commercial PZT (Piezoelectric Transducer) acoustic sensor, with an aim to identify the cavitation signatures. In the experiment, a sample metal plate with its back surface being instrumented with both sensors is positioned very close to an excitation sonotrode with a standard frequency of 19.5kHz. The data obtained from both sensors are recorded and analyzed, showing a very good agreement.

  2. Investigation of acoustic sensors to detect coconut rhinoceros beetle in Guam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coconut rhinoceros beetle, Oryctes rhinoceros, was accidentally introduced into Guam last year and now threatens the Island’s forests and tourist industry. These large insects can be detected easily with acoustic sensors, and procedures are being developed to incorporate acoustic technology int...

  3. Local oscillator phase noise limitation on the resolution of acoustic delay line wireless passive sensor measurement

    NASA Astrophysics Data System (ADS)

    Chrétien, N.; Friedt, J.-M.; Martin, G.

    2014-06-01

    The role of the phase noise of a local oscillator driving a pulsed-mode RADAR used for probing surface acoustic wave sensors is investigated. The echo delay, representative of the acoustic velocity, and hence the physical quantity probed by the sensor, is finely measured as a phase. Considering that the intrinsic oscillator phase fluctuation defines the phase noise measurement resolution, we experimentally and theoretically assess the relation between phase noise, measurement range, and measurand resolution.

  4. Oscillating wave displacement sensor using the enhanced Goos-Hänchen effect in a symmetrical metal-cladding optical waveguide.

    PubMed

    Yu, Tianyi; Li, Honggen; Cao, Zhuangqi; Wang, Yi; Shen, Qishun; He, Ying

    2008-05-01

    An oscillating wave displacement sensor based on the enhanced Goos-Hänchen (G-H) effect in a symmetrical metal-cladding optical waveguide is proposed. Since the detected signal is irrelevant to the power fluctuation of the incident light and the magnitude of the G-H shift is enhanced to hundreds of micrometers, a 40 pm resolution is demonstrated in our experiment without employing any complicated optical equipment and servo techniques.

  5. Fiber Optic Sensor for Acoustic Detection of Partial Discharges in Oil-Paper Insulated Electrical Systems

    PubMed Central

    Posada-Roman, Julio; Garcia-Souto, Jose A.; Rubio-Serrano, Jesus

    2012-01-01

    A fiber optic interferometric sensor with an intrinsic transducer along a length of the fiber is presented for ultrasound measurements of the acoustic emission from partial discharges inside oil-filled power apparatus. The sensor is designed for high sensitivity measurements in a harsh electromagnetic field environment, with wide temperature changes and immersion in oil. It allows enough sensitivity for the application, for which the acoustic pressure is in the range of units of Pa at a frequency of 150 kHz. In addition, the accessibility to the sensing region is guaranteed by immune fiber-optic cables and the optical phase sensor output. The sensor design is a compact and rugged coil of fiber. In addition to a complete calibration, the in-situ results show that two types of partial discharges are measured through their acoustic emissions with the sensor immersed in oil. PMID:22666058

  6. Acoustic vector sensor beamforming reduces masking from underwater industrial noise during passive monitoring.

    PubMed

    Thode, Aaron M; Kim, Katherine H; Norman, Robert G; Blackwell, Susanna B; Greene, Charles R

    2016-04-01

    Masking from industrial noise can hamper the ability to detect marine mammal sounds near industrial operations, whenever conventional (pressure sensor) hydrophones are used for passive acoustic monitoring. Using data collected from an autonomous recorder with directional capabilities (Directional Autonomous Seafloor Acoustic Recorder), deployed 4.1 km from an arctic drilling site in 2012, the authors demonstrate how conventional beamforming on an acoustic vector sensor can be used to suppress noise arriving from a narrow sector of geographic azimuths. Improvements in signal-to-noise ratio of up to 15 dB are demonstrated on bowhead whale calls, which were otherwise undetectable using conventional hydrophones.

  7. Denoising of human speech using combined acoustic and em sensor signal processing

    SciTech Connect

    Ng, L C; Burnett, G C; Holzrichter, J F; Gable, T J

    1999-11-29

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantify of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. Soc. Am. 103 (1) 622 (1998). By using combined Glottal-EM- Sensor- and Acoustic-signals, segments of voiced, unvoiced, and no-speech can be reliably defined. Real-time Denoising filters can be constructed to remove noise from the user's corresponding speech signal.

  8. Electro-acoustic sensors based on AlN thin film: possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Wingqvist, Gunilla

    2011-06-01

    The non-ferroelectric polar wurtzite aluminium nitride (AlN) material has been shown to have potential for various sensor applications both utilizing the piezoelectric effect directly for pressure sensors or indirectly for acoustic sensing of various physical, chemical and biochemical sensor applications. Especially, sputter deposited AlN thin films have played a central role for successful development of the thin film electro-acoustic technology. The development has been primarily driven by one device - the thin film bulk acoustic resonator (FBAR or TFBAR), with its primary use for high frequency filter applications for the telecom industry. AlN has been the dominating choice for commercial application due to compatibility with the integrated circuit technology, low acoustic and dielectric losses, high acoustic velocity in combination with comparably high (but still for some applications limited) electromechanical coupling. Recently, increased piezoelectric properties (and also electromechanical coupling) in the AlN through the alloying with scandium nitride (ScN) have been identified both experimentally and theoretically. Inhere, the utilization of piezoelectricity in electro-acoustic sensing will be discussed together with expectation on acoustic FBAR sensor performance with variation in piezoelectric material properties in the parameter space around AlN due to alloying, in view of the ScxAl1-xN (0

  9. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  10. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  11. Transmitting Information by Propagation in an Ocean Waveguide: Computation of Acoustic Field Capacity

    DTIC Science & Technology

    2015-06-17

    sound speeds and densities for both the water column and bottom, in conjunction with a correlated noise field. The acoustic source is described by a...determined here through singular value de- composition of matrices associated with the Green functions and noise distribution, in conjunction with a

  12. Optical waveguide sensor based on silica nanotube arrays for label-free biosensing.

    PubMed

    Fan, Yong; Ding, Yu; Ma, Hui; Teramae, Norio; Sun, Shuqing; He, Yonghong

    2015-05-15

    Label-free biosensing based on optical waveguide spectroscopy of silica nanotube (SNT) arrays is realized with high sensitivity. The SNT arrays fabricated using a porous anodic alumina (PAA) template assisted by surface sol-gel (SSG) method showed a high value of 552 reciprocal refractive index unit as the sensing figure of merit by exchanging the sensing environment with water and ethanol. A standard biotin-streptavidin affinity model was tested using the SNT arrays which support a TM1 mode and the fundamental response of the system was investigated. Results show that the response of the SNT arrays for adsorption of streptavidin is higher than the one using substrate without removing the PAA template due to the larger surface area and the stronger electromagnetic field. The limit of detection (LOD) of the SNT arrays for detection of streptavidin was estimated as 93 pM, with the detection time of 40 min. Additionally, the Fresnel calculations suggested higher potential sensitivity of the current system compared to that of the conventional SPR sensors. Thus, the SNT arrays may be used as a versatile platform for high-sensitive label-free optical biosensing due to the high performance and the large potential of the surface functionality.

  13. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    NASA Astrophysics Data System (ADS)

    WANG, Jiawei; YAO, Zhanshi; Poon, Andrew

    2015-04-01

    Silicon nitride (SiN) is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS)-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW) in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD) / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU), with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL) of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  14. Waveguide-based ultrasonic and far-field electromagnetic sensors for downhole reservoir characterization.

    SciTech Connect

    Sheen, S. H.; Chien, H. T.; Wang, K.; Liao, S.; Gopalsami, N.; Bakhtiari, S.; Raptis, A. C.; Nuclear Engineering Division

    2010-11-12

    This report summarizes the first year research and development effort leading to development of high-temperature sensors for enhanced geothermal systems. It covers evaluation of ultrasonic and electromagnetic (EM) techniques applied to temperature measurement and flow characterization. On temperature measurement, we have evaluated both microwave radiometry and ultrasonic techniques for temperature gradient and profile measurements. Different antenna designs are evaluated and array loop antenna design is selected for further development. We have also evaluated ultrasonic techniques for total flow characterization, which includes using speed of sound to determine flow temperature, measuring acoustic impedance to estimate fluid density, and using cross-correlation technique to determine the mass flow rate. Method to estimate the flow enthalpy is briefly discussed. At end, the need and proposed techniques to characterize the porosity and permeability of a hot dry rock resource are presented.

  15. Diamonds are a spectroscopist's best friend: thin-film diamond mid-infrared waveguides for advanced chemical sensors/biosensors.

    PubMed

    Wang, Xiaofeng; Karlsson, Mikael; Forsberg, Pontus; Sieger, Markus; Nikolajeff, Fredrik; Österlund, Lars; Mizaikoff, Boris

    2014-08-19

    The first combination of mid-infrared (MIR) tunable quantum cascade lasers (tQCLs) with thin-film diamond strip waveguides (DSWGs) suitable for advanced chemical sensing/biosensing is demonstrated. The sensing system is composed of thin diamond films grown on surface-passivated Si wafers via chemical vapor deposition (CVD) and microstructured using inductively coupled plasma (ICP) etching, serving as photonic waveguides for radiation emitted by a broadly tunable quantum cascade laser (tQCL) in the spectral regime of 5.78-6.35 μm (1570-1730 cm(-1)). The characterization of the free-standing diamond waveguides reveals excellent transmission properties across a broad MIR band. As a proof of concept, the detection of acetone in D2O via evanescent field absorption is demonstrated achieving a limit of detection (LOD) as low as 200 pL, which indicates a significant sensitivity improvement compared to conventional MIR slab/strip waveguides reported to date. Providing characteristic absorption features within the tuning range of the tQCL, studies using anisaldehyde as an analyte further corroborate the potential of tQCL-DSWG-based chemical sensors/biosensors.

  16. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    PubMed

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  17. A Unified Approach to Passive and Active Ocean Acoustic Waveguide Remote Sensing

    DTIC Science & Technology

    2012-09-30

    fish from man-made targets. Many species of animals including fish, birds , insects and other self-propelled particles (SPPs) are known to form...synchronous motion within the SPP group, and that disturbances can propagate as waves within a group at speeds much higher than that of any individual...noise sources, both natural and anthropogenic , on acoustic detection will be evaluated quantitatively. An analytic model that accounts for the

  18. Improved multimodal method for the acoustic propagation in waveguides with a wall impedance and a uniform flow

    NASA Astrophysics Data System (ADS)

    Mercier, Jean-François; Maurel, Agnès

    2016-06-01

    We present an efficient multimodal method to describe the acoustic propagation in the presence of a uniform flow in a waveguide with locally a wall impedance treatment. The method relies on a variational formulation of the problem, which allows to derive a multimodal formulation within a rigorous mathematical framework, notably to properly account for the boundary conditions on the walls (being locally the Myers condition and the Neumann condition otherwise). Also, the method uses an enriched basis with respect to the usual cosine basis, able to absorb the less converging part of the modal series and thus, to improve the convergence of the method. Using the cosine basis, the modal method has a low convergence, 1/N, with N the order of truncation. Using the enriched basis, the improvement in the convergence is shown to depend on the Mach number, from 1/N5 to roughly 1/N1.5 for M=0 to M close to unity. The case of a continuously varying wall impedance is considered, and we discuss the limiting case of piecewise constant impedance, which defines pressure edge conditions at the impedance discontinuities.

  19. Multiple temperature sensors embedded in an ultrasonic "spiral-like" waveguide

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-03-01

    This paper studies the propagation of ultrasound in spiral waveguides, towards distributed temperature measurements on a plane. Finite Element (FE) approach was used for understanding the velocity behaviour and consequently designing the spiral waveguide. Temperature measurements were experimentally carried out on planar surface inside a hot chamber. Transduction was performed using a piezo-electric crystal that is attached to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes L(0,1) and T(0,1) were employed. Notches were introduced along the waveguide to obtain ultrasonic wave reflections. Time of fight (TOF) differences between the pre-defined reflectors (notches) located on the waveguides were used to infer local temperatures. The ultrasonic temperature measurements were compared with commercially available thermocouples.

  20. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section

    PubMed Central

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-01-01

    A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10−6 RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things. PMID:26343678

  1. Improving the sensitivity of an interferometric fiber optic sensor for acoustic detection in rockfalls

    NASA Astrophysics Data System (ADS)

    Schenato, L.; Palmieri, L.; Autizi, E.; Galtarossa, A.; Pasuto, A.

    2013-12-01

    Being intrinsically EMI free and offering superior hostile environment operation, fiber optic sensor technology represents a valuable alternative to standard sensors technology in landslides monitoring. Here an improved design for a fiber optic sensor to be used for ultrasonic acoustic detection in rockfall monitoring is proposed. Basically, the original sensor consists of a fiber coil tightly wound on an aluminum flanged hollow mandrel that acts as the sensing arm of a Mach-Zehnder interferometer [1]. To further improve sensor sensitivity, the use of a special fiber, with polyimide coating and very large numerical aperture, has been proposed and tested. The polyimide coating, harder and thinner than standard coating, makes the fiber more sensitive to acoustic waves and increase the coupling efficiency between fiber and mandrel. At the same time, a fiber with very large numerical aperture allows for a much smaller bending radius and thus enables the design of a sensor with reduced size, or with the same external size but housing a longer fiber. Part of the research activity has been then focused toward the optimization of the shape and dimensions of the mandrel: to this aim, a large set of numerical simulations has been performed and they are here presented and discussed. The performance assessment gained with new sensors has been carried in a controlled scenario by using a block of trachyte in which the sensors have been screwed in internally threaded chemical anchors housed in holes drilled on one face of the block. Ultrasonic signals have been generated in a repeatable way by dropping a 5-mm-diameter steel ball along a steep slide. Experimental tests, carried out by firstly comparing the performance of a sensor made with special fiber with respect to the original one, have shown an increased sensitivity of almost 35 % in the detected acoustic energy. Further tests, carried out on a sensor with optimized dimensions and made with special fiber, have shown an

  2. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  3. Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Hu, Pan; Tong, Xinglin; Zhao, Minli; Deng, Chengwei; Guo, Qian; Mao, Yan; Wang, Kun

    2015-09-01

    A Fabry-Perot (F-P) fiber acoustic sensor, which can work under high-temperature harsh environment with temperature self-compensation, is designed and prepared. A condenser was used to maintain the sensor to work in a stable temperature environment. Because of the special structure of the sensor and the function of the condenser, the cavity variation of the sensor caused by changes of external temperature from -10°C to 500°C would not exceed 8 nm. The experimental results show that the sensor has a good frequency response in a range of 1 to 5 kHz and the field experiment results show that it could be used for hydraulic decoking online monitoring by judging the acoustic frequency spectrum.

  4. Spectrum interrogation of fiber acoustic sensor based on self-fitting and differential method.

    PubMed

    Fu, Xin; Lu, Ping; Ni, Wenjun; Liao, Hao; Wang, Shun; Liu, Deming; Zhang, Jiangshan

    2017-02-20

    In this article, we propose an interrogation method of fiber acoustic sensor to recover the time-domain signal from the sensor spectrum. The optical spectrum of the sensor will show a ripple waveform when responding to acoustic signal due to the scanning process in a certain wavelength range. The reason behind this phenomenon is the dynamic variation of the sensor spectrum while the intensity of different wavelength is acquired at different time in a scanning period. The frequency components can be extracted from the ripple spectrum assisted by the wavelength scanning speed. The signal is able to be recovered by differential between the ripple spectrum and its self-fitted curve. The differential process can eliminate the interference caused by environmental perturbations such as temperature or refractive index (RI), etc. The proposed method is appropriate for fiber acoustic sensors based on gratings or interferometers. A long period grating (LPG) is adopted as an acoustic sensor head to prove the feasibility of the interrogation method in experiment. The ability to compensate the environmental fluctuations is also demonstrated.

  5. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    PubMed

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations.

  6. Rapid single nucleotide polymorphism detection for personalized medicine applications using planar waveguide fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Herron, James N.; Tolley, Samuel E.; Smith, Richard; Christensen, Douglas A.

    2006-02-01

    Personalized medicine is an emerging field in which clinical diagnostics information about a patient's genotype or phenotype is used to optimize his/her pharmacotherapy. This article evaluates whether planar waveguide fluorescent sensors are suitable for determining such information from patient testing in point-of-care (POC) settings. The model system was Long QT Syndrome, a congenital disease associated with single nucleotide polymorphisms (SNPs) in genes encoding for cardiac ion channels. Three different SNP assay formats were examined: DNA/DNA hybridization, DNA/PNA hybridization (PNA: "peptide nucleic acid"), and single base extension (SBEX). Although DNA/DNA hybridization produced a strong intensity-time response for both wildtype and SNP analytes in a 5-min assay at 32°C, their hybridization rates differed by only 32.7%, which was insufficient for clinical decision-making. Much better differentiation of the two rates was observed at 53°C, where the wildtype's hybridization rate was two-thirds of its maximum value, while that of the SNP was essentially zero. Such all-or-nothing resolution would be adequate for clinical decision-making; however, the elevated temperature and precise temperature control would be hard to achieve in a POC setting. Results from DNA/PNA hybridization studies were more promising. Nearly 20-fold discrimination between wildtype and SNP hybridization rates was observed in a 5-min assay at 30°C, although the low ionic strength conditions required necessitated a de-salting step between sample preparation and SNP detection. SBEX was the most promising of the three, determining the absolute identity of the suspected polymorphism in a 5-min assay at 40°C.

  7. New Research on MEMS Acoustic Vector Sensors Used in Pipeline Ground Markers

    PubMed Central

    Song, Xiaopeng; Jian, Zeming; Zhang, Guojun; Liu, Mengran; Guo, Nan; Zhang, Wendong

    2015-01-01

    According to the demands of current pipeline detection systems, the above-ground marker (AGM) system based on sound detection principle has been a major development trend in pipeline technology. A novel MEMS acoustic vector sensor for AGM systems which has advantages of high sensitivity, high signal-to-noise ratio (SNR), and good low frequency performance has been put forward. Firstly, it is presented that the frequency of the detected sound signal is concentrated in a lower frequency range, and the sound attenuation is relatively low in soil. Secondly, the MEMS acoustic vector sensor structure and basic principles are introduced. Finally, experimental tests are conducted and the results show that in the range of 0°∼90°, when r = 5 m, the proposed MEMS acoustic vector sensor can effectively detect sound signals in soil. The measurement errors of all angles are less than 5°. PMID:25609046

  8. Acoustic emission monitoring of structural perturbations with serially multiplexed optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Liang, Yujin; Sun, Changsen; Ansari, Farhad

    2005-05-01

    Damage location and damage state identification of a hybrid Carbon-glass FRP rod was performed by means of a serially multiplexed fiber optic acoustic emission sensor. The detection and identification of acoustic emission signals along a single data stream reduces the data acquisition rigor and provides for rapid real time damage location detection in materials. Linear source location method and signature frequency spectra energy of acoustic emission signals were employed for locating the fiber breakage and distinguishing the damage state in the hybrid FRP rod, respectively.

  9. Modal structural acoustic sensing with minimum number of optimally placed piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Loghmani, Ali; Danesh, Mohammad; Keshmiri, Mehdi

    2016-02-01

    Structural acoustic sensing is a method of obtaining radiated sound pressure from a vibrating structure using vibration information. Structural acoustic sensing is used in active structural acoustic control for attenuating the sound radiated from a structure. In this paper, a new approach called Modal Structural Acoustic Sensing (MSAS) is proposed for estimating the pressure radiated from a vibrating cylindrical shell using piezoelectric sensors. The motion equations of a cylindrical shell in conjunction with piezoelectric patches are derived based on the Donnel-Mushtari shell theory. The locations of the piezoelectric sensors are optimized by the Genetic Algorithm based on maximizing the observability gramian matrix. The Kirchhoff-Helmholtz integral is used for estimating the sound pressure radiated from the cylindrical shell. Numerical simulations are performed to demonstrate the advantages of the proposed approach in comparison with previous methods such as discrete structural acoustic sensing and distributed modal sensors. Results show that the MSAS can increase the estimation accuracy and decrease the controller dimensionality and the number of required sensors.

  10. Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring.

    PubMed

    Liang, Sheng; Zhang, Chunxi; Lin, Wentai; Li, Lijing; Li, Chen; Feng, Xiujuan; Lin, Bo

    2009-06-15

    A fiber-optic intrinsic distributed acoustic emission (AE) sensor is proposed. By measuring the time delay of two signals from two Mach-Zehnder interferometers, the location of AE can be deduced, and the corresponding sensor is experimentally verified to be feasible with a 206 m average location error in a 20 km sensing range, which shows that this proposed sensor is applicable for distributed AE sensing for large structure health monitoring, with the unique advantages of low cost, simple configuration, and long sensing range. The limitations of the proposed sensor are also discussed, and the future work is presented.

  11. The Biological Sensor for Detection of Bacterial Cells in Liquid Phase Based on Plate Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Borodina, Irina; Zaitsev, Boris; Shikhabudinov, Alexander; Guliy, Olga; Ignatov, Oleg; Teplykh, Andrey

    The interactions "bacterial cells - bacteriophages", "bacterial cells - antibodies" and "bacterial cells - mini- antibodies" directly in liquid phase were experimentally investigated with a help of acoustic sensor. The acoustic sensor under study represents two-channel delay line based on the plate of Y-X lithium niobate. One channel of delay line was electrically shorted, the second channel was electrically open. The liquid container was glued on plate surface between transducers of delay line. The dependencies of the change in phase and insertion loss on concentration of bacteriophages, antibodies, and mini- antibodies were obtained for both channels of delay line.

  12. Measurement of Plasma Clotting Using Shear Horizontal Surface Acoustic Wave Sensor

    NASA Astrophysics Data System (ADS)

    Nagayama, Tatsuya; Kondoh, Jun; Oonishi, Tomoko; Hosokawa, Kazuya

    2013-07-01

    The monitoring of blood coagulation is important during operation. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied to monitor plasma clotting. An SH-SAW sensor with a metallized surface for mechanical perturbation detection can detect plasma clotting. As plasma clotting is a gel formation reaction, the SH-SAW sensor detects viscoelastic property changes. On the other hand, an SH-SAW sensor with a free surface for electrical perturbation detection detects only the liquid mixing effect. No electrical property changes due to plasma clotting are obtained using this sensor. A planar electrochemical sensor is also used to monitor plasma clotting. In impedance spectral analysis, plasma clotting is measured. However, in the measurement of time responses, no differences between clotting and nonclotting are obtained. Therefore, the SH-SAW sensor is useful for monitoring plasma clotting.

  13. Acoustic sensor for monitoring adhesion of Neuro-2A cells in real-time.

    PubMed

    Khraiche, Massoud Louis; Zhou, Anhong; Muthuswamy, Jit

    2005-05-15

    Neuronal adhesion plays a fundamental role in growth, migration, regeneration and plasticity of neurons. However, current methods for studying neuronal adhesion cannot monitor this phenomenon quantitatively in real-time. In this work, we demonstrate the use of an acoustic sensor to measure adhesion of neuro-blastoma cells (Neuro-2A) in real-time. An acoustic sensor consisting of a quartz crystal sandwiched between gold electrodes was placed in a flow cell and filled with 600 microl of phosphate buffered saline (PBS). Two sets of in vitro experiments were performed using sensors that had uncoated gold electrodes and sensors that were coated with a known neuronal adhesion promoter (poly-l-lysine or PLL). The instantaneous resonant frequency and the equivalent motional resistance of the acoustic sensor were monitored every second. Cell Tracker was used to confirm neuronal adhesion to the surface. Addition of 10 microl of media and Neuro-2A cells into the above set-up elicited exponential changes in the resonant frequency and motional resistance of the quartz crystal with time to reach steady state in the range of 2-11 h. The steady-state change in resonant frequency in response to addition of neurons was linearly related to the number of Neuro-2A cells added (R2=0.94). Acoustic sensors coated with the adhesion promoter, PLL showed a much higher change in resonant frequency for approximately the same number of neurons. We conclude that the acoustic sensor has sufficient sensitivity to monitor neuronal adhesion in real-time. This has potential applications in the study of mechanisms of neuron-substrate interactions and the effect of molecular modulators in the extra cellular matrix.

  14. Fiber-optic photo-acoustic spectroscopy sensor for harsh environment gas detection

    NASA Astrophysics Data System (ADS)

    Wu, Juntao; Deng, Kung-Li; Guida, Renato; Lee, Boon

    2007-09-01

    Photo-acoustic spectroscopy (PAS) has been successfully applied to detect various gases and chemicals due to its high selectivity and sensitivity. However, the performance of the conventional acoustic sensors prohibits the application of PAS for harsh environment gas species real-time monitoring. By replacing conventional acoustic sensors, such as microphone and piezo-transducers, with a high-temperature Fiber Bragg Grating (FBG) vibration sensor, we developed a fiber-optic PAS sensing system that can be used in high-temperature and high-pressure harsh environments for gas species identification and concentration measurement. A resonant acoustic chamber is designed, and FBG vibration sensor is embedded in the molybdenum membrane. An OPO laser is used for spectrum scanning. Preliminary test on water vapor has been conducted, and the result is analyzed. This sensing technology can be adapted into harsh environments, such as Integrated Gasification Combined Cycle (IGCC) power plant, and provide on-line real-time monitoring of gases species, such as CO, H IIO, and O II. Presently, our FBG-based vibration sensor can withstand the high temperature up to 800°C.

  15. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGES

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  16. Vehicle acoustic classification in netted sensor systems using Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Necioglu, Burhan F.; Christou, Carol T.; George, E. B.; Jacyna, Garry M.

    2005-05-01

    Acoustic vehicle classification is a difficult problem due to the non-stationary nature of the signals, and especially the lack of strong harmonic structure for most civilian vehicles with highly muffled exhausts. Acoustic signatures will also vary largely depending on speed, acceleration, gear position, and even the aspect angle of the sensor. The problem becomes more complicated when the deployed acoustic sensors have less than ideal characteristics, in terms of both the frequency response of the transducers, and hardware capabilities which determine the resolution and dynamic range. In a hierarchical network topology, less capable Tier 1 sensors can be tasked with reasonably sophisticated signal processing and classification algorithms, reducing energy-expensive communications with the upper layers. However, at Tier 2, more sophisticated classification algorithms exceeding the Tier 1 sensor/processor capabilities can be deployed. The focus of this paper is the investigation of a Gaussian mixture model (GMM) based classification approach for these upper nodes. The use of GMMs is motivated by their ability to model arbitrary distributions, which is very relevant in the case of motor vehicles with varying operation modes and engines. Tier 1 sensors acquire the acoustic signal and transmit computed feature vectors up to Tier 2 processors for maximum-likelihood classification using GMMs. In a binary classification task of light-vs-heavy vehicles, the GMM based approach achieves 7% equal error rate, providing an approximate error reduction of 49% over Tier 1 only approaches.

  17. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.

  18. Acoustic Detection Of Loose Particles In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Kwok, Lloyd C.

    1995-01-01

    Particle-impact-noise-detector (PIND) apparatus used in conjunction with computer program analyzing output of apparatus to detect extraneous particles trapped in pressure sensors. PIND tester essentially shaker equipped with microphone measuring noise in pressure sensor or other object being shaken. Shaker applies controlled vibration. Output of microphone recorded and expressed in terms of voltage, yielding history of noise subsequently processed by computer program. Data taken at sampling rate sufficiently high to enable identification of all impacts of particles on sensor diaphragm and on inner surfaces of sensor cavities.

  19. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices.

  20. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  1. Sensitivity study of multilayer thin-film bulk acoustic resonator for mass sensor application

    NASA Astrophysics Data System (ADS)

    Liu, Haiqiang; Li, Fang; Qin, Lifeng; Wang, Qing-Ming

    2016-10-01

    The sensitivity of multilayer thin-film bulk acoustic resonators (MTFBARs) used as mass sensors is investigated. MTFBAR sensors with the structure of a mass-sensitive layer/electrode layer/piezo layer/electrode layer were used. Two methods, one using electric impedance and the other displacement, were adopted for the determination of sensitivity. Simulation results show that the two methods agree well, and the characteristic acoustic impedance and thickness of the non-piezo layers strongly affect mass sensitivity. It was found that high acoustic impedance in the non-piezo layer is not helpful for sensitivity improvement. Sensitivity is improved by choosing an appropriate thickness for the low acoustic impedance non-piezo layer, and the maximum sensitivity can be obtained by choosing suitable thickness combinations for the layers. Moreover, it was found that MTFBAR quality factor and sensitivity are simultaneously improved by adopting a high-quality-factor non-piezo layer with low acoustic impedance for an air working environment, whereas a balance between quality factor and sensitivity is found through optimization of the non-piezo layers for a water working environment. These results can be used for the design and application of MTFBAR mass sensors.

  2. Method for simultaneously making a plurality of acoustic signal sensor elements

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D. (Inventor); Wynkoop, Mark W. (Inventor); Holloway, Nancy M. H. (Inventor); Zuckerwar, Allan J. (Inventor)

    2005-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  3. Method for Simultaneously Making a Plurality of Acoustic Signal Sensor Elements

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D.; Wynkoop, Mark W.; Holloway, Nancy M. H.; Zuckerwar, Allan J.

    2005-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  4. Job-Oriented Basic Skills (JOBS) Program for the Acoustic Sensor Operations Strand.

    ERIC Educational Resources Information Center

    U'Ren, Paula Kabance; Baker, Meryl S.

    An effort was undertaken to develop a job-oriented basic skills curriculum appropriate for the acoustic sensor operations area, which includes members of four ratings: ocean systems technician, aviation antisubmarine warfare operator, sonar technician (surface), and sonar technician (submarine). Analysis of the job duties of the four ratings…

  5. Array gain for a conformal acoustic vector sensor array: An experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Yang, Yi-Xin; He, Zheng-Yao; Lei, Bo; Sun, Chao; Ma, Yuan-Liang

    2016-12-01

    An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular resolution than the omnidirectional pressure sensor. This paper presents an experimental study of array gain for a conformal acoustic vector sensor array in a practical environment. First, the manifold vector is calculated using the real measured data so that the effects of array mismatches can be minimized. Second, an optimal beamformer with a specific spatial response on the basis of the stable directivity of the ambient noise is designed, which can effectively suppress the ambient noise. Experimental results show that this beamformer for the conformal acoustic vector sensor array provides good signal-to-noise ratio enhancement and is more advantageous than the delay-and-sum and minimum variance distortionless response beamformers. Project supported by the China Postdoctoral Science Foundation (Grant No. 2016M592782) and the National Natural Science Foundation of China (Grant Nos. 11274253 and 11604259).

  6. Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Lin, Jie; Liu, Huan; Ma, Yuan; Yan, Lei; Jin, Peng

    2017-01-01

    A diaphragm based long cavity Fabry-Perot interferometric fiber acoustic sensor is proposed. The Fabry-Perot cavity is formed by a flat fiber facet and an ultra-thin silver diaphragm with a 6-meter long fiber inserted in the cavity. A narrow-linewidth ring-cavity erbium-doped fiber laser is applied to demodulate the sensing signal in the phase generated carrier algorithm. Experimental results have demonstrated that the phase sensitivity is about -140 dB re 1 rad/μPa at 2 kHz. The noise equivalent acoustic signal level is 60.6 μPa/Hz1/2 and the dynamic range is 65.1 dB-SPL at 2 kHz. The sensor is suitable for sensing of weak acoustic signals.

  7. Source localization from an elevated acoustic sensor array in a refractive atmosphere.

    PubMed

    Ostashev, Vladimir E; Scanlon, Michael V; Wilson, D Keith; Vecherin, Sergey N

    2008-12-01

    Localization of sound sources on the ground from an acoustic sensor array elevated on a tethered aerostat is considered. To improve estimation of the source coordinates, one should take into account refraction of sound rays due to atmospheric stratification. Using a geometrical acoustics approximation for a stratified moving medium, formulas for the source coordinates are derived that account for sound refraction. The source coordinates are expressed in terms of the direction of sound propagation as measured by the sensor array, its coordinates, and the vertical profiles of temperature and wind velocity. Employing these formulas and typical temperature and wind velocity profiles in the atmosphere, it is shown numerically that sound refraction is important for accurate predictions of the source coordinates. Furthermore, it is shown that the effective sound speed approximation, which is widely used in atmospheric acoustics, fails to correctly predict the source coordinates if the grazing angle of sound propagation is relatively large.

  8. Bio-Inspired Miniature Direction Finding Acoustic Sensor

    PubMed Central

    Wilmott, Daniel; Alves, Fabio; Karunasiri, Gamani

    2016-01-01

    A narrowband MEMS direction finding sensor has been developed based on the mechanically coupled ears of the Ormia Ochracea fly. The sensor consists of two wings coupled at the middle and attached to a substrate using two legs. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. Thus, the directional response of the sensor is symmetric about the normal axis making the determination of the direction ambiguous. To overcome this shortcoming two sensors were assembled with a canted angle similar to that employed in radar bearing locators. The outputs of two sensors were processed together allowing direction finding with no requirement of knowing the incident sound pressure level. At the bending resonant frequency of the sensors (1.69 kHz) an output voltage of about 25 V/Pa was measured. The angle uncertainty of the bearing of sound ranged from less than 0.3° close to the normal axis (0°) to 3.4° at the limits of coverage (±60°) based on the 30° canted angle used. These findings indicate the great potential to use dual MEMS direction finding sensor assemblies to locate sound sources with high accuracy. PMID:27440657

  9. Bio-Inspired Miniature Direction Finding Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Wilmott, Daniel; Alves, Fabio; Karunasiri, Gamani

    2016-07-01

    A narrowband MEMS direction finding sensor has been developed based on the mechanically coupled ears of the Ormia Ochracea fly. The sensor consists of two wings coupled at the middle and attached to a substrate using two legs. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. Thus, the directional response of the sensor is symmetric about the normal axis making the determination of the direction ambiguous. To overcome this shortcoming two sensors were assembled with a canted angle similar to that employed in radar bearing locators. The outputs of two sensors were processed together allowing direction finding with no requirement of knowing the incident sound pressure level. At the bending resonant frequency of the sensors (1.69 kHz) an output voltage of about 25 V/Pa was measured. The angle uncertainty of the bearing of sound ranged from less than 0.3° close to the normal axis (0°) to 3.4° at the limits of coverage (±60°) based on the 30° canted angle used. These findings indicate the great potential to use dual MEMS direction finding sensor assemblies to locate sound sources with high accuracy.

  10. Laboratory comparisons of acoustic and optical sensors for microbubble measurement

    NASA Technical Reports Server (NTRS)

    Su, Ming Yang; Todoroff, Douglas; Cartmill, John

    1994-01-01

    This paper presents the results of a recent comparison between three microbubble size spectrum measurement systems. These systems are the light-scattering bubble counter, the photographic bubble-imaging system, and the acoustic resonator array. Good agreement was formed among these three systems over the bubble size range appropriate for each system.

  11. Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Astley, Victoria; Liu, Jingbo; Mittleman, Daniel M.

    2009-10-01

    We describe a terahertz optical resonator that is ideally suited for highly sensitive and noninvasive refractive-index monitoring. The resonator is formed by machining a rectangular groove into one plate of a parallel-plate waveguide, and is excited using the lowest-order transverse-electric (TE1) waveguide mode. Since the resonator can act as a channel for fluid flow, it can be easily integrated into a microfluidics platform for real-time monitoring. Using this resonator with only a few microliters of liquid, we demonstrate a refractive-index sensitivity of 3.7×105 nm/refractive-index-unit, the highest ever reported in any frequency range.

  12. Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds.

    SciTech Connect

    McGrath, Lucas K.; Wright, Jerome L.; Ho, Clifford Kuofei; Rawlinson, Kim Scott; Lindgren, Eric Richard

    2003-08-01

    This paper describes the development of a surface-acoustic-wave (SAW) sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene), which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.

  13. Implementation of distributed feedback fiber laser sensor for acoustic measurements in hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Yan, Aidong; Zaghloul, Mohamed A. S.; Lu, Guanyi; Bunger, Andrew P.; Miller, Gary A.; Cranch, Geoffrey A.; Chen, Kevin P.

    2016-09-01

    A distributed feedback (DFB) fiber laser strain sensor was implemented to measure acoustic emission induced by the hydraulic fracturing process. A study of practical sensor mounting configurations and their characteristics was carried out to find a practical solution. Combining the suitable mounting configuration and ultrahigh strain sensitivity of the DFB fiber laser, the evolution of the hydraulic fracturing process was well monitored. This study shows that fiber lasers can be useful alternatives to piezoelectric sensors in the field of hydraulic fracturing for gas and oil extraction.

  14. Composite optical waveguide composed of a tapered film of bromothymol blue evaporated onto a potassium ion-exchanged waveguide and its application as a guided wave absorption-based ammonia-gas sensor.

    PubMed

    Qi, Z M; Yimit, A; Itoh, K; Murabayashi, M; Matsuda, N; Takatsu, A; Kato, K

    2001-05-01

    For what is the first time to our knowledge, we have successfully evaporated a tapered film of bromothymol blue (BTB) onto a potassium ion-exchanged (PIE) waveguide to form a composite optical waveguide (COWG) for trace-ammonia detection. The BTB film has a high refractive index (1.69) and a smooth surface and is transparent to a 633-nm laser beam in air. In the COWG structure, the BTB film serves as a single-mode waveguide, and adiabatic transition of the TE(0) mode was realized between the BTB waveguide and the PIE waveguide with both BTB tapers. In the presence of ammonia, the BTB film changes color from yellow to blue, which causes absorption of the 633-nm guided wave. Our experimental results demonstrate that such a guided wave absorption-based ammonia-gas sensor is much more sensitive than one based on evanescent-wave absorption. A detection limit of part in 10(9) of ammonia has been realized for a BTB film-PIE glass COWG.

  15. The quality of our drinking water: aluminium determination with an acoustic wave sensor.

    PubMed

    Veríssimo, Marta I S; Gomes, M Teresa S R

    2008-06-09

    A new methodology based on an inexpensive aluminium acoustic wave sensor is presented. Although the aluminium sensor has already been reported, and the composition of the selective membrane is known, the low detection limits required for the analysis of drinking water, demanded the inclusion of a preconcentration stage, as well as an optimization of the sensor. The necessary coating amount was established, as well as the best preconcentration protocol, in terms of oxidation of organic matter and aluminium elution from the Chelex-100. The methodology developed with the acoustic wave sensor allowed aluminium quantitation above 0.07 mg L(-1). Several water samples from Portugal were analysed using the acoustic wave sensor, as well as by UV-vis spectrophotometry. Results obtained with both methodologies were not statistically different (alpha=0.05), both in terms of accuracy and precision. This new methodology proved to be adequate for aluminium quantitation in drinking water and showed to be faster and less reagent consuming than the UV spectrophotometric methodology.

  16. MEMS based hair flow-sensors as model systems for acoustic perception studies

    NASA Astrophysics Data System (ADS)

    Krijnen, Gijs J. M.; Dijkstra, Marcel; van Baar, John J.; Shankar, Siripurapu S.; Kuipers, Winfred J.; de Boer, Rik J. H.; Altpeter, Dominique; Lammerink, Theo S. J.; Wiegerink, Remco

    2006-02-01

    Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

  17. MEMS based hair flow-sensors as model systems for acoustic perception studies.

    PubMed

    Krijnen, Gijs J M; Dijkstra, Marcel; van Baar, John J; Shankar, Siripurapu S; Kuipers, Winfred J; de Boer, Rik J H; Altpeter, Dominique; Lammerink, Theo S J; Wiegerink, Remco

    2006-02-28

    Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

  18. Wireless surface acoustic wave sensors for displacement and crack monitoring in concrete structures

    NASA Astrophysics Data System (ADS)

    Perry, M.; McKeeman, I.; Saafi, M.; Niewczas, P.

    2016-03-01

    In this work, we demonstrate that wireless surface acoustic wave devices can be used to monitor millimetre displacements in crack opening during the cyclic and static loading of reinforced concrete structures. Sensors were packaged to extend their gauge length and to protect them against brittle fracture, before being surface-mounted onto the tensioned surface of a concrete beam. The accuracy of measurements was verified using computational methods and optical-fibre strain sensors. After packaging, the displacement and temperature resolutions of the surface acoustic wave sensors were 10 μ {{m}} and 2 °C respectively. With some further work, these devices could be retrofitted to existing concrete structures to facilitate wireless structural health monitoring.

  19. Influence of electron-electron collisions on the propagation of ion-acoustic space-charge waves in a warm plasma waveguide

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-04-01

    The influence of electron–electron collisions on the propagation of the ion-acoustic space-charge wave is investigated in a cylindrical waveguide filled with warm collisional plasma by employing the normal mode analysis and the method of separation of variables. It is shown that the frequency of the ion-acoustic space-charge wave with higher-harmonic modes is always smaller than that with lower-harmonic modes, especially in intermediate wave number domains. It is also shown that the collisional damping rate of the ion-acoustic space-charge wave due to the electron–electron collision effect with higher-harmonic modes is smaller than that with lower-harmonic modes. In addition, it is found that the maximum position of the collisional damping rate shifts to large wave numbers with an increase of the harmonic mode. The variation of the wave frequency and the collisional damping rate of the ion-acoustic space-charge wave is also discussed.

  20. Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors

    DTIC Science & Technology

    2012-01-01

    25 4.3 Super Kraft Monocoupe 90A RC airplane. . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Access panel for fuselage of...begin clipping. This is an important consideration for airborne acoustic sensing, as the sound level aboard a UAV must not cause saturation of the...specifications of the Monocoupe used for this experiment are in Table 4.3. 26 Figure 4.3: Super Kraft Monocoupe 90A RC airplane. Figure 4.4: Access panel for

  1. MEMS directional acoustic sensor for locating sound sources

    NASA Astrophysics Data System (ADS)

    Karunasiri, Gamani; Alves, Fabio; Swan, William

    2016-02-01

    The conventional directional sound sensing systems employ an array of spatially separated microphones to achieve directional sensing. However, there are insects such as Ormia ochracea fly that can determine the direction of sound using a miniature hearing organ much smaller than the wavelength of sound it detects. The MEMS based sensors mimicking the fly's hearing system was fabricated using SOI substrate with 25 micrometer device layer. The sensor was designed to operate around 1.7 kHz, consists of two 1.2 mm × 1.2 mm wings connected in the middle by a 3 mm × 30 micrometer bridge. The entire structure is connected to the substrate by two torsional legs at the center. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. For unambiguously determining the direction of sound, two sensors were assembled with a canted angle and outputs of the two sensors were processed to uniquely locate the bearing. At the bending resonant frequency (1.7 kHz) an output voltage of about 25 V/Pa was measured. The uncertainty of the bearing of sound ranged from less than 0.3 degrees close to the normal axis (0 degree) to 3 degrees at the limits of coverage (+/- 60 degrees) based on the 30 degree canted angle used. These findings indicate the potential use of a dual MEMS direction finding sensor assembly to locate sound sources with high accuracy.

  2. A methodology for analyzing an acoustic scene in sensor arrays

    NASA Astrophysics Data System (ADS)

    Man, Hong; Hohil, Myron E.; Desai, Sachi

    2007-10-01

    Presented here is a novel clustering method for Hidden Markov Models (HMMs) and its application in acoustic scene analysis. In this method, HMMs are clustered based on a similarity measure for stochastic models defined as the generalized probability product kernel (GPPK), which can be efficiently evaluated according to a fast algorithm introduced by Chen and Man (2005) [1]. Acoustic signals from various sources are partitioned into small frames. Frequency features are extracted from each of the frames to form observation vectors. These frames are further grouped into segments, and an HMM is trained from each of such segments. An unknown segment is categorized with a known event if its HMM has the closest similarity with the HMM from the corresponding labeled segment. Experiments are conducted on an underwater acoustic dataset from Steven Maritime Security Laboratory, Data set contains a swimmer signature, a noise signature from the Hudson River, and a test sequence with a swimmer in the Hudson River. Experimental results show that the proposed method can successfully associate the test sequence with the swimmer signature at very high confidence, despite their different time behaviors.

  3. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  4. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    DOEpatents

    Martinez, Jennifer S.; Swanson, Basil I.; Grace, Karen M.; Grace, Wynne K.; Shreve, Andrew P.

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  5. Integration of acoustical sensors into the KM3NeT optical modules

    SciTech Connect

    Enzenhöfer, A.; Collaboration: KM3NeT Collaboration

    2014-11-18

    The next generation multi-cubic-kilometre water Cherenkov neutrino telescope will be build in the Mediterranean Sea. This telescope, called KM3NeT, is currently entering a first construction phase. The KM3NeT research infrastructure will comprise 690 so-called Detection Units in its final design which will be anchored to the sea bed and held upright by submerged floats. The positions of these Detection Units, several hundred metres in length, and their attached Optical Modules for the detection of Cherenkov light have to be monitored continously to provide the telescope with its desired pointing precision. A standard way to do this is the utilisation of an acoustic positioning system using emitters at fixed positions and receivers distributed along the Detection Units. The KM3NeT neutrino telescope comprises a custom-made acoustic positioning system with newly designed emitters attached to the anchors of the Detection Units and custom-designed receivers attached to the Detection Units. This article describes an approach for a receiver and its performance. The proposed Opto-Acoustical Modules combine the optical sensors for the telescope with the acoustical sensors necessary for the positioning of the module itself. This combination leads to a compact design suited for an easy deployment of the numerous Detection Units. Furthermore, the instrumented volume can be used for scientific analyses such as marine science and acoustic particle detection.

  6. Measurement of cantilever vibration using impedance-loaded surface acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Hamashima, Hiromitsu; Kondoh, Jun

    2016-07-01

    In this study, an impedance-loaded surface acoustic wave (SAW) sensor was demonstrated to monitor the vibration frequency. Commercialized pressure sensors and a variable capacitor were chosen as external sensors, which were connected to a reflector on a SAW device. As the reflection coefficient of the reflector depended on the impedance, the echo amplitude was influenced by changes in the impedance of the external sensor. The vibration frequency of the cantilever was determined by monitoring the echo amplitude of the SAW device. Moreover, the attenuation constant of an envelope was estimated. The results of our feasibility study indicate that the impedance-loaded SAW sensor can be applied as a detector for structural health monitoring.

  7. Full bandwidth calibration procedure for acoustic probes containing a pressure and particle velocity sensor.

    PubMed

    Basten, Tom G H; de Bree, Hans-Elias

    2010-01-01

    Calibration of acoustic particle velocity sensors is still difficult due to the lack of standardized sensors to compare with. Recently it is shown by Jacobsen and Jaud [J. Acoust. Soc. Am. 120, 830-837 (2006)] that it is possible to calibrate a sound pressure and particle velocity sensor in free field conditions at higher frequencies. This is done by using the known acoustic impedance at a certain distance of a spherical loudspeaker. When the sound pressure is measured with a calibrated reference microphone, the particle velocity can be calculated from the known impedance and the measured pressure. At lower frequencies, this approach gives unreliable results. The method is now extended to lower frequencies by measuring the acoustic pressure inside the spherical source. At lower frequencies, the sound pressure inside the sphere is proportional to the movement of the loudspeaker membrane. If the movement is known, the particle velocity in front of the loudspeaker can be derived. This low frequency approach is combined with the high frequency approach giving a full bandwidth calibration procedure which can be used in free field conditions using a single calibration setup. The calibration results are compared with results obtained with a standing wave tube.

  8. High Frequency Acoustic Sensor Dedicated to the High Resolution Measurement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Meignen, Pierre-Antoine; Le Clézio, Emmanuel; Despaux, Gilles

    Through acoustic signature, scanning acoustic microscopy can be used to quantify local mechanical properties of a medium thanks to the generation of surface waves, mostly Rayleigh waves. Despite being quite effective, this method requires to evaluate the mechanical properties of a single point the acquisition of many ultrasonic signals. This process is then time-consuming and is hardly adaptable to quantitative imaging. The solution considered in this paper to speed-up the method is to design a multi-element sensor allowing the extraction of information on Rayleigh waves with a reduced number of acquisitions. The work is conducted along two axes. As a first step, a model allowing the simulation of the acoustic wave behavior at a fluid/solid interface is developed. This model leads to a better understanding of the characterization of the mechanical properties and to the definition of an adapted sensor's design. As a second step, an experimental method for acoustic field reconstruction is used to characterize the multi-elements sensor and measurements of mechanical properties were done.

  9. Acoustic emission localization in plates with dispersion and reverberations using sparse PZT sensors in passive mode

    NASA Astrophysics Data System (ADS)

    Perelli, Alessandro; De Marchi, Luca; Marzani, Alessandro; Speciale, Nicolò

    2012-02-01

    A strategy for the localization of acoustic emissions (AE) in plates with dispersion and reverberation is proposed. The procedure exploits signals received in passive mode by sparse conventional piezoelectric transducers and a three-step processing framework. The first step consists in a signal dispersion compensation procedure, which is achieved by means of the warped frequency transform. The second step concerns the estimation of the differences in arrival time (TDOA) of the acoustic emission at the sensors. Complexities related to reflections and plate resonances are overcome via a wavelet decomposition of cross-correlating signals where the mother function is designed by a synthetic warped cross-signal. The magnitude of the wavelet coefficients in the warped distance-frequency domain, in fact, precisely reveals the TDOA of an acoustic emission at two sensors. Finally, in the last step the TDOA data are exploited to locate the acoustic emission source through hyperbolic positioning. The proposed procedure is tested with a passive network of three/four piezo-sensors located symmetrically and asymmetrically with respect to the plate edges. The experimentally estimated AE locations are close to those theoretically predicted by the Cramèr-Rao lower bound.

  10. A self-mixing based ring-type fiber-optic acoustic sensor

    NASA Astrophysics Data System (ADS)

    Wang, Lutang; Wu, Chunxu; Fang, Nian

    2014-07-01

    A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.

  11. Acoustic localization of antbirds in a Mexican rainforest using a wireless sensor network.

    PubMed

    Collier, Travis C; Kirschel, Alexander N G; Taylor, Charles E

    2010-07-01

    Acoustic localization is a promising method to passively observe vocal animal species, but remains difficult and time consuming to employ. To reduce the labor intensity and impact of deployment, an acoustic localization system has been developed consisting of battery powered wireless sensor nodes. The system also has the ability to perform an acoustic self-survey, which compares favorably in accuracy to global positioning system survey methods, especially in environments such as forest. The self-survey and localization accuracy of the system was tested in the neotropical rainforest of Chiapas, Mexico. A straight-forward and robust correlation sum localization computation method was utilized and is described in detail. Both free-ranging wild antbird songs and songs played from a speaker were localized with mean errors of 0.199 m and 0.445 m, respectively. Finally, additional tests utilizing only a short segment of each song or a subset of sensor nodes were performed and found to minimally affect localization accuracy. The use of a wireless sensor network for acoustic localization of animal vocalizations offers greater ease and flexibility of deployment than wired microphone arrays without sacrificing accuracy.

  12. Pressure transducer for measuring acoustic radiation force based on a magnetic sensor

    NASA Astrophysics Data System (ADS)

    Kamimura, H. A. S.; Pavan, T. Z.; Almeida, T. W. J.; Pádua, M. L. A.; Baggio, A. L.; Fatemi, M.; Carneiro, A. A. O.

    2011-01-01

    This work presents a pressure transducer based on a magnetic sensor to measure acoustic radiation force (ARF) and small displacements. The methodology presented in this paper allowed this transducer to be calibrated for use as an acoustic pressure and intensity meter. It can control the acoustic intensity emitted by ultrasound used, for example, in ARF impulse imaging, vibro-acoustography and high-intensity focused ultrasound techniques. The device comprises a magnet, a membrane, a magnetoresistive sensor and a coil to cancel the external magnetic field. When ARF is applied to the membrane, the magnetic field on the sensor changes due to the magnetic target displacement. The variation of the output signal from the magnetic transducer is proportional to the acoustic pressure applied to the membrane. A focused ultrasound transducer with a central frequency of 3 MHz was used to apply a continuous ARF. The sensitivities of the magnetic transducer as an acoustic pressure and intensity meter, evaluated in water, were respectively 0.597 µV MPa-1 and 0.073 µV (W cm-2)-1/2, while those of the needle hydrophone (Onda model HNP-0400) used in the magnetic transducer calibration were respectively, 0.5024 mV MPa-1 and 6.153 mV (W cm-2)-1/2. The transducer resolution to displacement is 5 nm and 6 dB of signal attenuation occurs for 7° of misalignment. The transducer responded well to acoustic pressure in water above 200 kPa.

  13. An optoelectronic circuit with a light source, an optical waveguide and a sensor all on silicon: Results and analysis of a novel system

    NASA Astrophysics Data System (ADS)

    Alarcón-Salazar, J.; Zaldívar-Huerta, I. E.; Aceves-Mijares, M.

    2016-10-01

    A full analysis of an optoelectronic circuit on silicon composed by a light emitter, an optical waveguide and a photodetector is achieved. The light emitter is based on silicon rich oxide multilayers. The multilayer structure exhibits an electroluminescence spectra from 400 nm to 800 nm. Light emitter and optical waveguide are located next to each other in a novel topology that allows the direct impact of the photons to the depletion layer of the sensor, increasing the efficiency. An optical rib-type waveguide and multi-modal, using Si3N4 and SiO2 as core and cladding materials, is considered to propagate the light from the light emitter to the sensor. Analysis of the waveguide reveals that the optimal height is 1.25 μm, when a width of 5 μm and a fractional height of 0.8 are used. A relative transmittance of the optical waveguide shows that the propagated light maintains the wide spectrum. A planar diode is used as photodetector. The proposal-integrated structure shows that light impinges directly on the depleted zone, improving detection and performance of the diode. Finally, a description of the novel optoelectronic circuit is addressed.

  14. Embedded ultrasound sensor in a silicon-on-insulator photonic platform

    SciTech Connect

    Rosenthal, Amir; Omar, Murad; Estrada, Héctor; Kellnberger, Stephan; Razansky, Daniel; Ntziachristos, Vasilis

    2014-01-13

    A miniaturized ultrasound sensor is demonstrated in a silicon-on-insulator platform. The sensor is based on a π-phase-shifted Bragg grating formed by waveguide corrugation. Ultrasound detection is performed by monitoring shifts in the resonance frequency of the grating using pulse interferometry. The device is characterized by measuring its response to a wideband acoustic point source generated using the optoacoustic effect. Experimental results show that the sensor's response is dominated by the formation of surface acoustic waves.

  15. An acoustic transmission sensor for the longitudinal viscosity of fluids.

    PubMed

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2013-11-01

    Physical fluid parameters like viscosity, mass density and sound velocity can be determined utilizing ultrasonic sensors. We introduce the concept of a recently devised transmission based sensor utilizing pressure waves to determine the longitudinal viscosity, bulk viscosity, and second coefficient of viscosity of a sample fluid in a test chamber. A model is presented which allows determining these parameters from measurement values by means of a fit. The setup is particularly suited for liquids featuring higher viscosities for which measurement data are scarcely available to date. The setup can also be used to estimate the sound velocity in a simple manner from the phase of the transfer function.

  16. An acoustic transmission sensor for the longitudinal viscosity of fluids

    PubMed Central

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2013-01-01

    Physical fluid parameters like viscosity, mass density and sound velocity can be determined utilizing ultrasonic sensors. We introduce the concept of a recently devised transmission based sensor utilizing pressure waves to determine the longitudinal viscosity, bulk viscosity, and second coefficient of viscosity of a sample fluid in a test chamber. A model is presented which allows determining these parameters from measurement values by means of a fit. The setup is particularly suited for liquids featuring higher viscosities for which measurement data are scarcely available to date. The setup can also be used to estimate the sound velocity in a simple manner from the phase of the transfer function. PMID:25844023

  17. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System.

    PubMed

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-11-30

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa ) . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  18. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    PubMed Central

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  19. Experimental Results of Underwater Cooperative Source Localization Using a Single Acoustic Vector Sensor

    PubMed Central

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M.

    2013-01-01

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257

  20. Experimental results of underwater cooperative source localization using a single acoustic vector sensor.

    PubMed

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M

    2013-07-12

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8-14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited.

  1. Precursory Acoustic Signals Detection in Rockfall Events by Means of Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Schenato, L.; Marcato, G.; Gruca, G.; Iannuzzi, D.; Palmieri, L.; Galtarossa, A.; Pasuto, A.

    2012-12-01

    Rockfalls represent a major source of hazard in mountain areas: they occur at the apex of a process of stress accumulation in the unstable slope, during which part of the accumulated energy is released in small internal cracks. These cracks and the related acoustic emissions (AE) can, therefore, be used as precursory signals, through which the unstable rock could be monitored. In particular, according to previous scientific literature AE can be monitored in the range 20÷100 kHz. With respect to traditional AE sensors, such as accelerometers and piezoelectric transducers, fiber optic sensors (FOSs) may provide a reliable solution, potentially offering more robustness to electromagnetic interference, smaller form factor, multiplexing ability and increased distance range and higher sensitivity. To explore this possibility, in this work we have experimentally analyzed two interferometric fiber optical sensors for AE detection in rock masses. In particular, the first sensor is made of 100 m of G.657 optical fiber, tightly wound on an aluminum flanged hollow mandrel (inner diameter 30 mm, height 42 mm) that is isolated from the environment with acoustic absorbing material. A 4-cm-long M10 screw, which acts also as the main mean of acoustic coupling between the rock and the sensor, is used to fasten the sensor to the rock. This fiber coil sensor (FCS) is inserted in the sensing arm of a fiber Mach-Zehnder interferometer. The second sensor consists in a micro cantilever carved on the top of a cylindrical silica ferrule, with a marked mechanical resonance at about 12.5 kHz (Q-factor of about 400). A standard single mode fiber is housed in the same ferrule and the gap between the cantilever and the fiber end face acts as a vibration-sensitive Fabry-Perot cavity, interrogated with a low-coherence laser, tuned at the quadrature point of the cavity. The sensor is housed in a 2-cm-long M10 bored bolt. Performance have been compared with those from a standard piezo

  2. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  3. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  4. Torsional mode ultrasonic helical waveguide sensor for re-configurable temperature measurement

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2016-06-01

    This paper introduces an ultrasonic torsional mode based technique, configured in the form of a helical "spring-like" waveguide, for multi-level temperature measurement. The multiple sensing levels can be repositioned by stretching or collapsing the spring to provide simultaneous measurements at different desired spacing in a given area/volume. The transduction is performed using piezo-electric crystals that generate and receive T(0,1) mode in a pulse echo mode. The gage lengths and positions of measurements are based on machining multiple reflector notches in the waveguide at required positions. The time of fight (TOF) measurements between the reflected signals from the notches provide local temperatures that compare well with co-located thermocouples.

  5. Acoustic power delivery to pipeline monitoring wireless sensors.

    PubMed

    Kiziroglou, M E; Boyle, D E; Wright, S W; Yeatman, E M

    2017-01-23

    The use of energy harvesting for powering wireless sensors is made more challenging in most applications by the requirement for customization to each specific application environment because of specificities of the available energy form, such as precise location, direction and motion frequency, as well as the temporal variation and unpredictability of the energy source. Wireless power transfer from dedicated sources can overcome these difficulties, and in this work, the use of targeted ultrasonic power transfer as a possible method for remote powering of sensor nodes is investigated. A powering system for pipeline monitoring sensors is described and studied experimentally, with a pair of identical, non-inertial piezoelectric transducers used at the transmitter and receiver. Power transmission of 18mW (Root-Mean-Square) through 1m of a118mm diameter cast iron pipe, with 8mm wall thickness is demonstrated. By analysis of the delay between transmission and reception, including reflections from the pipeline edges, a transmission speed of 1000m/s is observed, corresponding to the phase velocity of the L(0,1) axial and F(1,1) radial modes of the pipe structure. A reduction of power delivery with water-filling is observed, yet over 4mW of delivered power through a fully-filled pipe is demonstrated. The transmitted power and voltage levels exceed the requirements for efficient power management, including rectification at cold-starting conditions, and for the operation of low-power sensor nodes. The proposed powering technique may allow the implementation of energy autonomous wireless sensor systems for monitoring industrial and network pipeline infrastructure.

  6. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds

    PubMed Central

    Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2014-01-01

    We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics. PMID:24988381

  7. Method and apparatus for measuring surface changes, in porous materials, using multiple differently-configured acoustic sensors

    DOEpatents

    Hietala, Susan Leslie; Hietala, Vincent Mark; Tigges, Chris Phillip

    2001-01-01

    A method and apparatus for measuring surface changes, such as mass uptake at various pressures, in a thin-film material, in particular porous membranes, using multiple differently-configured acoustic sensors.

  8. Source localization with acoustic sensor arrays using generative model based fitting with sparse constraints.

    PubMed

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier

    2012-10-15

    This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.

  9. A cantilever based optical fiber acoustic sensor fabricated by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Yuan, Lei; Huang, Jie; Xiao, Hai

    2016-04-01

    In this paper, we present a pure silica micro-cantilever based optical fiber sensor for acoustic wave detection. The cantilever is directly fabricated by fs laser micromachining on an optical fiber tip functioning as an inline Fabry-Perot interferometer (FPI). The applied acoustic wave pressurizes the micro-cantilever beam and the corresponding dynamic signals can be probed by the FPI. The thickness, length, and width of the micro-cantilever beam can be flexibly designed and fabricated so that the sensitivity, frequency response, and the total measurement range can be varied to fit many practical applications. Experimental results will be presented and analyzed. Due to the assembly free fabrication of the fs-laser, multiple micro-cantilever beams could be potentially fabricated in/on a single optical fiber for quasi-distributed acoustic mapping with high spatial resolution.

  10. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    PubMed Central

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier

    2012-01-01

    This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies. PMID:23202021

  11. Acoustic Seaglider

    DTIC Science & Technology

    2008-03-07

    a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient

  12. A new capnograph based on an electro acoustic sensor.

    PubMed

    Folke, M; Hök, B

    2008-01-01

    End tidal carbon dioxide measurements with an electro acoustic capnograph prototype have been demonstrated. The aim of this study was to verify that it is possible to obtain an adequate capnogram using the prototype and to investigate the influence of ambient temperature and humidity variations. By simultaneous measurements with a reference capnograph, on subjects performing exercise, hypo- and hyperventilation, P(ET)CO(2) readings from the reference were compared with the output signal from the prototype. The capnogram from the prototype correlated well with the reference in terms of breath time. The first parts of the expiration and inspiration phases were steeper for the reference than the prototype. The output signal from the prototype correlated well with the reference P(ET)CO(2) readings with a correlation coefficient of 0.93 at varied temperature and relative humidity.

  13. DECAF - Density Estimation for Cetaceans from Passive Acoustic Fixed Sensors

    DTIC Science & Technology

    2008-01-01

    whale density at AUTEC using single hydrophone data; • if time allows, estimation of humpback whale density at PMRF. Project investigators and...classifier for minke and humpback whales; he is also taking the lead on developing methods for estimating density from single fixed sensors, together...this was presented as a poster paper (Marques and Thomas 2008) at the International Statistical Ecology Conference in July 2008. The humpback whale

  14. Acoustic Nondestructive Evaluation of Aircraft Paneling Using Piezoelectric Sensors

    DTIC Science & Technology

    2012-12-01

    year (1, 2). Historically, methods for detecting defects in structures have included visual inspection, x-ray analysis, and ultrasonic ...equations, the final information of interest can be calculated. 9 After squaring all three main equations, we use the elimination method for ...miniaturized antennas may also be implemented to eliminate the need for wires in our system. Such an advancement will make placement of the sensor

  15. A distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser

    NASA Astrophysics Data System (ADS)

    Muanenda, Y.; Oton, C. J.; Faralli, S.; Nannipieri, T.; Signorini, A.; Di Pasquale, F.

    2015-09-01

    In this paper, we experimentally demonstrate a hybrid distributed acoustic and temperature sensor (DATS) based on Raman and coherent Rayleigh scattering processes in a standard singlemode fiber. A single commercial off-the-shelf DFB laser and a common receiver block are used to implement a highly integrated hybrid sensor system with key industrial applications. Distributed acoustic sensing and Raman temperature measurement are simultaneously performed by exploiting cyclic Simplex pulse coding in a phase-sensitive OTDR and in Raman DTS using direct detection. Suitable control and modulation of the DFB laser ensures inter-pulse incoherence and intra-pulse coherence, enabling accurate long-distance measurement of vibrations and temperature with minimal post-processing.

  16. Acoustic emission source location on large plate-like structures using a local triangular sensor array

    NASA Astrophysics Data System (ADS)

    Aljets, Dirk; Chong, Alex; Wilcox, Steve; Holford, Karen

    2012-07-01

    A new acoustic emission (AE) source location method was developed for large plate-like structures, which evaluates the location of the source using a combined time of flight and modal source location algorithm. Three sensors are installed in a triangular array with a sensor to sensor distance of just a few centimeters. The direction from the sensor array to the AE source can be established by analysing the arrival times of the A0 component of the signal to the three sensors whilst the distance can be evaluated using the separation of S0 and A0 mode at each sensor respectively. The close positioning of the sensors allows the array to be installed in a single housing. This simplifies mounting, wiring and calibration procedures for non-destructive testing (NDT) and structural health monitoring (SHM) applications. Furthermore, this array could reduce the number of sensors needed to monitor large structures compared to other methods. An automatic wave mode identification method is also presented.

  17. Surface Acoustic Wave Ammonia Sensors Based on ST-cut Quartz under Periodic Al Structure.

    PubMed

    Hsu, Cheng-Liang; Shen, Chi-Yen; Tsai, Rume-Tze; Su, Ming-Yau

    2009-01-01

    Surface acoustic wave (SAW) devices are key components for sensing applications. SAW propagation under a periodic grating was investigated in this work. The theoretical method used here is the space harmonic method. We also applied the results of SAW propagation studied in this work to design a two-port resonator with an Al grating on ST-cut quartz. The measured frequency responses of the resonator were similar to the simulation ones. Then, the chemical interface of polyaniline/WO(3) composites was coated on the SAW sensor for ammonia detection. The SAW sensor responded to ammonia gas and could be regenerated using dry nitrogen.

  18. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.

    PubMed

    Gur, Berke

    2014-06-01

    In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms.

  19. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications.

    PubMed

    Khan, Farid Ullah; Khattak, Muhammad Umair

    2016-02-01

    Rapid developments in micro electronics, micro fabrication, ultra-large scale of integration, ultra-low power sensors, and wireless technology have greatly reduced the power consumption requirements of wireless sensor nodes (WSNs) and make it possible to operate these devices with energy harvesters. Likewise, other energy harvesters, acoustic energy harvesters (AEHs), have been developed and are gaining swift interest in last few years. This paper presents a review of AEHs reported in the literature for the applications of WSNs. Based on transduction mechanism, there are two types of AEHs: piezoelectric acoustic energy harvesters (PEAEHs) and electromagnetic acoustic energy harvesters (EMAEHs). The reported AEHs are mostly characterized under the sound pressure level (SPL) that ranges from 45 to 161 dB. The range for resonant frequency of the produced AEHs is from 146 Hz to 24 kHz and these produced 0.68 × 10(-6) μW to 30 mW power. The maximum power (30 mW) is produced by a PEAEH, when the harvester is subjected to a SPL of 161 dB and 2.64 kHz frequency. However, for EMAEHs, the maximum power reported is about 1.96 mW (at 125 dB and 143 Hz). Under the comparable SPLs, the power production by the reported EMAEHs is relatively better than that of PEAEHs, moreover, due to lower resonant frequency, the EMAEHs are more feasible for the low frequency band acoustical environment.

  20. An Adaptive OFDMA-Based MAC Protocol for Underwater Acoustic Wireless Sensor Networks

    PubMed Central

    Khalil, Issa M.; Gadallah, Yasser; Hayajneh, Mohammad; Khreishah, Abdallah

    2012-01-01

    Underwater acoustic wireless sensor networks (UAWSNs) have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA)-based Media Access Control (MAC) protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA)-based MAC protocols. PMID:23012517

  1. AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Yoon, Seokhoon; Azad, Abul K.; Oh, Hoon; Kim, Sunghwan

    2012-01-01

    Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved. PMID:22438740

  2. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  3. Arrayed waveguide grating interrogator for fiber Bragg grating sensors: measurement and simulation.

    PubMed

    Koch, Jan; Angelmahr, Martin; Schade, Wolfgang

    2012-11-01

    A fiber Bragg grating (FBG) interrogation system based on an intensity demodulation and demultiplexing of an arrayed waveguide grating (AWG) module is examined in detail. The influence of the spectral line shape of the FBG on the signal obtained from the AWG device is discussed by accomplishing the measurement and simulation of the system. The simulation of the system helps to create quickly and precisely calibration functions for nonsymmetric, tilted, or nonapodized FBGs. Experiments show that even small sidebands of nonapodized FBGs have strong influences on the signal resulted by an AWG device with a Gaussian profile.

  4. Fly Ear Inspired Miniature Acoustic Sensors for Detection and Localization

    DTIC Science & Technology

    2011-07-31

    Journal of Biological Physics Research) 2) A. Lisiewshi, H. Liu , M. Yu, L. Currano, and D . Gee, “Fly-ear inspired micro-sensor for sound source...m Torsional spring k3 5.18 N/m Torsional dashpot c3 2.88×10-5 N s/m Separation of force locations d 1.2×10-3 m Tympanum area s 0.288×10-6 m2...Γ−−Ω + Ω ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ , (5) where 2 1 2 2 2 1 2 , 2 sin , 2 j d j ξ φ πχ θ χ η ηξ λ −Ω + Ω Γ = = = −Ω + Ω

  5. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  6. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    SciTech Connect

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  7. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review.

    PubMed

    Afzal, Adeel; Iqbal, Naseer; Mujahid, Adnan; Schirhagl, Romana

    2013-07-17

    The necessity of selectively detecting various organic vapors is primitive not only with respect to regular environmental and industrial hazard monitoring, but also in detecting explosives to combat terrorism and for defense applications. Today, the huge arsenal of micro-sensors has revolutionized the traditional methods of analysis by, e.g. replacing expensive laboratory equipment, and has made the remote screening of atmospheric threats possible. Surface acoustic wave (SAW) sensors - based on piezoelectric crystal resonators - are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. Combined with suitably designed molecular recognition materials SAW devices could develop into highly selective and fast responsive miniaturized sensors, which are capable of continuously monitoring a specific organic gas, preferably in the sub-ppm regime. For this purpose, different types of recognition layers ranging from nanostructured metal oxides and carbons to pristine or molecularly imprinted polymers and self-assembled monolayers have been applied in the past decade. We present a critical review of the recent developments in nano- and micro-engineered synthetic recognition materials predominantly used for SAW-based organic vapor sensors. Besides highlighting their potential to realize real-time vapor sensing, their limitations and future perspectives are also discussed.

  8. Multilayer graphene electrodes for one-port surface acoustic wave resonator mass sensor

    NASA Astrophysics Data System (ADS)

    Leong, Ainan; Swamy, Varghese; Ramakrishnan, N.

    2017-02-01

    A one-port surface acoustic wave (SAW) resonator mass sensor composed of multilayer graphene (MLG) electrodes was investigated by the finite element method (FEM) and analyses were carried out to study the enhancement of sensitivity and the secondary effects caused by MLG electrodes on the performance of the resonator. Unlike metal electrodes, MLG electrode offers elastic loading to the contact surface, as evidenced by the increase in the surface velocity of the SAW device. In terms of the sensitivity of the mass sensor, MLG electrode showed the largest center frequency shift in response to a change in mass loading, as well as when used as a gas sensor to detect volatile organic compounds (VOCs). Also, MLG electrodes offered the least triple transit signal (TTS) and bulk acoustic wave (BAW) generations compared with Al and Au–Cr electrodes. Thus, the one-port SAW resonator with graphene electrodes not only possesses excellent performance characteristics but also gives rise to new opportunities in the development of highly sensitive mass sensors.

  9. Algorithm for heart rate extraction in a novel wearable acoustic sensor

    PubMed Central

    Imtiaz, Syed Anas; Aguilar–Pelaez, Eduardo; Rodriguez–Villegas, Esther

    2015-01-01

    Phonocardiography is a widely used method of listening to the heart sounds and indicating the presence of cardiac abnormalities. Each heart cycle consists of two major sounds – S1 and S2 – that can be used to determine the heart rate. The conventional method of acoustic signal acquisition involves placing the sound sensor at the chest where this sound is most audible. Presented is a novel algorithm for the detection of S1 and S2 heart sounds and the use of them to extract the heart rate from signals acquired by a small sensor placed at the neck. This algorithm achieves an accuracy of 90.73 and 90.69%, with respect to heart rate value provided by two commercial devices, evaluated on more than 38 h of data acquired from ten different subjects during sleep in a pilot clinical study. This is the largest dataset for acoustic heart sound classification and heart rate extraction in the literature to date. The algorithm in this study used signals from a sensor designed to monitor breathing. This shows that the same sensor and signal can be used to monitor both breathing and heart rate, making it highly useful for long-term wearable vital signs monitoring. PMID:26609401

  10. Algorithm for heart rate extraction in a novel wearable acoustic sensor.

    PubMed

    Chen, Guangwei; Imtiaz, Syed Anas; Aguilar-Pelaez, Eduardo; Rodriguez-Villegas, Esther

    2015-02-01

    Phonocardiography is a widely used method of listening to the heart sounds and indicating the presence of cardiac abnormalities. Each heart cycle consists of two major sounds - S1 and S2 - that can be used to determine the heart rate. The conventional method of acoustic signal acquisition involves placing the sound sensor at the chest where this sound is most audible. Presented is a novel algorithm for the detection of S1 and S2 heart sounds and the use of them to extract the heart rate from signals acquired by a small sensor placed at the neck. This algorithm achieves an accuracy of 90.73 and 90.69%, with respect to heart rate value provided by two commercial devices, evaluated on more than 38 h of data acquired from ten different subjects during sleep in a pilot clinical study. This is the largest dataset for acoustic heart sound classification and heart rate extraction in the literature to date. The algorithm in this study used signals from a sensor designed to monitor breathing. This shows that the same sensor and signal can be used to monitor both breathing and heart rate, making it highly useful for long-term wearable vital signs monitoring.

  11. Implementation of Surface Acoustic Wave Vapor Sensor Using Complementary Metal-Oxide-Semiconductor Amplifiers

    NASA Astrophysics Data System (ADS)

    Chiu, Chia-Sung; Chang, Ching-Chun; Ku, Chia-Lin; Peng, Kang-Ming; Jeng, Erik S.; Chen, Wen-Lin; Huang, Guo-Wei; Wu, Lin-Kun

    2009-04-01

    A surface acoustic wave (SAW) vapor sensor is presented in this work. A SAW delay line oscillator on quartz substrate with the high gain complementary metal-oxide-semiconductor (CMOS) amplifier using a two-poly-two-metal (2P2M) 0.35 µm process was designed. The gain of the CMOS amplifier and its total power consumption are 20 dB and 70 mW, respectively. The achieved phase noise of this SAW oscillator is -150 dBc/Hz at 100 kHz offset. The sensing is successfully demonstrated by a thin poly(epichlorohydrin) (PECH) polymer film on a SAW oscillator with alcohol vapor. This two-in-one sensor unit includes the SAW device and the CMOS amplifier provides designers with comprehensive model for using these components for sensor circuit fabrication. Furthermore it will be promising for future chemical and biological sensing applications.

  12. Multiple concurrent sources localization based on a two-node distributed acoustic sensor network

    NASA Astrophysics Data System (ADS)

    Xu, Jiaxin; Zhao, Zhao; Chen, Chunzeng; Xu, Zhiyong

    2017-01-01

    In this work, we propose a new approach to localize multiple concurrent sources using a distributed acoustic sensor network. Only two node-arrays are required in this sensor network, and each node-array consists of only two widely spaced sensors. Firstly, direction-of-arrivals (DOAs) of multiple sources are estimated at each node-array by utilizing a new pooled angular spectrum proposed in this paper, which can implement the spatial aliasing suppression effectively. Based on minimum variance distortionless response (MVDR) beamforming and the DOA estimates of the sources, the time-frequency spectra containing the corresponding energy distribution features associated with those sources are reconstructed in each node-array. Then, scale invariant feature transform (SIFT) is employed to solve the DOA association problem. Performance evaluation is conducted with field recordings and experimental results prove the effectivity and feasibility of the proposed method.

  13. Estimation of the lactate threshold using an electro acoustic sensor system analysing the respiratory air.

    PubMed

    Folke, M

    2008-09-01

    The lactate threshold is used by athletes to optimise the intensity during exercise. It is of interest to measure the threshold on the very day and during the present sport activity. Steady state ergometer tests have been performed on 40 individuals to compare the threshold found by an electro acoustic sensor system to the lactate threshold established by blood analyses evaluated with the Dmax method. The correlation coefficient between the threshold found by the sensor system and the one established by blood analyses regarding workload (Watt), heart rate (beats/min), and lactate level (mmol lactate/l blood) at the thresholds were 0.87 (p < 0.001), 0.74 (p < 0.001), and 0.65 (p < 0.001), respectively. The findings in this study indicates that the thresholds of individuals measured by the sensor system show good correlations to the threshold established with the Dmax method from lactate levels in blood samples.

  14. Temperature-insensitive arrayed waveguide grating demodulation technique for fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Li, Yang; Li, Enbang; Dong, Xiaye; Bai, Yaoting; Liu, Yu; Zhou, Wenqian

    2013-10-01

    As the output characteristics of arrayed waveguide grating (AWG) can be affected by temperature, the output spectrum central wavelength λi of every channel has a tendency to drift with the temperature. To improve demodulation accuracy, this paper presents a type of AWG demodulation algorithm with temperature compensation. This algorithm assumes that under the same environment, with similarly changing temperatures of AWG and fiber Bragg grating (FBG), the AWG central wavelength is replaced with the expression that includes ΔT, and the values of AWG and of FBG which change with the temperature (ΔT) are integrated. The experiment result shows that when temperature compensation is added in the demodulation technique, the correlation coefficient r of the demodulation result is 0.997, which means that the curve has good consistency and can be measured repeatedly. This also proves the rightness of the technique. The application of this technique for smart clothing is mentioned, which indicates its feasibility.

  15. Reusable EGaIn-Injected Substrate-Integrated-Waveguide Resonator for Wireless Sensor Applications

    PubMed Central

    Memon, Muhammad Usman; Lim, Sungjoon

    2015-01-01

    The proposed structure in this research is constructed on substrate integrated waveguide (SIW) technology and has a mechanism that produces 16 different and distinct resonant frequencies between 2.45 and 3.05 GHz by perturbing a fundamental TE10 mode. It is a unique method for producing multiple resonances in a radio frequency planar structure without any extra circuitry or passive elements is developed. The proposed SIW structure has four vertical fluidic holes (channels); injecting eutectic gallium indium (EGaIn), also known commonly as liquid metal (LM), into these vertical channels produces different resonant frequencies. Either a channel is empty, or it is filled with LM. In total, the combination of different frequencies produced from four vertical channels is 16. PMID:26569257

  16. Maximization of the supportable number of sensors in QoS-aware cluster-based underwater acoustic sensor networks.

    PubMed

    Nguyen, Thi-Tham; Le, Duc Van; Yoon, Seokhoon

    2014-03-07

    This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class.

  17. Maximization of the Supportable Number of Sensors in QoS-Aware Cluster-Based Underwater Acoustic Sensor Networks

    PubMed Central

    Nguyen, Thi-Tham; Van Le, Duc; Yoon, Seokhoon

    2014-01-01

    This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class. PMID:24608009

  18. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film.

    PubMed

    Wang, Shuang-Yue; Ma, Jin-Yi; Li, Zhi-Jie; Su, H Q; Alkurd, N R; Zhou, Wei-Lie; Wang, Lu; Du, Bo; Tang, Yong-Liang; Ao, Dong-Yi; Zhang, Shou-Chao; Yu, Q K; Zu, Xiao-Tao

    2015-03-21

    A surface acoustic wave (SAW) resonator with ZnO/SiO2 (ZS) composite film was used as an ammonia sensor in this study. ZS composite films were deposited on the surface of SAW devices using the sol-gel method, and were characterized using SEM, AFM, and XRD. The performance of the sensors under ammonia gas was optimized by adjusting the molar ratio of ZnO:SiO2 to 1:1, 1:2 and 1:3, and the sensor with the ratio of ZnO to SiO2 equaling to 1:2 was found to have the best performance. The response of sensor was 1.132 kHz under 10 ppm NH3, which was much higher than that of the sensor based on a pristine ZnO film. Moreover, the sensor has good selectivity, reversibility and stability at room temperature. These can be attributed to the enhanced absorption of ammonia and unique surface reaction on composite films due to the existence of silica.

  19. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks

    PubMed Central

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-01-01

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency. PMID:28208735

  20. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks.

    PubMed

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-02-08

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.

  1. Estimating cetacean population density using fixed passive acoustic sensors: an example with Blainville's beaked whales.

    PubMed

    Marques, Tiago A; Thomas, Len; Ward, Jessica; DiMarzio, Nancy; Tyack, Peter L

    2009-04-01

    Methods are developed for estimating the size/density of cetacean populations using data from a set of fixed passive acoustic sensors. The methods convert the number of detected acoustic cues into animal density by accounting for (i) the probability of detecting cues, (ii) the rate at which animals produce cues, and (iii) the proportion of false positive detections. Additional information is often required for estimation of these quantities, for example, from an acoustic tag applied to a sample of animals. Methods are illustrated with a case study: estimation of Blainville's beaked whale density over a 6 day period in spring 2005, using an 82 hydrophone wide-baseline array located in the Tongue of the Ocean, Bahamas. To estimate the required quantities, additional data are used from digital acoustic tags, attached to five whales over 21 deep dives, where cues recorded on some of the dives are associated with those received on the fixed hydrophones. Estimated density was 25.3 or 22.5 animals/1000 km(2), depending on assumptions about false positive detections, with 95% confidence intervals 17.3-36.9 and 15.4-32.9. These methods are potentially applicable to a wide variety of marine and terrestrial species that are hard to survey using conventional visual methods.

  2. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    PubMed

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  3. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  4. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  5. Acoustic time delay estimation and sensor network self-localization: Experimental results

    NASA Astrophysics Data System (ADS)

    Ash, Joshua N.; Moses, Randolph L.

    2005-08-01

    Experimental results are presented on propagation, coherence, and time-delay estimation (TDE) from a microphone array in an outdoor aeroacoustic environment. The primary goal is to understand the achievable accuracy of acoustic TDE using low-cost, commercial off-the-shelf (COTS) speakers and microphones. In addition, through the use of modulated pseudo-noise sequences, the experiment seeks to provide an empirical understanding of the effects of center frequency, bandwidth, and signal duration on TDE effectiveness and compares this to the theoretical expectations established by the Weiss-Weinstein lower bound. Finally, sensor network self-localization is performed using a maximum likelihood estimator and the time-delay estimates. Experimental network localization error is presented as a function of the acoustic calibration signal parameters.

  6. Optimization of Capacitive Acoustic Resonant Sensor Using Numerical Simulation and Design of Experiment

    PubMed Central

    Haque, Rubaiyet Iftekharul; Loussert, Christophe; Sergent, Michelle; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    Optimization of the acoustic resonant sensor requires a clear understanding of how the output responses of the sensor are affected by the variation of different factors. During this work, output responses of a capacitive acoustic transducer, such as membrane displacement, quality factor, and capacitance variation, are considered to evaluate the sensor design. The six device parameters taken into consideration are membrane radius, backplate radius, cavity height, air gap, membrane tension, and membrane thickness. The effects of factors on the output responses of the transducer are investigated using an integrated methodology that combines numerical simulation and design of experiments (DOE). A series of numerical experiments are conducted to obtain output responses for different combinations of device parameters using finite element methods (FEM). Response surface method is used to identify the significant factors and to develop the empirical models for the output responses. Finally, these results are utilized to calculate the optimum device parameters using multi-criteria optimization with desirability function. Thereafter, the validating experiments are designed and deployed using the numerical simulation to crosscheck the responses. PMID:25894937

  7. Investigation of phononic crystals for dispersive surface acoustic wave ozone sensors

    NASA Astrophysics Data System (ADS)

    Westafer, Ryan S.

    The object of this research was to investigate dispersion in surface phononic crystals (PnCs) for application to a newly developed passive surface acoustic wave (SAW) ozone sensor. Frequency band gaps and slow sound already have been reported for PnC lattice structures. Such engineered structures are often advertised to reduce loss, increase sensitivity, and reduce device size. However, these advances have not yet been realized in the context of surface acoustic wave sensors. In early work, we computed SAW dispersion in patterned surface structures and we confirmed that our finite element computations of SAW dispersion in thin films and in one dimensional surface PnC structures agree with experimental results obtained by laser probe techniques. We analyzed the computations to guide device design in terms of sensitivity and joint spectral operating point. Next we conducted simulations and experiments to determine sensitivity and limit of detection for more conventional dispersive SAW devices and PnC sensors. Finally, we conducted extensive ozone detection trials on passive reflection mode SAW devices, using distinct components of the time dispersed response to compensate for the effect of temperature. The experimental work revealed that the devices may be used for dosimetry applications over periods of several days.

  8. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  9. Bedload transport monitoring with acoustic sensors in the Swiss Albula mountain river

    NASA Astrophysics Data System (ADS)

    Rickenmann, Dieter; Antoniazza, Gilles; Wyss, Carlos R.; Fritschi, Bruno; Boss, Stefan

    2017-03-01

    Bedload transport measurements with acoustic sensors were obtained during summer 2015 in the Albula River in Switzerland. An impact plate measuring system was used with geophone and accelerometer sensors. This system provides indirect estimations of bedload transport in water courses. In April 2015, 30 impact sensors were installed in a new permanent measuring station to monitor continuously bedload transport in a mountain river with a large annual rate of sediment transport (around 90 000 m3 yr-1). Records of the first year of measurement showed that (i) the signal response in terms of geophone and accelerometer impulses is comparable for both types of sensors; (ii) there is a good correlation between discharge data and impulses recorded by both types of sensors; (iii) the critical discharge at the start of bedload transport is around 5 m3 s-1; (iv) a mean calibration factor for the geophone impulses can be estimated which is in a similar range as values determined from other sites with field calibration measurements.

  10. Design and field tests of a directly coupled waveguide-on-access-tube soil water sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensor systems capable of monitoring soil water content can provide a useful tool for irrigation control. Current systems are limited by installation depth, labor, accuracy, and cost. Time domain reflectometry (TDR) is an approach for monitoring soil water content that relates the travel time of an ...

  11. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors

    PubMed Central

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-01-01

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3–5.4 mmol m−3 enabling a calculated limit of detection (LOD) at 0.14 mmol m−3 (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated. PMID:24213678

  12. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors

    NASA Astrophysics Data System (ADS)

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-11-01

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m-3 enabling a calculated limit of detection (LOD) at 0.14 mmol m-3 (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated.

  13. Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.

    PubMed

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-05-05

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.

  14. Development of an acoustic sensor for the future IceCube-Gen2 detector for neutrino detection and position calibration

    NASA Astrophysics Data System (ADS)

    Wickmann, Stefan; Eliseev, Dmitry; Heinen, Dirk; Linder, Peter; Rongen, Martin; Scholz, Franziska; Weinstock, Lars Steffen; Wiebusch, Christopher; Zierke, Simon

    2017-03-01

    For the planned high-energy extension of the IceCube Neutrino Observatory in the glacial ice at the South Pole the spacing of detector modules will be increased with respect to IceCube. Because of these larger distances the quality of the geometry calibration based on pulsed light sources is expected to deteriorate. To counter this an independent acoustic geometry calibration system based on trilateration is introduced. Such an acoustic positioning system (APS) has already been developed for the Enceladus Explorer Project (EnEx), initiated by the DLR Space Administration. In order to integrate such APS-sensors into the IceCube detector the power consumption needs to be minimized. In addition, the frequency response of the front end electronics is optimized for positioning as well as the acoustic detection of neutrinos. The new design of the acoustic sensor and results of test measurements with an IceCube detector module will be presented.

  15. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  16. Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors.

    PubMed

    Hao, Hsu-Chao; Chang, Hwan-You; Wang, Tsung-Pao; Yao, Da-Jeng

    2013-02-01

    Techniques to separate cells are widely applied in immunology. The technique to separate a specific antigen on a microfluidic platform involves the use of a shear horizontal surface-acoustic-wave (SH-SAW) sensor. With specific antibodies conjugated onto the surface of the SH-SAW sensors, this technique can serve to identify specific cells in bodily fluids. Jurkat cells, used as a target in this work, provide a model of cells in small abundance (1:1000) for isolation and purification with the ultimate goal of targeting even more dilute cells. T cells were separated from a mixed-cell medium on a chip (Jurkat cells/K562 cells, 1/1000). A novel microchamber was developed to capture cells during the purification, which required a large biosample. Cell detection was demonstrated through the performance of genetic identification on the chip.

  17. Development of a novel odor measurement system using gas chromatography with surface acoustic wave sensor.

    PubMed

    Staples, Edward J; Viswanathan, Shekar

    2008-12-01

    This paper describes a novel odor measurement system for creating arrays of virtual chemical sensors with nonoverlapping responses using ultrahigh-speed gas chromatography with a surface acoustic wave sensor (GC/SAW). This GC/SAW system provides high-resolution two-dimensional olfactory images for easy recognition of many complex odors. Separation and quantification of the individual chemicals within an odor is performed in seconds. Using a solid-state mass-sensitive detector, picogram sensitivity, universal nonpolar selectivity, and electronically variable sensitivity are achieved. An integrated vapor preconcentrator coupled with the electronically variable detector allows the system to measure vapor concentrations spanning 6 or more orders of magnitude. The system attributes of high speed, accuracy, and precision provide a cost-effective and complimentary tool for traditional sensory evaluations.

  18. First-Order Acoustic Wave Equation Reverse Time Migration Based on the Dual-Sensor Seismic Acquisition System

    NASA Astrophysics Data System (ADS)

    You, Jiachun; Liu, Xuewei; Wu, Ru-Shan

    2017-03-01

    We analyze the mathematical requirements for conventional reverse time migration (RTM) and summarize their rationale. The known information provided by current acquisition system is inadequate for the second-order acoustic wave equations. Therefore, we introduce a dual-sensor seismic acquisition system into the coupled first-order acoustic wave equations. We propose a new dual-sensor reverse time migration called dual-sensor RTM, which includes two input variables, the pressure and vertical particle velocity data. We focus on the performance of dual-sensor RTM in estimating reflection coefficients compared with conventional RTM. Synthetic examples are used for the study of estimating coefficients of reflectors with both dual-sensor RTM and conventional RTM. The results indicate that dual-sensor RTM with two inputs calculates amplitude information more accurately and images structural positions of complex substructures, such as the Marmousi model, more clearly than that of conventional RTM. This shows that the dual-sensor RTM has better accuracy in backpropagation and carries more information in the directivity because of particle velocity injection. Through a simple point-shape model, we demonstrate that dual-sensor RTM decreases the effect of multi-pathing of propagating waves, which is helpful for focusing the energy. In addition, compared to conventional RTM, dual-sensor RTM does not cause extra memory costs. Dual-sensor RTM is, therefore, promising for the computation of multi-component seismic data.

  19. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  20. Characterizing Broadband Acoustic Propagation Scintillation and Modelling Scattering and Reverberation for Sensing in a Random Ocean Waveguide

    DTIC Science & Technology

    2014-09-30

    Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 annulus offset from the origin in the complex plane. The phase distributions are found to...Complex field, (b) amplitude and (c) phase distributions of ocean acoustic signal propagated over small source-receiver separations in the Gulf of

  1. Double-Capon and double-MUSICAL for arrival separation and observable estimation in an acoustic waveguide

    NASA Astrophysics Data System (ADS)

    Touzé, Grégoire Le; Nicolas, Barbara; Mars, Jérôme I.; Roux, Philippe; Oudompheng, Benoit

    2012-12-01

    Recent developments in shallow water ocean acoustic tomography propose the use of an original configuration composed of two source-receiver vertical arrays and wideband sources. The recording space thus has three dimensions, with two spatial dimensions and the frequency dimension. Using this recording space, it is possible to build a three-dimensional (3D) estimation space that gives access to the three observables associated with the acoustic arrivals: the direction of departure, the direction of arrivals, and the time of arrival. The main interest of this 3D estimation space is its capability for the separation of acoustic arrivals that usually interfere in the recording space, due to multipath propagation. A 3D estimator called double beamforming has already been developed, although it has limited resolution. In this study, the new 3D high-resolution estimators of double Capon and double MUSICAL are proposed to achieve this task. The ocean acoustic tomography configuration allows a single recording realization to estimate the cross-spectral data matrix, which is necessary to build high-resolution estimators. 3D smoothing techniques are thus proposed to increase the rank of the matrix. The estimators developed are validated on real data recorded in an ultrasonic tank, and their detection performances are compared to existing 2D and 3D methods.

  2. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

    PubMed Central

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.

    2014-01-01

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications. PMID:25425458

  3. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

    NASA Astrophysics Data System (ADS)

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.

    2014-11-01

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications.

  4. Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer.

    PubMed

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J K

    2014-11-26

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications.

  5. Ultrasonic level and temperature sensor for power reactor applications

    SciTech Connect

    Dress, W.B.: Miller, G.N.

    1983-01-01

    An ultrasonic waveguide employing torsional and extensional acoustic waves has been developed for use as a level and temperature sensor in pressurized and boiling water nuclear power reactors. Features of the device include continuous measurement of level, density, and temperature producing a real-time profile of these parameters along a chosen path through the reactor vessel.

  6. Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Bo; Gu, Hang; He, Xing-Li; Xuan, Wei-Peng; Chen, Jin-Kai; Wang, Xiao-Zhi; Luo, Ji-Kui

    2015-05-01

    Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274037 and 61301046) and the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120101110031 and 20120101110054).

  7. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  8. Design of acoustic wave biochemical sensors using micro-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Valentine, Jane E.; Przybycien, Todd M.; Hauan, Steinar

    2007-03-01

    Acoustic wave biochemical sensors work by detecting the frequency shifts resulting from the binding of target molecules to a functionalized resonator. Resonator types currently in use or under development include macroscopic quartz crystal microbalances (QCMs) as well as a number of different integrated Micro-electro-mechanical Systems (MEMS) structures. Due to an increased resonator surface area to mass ratio, we believe that membrane-based MEMS systems are particularly promising with regard to sensitivity. Prototypes have been developed [S. Hauan et al., U.S. Patent Application (filed 6 Nov. 2003)] and preliminary calculations [M. J. Bartkovsky et al., paper 385e presented at the AIChE Annual Meeting, Nov. 2003; J. E. Valentine et al., paper 197h presented at the AICHE Annual Meeting, Nov. 2003] indicate significant improvements over other methods, both macroscopic and MEMS based. In this article we describe our work on a MEMS-based acoustic wave biochemical sensor using a membrane resonator. We demonstrate the effects of spatial distributions of mass on the membrane on sensitivity and show how to use this spatial sensitivity to detect multiple targets simultaneously. To do so we derive a function approximating the membrane response surface to spatial mass loadings under the applicable range of conditions. We verify the agreement using finite element methods, and present our initial sensitivity calculations demonstrating the advantages of variable mass loadings.

  9. Estimation of respiratory rate and heart rate during treadmill tests using acoustic sensor.

    PubMed

    Popov, B; Sierra, G; Telfort, V; Agarwal, R; Lanzo, V

    2005-01-01

    The objective was to test the robustness of an acoustic method to estimate respiratory rates (RR) during treadmill test. The accuracy was assessed by the comparison with simultaneous estimates from a capnograph, using as a common reference a pneumotachometer. Eight subjects without any pulmonary disease were enrolled. Tracheal sounds were acquired using a contact piezoelectric sensor placed on the subject's throat and analyzed using a combined investigation of the sound envelope and frequency content. The capnograph and pneumotachometer were coupled to a face mask worn by the subjects. There was a strong linear correlation between all three methods (r2ranged from 0.8 to 0.87), and the SEE ranged from 1.97 to 2.36. As a conclusion, the accuracy of the respiratory rate estimated from tracheal sounds on adult subjects during treadmill stress test was comparable to the accuracy of a commercial capnograph. The heart rate (HR) estimates can also be derived from carotid pulse using the same single sensor placed on the subject's throat. Compared to the pulse oximeter the results show an agreement of acoustic method with r2=0.76 and SEE = 3.51.

  10. Visualization of stress wave propagation via air-coupled acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan

    2017-02-01

    We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.

  11. Modified Particle Filtering Algorithm for Single Acoustic Vector Sensor DOA Tracking

    PubMed Central

    Li, Xinbo; Sun, Haixin; Jiang, Liangxu; Shi, Yaowu; Wu, Yue

    2015-01-01

    The conventional direction of arrival (DOA) estimation algorithm with static sources assumption usually estimates the source angles of two adjacent moments independently and the correlation of the moments is not considered. In this article, we focus on the DOA estimation of moving sources and a modified particle filtering (MPF) algorithm is proposed with state space model of single acoustic vector sensor. Although the particle filtering (PF) algorithm has been introduced for acoustic vector sensor applications, it is not suitable for the case that one dimension angle of source is estimated with large deviation, the two dimension angles (pitch angle and azimuth angle) cannot be simultaneously employed to update the state through resampling processing of PF algorithm. To solve the problems mentioned above, the MPF algorithm is proposed in which the state estimation of previous moment is introduced to the particle sampling of present moment to improve the importance function. Moreover, the independent relationship of pitch angle and azimuth angle is considered and the two dimension angles are sampled and evaluated, respectively. Then, the MUSIC spectrum function is used as the “likehood” function of the MPF algorithm, and the modified PF-MUSIC (MPF-MUSIC) algorithm is proposed to improve the root mean square error (RMSE) and the probability of convergence. The theoretical analysis and the simulation results validate the effectiveness and feasibility of the two proposed algorithms. PMID:26501280

  12. Peptide Optical waveguides.

    PubMed

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  13. A re-expansion method for determining the acoustical impedance and the scattering matrix for the waveguide discontinuity problem

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2010-01-01

    The paper gives a new method for analyzing planar discontinuities in rectangular waveguides. The method consists of a re-expansion of the normal modes in the two ducts at the junction plane into a system of functions accounting for the velocity singularities at the corner points. As the new expansion has an exponential convergence, only a few terms have to be considered for obtaining the solution of most practical problems. To see how the method works some closed form solutions, obtained by the conformal mapping method, are used to discuss the convergence of the re-expanded series when the number of retained terms increases. The equivalent impedance accounting for nonplanar waves into a plane-wave analysis is determined. Finally, the paper yields the scattering matrix which describes the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both parts of the duct. PMID:20707432

  14. Development of Magnetically Excited Flexural Plate Wave Devices for Implementation as Physical, Chemical, and Acoustic Sensors, and as Integrated Micro-Pumps for Sensored Systems

    NASA Astrophysics Data System (ADS)

    Schubert, W. K.; Mitchell, M. A.; Graf, D. C.; Shul, R. J.

    2002-05-01

    The magnetically excited flexural plate wave (mag-FPW) device has great promise as a versatile sensor platform. FPW's can have better sensitivity at lower operating frequencies than surface acoustic wave (SAW) devices. Lower operating frequency simplifies the control electronics and makes integration of sensor with electronics easier. Magnetic rather than piezoelectric excitation of the FPW greatly simplifies the device structure and processing by eliminating the need for piezoelectric thin films, also simplifying integration issues. The versatile mag-FPW resonator structure can potentially be configured to fulfill a number of critical functions in an autonomous sensored system. As a physical sensor, the device can be extremely sensitive to temperature, fluid flow, strain, acceleration and vibration. By coating the membrane with self-assembled monolayers (SAMs), or polymer films with selective absorption properties (originally developed for SAW sensors), the mass sensitivity of the FPW allows it to be used as biological or chemical sensors. Yet another critical need in autonomous sensor systems is the ability to pump fluid. FPW structures can be configured as micro-pumps. This report describes work done to develop mag-FPW devices as physical, chemical, and acoustic sensors, and as micro-pumps for both liquid and gas-phase analytes to enable new integrated sensing platform.

  15. Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy

    PubMed Central

    Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly

    2016-01-01

    This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.

  16. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    SciTech Connect

    Peter Ariessohn

    2008-06-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations

  17. Low-frequency target strength and abundance of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during the Ocean Acoustic Waveguide Remote Sensing 2006 Experiment.

    PubMed

    Gong, Zheng; Andrews, Mark; Jagannathan, Srinivasan; Patel, Ruben; Jech, J Michael; Makris, Nicholas C; Ratilal, Purnima

    2010-01-01

    The low-frequency target strength of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during Autumn 2006 spawning season is estimated from experimental data acquired simultaneously at multiple frequencies in the 300-1200 Hz range using (1) a low-frequency ocean acoustic waveguide remote sensing (OAWRS) system, (2) areal population density calibration with several conventional fish finding sonar (CFFS) systems, and (3) low-frequency transmission loss measurements. The OAWRS system's instantaneous imaging diameter of 100 km and regular updating enabled unaliased monitoring of fish populations over ecosystem scales including shoals of Atlantic herring containing hundreds of millions of individuals, as confirmed by concurrent trawl and CFFS sampling. High spatial-temporal coregistration was found between herring shoals imaged by OAWRS and concurrent CFFS line-transects, which also provided fish depth distributions. The mean scattering cross-section of an individual shoaling herring is found to consistently exhibit a strong, roughly 20 dB/octave roll-off with decreasing frequency in the range of the OAWRS survey over all days of the roughly 2-week experiment, consistent with the steep roll-offs expected for sub-resonance scattering from fish with air-filled swimbladders.

  18. Detection of antibodies against hepatitis B virus surface antigen and hepatitis C virus core antigen in plasma with a waveguide-mode sensor.

    PubMed

    Shimizu, Takenori; Tanaka, Torahiko; Uno, Shigeyuki; Ashiba, Hiroki; Fujimaki, Makoto; Tanaka, Mutsuo; Awazu, Koichi; Makishima, Makoto

    2017-02-09

    In large-scale disasters, such as huge significant earthquakes, on-site examination for blood typing and infectious disease screening will be very helpful to save lives of victims who need surgical treatment and/or blood transfusion. However, physical damage, such as building collapse, electric power failure and traffic blockage, disrupts the capacity of the medical system. Portable diagnostic devices are useful in such cases of emergency. In this study, we evaluated a waveguide-mode sensor for detection of anti-hepatitis virus antibodies. First, we examined whether we can detect antigen-antibody interaction on a sensor chip immobilized hepatitis B virus surface (HBs) antigen and hepatitis C virus (HCV) core antigen using monoclonal mouse antibodies for HBs antigen and HCV core antigen. We obtained significant changes in the reflectance spectra, which indicate specific antigen-antibody interaction for anti-HBs antibody and anti-HCV antibody. Next, we examined the effect of horseradish peroxidase-conjugated secondary antibody using aminoethyl carbazole as the peroxidase substrate and found that the colorimetric reaction increases detection sensitivity for anti-HBs antibody more than 300 times. Finally, we successfully detected anti-HBs antibody in human blood samples with an enhancing method using a peroxidase reaction. Thus, a portable device utilizing a waveguide-mode sensor may be applied to on-site blood testing in emergency settings.

  19. LISST-ABS: A Low-Cost Submersible Acoustic Sediment Sensor

    NASA Astrophysics Data System (ADS)

    Slade, W. H.; Agrawal, Y. C.; Dana, D. R.; Leeuw, T.; Pottsmith, C.

    2015-12-01

    The development of low-cost optical sensors (i.e., transmissometers and optical backscattering sensors, OBS) produced the last significant advance in in-situ monitoring of suspended sediment concentration. However, it was well-known from fundamental physics of light scattering and laboratory work, that their response suffered from a severe non-uniformity to grain-size (varying as 1/diameter), susceptibility to biofouling, and limited dynamic range. Here we present the development of a new, low cost, single-point, 8 MHz acoustic backscatter sensor, LISST-ABS that improves on all these shortcomings. For example, the response is nearly flat over 30-400 micron diameters varying within ±30% of the mean (compared with roughly ±400% for OBS over the same size range), fouling is less serious, and the dynamic range spans 5 decades without change of electronic gain. A key innovation of the LISST-ABS is the use of backscatter signal from two range cells in order to measure and compensate for sediment attenuation, allowing a working concentration range exceeding 1 mg/L to 70 g/L (for 7 micron particles).

  20. Acoustic Sensor Planning for Gunshot Location in National Parks: A Pareto Front Approach

    PubMed Central

    González-Castaño, Francisco Javier; Alonso, Javier Vales; Costa-Montenegro, Enrique; López-Matencio, Pablo; Vicente-Carrasco, Francisco; Parrado-García, Francisco J.; Gil-Castiñeira, Felipe; Costas-Rodríguez, Sergio

    2009-01-01

    In this paper, we propose a solution for gunshot location in national parks. In Spain there are agencies such as SEPRONA that fight against poaching with considerable success. The DiANa project, which is endorsed by Cabaneros National Park and the SEPRONA service, proposes a system to automatically detect and locate gunshots. This work presents its technical aspects related to network design and planning. The system consists of a network of acoustic sensors that locate gunshots by hyperbolic multi-lateration estimation. The differences in sound time arrivals allow the computation of a low error estimator of gunshot location. The accuracy of this method depends on tight sensor clock synchronization, which an ad-hoc time synchronization protocol provides. On the other hand, since the areas under surveillance are wide, and electric power is scarce, it is necessary to maximize detection coverage and minimize system cost at the same time. Therefore, sensor network planning has two targets, i.e., coverage and cost. We model planning as an unconstrained problem with two objective functions. We determine a set of candidate solutions of interest by combining a derivative-free descent method we have recently proposed with a Pareto front approach. The results are clearly superior to random seeding in a realistic simulation scenario. PMID:22303135

  1. Acoustic sensor planning for gunshot location in national parks: a pareto front approach.

    PubMed

    González-Castaño, Francisco Javier; Alonso, Javier Vales; Costa-Montenegro, Enrique; López-Matencio, Pablo; Vicente-Carrasco, Francisco; Parrado-García, Francisco J; Gil-Castiñeira, Felipe; Costas-Rodríguez, Sergio

    2009-01-01

    In this paper, we propose a solution for gunshot location in national parks. In Spain there are agencies such as SEPRONA that fight against poaching with considerable success. The DiANa project, which is endorsed by Cabaneros National Park and the SEPRONA service, proposes a system to automatically detect and locate gunshots. This work presents its technical aspects related to network design and planning. The system consists of a network of acoustic sensors that locate gunshots by hyperbolic multi-lateration estimation. The differences in sound time arrivals allow the computation of a low error estimator of gunshot location. The accuracy of this method depends on tight sensor clock synchronization, which an ad-hoc time synchronization protocol provides. On the other hand, since the areas under surveillance are wide, and electric power is scarce, it is necessary to maximize detection coverage and minimize system cost at the same time. Therefore, sensor network planning has two targets, i.e., coverage and cost. We model planning as an unconstrained problem with two objective functions. We determine a set of candidate solutions of interest by combining a derivative-free descent method we have recently proposed with a Pareto front approach. The results are clearly superior to random seeding in a realistic simulation scenario.

  2. New Application of Shear Horizontal Surface Acoustic Wave Sensors to Identifying Fruit Juices

    NASA Astrophysics Data System (ADS)

    Kondoh, Jun; Shiokawa, Showko

    1994-05-01

    The objective of this paper is to present a new application of shear horizontal surface acoustic wave (SH-SAW) devices on 36° rotated Y-cut X-propagating LiTaO3 for a sensing system that can identify liquid samples, such as fruit juices. Theoretical sensor sensitivity for acoustoelectric interaction with a liquid loaded on the SAW propagation surface was derived and confirmed with experimental results. The results strongly suggested that by employing SH-SAW devices with different center frequencies the sensor can recognize many liquid samples without a film coated on the substrate surface. In the experiment, the sensing system which identifies fruit juices was fabricated using three SH-SAW devices with center frequencies of 30, 50, and 100 MHz. Identification of samples, eleven kinds of fruit juices, was achieved by classification in principal component analysis and discriminant analysis. Since the SH-SAW sensor without a coating film has intrinsically good reproducibility and stability, it is effective for identification and quality control of liquid samples.

  3. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    PubMed

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  4. Acoustic emission-based sensor analysis and damage classification for structural health monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Uprety, Bibhisha

    Within the aerospace industry the need to detect and locate impact events, even when no visible damage is present, is important both from the maintenance and design perspectives. This research focused on the use of Acoustic Emission (AE) based sensing technologies to identify impact events and characterize damage modes in composite structures for structural health monitoring. Six commercially available piezoelectric AE sensors were evaluated for use with impact location estimation algorithms under development at the University of Utah. Both active and passive testing were performed to estimate the time of arrival and plate wave mode velocities for impact location estimation. Four sensors were recommended for further comparative investigations. Furthermore, instrumented low-velocity impact experiments were conducted on quasi-isotropic carbon/epoxy composite laminates to initiate specific types of damage: matrix cracking, delamination and fiber breakage. AE signal responses were collected during impacting and the test panels were ultrasonically C-scanned after impact to identify the internal damage corresponding to the AE signals. Matrix cracking and delamination damage produced using more compliant test panels and larger diameter impactor were characterized by lower frequency signals while fiber breakage produced higher frequency responses. The results obtained suggest that selected characteristics of sensor response signals can be used both to determine whether damage is produced during impacting and to characterize the types of damage produced in an impacted composite structure.

  5. Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network

    PubMed Central

    Caiti, Andrea; Calabrò, Vincenzo; Dini, Gianluca; Duca, Angelica Lo; Munafò, Andrea

    2012-01-01

    Methodologies and algorithms are presented for the secure cooperation of a team of autonomous mobile underwater sensors, connected through an acoustic communication network, within surveillance and patrolling applications. In particular, the work proposes a cooperative algorithm in which the mobile underwater sensors (installed on Autonomous Underwater Vehicles—AUVs) respond to simple local rules based on the available information to perform the mission and maintain the communication link with the network (behavioral approach). The algorithm is intrinsically robust: with loss of communication among the vehicles the coverage performance (i.e., the mission goal) is degraded but not lost. The ensuing form of graceful degradation provides also a reactive measure against Denial of Service. The cooperative algorithm relies on the fact that the available information from the other sensors, though not necessarily complete, is trustworthy. To ensure trustworthiness, a security suite has been designed, specifically oriented to the underwater scenario, and in particular with the goal of reducing the communication overhead introduced by security in terms of number and size of messages. The paper gives implementation details on the integration between the security suite and the cooperative algorithm and provides statistics on the performance of the system as collected during the UAN project sea trial held in Trondheim, Norway, in May 2011. PMID:22438748

  6. Secure cooperation of autonomous mobile sensors using an underwater acoustic network.

    PubMed

    Caiti, Andrea; Calabrò, Vincenzo; Dini, Gianluca; Lo Duca, Angelica; Munafò, Andrea

    2012-01-01

    Methodologies and algorithms are presented for the secure cooperation of a team of autonomous mobile underwater sensors, connected through an acoustic communication network, within surveillance and patrolling applications. In particular, the work proposes a cooperative algorithm in which the mobile underwater sensors (installed on Autonomous Underwater Vehicles-AUVs) respond to simple local rules based on the available information to perform the mission and maintain the communication link with the network (behavioral approach). The algorithm is intrinsically robust: with loss of communication among the vehicles the coverage performance (i.e., the mission goal) is degraded but not lost. The ensuing form of graceful degradation provides also a reactive measure against Denial of Service. The cooperative algorithm relies on the fact that the available information from the other sensors, though not necessarily complete, is trustworthy. To ensure trustworthiness, a security suite has been designed, specifically oriented to the underwater scenario, and in particular with the goal of reducing the communication overhead introduced by security in terms of number and size of messages. The paper gives implementation details on the integration between the security suite and the cooperative algorithm and provides statistics on the performance of the system as collected during the UAN project sea trial held in Trondheim, Norway, in May 2011.

  7. Two clover-shaped piezoresistive silicon microphones for photo acoustic gas sensors

    NASA Astrophysics Data System (ADS)

    Grinde, C.; Sanginario, A.; Ohlckers, P. A.; Jensen, G. U.; Mielnik, M. M.

    2010-04-01

    Low cost CO2 gas sensors for demand-controlled ventilation can lower the energy consumption and increase comfort and hence productivity in office buildings and schools. The photo aoustic principle offers very high sensitivity and selectivity when used for gas trace analysis. Current systems are too expensive and large for in-duct mounting. Here, the design, modeling, fabrication and characterization of two micromachined silicon microphones with piezoresistive readout designed for low cost photo acoustic gas sensors are presented. The microphones have been fabricated using a foundry MPW service. One of the microphones has been fabricated using an additional etching step that allows etching through membranes with large variations in thickness. To increase sensitivity and resolution, a design based on a released membrane suspended by four beams was chosen. The microphones have been characterized for frequencies up to 1 kHz and 100 Hz, respectively. Averaged sensitivities are measured to be 30 µV/(V × Pa) and 400 µV/(V × Pa). The presented microphones offer increased sensitivities compared to similar sensors.

  8. High-frequency, high-sensitivity acoustic sensor implemented on ALN/Si substrate

    NASA Astrophysics Data System (ADS)

    Caliendo, C.; Imperatori, P.

    2003-08-01

    AlN films, 1.6-6.3 μm thick, were sputtered at 200 °C on Si(100) and Si(111) substrates. The films were crack-free, uniform, and c-axis oriented. The experimental phase velocities of surface acoustic waves (SAW) propagating in the AlN/Si structures were estimated and showed only a small discrepancy (20-40 m/s) compared to the calculated theoretical values. A SAW resonator (SAWR)-based chemical sensor, operating at about 700 MHz, was implemented on AlN/Si. The SAWR surface was covered with a polymer film sensitive to relative humidity (RH) changes, already tested for RH sensing in previous works on SAW delay lines implemented on AlN/Si and ZnO/Si and operating at about 130 MHz. The RH mass sensitivity and the detection limit of the SAWR sensor improved by 38% and by one order of magnitude, respectively, compared to the delay line-based sensors previously tested.

  9. Mass sensitivity analysis and designing of surface acoustic wave resonators for chemical sensors

    NASA Astrophysics Data System (ADS)

    Kshetrimayum, Roshan; Yadava, R. D. S.; Tandon, R. P.

    2009-05-01

    The sensitivity of surface acoustic wave (SAW) chemical sensors depends on several factors such as the frequency and phase point of SAW device operation, sensitivity of the SAW velocity to surface mass loading, sensitivity of the SAW oscillator resonance to the loop phase shift, film thickness and oscillator electronics. This paper analyzes the influence of the phase point of operation in SAW oscillator sensors based on two-port resonator devices. It is found that the mass sensitivity will be enhanced if the SAW device has a nonlinear dependence on the frequency (delay ~ frequency-1). This requires the device to generate and operate in a ωτg(ω) = const region in the device passband, where ω denotes the angular frequency of oscillation and τg(ω) denotes the phase slope of the SAW resonator device. A SAW coupled resonator filter (CRF) that take advantage of mode coupling is considered in realizing such a device to help in shaping the phase transfer characteristics of a high mass sensitivity sensor. The device design and simulation results are presented within the coupling-of-modes formalism.

  10. Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides

    NASA Astrophysics Data System (ADS)

    Charlton, Christy; Temelkuran, Burak; Dellemann, Gregor; Mizaikoff, Boris

    2005-05-01

    An integrated midinfrared sensing system for trace level (ppb) gas analysis combining a quantum cascade laser with an emission frequency of 10.3μm with a frequency matched photonic band-gap hollow core waveguide has been developed, demonstrating the sensing application of photonic band-gap fibers. The photonic band-gap fiber simultaneously acts as a wavelength selective waveguide and miniaturized gas cell. The laser emission wavelength corresponds to the vibrational C-H stretch band of ethyl chloride gas. This sensing system enabled the detection of ethyl chloride at concentration levels of 30ppb (v/v) with a response time of 8s probing a sample volume of only 1.5mL in a transmission absorption measurement within the photonic band-gap hollow core waveguide, which corresponds to a sensitivity improvement by three orders of magnitude compared to previously reported results obtained with conventional hollow waveguides.

  11. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  12. The derivative of a waveguide acoustic field with respect to a three-dimensional sound speed perturbation

    NASA Astrophysics Data System (ADS)

    Thode, Aaron

    2004-06-01

    Semianalytic expressions are derived for the first-order derivative of a pressure field in a laterally homogeneous waveguide, with respect to an arbitrary three-dimensional refractive index perturbation in either the water column or ocean bottom. These expressions for the ``environmental derivative,'' derived using an adjoint method, require a three-dimensional spatial correlation between two Green's functions, weighted by an environmental parameter basis function, with the Green's functions expressed in terms of normal modes. When a particular set of orthogonal spatial basis functions is chosen, the three-dimensional spatial integral can be converted into a set of one-dimensional integrations over depth and azimuth. The use of the orthogonal basis permits environmental derivatives to be computed for an arbitrary sound-speed perturbation. To illustrate the formulas, a simple sensitivity study is presented that explores under what circumstances three-dimensional plane-wave and cylindrical perturbations produce non-negligible horizontal refraction effects, for a fixed source/receiver geometry. Other potential applications of these formulas include benchmarking three-dimensional propagation codes, and computing Cramer-Rao bounds for three-dimensional environmental parameter estimates, including internal wave components.

  13. Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection.

    PubMed

    Han, Ming; Liu, Tongqing; Hu, Lingling; Zhang, Qi

    2013-12-02

    We theoretically and experimentally demonstrate a fiber-optic ultrasonic sensor system based on a fiber-ring laser whose cavity consisting of a regular fiber Bragg grating (FBG) and a tunable optical band-pass filter (TOBPF). The FBG is the sensing element and the TOBPF is used to set the lasing wavelength at a point on the spectral slope of the FBG. The ultrasonic signal is detected by the variations of the laser output intensity in response to the cold-cavity loss modulations from the ultrasonically-induced FBG spectral shift. The system demonstrated here has a simple structure and low cost, making it attractive for acoustic emission detection in structure health monitoring.

  14. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-01-01

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay. PMID:27618044

  15. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote

  16. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.

    1995-09-01

    A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

  17. Lightweight filter architecture for energy efficient mobile vehicle localization based on a distributed acoustic sensor network.

    PubMed

    Kim, Keonwook

    2013-08-23

    The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.

  18. Cetacean population density estimation from single fixed sensors using passive acoustics.

    PubMed

    Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica

    2011-06-01

    Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data.

  19. Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring.

    PubMed

    Chen, Da; Song, Shuren; Ma, Jilong; Zhang, Zhen; Wang, Peng; Liu, Weihui; Guo, Qiuquan

    2017-05-15

    Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1μl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R(2)=0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring.

  20. Lightweight Filter Architecture for Energy Efficient Mobile Vehicle Localization Based on a Distributed Acoustic Sensor Network

    PubMed Central

    Kim, Keonwook

    2013-01-01

    The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably. PMID:23979482

  1. Sound-maps of environmentally sensitive areas constructed from Wireless Acoustic Sensors Network data

    NASA Astrophysics Data System (ADS)

    Michailidis, E. T.; Liaperdos, J.; Tatlas, N.-A.; Potirakis, S. M.; Rangoussi, M.

    2016-03-01

    “E-SOUNDMAPS” is a distributed microelectronic system for the sound/acoustic monitoring of areas of environmental interest that is based on an appropriately designed wireless acoustic sensor network (WASN). It involves the automated generation of multi-level sound-maps for environmental assessment of areas of interest. This paper focuses on the method and the software application for the construction of sound-maps, which is developed as part of the integrated “E-SOUNDMAPS” system. The software application periodically produces geographically-referenced, accurate environmental sound information, based on real- field measurement data, and integrates them in the geographic map of the area of interest in a concise and comprehensive manner. Following the field recording of sound and the hierarchical recognition/classification of sound events and corresponding sources, the obtained sound sources characterization tags feed the specific software application. The output is a multilevel soundmap, constructed on the basis of the data and published electronically on the Web, for human inspection and assessment. All necessary steps for handling, archiving, monitoring, visualization and retrieval of sound data are also presented.

  2. Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    SciTech Connect

    Akazawa, Housei Fukuda, Hiroshi

    2015-05-15

    We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on optical anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.

  3. Calibration of AN Acoustic Sensor (geophone) for Continuous Bedload Monitoring in Mountainous Streams

    NASA Astrophysics Data System (ADS)

    Tsakiris, A. G.; Papanicolaou, T.

    2010-12-01

    Measurement of bedload rates is a crucial component in the study of alluvial processes in mountainous streams. Stream restoration efforts, the validation of morphodynamic models and the calibration empirical transport formulae rely on accurate bedload transport measurements. Bedload measurements using traditional methods (e.g. samplers, traps) are time consuming, resource intensive and not always feasible, especially at higher flow conditions. These limitations could potentially be addressed by acoustic instruments, which may provide unattended, continuous bedload measurements even at higher flow conditions, provided that these instruments are properly calibrated. The objective of this study is to calibrate an acoustic instrument (geophone) for performing bedload measurements in a well-monitored laboratory environment at conditions corresponding to low flow regime in mountainous streams. The geophone was manufactured by ClampOn® and was attached to the bottom of a steel plate with dimensions 0.15x0.15 m. The geophone registers the energy of the acoustic signal produced by the movement of the bedload particles over the steel plate with time resolution of one second. The plate-sensor system was installed in an acrylic housing such that the steel plate top surface was at the same level with the surface of a flat porous bed consisting of unisize spheres with diameter 19.1 mm. Unisize spherical glass particles, 15.9 mm in diameter, were preplaced along a 2 m long section upstream of the sensor, and were entrained over the steel plate. In these experiments, the geophone records spanned the complete experiment duratio. Plan view video of the particle movement over the steel plate was recorded via an overhead camera, and was used to calculate the actual bedload rate over the steel plate. Synchronized analysis of this plan view video and the geophone time series revealed that the geophone detected 62% of the bedload particles passing over the steel plate, which triggered

  4. Acoustic sensor versus electrocardiographically derived respiratory rate in unstable trauma patients.

    PubMed

    Yang, Shiming; Menne, Ashley; Hu, Peter; Stansbury, Lynn; Gao, Cheng; Dorsey, Nicolas; Chiu, William; Shackelford, Stacy; Mackenzie, Colin

    2016-06-07

    Respiratory rate (RR) is important in many patient care settings; however, direct observation of RR is cumbersome and often inaccurate, and electrocardiogram-derived RR (RRECG) is unreliable. We asked how data derived from the first 15 min of RR recording after trauma center admission using a novel acoustic sensor (RRa) would compare to RRECG and to end-tidal carbon dioxide-based RR ([Formula: see text]) from intubated patients, the "gold standard" in predicting life-saving interventions in unstable trauma patients. In a convenience sample subset of trauma patients admitted to our Level 1 trauma center, enrolled in the ONPOINT study, and monitored with RRECG, some of whom also had [Formula: see text] data, we collected RRa using an adhesive sensor with an integrated acoustic transducer (Masimo RRa™). Using Bland-Altman analysis of area under the receiver operating characteristic (AUROC) curves, we compared the first 15 min of continuous RRa and RRECG to [Formula: see text] and assessed the performance of these three parameters compared to the Revised Trauma Score (RTS) in predicting blood transfusion 3, 6, and 12 h after admission. Of the 1200 patients enrolled in ONPOINT from December 2011 to May 2013, 1191 had RRECG data recorded in the first 15 min, 358 had acoustic monitoring, and 14 of the latter also had [Formula: see text]. The three groups did not differ demographically or in mechanism of injury. RRa showed less bias (0.8 vs. 6.9) and better agreement than RRECG when compared to [Formula: see text]. At [Formula: see text] 10-29 breaths per minute, RRa was more likely to be the same as [Formula: see text] and assign the same RTS. In predicting transfusion, features derived from RRa and RRECG gave AUROCs 0.59-0.66 but with true positive rate 0.70-0.89. RRa monitoring is a non-invasive option to glean valid RR data to assist clinical decision making and could contribute to prediction models in non-intubated unstable trauma patients.

  5. [Comparision of forced expiratory time, recorded by two spirometers with flow sensors of various types, and acoustic duration of tracheal forced expiratory noises].

    PubMed

    Malaeva, V V; Pochekutova, I A; Korenbaum, V I

    2015-01-01

    In the sample of 44 volunteers forced expiratory time values obtained in spirometers, equipped with flow sensor of Lilly type and turbine flow sensor, and acoustic duration of tracheal forced expiratory noises are compared. It is shown that spirometric forced expiratory time is dependent on flow sensor type. Therefore it can't be used in diagnostic aims.

  6. Possibility of tailoring ne vs. cLi relations in lithium niobate optical waveguides for sensors applications

    NASA Astrophysics Data System (ADS)

    Spirkova-Hradilova, Jarmila; Nekvindova, Pavla; Vacik, Jiri; Cervena, Jarmila; Schroefel, Josef

    1999-12-01

    We present results of our study of concentration profiles of lithium (cLi) in annealed proton exchanged (APE) waveguiding layers as measured by the neutron depth profiling method. This non-destructive method is based on the 6Li(n,(alpha) )3H reaction induced by thermal neutrons and allowed easy monitoring of cLi profiles in a large number of samples fabricated under various fabrication conditions. Our systematic study revealed that there was no linear relationship which unambiguously attributed (Delta) ne to (Delta) cLi, on contrast with up to now generally accepted opinion. Every particular waveguide has very similar mirror-shaped ne as well as cLi depth profiles, but, generally, all the waveguides can not be characterized with the same ne vs. cLi relationship. The most important fabrication step has appeared to be the post-exchange annealing, during which lithium atoms are transported towards the sample surfaces. The annealing regime pre-destined not only the depth distribution of lithium atoms, but as a consequence of it, also other properties of the waveguiding region. We have formulated ne vs. cLi semi-empirical relationship and listed a set of case-dependent empirical constants for our fabrication system. That allows us to fabricate the APE waveguides with a priori given properties for a wide range of special applications.

  7. Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Gao, Xiangyang; Guo, Tingting; Xiao, Jun; Fan, Shangchun; Jin, Wei

    2015-08-01

    A miniature Fabry-Perot interferometric acoustic sensor with an ultra-high pressure sensitivity was constructed by using approximately 13 layers of graphene film as the diaphragm. The extremely thin diaphragm was transferred onto the endface of a ferrule, which had an inner diameter of 125 μm, and van der Waals interactions between the graphene diaphragm and its substrate created a low finesse Fabry-Perot interferometer with a cavity length of 98 μm. Acoustic testing demonstrated a pressure-induced deflection of 2380 nm kPa-1 and a noise equivalent acoustic signal level of ~2.7 mPa/Hz1/2 for a 3 dB bandwidth with a center frequency of 15 kHz. The sensor also exhibited a dynamic frequency response between 1 and 20 kHz, which conformed well to the result obtained by a reference microphone. The use of a suspended graphene diaphragm has potential applications in highly sensitive pressure/acoustic sensors.

  8. Energy Balanced Strategies for Maximizing the Lifetime of Sparsely Deployed Underwater Acoustic Sensor Networks

    PubMed Central

    Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan

    2009-01-01

    Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime. PMID:22399970

  9. Throughput and energy efficiency of a cooperative hybrid ARQ protocol for underwater acoustic sensor networks.

    PubMed

    Ghosh, Arindam; Lee, Jae-Won; Cho, Ho-Shin

    2013-11-08

    Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC) techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ) for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ) and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ) using rate-compatible punctured convolution (RCPC) codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ). Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol.

  10. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  11. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors.

    PubMed

    Mohanan, Ajay Achath; Islam, Md Shabiul; Ali, Sawal Hamid; Parthiban, R; Ramakrishnan, N

    2013-02-06

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  12. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    PubMed

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection.

  13. Phonon waveguides for electromechanical circuits.

    PubMed

    Hatanaka, D; Mahboob, I; Onomitsu, K; Yamaguchi, H

    2014-07-01

    Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.

  14. Love-Wave Biosensors Using Cross-Linked Polymer Waveguides on LiTaO{sub 3} Substrates

    SciTech Connect

    BENDER,FLORIAN; CERNOSEK,RICHARD W.; JOSSE,F.

    2000-07-13

    The design and performance of Love-wave sensors using cross-linked poly-(methyl methacrylate) waveguides of thickness of 0.3--3.2 {micro}m on LiTaO{sub 3} substrates are described. It is found that this layer-substrate combination provides sufficient waveguidance, and electrical isolation of the IDTs from the liquid environment to achieve low acoustic loss and distortion. In bio-sensing experiments, mass sensitivity up to 1,420 Hz/(ng/mm{sup 2}) is demonstrated.

  15. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system

    NASA Astrophysics Data System (ADS)

    Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen

    2017-04-01

    This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from  ‑100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was  ‑0.967 kHz hPa‑1, namely  ‑0.69 ppm hPa‑1, which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than  ±0.35%, while that of the existing sensor was  ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of  ±0.015 °C and power of 20 mW.

  16. On-chip interrogation of a silicon-on-insulator microring resonator-based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer

    NASA Astrophysics Data System (ADS)

    Yebo, Nebiyu A.; Bogaerts, Wim; Hens, Zeger; Baets, Roel

    2012-01-01

    Silicon -on -insulator (SOI) optical microring resonators fabricated with the standard CMOS fabrication technology have recently gained considerable attention for energy efficient, compact and low cost biomedical and environmental sensing applications. High sensitivity to the surrounding refractive index variations, high compactness, direct wavelength multiplexing capabilities, simplicity, and the promise for mass fabrication are among the interesting features supported by SOI microring resonators. On the other hand, despite the strong case for microring resonators for sensing, there exist some issues which need to be addressed in order to ensure the feasibility of such sensors. One major limitation currently is the cost of optical sources and /or spectrum analyzers required to drive and interrogate these sensors. Either expensive light sources or spectrum analyzers are usually used with sensors built around microring resonators. An attractive approach to address this problem is the use of on-chip spectrometers along with cheap broadband light sources. We experimentally demonstrate on-chip interrogation of an SOI microring resonator based gas sensor with a compact Arrayed Waveguide Grating (AWG) spectrometer. We have designed and fabricated a 200GHz AWG with strongly overlapping output channels, and used it to interrogate the wavelength shift from a ring resonator based ethanol vapor sensor on the same chip. Ethanol vapor concentrations in 100-1000ppm range are readily detected by monitoring the intensity ratio between two adjacent AWG channels to which the microring resonance overlaps. Such an integrated sensor-interrogator approach is presented as an alternative to the current costly and off-chip read-out systems used for ring resonator based sensors.

  17. Capillary waveguide optrodes for Medical applications

    NASA Astrophysics Data System (ADS)

    Kieslinger, Dietmar; Weigl, Bernhard H.; Draxler, Sonja; Lippitsch, Max E.

    1997-01-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. The capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Different optical setups have been investigated and compared regarding its waveguiding properties.

  18. Optical Waveguide Gas Sensors.

    DTIC Science & Technology

    1983-07-13

    i . 0 fu 1.25 11 III.6 MICROCOPY RESOLUTION TEST CH1ART wAtvONAL 4MUVl*DRSt3 Il e UNCLASSIFIED SECURITY CLASSIFICATION OF T IS PAGE (, ato Data...chemical indicator for cyanide vapors. Subsequently, David et al (L) and Orofino et al (4) described similar devices incorporating a ninhydrin -coated

  19. Network of acoustic sensors for the detection of weapons firing: tests for the choice of individual sensing elements

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Hamery, P.

    2010-04-01

    The detection and localization of weapon firing on the battlefield is envisaged by means of acoustic waves. The main objective of this work is to compare various sensing elements that can be integrated in acoustic arrays. Experimental measurements of sound waves obtained by using some of these elements in Unattended Ground Sensors are presented for snipers, mortars or artillery guns. The emphasis will be put on the characteristics of the sensing elements needed to detect and classify the Mach wave generated by a supersonic projectile and the muzzle wave generated by the combustion of the propulsion powder. Examples of preliminary prototypes are presented to illustrate our topic. We will concentrate on a wearable system considered to improve the soldier's awareness of the surrounding threats: this realization consists of a network of three helmets integrating an acoustic array for the detection and localization of snipers.

  20. Observation of acoustic streaming in water/sensor plate/thin water layer/128YX-LiNbO3 for realizing disposable digital microfluidic system

    NASA Astrophysics Data System (ADS)

    Kondoh, Jun; Toyoizumi, Hitoshi

    2012-09-01

    One application of a surface acoustic wave (SAW) device is a droplet manipulator. If a sensor is fabricated on the manipulation surface, digital microfluidic system (DMFS) is realized. For disposable application, structure of sensor plate/liquid layer/ 128YX-LiNbO3 is proposed. In this paper, acoustic streaming on a DMFS is experimentally observed. As the streaming in a droplet depends on a contact angle, it in the tank was observed. The radiation patterns on the 128YX-LiNbO3 and sensor plate are differences. The results indicate that the radiation on the sensor plate depends on plate material and thickness.

  1. Low-temperature cross-talk magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Zhang, Kailiang; Liu, Bo; Yao, Jianquan

    2015-08-15

    A compact fiber-optic magnetic-field sensor based on tapered all-solid waveguide-array fiber (WAF) and magnetic fluid (MF) has been proposed and experimentally demonstrated. The tapered all-solid WAF is fabricated by using a fusion splicer, and the sensor is formed by immersing the tapered all-solid WAF into the MF. The transmission spectra have been measured and analyzed under different magnetic-field intensities. Experimental results show that the acquired magnetic-field sensitivity is 44.57 pm/Oe for a linear magnetic-field intensity range from 50 to 200 Oe. All-solid WAF has very similar thermal expansion coefficient for high- and low-refractive-index glasses, so mode profile is not affected by thermal drifts. Also, magnetically induced refractive-index changes into the ferrofluid are of the order of ∼5×10(-2), while the corresponding thermally induced refractive-index changes into the ferrofluid are expected to be lower. The temperature response has also been detected, and the temperature-induced wavelength shift perturbation is less than 0.3 nm from temperature of 26.9°C-44°C. The proposed magnetic-field sensor has such advantages as low temperature sensitivity, simple structure, and ease of fabrication. It also indicates that the magnetic-field sensor based on tapered all-solid WAF and MF is helpful to reduce temperature cross-sensitivity for the measurement of magnetic field.

  2. A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films

    NASA Astrophysics Data System (ADS)

    Sheng, Lei; Dajing, Chen; Yuquan, Chen

    2011-07-01

    Humidity detection has been widely used in a variety of fields. A humidity sensor with high sensitivity is reported in this paper. A surface acoustic wave resonator (SAWR) with high resonance frequency was fabricated as a basic sensitive component. Various nanotechnologies were used to improve the sensor's performance. A multi-walled carbon nanotube/Nafion (MWCNT/Nafion) composite material was prepared as humidity-sensitive films, deposited on the surface of an SAWR by the electrospinning method. The electrospun MWCNT/Nafion nanofiber films showed a three-dimensional (3D) porous structure, which was profitable for improving the sensor's performance. The new nano-water-channel model of Nafion was also applied in the humidity sensing process. Compared to other research, the present sensor showed excellent sensitivity (above 400 kHz/% relative humidity (RH) in the range from 10% RH to 80% RH), good linearity (R2 > 0.98) and a short response time (~3 s@63%).

  3. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    PubMed

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time.

  4. Self-adapting root-MUSIC algorithm and its real-valued formulation for acoustic vector sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Guo-jun; Xue, Chen-yang; Zhang, Wen-dong; Xiong, Ji-jun

    2012-12-01

    In this paper, based on the root-MUSIC algorithm for acoustic pressure sensor array, a new self-adapting root-MUSIC algorithm for acoustic vector sensor array is proposed by self-adaptive selecting the lead orientation vector, and its real-valued formulation by Forward-Backward(FB) smoothing and real-valued inverse covariance matrix is also proposed, which can reduce the computational complexity and distinguish the coherent signals. The simulation experiment results show the better performance of two new algorithm with low Signal-to-Noise (SNR) in direction of arrival (DOA) estimation than traditional MUSIC algorithm, and the experiment results using MEMS vector hydrophone array in lake trails show the engineering practicability of two new algorithms.

  5. Acoustic emission source localization in thin metallic plates: A single-sensor approach based on multimodal edge reflections.

    PubMed

    Ebrahimkhanlou, A; Salamone, S

    2017-03-14

    This paper presents a new acoustic emission (AE) source localization for isotropic plates with reflecting boundaries. This approach that has no blind spot leverages multimodal edge reflections to identify AE sources with only a single sensor. The implementation of the proposed approach involves three main steps. First, the continuous wavelet transform (CWT) and the dispersion curves of the fundamental Lamb wave modes are utilized to estimate the distance between an AE source and a sensor. This step uses a modal acoustic emission approach. Then, an analytical model is proposed that uses the estimated distances to simulate the edge-reflected waves. Finally, the correlation between the experimental and the simulated waveforms is used to estimate the location of AE sources. Hsu-Nielsen pencil lead break (PLB) tests were performed on an aluminum plate to validate this algorithm and promising results were achieved. Based on these results, the paper reports the statistics of the localization errors.

  6. Layered surface acoustic wave devices for film characterization and sensor applications

    NASA Astrophysics Data System (ADS)

    Pedrick, Michael K.

    2007-05-01

    This work has introduced novel applications for Layered Surface Acoustic Wave (SAW) devices along with concepts for enhanced sensitivity via refined modeling techniques. The derivation of Love Wave and Rayleigh wave propagation pertinent to SAW substrates with thin film overlayers was explored. Novel aspects were presented for Finite Element analysis of Layered SAW sensors. This included coordinate transformations of model geometries to coincide with crystallographic orientations known to generate Surface Skimming Bulk Waves (SSBW) and various Rayleigh wave types of propagation in ST Quartz, 90° rotated ST Quartz, and 77° Y rotated Lithium Tantalate. This work has shown for the first time, FEM prediction of SSBW, Generalized SAW and High Velocity SAW waves. Rayleigh damping properties were extended to develop a Finite element model capable of predicting Layered SAW response to glass transition in a polymer film. The ability to monitor localized mechanical behavior in a PMMA film was explored with Love Waves generated by 90° rotated ST Quartz and Shear Vertical (SV)-SAWs generated by 77° Y rotated Lithium Tantalate. Similar trends were found experimentally as compared to the Finite element models. The capability of Love Wave devices for monitoring polymer film curing behavior was investigated. The ability to qualitatively assess the bond quality between film and substrate was also demonstrated based on the characteristics of the transmitted frequency response. The results of these developments have laid the ground work for developing diagnostic tools to better characterize film behavior in practical applications. Several sensor applications for Layered SAW devices were discussed. The Shear Horizontal displacement of the Love Wave device was exploited to demonstrate the capability of such a sensor for ice detection. A clear distinction between air, water, and ice loading was found with Love Waves whereas SV-SAWs were unable to distinguish between liquid and ice

  7. Characterization of wave physics in acoustic metamaterials using a fiber optic point detector

    NASA Astrophysics Data System (ADS)

    Ganye, Randy; Chen, Yongyao; Liu, Haijun; Bae, Hyungdae; Wen, Zhongshan; Yu, Miao

    2016-06-01

    Due to limitations of conventional acoustic probes, full spatial field mapping (both internal and external wave amplitude and phase measurements) in acoustic metamaterials with deep subwavelength structures has not yet been demonstrated. Therefore, many fundamental wave propagation phenomena in acoustic metamaterials remain experimentally unexplored. In this work, we realized a miniature fiber optic acoustic point detector that is capable of omnidirectional detection of complex spatial acoustic fields in various metamaterial structures over a broadband spectrum. By using this probe, we experimentally characterized the wave-structure interactions in an anisotropic metamaterial waveguide. We further demonstrated that the spatial mapping of both internal and external acoustic fields of metamaterial structures can help obtain important wave propagation properties associated with material dispersion and field confinement, and develop an in-depth understanding of the waveguiding physics in metamaterials. The insights and inspirations gained from our experimental studies are valuable not only for the advancement of fundamental metamaterial wave physics but also for the development of functional metamaterial devices such as acoustic lenses, waveguides, and sensors.

  8. Development of a surface acoustic wave gas sensor for organophosphorus nerve agents employing lanthanide compounds as the chemical interface.

    PubMed

    Nieuwenhuizen, M S; Harteveld, J L

    1994-03-01

    The results of a study dealing with surface acoustic wave gas sensors for organophosphorus compounds such as nerve agents are described. Several lanthanum coordination compounds were applied as the chemical interface. The various sensors prepared were challenged with both the nerve agent sarin and the simulant dimethyl methylphosphonate. Many aspects were studied, such as sensitivity, selectivity, reversibility and response rate as well as the effect of temperature and structural features. Detection limits down to 0.1 ppm were found. Response rates require further improvement. Degradation phenomena were observed which in some cases yielded irreversible responses. The selectivity for organophosphorus compounds was found to be promising.

  9. Suspended particulate matter estimates using optical and acoustic sensors: application in Nestos River plume (Thracian Sea, North Aegean Sea).

    PubMed

    Anastasiou, Sotiria; Sylaios, Georgios K; Tsihrintzis, Vassilios A

    2015-06-01

    The present study investigates the use of combined methods of optical and acoustic sensors, in collaboration with direct in situ measurements, for the calibration and validation of a model transforming acoustic backscatter intensity series into suspended particulate matter (SPM) concentration datasets. The model follows previously elaborated techniques, placing particular attention to the parameterization of the acoustic absorption index as a function of water physical properties. Results were obtained from the annual deployment (during 2007-2008) of an upward-facing acoustic Doppler current profiler (ADCP) (307 kHz), equipped with a Wave Array, and an optical backscatter sensor (OBS), at the bottom of Thassos Passage near Nestos River plume (Thracian Sea, Northern Greece). The OBS was calibrated through linear regression, using 2007 and 2012 field sampling data, exhibiting an error of 13-14 % due to chlorophyll presence. The ADCP signal was calibrated through simultaneous measurements of backscatter intensity and turbidity profiles. Harmonic analysis on the model-produced SPM concentrations explained the tidal influence on their variability, especially during the summer. Empirical orthogonal functions analysis revealed the impact of waves and wave-induced currents on SPM variability. Finally, Nestos River sediment load was found uncorrelated to the SPM change in Thassos Passage, due to the dispersal and sediment deposition near the river mouth.

  10. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips.

    PubMed

    Carlborg, C F; Gylfason, K B; Kaźmierczak, A; Dortu, F; Bañuls Polo, M J; Maquieira Catala, A; Kresbach, G M; Sohlström, H; Moh, T; Vivien, L; Popplewell, J; Ronan, G; Barrios, C A; Stemme, G; van der Wijngaart, W

    2010-02-07

    We present the design, fabrication, and characterisation of an array of optical slot-waveguide ring resonator sensors, integrated with microfluidic sample handling in a compact cartridge, for multiplexed real-time label-free biosensing. Multiplexing not only enables high throughput, but also provides reference channels for drift compensation and control experiments. Our use of alignment tolerant surface gratings to couple light into the optical chip enables quick replacement of cartridges in the read-out instrument. Furthermore, our novel use of a dual surface-energy adhesive film to bond a hard plastic shell directly to the PDMS microfluidic network allows for fast and leak-tight assembly of compact cartridges with tightly spaced fluidic interconnects. The high sensitivity of the slot-waveguide resonators, combined with on-chip referencing and physical modelling, yields a volume refractive index detection limit of 5 x 10(-6) refractive index units (RIUs) and a surface mass density detection limit of 0.9 pg mm(-2), to our knowledge the best reported values for integrated planar ring resonators.

  11. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor

    PubMed Central

    Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong

    2016-01-01

    Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers—wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order—wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119

  12. Biomass of zooplankton estimated by acoustical sensors in the Arabian sea. Final report

    SciTech Connect

    Holliday, D.V.

    1996-11-22

    The long term goal of our overall research program is the development of data-based models to predict ecological relationships of zooplankton, phytoplankton and the physical environment in the sea. The overall objective of the work carried out within the scope of this particular contract was to acoustically measure the dynamics of zooplankton and micronekton in the northern Arabian Sea during several seasons. The scientific focus was to examine the impact, if any, of the two annual monsoons that are thought to drive the ecosystem response in the area. This particular project involved the design and construction of two sensors which were then deployed in the Arabian Sea by several of our co-PIVs in the ONR ARI on Forced Upper Ocean Dynamics during the time period in which the JGOFS program also focused their efforts on the northern Arabian Sea. This contract involved only the development, calibration and maintenance of the instrumentation. The data processing, other than that which has been necessary for the purposes of quality assurance, was not induded in our original proposal.

  13. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration

    PubMed Central

    Hao, Wenchang; Liu, Jiuling; Liu, Minghua; Liang, Yong; He, Shitang

    2016-01-01

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO2) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device. PMID:27104540

  14. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration.

    PubMed

    Hao, Wenchang; Liu, Jiuling; Liu, Minghua; Liang, Yong; He, Shitang

    2016-04-20

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO₂) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device.

  15. A novel acoustic sensor approach to classify seeds based on sound absorption spectra.

    PubMed

    Gasso-Tortajada, Vicent; Ward, Alastair J; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.

  16. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    PubMed Central

    Martinez, Jairo; Sisman, Alper; Onen, Onursal; Velasquez, Dean; Guldiken, Rasim

    2012-01-01

    In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in) thickness, a 6.4 mm (¼ in) grade 8 bolt and a stainless steel washer with 19 mm (¾ in) of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR) analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  17. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks.

    PubMed

    Luque, Joaquín; Larios, Diego F; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-05-18

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance.

  18. Health sensor for human body by using infrared, acoustic energy and magnetic signature

    NASA Astrophysics Data System (ADS)

    Wu, Jerry

    2013-05-01

    There is a general chain of events that applies to infections. Human body infection could causes by many different types of bacteria and virus in different areas or organ systems. In general, doctor can't find out the right solution/treatment for infections unless some certain types of bacteria or virus are detected. These detecting processes, usually, take few days to one week to accomplish. However, some infections of the body may not be able to detect at first round and the patient may lose the timing to receive the proper treatment. In this works, we base on Chi's theory which is an invisible circulation system existed inside the body and propose a novel health sensor which summarizes human's infrared, acoustic energy and magnetic signature and find out, in minutes, the most possible area or organ system that cause the infection just like what Chi-Kung master can accomplish. Therefore, the detection process by doctor will be shortened and it raises the possibility to give the proper treatment to the patient in the earliest timing.

  19. Novel cable coupling technique for improved shallow distributed acoustic sensor VSPs

    NASA Astrophysics Data System (ADS)

    Munn, Jonathan D.; Coleman, Thomas I.; Parker, Beth L.; Mondanos, Michael J.; Chalari, Athena

    2017-03-01

    Vertical seismic profiles (VSPs) collected using fiber optic distributed acoustic sensors (DAS) are becoming increasingly common; yet, ensuring good cable coupling with the borehole wall remains a persistent challenge. Traditional cable deployment techniques used in the petroleum industry are either not possible or do not provide data of sufficient quality for shallow applications. Additionally, no direct field comparison of coupling techniques in the same borehole exists to determine the impacts of poor coupling on DAS VSP data quality. This paper addresses these issues by: (1) presenting a novel cable coupling solution using a removable and relatively inexpensive FLUTe™ flexible borehole liner; and (2) presenting field examples of DAS VSPs under different coupling conditions. The proposed coupling technique is analogous to a fully cemented deployment in that the cable is continuously coupled directly to the formation. Field experiments conducted to assess and validate the technique demonstrate a marked improvement in VSP data quality when the cable is coupled with a flexible borehole liner. Without the liner, seismic profiles are dominated by a high-amplitude cable wave and the p-wave arrival is not observed; however, with cable coupling provided by a borehole liner inflated using hydrostatic pressure, the cable wave is suppressed and clear p-wave arrivals are visible. Additional tests examining the influence of fiber optic cable structure on seismic responses demonstrate that tight buffered fibers are more sensitive to dynamic strain than loose tube fibers making them potentially better suited for certain DAS applications.

  20. Evaluating damage potential of cryogenic concrete using acoustic emission sensors and permeability testing

    NASA Astrophysics Data System (ADS)

    Kogbara, Reginald B.; Parsaei, Boback; Iyengar, Srinath R.; Grasley, Zachary C.; Masad, Eyad A.; Zollinger, Dan G.

    2014-04-01

    This study evaluates the damage potential of concrete of different mix designs subjected to cryogenic temperatures, using acoustic emission (AE) and permeability testing. The aim is to investigate design methodologies that might be employed to produce concrete that resists damage when cooled to cryogenic temperatures. Such concrete would be suitable for primary containment of liquefied natural gas (LNG) and could replace currently used 9% Ni steel, thereby leading to huge cost savings. In the experiments described, concrete cubes, 150 mm x 150 mm x 150 mm, were cast using four different mix designs. The four mixes employed siliceous river sand as fine aggregate. Moreover, limestone, sandstone, trap rock and lightweight aggregate were individually used as coarse aggregates in the mixes. The concrete samples were then cooled from room temperature (20°C) to cryogenic temperature (-165°C) in a temperature chamber. AE sensors were placed on the concrete cubes during the cryogenic freezing process. The damage potential was evaluated in terms of the growth of damage as determined from AE, as a function of temperature and concrete mixture design. The damage potential observed was validated with water permeability testing. Initial results demonstrate the effects of the coefficient of thermal expansion (CTE) of the aggregates on damage growth. Concrete damage (cracking) resistance generally decreased with increasing coarse aggregate CTE, and was in the order, limestone ≥ trap rock << lightweight aggregate ≥ sandstone. Work is in progress to fully understand thermal dilation and damage growth in concrete due to differential CTE of its components.

  1. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    PubMed

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-14

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  2. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    PubMed Central

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  3. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  4. Mechanism of operation and design considerations for surface acoustic wave device vapor sensors

    NASA Astrophysics Data System (ADS)

    Wohltjen, H.

    1984-04-01

    Surface acoustic wave (SAW) devices offer many attractive features for application as vapor phase chemical microsensors. This paper describes the characteristics of SAW devices and techniques by which they can be employed as vapor sensors. The perturbation of SAW amplitude and velocity by polymeric coating films was investigated both theoretically and experimentally. High sensitivity can be achieved when the device is used as the resonating element in a delay line oscillator circuit. A simple equation has been developed from theoretical considerations which offers reasonably accurate quantitative predictions of SAW Device frequency shifts when subjected to a given mass loading. In this mode the SAW device behaves in a fashion very similar to conventional bulk wave quartz crystal microbalance except that the sensitivity can be several orders of magnitude higher and the device size can be several orders of magnitude smaller. Detection of mass changes of less than 1 femtogram by a SAW device having a surface area of 0.0001 square cm. is theoretically possible.

  5. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks

    PubMed Central

    Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-01-01

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375

  6. Tilted fiber Bragg grating sensor interrogation system using a high-resolution silicon-on-insulator arrayed waveguide grating.

    PubMed

    Cheben, Pavel; Post, Edith; Janz, Siegfried; Albert, Jacques; Laronche, Albane; Schmid, Jens H; Xu, Dan-Xia; Lamontagne, Boris; Lapointe, Jean; Delâge, André; Densmore, Adam

    2008-11-15

    We report a compact high-resolution arrayed waveguide grating (AWG) interrogator system designed to measure the relative wavelength spacing between two individual resonances of a tilted fiber Bragg grating (TFBG) refractometer. The TFBG refractometer benefits from an internal wavelength and power reference provided by the core mode reflection resonance that can be used to determine cladding mode perturbations with high accuracy. The AWG interrogator is a planar waveguide device fabricated on a silicon-on-insulator platform, having 50 channels with a 0.18 nm wavelength separation and a footprint of 8 mmx8 mm. By overlaying two adjacent interference orders of the AWG we demonstrate simultaneous monitoring of two widely separated resonances in real time with high wavelength resolution. The standard deviation of the measured wavelength shifts is 1.2 pm, and it is limited by the resolution of the optical spectrum analyzer used for the interrogator calibration measurements.

  7. Monolithic integrated system with an electrowetting-on-dielectric actuator and a film-bulk-acoustic-resonator sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Menglun; Cui, Weiwei; Chen, Xuejiao; Wang, Chao; Pang, Wei; Duan, Xuexin; Zhang, Daihua; Zhang, Hao

    2015-02-01

    Although digital microfluidics has shown great potential in a wide range of applications, a lab-on-a-chip with integrated digital droplet actuators and powerful biochemical sensors is still lacking. To address the demand, a fully integrated chip with electrowetting-on-dielectric (EWOD) and a film bulk acoustic resonator (FBAR) sensor is introduced, where an EWOD actuator manipulates digital droplets and the FBAR sensor detects the presence of substances in the droplets, respectively. The piezoelectric layer of the FBAR sensor and the dielectric layer of the EWOD share the same aluminum nitride (AlN) thin film, which is a key factor to achieve the full integration of the two completely different devices. The liquid droplets are reliably managed by the EWOD actuator to sit on or move off the FBAR sensor precisely. Sessile drop experiments and limit of detection (LOD) experiments are carried out to characterize the EWOD actuator and the FBAR sensor, respectively. Taking advantage of the digital droplet operation, a ‘dry sensing mode’ of the FBAR sensor in the lab-on-a-chip microsystem is proposed, which has a much higher signal to noise ratio than the conventional ‘wet sensing mode’. Hg2+ droplets with various concentrations are transported and sensed to demonstrate the capability of the integrated system. The EWOD-FBAR chip is expected to play an important role in many complex lab-on-a-chip applications.

  8. Characterization of the HIV-1 TAR RNA-Tat peptide and drug interactions by on-line acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Tassew, Nardos Gobena

    This thesis presents the application of the thickness shear-mode (TSM) acoustic wave sensor to the study of RNA-protein and RNA-drug interactions at the solid-liquid interface. The binding of the human immunodeficiency virus-type 1 Tat protein to the trans-activation responsive RNA element (TAR) has been studied using this sensor. Data from such measurements show that the sensor is able to discriminate between different Tat peptides derived from the parent protein based on size. The effects of mutations introduced at specific sites in the protein and RNA on the TAR-Tat binding have also been examined in detail. Reduced level of response in acoustic parameters due to mutations was observed indicating that the decrease in binding in response to site specific mutations can be acoustically detected. Data from acoustic wave sensor measurements indicate that the TAR-Tat binding is also affected by ionic strength. Both the frequency and motional resistance signals show periodic responses when varying concentrations of salt are introduced on a TAR-modified surface. The binding of the two molecules seems to be a function of the response of the nucleic acid to salt concentrations. The kinetics of binding of Tat peptides to TAR RNA and to a bulge mutant analogue (MTAR) is also examined from the rate of change of the series resonant frequency. Results from such analysis illustrate longer Tat peptides formed more stable complexes with TAR RNA and exhibited increased discrimination between mutant and wild type TAR. The binding of two aminoglycoside antibiotics, neomycin and streptomycin, to TAR RNA and their effectiveness in preventing TAR-Tat complex formation has been studied in detail. Binding affinity is directly correlated with the inhibitory potency of these molecules and the TSM sensor shows that neomycin exhibits at least a ten fold greater affinity to TAR and that it is also a more potent inhibitor than streptomycin. The results from this research involving TAR-Tat and

  9. A comparative evaluation of piezoelectric sensors for acoustic emission-based impact location estimation and damage classification in composite structures

    NASA Astrophysics Data System (ADS)

    Uprety, Bibhisha; Kim, Sungwon; Mathews, V. John; Adams, Daniel O.

    2015-03-01

    Acoustic Emission (AE) based Structural Health Monitoring (SHM) is of great interest for detecting impact damage in composite structures. Within the aerospace industry the need to detect and locate these events, even when no visible damage is present, is important both from the maintenance and design perspectives. In this investigation, four commercially available piezoelectric sensors were evaluated for usage in an AE-based SHM system. Of particular interest was comparing the acoustic response of the candidate piezoelectric sensors for impact location estimations as well as damage classification resulting from the impact in fiber-reinforced composite structures. Sensor assessment was performed based on response signal characterization and performance for active testing at 300 kHz and steel-ball drop testing using both aluminum and carbon/epoxy composite plates. Wave mode velocities calculated from the measured arrival times were found to be in good agreement with predictions obtained using both the Disperse code and finite element analysis. Differences in the relative strength of the received wave modes, the overall signal strengths and signal-to-noise ratios were observed through the use of both active testing as well as passive steel-ball drop testing. Further comparative is focusing on assessing AE sensor performance for use in impact location estimation algorithms as well as detecting and classifying damage produced in composite structures due to impact events.

  10. Quantitative determination of protein molecular weight with an acoustic sensor; significance of specific versus non-specific binding.

    PubMed

    Mitsakakis, Konstantinos; Tsortos, Achilleas; Gizeli, Electra

    2014-08-21

    Surface acoustic wave sensors with integrated microfluidics for multi-sample sensing have been implemented in this work towards the quantitative correlation of the acoustic signal with the molecular weight of surface bound proteins investigating different interaction/binding conditions. The results are presented for: (i) four different biotinylated molecules (30 ≤ Mw ≤ 150 kDa) specifically binding to neutravidin; (ii) the same four non-biotinylated molecules, as well as neutravidin, adsorbing onto gold; and (iii) four cardiac marker proteins (86 ≤ Mw ≤ 540 kDa) specifically binding to their homologous antibodies. Surface plasmon resonance was employed as an independent optical mass sensor. A linear relationship was found to exist between the phase change of the acoustic signal and the molecular weight of the proteins in both cases of specific binding. In contrast, non-specific binding of proteins directly onto gold exhibited no such linear relationship. In all three cases phase change was correlated with the bound mass per area. The underlying mechanism behind the different behavior between specific and non-specific binding is discussed by taking into account the geometrical restrictions imposed by the size of the specific biorecognition molecule and the corresponding bound protein. Our results emphasize the quantitative nature of the phase of the acoustic signal in determining the Mw (in the case of specific binding) with a resolution of 15% and the mass of the bound proteins (in all cases), as well as the significance of the biorecognition molecules in deriving the molecular weight from acoustic or optical detectors.

  11. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-04

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM

  12. Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors During Exposure to Gas-Phase Analytes

    SciTech Connect

    Hierlemann, A.; Hill, M.; Ricco, A.J.; Staton, A.W.; Thomas, R.C.

    1999-01-11

    We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseous analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes.

  13. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.

    PubMed

    Grate, J W; Patrash, S J; Kaganovet, S N; Abraham, M H; Wise, B M; Gallagher, N B

    2001-11-01

    In previous work, it was shown that, in principle, vapor descriptors could be derived from the responses of an array of polymer-coated acoustic wave devices. This new chemometric classification approach was based on polymer/vapor interactions following the well-established linear solvation energy relationships (LSERs) and the surface acoustic wave (SAW) transducers being mass sensitive. Mathematical derivations were included and were supported by simulations. In this work, an experimental data set of polymer-coated SAW vapor sensors is investigated. The data set includes 20 diverse polymers tested against 18 diverse organic vapors. It is shown that interfacial adsorption can influence the response behavior of sensors with nonpolar polymers in response to hydrogen-bonding vapors; however, in general, most sensor responses are related to vapor interactions with the polymers. It is also shown that polymer-coated SAW sensor responses can be empirically modeled with LSERs, deriving an LSER for each individual sensor based on its responses to the 18 vapors. Inverse least-squares methods are used to develop models that correlate and predict vapor descriptors from sensor array responses. Successful correlations can be developed by multiple linear regression (MLR), principal components regression (PCR), and partial least-squares (PLS) regression. MLR yields the best fits to the training data, however cross-validation shows that prediction of vapor descriptors for vapors not in the training set is significantly more successful using PCR or PLS. In addition, the optimal dimension of the PCR and PLS models supports the dimensionality of the LSER formulation and SAW response models.

  14. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Li, Weijie; Kong, Qingzhao; Ho, Siu Chun Michael; Lim, Ing; Mo, Y. L.; Song, Gangbing

    2016-11-01

    Acoustic emission (AE) is a nondestructive evaluation technique that is capable of monitoring the damage evolution of concrete structures in real time. Conventionally, AE sensors are surface mounted on the host structures, however, the AE signals attenuate quickly due to the high attenuation properties of concrete structures. This study conducts a feasibility study of using smart aggregates (SAs), which are a type of embedded piezoceramic transducers, as embedded AE sensors for the health monitoring of concrete structures. A plain concrete beam with two surface mounted AE sensors and two embedded SAs was fabricated in laboratory and loaded under a designed three-point-bending test. The performance of embedded SAs were compared with the traditional surface mounted AE sensors in their ability to detect and evaluate the damage to the concrete structure. The results verified the feasibility of using smart aggregates as embedded AE sensors for monitoring structural damage in concrete. Potentially, the low cost smart aggregates could function as embedded AE sensors, providing great sensitivity and high reliability in applications for the structural health monitoring of concrete structures.

  15. Improved Maturity and Ripeness Classifications of Magnifera Indica cv. Harumanis Mangoes through Sensor Fusion of an Electronic Nose and Acoustic Sensor

    PubMed Central

    Zakaria, Ammar; Shakaff, Ali Yeon Md; Masnan, Maz Jamilah; Saad, Fathinul Syahir Ahmad; Adom, Abdul Hamid; Ahmad, Mohd Noor; Jaafar, Mahmad Nor; Abdullah, Abu Hassan; Kamarudin, Latifah Munirah

    2012-01-01

    In recent years, there have been a number of reported studies on the use of non-destructive techniques to evaluate and determine mango maturity and ripeness levels. However, most of these reported works were conducted using single-modality sensing systems, either using an electronic nose, acoustics or other non-destructive measurements. This paper presents the work on the classification of mangoes (Magnifera Indica cv. Harumanis) maturity and ripeness levels using fusion of the data of an electronic nose and an acoustic sensor. Three groups of samples each from two different harvesting times (week 7 and week 8) were evaluated by the e-nose and then followed by the acoustic sensor. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to discriminate the mango harvested at week 7 and week 8 based solely on the aroma and volatile gases released from the mangoes. However, when six different groups of different maturity and ripeness levels were combined in one classification analysis, both PCA and LDA were unable to discriminate the age difference of the Harumanis mangoes. Instead of six different groups, only four were observed using the LDA, while PCA showed only two distinct groups. By applying a low level data fusion technique on the e-nose and acoustic data, the classification for maturity and ripeness levels using LDA was improved. However, no significant improvement was observed using PCA with data fusion technique. Further work using a hybrid LDA-Competitive Learning Neural Network was performed to validate the fusion technique and classify the samples. It was found that the LDA-CLNN was also improved significantly when data fusion was applied. PMID:22778629

  16. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach †

    PubMed Central

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-01-01

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches. PMID:27011187

  17. Underwater Wireless Sensor Networks: How Do Acoustic Propagation Models Impact the Performance of Higher-Level Protocols?

    PubMed Central

    Llor, Jesús; Malumbres, Manuel P.

    2012-01-01

    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios. PMID:22438712

  18. Design and implementation of low complexity wake-up receiver for underwater acoustic sensor networks

    NASA Astrophysics Data System (ADS)

    Yue, Ming

    This thesis designs a low-complexity dual Pseudorandom Noise (PN) scheme for identity (ID) detection and coarse frame synchronization. The two PN sequences for a node are identical and are separated by a specified length of gap which serves as the ID of different sensor nodes. The dual PN sequences are short in length but are capable of combating severe underwater acoustic (UWA) multipath fading channels that exhibit time varying impulse responses up to 100 taps. The receiver ID detection is implemented on a microcontroller MSP430F5529 by calculating the correlation between the two segments of the PN sequence with the specified separation gap. When the gap length is matched, the correlator outputs a peak which triggers the wake-up enable. The time index of the correlator peak is used as the coarse synchronization of the data frame. The correlator is implemented by an iterative algorithm that uses only one multiplication and two additions for each sample input regardless of the length of the PN sequence, thus achieving low computational complexity. The real-time processing requirement is also met via direct memory access (DMA) and two circular buffers to accelerate data transfer between the peripherals and the memory. The proposed dual PN detection scheme has been successfully tested by simulated fading channels and real-world measured channels. The results show that, in long multipath channels with more than 60 taps, the proposed scheme achieves high detection rate and low false alarm rate using maximal-length sequences as short as 31 bits to 127 bits, therefore it is suitable as a low-power wake-up receiver. The future research will integrate the wake-up receiver with Digital Signal Processors (DSP) for payload detection.

  19. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    PubMed

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  20. An ultra-low power and flexible acoustic modem design to develop energy-efficient underwater sensor networks.

    PubMed

    Sánchez, Antonio; Blanc, Sara; Yuste, Pedro; Perles, Angel; Serrano, Juan José

    2012-01-01

    This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 μW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network.

  1. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System

    PubMed Central

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-01-01

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequency-domain and achieves computational complexity reduction. PMID:28230763

  2. Surface Acoustic Wave Based Pressure Sensor with Ground Shielding over Cavity on 41° YX LiNbO3

    NASA Astrophysics Data System (ADS)

    Lee, Keekeun; Wang, Wen; Kim, Geunyoung; Yang, Sangsik

    2006-07-01

    A surface acoustic wave (SAW)-based pressure sensor was fabricated for stable mechanical compression force measurement. A single phase unidirectional transducer (SPUDT) and two acoustic tracks were employed to minimize inherent insertion loss and improve reflectivity from the reflectors. The coupling of modes (COM) theory and finite element methods (FEMs) were used to determine optimal design parameters. A LiNbO3 diaphragm was bonded to a heavily doped silicon substrate with a cavity of ˜250 μm deep, in which gold was lined all over the inner cavity to reduce the coupling loss of SAW energy to the surrounding atmosphere. As a mechanical compression force was applied to the diaphragm, the diaphragm bent, resulting in phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of mechanical compression applied. The measured reflection coefficient S11 showed good agreement with simulated results.

  3. An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks

    PubMed Central

    Sánchez, Antonio; Blanc, Sara; Yuste, Pedro; Perles, Angel; Serrano, Juan José

    2012-01-01

    This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 μW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network. PMID:22969324

  4. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    PubMed Central

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  5. Polymeric slot waveguide for photonics sensing

    NASA Astrophysics Data System (ADS)

    Chovan, J.; Uherek, F.

    2016-12-01

    Polymeric slot waveguide for photonics sensing was designed, simulated and studied in this work. The polymeric slot waveguide was designed on commercial Ormocer polymer platform and operates at visible 632.8 nm wavelength. Designed polymeric slot waveguide detects the refractive index change of the ambient material by evanescent field label-free techniques. The motivation for the reported work was to design a low-cost polymeric slot waveguide for sensing arms of integrated Mach-Zehnder interferometer optical sensor with reduced temperature dependency. The minimal dimensions of advanced sensing slot waveguide structure were designed for researcher direct laser writing fabrication by nonlinear two-photon polymerization. The normalized effective refractive index changes of TE and TM fundamental modes in polymeric slot waveguide and slab waveguides were compared. The sensitivity of the normalized effective refractive index changes of TE and TM fundamental modes on refractive index changes of the ambient material was investigated by glucose-water solutions.

  6. Multipoint relative humidity measurement by polyvinyl alcohol-coated Fresnel reflection-based optical fiber sensors with an array-waveguide grating.

    PubMed

    Wang, Xueping; Zhao, Chun-Liu; Li, Jihui; Jin, Yongxing; Jin, Shangzhong

    2013-04-01

    A simple multipoint humidity measurement by polyvinyl alcohol (PVA)-coated Fresnel reflection-based optical fiber sensors with an Array-Waveguide Grating (AWG) is proposed and demonstrated. Every channel end of the AWG is split as a vertical planar surface, and then is coated with a layer of a PVA whose refractive index is sensitive to moisture. The reflection intensity for each channel will change with its surrounding humidity, since the optical fiber interface's Fresnel reflection is affected strongly by the refractive index difference of the interface two sides. Multiplexing is achieved by the AWG with 16 channels, in which 15 channels can be used as sensing heads when they are coated with a layer of PVA and the left one is used as a reference channel. The experimental setup is simple and easy to handle. Experimental results show that the proposed Fresnel reflection-based optical fiber sensor for multipoint humidity measurement works well and the average sensitivity is 0.135 dB∕% relative humidity (RH) within the measurement range of 30%-80% RH.

  7. The Feasibility of Generalized Acoustic Sensor Operator Training. Final Report for Period February 1974-February 1975.

    ERIC Educational Resources Information Center

    Daniels, Richard W.; Alden, David G.

    The feasibility of generalized approaches to training military personnel in the use of different types of sonar/acoustic warfare systems was explored. The initial phase of the project consisted of the analysis of representative sonar and acoustic equipment to identify training areas and operator performance requirements that could be subjected to…

  8. Cheap DECAF: Density Estimation for Cetaceans from Acoustic Fixed Sensors Using Separate, Non-Linked Devices

    DTIC Science & Technology

    2011-09-30

    whale (Balaenoptera physalus) from a sparse array of ocean bottom seismometers (OBSs) will be the dataset used to develop and test a variety of density...T. Marques. 2009. Taming the Jez monster : Estimating fin whale spatial density using acoustic propagation modeling. J. Acoust. Soc. Am. 126(4):2229

  9. Metallic waveguide mirrors in polymer film waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, S.; Giehl, A. R.; Renno, M.; Fouckhardt, H.

    2001-10-01

    A technology for the fabrication of metallic waveguide mirrors is developed. Plane and curved waveguide mirrors, the latter acting in the same way as cylindrical lenses, are realized in benzocyclobutene (BCB) film waveguides. The waveguide mirror structure is dry-etched into the BCB film waveguide. To enhance the reflectivity of the waveguide mirrors, the waveguide edge is metallized. The BCB film waveguide mirrors are characterized with respect to waveguide attenuation and mirror reflectivity. The waveguide attenuation of the processed BCB waveguide is 0.5 dB/cm. Ag-coated BCB waveguide mirrors show a reflectivity of 71%. The efficiency of total internal reflection (TIR, i.e. in the case without metallization) at the dry-etched waveguide edge is 74%. As an application of the BCB waveguide mirrors a hybrid integrated optical module for Fourier-optical transverse mode selection in broad area lasers (BAL) is proposed.

  10. Indoor localization for global information service using acoustic wireless sensor network

    NASA Astrophysics Data System (ADS)

    Desai, Pratikkumar; Baine, Nicholas; Rattan, Kuldip S.

    2011-06-01

    Indoor localization with sensing capabilities is the missing link for a Geospatial Information System and sensor web. The sensor network is capable of environmental monitoring and geo-tagging sensor data. This paper presents a unique algorithm which uses fusion of Radio Signal Strength Indicator and Time Difference of Arrival for centimeter level accurate indoor localization using wireless sensor network motes. The paper also proposes the integration of various environmental sensors with wireless sensor network. The acquired sensor data can be geo-tagged with the translated global coordinates and additional sensory metadata. With the use of semantic sensor web, this sensor information can be utilized in various decision making scenarios for critical situations. The main goal of the paper is to use indoor localization assisted by sensor fusion and semantic web for first responders in emergency scenarios.

  11. Biotin-streptavidin binding interactions of dielectric filled silicon bulk acoustic resonators for smart label-free biochemical sensor applications.

    PubMed

    Heidari, Amir; Yoon, Yong-Jin; Park, Woo-Tae; Su, Pei-Chen; Miao, Jianmin; Lin, Julius Tsai Ming; Park, Mi Kyoung

    2014-03-07

    Sensor performance of a dielectric filled silicon bulk acoustic resonator type label-free biosensor is verified with biotin-streptavidin binding interactions as a model system. The mass sensor is a micromachined silicon square plate with a dielectric filled capacitive excitation mechanism. The resonance frequency of the biotin modified resonator decreased 315 ppm when exposed to streptavidin solution for 15 min with a concentration of 10(-7) M, corresponding to an added mass of 3.43 ng on the resonator surface. An additional control is added by exposing a bovine serum albumin (BSA)-covered device to streptavidin in the absence of the attached biotin. No resonance frequency shift was observed in the control experiment, which confirms the specificity of the detection. The sensor-to-sensor variability is also measured to be 4.3%. Consequently, the developed sensor can be used to observe in biotin-streptavidin interaction without the use of labelling or molecular tags. In addition, biosensor can be used in a variety of different immunoassay tests.

  12. Biotin-Streptavidin Binding Interactions of Dielectric Filled Silicon Bulk Acoustic Resonators for Smart Label-Free Biochemical Sensor Applications

    PubMed Central

    Heidari, Amir; Yoon, Yong-Jin; Park, Woo-Tae; Su, Pei-Chen; Miao, Jianmin; Lin, Julius Tsai Ming; Park, Mi Kyoung

    2014-01-01

    Sensor performance of a dielectric filled silicon bulk acoustic resonator type label-free biosensor is verified with biotin-streptavidin binding interactions as a model system. The mass sensor is a micromachined silicon square plate with a dielectric filled capacitive excitation mechanism. The resonance frequency of the biotin modified resonator decreased 315 ppm when exposed to streptavidin solution for 15 min with a concentration of 10−7 M, corresponding to an added mass of 3.43 ng on the resonator surface. An additional control is added by exposing a bovine serum albumin (BSA)-covered device to streptavidin in the absence of the attached biotin. No resonance frequency shift was observed in the control experiment, which confirms the specificity of the detection. The sensor-to-sensor variability is also measured to be 4.3%. Consequently, the developed sensor can be used to observe in biotin-streptavidin interaction without the use of labelling or molecular tags. In addition, biosensor can be used in a variety of different immunoassay tests. PMID:24608003

  13. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR)

    PubMed Central

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-01-01

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range. PMID:25915590

  14. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR).

    PubMed

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-04-23

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range.

  15. geoPebble: Combined Seismic, Acoustic, and GPS Sensor with Wireless Communications for Glaciological Applications

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, S.; Burkett, P. G.; Long, B.

    2009-12-01

    Glaciologist and geophysicists study many dynamic processes in glaciated environments such as sliding, crevasse formation, and water flow. These processes generate signals that can be interpreted for fundamental parameters needed for numerical models of glacier and ice sheet flow. These signals include microearthquakes beneath glaciers and ice streams during stick-slip processes; seismically identifiable harmonic tremors associated with subglacial water flow; supraglacial lake drainage which can produce rapid uplift of the 1 m/hr. In addition, researchers use active seismic experiments to determine bed properties such as roughness and lubrication. Currently, each process requires different instrumentation and/or different field equipment to collect the data such as a GPS receiver for displacement, a passive seismic instrument for microearthquakes, and a multichannel seismic recorder for active seismic experiments. We report on the development of an instrument specifically designed for observing dynamic glaciated environments in a single platform, reducing the need for multiple field systems and reducing the cost considerably. The geoPebble wireless seismic acquisition system, designed and built at the Pennsylvania State University, comprises 4 channels of 24-bit seismic and acoustic digitizing, an L1 GPS engine, onboard data storage and an 802.15 ZigBee radio. Three of the four ADC channels are intended to be used with a 3 component seismic sensor. The fourth channel is a dedicated to an audio frequency microphone. The 1 Hz L1 GPS system is capable of horizontal position accuracy to better than 10 cm when post-processed against L1/L2 stations within 10 km. Onboard storage is achieved with a Secure Digital card where volumes now exceed 32 GB. The ZigBee radio is capable of forming a mesh network which reduces transmit and receive power requirements while maintaing communication throughout the array and provides state-of-health information as well as sufficient data

  16. Nonlinear Acoustics: Periodic Waveguide, Finite-Amplitude Propagation in a Medium Having a Distribution of Relaxation Processes, and Production of an Isolated Negative Pulse in Water

    DTIC Science & Technology

    1993-08-24

    TenCate , "Finite amplitude sound near cutoff in higher order modes of a rectangular duct," J. Acoust. Soc. Am. 84, 327-334 (1988). Gen§ 0 7. D. T...Acoust. Soc. Am. 90, 2339(A) (1991) 1109 0 7. James A. TenCate , "Measurements of nonlinear effects in the sound field radiated from a circular

  17. Seismic Waveguide of Metamaterials

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Das, Mukunda P.

    We developed a new method of an earthquake-resistant design to support conventional aseismic system using acoustic metamaterials. The device is an attenuator of a seismic wave that reduces the amplitude of the wave exponentially. Constructing a cylindrical shell-type waveguide composed of many Helmholtz resonators that creates a stop-band for the seismic frequency range, we convert the seismic wave into an attenuated one without touching the building that we want to protect. It is a mechanical way to convert the seismic energy into sound and heat.

  18. Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor.

    PubMed

    Chen, Da; Wang, Jingjing; Xu, Yan; Li, Dehua; Zhang, Luyin; Li, Zhaoxin

    2013-03-15

    An acetylcholinesterase-coated thin film bulk acoustic resonator has been developed for the detection of organophosphorus pesticides. The thin film bulk acoustic resonator acts as a robust mass-sensitive transducer for bio-sensing. This device works in thickness shear mode with a resonance at 1.97 GHz. The detection is based on the inhibitory effects of organophosphorus compounds on the enzymatic activity of the acetylcholinesterase immobilized on one of the faces of the acoustic resonator. The enzyme reaction in the substrate solution and the inhibitory effect is observed are real time by measuring the frequency shift. The presence of organophosphorus pesticides can be detected from the diminution of the frequency shift compared with the levels found in their absence. The device exhibits linear responses, good reproducibility, simple operation, portability and a low detection limit of 5.3×10(-11) M for paraoxon. The detection results of organophosphorus pesticide residues in practical samples show that the proposed sensor has the feasibility and sensing accuracy comparable to gas chromatography.

  19. LOADED WAVEGUIDES

    DOEpatents

    Mullett, L.B.; Loach, B.G.; Adams, G.L.

    1958-06-24

    >Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

  20. Highly sensitive room-temperature surface acoustic wave (SAW) ammonia sensors based on Co₃O₄/SiO₂ composite films.

    PubMed

    Tang, Yong-Liang; Li, Zhi-Jie; Ma, Jin-Yi; Su, Hai-Qiao; Guo, Yuan-Jun; Wang, Lu; Du, Bo; Chen, Jia-Jun; Zhou, Weilie; Yu, Qing-Kai; Zu, Xiao-Tao

    2014-09-15

    Surface acoustic wave (SAW) sensors based on Co3O4/SiO2 composite sensing films for ammonia detection were investigated at room temperature. The Co3O4/SiO2 composite films were deposited onto ST-cut quartz SAW resonators by a sol-gel method. SEM and AFM characterizations showed that the films had porous structures. The existence of SiO2 was found to enhance the ammonia sensing property of the sensor significantly. The sensor based on a Co3O4/SiO2 composite film, with 50% Co3O4 loading, which had the highest RMS value (3.72), showed the best sensing property. It exhibited a positive frequency shift of 3500 Hz to 1 ppm ammonia as well as excellent selectivity, stability and reproducibility at room temperature. Moreover, a 37% decrease in the conductance of the composite film as well as a positive frequency shift of 12,500 Hz were observed when the sensor was exposed to 20 ppm ammonia, indicating the positive frequency shift was derived from the decrease in film conductance.