Science.gov

Sample records for acoustic-based nondestructive methods

  1. Electromagnetic imaging methods for nondestructive evaluation applications.

    PubMed

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions.

  2. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  3. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W.

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  4. Emerging nondestructive inspection methods for aging aircraft

    SciTech Connect

    Beattie, A; Dahlke, L; Gieske, J

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  5. Nondestructive assay methods for solids containing plutonium

    SciTech Connect

    Macmurdo, K.W.; Gray, L.W.; Gibbs, A.

    1984-06-01

    Specific nondestructive assay (NDA) methods, e.g. calorimetry, coincidence neutron counting, singles neutron counting, and gamma ray spectrometry, were studied to provide the Savannah River Plant with an NDA method to measure the plutonium content of solid scrap (slag and crucible) generated in the JB-Line plutonium metal production process. Results indicate that calorimetry can be used to measure the plutonium content to within about 3% in 4 to 6 hours by using computerized equilibrium sample power predictive models. Calorimetry results confirm that a bias exists in the present indirect measurement method used to estimate the plutonium content of slag and crucible. Singles neutron counting of slag and crucible can measure plutonium to only +-30%, but coincidence neutron counting methods improve measurement precision to better than +-10% in less than ten minutes. Only four portions of a single slag and crucible sample were assayed, and further study is recommended.

  6. Nondestructive methods to assess dental implant stability

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Tabrizi, Aydin; Berhanu, Bruk; Ochs, Mark W.

    2012-04-01

    The robustness and reliability of two nondestructive evaluation methods to assess dental prostheses stability is presented. The study aims at addressing an increasing need in the biomedical area where robust, reliable, and noninvasive methods to assess the bone-interface of dental and orthopedic implants are increasingly demanded for clinical diagnosis and direct prognosis. The methods are based on the electromechanical impedance method and on the propagation of solitary waves. Nobel Biocare® 4.3 x 13 mm implants were entrenched inside bovine rib bones that were immersed inside Normal Saline for 24 hours before test in order to avoid dehydration and simulating physiologic osmolarity of the corticocancellous bone and plasma. Afterwards the bones were immersed in a solution of nitric acid to allow material degradation, inversely simulating a bone-healing process. This process was monitored by bonding a Piezoceramic Transducer (PZT) to the abutment and measuring the electrical admittance of the PZT over time. On the other hand the bones calcium loss was calculated after immersing in acid by Atomic Absorption Spectroscopy over time for comparison. Moreover a novel transducer based on the generation and detection of highly nonlinear solitary waves was used to assess the stiffness of the abutment-implant bone. In these experiments it was found that the PZT's conductance and some of the solitary waves parameters are sensitive to the degradation of the bones and was correlated to the bone calcium loss over time.

  7. Development of ultrasonic methods for the nondestructive inspection of concrete

    NASA Astrophysics Data System (ADS)

    Claytor, T. M.; Ellingson, W. A.

    1983-08-01

    Nondestructive inspection of Portland cement and refractory concrete is conducted to determine strength, thickness, presence of voids or foreign matter, presence of cracks, amount of degradation due to chemical attack, and other properties without the necessity of coring the structure (which is usually accomplished by destructively removing a sample). The state of the art of acoustic nondestructive testing methods for Portland cement and refractory concrete is reviewed. Most nondestructive work on concrete has concentrated on measuring acoustic velocity by through transmission methods. Development of a reliable pitch-catch or pulse-echo system would provide a method of measuring thickness with access from only one side of the concrete.

  8. Development of ultrasonic methods for the nondestructive inspection of concrete

    SciTech Connect

    Claytor, T.N.; Ellingson, W.A.

    1983-08-01

    Nondestructive inspection of Portland cement and refractory concrete is conducted to determine strength, thickness, presence of voids or foreign matter, presence of cracks, amount of degradation due to chemical attack, and other properties without the necessity of coring the structure (which is usually accomplished by destructively removing a sample). This paper reviews the state of the art of acoustic nondestructive testing methods for Portland cement and refractory concrete. Most nondestructive work on concrete has concentrated on measuring acoustic velocity by through transmission methods. Development of a reliable pitch-catch or pulse-echo system would provide a method of measuring thickness with access from only one side of the concrete.

  9. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  10. NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.

    SciTech Connect

    BERNDT,M.L.

    2001-03-23

    Non-destructive testing is a key component of optimized plant inspection and maintenance programs. Risk based inspection, condition based maintenance and reliability centered maintenance systems all require detection, location and sizing of defects or flaws by non-destructive methods. Internal damage of geothermal piping by corrosion and erosion-corrosion is an ongoing problem requiring inspection and subsequent maintenance decisions to ensure safe and reliable performance. Conventional manual ultrasonic testing to determine remaining wall thickness has major limitations, particularly when damage is of a random and localized nature. Therefore, it is necessary to explore alternative non-destructive methods that offer potential benefits in terms of accurate quantification of size, shape and location of damage, probability of detection, ability to use on-line over long ranges, and economics. A review of non-destructive methods and their applicability to geothermal piping was performed. Based on this, ongoing research will concentrate on long range guided wave and dynamic methods.

  11. Non-destructive testing method and apparatus

    DOEpatents

    Akers, Douglas W.

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  12. On-line nondestructive methods for examining fuel particles

    SciTech Connect

    Pardini, A.F.; Bond, L.J.; Good, M.S.; Bunch, K.J.; Sandness, G.A.; Hockey, R.L.; Saurwein, J.J.; Gray, J.N.

    2007-07-01

    Tri-isotropic (TRISO) particle fuels are being considered for use in various advanced nuclear power reactors and about 15 billion of these small ({approx} 1 mm diameter) spheres are needed for a single fuel load. Current quality control methods are manual, often destructive of test specimens, and they are economically impractical for automated application at commercial scale. Replacing these methods with new nondestructive evaluation techniques, automated for higher speed, will make fuel production and reactor operation economically more attractive. This paper reports aspects of a project to develop and demonstrate nondestructive examination methods to detect and reject defective particles. The work explored adapting, developing, and demonstrating innovative nondestructive test methods to cost-effectively assure the quality of large percentages of the fuel particles. (authors)

  13. On-Line Nondestructive Methods for Examining Fuel Particles

    SciTech Connect

    Pardini, Allan F.; Bond, Leonard J.; Good, Morris S.; Bunch, Kyle J.; Sandness, Gerald A.; Hockey, Ronald L.; Saurwein, John J.; Gray, Joseph N.

    2007-09-15

    Tri-isotropic (TRISO) particle fuels, being considered for use in various advanced nuclear power reactors, consist of sub-millimeter diameter uranium oxide spheres uniformly coated to prevent the release of fission products into the reactor. About 15 billion of these spheres are needed to fuel a single reactor. Current quality control (QC) methods are manual, can destroy test specimens, and are not economically feasible. Replacing these methods with nondestructive evaluation (NDE) techniques, automated for higher speed, will make fuel production and reactor operation economically feasible, considering the requirement for extremely large fuel particle throughput rates. This paper reports a project to develop and demonstrate nondestructive examination methods to detect and reject defective particles, and in particular progress made in the final year of a Nuclear Energy Research Initiative (NERI) project . The work explored adapting, developing, and demonstrating innovative nondestructive test methods to cost-effectively assure the quality of large percentages of the fuel particles.

  14. Method and apparatus for nondestructive in vivo measurement of photosynthesis

    DOEpatents

    Greenbaum, E.

    1988-02-22

    A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electrolyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polarographically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods. 6 figs.

  15. Method and apparatus for nondestructive in vivo measurement of photosynthesis

    DOEpatents

    Greenbaum, Elias

    1988-01-01

    A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electroyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polargraphically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods.

  16. Evaluation of methods for nondestructive testing of brazed joints

    NASA Technical Reports Server (NTRS)

    Kanno, A.

    1968-01-01

    Evaluation of nondestructive methods of testing brazed joints reveals that ultrasonic testing is effective in the detection of nonbonds in diffusion bonded samples. Radiography provides excellent resolutions of void or inclusion defects, and the neutron radiographic technique shows particular advantage for brazing materials containing cadmium.

  17. Nondestructive method for measuring residual stresses in metals, a concept

    NASA Technical Reports Server (NTRS)

    Schwebel, C. D.

    1968-01-01

    Nondestructive direct measurement of residual surface stresses in metals can be made because metal under stress has a different electrochemical solution potential than in the unstressed condition. The method uses two matched electrolytic cells to cancel extraneous effects on the actual solution potential of the metal specimen.

  18. Thermal nondestructive examination method for thermal-spray coatings

    SciTech Connect

    Green, D.R.; Schmeller, M.D.; Sulit, R.A.

    1983-05-01

    This paper describes a feasibility demonstration of a thermal scanning NDE (nondestructive examination) system for thermal-spray coatings. Non-bonds were detected between several types of coatings and their substrates. Aluminum anti-skid coatings having very rough surfaces were included. A technique for producing known non-bond areas for calibrating and demonstrating NDE methods was developed.

  19. A nondestructive method for continuously monitoring plant growth

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1985-01-01

    In the past, plant growth generally has been measured using destructive methods. This paper describes a nondestructive technique for continuously monitoring plant growth. The technique provides a means of directly and accurately measuring plant growth over both short and long time intervals. Application of this technique to the direct measurement of plant growth rates is illustrated using corn (Zea mays L.) as an example.

  20. Uranium holdup in concrete floors: a comparison of nondestructive methods

    SciTech Connect

    Hardt, T.L.; Dedo, M.P.

    1986-01-01

    In 1978, Babcock and Wilcox ceased operations at its high-enriched uranium conversion facility in Apollo, Pennsylvania. Incorporated in the Company's action was the responsibility to clean up, recover and/or identify any an all uranium that might be held up in processing equipment, piping, and the building. By 1980, most of the historical inventory difference had been recovered from the equipment and piping, which had been removed from the plant. It was anticipated that over the 20-yr history of this facility, some special nuclear material (SNM) would be embedded in the floors of the building. The objective of this work was to develop a method to measure this material nondestructively and as accurately as possible. This paper illustrates two nondestructive methods used at the Apollo facility and then presents a comparison of the NDA to the results of destructive recovery.

  1. Method for nondestructive fuel assay of laser fusion targets

    DOEpatents

    Farnum, Eugene H.; Fries, R. Jay

    1976-01-01

    A method for nondestructively determining the deuterium and tritium content of laser fusion targets by counting the x rays produced by the interaction of tritium beta particles with the walls of the microballoons used to contain the deuterium and tritium gas mixture under high pressure. The x rays provide a direct measure of the tritium content and a means for calculating the deuterium content using the initial known D-T ratio and the known deuterium and tritium diffusion rates.

  2. Nondestructive acoustic electric field probe apparatus and method

    DOEpatents

    Migliori, Albert

    1982-01-01

    The disclosure relates to a nondestructive acoustic electric field probe and its method of use. A source of acoustic pulses of arbitrary but selected shape is placed in an oil bath along with material to be tested across which a voltage is disposed and means for receiving acoustic pulses after they have passed through the material. The received pulses are compared with voltage changes across the material occurring while acoustic pulses pass through it and analysis is made thereof to determine preselected characteristics of the material.

  3. Non-destructive method for determining neutron exposure

    DOEpatents

    Gold, R.; McElroy, W.N.

    1983-11-01

    A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

  4. Nondestructive testing methods for 55-gallon, waste storage drums

    SciTech Connect

    Ferris, R.H.; Hildebrand, B.P.; Hockey, R.L.; Riechers, D.M.; Spanner, J.C.; Duncan, D.R.

    1993-06-01

    The Westinghouse Hanford Company (WHC) authorized Pacific Northwest Laboratory (PNL) to conduct a feasibility study to identify promising nondestructive testing (NDT) methods for detecting general and localized (both pitting and pinhole) corrosion in the 55-gal drums that are used to store solid waste materials at the Hanford Site. This document presents results obtained during a literature survey, identifies the relevant reference materials that were reviewed, provides a technical description of the methods that were evaluated, describes the laboratory tests that were conducted and their results, identifies the most promising candidate methods along with the rationale for these selections, and includes a work plan for recommended follow-on activities. This report contains a brief overview and technical description for each of the following NDT methods: magnetic testing techniques; eddy current testing; shearography; ultrasonic testing; radiographic computed tomography; thermography; and leak testing with acoustic detection.

  5. Nondestructive evaluation of stresses in welds by micromagnetic method

    SciTech Connect

    Sengupta, A.K.; Theiner, W.A.

    1995-05-01

    In the present investigation, the authors attempted to make a quantitative estimation of the stresses nondestructively by the micro-magnetic method (in and around a weld) on different grades of steel which are widely varying in magnetic hardness (coercivity). The grades of steel were plain carbon steel, 22 NiMoCr 37, and 17 MnMoV 64. There has been considerable development both on the instrumentation and the mechanical aspects of the micromagnetic, multiparameter, microstructure and stress analyzer measuring unit, or ``3MA``, to measure different micromagnetic quantities precisely to meet the specific demands of industries. The details of the 3MA unit and its potential use as an industrial non-destructive tool can be obtained elsewhere (Theiner et al., 1989). The stress sensitivity to different micromagnetic parameters e.g. maximum amplitude of the Barkhausen noise signal (M{sub MAX}), the coercivity (H{sub CM}) corresponding to M{sub MAX}, the full width at half maxima (FWHM) for the Barkhausen noise envelope, and the area {line_integral}MdH (Figure 1), are some of the measured or derived quantities used for this investigation at different locations of the weld, heat affected zone and the bulk to account for the stress variations.

  6. Total Gamma Count Rate Analysis Method for Nondestructive Assay Characterization

    SciTech Connect

    Cecilia R. Hoffman; Yale D. Harker

    2006-03-01

    A new approach to nondestructively characterize waste for disposal, based on total gamma response, has been developed at the Idaho Cleanup Project by CH2M-WG Idaho, LLC and Idaho State University, and is called the total gamma count rate analysis method. The total gamma count rate analysis method measures gamma interactions that produce energetic electrons or positrons in a detector. Based on previous experience with waste assays, the radionuclide content of the waste container is then determined. This approach potentially can yield minimum detection limits of less than 10 nCi/g. The importance of this method is twofold. First, determination of transuranic activity can be made for waste containers that are below the traditional minimum detection limits. Second, waste above 10 nCi/g and below 100 nCi/g can be identified, and a potential path for disposal resolved.

  7. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  8. Infrared non-destructive evaluation method and apparatus

    DOEpatents

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  9. Nondestructive characterization methods for monolithic solid oxide fuel cells

    SciTech Connect

    Ellingson, W.A.

    1993-01-01

    Monolithic solid oxide fuel cells (MSOFCS) represent a potential breakthrough in fuel cell technology, provided that reliable fabrication methods can be developed. Fabrication difficulties arise in several steps of the processing: First is the fabrication of uniform thin (305 {mu}m) single-layer and trilayer green tapes (the trilayer tapes of anode/electrolyte/cathode and anode/interconnect/cathode must have similar coefficients of thermal expansion to sinter uniformly and to have the necessary electrochemical properties); Second is the development of fuel and oxidant channels in which residual stresses are likely to develop in the tapes; Third is the fabrication of a ``complete`` cell for which the bond quality between layers and the quality of the trilayers must be established; and Last, attachment of fuel and oxidant manifolds and verification of seal integrity. Purpose of this report is to assess nondestructive characterization methods that could be developed for application to laboratory, prototype, and full-scale MSOFCs.

  10. NON-DESTRUCTIVE METHOD AND MEANS FOR FLAW DETECTION

    DOEpatents

    Hochschild, R.

    1959-03-10

    BS>An improved method is presented for the nondestructive detection of flaws in olectrictilly conductivc articles using magnetic field. According to thc method a homogoneous mignetic field is established in the test article;it right angle" to the artyicle. A probe is aligned with its axis transverse to the translates so hat th4 probe scans the surface of the test article while the axis of the robe is transverse to the direction of translation of the article. In this manner any output current obtained in thc probe is an indication of the size and location of a flaw in the article under test, with a miiiimum of signal pick- up in the probe from the established magnetic field.

  11. Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method

    PubMed Central

    2014-01-01

    The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864

  12. Automated Nondestructive Evaluation Method for Characterizing Ceramic and Metallic Hot Gas Filters

    SciTech Connect

    Ellingson, W.A.; Pastila, P.; Koehl, E.R.; Wheeler, B.; Deemer, C.; Forster, G.A.

    2002-09-19

    The objective of this work was to develop a nondestructive (NDE), cost-effective and reliable method to assess the condition of rigid ceramic hot gas filters. The work was intended to provide an end user, as well as filter producers, with a nondestructive method to assess the ''quality'' or status of the filters.

  13. Baited lines: An active nondestructive collection method for burrowing crayfish

    USGS Publications Warehouse

    Loughman, Zachary J.; Foltz, David A.; Welsh, Stuart

    2013-01-01

    A new method (baited lines) is described for the collection of burrowing crayfishes, where fishing hooks baited with earthworms and tied to monofilament leaders are used to lure crayfishes from their burrow entrances. We estimated capture rates using baited lines at four locations across West Virginia for a total of four crayfish taxa; the taxa studied were orange, blue, and blue/orange morphs of Cambarus dubius (Upland Burrowing Catfish), and C. thomai (Little Brown Mudbug). Baited-line capture rates were lowest for C. thomai (81%; n = 21 attempts) and highest for the orange morph ofC. dubius (99%; n = 13 attempts). The pooled capture rate across all taxa was 91.5% (n = 50 attempts). Baited lines represent an environmentally nondestructive method to capture burrowing crayfishes without harm to individuals, and without disturbing burrows or the surrounding area. This novel method allows for repeat captures and long-term studies, providing a useful sampling method for ecological studies of burrowing crayfishes.

  14. Advances in nondestructive evaluation methods for inspection of refractory concretes

    SciTech Connect

    Ellingson, W. A.

    1980-01-01

    Refractory concrete linings are essential to protect steel pressure boundaries from high-temperature agressive erosive/corrosive environments. Castable refractory concretes have been gaining more acceptance as information about their performance increases. Economic factors, however, have begun to impose high demands on the reliability of refractory materials. Advanced nondestructive evaluation methods are being developed to assist the refractory user. Radiographic techniques, thermography, acoustic-emission detection, and interferometry have been shown to yield information on the structural status of refractory concrete. Methods using /sup 60/Co radiation sources are capable of yielding measurements of refractory wear rate as well as images of cracks and/or voids in pre- and post-fired refractory linings up to 60 cm thick. Thermographic (infrared) images serve as a qualitative indicator of refractory spalling, but quantitative measurements are difficult to obtain from surface-temperature mapping. Acoustic emission has been shown to be a qualitative indicator of thermomechanical degradation of thick panels of 50 and 95% Al/sub 2/O/sub 3/ during initial heating and cooling at rates of 100 to 220/sup 0/C/h. Laser interferometry methods have been shown to be capable of complete mappings of refractory lining thicknesses. This paper will present results obtained from laboratory and field applications of these methods in petrochemical, steel, and coal-conversion plants.

  15. Biomarkers: Non-destructive Method for Predicting Meat Tenderization.

    PubMed

    Singh, Arashdeep; Ahluwalia, Preeti; Rafiq, Aasima; Sharma, Savita

    2015-07-06

    Meat tenderness is the primary and most important quality attribute for the consumers worldwide. Tenderness is the process of breakdown of collagen tissue in meat to make it palatable. The earlier methods of tenderness evaluation like taste panels and shear force methods are destructive, time consuming and ill suited as they requires removing a piece of steak from the carcass for performing the test. Therefore, a non-destructive method for predicting the tenderness would be more desirable. The development of a meat quality grading and guarantee system through muscle profiling research can help to meet this demand. Biomarkers have the ability to identify if an exposure has occurred. Biomarkers of the meat quality are of prime importance for meat industry, which has ability to satisfy consumers' expectations. The biomarkers so far identified have been then sorted and grouped according to their common biological functions. All of them refer to a series of biological pathways including glycolytic and oxidative energy production, cell detoxification, protease inhibition and production of Heat Shock Proteins. On this basis, a detailed analysis of these metabolic pathways helps in identifying tenderization of meat having some domains of interest. It was, therefore, stressed forward that biomarkers can be used to determine meat tenderness. This review article summarizes the uses of several biomarkers for predicting the meat tenderness.

  16. A non-destructive method for dating human remains

    USGS Publications Warehouse

    Lail, Warren K.; Sammeth, David; Mahan, Shannon; Nevins, Jason

    2013-01-01

    The skeletal remains of several Native Americans were recovered in an eroded state from a creek bank in northeastern New Mexico. Subsequently stored in a nearby museum, the remains became lost for almost 36 years. In a recent effort to repatriate the remains, it was necessary to fit them into a cultural chronology in order to determine the appropriate tribe(s) for consultation pursuant to the Native American Grave Protection and Repatriation Act (NAGPRA). Because the remains were found in an eroded context with no artifacts or funerary objects, their age was unknown. Having been asked to avoid destructive dating methods such as radiocarbon dating, the authors used Optically Stimulated Luminescence (OSL) to date the sediments embedded in the cranium. The OSL analyses yielded reliable dates between A.D. 1415 and A.D. 1495. Accordingly, we conclude that the remains were interred somewhat earlier than A.D. 1415, but no later than A.D. 1495. We believe the remains are from individuals ancestral to the Ute Mouache Band, which is now being contacted for repatriation efforts. Not only do our methods contribute to the immediate repatriation efforts, they provide archaeologists with a versatile, non-destructive, numerical dating method that can be used in many burial contexts.

  17. Bridge deck condition assessment using destructive and nondestructive methods

    NASA Astrophysics Data System (ADS)

    Goodwin, Brandon Tyler

    This study investigates two bridge decks in the state of Missouri using both nondestructive and destructive testing methods. The Missouri Department of Transportation (MoDOT) is responsible for the monitoring and maintenance of over 10,000 bridges. Currently monitoring of these bridges includes a comprehensive visual inspection. In this study, ground-coupled ground penetrating radar (GPR) is used to estimate deterioration, along with other traditional methods, including visual inspection, and core evaluation. Extracted core samples were carefully examined, and the volume of permeable pore space was determined for each core. After the initial investigation, the two bridges underwent rehabilitation using hydrodemolition as a method to remove loose or deteriorated concrete. Depths and locations of material removal were determined using light detection and ranging (lidar). Data sets were compared to determine the accuracy of GPR to predict deterioration for condition monitoring and rehabilitation planning of bridge decks. As shown by the lidar survey of the material removed during rehabilitation, the GPR top reinforcement reflection amplitude accurately predicted regions of deterioration within the bridge decks. In general, regions with lower reflection amplitudes, indicating more evidence of deterioration, corresponded to regions with greater depths of material removal during the rehabilitation. Also, the GPR top reinforcement reflection amplitude indicated deterioration in areas where visual deterioration was noticed from the top surface of the deck. The majority of cores with delaminations were extracted from sections where the GPR top reinforcement reflection amplitude indicated greater evidence of deterioration based on lower amplitude values.

  18. Nondestructive Evaluation Methods for the Ares I Common Bulkhead

    NASA Technical Reports Server (NTRS)

    Walker, James

    2010-01-01

    A large scale bonding demonstration test article was fabricated to prove out manufacturing techniques for the current design of the NASA Ares I Upper Stage common bulkhead. The common bulkhead serves as the single interface between the liquid hydrogen and liquid oxygen portions of the Upper Stage propellant tank. The bulkhead consists of spin-formed aluminum domes friction stir welded to Y-rings and bonded to a perforated phenolic honeycomb core. Nondestructive evaluation methods are being developed for assessing core integrity and the core-to-dome bond line of the common bulkhead. Detection of manufacturing defects such as delaminations between the core and face sheets as well as service life defects such as crushed or sheared core resulting from impact loading are all of interest. The focus of this work will be on the application of thermographic, shearographic, and phased array ultrasonic methods to the bonding demonstration article as well as various smaller test panels featuring design specific defect types and geometric features.

  19. Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    1998-01-01

    The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.

  20. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  1. Development of nondestructive evaluation methods for structural ceramics

    SciTech Connect

    Ellingson, W.A.; Koehl, R.D.; Stuckey, J.B.; Sun, J.G.; Engel, H.P.; Smith, R.G.

    1997-06-01

    Development of nondestructive evaluation (NDE) methods for application to fossil energy systems continues in three areas: (a) mapping axial and radial density gradients in hot gas filters, (b) characterization of the quality of continuous fiber ceramic matrix composite (CFCC) joints and (c) characterization and detection of defects in thermal barrier coatings. In this work, X-ray computed tomographic imaging was further developed and used to map variations in the axial and radial density of two full length (2.3-m) hot gas filters. The two filters differed in through wall density because of the thickness of the coating on the continuous fibers. Differences in axial and through wall density were clearly detected. Through transmission infrared imaging with a highly sensitivity focal plane array camera was used to assess joint quality in two sets of SiC/SiC CFCC joints. High frame rate data capture suggests that the infrared imaging method holds potential for the characterization of CFCC joints. Work to develop NDE methods that can be used to evaluate electron beam physical vapor deposited coatings with platinum-aluminide (Pt-Al) bonds was undertaken. Coatings of Zirconia with thicknesses of 125 {micro}m (0.005 in.), 190 {micro}m (0.0075 in.), and 254 {micro}m (0.010 in.) with a Pt-Al bond coat on Rene N5 Ni-based superalloy were studied by infrared imaging. Currently, it appears that thickness variation, as well as thermal properties, can be assessed by infrared technology.

  2. Non-destructive methods for food texture assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food texture is important to the successful marketing and profitability of food products. Non-destructive sensing would allow food producers and processors to inspect, sort, grade, or track individual product items, so that they can deliver consistent, superior food products to the marketplace. Over...

  3. Research on Advanced Nondestructive Evaluation (NDE) Methods for Aerospace Structures

    DTIC Science & Technology

    2004-03-01

    Technique ...............................................................15 3.2.4 Three-Element Transducer for High -Precision RSW-Velocity...shown to have a very high potential for nondestructively monitoring metalworking processes. 3 Section 2 Introduction This program was...characterizing properties of coatings, thin films, and materials undergoing high cycle fatigue, and for detecting and characterizing corrosion. • Identify and

  4. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    NASA Astrophysics Data System (ADS)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  5. Physics-Based Imaging Methods for Terahertz Nondestructive Evaluation Applications

    NASA Astrophysics Data System (ADS)

    Kniffin, Gabriel Paul

    Lying between the microwave and far infrared (IR) regions, the "terahertz gap" is a relatively unexplored frequency band in the electromagnetic spectrum that exhibits a unique combination of properties from its neighbors. Like in IR, many materials have characteristic absorption spectra in the terahertz (THz) band, facilitating the spectroscopic "fingerprinting" of compounds such as drugs and explosives. In addition, non-polar dielectric materials such as clothing, paper, and plastic are transparent to THz, just as they are to microwaves and millimeter waves. These factors, combined with sub-millimeter wavelengths and non-ionizing energy levels, makes sensing in the THz band uniquely suited for many NDE applications. In a typical nondestructive test, the objective is to detect a feature of interest within the object and provide an accurate estimate of some geometrical property of the feature. Notable examples include the thickness of a pharmaceutical tablet coating layer or the 3D location, size, and shape of a flaw or defect in an integrated circuit. While the material properties of the object under test are often tightly controlled and are generally known a priori, many objects of interest exhibit irregular surface topographies such as varying degrees of curvature over the extent of their surfaces. Common THz pulsed imaging (TPI) methods originally developed for objects with planar surfaces have been adapted for objects with curved surfaces through use of mechanical scanning procedures in which measurements are taken at normal incidence over the extent of the surface. While effective, these methods often require expensive robotic arm assemblies, the cost and complexity of which would likely be prohibitive should a large volume of tests be needed to be carried out on a production line. This work presents a robust and efficient physics-based image processing approach based on the mature field of parabolic equation methods, common to undersea acoustics, seismology

  6. Complementary methods for nondestructive testing of composite materials reinforced with carbon woven fibers

    NASA Astrophysics Data System (ADS)

    Steigmann, R.; Iftimie, N.; Sturm, R.; Vizureanu, P.; Savin, A.

    2015-11-01

    This paper presents complementary methods used in nondestructive evaluation (NDE) of composite materials reinforced with carbon woven fibers as two electromagnetic methods using sensor with orthogonal coils and sensor with metamaterials lens as well as ultrasound phased array method and Fiber Bragg gratings embedded instead of a carbon fiber for better health monitoring. The samples were impacted with low energy in order to study delamination influence. The electromagnetic behavior of composite was simulated by finite- difference time-domain (FDTD) software, showing a very good concordance with electromagnetic nondestructive evaluation tests.

  7. Methods for Non-destructive Temperature Measurements in a Magneto-Optical Trap

    NASA Astrophysics Data System (ADS)

    Narducci, Frank A.; Duncan, Dwight; White, Grady R.; Lough, James; Davis, Jon P.

    2009-05-01

    Certain practical applications for precision measurements by atom interferometers require knowledge of the input atom cloud's temperature from realization to realization. Recent work [1,2] has shown how to measure the temperature of atoms in a magneto-optical trap in a non-destructive, in situ manner. We discuss an alternate, simpler method for the nondestructive measurement of the temperature of an atom cloud and compare our method with earlier techniques. [4pt] [1] T. Brzozowski, M. Brzozowska, J. Zachorowski, M. Zawada, W. Gawlik, PRA, 71, 013401 (2005).[0pt] [2] M. Brzozowska, T. Brzozowski J. Zachorowski, W. Gawlik, PRA, 72, 061401(R), (2005).

  8. Forensic Examination Using a Nondestructive Evaluation Method for Surface Metrology

    NASA Astrophysics Data System (ADS)

    Eisenmann, David J.; Chumbley, L. Scott

    2009-03-01

    The objective of this paper is to describe the use of a new technique of optical profilometry in a nondestructive, non-contact fashion for the comparison of two metallic surfaces, one hard and one soft. When brought in contact with one another, the harder material (i.e. the tool) will impress its surface roughness onto the softer. It is understood that the resulting set of impressions left from a tool tip act in a manner similar to a photographic negative, in that it leaves a reverse, or negative impression on the surface of a plate. If properly inverted and reversed, measurements from the softer material should be identical to the harder indenting object with regard to surface texture and roughness. This assumption is inherent in the area of forensics, where bullets, cartridge cases, and toolmarked surfaces from crime scenes are compared to similar marks made under controlled conditions in the forensic laboratory. This paper will examine the methodology used to compare two surfaces for similarities and dissimilarities, and comment on the applicability of this technique to other studies.

  9. The detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Todd, P. H., Jr.; Frecska, S. A.; Rathke, R. A.

    1974-01-01

    X-radiographic penetrant, ultrasonic, eddy current, holographic, and acoustic emission techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens. One hundred eighteen specimens containing a total of 328 fatigue cracks were evaluated. The cracks ranged in length from 0.500 inch (1.27 cm) to 0.007 inch (0.018 cm) and in depth from 0.178 inch (0.451 cm) and 0.001 inch (0.003 cm). Specimen thicknesses were nominally 0.060 inch (0.152 cm) and 0.210 inch (0.532 cm) and surface finishes were nominally 32 and 125 rms and 64 and 200 rms respectively. Specimens were evaluated in the as-milled surface condition, in the chemically milled surface condition and, after proof loading, in a randomized inspection sequence. Results of the nondestructive test (NDT) evaluations were compared with actual crack size obtained by measurement of the fractured specimens. Inspection data was then analyzed to provide a statistical basis for determinating the threshold crack detection sensitivity (the largest crack size that would be missed) for each of the inspection techniques at a 95% probability and 95% confidence level.

  10. Nondestructive evaluation and characterization of GFRP using non-contact ultrasound and complementary method

    NASA Astrophysics Data System (ADS)

    Steigmann, R.; Iftimie, N.; Dobrescu, G. S.; Barsanescu, P. D.; Curtu, I.; Stanciu, M. D.; Savin, A.

    2016-08-01

    This paper presents two methods, non-contact low frequency ultrasound method and fiber Bragg gratings, and their application to nondestructive testing of glass fiber reinforced composites used in wind turbine blades. Theoretical models are used and experimental results are in good concordance with destructive testing results.

  11. Research on non-destructive testing method of silkworm cocoons based on image processing technology

    NASA Astrophysics Data System (ADS)

    Gan, Yong; Kong, Qing-hua; Wei, Li-fu

    2008-03-01

    The major studied in this dissertation is the non-destructive testing method of silkworm cocoon's quality, based on the digital image processing and photoelectricity technology. Through the images collection and the data analysis, procession and calculation of the tested silkworm cocoons with the non-destructive testing technology, internet applications automatically reckon all items of the classification indexes. Finally we can conclude the classification result and the purchase price of the silkworm cocoons. According to the domestic classification standard of the silkworm cocoons, the author investigates various testing methods of silkworm cocoons which are used or have been explored at present, and devices a non-destructive testing scheme of the silkworm cocoons based on the digital image processing and photoelectricity technology. They are dissertated about the project design of the experiment. The precisions of all the implements are demonstrated. I establish Manifold mathematic models, compare them with each other and analyze the precision with technology of databank to get the best mathematic model to figure out the weight of the dried silkworm cocoon shells. The classification methods of all the complementary items are designed well and truly. The testing method has less error and reaches an advanced level of the present domestic non-destructive testing technology of the silkworm cocoons.

  12. Non-destructive method for inward leakage detection of a plate evaporator

    NASA Astrophysics Data System (ADS)

    Hribernik, Ales

    2007-05-01

    A new non-destructive method was developed for the detection of refrigerant leakage at an evaporator's inflow. Nitrogen and oxygen gas were successively blown through the evaporator. A gas analyser was applied at the outflow of the evaporator and the oxygen concentration measured. It was possible to detect any leakage by investigating the oxygen concentration-time history diagram.

  13. Failure analysis of electronic parts: Laboratory methods. [for destructive and nondestructive testing

    NASA Technical Reports Server (NTRS)

    Anstead, R. J. (Editor); Goldberg, E. (Editor)

    1975-01-01

    Failure analysis test methods are presented for use in analyzing candidate electronic parts and in improving future design reliability. Each test is classified as nondestructive, semidestructive, or destructive. The effects upon applicable part types (i.e. integrated circuit, transitor) are discussed. Methodology is given for performing the following: immersion tests, radio graphic tests, dewpoint tests, gas ambient analysis, cross sectioning, and ultraviolet examination.

  14. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies

    NASA Astrophysics Data System (ADS)

    Savage, Kara A.

    Recent government initiatives and commercial activities have targeted asteroids for in situ material characterization, manipulation, and possible resource extraction. Most of these activities and missions have proposed significant robotic components, given the risks and costs associated with manned missions. To successfully execute these robotic activities, detailed mechanical characteristics of the target space bodies must be known prior to contact, in order to appropriately plan and direct the autonomous robotic protocols. Unfortunately, current estimates of asteroid mechanical properties are based on limited direct information, and significant uncertainty remains specifically concerning internal structures, strengths, and elastic properties of asteroids. One proposed method to elucidate this information is through in situ, nondestructive testing of asteroid material immediately after contact, but prior to any manipulation or resource extraction activities. While numerous nondestructive rock characterization techniques have been widely deployed for terrestrial applications, these methods must be adapted to account for unique properties of asteroid material and environmental conditions of space. For example, asteroid surface temperatures may range from -100°C to 30°C due to diurnal cycling, and these low temperatures are especially noteworthy due to their deleterious influence on non-destructive testing. As a result, this thesis investigates the effect of low temperature on the mechanical characteristics and nondestructive technique responses of rock material. Initially, a novel method to produce low temperature rock samples was developed. Dry ice and methanol cooling baths of specific formulations were used to decrease rock to temperatures ranging from -60°C to 0°C. At these temperatures, shale, chalk, and limestone rock samples were exposed to several nondestructive and conventional mechanical tests, including Schmidt hammer, ultrasonic pulse velocity, point

  15. Detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Anderson, R. T.; Delacy, T. J.; Stewart, R. C.

    1973-01-01

    The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.

  16. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Johnston, Patrick H. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  17. Nondestructive spot test method for magnesium and magnesium alloys

    NASA Technical Reports Server (NTRS)

    Wilson, M. L. (Inventor)

    1973-01-01

    A method for spot test identification of magnesium and various magnesium alloys commonly used in aerospace applications is described. The spot test identification involves color codes obtained when several drops of 3 M hydrochloric acid are placed on the surface to be tested. After approximately thirty seconds, two drops of this reacted acid is transferred to each of two depressions in a spot plate for additions of other chemicals with subsequent color changes indicating magnesium or its alloy.

  18. Non-destructive ion trap mass spectrometer and method

    DOEpatents

    Frankevich, Vladimir E.; Soni, Manish H.; Nappi, Mario; Santini, Robert E.; Amy, Jonathan W.; Cooks, Robert G.

    1997-01-01

    The invention relates to an ion trap mass spectrometer of the type having an ion trapping volume defined by spaced end caps and a ring electrode. The ion trap includes a small sensing electrode which senses characteristic motion of ions trapped in said trapping volume and provides an image current. Ions are excited into characteristic motion by application of an excitation pulse to the trapped ions. The invention also relates to a method of operating such an ion trap.

  19. Development of a Nondestructive Method for Sexing Live Adult Sternoplax souvorowiana (Coleoptera: Tenebrionidae)

    PubMed Central

    Wang, Yan; Ma, Ji; Mao, Xinfang

    2015-01-01

    The darkling beetle, Sternoplax souvorowiana (Reitter) (Coleoptera: Tenebrionidae), is flightless and lives in the Guerbantonggut desert in northwestern China. Its special eggshell structure, day-active habit, large body size, short life cycle, and ease of rearing under laboratory conditions make it an excellent model for advanced studies on desert adaptation. Determining the sex of this beetle is usually complicated by the lack of a discreet, externally visible gender-specific character. To date, dissection has been used for sex identification in this species, whereas a nondestructive means is needed for further studies of sexual dimorphism. Here, a new method based on the difference of the pigmentation pattern on the eighth tergite of each sex is described and illustrated. This method can be quickly learned, is nondestructive, is 100% accurate, and is fast enough for most applications in both the field and the laboratory. Experienced users in our laboratory routinely sex 8–10 beetles per minute. PMID:25934924

  20. Development of a nondestructive method for sexing live adult Sternoplax souvorowiana (Coleoptera: Tenebrionidae).

    PubMed

    Wang, Yan; Ma, Ji; Mao, Xinfang

    2015-01-01

    The darkling beetle, Sternoplax souvorowiana (Reitter) (Coleoptera: Tenebrionidae), is flightless and lives in the Guerbantonggut desert in northwestern China. Its special eggshell structure, day-active habit, large body size, short life cycle, and ease of rearing under laboratory conditions make it an excellent model for advanced studies on desert adaptation. Determining the sex of this beetle is usually complicated by the lack of a discreet, externally visible gender-specific character. To date, dissection has been used for sex identification in this species, whereas a nondestructive means is needed for further studies of sexual dimorphism. Here, a new method based on the difference of the pigmentation pattern on the eighth tergite of each sex is described and illustrated. This method can be quickly learned, is nondestructive, is 100% accurate, and is fast enough for most applications in both the field and the laboratory. Experienced users in our laboratory routinely sex 8-10 beetles per minute.

  1. Neural Networks and Non-Destructive Test/Evaluation Methods

    DTIC Science & Technology

    1992-01-01

    Mohan , 1990). Some proposed Draper - April 1992 Page 5 Nawd Nehword & Non-Deantuve Test/Evamaion Methods applications in construction engineering...s11 be skm wbme be mdi beset is im Inb Chicede mmed w Wbee mmhdufte by Wisoe a, sMMiPh of 6Ś cesm-e.L A wndkfts" . d s ned podls br u if w evemw 6a...Perceptions. MIT Press, Cambridge, Massachusetts. Mohan , S. (1990) "Expert Systems Applications in Construction Management and Engineering." J

  2. Method and apparatus for non-destructive evaluation of composite materials with cloth surface impressions

    NASA Technical Reports Server (NTRS)

    Madras, Eric I. (Inventor)

    1995-01-01

    A method and related apparatus for nondestructive evaluation of composite materials by determination of the quantity known as Integrated Polar Backscatter, which avoids errors caused by surface texture left by cloth impressions by identifying frequency ranges associated with peaks in a power spectrum for the backscattered signal, and removing such frequency ranges from the calculation of Integrated Polar Backscatter for all scan sites on the composite material is presented.

  3. Method for non-destructive evaluation of ceramic coatings

    SciTech Connect

    Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.

    2016-11-08

    A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.

  4. Nondestructive methods of integrating energy harvesting systems for highway bridges

    NASA Astrophysics Data System (ADS)

    Inamdar, Sumedh; Zimowski, Krystian; Crawford, Richard; Wood, Kristin; Jensen, Dan

    2012-04-01

    Designing an attachment structure that is both novel and meets the system requirements can be a difficult task especially for inexperienced designers. This paper presents a design methodology for concept generation of a "parent/child" attachment system. The "child" is broadly defined as any device, part, or subsystem that will attach to any existing system, part, or device called the "parent." An inductive research process was used to study a variety of products, patents, and biological examples that exemplified the parent/child system. Common traits among these products were found and categorized as attachment principles in three different domains: mechanical, material, and field. The attachment principles within the mechanical domain and accompanying examples are the focus of this paper. As an example of the method, a case study of generating concepts for a bridge mounted wind energy harvester using the mechanical attachment principles derived from the methodology and TRIZ principles derived from Altshuller's matrix of contradictions is presented.

  5. Nondestructive methods of integrating energy harvesting systems with structures

    NASA Astrophysics Data System (ADS)

    Inamdar, Sumedh; Zimowski, Krystian; Crawford, Richard; Wood, Kristin; Jensen, Dan

    2012-04-01

    Designing an attachment structure that is both novel and meets the system requirements can be a difficult task especially for inexperienced designers. This paper presents a design methodology for concept generation of a "parent/child" attachment system. The "child" is broadly defined as any device, part, or subsystem that will attach to any existing system, part, or device called the "parent." An inductive research process was used to study a variety of products, patents, and biological examples that exemplified the parent/child system. Common traits among these products were found and categorized as attachment principles in three different domains: mechanical, material, and field. The attachment principles within the mechanical domain and accompanying examples are the focus of this paper. As an example of the method, a case study of generating concepts for a bridge mounted wind energy harvester using the mechanical attachment principles derived from the methodology and TRIZ principles derived from Altshuller's matrix of contradictions is presented.

  6. Method and Apparatus for Non-Destructive Evaluation of Materials

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Lyons, Robert (Inventor); Thomas, Zachary (Inventor); Jablonski, David A. (Inventor); Martin, Christopher (Inventor)

    2015-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  7. Development of a nondestructive evaluation method for FRP bridge decks

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Fox, Terra

    2010-05-01

    Open steel grids are typically used on bridges to minimize the weight of the bridge deck and wearing surface. These grids, however, require frequent maintenance and exhibit other durability concerns related to fatigue cracking and corrosion. Bridge decks constructed from composite materials, such as a Fiber-reinforced Polymer (FRP), are strong and lightweight; they also offer improved rideability, reduced noise levels, less maintenance, and are relatively easy to install compared to steel grids. This research is aimed at developing an inspection protocol for FRP bridge decks using Infrared thermography. The finite element method was used to simulate the heat transfer process and determine optimal heating and data acquisition parameters that will be used to inspect FRP bridge decks in the field. It was demonstrated that thermal imaging could successfully identify features of the FRP bridge deck to depths of 1.7 cm using a phase analysis process.

  8. A modified positron lifetime spectrometer as method of non-destructive testing in materials

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Shi, J. J.; Jiang, J.; Liu, X. B.; Wang, R. S.; Wu, Y. C.

    2015-02-01

    This paper aims to develop a new non-destructive testing (NDT) method using positron annihilation spectroscopy, a powerful tool to detect vacancy-type defects and defect's chemical environment. A positron NDT system was designed and constructed by modifying the "sandwich" structure of sample-source-sample in the conventional positron lifetime spectrometer. The positron lifetime spectra of one single sample can be measured and analyzed by subtracting the contribution of a reference sample. The feasibility and reliability of the positron NDT system have been tested by analyzing nondestructively deformation damage caused by mechanical treatment in metals and steels. This system can be used for detecting defects and damage in thick or large-size samples without cutting off the sample materials, as well as for detecting two-dimensional distribution of defects.

  9. Simple, reliable, and nondestructive method for the measurement of vacuum pressure without specialized equipment.

    PubMed

    Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang

    2013-09-01

    We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.

  10. Non-Destructive Evaluation Method and Apparatus for Measuring Acoustic Material Nonlinearity

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    An acoustic non-linearity parameter (beta) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members obviates the need for electronic calibration of the measuring equipment. Unlike known substitutional measuring techniques requiring elaborate calibration procedures, the electrical outputs of the capacitive detector of a sample with known beta and the test sample of unknown beta are compared to determine the unknown beta. In order to provide the necessary stability of the present-inventive reference-based approach, the bandpass filters of the measurement system are maintained in a temperature-controlled environment, and the line voltage supplied to said amplifiers is well-regulated.

  11. A nondestructive diagnostic method based on swept-frequency ultrasound transmission-reflection measurements

    NASA Astrophysics Data System (ADS)

    Bramanti, Mauro

    1992-08-01

    A nondestructive diagnostic technique is proposed to measure depth and thickness of unwanted inclusions inside laminate-type materials (gaps, delaminations, and cracks, for example). The method is based on the frequency-domain analysis of transmission and reflection coefficient measured on the material under test when it is irradiated by a CW ultrasound beam whose frequency varies over a suitable frequency range. By measuring the frequency distance between two adjacent minima in the attenuation and reflection coefficients the thickness and depth of the inclusion can be obtained. A practical implementation of the technique is suggested, and the first experimental results obtained by a laboratory setup are reported.

  12. Non-destructive method for determining neutron exposure and constituent concentrations of a body

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1986-01-01

    A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentration at regions of interest within the object.

  13. Non-destructive method for determining neutron exposure and constituent concentrations of a body

    DOEpatents

    Gold, R.; McElroy, W.N.

    1984-02-22

    A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentrations at regions of interest within the object.

  14. Nondestructive pigment size detection method of mineral paint film based on image texture

    NASA Astrophysics Data System (ADS)

    Zhu, Wenfeng; Wan, Xiaoxia; Li, Junfeng; Li, Chan; Jin, Guonian; Liu, Qiang

    2017-01-01

    The existing methods-such as sieving, microscope, light scattering, sedimentation, and electrical induction for pigment size detection-require sampling or scattering the mineral pigments, which will inevitably cause damage to the films painted by mineral pigments. A new detection method based on run length texture analysis is proposed to nondestructively detect the pigment size in the mineral paint film. The films painted by mineral pigments with preknown pigment sizes are contactlessly captured by CCD microscope under diffused light. Gray transform, histogram equalization, and median filtering are implemented to preprocess the captured images, and then the run length texture parameters are extracted from the preprocessed images. A parametric relationship between the extracted parameters and the preknown size is established to predict the pigment size in mineral paint film nondestructively. Burnt carnelian is selected as the sample to verify the feasibility of the proposed method. Results show that the max detection error of the proposed method is 5.548 μm and can be applied to the size detection of the mineral pigments used in mineral paint film.

  15. Nondestructive test methods for evaluating durability of concrete highway structures: experience of Ontario Ministry of Transportation

    NASA Astrophysics Data System (ADS)

    Ip, Alan; Berszakiewicz, Beata; Pianca, Frank

    1998-03-01

    There is an urgent need for fast, reliable, non-destructive test methods to measure permeability and resistivity of concrete in the field, in order to assess the performance of concrete structures and confirm the benefits of the use of new materials. The application of high performance concrete for rehabilitation of corrosion-damaged highway structures and for new bridge construction has increased in Ontario over the past few years. High performance concrete, containing supplementary cementing materials such as silica fume, typically has lower permeability and higher electrical resistivity than conventional concrete. Since 1993, the R&D staff of the Ontario Ministry of Transportation (MTO) has been evaluating various non-destructive in-situ techniques to measure the permeability and resistivity of concrete. This paper describes two methods used by MTO to measure the permeability of concrete: surface water absorption and air permeability techniques; and presents the methods used to measure the concrete electrical resistivity, chloride movement in the concrete, and corrosion activity of the embedded steel. Many of the tests were performed on both the conventional and high performance concrete. Some of these techniques can be potentially used as quality assurance tools for assessing the quality, performance and durability of concrete in the field.

  16. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders.

    PubMed

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Peng, Yankun; Schmidt, Walter F; Kim, Moon S; Chan, Diane E

    2017-03-18

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials.

  17. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    PubMed Central

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Peng, Yankun; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.

    2017-01-01

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials. PMID:28335453

  18. Model-based non-destructive investigation methods in semiconductor industry

    NASA Astrophysics Data System (ADS)

    Bilski, B.; Paz, V. Ferreras; Frenner, K.; Osten, W.

    2013-05-01

    Scatterometry is an investigation method that is gaining in importance in semiconductor industry. As an optical method it has distinct advantages that its competitor-methods do not possess: the ability for a quick and non-destructive measurement of fine features fabricated by modern generations of lithography machines. Scatterometry is very distinct from other measurement techniques also in this respect that it is a model-based method. As such it relies heavily on simulation and is essentially solving an inverse problem. In a forward optical measurement an imaging system processes the object information losing some fraction of information in the process. The measurement process in scatterometry follows the same pattern. The measurement result however is now compared against multiple simulated direct problems. The best fit between the simulation and the measurement is assumed to reconstruct the measured object.

  19. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    PubMed

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained.

  20. A novel nondestructive testing method for amorphous Si-Sn-O films

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhe; Cai, Wei; Chen, Jianqiu; Fang, Zhiqiang; Ning, Honglong; Hu, Shiben; Tao, Ruiqiang; Zeng, Yong; Zheng, Zeke; Yao, Rihui; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2016-12-01

    Traditional methods to evaluate the quality of amorphous silicon-substituted tin oxide (a-STO) semiconductor film are destructive and time-consuming. Here, a novel non-destructive, quick, and facile method named microwave photoconductivity decay (μ-PCD) is utilized to evaluate the quality of a-STO film for back channel etch (BCE) thin-film transistors (TFTs) by simply measuring the D value and peak reflectivity signal. Through the μ-PCD method, both optimum deposition procedure and optimal annealing temperature are attained to prepare a-STO film with superior quality. The a-STO TFTs are fabricated by the obtained optimum procedure that exhibits a mobility of 8.14 cm2 V-1 s-1, a I on/I off ratio of 6.07  ×  109, a V on of -1.2 V, a steep subthreshold swing of 0.21 V/decade, a low trap density (D t) of 1.68  ×  1012 eV-1 cm-2, and good stability under the positive/negative gate-bias stress. Moreover, the validity of the μ-PCD measurement for a-STO films is verified by x-ray photoelectron spectroscopy, Hall effect measurement, and the performance of STO TFTs measured by traditional methods. The non-destructive μ-PCD method sheds light on the fast optimization of the deposition procedure for amorphous oxide semiconductor films with excellent quality.

  1. Non-destructive infrared analyses: a method for provenance analyses of sandstones

    NASA Astrophysics Data System (ADS)

    Bowitz, Jörg; Ehling, Angela

    2008-12-01

    Infrared spectroscopy (IR spectroscopy) is commonly applied in the laboratory for mineral analyses in addition to XRD. Because such technical efforts are time and cost consuming, we present an infrared-based mobile method for non-destructive mineral and provenance analyses of sandstones. IR spectroscopy is based on activating chemical bonds. By irradiating a mineral mixture, special bonds are activated to vibrate depending on the bond energy (resonance vibration). Accordingly, the energy of the IR spectrum will be reduced thereby generating an absorption spectrum. The positions of the absorption maxima within the spectral region indicate the type of the bonds and in many cases identify minerals containing these bonds. The non-destructive reflection spectroscopy operates in the near infrared region (NIR) and can detect all common clay minerals as well as sulfates, hydroxides and carbonates. The spectra produced have been interpreted by computer using digital mineral libraries that have been especially collected for sandstones. The comparison of all results with XRD, RFA and interpretations of thin sections demonstrates impressively the accuracy and reliability of this method. Not only are different minerals detectable, but also differently ordered kaolinites and varieties of illites can be identified by the shape and size of the absorption bands. Especially clay minerals and their varieties in combination with their relative contents form the characteristic spectra of sandstones. Other components such as limonite, hematite and amorphous silica also influence the spectra. Sandstones, similar in colour and texture, often can be identified by their characteristic reflectance spectra. Reference libraries with more than 60 spectra of important German sandstones have been created to enable entirely computerized interpretations and identifications of these dimension stones. The analysis of infrared spectroscopy results is demonstrated with examples of different sandstones

  2. Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors

    PubMed Central

    2016-01-01

    The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy. PMID:27581104

  3. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOEpatents

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  4. Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles

    DOEpatents

    Carpenter, Donald A.

    1995-01-01

    A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.

  5. Fatigue damage evolution study with non-destructive magnetic properties measurement method using scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu

    The fatigue process can be precisely defined in the crack propagation stage, where the fatigue damage can be evaluated by observed cracks and where an increase of the dislocation density occurs at the first 10% of the fatigue life. But for the stages between dislocation saturation and prior to nucleation, no definition can be given due to the relative difficulty in quantifying the damage. Especially, detecting a high-cycle fatigue damage is a particularly important yet an unsolved problem in non-destructive testing. There are no reliable techniques to measure the progress of fatigue in the intermediate fatigue regime, the second stage of fatigue, where the overall dislocation density is approximately constant and the microstructural changes are subtle include about 80% of the fatigue life in high-cycle fatigue. In this study, a non-destructive evaluation method is established by continuously measuring the magnetic properties, which interact with the developing fatigue damage during cyclic loading. Dislocations and microcracks which are initiated during the fatigue act as pinning sites which impede the motion of magnetic domain walls under the applied magnetic field, thereby influencing the bulk magnetic properties. The remanence field of various fatigued steel specimens are detected using a scanning microscope based on a high transition temperature Superconducting Quantum Interference Device (SQUID). The results show the development of localized peaks in remanent magnetization prior to the formation of visible fatigue cracks. Even in the second stage of fatigue, where the macroscopic state of the sample is relatively constant, the results show that a scanning SQUID microscope is capable of detecting regions of fatigue damage both on surface and in sub-surface regions.

  6. Application of coupled electric field method for eddy current non-destructive inspection of multilayer structures

    NASA Astrophysics Data System (ADS)

    Bouchala, T.; Abdelhadi, B.; Benoudjit, A.

    2015-04-01

    The development of fast and accurate method describing the electromagnetic phenomena intervening in eddy current non-destructive systems is very interesting, since it permits the design of reliable systems permitting the detection and the characterisation of defect in conductive materials. The coupled electric field method presented in this article can assume a large part of these objectives, because it is fast in comparison to the finite element method and easily invertible since the sensor impedance variation is an explicit function of target physical and geometrical characteristics. These advantages have motivated us to extend this method for multilayered structures, very interesting in aeronautic industry, by superposing the inductive effects in different layers. The impedance of an absolute sensor operating above three conducting layers will be calculated and compared to those obtained with finite element method. Afterwards, we shall exploit the model to study the effect of defect characteristics on the sensor impedance. Furthermore, regarding to the depth penetration effect, we shall make into evidence the necessity of accomplishing an optimal choice of the exciting field frequency during the inspection of multilayered materials. The essential importance of this method, besides of its rapidity, resides in its possibility to be extended to 2D irregular and 3D asymmetric configurations.

  7. Development of vibrational spectroscopic methods to rapidly and non-destructively assess quality of chicken breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of Vibrational Spectroscopic Methods to Rapidly and Non-Destructively Assess Quality of Chicken Breast Meat H. Zhuang1, M. Sohn2, S. Trabelsi1 and K. Lawrence1 1Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 2University of Georgia, De...

  8. Microwave dielectric method for the rapid, non-destructive determination of bulk density and moisture content of peanut hull pellets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dielectric-based method was used to determine rapidly and nondestructively moisture content and bulk density of peanut-hull pellets from free-space measurement of their dielectric properties at microwave frequencies. For moisture content determination, a permittivity-based function which allows mo...

  9. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-03-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  10. X-ray based methods for non-destructive testing and material characterization

    NASA Astrophysics Data System (ADS)

    Hanke, Randolf; Fuchs, Theobald; Uhlmann, Norman

    2008-06-01

    The increasing complexity and miniaturization in the field of new materials as well as in micro-production requires in the same way improvements and technical advances in the field of micro-NDT to provide better quality data and more detailed knowledge about the internal structures of micro-components. Therefore, non-destructive methods like radioscopy, ultrasound, optical or thermal imaging increasingly gain in importance with respect to ongoing product and material development in the different phases like material characterization, production control or module reliability testing. Because of the manifold different application fields, i.e., certain physical NDT methods applied to material inspection, characterization or reliability testing, this contribution will focus on the radioscopic-based methods related to their most important applications. Today, in modern industrial quality control, X-ray transmission is used in two different ways: Two-dimensional radioscopic transmission imaging (projection technique), usually applied to inline inspection tasks in application fields like lightweight material production, electronic component soldering or food production. Computed tomography (CT) for generation of three-dimensional data, representing spatial information and density distribution of objects. CT application fields are on the one hand the understanding of production process failure or component and module inspection (completeness) and on the other hand the dimensional measuring of hidden geometrical outlines (metrology). This paper demonstrates the methods including technical set-ups (X-ray source and detector), imaging and reconstruction results and the methods for high speed and high-resolution volume data generation and evaluation.

  11. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    SciTech Connect

    Kiefel, Denis E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  12. Validation of LAB color mode as a nondestructive method to differentiate black ballpoint pen inks.

    PubMed

    Hammond, Derek L

    2007-07-01

    Nondestructive digital processing methods such as lab color mode (available in Adobe Photoshop) are emerging as alternative methods for forensic document examiners to use when attempting to differentiate writing instrument inks. Although these techniques appear to be viable, little data currently exists regarding the known or potential error rates associated with these techniques. Without adequate data, the validity and reliability of these techniques, including lab color, can not be established. In an attempt to begin to address these issues, 44 black ballpoint ink pens were obtained and used to create 990 pen-pair samples for analysis using established lab color mode techniques. No erroneous findings of "different" were reported following the examination of the known pen-pair combinations in which the same pen was used to create the samples (n = 44). Of the remaining 946 samples, 737 pen-pair samples were differentiated using the lab color mode method, while 209 samples were unable to be differentiated and were recorded as either being "similar" (n = 153) or "unsure" (n = 56). Comparison of the lab color mode results with the results obtained through additional testing using traditional infrared reflectance and infrared luminescence test methods showed that lab color differentiated 102 pen-pair samples (11%; 102/946) that were not differentiated using a VSC-4C.

  13. Quantifying tetrodotoxin levels in the California newt using a non-destructive sampling method.

    PubMed

    Bucciarelli, Gary M; Li, Amy; Zimmer, Richard K; Kats, Lee B; Green, David B

    2014-03-01

    Toxic or noxious substances often serve as a means of chemical defense for numerous taxa. However, such compounds may also facilitate ecological or evolutionary processes. The neurotoxin, tetrodotoxin (TTX), which is found in newts of the genus Taricha, acts as a selection pressure upon predatory garter snakes, is a chemical cue to conspecific larvae, which elicits antipredator behavior, and may also affect macroinvertebrate foraging behavior. To understand selection patterns and how potential variation might affect ecological and evolutionary processes, it is necessary to quantify TTX levels within individuals and populations. To do so has often required that animals be destructively sampled or removed from breeding habitats and brought into the laboratory. Here we demonstrate a non-destructive method of sampling adult Taricha that obviates the need to capture and collect individuals. We also show that embryos from oviposited California newt (Taricha torosa) egg masses can be individually sampled and TTX quantified from embryos. We employed three different extraction techniques to isolate TTX. Using a custom fabricated high performance liquid chromatography (HPLC) system we quantified recovery of TTX. We found that a newly developed micro-extraction technique significantly improved recovery compared to previously used methods. Results also indicate our improvements to the HPLC method have high repeatability and increased sensitivity, with a detection limit of 48 pg (0.15 pmol) TTX. The quantified amounts of TTX in adult newts suggest fine geographic variation in toxin levels between sampling localities isolated by as little as 3 km.

  14. Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens.

    PubMed

    Rohland, Nadin; Siedel, Heike; Hofreiter, Michael

    2004-05-01

    Museum specimens have provided the material for a large proportion of ancient DNA studies conducted during the last 20 years. However, a major drawback of the genetic analyses is that the specimens investigated are usually damaged, as parts of skin, bone, or a tooth have to be removed for DNA extraction. To get around these limitations, we have developed a nondestructive extraction method for bone, tooth, and skin samples. We found that it is possible to amplify mitochondrial DNA (mtDNA) sequences up to at least 414 bp long from samples up to 164 years old. Using this method, almost 90% (35 of 40) of the investigated samples yielded amplifiable mtDNA. Moreover, we found that repeated extractions of the same samples allowed amplifications of the expected length for all samples at least three times and for some samples up to at least five times. Thus this method opens up the possibility to repeatedly use museum collections for mtDNA analyses without damaging the specimens and thus without reducing the value of irreplaceable collections for morphological analyses.

  15. Bulk Electrical Cable Non-Destructive Examination Methods for Nuclear Power Plant Cable Aging Management Programs

    SciTech Connect

    Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.; Hartman, Trenton S.

    2016-09-01

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of nondestructive test methods focusing particularly on bulk electrical test methods that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As nuclear power plants consider applying for second, or subsequent, license renewal to extend their operating period from 60 years to 80 years, it is important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs to assure continued safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program, however, is directed toward the more demanding challenge of assuring the cable function under accident or DBE. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB, however, is a destructive test so the test programs must apply an array of other nondestructive examination (NDE) tests to assure or infer the overall set of cable’s system integrity. Assessment of cable integrity is further complicated in many cases by vendor’s use of dissimilar material for jacket and insulation. Frequently the jacket will degrade more rapidly than the underlying insulation. Although this can serve as an early alert to cable damage, direct test of the cable insulation without violating the protective jacket becomes problematic. This report addresses the range of bulk electrical NDE cable tests that are or could be practically implemented in a field-test situation with a particular focus on frequency domain reflectometry (FDR). The FDR test method offers numerous advantages

  16. Non-destructive methods of control of thermo-physical properties of fuel rods

    NASA Astrophysics Data System (ADS)

    Kruglov, A. B.; Kruglov, V. B.; Kharitonov, V. S.; Struchalin, P. G.; Galkin, A. G.

    2017-01-01

    Information about the change of thermal properties of the fuel elements needed for a successful and safe operation of the nuclear power plant. At present, the existing amount of information on the fuel thermal conductivity change and “fuel-shell” thermal resistance is insufficient. Also, there is no technique that would allow for the measurement of these properties on the non-destructive way of irradiated fuel elements. We propose a method of measuring the thermal conductivity of the fuel in the fuel element and the contact thermal resistance between the fuel and the shell without damaging the integrity of the fuel element, which is based on laser flash method. The description of the experimental setup, implementing methodology, experiments scheme. The results of test experiments on mock-ups of the fuel elements and their comparison with reference data, as well as the results of numerical modeling of thermal processes that occur during the measurement. Displaying harmonization of numerical calculation with the experimental thermograms layout shell portions of the fuel cell, confirming the correctness of the calculation model.

  17. A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy.

    PubMed

    Capiau, Sara; Wilk, Leah S; Aalders, Maurice C G; Stove, Christophe P

    2016-06-21

    Dried blood spot (DBS) sampling is recognized as a valuable alternative sampling strategy both in research and in clinical routine. Although many advantages are associated with DBS sampling, its more widespread use is hampered by several issues, of which the hematocrit effect on DBS-based quantitation remains undoubtedly the most widely discussed one. Previously, we developed a method to derive the approximate hematocrit from a nonvolumetrically applied DBS based on its potassium content. Although this method yielded good results and was straightforward to perform, it was also destructive and required sample preparation. Therefore, we now developed a nondestructive method which allows to predict the hematocrit of a DBS based on its hemoglobin content, measured via noncontact diffuse reflectance spectroscopy. The developed method was thoroughly validated. A linear calibration curve was established after log/log transformation. The bias, intraday and interday imprecision of quality controls at three hematocrit levels and at the lower and upper limit of quantitation (0.20 and 0.67, respectively) were less than 11%. In addition, the influence of storage and the volume spotted was evaluated, as well as DBS homogeneity. Application of the method to venous DBSs prepared from whole blood patient samples (n = 233) revealed a good correlation between the actual and the predicted hematocrit. Limits of agreement obtained after Bland and Altman analysis were -0.076 and +0.018. Incurred sample reanalysis demonstrated good method reproducibility. In conclusion, mere scanning of a DBS suffices to derive its approximate hematocrit, one of the most important variables in DBS analysis.

  18. Nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Mandel, G.; Carpenter, J. L., Jr.; Stuarke, W. F.

    1977-01-01

    Technological survey summarizes accumulated knowledge of nondestructive-evaluation (NDE) testing methodology application and reliability as it is presented in literature covering time period from 1962 to 1975.

  19. A first approach to evaluate the cell dose in highly porous scaffolds by using a nondestructive metabolic method

    PubMed Central

    Divieto, Carla; Sassi, Maria Paola

    2015-01-01

    Background: In cell-based therapies, in vitro studies on biomimetic cell–scaffold constructs can facilitate the determination of the cell dose, a key factor in guaranteeing the effectiveness of the treatment. However, highly porous scaffolds do not allow a nondestructive evaluation of the cell number. Our objective was to develop a nondestructive method for human mesenchymal stem cells dose evaluation in a highly porous scaffold for bone regeneration. Materials & measurement method: Proliferation trend of human mesenchymal stem cells on Biocoral® scaffolds was measured by a resazurin-based assay here optimized for 3D cultures. The method allows to noninvasively follow the cell proliferation on biocorals over 3 weeks with very high reproducibility. Conclusion: This reliable method could be a powerful tool in cell-based therapies for cell dose determination. PMID:28031911

  20. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    PubMed

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  1. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  2. Ultrasonic array imaging in nondestructive evaluation: total focusing method with using circular coherence factor

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Drinkwater, Bruce W.; Wilcox, Paul D.

    2013-01-01

    Ultrasonic array imaging algorithms have been widely used and developed in non-destructive evaluation in the last 10 years. In this paper, a widely-used imaging algorithms, Total Focusing Method (TFM), was further developed with using the phase statistical information of the scattering field from a scatterer, i.e., Circular Coherence Factor (CCF). TFM and TFM with using CCF are compared through both simulation and experimental measurements. In the simulation, array data sets were generated by using a hybrid forward model containing a single defect amongst a multitude of randomly distributed point scatterers to represent backscatter from material microstructure. The number of point scatterers per unit area and their scattering amplitude were optimized to reduce computation cost. The Signal to Noise Ratio (SNR) of the finial images and their resolution were used to indicate the quality of the different imaging algorithms. The images of different types of defect (point reflectors and planar cracks) were used to investigate the robustness of the imaging algorithms. It is shown that, with using CCF, higher image resolution can be achieved, but that the images of cracks are distorted. It is also shown that the detection limit of the imaging algorithms is almost equal for weakly scattering defects.

  3. Non-destructive in-situ method and apparatus for determining radionuclide depth in media

    DOEpatents

    Xu, X. George; Naessens, Edward P.

    2003-01-01

    A non-destructive method and apparatus which is based on in-situ gamma spectroscopy is used to determine the depth of radiological contamination in media such as concrete. An algorithm, Gamma Penetration Depth Unfolding Algorithm (GPDUA), uses point kernel techniques to predict the depth of contamination based on the results of uncollided peak information from the in-situ gamma spectroscopy. The invention is better, faster, safer, and/cheaper than the current practice in decontamination and decommissioning of facilities that are slow, rough and unsafe. The invention uses a priori knowledge of the contaminant source distribution. The applicable radiological contaminants of interest are any isotopes that emit two or more gamma rays per disintegration or isotopes that emit a single gamma ray but have gamma-emitting progeny in secular equilibrium with its parent (e.g., .sup.60 Co, .sup.235 U, and .sup.137 Cs to name a few). The predicted depths from the GPDUA algorithm using Monte Carlo N-Particle Transport Code (MCNP) simulations and laboratory experiments using .sup.60 Co have consistently produced predicted depths within 20% of the actual or known depth.

  4. Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles

    DOEpatents

    Carpenter, D.A.

    1995-05-23

    A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data. 7 Figs.

  5. Automatic method for synchronizing workpiece frames in twin-robot nondestructive testing system

    NASA Astrophysics Data System (ADS)

    Lu, Zongxing; Xu, Chunguang; Pan, Qinxue; Meng, Fanwu; Li, Xinliang

    2015-07-01

    The workpiece frames relative to each robot base frame should be known in advance for the proper operation of twin-robot nondestructive testing system. However, when two robots are separated from the workpieces, the twin robots cannot reach the same point to complete the process of workpiece frame positioning. Thus, a new method is proposed to solve the problem of coincidence between workpiece frames. Transformation between two robot base frames is initiated by measuring the coordinate values of three non-collinear calibration points. The relationship between the workpiece frame and that of the slave robot base frame is then determined according to the known transformation of two robot base frames, as well as the relationship between the workpiece frame and that of the master robot base frame. Only one robot is required to actually measure the coordinate values of the calibration points on the workpiece. This requirement is beneficial when one of the robots cannot reach and measure the calibration points. The coordinate values of the calibration points are derived by driving the robot hand to the points and recording the values of top center point(TCP) coordinates. The translation and rotation matrices relate either the two robot base frames or the workpiece and master robot. The coordinated are solved using the measured values of the calibration points according to the Cartesian transformation principle. An optimal method is developed based on exponential mapping of Lie algebra to ensure that the rotation matrix is orthogonal. Experimental results show that this method involves fewer steps, offers significant advantages in terms of operation and time-saving. A method used to synchronize workpiece frames in twin-robot system automatically is presented.

  6. Development of Natural Flaw Samples for Evaluating Nondestructive Testing Methods for Foam Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Davis, Jason; Farrington, Seth; Walker, James

    2007-01-01

    Low density polyurethane foam has been an important insulation material for space launch vehicles for several decades. The potential for damage from foam breaking away from the NASA External Tank was not realized until the foam impacts on the Columbia Orbiter vehicle caused damage to its Leading Edge thermal protection systems (TPS). Development of improved inspection techniques on the foam TPS is necessary to prevent similar occurrences in the future. Foamed panels with drilled holes for volumetric flaws and Teflon inserts to simulate debonded conditions have been used to evaluate and calibrate nondestructive testing (NDT) methods. Unfortunately the symmetric edges and dissimilar materials used in the preparation of these simulated flaws provide an artificially large signal while very little signal is generated from the actual defects themselves. In other words, the same signal are not generated from the artificial defects in the foam test panels as produced when inspecting natural defect in the ET foam TPS. A project to create more realistic voids similar to what actually occurs during manufacturing operations was began in order to improve detection of critical voids during inspections. This presentation describes approaches taken to create more natural voids in foam TPS in order to provide a more realistic evaluation of what the NDT methods can detect. These flaw creation techniques were developed with both sprayed foam and poured foam used for insulation on the External Tank. Test panels with simulated defects have been used to evaluate NDT methods for the inspection of the External Tank. A comparison of images between natural flaws and machined flaws generated from backscatter x-ray radiography, x-ray laminography, terahertz imaging and millimeter wave imaging show significant differences in identifying defect regions.

  7. Nondestructive evaluation

    SciTech Connect

    Martz, H.E.

    1997-02-01

    Research reported in the thrust area of nondestructive evaluation includes: advanced 3-D imaging technologies; new techniques in laser ultrasonic testing; infrared computed tomography for thermal NDE of materials, structures, sources, and processes; automated defect detection for large laser optics; multistatic micropower impulse radar imaging for nondestructive evaluation; and multi-modal NDE for AVLIS pod shielding components.

  8. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  9. Testing methods and techniques: Quality control and nondestructive testing: A complication

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A variety of devices and techniques useful in nondestructive testing is described. Ranging in complexity from an automated ultrasonic testing system designed for complex laminated honeycomb structures, to a flexible leak detector probe, the items represent either potential savings in cost and time, or improvement in inspection quality over past techniques. Data cover weld and braze inspection, leak detection, and inspection of composite materials.

  10. Mild-Vectolysis: A nondestructive DNA extraction method for vouchering sand flies and mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nondestructive techniques allow the isolation of genomic DNA, without damaging the morphological features of the specimens. Though such techniques are available for numerous insect groups, they have not been applied to any member of the medically important families of mosquitoes (Diptera: Culicidae)...

  11. The use of non-destructive passive neutron measurement methods in dismantling and radioactive waste characterization

    SciTech Connect

    Jallu, F.; Allinei, P. G.; Bernard, P.; Loridon, J.; Soyer, P.; Pouyat, D.; Torreblanca, L.; Reneleau, A.

    2011-07-01

    The cleaning up and dismantling of nuclear facilities lead to a great volume of technological radioactive wastes which need to be characterized in order to be sent to the adequate final disposal or interim storage. The control and characterization can be performed with non-destructive nuclear measurements such as gamma-ray spectrometry. Passive neutron counting is an alternative when the alpha-gamma emitters cannot be detected due to the presence of a high gamma emission resulting from fission or activation products, or when the waste matrix is too absorbing for the gamma rays of interest (too dense and/or made of high atomic number elements). It can also be a complement to gamma-ray spectrometry when two measurement results must be confronted to improve the confidence in the activity assessment. Passive neutron assays involve the detection of spontaneous fission neutrons emitted by even nuclides ({sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 242}Cm, {sup 244}Cm...) and neutrons resulting from ({alpha}, n) reactions with light nuclides (O, F, Be...). The latter is conditioned by the presence of high {alpha}-activity radionuclides ({sup 234}U, {sup 238}Pu, {sup 240}Pu, {sup 241}Am...) and low-Z elements, which depends on the chemical form (metallic, oxide or fluorine) of the plutonium or uranium contaminant. This paper presents the recent application of passive neutron methods to the cleaning up of a nuclear facility located at CEA Cadarache (France), which concerns the Pu mass assessment of 2714 historic, 100 litre radioactive waste drums produced between 1980 and 1997. Another application is the dismantling and decommissioning of an uranium enrichment facility for military purposes, which involves the {sup 235}U and total uranium quantifications in about a thousand, large compressors employed in the gaseous diffusion enrichment process. (authors)

  12. Nondestructive testing and characterization of residual stress field using an ultrasonic method

    NASA Astrophysics Data System (ADS)

    Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng

    2016-03-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  13. Litchi freshness rapid non-destructive evaluating method using electronic nose and non-linear dynamics stochastic resonance model.

    PubMed

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua

    2015-01-01

    In this paper, litchi freshness rapid non-destructive evaluating method using electronic nose (e-nose) and non-linear stochastic resonance (SR) was proposed. EN responses to litchi samples were continuously detected for 6 d Principal component analysis (PCA) and non-linear stochastic resonance (SR) methods were utilized to analyze EN detection data. PCA method could not totally discriminate litchi samples, while SR signal-to-noise ratio (SNR) eigen spectrum successfully discriminated all litchi samples. Litchi freshness predictive model developed using SNR eigen values shows high predictive accuracy with regression coefficients R(2) = 0 .99396.

  14. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  15. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality By Eddy Current Method

    SciTech Connect

    B. Mi; G. Zhao; R. Bayles

    2006-08-10

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with various surface preparation conditions or spray process parameters. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that different surface preparation conditions and varied process parameters can be successfully differentiated by the impedance value observed from the eddy current probe. The measurement is fairly robust and consistent. This non-contact, nondestructive, easy-to-use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  16. Evaluation of non-destructive methods for estimating biomass in marshes of the upper Texas, USA coast

    USGS Publications Warehouse

    Whitbeck, M.; Grace, J.B.

    2006-01-01

    The estimation of aboveground biomass is important in the management of natural resources. Direct measurements by clipping, drying, and weighing of herbaceous vegetation are time-consuming and costly. Therefore, non-destructive methods for efficiently and accurately estimating biomass are of interest. We compared two non-destructive methods, visual obstruction and light penetration, for estimating aboveground biomass in marshes of the upper Texas, USA coast. Visual obstruction was estimated using the Robel pole method, which primarily measures the density and height of the canopy. Light penetration through the canopy was measured using a Decagon light wand, with readings taken above the vegetation and at the ground surface. Clip plots were also taken to provide direct estimates of total aboveground biomass. Regression relationships between estimated and clipped biomass were significant using both methods. However, the light penetration method was much more strongly correlated with clipped biomass under these conditions (R2 value 0.65 compared to 0.35 for the visual obstruction approach). The primary difference between the two methods in this situation was the ability of the light-penetration method to account for variations in plant litter. These results indicate that light-penetration measurements may be better for estimating biomass in marshes when plant litter is an important component. We advise that, in all cases, investigators should calibrate their methods against clip plots to evaluate applicability to their situation. ?? 2006, The Society of Wetland Scientists.

  17. A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition

    SciTech Connect

    Zhang, Qinglin; Xiao, Xingcheng Verbrugge, Mark W.; Cheng, Yang-Tse

    2014-08-11

    The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al{sub 2}O{sub 3} films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple applications.

  18. A Rapid Ultrasonic Method for Nondestructive Thickness Mapping of Bronze Liner in Steel-Backed Bearing Sleeves

    SciTech Connect

    Fei Dong; Rebinsky, Douglas A.

    2004-02-26

    In this paper a nondestructive, automatic, ultrasonic scanning method was developed to permit rapid thickness mapping of the bronze liner in a steel-backed bearing sleeve. Because the sound velocity in bronze was unknown, an indirect two-step approach was used: the first step utilized a simultaneous velocity and thickness mapping method to measure the total wall thickness while the second step measured the thickness of the steel backing. The difference of the two obtained thickness maps yielded the thickness map of the bronze liner. Comparison to destructive examination results showed a measurement accuracy of approximately 20 {mu}m or 2%.

  19. Development of microwave and impedance spectroscopy methods for in-situ nondestructive evaluation of alkali silica reaction in concrete

    NASA Astrophysics Data System (ADS)

    Heifetz, Alexander; Bakhtiari, Sasan; Lu, Juan; Aranson, Igor S.; Vinokur, Valerii M.; Bentivegna, Anthony F.

    2017-02-01

    Aging concrete degradation due to alkali silica reaction (ASR) is a challenge to sustainability of critical infrastructure, such as nuclear power plants. Currently, there is no standard, nondestructive method for detecting ASR in concrete. We report on the progress in developing electromagnetic (EM) methods, consisting of microwave and impedance spectroscopy techniques, for nondestructive detection of ASR. The microwave and impedance spectroscopy methods are complementary since they provide information about material electrical properties in GHz and Hz to KHz EM spectral bands, respectively. Preliminary studies were conducted using accelerated testing concrete prism specimens developed according to ASTM C1293 standard. Microwave and impedance spectroscopy measurements were performed on ASR specimens at the first and the second month maturity level, as well as on age-matched controls. Microwave tests consisted of reflection and transmission measurements using dielectric-loaded antennas, with the focus on X-band spectrum. Impedance measurements were performed using flexible electrode patches. Measurement results by both microwave and impedance spectroscopy methods indicate observable differences in electrical properties between reactive and non-reactive specimens. In addition, trends in measurement data obtained with the two complementary EM techniques are consistent and correlate with ASR progression in specimens.

  20. A Nondestructive Evaluation Method: Measuring the Fixed Strength of Spot-Welded Joint Points by Surface Electrical Resistivity.

    PubMed

    Shimamoto, Akira; Yamashita, Keitaro; Inoue, Hirofumi; Yang, Sung-Mo; Iwata, Masahiro; Ike, Natsuko

    2013-04-01

    Destructive tests are generally applied to evaluate the fixed strength of spot-welding nuggets of zinc-plated steel (which is a widely used primary structural material for automobiles). These destructive tests, however, are expensive and time-consuming. This paper proposes a nondestructive method for evaluating the fixed strength of the welded joints using surface electrical resistance. A direct current nugget-tester and probes have been developed by the authors for this purpose. The proposed nondestructive method uses the relative decrease in surface electrical resistance, α. The proposed method also considers the effect of the corona bond. The nugget diameter is estimated by two factors: RQuota, which is calculated from variation of resistance, and a constant that represents the area of the corona bond. Since the maximum tensile strength is correlated with the nugget diameter, it can be inferred from the estimated nugget diameter. When appropriate measuring conditions for the surface electrical resistance are chosen, the proposed method can effectively evaluate the fixed strength of the spot-welded joints even if the steel sheet is zinc-plated.

  1. Non-destructive high-throughput DNA extraction and genotyping methods for cotton seeds and seedlings.

    PubMed

    Zheng, Xiuting; Hoegenauer, Kevin A; Maeda, Andrea B V; Wang, Fei; Stelly, David M; Nichols, Robert L; Jones, Don C

    2015-05-01

    Extensive use of targeted PCR-based genotyping is precluded for many plant research laboratories by the cost and time required for DNA extraction. Using cotton (Gossypium hirsutum) as a model for plants with medium-sized seeds, we report here manual procedures for inexpensive non-destructive high-throughput extraction of DNA suitable for PCR-based genotyping of large numbers of individual seeds and seedlings. By sampling only small amounts of cotyledon tissue of ungerminated seed or young seedlings, damage is minimized, and viability is not discernibly affected. The yield of DNA from each seed or seedling is typically sufficient for 1000 or 500 PCR reactions, respectively. For seeds, the tissue sampling procedure relies on a modified 96-well plate that is used subsequently for seed storage. For seeds and seedlings, the DNA is extracted in a strongly basic DNA buffer that is later neutralized and diluted. Extracts can be used directly for high-throughput PCR-based genotyping. Any laboratory can thus extract DNA from thousands of individual seeds/seedlings per person-day at a very modest cost for consumables (~$0.05 per sample). Being non-destructive, our approach enables a wide variety of time- and resource-saving applications, such as marker-assisted selection (MAS), before planting, transplanting, and flowering.

  2. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality by Eddy Current Method

    SciTech Connect

    B.Mi; X. Zhao; R. Bayles

    2006-05-26

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with different surface preparation conditions before applying the coating, e.g., grit-blasted surface, wire-brush cleaned surface, and a dirty surface. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that the three surface preparation conditions can be successfully differentiated by looking into the impedance difference observed from the eddy current probe. The measurement is fairly robust and consistent. More specimens are also prepared with variations of process parameters, such as spray angle, stand-off distance, and application of corrosion protective sealant, etc. They are blindly tested to evaluate the reliability of the eddy current system. Quantitative relations between the coating bond strength and the eddy current response are also established with the support of destructive testing. This non-contact, non-destructive, easy to use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  3. Classification of hot particles from the Chernobyl accident and nuclear weapons detonations by non-destructive methods.

    PubMed

    Zheltonozhsky, V; Mück, K; Bondarkov, M

    2001-01-01

    Both after the Chernobyl accident and nuclear weapon detonations, agglomerates of radioactive material, so-called hot particles, were released or formed which show a behaviour in the environment quite different from the activity released in gaseous or aerosol form. The differences in their characteristic properties, in the radionuclide composition and the uranium and actinide contents are described in detail for these particles. While nuclear bomb hot particles (both from fission and fusion bombs) incorporate well detectable trace amounts of 60Co and 152Eu, these radionuclides are absent in Chernobyl hot particles. In contrast, Chernobyl hot particles contain 125Sb and 144Ce which are absent in atomic bomb HPs. Obvious differences are also observable between fusion and fission bombs' hot particles (significant differences in 152Eu/l55Eu, 154Eu/155Eu and 238Pu/239Pu ratios) which facilitate the identification of HPs of unknown provensence. The ratio of 239Pu/240Pu in Chernobyl hot particles could be determined by a non-destructive method at 1:1.5. A non-destructive method to determine the content of non-radioactive elements by Kalpha-emission measurements was developed by which inactive Zr, Nb, Fe and Ni could be verified in the particles.

  4. Nondestructive determination of transgenic Bacillus thuringiensis rice seeds (Oryza sativa L.) using multispectral imaging and chemometric methods.

    PubMed

    Liu, Changhong; Liu, Wei; Lu, Xuzhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2014-06-15

    Crop-to-crop transgene flow may affect the seed purity of non-transgenic rice varieties, resulting in unwanted biosafety consequences. The feasibility of a rapid and nondestructive determination of transgenic rice seeds from its non-transgenic counterparts was examined by using multispectral imaging system combined with chemometric data analysis. Principal component analysis (PCA), partial least squares discriminant analysis (PLSDA), least squares-support vector machines (LS-SVM), and PCA-back propagation neural network (PCA-BPNN) methods were applied to classify rice seeds according to their genetic origins. The results demonstrated that clear differences between non-transgenic and transgenic rice seeds could be easily visualized with the nondestructive determination method developed through this study and an excellent classification (up to 100% with LS-SVM model) can be achieved. It is concluded that multispectral imaging together with chemometric data analysis is a promising technique to identify transgenic rice seeds with high efficiency, providing bright prospects for future applications.

  5. Quantitative nondestructive in-service evaluation of stay cables of cable-stayed bridges: methods and practical experience

    NASA Astrophysics Data System (ADS)

    Weischedel, Herbert R.; Hoehle, Hans-Werner

    1995-05-01

    Stay cables of cable-stayed bridges have corrosion protection systems that can be elaborate. For example, such a system may simply consist of one or several coats of paint, or--more complex--of plastic pipes that are wrapped with tape and filled with grout. Frequently, these corrosion protection systems prevent visual inspections. Therefore, alternative nondestructive examination methods are called for. For example, modern dual-function electromagnetic (EM) instruments allow the simultaneous detection of external and internal localized flaws (such as external and internal broken wires and corrosion piting) and the measurement of loss of metallic cross-sectional area (typically caused by external or internal corrosion or wear). Initially developed for mining and skiing applications, these instruments have been successfully used for the inspection of stays of cable-stayed bridges, and for the inspection of guys of smoke stacks, flare stacks, broadcast towers, suspended roofs, etc. As a rule, guys and bridge cables are not subjected to wear and bending stresses. However, their safety can be compromised by corrosion caused by the failure of corrosion protection systems. Furthermore, live loads and wind forces create intermittent tensile stresses that can cause fatigue breaks of wires. This paper discusses the use of dual-function EM instruments for the detection and the nondestructive quantitative evaluation of cable deterioration. It explains the underlying principles. Experiences with this method together with field inspection results will be presented.

  6. A non-destructive n-doping method for graphene with precise control of electronic properties via atomic layer deposition.

    PubMed

    Han, Kyu Seok; Kalode, Pranav Y; Koo Lee, Yong-Eun; Kim, Hongbum; Lee, Lynn; Sung, Myung Mo

    2016-03-07

    Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility.

  7. Challenges in Integrating Nondestructive Evaluation and Finite Element Methods for Realistic Structural Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.

    2000-01-01

    Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.

  8. Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods

    SciTech Connect

    Boccaccini, D. N.; Kamseu, Elie; Cannio, M.; Romagnoli, M.; Veronesi, P.; Leonelli, C.; Volkov-Husoviae, T. D.; Dlouhy, I.; Boccaccini, A. R.

    2008-02-15

    Ultrasonic pulse velocity testing was used to perform non-destructive quality control of refractory plates used as substrates in fast firing of porcelain whitewares. The measurement of the ultrasonic velocity was used to asses the presence of internal voids or cracks originated from the manufacturing procedure. Image analysis was used to predict thermal stability of the refractory materials. Two cordierite-mullite compositions were investigated that are characterized by different microstructure morphologies and crack propagation behaviour. A brief discussion about the correlation between microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, empirical models were developed to predict the service life of refractory plates from measured values of ultrasonic velocities in plates in the as-received state.

  9. Nondestructive In Situ Measurement Method for Kernel Moisture Content in Corn Ear.

    PubMed

    Zhang, Han-Lin; Ma, Qin; Fan, Li-Feng; Zhao, Peng-Fei; Wang, Jian-Xu; Zhang, Xiao-Dong; Zhu, De-Hai; Huang, Lan; Zhao, Dong-Jie; Wang, Zhong-Yi

    2016-12-20

    Moisture content is an important factor in corn breeding and cultivation. A corn breed with low moisture at harvest is beneficial for mechanical operations, reduces drying and storage costs after harvesting and, thus, reduces energy consumption. Nondestructive measurement of kernel moisture in an intact corn ear allows us to select corn varieties with seeds that have high dehydration speeds in the mature period. We designed a sensor using a ring electrode pair for nondestructive measurement of the kernel moisture in a corn ear based on a high-frequency detection circuit. Through experiments using the effective scope of the electrodes' electric field, we confirmed that the moisture in the corn cob has little effect on corn kernel moisture measurement. Before the sensor was applied in practice, we investigated temperature and conductivity effects on the output impedance. Results showed that the temperature was linearly related to the output impedance (both real and imaginary parts) of the measurement electrodes and the detection circuit's output voltage. However, the conductivity has a non-monotonic dependence on the output impedance (both real and imaginary parts) of the measurement electrodes and the output voltage of the high-frequency detection circuit. Therefore, we reduced the effect of conductivity on the measurement results through measurement frequency selection. Corn moisture measurement results showed a quadric regression between corn ear moisture and the imaginary part of the output impedance, and there is also a quadric regression between corn kernel moisture and the high-frequency detection circuit output voltage at 100 MHz. In this study, two corn breeds were measured using our sensor and gave R² values for the quadric regression equation of 0.7853 and 0.8496.

  10. Nondestructive In Situ Measurement Method for Kernel Moisture Content in Corn Ear

    PubMed Central

    Zhang, Han-Lin; Ma, Qin; Fan, Li-Feng; Zhao, Peng-Fei; Wang, Jian-Xu; Zhang, Xiao-Dong; Zhu, De-Hai; Huang, Lan; Zhao, Dong-Jie; Wang, Zhong-Yi

    2016-01-01

    Moisture content is an important factor in corn breeding and cultivation. A corn breed with low moisture at harvest is beneficial for mechanical operations, reduces drying and storage costs after harvesting and, thus, reduces energy consumption. Nondestructive measurement of kernel moisture in an intact corn ear allows us to select corn varieties with seeds that have high dehydration speeds in the mature period. We designed a sensor using a ring electrode pair for nondestructive measurement of the kernel moisture in a corn ear based on a high-frequency detection circuit. Through experiments using the effective scope of the electrodes’ electric field, we confirmed that the moisture in the corn cob has little effect on corn kernel moisture measurement. Before the sensor was applied in practice, we investigated temperature and conductivity effects on the output impedance. Results showed that the temperature was linearly related to the output impedance (both real and imaginary parts) of the measurement electrodes and the detection circuit’s output voltage. However, the conductivity has a non-monotonic dependence on the output impedance (both real and imaginary parts) of the measurement electrodes and the output voltage of the high-frequency detection circuit. Therefore, we reduced the effect of conductivity on the measurement results through measurement frequency selection. Corn moisture measurement results showed a quadric regression between corn ear moisture and the imaginary part of the output impedance, and there is also a quadric regression between corn kernel moisture and the high-frequency detection circuit output voltage at 100 MHz. In this study, two corn breeds were measured using our sensor and gave R2 values for the quadric regression equation of 0.7853 and 0.8496. PMID:27999404

  11. Investigation of the contribution possibilities of non-destructive methods of testing for the diagnosis and quality control of building materials with emphasis given on sustainable construction

    NASA Astrophysics Data System (ADS)

    Katsiotis, Nikolaos S.; Matikas, Theodoros E.; Moropoulou, Antonia

    2012-04-01

    In this work, the contribution potential of non-destructive methods of testing is studied in order to assess, diagnose and assert building materials' diagnosis & quality control, with emphasis given on Sustainable Construction. To this end, the following techniques are implemented: fiber-optics microscopy, digital image processing, scanning electron microscopy, pulse/lock-in thermography, acoustic emission as well as ultrasounds. Furthermore, in addition to the above, the maturity method for measurement of compressive strength is applied and correlated to the array of full field non-destructive methods of testing. The results of the study clearly demonstrate how effective non-destructive methods of testing can be, in revealing and determining highly applicable data in a real-time, in situ and efficient manner.

  12. A novel method for non-destructive determination of hair photo-induced damage based on multispectral imaging technology.

    PubMed

    Cao, Yue; Qu, Hao; Xiong, Can; Liu, Changhong; Zheng, Lei

    2017-03-31

    Extended exposure to sunlight may give rise to chemical and physical damages of human hairs. In this work, we report a novel method for non-destructive quantification of hair photodamage via multispectral imaging (MSI) technology. We show that the multispectral reflectance value in near-infrared region has a strong correlation with hair photodamage. More specifically, the hair segments with longer growing time and the same hair root segment after continuous ultraviolet (UV) irradiation displaying more severe photodamage observed via scanning electron microscopy (SEM) micrographs showed significantly higher multispectral reflectance value. Besides, the multispectral reflectance value of hair segments with different growing time was precisely reproduced by exposing the same hair root segment to specific durations of UV irradiation, suggesting that MSI can be adequately applied to determine the sunlight exposure time of the hair. The loss of cystine content of photodamaged hairs was identified to be the main factor that physiologically contributed to the morphological changes of hair surface fibers and hence the variation of their multispectral reflectance spectra. Considering the environmental information recording nature of hairs, we believe that MSI for non-destructive evaluation of hair photodamage would prove valuable for assessing sunlight exposure time of a subject in the biomedical fields.

  13. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Muraro, A.; Albani, G.; Perelli Cippo, E.; Croci, G.; Angella, G.; Birch, J.; Cazzaniga, C.; Caniello, R.; Dell'Era, F.; Ghezzi, F.; Grosso, G.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Schimdt, S.; Robinson, L.; Rebai, M.; Salvato, G.; Tresoldi, D.; Vasi, C.; Tardocchi, M.

    2016-03-01

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements.

  14. A novel method for non-destructive determination of hair photo-induced damage based on multispectral imaging technology

    PubMed Central

    Cao, Yue; Qu, Hao; Xiong, Can; Liu, Changhong; Zheng, Lei

    2017-01-01

    Extended exposure to sunlight may give rise to chemical and physical damages of human hairs. In this work, we report a novel method for non-destructive quantification of hair photodamage via multispectral imaging (MSI) technology. We show that the multispectral reflectance value in near-infrared region has a strong correlation with hair photodamage. More specifically, the hair segments with longer growing time and the same hair root segment after continuous ultraviolet (UV) irradiation displaying more severe photodamage observed via scanning electron microscopy (SEM) micrographs showed significantly higher multispectral reflectance value. Besides, the multispectral reflectance value of hair segments with different growing time was precisely reproduced by exposing the same hair root segment to specific durations of UV irradiation, suggesting that MSI can be adequately applied to determine the sunlight exposure time of the hair. The loss of cystine content of photodamaged hairs was identified to be the main factor that physiologically contributed to the morphological changes of hair surface fibers and hence the variation of their multispectral reflectance spectra. Considering the environmental information recording nature of hairs, we believe that MSI for non-destructive evaluation of hair photodamage would prove valuable for assessing sunlight exposure time of a subject in the biomedical fields. PMID:28361876

  15. A Non-Destructive Culturing and Cell Sorting Method for Cardiomyocytes and Neurons Using a Double Alginate Layer

    PubMed Central

    Terazono, Hideyuki; Kim, Hyonchol; Hayashi, Masahito; Hattori, Akihiro; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-01-01

    A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES) cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture. PMID:22870332

  16. Photon induced positron annihilation spectroscopy: A nondestructive method for assay of defects in large engineering materials

    NASA Astrophysics Data System (ADS)

    Pujari, P. K.; Sudarshan, K.; Tripathi, R.; Dutta, D.; Maheshwari, P.; Sharma, S. K.; Srivastava, D.; Krause-Rehberg, R.; Butterling, M.; Anwand, W.; Wagner, A.

    2012-01-01

    This paper describes a new methodology for volumetric assay of defects in large engineering materials nondestructively. It utilizes high energy photons produced by nuclear reaction to create positrons in situ whose fate is followed using conventional positron spectroscopic techniques. The photon induced positron annihilation (PIPA) spectroscopy system has been set-up using a Folded Tandem Ion Accelerator (FOTIA). Possibility of using prompt γ-rays produced in nuclear reactions 27Al( 1H,γ) 28Si and 19F( 1H,αγ) 16O has been examined. The reaction 19F( 1H,αγ) 16O is seen to provide higher photon flux (and positron yield) and measurements have been carried out in large samples of metals and polymers. We could establish good sensitivity of the technique as well as reproducibility in a number of measurements. This technique has been used to carry out defect studies in cold worked zircaloy-2 plates. The measured S-parameter, indicative of defect concentration, was seen to correlate well with the measured residual stress using X-ray technique. The results were validated by γ-induced positron annihilation lifetime measurements at ELBE LINAC based GiPS facility.

  17. Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Greene, Nathanael; Cameron, Ken; Madaras, Eric; Grimes-Ledesma, Lorie; Thesken, John; Phoenix, Leigh; Murthy, Pappu; Revilock, Duane

    2007-01-01

    Many aging composite overwrapped pressure vessels (COPVs), being used by the National Aeronautics and Space Administration (NASA) are currently under evaluation to better quantify their reliability and clarify their likelihood of failure due to stress rupture and age-dependent issues. As a result, some test and analysis programs have been successfully accomplished and other related programs are still in progress at the NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) and other NASA centers, with assistance from the commercial sector. To support this effort, a group of Nondestructive Evaluation (NDE) experts was assembled to provide NDE competence for pretest evaluation of test articles and for application of NDE technology to real-time testing. Techniques were required to provide assurance that the test article had adequate structural integrity and manufacturing consistency to be considered acceptable for testing and these techniques were successfully applied. Destructive testing is also being accomplished to better understand the physical and chemical property changes associated with progression toward "stress rupture" (SR) failure, and it is being associated with NDE response, so it can potentially be used to help with life prediction. Destructive work also includes the evaluation of residual stresses during dissection of the overwrap, laboratory evaluation of specimens extracted from the overwrap to evaluate physical property changes, and quantitative microscopy to inform the theoretical micromechanics.

  18. Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    NASA Technical Reports Server (NTRS)

    Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.

    1995-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  19. Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    SciTech Connect

    Lu, D.F.; Fan, C.; Ruan, J.Z.; Han, S.G.; Wong, K.W.; Sun, G.F.

    1995-04-01

    A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID`s and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID`s. In this paper, the authors present their study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  20. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    SciTech Connect

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  1. Nondestructive evaluation

    SciTech Connect

    Martz, H E

    1998-01-01

    The Nondestructive Evaluation (NDE) thrust area at Lawrence Livermore National Laboratory (LLNL) supports initiatives that advance inspection science and technology. The goal is to provide cutting-edge technologies, that show promise for quantitative inspection and characterization tools two to three years into the future. The NDE thrust area supports a multidisciplinary team, consisting of mechanical and electronics engineers, physicists, materials and computer scientists, chemists, technicians, and radiographers. These team members include personnel that cross departments within LLNL, and some are from academia and industry, within the US and abroad. This collaboration brings together the necessary and diver disciplines to provide the key scientific and technological advancements required to meet LLNL programmatic and industrial NDE challenges. The primary contributions of the NDE thrust area this year are described in these five reports: (1) Image Recovery Techniques for X-Ray Computed Tomography for Limited-Data Environments; (2) Techniques for Enhancing Laser Ultrasonic Nondestructive Evaluation; (3) Optical Inspection of Glass-Epoxy Bonds; (4) Miniature X-Ray Source Development; and (5) Improving Computed Tomography Design and Operation Using Simulation Tools.

  2. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    NASA Astrophysics Data System (ADS)

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two

  3. An Innovative Non-Destructive and Computational Method for Uranium Activity and Enrichment Verification of UF{sub 6} Cylinder

    SciTech Connect

    El-Mongy, Sayed A.; Allam, K.M.; Farid, Osama M.

    2006-07-01

    Verification of {sup 235}U enrichment in uranium hexafluoride (UF{sub 6}) cylinders is often achieved by destructive and non-destructive assay techniques. These techniques are time consuming, need suitable and similar standard, in addition to loss of the nuclear material in the case of destructive analysis. This paper introduce an innovative approach for verifying of {sup 235}U enrichment in UF{sub 6} cylinder. The approach is based on measuring dose rate ({mu}Sv/h) resulted from the emitted gamma rays of {sup 235}U at the surface of the cylinder and then calculating the activity of uranium and enrichment percentage inside the cylinder by a three dimensional model. Attenuation of the main {sup 235}U gamma transitions due to the cylinder wall (5A Type of Ni alloy) was also calculated and corrected for. The method was applied on UF{sub 6} cylinders enriched with 19.75% of {sup 235}U. The calculated enrichment was found to be 18% with 9% uncertainty. By the suggested method, the calculated total uranium activity inside one of the investigated UF{sub 6} cylinder was found close to the target (certified) value (5.6 GBq) with 9% uncertainty. The method is being developed by taking into consideration other parameters. (authors)

  4. Method Developed for the High-Temperature Nondestructive Evaluation of Fiber-Reinforced Silicon Carbide Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    1998-01-01

    Ceramic matrix composites have emerged as candidate materials to allow higher operating temperatures (1000 to 1400 C) in gas turbine engines. A need, therefore, exists to develop nondestructive methods to evaluate material integrity at the material operating temperature by monitoring thermal and mechanical fatigue. These methods would also have potential as quality inspection tools. The goal of this investigation at the NASA Lewis Research Center is to survey and correlate the temperature-dependent damping and stiffness of advanced ceramic composite materials with imposed thermal and stress histories that simulate in-service turbine engine conditions. A typical sample size of 100 by 4 by 2 cubic millimeters, along with the specified stiffness and density, placed the fundamental vibration frequencies between 100 and 2000 Hz. A modified Forster apparatus seemed most applicable to simultaneously measure both damping and stiffness. Testing in vacuum reduced the effects of air on the measurements. In this method, a single composite sample is vibrated at its fundamental tone; then suddenly, the mechanical excitation is removed so that the sample's motion freely decays with time. Typical results are illlustrated in this paper.

  5. Innovative non-destructive evaluation methods on HTR fuel at AREVA NP: towards a 100% non invasive control strategy

    SciTech Connect

    Banchet, J.; Tisseur, D.; Hermosilla Lara, S.; Piriou, M.; Bargain, R.; Guillermier, P.

    2007-07-01

    High Temperature Reactor (HTR) fuel consists in millimetric multilayered particles called TRISO, embedded, depending on the reactor design, in a pebble or cylinder-shaped graphite matrix called compact. Particles are typically composed of a 500 {mu}m fissile material kernel, a 95 {mu}m porous carbon layer called buffer, a 40 {mu}m dense pyrolytic carbon layer, a 35 {mu}m silicon carbide layer and another 40 {mu}m dense pyrolytic carbon layer. In order to ensure fuel qualification, as well as reactor safety, particles and compacts need to satisfy specifications concerning their physical characteristics and their integrity. In particular, geometrical parameters such as particle diameter and sphericity as well as layers thickness, but also layers density and the absence of structural defects such as cracks or de-cohesions need to be detected and characterized. In the past, a huge R and D work was carried out to build a TRISO particle characterization quality control plan, mainly based on particle sampling as well as destructive characterization methods. However, since then, development of industrial non-destructive evaluation techniques and devices contributed to envisage not only a non invasive control of HTR fuel, but also a 100% production control strategy. Since 2004, AREVA NP is engaged in a R and D program aiming at the development of innovative industrial nondestructive evaluation methods for HTR fuel. After investigating a number of potential techniques, some of them were selected based on their performances and/or their industrial potential. In particular, development has been carried out on high resolution X-Ray imaging allowing accurate layer thickness, layer density and structural defects characterization, X-Ray tomography offering the possibility to characterize fuel element homogeneity and determine the number of in-contact particles contained in a fuel element, infrared thermal imaging (ITI) allowing cracks detection, eddy currents (EC) enabling

  6. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  7. A Non-destructive method to assess freshness of raw bovine milk using FT-NIR spectroscopy.

    PubMed

    Wang, Yanwen; Ding, Wu; Kou, Liping; Li, Liang; Wang, Chen; Jurick, Wayne M

    2015-08-01

    A non-destructive method to analyze the freshness of raw milk was developed using a FT-NIR spectrometer and a fiber optic probe. Diffuse transmittance spectra were acquired in the spectral range 833 ~ 2,500 nm from raw milk samples collected from Northwest A&F University Animal Husbandry Station. After each spectral acquisition, quality parameters such as acidity, pH, and lactose content were measured by traditional detection methods. For all milk samples, PLS (partial least square regression), MLR (multiple linear regression), and ANN (artificial neural networks) analyses were carried out in order to develop models to predict parameters that were indicative of freshness. Predictive models showed R(2) values up to 0.9647, 0.9876 and 0.8772 for acidity, pH, and lactose content, respectively (validation set validations). The similarity analysis and classification between raw milk freshness during storage was also conducted by means of hierarchical cluster analysis. Over an 8 day storage period, the highest heterogeneity was evident between days 1 and 2.

  8. A new ecologically clean sensitive wide-range nondestructive sealing test method

    SciTech Connect

    Kuz`mina, V.T.

    1995-03-01

    A diffusional magnetic-discharge method can be used to check sealing from the leakage of helium from the workpiece, which is based on a diffusional magnetic discharge detector. This method replaces three monitoring methods as regards leak range: high-sensitivity mass spectrometry, manometric, and liquid. The uses of the method are numerous: from monitoring sealed bodies of small components such as microcircuits and other microelectronic components to the detection of leaks in major pipelines, other pipework, and cable sheaths. Characteristics are given for the equipment and instrument that implement the method.

  9. Nondestructive testing techniques

    NASA Astrophysics Data System (ADS)

    Bray, Don E.; McBride, Don

    A comprehensive reference covering a broad range of techniques in nondestructive testing is presented. Based on years of extensive research and application at NASA and other government research facilities, the book provides practical guidelines for selecting the appropriate testing methods and equipment. Topics discussed include visual inspection, penetrant and chemical testing, nuclear radiation, sonic and ultrasonic, thermal and microwave, magnetic and electromagnetic techniques, and training and human factors. (No individual items are abstracted in this volume)

  10. Concept of nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chern, E. J.

    1991-01-01

    The history of nondestructive evaluation, a recently evolved basic testing philosophy, and some application of NDE are examined with emphasis on aerospace applications. The discussion covers the definition of NDE, chronological development, NDE methods and systems, the use of NDE for process control, NDE for ceramics and composites, NDE for fracture control in glass, and science aspects of NDE. Specific examples of NDE applications are given.

  11. Ball tonometry: a rapid, nondestructive method for measuring cell turgor pressure in thin-walled plant cells

    NASA Technical Reports Server (NTRS)

    Lintilhac, P. M.; Wei, C.; Tanguay, J. J.; Outwater, J. O.

    2000-01-01

    In this article we describe a new method for the determination of turgor pressures in living plant cells. Based on the treatment of growing plant cells as thin-walled pressure vessels, we find that pressures can be accurately determined by observing and measuring the area of the contact patch formed when a spherical glass probe is lowered onto the cell surface with a known force. Within the limits we have described, we can show that the load (determined by precalibration of the device) divided by the projected area of the contact patch (determined by video microscopy) provides a direct, rapid, and accurate measure of the internal turgor pressure of the cell. We demonstrate, by parallel measurements with the pressure probe, that our method yields pressure data that are consistent with those from the pressure probe. Also, by incubating target tissues in stepped concentrations of mannitol to incrementally reduce the turgor pressure, we show that the pressures measured by tonometry accurately reflect the predicted changes from the osmotic potential of the bathing medium. The advantages of this new method over the pressure probe are considerable, however, in that we can move rapidly from cell to cell, taking measurements every 20 s. In addition, the nondestructive nature of the method means that we can return to the same cell repeatedly for periodic pressure measurements. The limitations of the method lie in the fact that it is suitable only for superficial cells that are directly accessible to the probe and to cells that are relatively thin walled and not heavily decorated with surface features. It is also not suitable for measuring pressures in flaccid cells.

  12. Non-destructive method of characterisation of radioactive waste containers using gamma spectroscopy and Monte Carlo techniques.

    PubMed

    Ridikas, D; Feray, S; Cometto, M; Damoy, F

    2005-01-01

    During the decommissioning of the SATURNE accelerator at CEA Saclay (France), a number of concrete containers with radioactive materials of low or very low activity had to be characterised before their final storage. In this paper, a non-destructive approach combining gamma ray spectroscopy and Monte Carlo simulations is used in order to characterise massive concrete blocks containing some radioactive waste. The limits and uncertainties of the proposed method are quantified for the source term activity estimates using 137Cs as a tracer element. A series of activity measurements with a few representative waste containers were performed before and after destruction. It has been found that neither was the distribution of radioactive materials homogeneous nor was its density unique, and this became the major source of systematic errors in this study. Nevertheless, we conclude that by combining gamma ray spectroscopy and full scale Monte Carlo simulations one can estimate the source term activity for some tracer elements such as 134Cs, 137Cs, 60Co, etc. The uncertainty of this estimation should not be bigger than a factor of 2-3.

  13. Case study of a non-destructive treatment method for the remediation of military structures containing polychlorinated biphenyl contaminated paint.

    PubMed

    Saitta, Erin K H; Gittings, Michael J; Novaes-Card, Simone; Quinn, Jacqueline; Clausen, Christian; O'Hara, Suzanne; Yestrebsky, Cherie L

    2015-08-01

    Restricted by federal regulations and limited remediation options, buildings contaminated with paint laden with polychlorinated biphenyls (PCBs) have high costs associated with the disposal of hazardous materials. As opposed to current remediation methods which are often destructive and a risk to the surrounding environment, this study suggests a non-metal treatment system (NMTS) and a bimetallic treatment system (BTS) as versatile remediation options for painted industrial structures including concrete buildings, and metal machine parts. In this field study, four areas of a discontinued Department of Defense site were treated and monitored over 3 weeks. PCB levels in paint and treatment system samples were analyzed through gas chromatography/electron capture detection (GC-ECD). PCB concentrations were reduced by 95 percent on painted concrete and by 60-97 percent on painted metal with the majority of the PCB removal occurring within the first week of application. Post treatment laboratory studies including the utilization of an activated metal treatment system (AMTS) further degraded PCBs in BTS and NMTS by up to 82 percent and 99 percent, respectively, indicating that a two-step remediation option is viable. These findings demonstrate that the NMTS and BTS can be an effective, nondestructive, remediation process for large painted structures, allowing for the reuse or sale of remediated materials that otherwise may have been disposed.

  14. Deconvolution of complex echo signals by the maximum entropy method in ultrasonic nondestructive inspection

    NASA Astrophysics Data System (ADS)

    Bazulin, A. E.; Bazulin, E. G.

    2009-11-01

    The problem of inversion of convolution with the echo signal point source function is considered with the use of the regularization and maximum entropy method and further reconstruction of two-dimensional images by the method of projection in the spectral domain. The inverse convolution problem is solved for the complex-valued signal that is obtained from the real valued signal through the Hilbert transform. Numerical and experimental simulation is performed. A possibility of enhancing the echo signal along the ray’s resolution and of lowering the spectrum’s noise level with the use of complex signals (pseudo-random sequences) is demonstrated. The results are compared with those obtained using the autoregression method and the reference hologram method.

  15. Nondestructive method for detecting defects in photodetector and solar cell devices

    DOEpatents

    Not Available

    The invention described herein is a method for locating semiconductor device defects and for measuring the internal resistance of such devices by making use of the intrinsic distributed resistance nature of the devices. The method provides for forward-biasing a solar cell or other device while it is scanning with an optical spot. The forward-biasing is achieved with either an illuminator light source or an external current source.

  16. Nondestructive method for detecting defects in photodetector and solar cell devices

    DOEpatents

    Sawyer, David E.

    1981-01-01

    The invention described herein is a method for locating semiconductor device defects and for measuring the internal resistance of such devices by making use of the intrinsic distributed resistance nature of the devices. The method provides for forward-biasing a solar cell or other device while it is scanning with an optical spot. The forward-biasing is achieved with either an illuminator light source or an external current source.

  17. Nondestructive evaluation of the interface between ceramic coating and stainless steel by electromagnetic method

    NASA Astrophysics Data System (ADS)

    Savin, A.; Steigmann, R.; Iftimie, N.; Novy, F.; Vizureanu, P.; Craus, M. L.; Fintova, S.

    2016-08-01

    Protecting coatings as thermal barrier coating (TBC) are used for yield improvement of equipment working at high temperature. Zirconia doped with yttria ceramics are considered a good TBC material due of its low thermal conductivity, refractory, chemical inertness and compatible thermal expansion coefficient with metallic support. The paper proposes the use of an electromagnetic method for evaluation of coatings on stainless steel using a sensor with metamaterial lens and comparison of the results with those obtained by complementary methods.

  18. Advances in neutron radiographic techniques and applications: a method for nondestructive testing.

    PubMed

    Berger, Harold

    2004-10-01

    A brief history of neutron radiography is presented to set the stage for a discussion of significant neutron radiographic developments and an assessment of future directions for neutron radiography. Specific advances are seen in the use of modern, high dynamic range imaging methods (image plates and flat panels) and for high contrast techniques such as phase contrast, and phase-sensitive imaging. Competition for neutron radiographic inspection may develop as these techniques offer application prospects for X-ray methods.

  19. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Lansing, M. D.

    1997-01-01

    The goal of this research effort was the development of methods for shearographic and thermographic inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities that are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  20. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    The goal of this research effort was the development of methods for shearography and thermography inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities which are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  1. Nondestructive evaluations

    SciTech Connect

    Kulkarni, S.

    1993-03-01

    This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc.; and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.

  2. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    PubMed Central

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-01-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  3. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components.

    PubMed

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L; Cowin, James P; Jung, Kyung-Hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P; Kinney, Patrick L; Chillrud, Steven N

    2011-12-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM(2.5) filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R(2) = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  4. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    NASA Astrophysics Data System (ADS)

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-12-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM 2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  5. Verification of recursive probabilistic integration (RPI) method for fatigue life management using non-destructive inspections

    NASA Astrophysics Data System (ADS)

    Chen, Tzikang J.; Shiao, Michael

    2016-04-01

    This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.

  6. A Nondestructive Method of Determining Bursaphelenchus xylophilus Infestation of Monochamus spp. Vectors.

    PubMed

    Zhang, X; Stamps, W T; Linit, M J

    1995-03-01

    Pine wilt is caused by the nematode Bursaphelenchus xylophilus, which is transported to host trees in the trachea of Monochamus spp. (Coleoptera: Cerambycidae). The study of the relationship between the nematode and its beetle vectors has been hampered by the inability to estimate nematode presence or density within live beetles. This report describes a rapid method for estimating nematode load within live M. carolinensis and M. alternatus by visual examination of the atrium of the first abdominal spiracle. Visual estimates of nematode numbers correlated highly with actual nematode numbers. This method is a timesaving technique for determining relative numbers of B. xylophilus in pine wilt research.

  7. Method for in-situ nondestructive measurement of Young's modulus of plate structures

    NASA Technical Reports Server (NTRS)

    Huang, Jerry Qixin (Inventor); Perez, Robert J. (Inventor); DeLangis, Leo M. (Inventor)

    2003-01-01

    A method for determining stiffness of a composite laminate plate entails disposing a device for generating an acoustical pulse against a surface of the plate and disposing a detecting device against the same surface spaced a known distance from the pulse-generating device, and using the pulse-generating device to emit a pulse so as to create an extensional wave in the plate. The detecting device is used to determine a time of flight of the wave over the known distance, and the wave velocity is calculated. A Young's modulus of the plate is determined based on the wave velocity. Methods for both anisotropic and quasi-isotropic laminates are disclosed.

  8. Non-destructive testing method and apparatus utilizing phase multiplication holography

    DOEpatents

    Collins, H. Dale; Prince, James M.; Davis, Thomas J.

    1984-01-01

    An apparatus and method for imaging of structural characteristics in test objects using radiation amenable to coherent signal processing methods. Frequency and phase multiplication of received flaw signals is used to simulate a test wavelength at least one to two orders of magnitude smaller than the actual wavelength. The apparent reduction in wavelength between the illumination and recording radiation performs a frequency translation hologram. The hologram constructed with a high synthetic frequency and flaw phase multiplication is similar to a conventional acoustic hologram construction at the high frequency.

  9. Device and nondestructive method to determine subsurface micro-structure in dense materials

    DOEpatents

    Sun, Jiangang

    2006-05-09

    A method and a device to detect subsurface three-dimensional micro-structure in a sample by illuminating the sample with light of a given polarization and detecting light emanating from the sample that has a different direction of polarization by means of a confocal optical system.

  10. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    SciTech Connect

    Matloch, L.; Vaccaro, S.; Couland, M.; De Baere, P.; Schwalbach, P.

    2015-07-01

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction of encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)

  11. Nondestructive equipment study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Identification of existing nondestructive Evaluation (NDE) methods that could be used in a low Earth orbit environment; evaluation of each method with respect to the set of criteria called out in the statement of work; selection of the most promising NDE methods for further evaluation; use of selected NDE methods to test samples of pressure vessel materials in a vacuum; pressure testing of a complex monolythic pressure vessel with known flaws using acoustic emissions in a vacuum; and recommendations for further studies based on analysis and testing are covered.

  12. Non-destructive testing of composite materials used in military applications by eddy current thermography method

    NASA Astrophysics Data System (ADS)

    Swiderski, Waldemar

    2016-10-01

    Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.

  13. Damage detection of carbon reinforced composites using nondestructive evaluation with ultrasound and electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Savin, A.; Barsanescu, P. D.; Vizureanu, P.; Stanciu, M. D.; Curtu, I.; Iftimie, N.; Steigmann, R.

    2016-06-01

    CFRP have applications among most different domains due their low density, high elastic modulus and high ultimate strength along the carbon fibers direction, no fatigue and the expansion coefficient is small. This paper presents the behavior of carbon fiber woven-PPS composites at low velocity impacts. The transversal electrical conductivity is modified due to the plastic deformation following the impacts, and thus electromagnetic procedures can be used for assessment of CFRP using a high resolution sensor with metamaterials lens and comparing the results with those obtained from ultrasound testing with phased array sensor. The area of the delamination is overestimated when the method of phased array ultrasound is used and substantially underestimated by the electromagnetic testing. There were a good agreement between the simulations with finite element method and experimental measurements.

  14. Nondestructive Evaluation of Irradiation Embrittlement of SQV2A Steel by Using Magnetic Method

    NASA Astrophysics Data System (ADS)

    Shiwa, Mitsuharu; Weiying, Cheng; Nakahigashi, Shigeo; Komura, Ichiro; Fujiwara, Koji; Takahashi, Norio

    2006-03-01

    Irradiation embrittlement of SQV2A steel was evaluated by magnetic methods. Thermal aging (TA) and electron irradiation (EI) specimens were prepared to evaluate the thermal aging and the irradiation damage effects separately. B-H loops changed with TA and EI. Higher harmonics of AC magnetization signals were sensitive to micro-structure changing of specimens. The intensity of the 3rd harmonics increased linearly with over 100 years of equivalent operation time by Larson-Miller parameter of nuclear power plants.

  15. Nondestructive Evaluation of Irradiation Embrittlement of SQV2A Steel by Using Magnetic Method

    SciTech Connect

    Shiwa, Mitsuharu; Cheng Weiying; Nakahigashi, Shigeo; Komura, Ichiro; Fujiwara, Koji; Takahashi, Norio

    2006-03-06

    Irradiation embrittlement of SQV2A steel was evaluated by magnetic methods. Thermal aging (TA) and electron irradiation (EI) specimens were prepared to evaluate the thermal aging and the irradiation damage effects separately. B-H loops changed with TA and EI. Higher harmonics of AC magnetization signals were sensitive to micro-structure changing of specimens. The intensity of the 3rd harmonics increased linearly with over 100 years of equivalent operation time by Larson-Miller parameter of nuclear power plants.

  16. Method for non-destructive estimation of waveguide directional coupler dimensions

    NASA Technical Reports Server (NTRS)

    Perez, Raul M. (Inventor)

    1993-01-01

    A method for estimating the size and location of couplings within a waveguide directional coupler is provided. The method is applied to a waveguide directional coupler having a main transmission waveguide connected to an auxiliary transmission waveguide by a number of bore hold couplings. The bore hold couplings are in the interior of the waveguide directional coupler and, therefore, are not easily measurable. The method generally includes the steps of applying a two-sided tape to a member, inserting and securing the member within the main transmission waveguide, pouring a fine particulate substance such as talc into the auxiliary transmission waveguide such that a portion of the talc enters the bore hole couplings and adheres to the two-sided tape, and withdrawing the member such that the size and location of the bore hole couplings can be determined by measuring the size and location of marks on the two-sided tape caused by the fine particular substance adhering to the two-sided tape.

  17. Nondestructive and noncontact method for determining the spring constant of rectangular cantilevers.

    PubMed

    Golovko, Dmytro S; Haschke, Thomas; Wiechert, Wolfgang; Bonaccurso, Elmar

    2007-04-01

    We present here an experimental setup and suggest an extension to the long existing added-mass method for the calibration of the spring constant of atomic force microscope cantilevers. Instead of measuring the resonance frequency shift that results from attaching particles of known masses to the end of cantilevers, we load them with water microdrops generated by a commercial inkjet dispenser. Such a device is capable of generating drops, and thus masses, of extremely reproducible size. This makes it an ideal tool for calibration tasks. Moreover, the major advantage of water microdrops is that they allow for a nearly contactless calibration: no mechanical micromanipulation of particles on cantilevers is required, neither for their deposition nor for removal. After some seconds the water drop is completely evaporated, and no residues are left on the cantilever surface or tip. We present two variants: we vary the size of the drops and deposit them at the free end of the cantilever, or we keep the size of the drops constant and vary their position along the cantilever. For the second variant, we implemented also numerical simulations. Spring constants measured by this method are comparable to results obtained by the thermal noise method, as we demonstrate for six different cantilevers.

  18. Nondestructive and noncontact method for determining the spring constant of rectangular cantilevers

    SciTech Connect

    Golovko, Dmytro S.; Haschke, Thomas; Wiechert, Wolfgang; Bonaccurso, Elmar

    2007-04-15

    We present here an experimental setup and suggest an extension to the long existing added-mass method for the calibration of the spring constant of atomic force microscope cantilevers. Instead of measuring the resonance frequency shift that results from attaching particles of known masses to the end of cantilevers, we load them with water microdrops generated by a commercial inkjet dispenser. Such a device is capable of generating drops, and thus masses, of extremely reproducible size. This makes it an ideal tool for calibration tasks. Moreover, the major advantage of water microdrops is that they allow for a nearly contactless calibration: no mechanical micromanipulation of particles on cantilevers is required, neither for their deposition nor for removal. After some seconds the water drop is completely evaporated, and no residues are left on the cantilever surface or tip. We present two variants: we vary the size of the drops and deposit them at the free end of the cantilever, or we keep the size of the drops constant and vary their position along the cantilever. For the second variant, we implemented also numerical simulations. Spring constants measured by this method are comparable to results obtained by the thermal noise method, as we demonstrate for six different cantilevers.

  19. Non-destructive tree root detection with geophysical methods in urban soils

    NASA Astrophysics Data System (ADS)

    Vianden, Mitja Johannes; Weihs, Ulrich; Kuhnke, Falko; Rust, Steffen

    2010-05-01

    To assess the safety of roadside trees or as part of ecophysiological research it is often important to investigate the spatial distribution and development of tree roots. Conventionally this is done by laborious excavations or by the application of root drills which in many cases do not allow a comprehensive data collection. An indirect method for the investigation of subsurface features is ground penetrating radar (GPR). Its ability to detect tree roots has been shown by several studies (for example Hruska et al. 1999; Butnor et al. 2001; Barton et al. 2004). Another geophysical method which has been successful applied to study different aspects of tree roots is electrical resistivity tomography (ERT) (for example Hagrey 2007; Amato et al. 2008). These former studies by other authors mainly concentrated on a correlation between the measured parameters (signal amplitude and resistivity) and root-biomass on forest sites or controlled conditions. Results of Cermak et al. (2000), studying tree roots in urban areas with GPR, indicated that this method may also be useful for anthropogenic influenced areas. As a continuation of these approaches the authors have been using both techniques to study the spatial root architecture of urban trees. This research is designed to elicit the possibilities and limitations of the methods in urban areas. Reference sites have been established to quantify the methods' resolution and assess possible fields of application. These test site measurements are the basis for the interpretation of results at urban tree sites. Their results highlight the importance of 3D-measurements in urban areas because in inhomogeneous soil other reflectors (like rocks, cables, pipes, etc.) cause similar signals and bear a risk of misinterpretation. This can be minimized if detected objects have a spatial continuation and are connected to a tree. Here we present preliminary results from a combined application of both methods at the river bank of the

  20. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method

    PubMed Central

    Skic, Anna; Szymańska-Chargot, Monika; Kruk, Beata; Chylińska, Monika; Pieczywek, Piotr Mariusz; Kurenda, Andrzej; Zdunek, Artur; Rutkowski, Krzysztof P.

    2016-01-01

    Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1), FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW) of the “Ligol” and “Szampion” apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index) and physiological parameters (respiration and ethylene emission) of both apple cultivars. Changes of biospeckle activity (BA) over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson’s correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of BA during pre

  1. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method.

    PubMed

    Skic, Anna; Szymańska-Chargot, Monika; Kruk, Beata; Chylińska, Monika; Pieczywek, Piotr Mariusz; Kurenda, Andrzej; Zdunek, Artur; Rutkowski, Krzysztof P

    2016-05-10

    Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1), FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW) of the "Ligol" and "Szampion" apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index) and physiological parameters (respiration and ethylene emission) of both apple cultivars. Changes of biospeckle activity (BA) over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson's correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of BA during pre

  2. Photoshop(®) Assisted Spectroscopy: An Economical and Non-Destructive Method for Tracking Color Shift.

    PubMed

    Wright, Kristi; Herro, Holly

    Many historically and culturally significant objects from the mid-to-late 20(th) century were created with media which contains light sensitive dyes that present problems for collection custodians and conservators. The conservation staff at the National Library of Medicine (NLM), National Institutes of Health, conducted a multi-phase project on the aging of ballpoint pen ink in a variety of enclosure types that ultimately culminated in the development of a new method to detect color shift in documents with light sensitive media. This article offers instructions on how to detect color shift in digitized materials using Photoshop® Assisted Spectroscopy.

  3. Photoshop® Assisted Spectroscopy: An Economical and Non-Destructive Method for Tracking Color Shift

    PubMed Central

    Wright, Kristi; Herro, Holly

    2015-01-01

    Many historically and culturally significant objects from the mid-to-late 20th century were created with media which contains light sensitive dyes that present problems for collection custodians and conservators. The conservation staff at the National Library of Medicine (NLM), National Institutes of Health, conducted a multi-phase project on the aging of ballpoint pen ink in a variety of enclosure types that ultimately culminated in the development of a new method to detect color shift in documents with light sensitive media. This article offers instructions on how to detect color shift in digitized materials using Photoshop® Assisted Spectroscopy. PMID:27182186

  4. Non-destructive method to determine halophenols and haloanisoles in cork stoppers by headspace sorptive extraction.

    PubMed

    Lorenzo, Cándida; Zalacain, Amaya; Alonso, Gonzalo L; Salinas, M A Rosario

    2006-05-12

    The new solvent-free technique called headspace sorptive extraction (HSSE) was used to determine 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, 2,4,6-tribromoanisole, pentachloroanisole in cork stoppers, without grinding them, as these may be responsible for the cork taint off-flavour in wine. The best HSSE sorption kinetics for the target analytes were obtained after submitting the spiked corks to 100 degrees C for 1h, followed by a 30 min stabilization time at room temperature. The stir bar was desorbed in a thermal desorption system coupled to a gas chromatograph-mass spectrometer. The method proposed showed good linearity over the concentration range tested, 1-70 ngg(-1), and correlation coefficients ranged from 0.90 to 0.99 for all the analytes. The reproducibility and repeatability of the method were estimated between 4.91 and 12.67%. The effect of the different cork matrixes on the extraction recovery of the target compounds was studied, with the natural corks showing the higher recovery percentage in relation to agglomerate ones.

  5. Bone structure studies with holographic interferometric nondestructive testing and x-ray methods

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo; Nygren, Kaarlo; Rouvinen, Juha; Petrova, Valentina V.

    1994-02-01

    Changes in the biomechanics and in the molecular texture and structure of isolated radioulnar bones of subadult European moose (Alces alces L.) collected in various environmentally polluted areas of Finland were investigated by means of holographic interferometric non- destructive testing (HNDT), radiological, morphometrical, and x-ray diffraction methods. By means of small caudal-cranial bending forces, the surface movements of the lower end (distal epiphysis) of the radial bone were recorded with the HNDT method. To study bone molecular texture and structure changes under external compressing forces, the samples for x-ray diffraction analysis were taken from the upper end of the ulnar bone (olecranon tip). Results showed that the bones obtained from the Harjavalta area and those of North Karelian moose showing malnutrition and healing femoral fractures produced different HNDT pictures compared with the four normally developed North Karelian moose. In the x-ray diffraction, the Harjavalta samples showed changes in molecular texture and structure compared with the samples from the apparently normal North Karelian animals.

  6. Nondestructive method for chemically machining crucibles or molds from their enclosed ingots and castings

    DOEpatents

    Stout, Norman D.; Newkirk, Herbert W.

    1991-01-01

    An inventive method is described for chemically machining rhenium, rhenium and tungsten alloy, and group 5b and 6b crucibles or molds from included ingots and castings comprised of oxide crystals including YAG and YAG based crystals, garnets, corundum crystals, and ceramic oxides. A mixture of potassium hydroxide and 15 to 90 weight percent of potassium nitrate is prepared and maintained at a temperature above melting and below the lower of 500 degrees centigrade or the temperature of decomposition of the mixture. The enveloping metal container together with its included oxide crystal object is rotated within the heated KOH-KNO.sub.3 mixture, until the container is safely chemically machined away from the included oxide crystal object.

  7. Distributive, Non-destructive Real-time System and Method for Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff (Inventor); Skalka, Christian (Inventor)

    2013-01-01

    A ground-based system that provides quasi real-time measurement and collection of snow-water equivalent (SWE) data in remote settings is provided. The disclosed invention is significantly less expensive and easier to deploy than current methods and less susceptible to terrain and snow bridging effects. Embodiments of the invention include remote data recovery solutions. Compared to current infrastructure using existing SWE technology, the disclosed invention allows more SWE sites to be installed for similar cost and effort, in a greater variety of terrain; thus, enabling data collection at improved spatial resolutions. The invention integrates a novel computational architecture with new sensor technologies. The invention's computational architecture is based on wireless sensor networks, comprised of programmable, low-cost, low-powered nodes capable of sophisticated sensor control and remote data communication. The invention also includes measuring attenuation of electromagnetic radiation, an approach that is immune to snow bridging and significantly reduces sensor footprints.

  8. Nondestructive testing: use of IR and acoustics methods in buildings pathology

    NASA Astrophysics Data System (ADS)

    Esposti, Walter; Meroni, Italo

    1995-03-01

    In the paper the authors present some experiences made using IR and acoustics methods in a non destructive way for the evaluation of situations of degradation in building materials and components. Two studies are presented: (1) detection of the delamination of wall renderings, especially those supporting frescos, by means of IR and sonic investigation; (2) use of infrared thermography for the visualization of fracture zones of walls and steel components under cyclic loads. The possibility of detecting rendering delaminations is based on the different path of the heat diffusion in part of the wall affected by the delamination, compared to the rest of the wall. The difference is caused by the presence of small pockets containing still air. The case study showed makes reference to the analysis of adhesion conditions of a rendering dating back to the IV century, applied on the bell towers of the ancient basilica dedicated to S. Lorenzo in Milan, Italy. The use of infrared thermography for detecting the strength status of materials and components is based on the fact that the strength status of parts of building components can become evident because of heat losses which appear where the component is weaker. The IR observation was made on steel bars subject to traction testing and on lightweight concrete prismatic samples subject to compression testing. The experiences indicate that there is room for this NdT technique to provide some useful answers. Nevertheless it is sure that more experimental work is needed in order to increase the full comprehension of the phenomena which are the basis of their applications for alternative uses.

  9. 'Direct PCR' optimization yields a rapid, cost-effective, nondestructive and efficient method for obtaining DNA barcodes without DNA extraction.

    PubMed

    Wong, Wing Hing; Tay, Ywee Chieh; Puniamoorthy, Jayanthi; Balke, Michael; Cranston, Peter S; Meier, Rudolf

    2014-11-01

    Macroinvertebrates that are collected in large numbers pose major problems in basic and applied biodiversity research: identification to species via morphology is often difficult, slow and/or expensive. DNA barcodes are an attractive alternative or complementary source of information. Unfortunately, obtaining DNA barcodes from specimens requires many steps and thus time and money. Here, we promote a short cut to DNA barcoding, that is, a nondestructive PCR method that skips DNA extraction ('direct PCR') and that can be used for a broad range of invertebrate taxa. We demonstrate how direct PCR can be optimized for the larvae and adults of nonbiting midges (Diptera: Chironomidae), a typical invertebrate group that is abundant, contains important bioindicator species, but is difficult to identify based on morphological features. After optimization, direct PCR yields high PCR success rates (>90%), preserves delicate morphological features (e.g. details of genitalia, and larval head capsules) while allowing for the recovery of genomic DNA. We also document that direct PCR can be successfully optimized for a wide range of other invertebrate taxa that need routine barcoding (flies: Culicidae, Drosophilidae, Dolichopodidae, Sepsidae; sea stars: Oreasteridae). Key for obtaining high PCR success rates is optimizing (i) tissue quantity, (ii) body part, (iii) primer pair and (iv) type of Taq polymerase. Unfortunately, not all invertebrates appear suitable because direct PCR has low success rates for other taxa that were tested (e.g. Coleoptera: Dytiscidae, Copepoda, Hymenoptera: Formicidae and Odonata). It appears that the technique is less successful for heavily sclerotized insects and/or those with many exocrine glands.

  10. Risperidone solid dispersion for orally disintegrating tablet: its formulation design and non-destructive methods of evaluation.

    PubMed

    Rahman, Ziyaur; Zidan, Ahmed S; Khan, Mansoor A

    2010-11-15

    The focus of present investigation was to assess the utility of non-destructive techniques in the evaluation of risperidone solid dispersions (SD) with methyl-β-cyclodextrin (MBCD) and subsequent incorporation of the SD into orally disintegrating tablets (ODT) for a faster release of risperidone. The SD was prepared by a solvent evaporation method and evaluated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), near infrared spectroscopy (NIR), NIR-chemical imaging (NIR-CI), powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). DSC and XRD analysis indicated that crystallinity of SD has reduced significantly. FTIR showed no interaction between risperidone and MBCD. Partial least square (PLS) was applied to the NIR data for the construction of chemometric models to determine both components of the SD. Good correlations were obtained for calibration and prediction as indicated by correlation coefficients >0.9965. The model was more accurate and less biased in predicting the MBCD than risperidone as indicated by its lower mean accuracy and mean bias values. SD-3 (risperidone:MBCD, 1:3) was incorporated into ODT tablets containing diluent (D-mannitol, FlowLac(®) 100 or galenIQ™-721) and superdisintegrant (Kollidon(®) CL-SF, Ac-Di-Sol or sodium starch glycolate). Disintegration time, T(50) and T(90) were decreased in the formulations containing mannitol and Kollidon(®) CL-SF, but increased with galenIQ™-721 and sodium starch glycolate, respectively. NIR-CI images confirmed the homogeneity of SD and ODT formulations.

  11. Identifying cryptotephra units using correlated rapid, nondestructive methods: VSWIR spectroscopy, X-ray fluorescence, and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    McCanta, Molly C.; Hatfield, Robert G.; Thomson, Bradley J.; Hook, Simon J.; Fisher, Elizabeth

    2015-12-01

    Understanding the frequency, magnitude, and nature of explosive volcanic eruptions is essential for hazard planning and risk mitigation. Terrestrial stratigraphic tephra records can be patchy and incomplete due to subsequent erosion and burial processes. In contrast, the marine sedimentary record commonly preserves a more complete historical record of volcanic activity as individual events are archived within continually accumulating background sediments. While larger tephra layers are often identifiable by changes in sediment color and/or texture, smaller fallout layers may also be present that are not visible to the naked eye. These cryptotephra are commonly more difficult to identify and often require time-consuming and destructive point counting, petrography, and microscopy work. Here we present several rapid, nondestructive, and quantitative core scanning methodologies (magnetic susceptibility, visible to shortwave infrared spectroscopy, and XRF core scanning) which, when combined, can be used to identify the presence of increased volcaniclastic components (interpreted to be cryptotephra) in the sedimentary record. We develop a new spectral parameter (BDI1000VIS) that exploits the absorption of the 1 µm near-infrared band in tephra. Using predetermined mixtures, BDI1000VIS can accurately identify tephra layers in concentrations >15-20%. When applied to the upper ˜270 kyr record of IODP core U1396C from the Caribbean Sea, and verified by traditional point counting, 29 potential cryptotephra layers were identified as originating from eruptions of the Lesser Antilles Volcanic Arc. Application of these methods in future coring endeavors can be used to minimize the need for physical disaggregation of valuable drill core material and allow for near-real-time recognition of tephra units, both visible and cryptotephra. This article was corrected on 23 DEC 2015. See the end of the full text for details.

  12. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  13. Nondestructive material characterization

    DOEpatents

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  14. Limits of Spatial Resolution for Thermography and Other Non-destructive Imaging Methods Based on Diffusion Waves.

    PubMed

    Burgholzer, Peter; Hendorfer, Günther

    2013-01-01

    In this work the measured variable, such as temperature, is a random variable showing fluctuations. The loss of information caused by diffusion waves in non-destructive testing can be described by stochastic processes. In non-destructive imaging, the information about the spatial pattern of a samples interior has to be transferred to the sample surface by certain waves, e.g., thermal waves. At the sample surface these waves can be detected and the interior structure is reconstructed from the measured signals. The amount of information about the interior of the sample, which can be gained from the detected waves on the sample surface, is essentially influenced by the propagation from its excitation to the surface. Diffusion causes entropy production and information loss for the propagating waves. Mandelis has developed a unifying framework for treating diverse diffusion-related periodic phenomena under the global mathematical label of diffusion-wave fields, such as thermal waves. Thermography uses the time-dependent diffusion of heat (either pulsed or modulated periodically) which goes along with entropy production and a loss of information. Several attempts have been made to compensate for this diffusive effect to get a higher resolution for the reconstructed images of the samples interior. In this work it is shown that fluctuations limit this compensation. Therefore, the spatial resolution for non-destructive imaging at a certain depth is also limited by theory.

  15. In situ nondestructive imaging of functional pigments in Micro-Tom tomato fruits by multi spectral imaging based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ooe, Shintaro; Todoroki, Shinsuke; Asamizu, Erika

    2013-05-01

    To evaluate the functional pigments in the tomato fruits nondestructively, we propose a method based on the multispectral diffuse reflectance images estimated by the Wiener estimation for a digital RGB image. Each pixel of the multispectral image is converted to the absorbance spectrum and then analyzed by the multiple regression analysis to visualize the contents of chlorophyll a, lycopene and β-carotene. The result confirms the feasibility of the method for in situ imaging of chlorophyll a, β-carotene and lycopene in the tomato fruits.

  16. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  17. Experimental evaluation of the usefulness of feathers as a non-destructive biomonitor for polychlorinated biphenyls (PCBs) using silastic implants as a novel method of exposure.

    PubMed

    Van den Steen, E; Covaci, A; Jaspers, V L B; Dauwe, T; Voorspoels, S; Eens, M; Pinxten, R

    2007-02-01

    Risk assessment of pollutants requires both monitoring studies in the field and experimental exposure studies. In this study, we evaluated silastic implants as an alternative method of exposure for use in toxicological studies and at the same time evaluated the usefulness of feathers as a non-destructive biomonitor for PCBs. European starlings (Sturnus vulgaris) were exposed to different doses (including a control group) of environmentally relevant concentrations of PCB 153 during a 15-week period using silastic implants with both ends/only one end sealed. After implantation, there was a rapid and significant increase in PCB 153 blood concentration in the exposed groups. The significant differences in blood concentrations among the treatment groups show that silastic implants are useful as a method of exposure. Moreover, the ratio between the tissue concentrations of two treatment groups reflected the difference in implantation doses between these groups. There was also a clear difference in tissue concentrations among the treatment groups, although we could not test this statistically due to the small sample sizes. The slow release kinetics for a prolonged period and the relatively stable blood concentrations during the 15-week period render silastic tubes very interesting to study the effects of chronic exposure to pollutants. Our results also revealed that sealing both ends of the implant instead of only one did not significantly affect the exposure. There were strong, significant positive correlations between the blood and the tissues, which confirm the use of blood to monitor PCBs. To evaluate the usefulness of feathers as a non-destructive biomonitor for PCBs, we plucked the original and newly grown wing and tail feathers. We observed strong, significant positive correlations between the concentrations in the newly grown feathers and concentrations in the muscle, liver, brain and blood. PCB 153 concentrations in the newly grown feathers differed among the

  18. Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.).

    PubMed

    Ruiz, David; Reich, Maryse; Bureau, Sylvie; Renard, Catherine M G C; Audergon, Jean-Marc

    2008-07-09

    The importance of carotenoid content in apricot (Prunus armeniaca L.) is recognized not only because of the color that they impart but also because of their protective activity against human diseases. Current methods to assess carotenoid content are time-consuming, expensive, and destructive. In this work, the application of rapid and nondestructive methods such as colorimeter measurements and infrared spectroscopy has been evaluated for carotenoid determination in apricot. Forty apricot genotypes covering a wide range of peel and flesh colors have been analyzed. Color measurements on the skin and flesh ( L*, a*, b*, hue, chroma, and a*/ b* ratio) as well as Fourier transform near-infrared spectroscopy (FT-NIR) on intact fruits and Fourier transform mid-infrared spectroscopy (FT-MIR) on ground flesh were correlated with the carotenoid content measured by high-performance liquid chromatography. A high variability in color values and carotenoid content was observed. Partial least squares regression analyses between beta-carotene content and provitamin A activity and color measurements showed a high fit in peel, flesh, and edible apricot portion (R(2) ranged from 0.81 to 0.91) and low prediction error. Regression equations were developed for predicting carotenoid content by using color values, which appeared as a simple, rapid, reliable, and nondestructive method. However, FT-NIR and FT-MIR models showed very low R(2) values and very high prediction errors for carotenoid content.

  19. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  20. Development of a nondestructive method for underglaze painted tiles--demonstrated by the analysis of Persian objects from the nineteenth century.

    PubMed

    Reiche, Ina; Röhrs, Stefan; Salomon, Joseph; Kanngiesser, Birgit; Höhn, Yvonne; Malzer, Wolfgang; Voigt, Friederike

    2009-02-01

    The paper presents an analytical method developed for the nondestructive study of nineteenth-century Persian polychrome underglaze painted tiles. As an example, 9 tiles from French and German museum collections were investigated. Before this work was undertaken little was known about the materials used in pottery at that time, although the broad range of colors and shades, together with their brilliant glazes, made these objects stand out when compared with Iranian ceramics of the preceding periods and suggested the use of new pigments, colorants, and glaze compositions. These materials are thought to be related to provenance and as such appropriate criteria for art-historical attribution. The analytical method is based on the combination of different nondestructive spectroscopic techniques using microfocused beams such as proton-induced X-ray emission/proton-induced gamma-ray emission, X-ray fluorescence, 3D X-ray absorption near edge structure, and confocal Raman spectroscopy and also visible spectroscopy. It was established to address the specific difficulties these objects and the technique of underglaze painting raise. The exact definition of the colors observed on the tiles using the Natural Color System helped to attribute them to different colorants. It was possible to establish the presence of Cr- and U-based colorants as new materials in nineteenth-century Persian tilemaking. The difference in glaze composition (Pb, Sn, Na, and K contents) as well as the use of B and Sn were identified as a potential marker for different workshops.

  1. Non-destructive evaluation means and method of flaw reconstruction utilizing an ultrasonic multi-viewing transducer data acquistion system

    DOEpatents

    Thompson, Donald O.; Wormley, Samuel J.

    1989-03-28

    A multi-viewing ultrasound transducer acquisition system for non-destructive evaluation, flaw detection and flaw reconstruction in materials. A multiple transducer assembly includes a central transducer surrounded by a plurality of perimeter transducers, each perimeter transducer having an axis of transmission which can be angularly oriented with respect to the axis of transmission of the central transducer to intersect the axis of transmission of the central transducer. A control apparatus automatically and remotely positions the transducer assembly with respect to the material by a positioning apparatus and adjusts the pe GRANT REFERENCE This invention was conceived and reduced to practice at least in part under a grant from the Department of Energy under Contract No. W-7407-ENG-82.

  2. A new apparatus for non-destructive evaluation of green-state powder metal compacts using the electrical-resistivity method

    NASA Astrophysics Data System (ADS)

    Bogdanov, Gene; Ludwig, Reinhold; Michalson, William R.

    2000-02-01

    This paper presents a new apparatus developed for non-destructive evaluation (NDE) of green-state powder metal compacts. A green-state compact is an intermediate step in the powder metallurgy (PM) manufacturing process, which is produced when a metal powder-lubricant mixture is compacted in a press. This compact is subsequently sintered in a furnace to produce the finished product. Non-destructive material testing is most cost effective in the green state because early flaw detection permits early intervention in the manufacturing cycle and thus avoids scrapping large numbers of parts. Unfortunately, traditional NDE methods have largely been unsuccessful when applied to green-state PM compacts. A new instrumentation approach has been developed, whereby direct currents are injected into the green-state compact and an array of spring-loaded needle contacts records the voltage distributions on the surface. The voltage distribution is processed to identify potentially dangerous surface and sub-surface flaws. This paper presents the custom-designed hardware and software developed for current injection, voltage acquisition, pre-amplification and flaw detection. In addition, the testing algorithm and measurement results are discussed. The success of flaw detection using the apparatus is established by using controlled samples, which are PM compacts with dielectric inclusions inserted.

  3. Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview

    PubMed Central

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective. PMID:23337334

  4. Ultrasonic Nondestructive Method for Stress Analysis of Structural Members and Near-Surface Layers of Materials: Focus on Ukrainian Research (Review)

    NASA Astrophysics Data System (ADS)

    Guz, A. N.

    2014-05-01

    The results obtained by Ukrainian researchers on the justification, development, and application of ultrasonic nondestructive methods (UNDMs) for evaluating stresses in structural members and near-surface layers of materials are briefly discussed. A distinguishing feature of Ukrainian methods is that they are capable of determining triaxial (including biaxial and uniaxial as partial cases) stresses, unlike non-Ukrainian methods applicable only to uniaxial stresses. The UNDMs are based on the laws of wave propagation in solids with initial (residual) stresses, including the laws of Rayleigh wave propagation. The results discussed were obtained in the National Academy of Sciences of Ukraine (S. P.Timoshenko Institute of Mechanics and E. O. Paton Institute of Electric Welding)

  5. Non-destructive identification of twisted light.

    PubMed

    Li, Pengyun; Wang, Bo; Song, Xinbing; Zhang, Xiangdong

    2016-04-01

    The non-destructive identification of the orbital angular momentum (OAM) is essential to various applications in the optical information processing. Here, we propose and demonstrate experimentally an efficient method to identify non-destructively the OAM by using a modified Mach-Zehnder interferometer. Our schemes are applicable not only to the case with integer charges, but also to optical vortices with noninteger charges. Our Letter presents the first experimental demonstration of the non-destructive identification of twisted light with integer or noninteger topological charges, which has potential applications in the OAM-based data transmission for optical communications.

  6. A Non-Destructive Method for Distinguishing Reindeer Antler (Rangifer tarandus) from Red Deer Antler (Cervus elaphus) Using X-Ray Micro-Tomography Coupled with SVM Classifiers.

    PubMed

    Lefebvre, Alexandre; Rochefort, Gael Y; Santos, Frédéric; Le Denmat, Dominique; Salmon, Benjamin; Pétillon, Jean-Marc

    2016-01-01

    Over the last decade, biomedical 3D-imaging tools have gained widespread use in the analysis of prehistoric bone artefacts. While initial attempts to characterise the major categories used in osseous industry (i.e. bone, antler, and dentine/ivory) have been successful, the taxonomic determination of prehistoric artefacts remains to be investigated. The distinction between reindeer and red deer antler can be challenging, particularly in cases of anthropic and/or taphonomic modifications. In addition to the range of destructive physicochemical identification methods available (mass spectrometry, isotopic ratio, and DNA analysis), X-ray micro-tomography (micro-CT) provides convincing non-destructive 3D images and analyses. This paper presents the experimental protocol (sample scans, image processing, and statistical analysis) we have developed in order to identify modern and archaeological antler collections (from Isturitz, France). This original method is based on bone microstructure analysis combined with advanced statistical support vector machine (SVM) classifiers. A combination of six microarchitecture biomarkers (bone volume fraction, trabecular number, trabecular separation, trabecular thickness, trabecular bone pattern factor, and structure model index) were screened using micro-CT in order to characterise internal alveolar structure. Overall, reindeer alveoli presented a tighter mesh than red deer alveoli, and statistical analysis allowed us to distinguish archaeological antler by species with an accuracy of 96%, regardless of anatomical location on the antler. In conclusion, micro-CT combined with SVM classifiers proves to be a promising additional non-destructive method for antler identification, suitable for archaeological artefacts whose degree of human modification and cultural heritage or scientific value has previously made it impossible (tools, ornaments, etc.).

  7. A Non-Destructive Method for Distinguishing Reindeer Antler (Rangifer tarandus) from Red Deer Antler (Cervus elaphus) Using X-Ray Micro-Tomography Coupled with SVM Classifiers

    PubMed Central

    Lefebvre, Alexandre; Rochefort, Gael Y.; Santos, Frédéric; Le Denmat, Dominique; Salmon, Benjamin; Pétillon, Jean-Marc

    2016-01-01

    Over the last decade, biomedical 3D-imaging tools have gained widespread use in the analysis of prehistoric bone artefacts. While initial attempts to characterise the major categories used in osseous industry (i.e. bone, antler, and dentine/ivory) have been successful, the taxonomic determination of prehistoric artefacts remains to be investigated. The distinction between reindeer and red deer antler can be challenging, particularly in cases of anthropic and/or taphonomic modifications. In addition to the range of destructive physicochemical identification methods available (mass spectrometry, isotopic ratio, and DNA analysis), X-ray micro-tomography (micro-CT) provides convincing non-destructive 3D images and analyses. This paper presents the experimental protocol (sample scans, image processing, and statistical analysis) we have developed in order to identify modern and archaeological antler collections (from Isturitz, France). This original method is based on bone microstructure analysis combined with advanced statistical support vector machine (SVM) classifiers. A combination of six microarchitecture biomarkers (bone volume fraction, trabecular number, trabecular separation, trabecular thickness, trabecular bone pattern factor, and structure model index) were screened using micro-CT in order to characterise internal alveolar structure. Overall, reindeer alveoli presented a tighter mesh than red deer alveoli, and statistical analysis allowed us to distinguish archaeological antler by species with an accuracy of 96%, regardless of anatomical location on the antler. In conclusion, micro-CT combined with SVM classifiers proves to be a promising additional non-destructive method for antler identification, suitable for archaeological artefacts whose degree of human modification and cultural heritage or scientific value has previously made it impossible (tools, ornaments, etc.). PMID:26901355

  8. A model-based method for the characterisation of stress in magnetic materials using eddy current non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Dahia, Abla; Berthelot, Eric; Le Bihan and, Yann; Daniel, Laurent

    2015-03-01

    A precise knowledge of the distribution of internal stresses in materials is key to the prediction of magnetic and mechanical performance and lifetime of many industrial devices. This is the reason why many efforts have been made to develop and enhance the techniques for the non-destructive evaluation of stress. In the case of magnetic materials, the use of eddy current (EC) techniques is a promising pathway to stress evaluation. The principle is based on the significant changes in magnetic permeability of magnetic materials subjected to mechanical stress. These modifications of magnetic permeability affect in turn the signal obtained from an EC probe inspecting the material. From this principle, a numerical tool is proposed in this paper to predict the EC signal obtained from a material subjected to stress. This numerical tool is a combination of a 3D finite element approach with a magneto-mechanical constitutive law describing the effect of stress on the magnetic permeability. The model provides the variations of impedance of an EC probe as a function of stress. An experimental setup in which a magnetic material subjected to a tension stress is inspected using EC techniques is tailored in order to validate the model. A very good agreement is found between experimental and modelling results. For the Iron-Cobalt alloy tested in this study, it is shown that a uniaxial tensile stress can be detected with an error lower than 3 MPa in the range from 0 to 100 MPa.

  9. Development of a new magnetic Barkhausen spectroscopy method for the non-destructive characterization of magnetic materials

    NASA Astrophysics Data System (ADS)

    Kypris, Orfeas; Nlebedim, Ikenna; Jiles, David

    2014-03-01

    Barkhausen emissions, which result from discontinuous, irreversible changes in magnetization, are related to the stress state, defect/inclusion sizes and microstructure of ferromagnetic materials. Time domain analysis of Barkhausen signals measured at the surface of a specimen can reveal the average magnitude of stress in the structure. Such analysis offers a powerful tool for magnetic nondestructive characterization of materials. However, determining the stress and other microstructural parameters as a function of depth still remains a challenging problem, which can be treated in the frequency domain. In this work, a model for stress-depth profiling of ferromagnets is developed. In the model, the frequency spectrum at the surface of a specimen is described in terms of two parameters; the average amplitude of Barkhausen emissions at their origin Vorig and ζ, which is proportional to the square root of magnetic permeability. A ferromagnetic structure is mathematically divided into homogeneous layers with each layer acting as a source of Barkhausen signal having a unique spectrum that is attenuated as it propagates to the surface. We show that Vorig and ζ correlate with stress and we provide a framework for detecting stress variations as a function of depth.

  10. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  11. Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method.

    PubMed

    Iriel, Analia; Lagorio, María Gabriela

    2009-03-01

    Reflectance spectra from pink petals of Rhododendron indicum flowers showed absorption in the NIR (1470, 1930 and 2500 nm) due to water, in the visible (533 nm, due to anthocyanins) and in the UV (broad absorption due to phenolic compounds other than anthocyanins). A linear correlation between the remission function at 533 nm and the anthocyanin content in micromol per g fresh weight has been found, allowing non-destructive quantification of anthocyanins. The remission function could be obtained either from reflectance of a group of stacked petals (Kubelka-Munk theory) or through determination of the absorption and scattering coefficients following the Pile of Plates model. The intact petals have shown fluorescence emission in the blue (400-500 nm) and in the visible around 624 nm under UV excitation. The red emission was attributed to anthocyanins whereas blue emission was assigned to other phenolic compounds. On the basis of absorption and fluorescence measurements of crude and purified extracts from the petals, the last compounds could possibly be a mixture of flavonoids and hydroxycinnamic-type plant phenolics such as ferulic acid, chlorogenic acid or others.

  12. Evaluation of Midwater Trawl Selectivity and its Influence on Acoustic-Based Fish Population Surveys

    NASA Astrophysics Data System (ADS)

    Williams, Kresimir

    Trawls are used extensively during fisheries abundance surveys to derive estimates of fish density and, in the case of acoustic-based surveys, to identify acoustically sampled fish populations. However, trawls are selective in what fish they retain, resulting in biased estimates of density, species, and size compositions. Selectivity of the midwater trawl used in acoustic-based surveys of walleye pollock (Theragra chalcogramma) was evaluated using multiple methods. The effects of trawl selectivity on the acoustic-based survey abundance estimates and the stock assessment were evaluated for the Gulf of Alaska walleye pollock population. Selectivity was quantified using recapture, or pocket, nets attached to the outside of the trawl. Pocket net catches were modeled using a hierarchical Bayesian model to provide uncertainty in selectivity parameter estimates. Significant under-sampling of juvenile pollock by the midwater trawl was found, with lengths at 50% retention ranging from 14--26 cm over three experiments. Escapement was found to be light dependent, with more fish escaping in dark conditions. Highest escapement rates were observed in the aft of the trawl near to the codend though the bottom panel of the trawl. The behavioral mechanisms involved in the process of herding and escapement were evaluated using stereo-cameras, a DIDSON high frequency imaging sonar, and pocket nets. Fish maintained greater distances from the trawl panel during daylight, suggesting trawl modifications such as increased visibility of netting materials may evoke stronger herding responses and increased retention of fish. Selectivity and catchability of pollock by the midwater trawl was also investigated using acoustic density as an independent estimate of fish abundance to compare with trawl catches. A modeling framework was developed to evaluate potential explanatory factors for selectivity and catchability. Selectivity estimates were dependent on which vessel was used for the survey

  13. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  14. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    NASA Technical Reports Server (NTRS)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  15. Why we have to characterize rocks nondestructively?

    NASA Astrophysics Data System (ADS)

    Vladimirov, Valentin D.

    1999-12-01

    It is an analys of the relative importance of metallic and industrial minerals and the role of nondestructive methods is discused. The authors aim is on the basis of widespread nondestructive rocks evaluation to create rock physical properties data base for the needs of: construction activity; industry; geological genetically reconstructions; natural and technogenic hazard assessments; nuclear and high toxic waste disposition; environment protection and many others.

  16. Nondestructive Testing for Moisture Content in Foods by Neutron Gauging.

    DTIC Science & Technology

    Food, *Nondestructive testing, *Neutrons, Moisture, Californium compounds, Radioactive isotopes, Containers, Powders, Measurement, Gamma rays, Test methods, Neutron absorption, Military rations, Radiation effects

  17. Nuclear Energy Research Initiative Annual Report-Innovative Approaches to Automating QA/QC of Fuel Particle Production Using On-Line Nondestructive Methods for Higher Reliability.

    SciTech Connect

    Hockey, Ronald L.; Bond, Leonard J.; Ahmed, Salahuddin; Sandness, Gerald A.; Gray, Joseph N.; Batishko, Charles R.; Flake, Matthew; Panetta, Paul D.; Saurwein, John J.; Lowden, Richard A.; Good, Morris S.

    2004-04-20

    This document summarizes the activities performed and progress made in FY-03. Various approaches for automating the particle fuel production QC process using on-line nondestructive methods for higher reliability were evaluated. In this first-year of a three-year project, surrogate fuel particles made available for testing included leftovers from initial coater development runs. These particles had a high defect fraction and the particle properties spanned a wide range, providing the opportunity to examine worst-case conditions before refining the inspection methods to detect more subtle coating features. Particles specifically designed to evaluate the NDE methods being investigated under this project will be specified and fabricated at ORNL early next reporting period. The literature was reviewed for existing inspection technology and to identify many of the fuel particle conditions thought to degrade its performance. A modeling study, including the electromagnetic and techniques, showed that the in-line electromagnetic methods should provide measurable responses to missing layers, kernel diameter, and changes in coating layer thickness, with reasonable assumptions made for material conductivities. The modeling study for the ultrasonic methods provided the resonant frequencies that should be measured using the resonant ultrasound technique, and the results from these calculations were published in the proceedings for two conferences. The notion of a particle quality index to relate coating properties to fabrication process parameters was explored. Progress was made in understanding the fabrication process. GA identified key literature in this area and Saurwein (2003a) provided a literature review/summary. This literature has been reviewed. An approach previously applied to flexible manufacturing was adopted and the modification and development of the concepts to meet TRISO particle fuel manufacturing and QA/QC needs initiated. This approach establishes

  18. Nondestructive characterization of pipeline materials

    NASA Astrophysics Data System (ADS)

    Engle, Brady J.; Smart, Lucinda J.; Bond, Leonard J.

    2015-03-01

    There is a growing need to quantitatively and nondestructively evaluate the strength and toughness properties of pipeline steels, particularly in aging pipeline infrastructure. These strength and toughness properties, namely yield strength, tensile strength, transition temperature, and toughness, are essential for determining the safe operating pressure of the pipelines. For some older pipelines crucial information can be unknown, which makes determining the pressure rating difficult. Current inspection techniques address some of these issues, but they are not comprehensive. This paper will briefly discuss current inspection techniques and relevant literature for relating nondestructive measurements to key strength and toughness properties. A project is in progress to provide new in-trench tools that will give strength properties without the need for sample removal and destructive testing. Preliminary experimental ultrasonic methods and measurements will be presented, including velocity, attenuation, and backscatter measurements.

  19. Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report

    SciTech Connect

    Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

    2006-02-28

    This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle “quality” qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

  20. The RAMANITA method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts.

    PubMed

    Smith, David C

    2005-08-01

    The "RAMANITA" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is quite different.

  1. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    PubMed

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  2. Utilizing single particle Raman microscopy as a non-destructive method to identify sources of PM10 from cattle feedlot operations

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; McConnell, Laura L.; Razote, Edna; Schmidt, Walter F.; Vinyard, Bryan T.; Torrents, Alba; Hapeman, Cathleen J.; Maghirang, Ronaldo; Trabue, Steven L.; Prueger, John; Ro, Kyoung S.

    2013-02-01

    Emissions of particulate matter (PM) from animal feeding operations (AFOs) pose a potential threat to the health of humans and livestock. Current efforts to characterize PM emissions from AFOs generally examine variations in mass concentration and particle size distributions over time and space, but these methods do not provide information on the sources of the PM captured. Raman microscopy was employed as a non-destructive method to quantify the contributions of source materials to PM10 emitted from a large cattle feedlot. Raman spectra from potential source materials (dust from unpaved roads, manure from pen surface, and cattle feed) were compiled to create a spectral library. Multivariate statistical analysis methods were used to identify specific groups composing the source library spectra and to construct a linear discriminant function to identify the source of particles collected on PM10 sample filters. Cross validation of the model resulted in 99.76% correct classification of source spectra in the training group. Source characterization results from samples collected at the cattle feedlot over a two-day period indicate that manure from the cattle pen surface contributed an average of 78% of the total PM10 particles, and dust from unpaved roads accounted for an average of 19% with minor contributions from feed. Results of this work are promising and provide support for further investigation into an innovative method to identify agricultural PM10 sources accurately under different meteorological and management conditions.

  3. State-of-the-Art of Non-Destructive Testing Methods and Technologies for Application to Nuclear Power Plant Safety-Related Concrete Structures

    SciTech Connect

    Wiggenhauser, Dr. Herbert; Naus, Dan J

    2014-01-01

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: locating steel reinforcement and identification of its cover depth locating tendon ducts and identification of the condition of the grout materials detection of cracking, voids, delamination, and honeycombing in concrete structures detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner methods capable of identification of corrosion occurrence on the concrete side of the containment liner

  4. State-of-the-art of non-destructive testing methods and technologies for application to nuclear power plant safety-related concrete structures

    SciTech Connect

    Wiggenhauser, Herbert; Naus, Dan J.

    2014-02-18

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: •locating steel reinforcement and identification of its cover depth •locating tendon ducts and identification of the condition of the grout materials •detection of cracking, voids, delamination, and honeycombing in concrete structures •detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner •methods capable of identification of corrosion occurrence on the concrete side of the containment liner.

  5. State-of-the-art of non-destructive testing methods and technologies for application to nuclear power plant safety-related concrete structures

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, Herbert; Naus, Dan J.

    2014-02-01

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: •locating steel reinforcement and identification of its cover depth •locating tendon ducts and identification of the condition of the grout materials •detection of cracking, voids, delamination, and honeycombing in concrete structures •detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner •methods capable of identification of corrosion occurrence on the concrete side of the containment liner

  6. Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Karaiskos, G.; Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2016-05-01

    Concrete is still the leading structural material due to its low production cost and great structural design flexibility. Although it is distinguished by such a high durability and compressive strength, it is vulnerable in a series of ambient and operational degradation factors which all too frequently result in crack formation that can adversely affect its mechanical performance. The autonomous healing system, using encapsulated polyurethane-based, expansive, healing agent embedded in concrete, is triggered by the crack formation and propagation and promises material repair and operational service life extension. As shown in our previous studies, the formed cracks on small-scale concrete beams are sealed and repaired by filling them with the healing agent. In the present study, the crack formation and propagation in autonomously healed, large-scale concrete beams are thoroughly monitored through a combination of non-destructive testing (NDT) methods. The ultrasonic pulse velocity (UPV), using embedded low-cost and aggregate-size piezoelectric transducers, the acoustic emission (AE) and the digital image correlation (DIC) are the NDT methods which are comprehensively used. The integrated ultrasonic, acoustic and optical monitoring system introduces an experimental configuration that detects and locates the four-point bending mode fracture on large-scale concrete beams, detects the healing activation process and evaluates the subsequent concrete repair.

  7. Summary of nondestructive testing theory and practice

    NASA Technical Reports Server (NTRS)

    Meister, R. P.; Randall, M. D.; Mitchell, D. K.; Williams, L. P.; Pattee, H. E.

    1972-01-01

    The ability to fabricate design critical and man-rated aerospace structures using materials near the limits of their capabilities requires a comprehensive and dependable assurance program. The quality assurance program must rely heavily on nondestructive testing methods for thorough inspection to assess properties and quality of hardware items. A survey of nondestructive testing methods is presented to provide space program managers, supervisors and engineers who are unfamiliar with this technical area with appropriate insight into the commonly accepted nondestructive testing methods available, their interrelationships, used, advantages and limitations. Primary emphasis is placed on the most common methods: liquid penetrant, magnetic particle, radiography, ultrasonics and eddy current. A number of the newer test techniques including thermal, acoustic emission, holography, microwaves, eddy-sonic and exo-electron emission, which are beginning to be used in applications of interest to NASA, are also discussed briefly.

  8. Non-Invasive and Non-Destructive Examination of Artistic Pigments, Paints, and Paintings by Means of X-Ray Methods.

    PubMed

    Janssens, Koen; Van der Snickt, Geert; Vanmeert, Frederik; Legrand, Stijn; Nuyts, Gert; Alfeld, Matthias; Monico, Letizia; Anaf, Willemien; De Nolf, Wout; Vermeulen, Marc; Verbeeck, Jo; De Wael, Karolien

    2016-12-01

    Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists' pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.

  9. The RAMANITA © method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2005-08-01

    The "RAMANITA ©" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, by M. Pinet and D.C. Smith in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA ©, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA © method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. from gemstones or other crystalline artworks of the cultural heritage (especially by Mobile Raman Microscopy (MRM)) in situ in museums or at archaeological sites, including under water for subaquatic archaeometry; from scientifically precious mineral microinclusions (such as garnet or pyroxene within diamond); from minerals in rocks analysed in situ on planetary bodies by a rover (especially "at distance" by telescopy). Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is

  10. Traceable Quantitative Raman Microscopy and X-ray Fluorescence Analysis as Nondestructive Methods for the Characterization of Cu(In,Ga)Se2 Absorber Films.

    PubMed

    Zakel, Sabine; Pollakowski, Beatrix; Streeck, Cornelia; Wundrack, Stefan; Weber, Alfons; Brunken, Stefan; Mainz, Roland; Beckhoff, Burckhardt; Stosch, Rainer

    2016-02-01

    The traceability of measured quantities is an essential condition when linking process control parameters to guaranteed physical properties of a product. Using Raman spectroscopy as an analytical tool for monitoring the production of Cu(In1-xGax)Se2 thin-film solar cells, proper calibration with regard to chemical composition and lateral dimensions is a key prerequisite. This study shows how the multiple requirements of calibration in Raman microscopy might be addressed. The surface elemental composition as well as the integral elemental composition of the samples is traced back by reference-free X-ray fluorescence analysis. Reference Raman spectra are then generated for the relevant Cu(In1-xGax)Se2 related compounds. The lateral dimensions are calibrated with the help of a novel dimensional standard whose regular structures have been traced back to the International System of Units by metrological scanning force microscopy. On this basis, an approach for the quantitative determination of surface coverage values from lateral Raman mappings is developed together with a complete uncertainty budget. Raman and X-ray spectrometry have here been proven as complementary nondestructive methods combining surface sensitivity and in-depth information on elemental and species distribution for the reliable quality control of Cu(In1-xGax)Se2 absorbers and Cu(In1-xGax)3Se5 surface layer formation.

  11. A NEW NON-DESTRUCTIVE METHOD FOR CHEMICAL ANALYSIS OF PARTICULATE MATTER FILTERS: THE CASE OF MANGANESE AIR POLLUTION IN VALLECAMONICA (ITALY)

    PubMed Central

    Borgese, Laura; Zacco, Annalisa; Pal, Sudipto; Bontempi, Elza; Lucchini, Roberto; Zimmerman, Neil; Depero, Laura E.

    2011-01-01

    Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like Inductively Coupled Plasma (ICP) and Atomic Absorption Spectroscopy (AAS) show that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy). PMID:21315919

  12. [Nondestructive Evaluation (NDE) Capabilities

    NASA Technical Reports Server (NTRS)

    Born, Martin

    2010-01-01

    These poster boards display the United Space Alliance's (USA) systems and equipment used for Nondestructive Evaluation. These include: (1) the Robotic Inspection Facility, (2) CAT-Scan and Laminography, (3) Laser Surface Profilometry, (4) Remote Eddy Current, (5) Ultrasonic Phased Array, (7) Infrared Flash Thermography, and (8) Backscatter X-Ray (BSX)

  13. Nondestructive Testing Eddy Current Equipment, Methods and Applications RQA/M1-5330.12 (V-II).

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of programmed instruction handbooks, prepared by the U. S. space program, home study material is presented in this volume concerning familiarization and orientation on eddy current testing. The subject is presented under the following headings: Test Coils, Methods and Indications, and Applications. High product quality and…

  14. Sensitivity and Calibration of Non-Destructive Evaluation Method That Uses Neural-Net Processing of Characteristic Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  15. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  16. Scanning angle Raman spectroscopy: A nondestructive method for simultaneously determining mixed polymer fractional composition and film thickness

    DOE PAGES

    Bobbitt, Jonathan M.; Mendivelso-Pérez, Deyny; Smith, Emily A.

    2016-11-03

    A scanning angle (SA) Raman spectroscopy method was developed to simultaneously measure the chemical composition and thickness of waveguide mixed polymer films with varying fractional compositions. In order to test the method, six films of polystyrene-block-poly(methyl methacrylate), some mixed with poly(methyl methacrylate) homopolymer (PS-b-PMMA:PMMA), and two films of poly(2-vinylnapthalene)-block-poly(methyl methacrylate) (P2VN-b-PMMA) were prepared. The film thickness ranged from 495 to 971 nm. The chemical composition and thickness of PS-b-PMMA:PMMA films was varied by the addition of the PMMA homopolymer and annealing the films in toluene. SA Raman peak amplitude ratios (1001 cm-1 for PS, 812 cm-1 for PMMA, and 1388more » cm-1 for P2VN) were used to calculate the refractive index of the polymer film, an input parameter in calculations of the sum square electric field (SSEF). The film thickness was determined by SSEF models of the experimental Raman amplitudes versus the incident angle of light. The average film thickness determined by the developed SA Raman spectroscopy method was within 5% of the value determined by optical profilometry. In conclusion, SA Raman spectroscopy will be useful for in situ label-free analyses of mixed polymer waveguide films.« less

  17. Scanning angle Raman spectroscopy: A nondestructive method for simultaneously determining mixed polymer fractional composition and film thickness

    SciTech Connect

    Bobbitt, Jonathan M.; Mendivelso-Pérez, Deyny; Smith, Emily A.

    2016-11-03

    A scanning angle (SA) Raman spectroscopy method was developed to simultaneously measure the chemical composition and thickness of waveguide mixed polymer films with varying fractional compositions. In order to test the method, six films of polystyrene-block-poly(methyl methacrylate), some mixed with poly(methyl methacrylate) homopolymer (PS-b-PMMA:PMMA), and two films of poly(2-vinylnapthalene)-block-poly(methyl methacrylate) (P2VN-b-PMMA) were prepared. The film thickness ranged from 495 to 971 nm. The chemical composition and thickness of PS-b-PMMA:PMMA films was varied by the addition of the PMMA homopolymer and annealing the films in toluene. SA Raman peak amplitude ratios (1001 cm-1 for PS, 812 cm-1 for PMMA, and 1388 cm-1 for P2VN) were used to calculate the refractive index of the polymer film, an input parameter in calculations of the sum square electric field (SSEF). The film thickness was determined by SSEF models of the experimental Raman amplitudes versus the incident angle of light. The average film thickness determined by the developed SA Raman spectroscopy method was within 5% of the value determined by optical profilometry. In conclusion, SA Raman spectroscopy will be useful for in situ label-free analyses of mixed polymer waveguide films.

  18. Non-destructive method for the analysis of gold(I) cyanide plating baths Complexometric determination of nickel and indium.

    PubMed

    Pribil, R; Veselý, V

    1972-12-01

    A method is described for rapid determination of nickel and indium in gold(I) cyanide baths containing large amounts of citric acid and/or sodium citrate, without previous destruction of organic matter. Gold is removed by extraction with ethyl acetate. In one aliquot of the solution indium is masked with thioglycollic acid and nickel is precipitated with sodium diethyldithiocarbamate, extracted into chloroform, stripped into water and determined complexometrically. In a second aliquot indium and nickel are precipitated together with the same reagent and stripped into water, then nickel is masked with 1,10-phenanthroline, and indium is determined by direct titration with EDTA.

  19. Nondestructive Evaluation for the Space Shuttle's Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Prosser, William H.; Wincheski, Russell A.; Cramer, K. Elliot

    2005-01-01

    The loss of the Space Shuttle Columbia highlighted concerns about the integrity of the Shuttle's thermal protection system, which includes Reinforced Carbon-Carbon (RCC) on the leading edge. This led NASA to investigate nondestructive evaluation (NDE) methods for certifying the integrity of the Shuttle's wing leading edge. That investigation was performed simultaneously with a large study conducted to understand the impact damage caused by errant debris. Among the many advanced NDE methods investigated for applicability to the RCC material, advanced digital radiography, high resolution computed tomography, thermography, ultrasound, acoustic emission and eddy current systems have demonstrated the maturity and success for application to the Shuttle RCC panels. For the purposes of evaluating the RCC panels while they are installed on the orbiters, thermographic detection incorporating principal component analysis (PCA) and eddy current array scanning systems demonstrated the ability to measure the RCC panels from one side only and to detect several flaw types of concern. These systems were field tested at Kennedy Space Center (KSC) and at several locations where impact testing was being conducted. Another advanced method that NASA has been investigating is an automated acoustic based detection system. Such a system would be based in part on methods developed over the years for acoustic emission testing. Impact sensing has been demonstrated through numerous impact tests on both reinforced carbon-carbon (RCC) leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. A variety of impact materials and conditions have been evaluated including foam, ice, and ablator materials at ascent velocities as well as simulated hypervelocity micrometeoroid and orbital debris impacts. These tests have successfully demonstrated the capability to detect and localize impact events on Shuttle's wing structures. A first generation impact sensing

  20. A Non-Destructive Distinctive Method for Discrimination of Automobile Lubricant Variety by Visible and Short-Wave Infrared Spectroscopy

    PubMed Central

    Jiang, Lulu; Liu, Fei; He, Yong

    2012-01-01

    A novel method which is a combination of wavelet packet transform (WPT), uninformative variable elimination by partial least squares (UVE-PLS) and simulated annealing (SA) to extract best variance information among different varieties of lubricants is presented. A total of 180 samples (60 for each variety) were characterized on the basis of visible and short-wave infrared spectroscopy (VIS-SWNIR), and 90 samples (30 for each variety) were randomly selected for the calibration set, whereas, the remaining 90 samples (30 for each variety) were used for the validation set. The spectral data was split into different frequency bands by WPT, and different frequency bands were obtained. SA was employed to look for the best variance band (BVB) among different varieties of lubricants. In order to improve prediction precision further, BVB was processed by UVE-PLS and the optimal cutoff threshold of UVE was found by SA. Finally, five variables were mined, and were set as inputs for a least square-support vector machine (LS-SVM) to build the recognition model. An optimal model with a correlation coefficient (R) of 0.9850 and root mean square error of prediction (RMSEP) of 0.0827 was obtained. The overall results indicated that the method of combining WPT, UVE-PLS and SA was a powerful way to select diagnostic information for discrimination among different varieties of lubricating oil, furthermore, a more parsimonious and efficient LS-SVM model could be obtained. PMID:22737021

  1. Technology Review of Nondestructive Methods for Examination of Water Intrusion Areas on Hanford’s Double-Shell Waste Tanks

    SciTech Connect

    Watkins, Michael L.; Pardini, Allan F.

    2008-05-09

    Under a contract with CH2M Hill Hanford Group, Inc., PNNL has performed a review of the NDE technology and methods for examination of the concrete dome structure of Hanford’s double-shell tanks. The objective was to provide a matrix of methodologies that could be evaluated based on applicability, ease of deployment, and results that could provide information that could be used in the ongoing structural analysis of the tank dome. PNNL performed a technology evaluation with the objective of providing a critical literature review for all applicable technologies based on constraints provided by CH2M HILL. These constraints were not mandatory, but were desired. These constraints included performing the evaluation without removing any soil from the top of the tank, or if necessary, requesting that the hole diameter needed to gain access to evaluate the top of the tank structure to be no greater than approximately 12-in. in diameter. PNNL did not address the details of statistical sampling requirements as they depend on an unspecified risk tolerance. PNNL considered these during the technology evaluation and have reported the results in the remainder of this document. Many of the basic approaches to concrete inspection that were reviewed in previous efforts are still in use. These include electromagnetic, acoustic, radiographic, etc. The primary improvements in these tools have focused on providing quantitative image reconstruction, thus providing inspectors and analysts with three-dimensional data sets that allow for operator visualization of relevant abnormalities and analytical integration into structural performance models. Available instruments, such as radar used for bridge deck inspections, rely on post-processing algorithms and do not provide real-time visualization. Commercially available equipment only provides qualitative indications of relative concrete damage. It cannot be used as direct input for structural analysis to assess fitness for use and if

  2. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    SciTech Connect

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  3. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    NASA Astrophysics Data System (ADS)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  4. Nondestructive Material Testing Using OCT

    NASA Astrophysics Data System (ADS)

    Stifter, D.

    The fact that optical coherence tomography (OCT) provides information on internal structures of scattering tissue in a noninvasive way has led to a broad acceptance of OCT for dedicated biomedical imaging and diagnostics applications. Outside the biomedical field, an irreversible alteration of an object under investigation by the characterization method itself is likewise undesirable, especially in the case that such an object has to be further used with its original state maintained. For this purpose, a variety of so-called nondestructive testing (NDT) methods is nowadays at hand,with OCT as novel technique exhibiting a huge potential to add valuable contributions to nondestructive testing and evaluation of semitransparent, scattering materials with structural features on the micron scale. Therefore, within this chapter, a broad range of applications for OCT in NDT is presented, ranging from examples of industrial quality control over classification and authentication tasks to the evaluation of materials in research and development.The individual applications are listed according to the category of information obtained from the individual measurements, starting with the evaluation of the pure surface structure, proceeding to thickness measurements of layered systems, to imaging of internal 3D structures and finally leading to the determination of functional information.

  5. The Assess-and-Fix Approach: Using Non-Destructive Evaluations to Help Select Pipe Renewal Methods (WaterRF Report 4473)

    EPA Science Inventory

    Nondestructive examinations (NDE) can be easily performed as part of a typical water main rehabilitation project. Once a bypass water system has been installed and the water main has been cleaned, pulling a scanning tool through the main is very straightforward. An engineer can t...

  6. NONDESTRUCTIVE EVALUATION (NDE) OF DAMAGED STRUCTURAL CERAMICS

    SciTech Connect

    Brennan, R. E.; Green, W. H.; Sands, J. M.; Yu, J. H.

    2009-03-03

    A combination of destructive and nondestructive testing methods was utilized to evaluate the impact velocity and energy conditions that caused fracture in alumina structural ceramics. Drop tower testing was used for low velocity impact with a high mass indenter and fragment simulating projectile testing was used for high velocity impact with a low mass projectile. The damaged samples were nondestructively evaluated using digital radiography and ultrasound C-scan imaging. The bulk damage detected by these techniques was compared to surface damage observed by visual inspection.

  7. Nondestructive inspection perspectives

    NASA Technical Reports Server (NTRS)

    Froom, Douglas A.

    1992-01-01

    This paper presents ideas for consideration by those concerned with commercial aircraft nondestructive inspection (NDI). The perspective is that of an individual with a background in military aircraft NDI, and important differences are indicated between the commercial NDI and military NDI activities. In particular, it is significantly more expensive to implement some new NDI technology, and therefore, in-depth cost-benifit studies for commercial users are recommended.

  8. A novel non-linear elastic wave acoustic spectroscopy (NEWS) non-destructive inspection (NDI) method for aeronautic and spacecraft materials and components

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.; Wright, J.; Gupta, S.; Mottram, T.; Armitage, P.; Gower, M.; Lodeiro, M.; Gelat, P.; Schwarz, C.

    2016-03-01

    Current non-destructive inspection (NDI) methods have limitations in their ability to identify certain flaws in complex materials and structures where a defect has not been fully formed, for example a kissing de-bond early-stage defect. Non-linear elastic wave acoustic spectroscopy (NEWS) methods have shown potential to detect early-stage flaws in metals and composites. The objectives of the ESA study reported here were to review the state of the art, then to design and build a breadboard demonstrator "NEWS Imaging" (NEWSI) non-linear acoustics instrument, and finally to demonstrate its capability using well-characterised reference defect artefacts (RDAs). A multi-mode NEWSI instrument was produced with the following modes of operation: (a) single and dual frequency, (b) pulse inversion, and (c) resonance drift modes. The first two are suitable for C-scan style imaging by contact testing or with the NACE (air-coupled detection) mode. A set of RDAs were sourced or manufactured, the most important of which was the development of successful kissing de-bonds; areas of significantly reduced bond strength, created in the bond-line between the composite laminates. All the RDAs were characterised by a wide range of complementary NDI methods, and the best results in terms of detection of all the known flaws was the scanning acoustic microscopy ultrasonic C-scan method. This technique detected all of the RDA defects except for kissing de-bonds. The NEWSI instrument was shown to be capable of detecting, with a certain degree of repeatability under controlled conditions, early-stage defects (kissing de-bonds) in composite materials. No other NDI method is known to detect these defect types. The results so far are encouraging and have potentially a lot of interest for ESA and the wider industry, if the unique capabilities of the NEWSI instrument demonstrated on the kissing de-bonds could be developed into a "routine practical test instrument". The target of the next stage of

  9. Nondestructive analysis and development

    NASA Technical Reports Server (NTRS)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  10. Review of Literature on Probability of Detection for Magnetic Particle Nondestructive Testing

    DTIC Science & Technology

    2013-01-01

    series. Magnetic particle testing is a mature nondestructive inspection method for the detection of surface-breaking or near-surface...UNCLASSIFIED Review of Literature on Probability of Detection for Magnetic Particle Nondestructive Testing S.K. Burke and R.J...UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Review of Literature on Probability of Detection for Magnetic Particle Nondestructive Testing

  11. Handbooks for nondestructive testing using ultrasonics

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Four handbooks have been prepared for use in teaching metal parts inspectors and quality assurance technicians the fundamentals of nondestructive testing using ultrasonic detection methods. The handbooks may be used in the shop or laboratory, or as study texts in technical schools and in the home.

  12. Nondestructive Profilometry of Optical Nanofibers.

    PubMed

    Madsen, Lars S; Baker, Christopher; Rubinsztein-Dunlop, Halina; Bowen, Warwick P

    2016-12-14

    Single-mode optical nanofibers are a central component of a broad range of applications and emerging technologies. Their fabrication has been extensively studied over the past decade, but imaging of the final submicrometer products has been restricted to destructive or low-precision techniques. Here, we demonstrate an optical scattering-based scanning method that uses a probe nanofiber to locally scatter the evanescent field of a sample nanofibre. The method does not damage the sample nanofiber and is easily implemented by only using the same equipment as in a standard fiber-puller setup. We demonstrate the subnanometer radial resolution at video rates (0.7 nm in 10 ms) on single mode nanofibers, allowing for a complete high-precision profile to be obtained within minutes of fabrication. The method thus enables nondestructive, fast, and precise characterization of optical nanofibers, with applications ranging from optical sensors and cold atom traps to nonlinear optics.

  13. Nondestructive testing with thermography

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Tarpani, José Ricardo; Maldague, Xavier P. V.

    2013-11-01

    Thermography is a nondestructive testing (NDT) technique based on the principle that two dissimilar materials, i.e., possessing different thermo-physical properties, would produce two distinctive thermal signatures that can be revealed by an infrared sensor, such as a thermal camera. The fields of NDT applications are expanding from classical building or electronic components monitoring to more recent ones such as inspection of artworks or composite materials. Furthermore, thermography can be conveniently used as a didactic tool for physics education in universities given that it provides the possibility of visualizing fundamental principles, such as thermal physics and mechanics among others.

  14. Nondestructive characterization of micromachined ceramics

    NASA Astrophysics Data System (ADS)

    Cooney, Adam; Hix, Kenneth E.; Yaney, Perry; Zhan, Qiwen; Dosser, Larry R.; Blackshire, James L.

    2005-05-01

    The aerospace, automotive, and electronic industries are finding increasing need for components made from silicon carbide (SiC) and silicon nitride (Si3N4). The development and use of miniaturized ceramic parts, in particular, is of significant interest in a variety of critical applications. As these application areas grow, manufacturers are being asked to find new and better solutions for machining and forming ceramic materials with microscopic precision. Recent advances in laser machining technologies are making precision micromachining of ceramics a reality. Questions regarding micromachining accuracy, residual melt region effects, and laser-induced microcracking are of critical concern during the machining process. In this activity, a variety of nondestructive inspection methods have been used to investigate the microscopic features of laser-machined ceramic components. The primary goal was to assess the micromachined areas for machining accuracy and microcracking using laser ultrasound, scanning electron microscopy, and white-light interference microscopic imaging of the machined regions.

  15. Non-Destructive State Machine Reverse Engineering

    SciTech Connect

    Smith, Jessica L.

    2013-10-10

    Most of the integrated circuits (ICs) that are in electronic systems today are based on state machines. We are taking advantage of this to develop a hardware reverse engineering method that discovers the IC’s underlying state machine, rather than its transistors and gates. While there are other methods for destructively reverse engineering ICs or for non-destructively characterizing ICs, our method offers a fast and accurate analysis while remaining non-destructive. To do this, we present an intelligent brute-force method of exploring the logic of the IC using only the input and outputs designed into the IC - the I/O pins. From this exploration, we can apply a folding algorithm to discover the designed state machine.

  16. Nondestructive evaluation technique guide

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    A total of 70 individual nondestructive evaluation (NDE) techniques are described. Information is presented that permits ease of comparison of the merits and limitations of each technique with respect to various NDE problems. An NDE technique classification system is presented. It is based on the system that was adopted by the National Materials Advisory Board (NMAB). The classification system presented follows the NMAB system closely with the exception of additional categories that have been added to cover more advanced techniques presently in use. The rationale of the technique is explained. The format provides for a concise description of each technique, the physical principles involved, objectives of interrogation, example applications, limitations of each technique, a schematic illustration, and key reference material. Cross-index tabulations are also provided so that particular NDE problems can be referred to appropriate techniques.

  17. Nondestructive Determination of Bond Strength

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Although many nondestructive techniques have been applied to detect disbonds in adhesive joints, no absolutely reliable nondestructive method has been developed to detect poor adhesion and evaluate the strength of bonded joints prior to the present work which used nonlinear ultrasonic methods to investigate adhesive bond cure conditions. Previously, a variety of linear and nonlinear ultrasonic methods with water coupling had been used to study aluminum-adhesive-aluminum laminates, prepared under different adhesive curing conditions, for possible bond strength determination. Therefore, in the course of this research effort, a variety of finite-amplitude experimental methods which could possibly differentiate various cure conditions were investigated, including normal and oblique incidence approaches based on nonlinear harmonic generation as well as several non-collinear two-wave interaction approaches. Test samples were mechanically scanned in various ways with respect to the focus of a transmitting transducer operated at several variable excitation frequencies and excitation levels. Even when powerful sample-related resonances were exploited by means of a frequency scanning approach, it was very difficult to isolate the nonlinear characteristics of adhesive bonds. However, a multi-frequency multi-power approach was quite successful and reliable. Ultrasonic tone burst signals at increasing power levels, over a wide frequency range, were transmitted through each bond specimen to determine its excitation dependent nonlinear harmonic resonance behavior. Relative amplitude changes were observed particularly in the higher harmonic spectral data and analyzed using a local displacement and strain analysis in the linear approximation. Two analysis approaches of the excitation-dependent data at specific resonances were found to be quite promising. One of these approaches may represent a very robust algorithm for classifying an adhesive bond as being properly cured or not

  18. Nondestructive Testing Information Analysis Center, 1979.

    DTIC Science & Technology

    1980-09-01

    2 Table I Major Current Methods of Nondestructive Testing * RADIdCRAPHIC AND RADIOMETRIC TESTING X- rays Gamma rays Neutrons Filmless techniques...OPTICAL TESTING Visual testing Optical reflectometry and transmission Holography * THERMAL TESTING Infrared radiometry The rmography 13 The present...Date 0416 The Boeing Wichita Co. Bibliography $ 90 2/27/79 0417 FDA-WEAC Service Info. n/c 2/28/79 0418 Gull Airborne Instruments Tech. Inq. n/c 3/7

  19. Evaluation of nondestructive tensile testing

    NASA Technical Reports Server (NTRS)

    Bowe, J. J.; Polcari, S. M.

    1971-01-01

    The results of a series of experiments performed in the evaluation of nondestructive tensile testing of chip and wire bonds are presented. Semiconductor devices were subjected to time-temperature excursions, static-load life testing and multiple pre-stressing loads to determine the feasibility of a nondestructive tensile testing approach. The report emphasizes the importance of the breaking angle in determining the ultimate tensile strength of a wire bond, a factor not generally recognized nor implemented in such determinations.

  20. Hybrid holographic non-destructive test system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1978-01-01

    An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.

  1. Nondestructive Acoustic Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Schmitz, Volker

    Acoustic imaging techniques are used in the field of nondestructive testing of technical components to measure defects such as lack of side wall fusion or cracks in welded joints. Data acquisition is performed by a remote-controlled manipulator and a PC for the mass storage of the high-frequency time-of-flight data at each probe position. The quality of the acoustic images and the interpretation relies on the proper understanding of the transmitted wave fronts and the arrangement of the probes in pulse-echo mode or in pitch-and-catch arrangement. The use of the Synthetic Aperture Focusing Technique allows the depth-dependent resolution to be replaced by a depth-independent resolution and the signal-to-noise ratio to be improved. Examples with surface-connected cracks are shown to demonstrate the improved features. The localization accuracy could be improved by entering 2-dimensional or 3-dimensional reconstructed data into the environment of a 3-dimensional CAD drawing. The propagation of ultrasonic waves through austenitic welds is disturbed by the anisotropic and inhomogeneous structure of the material. The effect is more or less severe depending upon the longitudinal or shear wave modes. To optimize the performance of an inspection software tool, a 3-dimensional CAD-Ray program has been implemented, where the shape of the inhomogeneous part of a weld can be simulated together with the grain structure based on the elastic constants. Ray-tracing results are depicted for embedded and for surface-connected defects.

  2. SQUIDs: microscopes and nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Mück, Michael

    2005-03-01

    SQUIDs (Superconducting Quantum Interference Devices) are magnetic field sensores with unsurpassed sensitivity. They are amazingly versatile, being able to measure all physical quantities which can be converted to magnetic flux. They are routinely fabricated in thin film technology from two classes of superconducting materials: high-temperature superconductors (HTS) which are usually cooled to 77 K, and low-temperature superconductors (LTS), which have to be cooled to 4.2 K. SQUIDs have many applications, two of which shall be discussed in this paper. In SQUID microscopy, a SQUID scans a sample, which preferrably is at room temperature, and measures the two-dimensional magnetic field distribution at the surface of the sample. In order to achieve a relatively high spatial resolution, the stand-off distance between the sample and the SQUID is made as small as possible. SQUIDs show also promising results in the field of nondestructive testing of various materials. For example, ferromagnetic impurities in stainless steel formed by aging processes in the material can be detected with high probability, and cracks in conducting materials, for example aircraft parts, can be located using eddy current methods. Especially for the case of thick, highly conductive, or ferromagnetic materials, as well as sintered materials, it can be shown that a SQUID-based NDE system exhibits a much higher sensitivity compared to conventional eddy current NDE and ultrasonic testing.

  3. Calibration methods of a 2 GHz evanescent microwave magnetic probe for noncontact and nondestructive metal characterization for corrosion, defects, conductivity, and thickness nonuniformities

    SciTech Connect

    Wang Run; Li, Frank; Tabib-Azar, Massood

    2005-05-15

    A near-field magnetic-dipole probe suitable for noncontact and nondestructive imaging of metals is described and the effects of resonator coupling strength, operation frequency, and the probe wire tip geometry on the conductivity resolution of the probe are experimentally determined. Using a simplified circuit model of the resonator, we were able to interpret the system's output and predict the magnitude of reflected wave and relate it to the properties of the samples under investigation. Thus, the probe was calibrated to perform quantitative conductivity measurements with the ability to detect metal nonuniformities with 1% accuracy and 5x10{sup -3}{sigma} and 2x10{sup -2}{sigma} conductivity resolutions at 2 GHz operation frequency for both the critical and over-coupling probes, respectively. We also discussed the calibration results of probes with different coupling strengths over a 0.91 {omega}/square resistive sample. The calibration results of a critical-coupled resonator probe were also compared with a microstrip transmission line probe. It was observed that the resonator probe has 100 times higher conductivity resolution than that of the transmission line probe. Furthermore, we characterized and compared the calibration results of probes with tip wires of different diameters. Images obtained by an evanescent microwave probe are presented.

  4. A new rapid and non-destructive method to detect tephra layers and cryptotephras: applying to the first distal tephrostratigraphic record of the Chaîne des Puys volcanic field (France).

    NASA Astrophysics Data System (ADS)

    Jouannic, Gwénolé; Walter-Simonnet, Anne-Véronique; Bossuet, Gilles; Delabrousse, Eric; Cubizolle, Hervé

    2014-05-01

    Tephrostratigraphy has been considerably developed for 30 years, mainly in palaeo-environmental studies. In such studies, distal tephra layers are important chronological markers, but they are also tools to establish or specify record of past eruptions of a volcanic field. Nowadays, development of effective rapid methods to detect tephra layers in sedimentary records of various compositions is a challenge. Many classic methods for detection of tephra layers, like regular sampling or magnetic susceptibility measurements, have shown their limits. Regular sampling takes a long time, and finding tephra layers remains uncertain. Moreover, magnetic susceptibility maesurements, although it is a non-destructive method, is ineffective when tephra layers are made of volcanic glass shards with differentiated magma composition. X-ray fluorescence (XRF) is also a non-destructive method but it takes a very long time to analyze a core with sufficient high resolution, and measurements only concern the surface of the sediment. We propose a new method allows detection of tephra layers with, for the first time, a 3D resolution: the Computed Tomography Scan (CT- Scan). This method, regularly used in medicine, allows there to obtain pictures of materials density on 3D with inframillimetric measurement ranges. Then, it is possible to detect tephras, cryptotephras (invisible by naked eye), reworked tephra layers even when tephra layers don't outcrop at the surface of the sediment (and are therefore undetectable by usual methods like XRF and magnetic susceptibility). This method has been tried out on tephras sedimented in different types of sediments (silicated, carbonated and organic matter). Our results show that this method is very efficient for peaty environment. Used on coring carried out in Forez Mountains (French Massif Central), CT-Scan allows to detect more tephra layers than usual methods (XRF and magnetic susceptibility). Results presented here allow to build the first

  5. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  6. Laser ultrasound for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Scott, W. R.

    1982-03-01

    Noncontact techniques for generating and detecting high frequency ultrasonic waves ( 1 MHz) are being explored using pulsed laser thermoelastic transduction and heterodyne interferometry respectively. In addition, holographic projection techniques are being investigated for beam shaping and beam steering of the thermoelastic waves. Possible applications of this technology include performance of ultrasonic nondestructive testing in hostile or inaccessible environments.

  7. Nondestructive SEM testing of planar structures

    SciTech Connect

    Aristov, V.V.; Dremova, N.N.; Kireev, V.A.

    1995-01-01

    The potentialities of three hardware SEM tomography methods developed in this work that allow the reconstruction of the distributions of geometrical parameters and electrophysical properties with the conventional spatial resolution (determined by the primary electron penetration depth) and depth profiling of these parameters with a resolution within a range {approximately}10-100 nm are demonstrated. The paper covers such issues as the back scatter coefficient dependence on the electron energy, the BSE detection in narrow energy bands, electron-beam-induced current (EBIC) with space-charge region (SCR) width modulation, and cathodoluminescence with beam intensity and energy modulation. All these approaches show promise for nondestructive characterization of submicron structures.

  8. Nondestructive testing of advanced materials using sensors with metamaterials

    NASA Astrophysics Data System (ADS)

    Rozina, Steigmann; Narcis Andrei, Danila; Nicoleta, Iftimie; Catalin-Andrei, Tugui; Frantisek, Novy; Stanislava, Fintova; Petrica, Vizureanu; Adriana, Savin

    2016-11-01

    This work presents a method for nondestructive evaluation (NDE) of advanced materials that makes use of the images in near field and the concentration of flux using the phenomenon of spatial resolution. The method allows the detection of flaws as crack, nonadhesion of coating, degradation or presence delamination stresses correlated with the response of electromagnetic sensor.

  9. Complementary Electromagnetic Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Wilson, John; Morozov, Maxim

    2011-06-01

    The use of non-destructive evaluation (NDE) for defect detection and failure prediction in structures and specimens is widespread in energy industries, aimed at ageing power plants and pipelines, material degradation, fatigue and radiation damage, etc. At present there are no suitable electromagnetic NDE methods for the measurement and characterization of material degradation, in irradiated samples in particular, which is very important and timely for the nuclear power industry in the UK. This paper reports recent developments in the field of electromagnetic (EM) NDE at Newcastle University, including pulsed eddy current (PEC), pulsed magnetic flux leakage (PMFL), magnetic Barkhausen emission (MBE) and magneto-acoustic emission (MAE). As different EM methods have different strengths, an integrative EM framework is introduced. Case studies through the second round robin tests organized by the Universal Network for Magnetic Non-Destructive Evaluation (UNMNDE), representing eighteen leading research groups worldwide in the area of electromagnetic NDE, are reported. Twelve samples with different ageing times and rolling reduction ratios were tested using different magnetic methods among the UNMNDE members. Based on the studies, the complementary characteristics of electromagnetic techniques for NDE are discussed.

  10. Nondestructive Evaluation of Nuclear-Grade Graphite

    SciTech Connect

    Dennis C. Kunerth; Timothy R. McJunkin

    2011-07-01

    Nondestructive Evaluation of Nuclear Grade Graphite Dennis C. Kunerth and Timothy R. McJunkin Idaho National Laboratory Idaho Falls, ID, 83415 This paper discusses the nondestructive evaluation of nuclear grade graphite performed at the Idaho National Laboratory. Graphite is a composite material highly dependent on the base material and manufacturing methods. As a result, material variations are expected within individual billets as well billet to billet and lot to lot. Several methods of evaluating the material have been explored. Particular technologies each provide a subset of information about the material. This paper focuses on techniques that are applicable to in-service inspection of nuclear energy plant components. Eddy current examination of the available surfaces provides information on potential near surface structural defects and although limited, ultrasonics can be utilized in conventional volumetric inspection. Material condition (e.g. micro-cracking and porosity induced by radiation and stress) can be derived from backscatter or acousto-ultrasound (AU) methods. Novel approaches utilizing phased array ultrasonics have been attempted to expand the abilities of AU techniques. By combining variable placement of apertures, angle and depth of focus, the techniques provide the potential to obtain parameters at various depths in the material. Initial results of the study and possible procedures for application of the techniques are discussed.

  11. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  12. Non-destructive evaluation of composites

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1996-01-01

    The composite materials have been used in aerospace industries for quite some time. Several non-destructive evaluation (NDE) methods have been developed to inspect composites in order to detect flaws, matrix cracking, and delamination. These methods include ultrasonics, acoustic emission, shearography, thermography, X-ray, and digital image correlation. The NDE Branch of Marshall Space Flight Center has recently acquired a thermal imaging NDE system. The same system has been used at NASA Langley Research Center for detecting disbonds. In order to compare different NDE methods, three carbon/carbon composite panels were used for experiment using ultrasonic C-scan, shearography, and thermography methods. These panels have teflon inserts to simulate the delamination between plies in a composite panel. All three methods have successfully located the insert. The experiment and results are presented in the following sections.

  13. Nondestructive ultrasonic characterization of engineering materials

    NASA Technical Reports Server (NTRS)

    Salama, K.

    1985-01-01

    The development of an ultrasonic method for the nondestructive characterization of mechanical properties of engineering material is described. The method utilizes the nonlinearity parameter measurement which describes the anharmonic behavior of the solid through measurements of amplitudes of the fundamental and of the generated second harmonic ultrasonic waves. The nonlinearity parameter is also directly related to the acoustoelastic constant of the solid which can be determined by measuring the linear dependence of ultrasonic velocity on stress. A major advantage of measurements of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes it more applicable for in-service nondestructive characterization. The relationships between the nonlinearity parameter of second-harmonic generation and the percentage of solid solution phase in engineering materials such as heat treatable aluminum alloys was established. The acoustoelastic constants are measured on these alloys for comparison and confirmation. A linear relationship between the nonlinearity parameter and the volume fraction of second phase precipitates in the alloys is indicated.

  14. Use of robotics in nondestructive inspection

    SciTech Connect

    Sartell, R.J.; Richards, W.J.

    1987-01-01

    Until very recently, nondestructive inspection of aircraft components at McClellan Air Force Base had been done in the traditional way. Ultrasonic inspections have been performed using hand-held equipment. X-ray inspections were performed using film radiography with the x-ray tubes being held on cradles, tripods, or suspended from pendant-operated or manual overhead crane-type fixtures. Implementation of advanced ultrasonic and real-time x-ray systems required that new equipment handling and parts handling methods be devised. Aircraft flight safety considerations demanded that neutron radiography be implemented as an inspection technique in order to find low levels of moisture and corrosion in the F-111 aircraft structure and aerodynamic surfaces. Traditional nondestructive inspection (NDI) methods require removal of suspect panels from the aircraft, including some panels that were not designed to be removed. The solution to these problems was to implement NDI systems that would allow inspection of intact aircraft. A new NDI facility especially designed for the latest in technology is under construction. It will house two large maneuverable x- and n-ray systems. The approx. 90-ft-span gantry robots will scan intact aircraft with real-time x-ray and near real-time n-ray systems. A unique floor/rail-mounted n-ray system will automatically inspect the F-111 aircraft engine bays.

  15. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  16. Nondestructive Concrete Characterization System

    DTIC Science & Technology

    2013-05-20

    Park, NC 27709-2211 15. SUBJECT TERMS Ultrasonic Pulse Velocity (UPV), Impact-Echo, Ultrasonic Pulse-Echo, Ultrasonic Attenuation, STTR Report Aldo... ultrasonic testing in conjunction with the resonance frequency. All results were within the specified tolerance of ±1 ft. The compressive strength of the...concrete blocks was measured by measuring the P-wave and S-wave time of travel with the pitch-catch method of ultrasonic testing. All results were

  17. Nondestructive evaluation of new coiled tubing and pipe

    SciTech Connect

    Stanley, R.K.

    1996-09-01

    The nondestructive testing (NDT) and evaluation (NDE) of coiled tubing and pipe during manufacture has not previously been described. This paper outlines the NDE methods employed during the production of such material, along with flaw removal criteria. This paper describes coiled tubing and pipe up to 3.5 inches diameter for both downhole and line pipe use.

  18. Nondestructive Characterization of Adhesive Bonds from Guided Wave Data

    NASA Technical Reports Server (NTRS)

    Mal, A.; Lih, S-S.; Bar-Cohen, Y.

    1994-01-01

    The critical role played by interface zones in the fracture and failure of composites and other bonded materials is well known. The existing nondestructive evaluation methods are generally not capable of yielding useful quantitative information of the strength of an interface.

  19. The Barkhausen Effect and its Applications to Nondestructive Evaluation,

    DTIC Science & Technology

    Measurement of the Barkhausen effect has been developed into a useful approach for the nondestructive evaluation of magnetic materials. Most of the...metallurgical composition. Instrumentation systems have been developed for practical application of the Barkhausen method, and in a few cases, the

  20. Airborne Ultrasonics for Nondestructive Evaluation of Leather Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent research has shown that besides Acoustic Emission (AE), Airborne Ultrasonics (AU) can also be applied for the nondestructive evaluation (NDE) of leather quality. Implementation of these methods in the manufacturing process could save a considerable amount of money, decrease the use of ch...

  1. Projection Registration Applied to Nondestructive Testing

    SciTech Connect

    Bingham, Philip R; Arrowood, Lloyd

    2010-01-01

    Registration of radiographic and computed tomography (CT) data has the potential to allow automated metrology and defect detection. While registration of the three-dimensional reconstructed data is a common task in the medical industry for registration of data sets from multiple detection systems, registration of projection sets has only seen development in the area of tomotherapy. Efforts in projection registration have employed a method named Fourier phase matching (FPM). This work discusses implementation and results for the application of the FPM method to industrial applications for the nondestructive testing (NDT) community. The FPM method has been implemented and modified for industrial application. Testing with simulated and experimental x-ray CT data shows excellent performance with respect to the resolution of the imaging system.

  2. An innovative method for the non-destructive identification of photodegradation products in solid state: 1H-14N NMR-NQR and DFT/QTAIM study of photodegradation of nifedipine (anti-hypertensive) to nitrosonifedipine (potential anti-oxidative).

    PubMed

    Latosińska, J N; Latosińska, M; Seliger, J; Zagar, V

    2012-08-30

    Stability of the antihypertensive drug nifedipine (NIF) has been studied experimentally in solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the Density Functional Theory (DFT). Photodegradation of NIF to its metabolite in vivo nitrosonifedipine, NO-NIF (antioxidative agent) upon long term daylight exposure was detected and the changes in the molecular structure of NIF were analysed. The photoconversion of NIF to NO-NIF in solid was found to be accompanied with the electron density redistribution at nitrogen sites (NH to N and NO(2) to NO) and proved to be successfully detected with identification of photoproducts by (1)H-(14)N NQDR and DFT methods. The increase in the e(2)qQ/h and η describing EFG tendency towards non-spherical symmetry was significantly greater upon the reduction of NO(2) site than upon hydrogen abstraction from NH site. The level of sensitivity of detection of the photodegradation product was about 1% of the original sample. The Quantum Theory of Atoms in Molecules (QTAIM) analysis has been found useful in predicting photoreactive sites in the molecules and finding the explanation of differences in reactivity between parent NIF and its photoproduct NO-NIF. Using NIF as a model, this study demonstrates the suitability of NQDR supported by DFT for non-destructive determination of the photodegradation products in solid state.

  3. Nondestructive Electromagnetic Characterization of Uniaxial Materials

    DTIC Science & Technology

    2014-09-18

    NONDESTRUCTIVE ELECTROMAGNETIC CHARACTERIZATION OF UNIAXIAL MATERIALS DISSERTATION Neil G. Rogers, Captain, USAF AFIT-ENG-DS-14-S-05 DEPARTMENT OF...not subject to copyright protection in the United States. AFIT-ENG-DS-14-S-05 NONDESTRUCTIVE ELECTROMAGNETIC CHARACTERIZATION OF UNIAXIAL MATERIALS...September 2014 DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENG-DS-14-S-05 NONDESTRUCTIVE ELECTROMAGNETIC

  4. Advanced Nondestructive Evaluation (NDE) Sensor Modeling For Multisite Inspection

    DTIC Science & Technology

    2008-10-01

    element method is not well suited for open region problems[12] encountered in wave regimes. In the area of antenna and electromagnetic wave...26 Z. Zeng, B. Shanker, and L. Udpa, "Modeling microwave NDE using the element-free Galerkin method ," Electromagnetic Nondestructive Evaluation (IX...applied conventional eddy current method . This result provided a quantitative evaluation of the MR sensor inspection method and validated the

  5. Non-destructive ultrasonic measurements of case depth. [in steel

    NASA Technical Reports Server (NTRS)

    Flambard, C.; Lambert, A.

    1978-01-01

    Two ultrasonic methods for nondestructive measurements of the depth of a case-hardened layer in steel are described. One method involves analysis of ultrasonic waves diffused back from the bulk of the workpiece. The other method involves finding the speed of propagation of ultrasonic waves launched on the surface of the work. Procedures followed in the two methods for measuring case depth are described.

  6. An economical non-destructive method for estimating eelgrass, Zostera marina (Potamogetonaceae) leaf growth rates: formal development and use in northwestern Baja California.

    PubMed

    Solana-Arellano, Elena; Echavarria-Heras, Héctor; Franco-Vizcaíno, Ernesto

    2008-09-01

    Seagrass beds provide much of the primary production in estuaries; host many fishes and fish larvae, and abate erosion. The present study presents original analytical methods for estimating mean leaf-growth rates of eelgrass (Zostera marina). The method was calibrated by using data collected in a Z. marina meadow at Punta Banda estuary in Baja California, Mexico. The analytical assessments were based on measurements of leaf length and standard regression procedures. We present a detailed explanation of the formal procedures involved in the derivation of these analytical methods. The measured daily leaf-growth rate was 10.9 mm d(-1) leaf(-1). The corresponding value projected by our method was 10.2 mm d(-1) leaf(-). The associated standard errors were of 0.53 and 0.56 mm d(-1) leaf(-1) respectively. The method was validated by projecting leaf-growth rates from an independent data set, which gave consistent results. The use of the method to obtain the mean leaf growth rate of a transplanted plot is also illustrated. Comparison of our leaf-growth data with previously reported assessments show the significant forcing of sea-surface temperature on eelgrass leaf dynamics. The formal constructs provided here are of general scope and can be applied to equivalent eelgrass data sets in a straightforward manner.

  7. Comparative study of nondestructive pavement testing, WES (Waterways Experiment Station) NDT (nondestructive tests) methodologies

    NASA Astrophysics Data System (ADS)

    Hall, J. W.; Alelxander, D. R.

    1985-09-01

    A demonstration of nondestructive airfield pavement evaluation procedures conducted by the US Army Engineer Waterways Experiment Station (WES) using both the WES 16-kip vibrator and a Dynatest falling weight deflectometer (FWD) is described. The nondestructive tests (NDT) were conducted at MacDill Air Force Base on five pavement test areas consisting of asphaltic concrete, portland cement concrete, and composite pavements. Two methods of data analysis were used. The dynamic stiffness modulus (DMS) method used dynamic deflection data from the WES 16-kip vibrator with a correlation analysis developed a number of years ago by WES. This method uses a correlation between the DSM (a load-deflection ratio) and the allowable load on a single wheel as derived from traditional test pit methods. The second analysis scheme used measured deflection basins at the pavement surface and layered elastic theory. Elastic moduli are computed by matching measured deflection basins with computed basins. Limiting stress/strain is then used to compute allowable aircraft loadings. This method was used with data from both the WES 16-kip vibrator and the FWD. Also demonstrated was a method of determining joint load transfer and of making appropriate adjustments to the allowable load to account for lack of load transfer.

  8. Nondestructive characterization of woven fabric ceramic composites

    SciTech Connect

    Hsu, D.K.; Saini, V.; Liaw, P.K.; Yu, N.; Miriyala, N.; McHargue, C.J.; Snead, L.L.; Lowden, R.A.

    1995-10-01

    Woven fabric ceramic composites fabricated by the chemical vapor infiltration method are susceptible to high void content and inhomogeneity. The condition of such materials may be characterized nondestructively with ultrasonic methods. In this work, longitudinal and shear waves were used in the quantitative determination of elastic constants of Nicalon{trademark}/SiC composites as a function of volume percent of porosity. Elastic stiffness constants were obtained for both the in-plane and out-of-plane directions with respect to fiber fabric. The effect of porosity on the modulus of woven fabric composites was also modeled and compared to the measured results. Scan images based on the amplitude and time-of-flight of radio frequency (RF) ultrasonic pulses were used for evaluating the material homogeneity for the purpose of optimizing the manufacturing process and for correlation with the mechanical testing results.

  9. Nondestructive verification of continuous-variable entanglement

    NASA Astrophysics Data System (ADS)

    de Faria, Alencar J.

    2016-07-01

    An optical procedure in the context of continuous variables to verify bipartite entanglement without destroying both systems and their entanglement is proposed. To perform the nondestructive verification of entanglement, the method relies on beam-splitter and quantum nondemolition (QND) interactions of the signal modes with two ancillary probe modes. The probe modes are measured by homodyne detections, and the obtained information is used to feed forward modulation of signal modes, concluding the procedure. Characterizing the method by figures of merit used in QND processes, we can establish the conditions for an effectively quantum scheme. Based on such conditions, it is shown that the classical information acquired from the homodyne detections of probe modes is sufficient to verify the entanglement of the output signal modes. The processing impact due to added noise on the output entanglement is assessed in the case of Gaussian modes.

  10. Non-Destructive Evaluation of Slot-Die-Coated Lithium Secondary Battery Electrodes by In-Line Laser Caliper and IR Thermography Methods-Journal Cover Page

    SciTech Connect

    Mohanty, Debasish; Li, Jianlin; Born, Rachael; Maxey, L Curt; Dinwiddie, Ralph Barton; Daniel, Claus; Wood III, David L

    2014-01-01

    Note: This is a cover page for the 'Analytical Methods' journal, which was requested by the journal editor for consideration. The article has already been published and the PTS publication ID is 44000. The acknowledgements are same as mentioned in the PTS publication ID 44000.

  11. Nondestructive Characterization of Atomic Profiles in Layer-Structured Photovoltaic Materials Using the Method of Angular Dependence of X-Ray Fluorescence (ADXRF)

    SciTech Connect

    Kim, S.; Soo, Y. L.; Kioseoglou, G.; Huang, S.; Kao, Y. H.; Ramanathan, K.; Deb, S.

    2000-01-01

    Angular dependence of x-ray fluorescence technique has been applied to the study of atomic density profile in composite systems. This method is shown to be useful for probing the microstructures and intermixing of constituent elements in layer-structured photovoltaic materials.

  12. Liquid crystals in nondestructive testing.

    PubMed

    Fergason, J L

    1968-09-01

    The cholesteric phase is associated with scattering effects that give rise to iridescent colors, the dominant wavelength being influenced by very small changes in temperature, which can be as large as 1000 A shift per degree. This unusually high temperature sensitivity has given rise to the use of the cholesteric phase as a sensitive thermometer and thermal mapping media. This paper reviews the optical effects in the cholesteric phase with some new additions that are particularly relevant to thermal mapping. An attempt has been made to give a complete picture of the cholesteric liquid crystal as applied to nondestructive testing, rather than to review the work actually being done in this field.

  13. Non-destructive elemental analysis of large meteorite samples by prompt gamma-ray neutron activation analysis with the internal mono-standard method.

    PubMed

    Latif, Sk A; Oura, Y; Ebihara, M; Nakahara, H

    2013-11-01

    Prompt gamma-ray neutron activation analysis (PGNAA) using the internal mono-standard method was tested for its applicability to analyzing large solid samples including irregularly shaped meteorite samples. For evaluating the accuracy and precision of the method, large quantities of the Geological Survey of Japan standardized rock powders (JB-1a, JG-1a, and JP-1) were analyzed and 12 elements (B, Na, Mg, Al, Cl, K, Ca, Ti, Mn, Fe, Sm, and Gd) were determined by using Si as an internal standard element. Analytical results were mostly in agreement with literature values within 10 %. The precision of the method was also shown to be within 10 % (1σ) for most of these elements. The analytical procedure was then applied to four stony meteorites (Allende, Kimble County, Leedey, Lake Labyrinth) and four iron meteorites (Canyon Diablo, Toluca (Mexico), Toluca (Xiquipilco), Squaw Creek) consisting of large chunks or single slabs. For stony meteorites, major elements (Mg, Al, Si, S, Ca, and Ni), minor elements (Na and Mn) and trace element (B, Cl, K, Ti, Co, and Sm) were determined with adequate accuracy. For iron meteorites, results for the Co and Ni mass fractions determined are all consistent with corresponding literature values. After the analysis, it was confirmed that the residual radioactivity remaining in the sample after PGNAA was very low and decreased down to the background level. This study shows that PGNAA with the internal mono-standard method is highly practical for determining the elemental composition of large, irregularly shaped solid samples including meteorites.

  14. Non-Destructive Measurement Methods (Neutron-, X-ray Radiography, Vibration Diagnostics and Ultrasound) in the Inspection of Helicopter Rotor Blades

    DTIC Science & Technology

    2005-04-01

    the radiography gauging. In addition to the Statistical Energy Analysis (SEA) measurement a small exciter table (BK4810) and impedance head (BK 8000... Statistical Energy Analysis ; 7th Conf. on Vehicle System Dynamics, Identification and Anomalies (VSDIA2000), 6-8 Nov. 2000 Budapest, Proc. pp. 491-493... Energy Analysis (SEA) and Ultrasound Test. (UT) were concurrently applied. These methods collect accessory information on the objects under inspection

  15. Two new species of erect Bryozoa (Gymnolaemata: Cheilostomata) and the application of non-destructive imaging methods for quantitative taxonomy.

    PubMed

    Matsuyama, Kei; Titschack, Jürgen; Baum, Daniel; Freiwald, André

    2015-09-21

    Two new species of cheilostome Bryozoa are described from continental-slope habitats off Mauritania, including canyon and cold-water coral (mound) habitats. Internal structures of both species were visualised and quantified using microcomputed tomographic (micro-CT) methods. Cellaria bafouri n. sp. is characterised by the arrangement of zooids in alternating longitudinal rows, a smooth cryptocyst, and the presence of an ooecial plate with denticles. Smittina imragueni n. sp. exhibits many similarities with Smittina cervicornis (Pallas, 1766), but differs especially in the shape and orientation of the suboral avicularium. Observations on Smittina imragueni and material labelled as Smittina cervicornis suggest that the latter represents a species group, members of which have not yet been discriminated, possibly because of high intracolony variation and marked astogenetic changes in surface morphology. Both new species are known only from the habitats where they were collected, probably reflecting the paucity of bryozoan sampling from this geographic area and depth range. Both species are able to tolerate low oxygen concentration, which is assumed to be compensated by the high nutrient supply off Mauritania. The application of micro-CT for the semiautomatic quantification of zooidal skeletal characters was successfully tested. We were able to automatically distinguish individual zooidal cavities and acquire corresponding morphological datasets. Comparing the obtained results with conventional SEM measurements allowed ascertaining the reliability of this new method. The employment of micro-CT allows the observation and quantification of previously unseen characters that can be used in describing and differentiating species that were previously indistinguishable. Furthermore, this method might help elucidate processes of colony growth and the function of individual zooids during this process.

  16. Non-destructive observation of intact bacteria and viruses in water by the highly sensitive frequency transmission electric-field method based on SEM

    SciTech Connect

    Ogura, Toshihiko

    2014-08-08

    Highlights: • We developed a high-sensitive frequency transmission electric-field (FTE) system. • The output signal was highly enhanced by applying voltage to a metal layer on SiN. • The spatial resolution of new FTE method is 41 nm. • New FTE system enables observation of the intact bacteria and virus in water. - Abstract: The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently, we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41 nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.

  17. Non-destructive observation of intact bacteria and viruses in water by the highly sensitive frequency transmission electric-field method based on SEM.

    PubMed

    Ogura, Toshihiko

    2014-08-08

    The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently, we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.

  18. Educational ultrasound nondestructive testing laboratory.

    PubMed

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).

  19. Nondestructive testing of waste drum integrity

    SciTech Connect

    Jackson, C.N. Jr.

    1983-01-01

    Nondestructive techniques have been investigated to evaluate the structural integrity of low-level transuranic waste drums that have been buried in the ground for up to 15 years. Measurements of artificially corroded samples evaluated suitability, accuracy and rapidity with which commercially available instruments and transducers could perform the examination. Several available instruments have thickness measuring capability and probably could be tailored with a relatively minor amount of effort for precise measurement of the relatively thin wall thickness of a drum or bin. The ultrasonic method was shown capable of providing precise measurement of wall thickness for most critical areas of a drum. Some data were lost due to dents, rust, seams and labels. However, this work characterized the capability of the technique, and it can now be assessed against the need as repository requirements are more completely identified.

  20. Nondestructive detection and measurement of hydrogen embrittlement

    DOEpatents

    Alex, Franklin; Byrne, Joseph Gerald

    1977-01-01

    A nondestructive system and method for the determination of the presence and extent of hydrogen embrittlement in metals, alloys, and other crystalline structures subject thereto. Positron annihilation characteristics of the positron-electron annihilation within the tested material provide unique energy distribution curves for each type of material tested at each respective stage of hydrogen embrittlement. Gamma radiation resulting from such annihilation events is detected and statistically summarized by appropriate instrumentation to reveal the variations of electron activity within the tested material caused by hydrogen embrittlement therein. Such data from controlled tests provides a direct indication of the relative stages of hydrogen embrittlement in the form of unique energy distribution curves which may be utilized as calibration curves for future comparison with field tests to give on-site indication of progressive stages of hydrogen embrittlement.

  1. Problems associated with nondestructive evaluation of bridges

    NASA Astrophysics Data System (ADS)

    Prine, David W.

    1995-05-01

    The US has 542,000 bridges that consume billions of dollars per year in construction, rehabilitation, and maintenance funds and which are the lifelines of US commerce. The 1992 ISTEA (Intermodal Surface Transportation Efficiency Act) mandates the implementation of a quantitative computerized bridge management system by 1996. A prime need of such a system are quantitative bridge inspection methods to feed accurate reliable condition information to the huge database of bridges. Nondestructive evaluation (NDE) will fill a critical need in the implementation of effective bridge management. However, many serious barriers exist to the widespread routine application of this technology to bridges. This paper provides an overview of the typical problems associated with applying NDE to bridges.

  2. Cylindrical polarization symmetry for nondestructive nanocharacterization

    NASA Astrophysics Data System (ADS)

    Zhan, Qiwen

    2003-07-01

    Recently there is an increasing interest in laser beams with radial symmetry in polarization. Due to the cylindrical symmetry in polarization, these beams have unique focusing properties, which may find wide applications in a variety of nanometer scale applications, including high-resolution metrology, high-density data storage, and multi-functional optical microtool. In this paper, simple method of generating cylindrically polarized beams is presented and their potential applications to nondestructive nano-characterization are discussed. A high resolution surface plasmon microscope and a surface plasmon enhanced apertureless near-field scanning optical microscope are proposed. An automatic scanning microellipsometer that uses the cylindrical symmetry to enhance the signal-to-noise-ratio in high-spatial-resolution ellipsometric measurement will also be presented.

  3. Nondestructive evaluation of nuclear-grade graphite

    NASA Astrophysics Data System (ADS)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  4. Nondestructive evaluation of nuclear-grade graphite

    SciTech Connect

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-17

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  5. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Construction § 193.2321 Nondestructive tests. (a) The butt welds in metal...

  6. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of storage tanks with internal design pressure above 15 psig must be nondestructively examined in... cryogenic temperatures must be nondestructively examined in accordance with the ASME Boiler and Pressure Vessel Code (Section VIII Division 1) (incorporated by reference, see § 193.2013). (b) For storage...

  7. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of storage tanks with internal design pressure above 15 psig must be nondestructively examined in... cryogenic temperatures must be nondestructively examined in accordance with the ASME Boiler and Pressure Vessel Code (Section VIII Division 1) (incorporated by reference, see § 193.2013). (b) For storage...

  8. NONDESTRUCTIVE EVALUATION OF CERAMIC CANDLE FILTERS

    SciTech Connect

    Roger H.L. Chen, Ph.D.; Alejandro Kiriakidis

    1999-09-01

    Nondestructive evaluation (NDE) techniques have been used to reduce the potential mechanical failures and to improve the reliability of a structure. Failure of a structure is usually initiated at some type of flaw in the material. NDE techniques have been developed to determine the presence of flaws larger than an acceptable size and to estimate the remaining stiffness of a damaged structure (Chen, et. al, 1995). Ceramic candle filters have been tested for use in coal-fueled gas turbine systems. They protect gas turbine components from damage due to erosion. A total of one hundred and one candle filters were nondestructively evaluated in this study. Ninety-eight ceramic candle filters and three ceramic composite filters have been nondestructively inspected using dynamic characterization technique. These ceramic filters include twelve unused Coors alumina/mullite, twenty-four unused and fifteen used Schumacher-Dia-Schumalith TF-20, twenty-five unused and nine used Refractron 326, eight unused and three used Refractron 442T, one new Schumacher-T 10-20, and one used Schumacher-Dia-Schumalith F-40. All filters were subjected to a small excitation and the dynamic response was picked up by a piezoelectric accelerometer. The evaluation of experimental results was processed using digital signal analysis technique including various forms of data transformation. The modal parameters for damage assessment for the unexposed (unused) vs. exposed (used) specimen were based on two vibration parameters: natural frequencies and mode shapes. Finite Element models were built for each specimen type to understand its dynamic response. Linear elastic modal analysis was performed using eight nodes, three-dimensional isotropic solid elements. Conclusions based on our study indicate that dynamic characterization is a feasible NDE technique in studying structural properties of ceramic candle filters. It has been shown that the degradation of the filters due to long working hours (or

  9. Reconstruction of lake history using nondestructive methods. A first record of organic endmember in sediments using solid phase fluorescence (Lake Noir Inférieur, Aiguilles Rouges Massif, France)

    NASA Astrophysics Data System (ADS)

    Quiers, Marine; Develle, Anne-Lise; Perette, Yves; Sabatier, Pierre; Belle, Simon; Pignol, Cécile; Millet, Laurent; Arnaud, Fabien

    2015-04-01

    Mountain areas are known to be highly sensitive to environmental perturbations driven by climate changes and human activities. Thus, high altitude lake sediments represent interesting archives to reconstruct past environmental variations. Because of their difficult access and their low sedimentation rate, high resolution nondestructive methods are required to limit the loss of information induced by the use of destructive analyses. Moreover, when they are located at the top of drainage basins, their reduced catchment area leads to the dominance of organic matter in the sediment which would make interesting to complete the use of traditional high resolution sedimentary geochemistry tools, such as X-ray fluorescence (XRF) logging, by organic matter-borne high resolution signals. Here we attempt to use UV-induced solid phase fluorescence (SPF) as a promising way to analyze the organic component of environmental archives as we already showed on speleothem records. A 70cm-long core was retrieved in 2012 from the high altitude Lake Noir Inférieur (2495 a.s.l.), located in the Aiguilles Rouges Massif (Northern French Alps). The catchment area, made by gneiss and amphibolites, is almost devoid of vegetation. Thus, the high OM content (up to 23.6%) of the homogenous dark brown sediments is assumed to be essentially related to autochtonous production. The preliminary age model suggests that the core spans the last 8000 yrs. In this work, we investigated the upper 15 cm of the core which represents the last 1300 yrs. We combined the two spectroscopic methods (XRF and SPF) at a 100µm step, in order to provide a high resolution overview of both mineral and organic endmembers. The XRF core scanner analytical settings were adjusted at 10 kV and 30kV in order to detect elements from Al to Pb. SPF measurements were performed with a spectrofluorimeter and emission spectra were recorded at 256 nm and 325 nm excitation wavelengths. Different organic matter types (chlorophyll

  10. Seventh International Symposium on Nondestructive Characterization of Materials

    DTIC Science & Technology

    1995-01-01

    Plate by Using Stress Corrosion Cracking with Magnetic Coercive Force-M. Yoshino & H. Micromagnetic Testing Methods-M. Lang Tanabe, NKK Corp.; T...94-102 Thursday, June 22 - Session (B) PM EARLY RECOGNITION OF H-INDUCED STRESS CORROSION CRACKING WITH MICROMAGNETIC TESTING...METHODS M. Lang & I. Altpeter, Fraunhofer-Institute for Nondestructive Testing, Germany Hydrogen-induced stress corrosion cracking in ferritic steels

  11. Nondestructive verification and assay systems for spent fuels. Technical appendixes

    SciTech Connect

    Cobb, D.D.; Phillips, J.R.; Baker, M.P.

    1982-04-01

    Six technical appendixes are presented that provide important supporting technical information for the study of the application of nondestructive measurements to spent-fuel storage. Each appendix addresses a particular technical subject in a reasonably self-contained fashion. Appendix A is a comparison of spent-fuel data predicted by reactor operators with measured data from reprocessors. This comparison indicates a rather high level of uncertainty in previous burnup calculations. Appendix B describes a series of nondestructive measurements at the GE-Morris Operation Spent-Fuel Storage Facility. This series of experiments successfully demonstrated a technique for reproducible positioning of fuel assemblies for nondestructive measurement. The experimental results indicate the importance of measuring the axial and angular burnup profiles of irradiated fuel assemblies for quantitative determination of spent-fuel parameters. Appendix C is a reasonably comprehensive bibliography of reports and symposia papers on spent-fuel nondestructive measurements to April 1981. Appendix D is a compendium of spent-fuel calculations that includes isotope production and depletion calculations using the EPRI-CINDER code, calculations of neutron and gamma-ray source terms, and correlations of these sources with burnup and plutonium content. Appendix E describes the pulsed-neutron technique and its potential application to spent-fuel measurements. Although not yet developed, the technique holds the promise of providing separate measurements of the uranium and plutonium fissile isotopes. Appendix F describes the experimental program and facilities at Los Alamos for the development of spent-fuel nondestructive measurement systems. Measurements are reported showing that the active neutron method is sensitive to the replacement of a single fuel rod with a dummy rod in an unirradiated uranium fuel assembly.

  12. Nondestructive evaluation of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    A review is presented on research and development of techniques for nondestructive evaluation and characterization of advanced ceramics for heat engine applications. Highlighted in this review are Lewis Research Center efforts in microfocus radiography, scanning laser acoustic microscopy (SLAM), scanning acoustic microscopy (SAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM). The techniques were evaluated by applying them to research samples of green and sintered silicon nitride and silicon carbide in the form of modulus-of-rupture bars containing seeded voids. Probabilities of detection of voids were determined for diameters as small as 20 microns for microfucus radiography, SLAM, and SAM. Strengths and limitations of the techniques for ceramic applications are identified. Application of ultrasonics for characterizing ceramic microstructures is also discussed.

  13. Advances in nondestructive evaluation technology

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1982-01-01

    Research at NASA Langley's Materials Characterization Instrumentation Section has followed the philosophy of improving the science base of nondestructive evaluation and advancing the state of the art of quantitative interpretability of physical measurements of materials. Details of several R&D programs choosen to highlight the last several years are given. Applications of these technologies are presented in the area of stress measurement, characterization of metal heat treatment, and evaluation of material internal structure. A second focus of the program is on quantitative transducers/measurements that have resulted in better data in irregular inhomogeneous materials such as composites. Examples are presented of new capabilities resulting from these advances that include fatigue and impact damage evaluation.

  14. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  15. Non-destructive examination system of vitreous body

    NASA Astrophysics Data System (ADS)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  16. Non-destructive microstructural analysis with depth resolution

    NASA Astrophysics Data System (ADS)

    Zolotoyabko, E.; Quintana, J. P.

    2003-01-01

    A depth-sensitive X-ray diffraction technique has been developed with the aim of studying microstructural modifications in inhomogeneous polycrystalline materials. In that method, diffraction profiles are measured at different X-ray energies varied by small steps. X-rays at higher energies probe deeper layers of material. Depth-resolved structural information is retrieved by comparing energy-dependent diffraction profiles. The method provides non-destructive depth profiling of the preferred orientation, grain size, microstrain fluctuations and residual strains. This technique is applied to the characterization of seashells. Similarly, energy-variable X-ray diffraction can be used for the non-destructive characterization of different laminated structures and composite materials.

  17. Aging management of major LWR components with nondestructive evaluation

    SciTech Connect

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-12-31

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments.

  18. Optical and mechanical nondestructive tests for measuring tomato fruit firmness

    NASA Astrophysics Data System (ADS)

    Manivel-Chávez, Ricardo A.; Garnica-Romo, M. G.; Arroyo-Correa, Gabriel; Aranda-Sánchez, Jorge I.

    2011-08-01

    Ripening is one of the most important processes to occur in fruits which involve changes in color, flavor, and texture. An important goal in quality control of fruits is to substitute traditional sensory testing methods with reliable nondestructive tests (NDT). In this work we study the firmness of tomato fruits by using optical and mechanical NDT. Optical and mechanical parameters, measured along the tomato shelf life, are shown.

  19. Application of laser, holographic, nondestructive testing by impact loading.

    PubMed

    Wang, J; Grant, I

    1995-07-01

    A description of research on holographic, nondestructive testing (HNDT) with impact loading is presented to demonstrate the technique as a practical HNDT method. The advantages of impact, or impulse, loading coupled with pulsed-laser illumination for HNDT away from the laboratory are discussed. The effect of the loading position, exposure timing, and prestressing on test results is discussed in detail. Experimental verification of the appropriateness of pulsed-laser HNDT in the testing of honeycomb materials by using impact loading is discussed.

  20. Applications of Electromagnetic Waves to Problems in Nondestructive Testing and Target Identification

    DTIC Science & Technology

    2014-09-09

    computerized tomography, synthetic aperture radar , geophysical prospecting and nondestructive test- ing. Since the solution of any inverse problem is...domain in order to handle limited aperture data. The main accomplishments during the period of this report were: 1. The derivation of new methods...in nondestructive testing using the theory of transmission eigenvalues. 2. The introduction and investigation of a new class of inverse scattering

  1. Nondestructive Examination Guidance for Dry Storage Casks

    SciTech Connect

    Meyer, Ryan M.; Suffield, Sarah R.; Hirt, Evelyn H.; Suter, Jonathan D.; Lareau, John P.; Zhuge, Jing Wei; Qiao, Hong; Moran, Traci L.; Ramuhalli, Pradeep

    2016-09-30

    In this report, an assessment of NDE methods is performed for components of NUHOMS 80 and 102 dry storage system components in an effort to assist NRC staff with review of license renewal applications. The report considers concrete components associated with the horizontal storage modules (HSMs) as well as metal components in the HSMs. In addition, the report considers the dry shielded canister (DSC). Scope is limited to NDE methods that are considered most likely to be proposed by licensees. The document, ACI 349.3R, Evaluation of Existing Nuclear Safety-Related Concrete Structures, is used as the basis for the majority of the NDE methods summarized for inspecting HSM concrete components. Two other documents, ACI 228.2R, Nondestructive Test Methods for Evaluation of Concrete in Structures, and ORNL/TM-2007/191, Inspection of Nuclear Power Plant Structure-Overview of Methods and Related Application, supplement the list with additional technologies that are considered applicable. For the canister, the ASME B&PV Code is used as the basis for NDE methods considered, along with currently funded efforts through industry (Electric Power Research Institute [EPRI]) and the U.S. Department of Energy (DOE) to develop inspection technologies for canisters. The report provides a description of HSM and DSC components with a focus on those aspects of design considered relevant to inspection. This is followed by a brief description of other concrete structural components such as bridge decks, dams, and reactor containment structures in an effort to facilitate comparison between these structures and HSM concrete components and infer which NDE methods may work best for certain HSM concrete components based on experience with these other structures. Brief overviews of the NDE methods are provided with a focus on issues and influencing factors that may impact implementation or performance. An analysis is performed to determine which NDE methods are most applicable to specific

  2. Nondestructive electromagnetic characterization of uniaxial materials

    NASA Astrophysics Data System (ADS)

    Rogers, Neil G.

    In this dissertation, a method for the simultaneous non-destructive extraction of the permittivity and permeability of a dielectric magnetic uniaxial anisotropic media is developed and several key contributions are demonstrated. The method utilizes a single fixture in which the MUT is clamped between two rectangular waveguides with 6" x 6" PEC flanges. The transmission and reflection coefficients are measured, then compared with theoretically calculated coefficients to find a least squares solution to the minimization problem. One of the key contributions of this work is the development of the total parallel plate spectral-domain Green's function by two independent methods. The Green's function is thereby shown to be correct in form and in physical meaning. A second significant contribution of this work to the scientific community is the evaluation of one of the inverse Fourier transform integrals in the complex plane. This significantly enhances the efficiency of the extraction code. A third significant contribution is the measurement of a number of uniaxial anisotropic materials, many of which were envisioned, designed and constructed in-house using 3D printing technology. The results are shown to be good in the transverse dimension, but mildly unstable in the longitudinal dimension. A secondary contribution of this work that warrants mention is the inclusion of a flexible, complete, working code for the extraction process. Although such codes have been written before, they have not been published in the literature for broader use.

  3. Nondestructive characterization of fatigue damage with thermography

    NASA Astrophysics Data System (ADS)

    Roesner, Henrik; Sathish, Shamachary; Meyendorf, Norbert

    2001-08-01

    A thermal imaging NDE method has been developed for nondestructive characterization of early stages of fatigue damage. The method is based on evaluation of the thermal effects induced in a material by a short-term mechanical loading. The mechanical loading causes in addition to thermoelastic temperature change, an increase due to heat dissipation that depends upon the microstructure of the material in a characteristic manner. The origin of this heat dissipation is the mechanical damping process. Utilizing the initial temperature rise due to a short-term mechanical loading, the dissipated energy per cycle was evaluated as a thermal parameter. This new thermal NDE parameter allows a quantitative characterization of the mechanical hysteresis, without the need for calibration to eliminate influences of thermal boundary conditions. The measurement of the thermal NDE parameters has been performed on Ti-6Al-4V dog-bone specimens, fatigued in low cycle fatigue (LCF) as well as in high cycle fatigue (HCF) experiments. Characteristic dependence of the NDE parameters on the already accumulated fatigue damage has been observed. The advantage of the thermal method is the applicability to components under service conditions because of simplicity, rapid measurements (a few seconds) and the ability of locally resolved evaluations.

  4. Digital holographic nondestructive testing of laminate composite

    NASA Astrophysics Data System (ADS)

    Karray, Mayssa; Christophe, Poilane; Gargouri, Mohamed; Picart, Pascal

    2016-09-01

    Optical digital holographic techniques can be used for nondestructive testing of materials. Digital holographic nondestructive testing essentially measures deformations on the surface of the object. However, there is sufficient sensitivity to detect subsurface and internal defects in metallic and composite specimens. We investigate and discuss the vibration analysis of laminated composite glass-epoxy using time averaging in digital Fresnel holography to visualize the modes of vibration and to test the integrity of the structures of studied materials.

  5. Nondestructive characterization of as-fabricated composite ceramic panels

    SciTech Connect

    Green, W. H.; Brennan, R. E.

    2011-06-23

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  6. Speech timing and linguistic rhythm: on the acoustic bases of rhythm typologies.

    PubMed

    Rathcke, Tamara V; Smith, Rachel H

    2015-05-01

    Research into linguistic rhythm has been dominated by the idea that languages can be classified according to rhythmic templates, amenable to assessment by acoustic measures of vowel and consonant durations. This study tested predictions of two proposals explaining the bases of rhythmic typologies: the Rhythm Class Hypothesis which assumes that the templates arise from an extensive vs a limited use of durational contrasts, and the Control and Compensation Hypothesis which proposes that the templates are rooted in more vs less flexible speech production strategies. Temporal properties of segments, syllables and rhythmic feet were examined in two accents of British English, a "stress-timed" variety from Leeds, and a "syllable-timed" variety spoken by Panjabi-English bilinguals from Bradford. Rhythm metrics were calculated. A perception study confirmed that the speakers of the two varieties differed in their perceived rhythm. The results revealed that both typologies were informative in that to a certain degree, they predicted temporal patterns of the two varieties. None of the metrics tested was capable of adequately reflecting the temporal complexity found in the durational data. These findings contribute to the critical evaluation of the explanatory adequacy of rhythm metrics. Acoustic bases and limitations of the traditional rhythmic typologies are discussed.

  7. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  8. Nondestructive Evaluation of Reactive Powder Concrete

    NASA Astrophysics Data System (ADS)

    Washer, Glenn; Fuchs, Paul; Graybeal, Benjamin; Rezaizadeh, Ali

    2004-02-01

    Reactive powder concrete (RPC) has been introduced as a structural material for civil engineering applications. The material consists of a finely graded combination of cement, sand, ground quartz and silica fume which combined with water form a cement paste. Small steel fibers measuring approximately 0.2 mm in diameter and 12 mm in length are distributed throughout the cement matrix and the combined material has very high compressive strength and toughness. The material is proposed for use in the primary load bearing members in bridges, and as such nondestructive evaluation technologies are needed to evaluate material quality and monitor in-service condition. This paper reports on research to determine the effectiveness of ultrasonic testing for determining the elastic properties of RPC. Comparison between static modulus of elasticity and ultrasonic modulus measurements is presented. A system for determining elastic moduli as a quality control tool is discussed. The effect of curing conditions on ultrasonic velocities and resulting calculated moduli values is presented and compared with traditional measurement methods.

  9. Nondestructive inspection of a composite missile launcher

    NASA Astrophysics Data System (ADS)

    Ley, O.; Chung, S.; Butera, M.; Valatka, T.; Triplett, M. H.; Godinez, V.

    2012-05-01

    Lighter weight alternatives are being sought to replace metallic components currently used in high performance aviation and missile systems. Benefits of lightweight, high strength carbon fiber reinforced composites in missile launchers and rocket motor cases include improved fuel economy, increased flight times, enhanced lethality and/or increased velocity. In this work, various nondestructive inspection techniques are investigated for the damage assessment of a composite missile launcher system for use in U.S. Army attack helicopters. The launcher system, which includes rails and a hardback, can be subject to impact damage from accidental tool drops, routine operation, and/or ballistic threats. The composite hardback and the launch rails both have complex geometries that can challenge the inspection process. Scanning techniques such as line scanning thermography, ultrasonic, and acousto-ultrasonics will be used and compared to determine damage detection accuracy, reliability, and efficiency. Results will also be compared with visual observations to determine if there is a correlation. The goal is to establish an inspection method that quickly and accurately assesses damage extent in order to minimize service time and return the missile system back into the field [1].

  10. Dynamic, Nondestructive Imaging of a Bioengineered Vascular Graft Endothelium

    PubMed Central

    Lu, Peng; Xu, Yong; Rylander, Christopher G.; Wang, Ge; Sapoznik, Etai; Criswell, Tracy; Lee, Sang Jin; Soker, Shay; Rylander, Marissa Nichole

    2013-01-01

    Bioengineering of vascular grafts holds great potential to address the shortcomings associated with autologous and conventional synthetic vascular grafts used for small diameter grafting procedures. Lumen endothelialization of bioengineered vascular grafts is essential to provide an antithrombogenic graft surface to ensure long-term patency after implantation. Conventional methods used to assess endothelialization in vitro typically involve periodic harvesting of the graft for histological sectioning and staining of the lumen. Endpoint testing methods such as these are effective but do not provide real-time information of endothelial cells in their intact microenvironment, rather only a single time point measurement of endothelium development. Therefore, nondestructive methods are needed to provide dynamic information of graft endothelialization and endothelium maturation in vitro. To address this need, we have developed a nondestructive fiber optic based (FOB) imaging method that is capable of dynamic assessment of graft endothelialization without disturbing the graft housed in a bioreactor. In this study we demonstrate the capability of the FOB imaging method to quantify electrospun vascular graft endothelialization, EC detachment, and apoptosis in a nondestructive manner. The electrospun scaffold fiber diameter of the graft lumen was systematically varied and the FOB imaging system was used to noninvasively quantify the affect of topography on graft endothelialization over a 7-day period. Additionally, results demonstrated that the FOB imaging method had a greater imaging penetration depth than that of two-photon microscopy. This imaging method is a powerful tool to optimize vascular grafts and bioreactor conditions in vitro, and can be further adapted to monitor endothelium maturation and response to fluid flow bioreactor preconditioning. PMID:23585885

  11. Efficient Nondestructive Evaluation of Prototype Carbon Fiber Reinforced Structures

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Walker, James L.; Workman, Gary; Thom, Robert (Technical Monitor)

    2002-01-01

    Thermography inspection is an optic based technology that can reduce the time and cost required to inspect propellant tanks or aero structures fabricated from composite materials. Usually areas identified as suspect in the thermography inspection are examined with ultrasonic methods to better define depth, orientation and the nature of the anomaly. This combination of nondestructive evaluation techniques results in a rapid and comprehensive inspection of composite structures. Examples of application of this inspection philosophy to prototype will be presented. Methods organizing the inspection and evaluating the results will be considered.

  12. Non-Destructive Testing A Developing Tool in Science and Engineering

    SciTech Connect

    Lin, Lianshan

    2013-01-01

    Non-destructive testing (NDT), sometimes also known as non-destructive inspection (NDI) or non-destructive examination (NDE), has been applied to solve a wide range of science and industry problems including construction, aerospace, nuclear engineering, manufacturing, space exploration, art objects, forensic studies, biological and medical fields, etc. Without any permanent changing or alteration of testing objects, NDT methods provide great advantages such as increased testing reliability, efficiency, and safety, as well as reduced time and cost. Since the second half of the 20th century, NDT technology has seen significant growth. Depending on the physical properties being measured, NDT techniques can be classified into several branches. This article will provide a brief overview of commonly used NDT methods and their up-to-date progresses including optical examination, radiography, acoustic emission, ultrasonic testing and eddy current testing. For extended reviews on many presently used NDT methods, please refer to articles by Mullins [1, 2].

  13. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7... testing. (a) Before nondestructive testing may be conducted to meet § 151.04-5 (d) and (l), the owner... that— (1) The proposal is followed; and (2) Nondestructive testing is performed by personnel...

  14. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7... testing. (a) Before nondestructive testing may be conducted to meet § 151.04-5 (d) and (l), the owner... that— (1) The proposal is followed; and (2) Nondestructive testing is performed by personnel...

  15. Laser active thermography for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  16. Nondestructive Tests for Weed Seedbank Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed conditions and burial fates are usually unknown at the onset of experiments because viability and germinability are determined through destructive assays. We hypothesized that conductivity of seed steep can be used to nondestructively differentiate germinable, dormant, and dead seeds within see...

  17. 29 CFR 1919.78 - Nondestructive examinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Nondestructive examinations. 1919.78 Section 1919.78 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices §...

  18. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS...

  19. Experimental prototype instruments for nondestructive testing

    SciTech Connect

    Smolyakova, L.E.

    1987-10-01

    Results are given of state acceptance tests on experimental prototype nondestructive testing instruments along with their technical specifications and advantages over the better Soviet and foreign counterparts. The instruments include the UF-10P ultrasonic hydrostatic testing instrument, the PRIZ-12 piezoelectric transducer, and the RTVK-2K and LEB-1K radioisotope thickness gages.

  20. Guided wave nuances for ultrasonic nondestructive evaluation.

    PubMed

    Rose, J L

    2000-01-01

    Recent developments in guided wave generation, reception, and mode control show that increased penetration power and sensitivity are possible. A tone burst function generator and appropriate signal processing are generally used. Variable angle beam and comb-type transducers are the key to this effort. Problems in tubing, piping, hidden corrosion detection in aging aircraft, adhesive and diffusion bonding, and ice detection are discussed. Additionally, sample configurations, inspection objectives, and logic are being developed for such sample problems as defect detection and analysis in lap splice joints, tear straps, cracks in a second layer, hidden corrosion in multiple layers, cracks from rivet holes, transverse cracking in a beam, and cracks in landing gear assembly. Theoretical and experimental aspects of guided wave analysis include phase velocity, group velocity, and attenuation dispersion curves; boundary element model analysis for reflection and transmission factor analysis; use of wave structure for defect detection sensitivity; source influence on the phase velocity spectrum, and the use of angle beam and comb transducer technology. Probe design and modeling considerations are being explored. Utilization of in-plane and out-of-plane displacement patterns on the surface and longitudinal power distribution across the structural cross-section are considered for improved sensitivity, penetration power, and resolution in nondestructive evaluation. Methods of controlling the phase velocity spectrum for mode and frequency selection are available. Such features as group velocity change, mode cut-off measurements, mode conversion, amplitude ratios of transmission, and reflection factors of specific mode and frequency as input will be introduced for their ability to be used in flaw and material characterization analysis.

  1. Non-destructive decontamination of building materials

    NASA Astrophysics Data System (ADS)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  2. Nondestructive Technique Survey for Assessing Integrity of Composite Firing Vessel

    SciTech Connect

    Tran, A.

    2000-08-01

    The repeated use and limited lifetime of a composite tiring vessel compel a need to survey techniques for monitoring the structural integrity of the vessel in order to determine when it should be retired. Various nondestructive techniques were researched and evaluated based on their applicability to the vessel. The methods were visual inspection, liquid penetrant testing, magnetic particle testing, surface mounted strain gauges, thermal inspection, acoustic emission, ultrasonic testing, radiography, eddy current testing, and embedded fiber optic sensors. It was determined that embedded fiber optic sensor is the most promising technique due to their ability to be embedded within layers of composites and their immunity to electromagnetic interference.

  3. Infrared thermal wave non-destructive detection for the internal structure of metal Buddha head

    NASA Astrophysics Data System (ADS)

    Zhang, He-Nan; Zhang, Zhen-Wei; Lei, Yong; Qu, Liang; Gao, Fei; Feng, Li-Chun

    2016-01-01

    Objective This paper depicts a testing technology of nondestructive infrared imaging for acquiring internal structure information of metal Buddha head. Methods applying active infrared thermal imaging nondestructive testing technology Results Data which was collected by IR camera was processed, the typical time thermograph and the curve of logarithmic temperature-time can be. get information of relative thickness in metal Buddha face. Conclusion Infrared thermal imaging technology can be detect the inside information of metal Buddha head . It is feasible to conserve heritage in infrared imaging method.

  4. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil

  5. Long-term selection using a single trait criterion, non-destructive deformation, in White Leghorns: Effect over time on genetic parameters for traits related to egg production.

    PubMed

    Gervais, Olivier; Nirasawa, Keijiro; Vincenot, Christian E; Nagamine, Yoshitaka; Moriya, Kazuyuki

    2017-02-01

    Although non-destructive deformation is relevant for assessing eggshell strength, few long-term selection experiments are documented which use non-destructive deformation as a selection criterion. This study used restricted maximum likelihood-based methods with a four-trait animal model to analyze the effect of non-destructive deformation on egg production, egg weight and sexual maturity in a two-way selection experiment involving 17 generations of White Leghorns. In the strong shell line, corresponding to the line selected for low non-destructive deformation values, the heritability estimates were 0.496 for non-destructive deformation, 0.253 for egg production, 0.660 for egg weight and 0.446 for sexual maturity. In the weak shell line, corresponding to the line selected for high non-destructive deformation values, the heritabilities were 0.372, 0.162, 0.703 and 0.404, respectively. An asymmetric response to selection was observed for non-destructive deformation, egg production and sexual maturity, whereas egg weight decreased for both lines. Using non-destructive deformation to select for stronger eggshell had a small negative effect on egg production and sexual maturity, suggesting the need for breeding programs to balance selection between eggshell traits and egg production traits. However, the analysis of the genetic correlation between non-destructive deformation and egg weight revealed that large eggs are not associated with poor eggshell quality.

  6. Non-destructive testing of composite materials using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Yakovlev, Egor V.; Zaytsev, Kirill I.; Chernomyrdin, Nikita V.; Gavdush, Arsenii A.; Zotov, Arsen K.; Nikonovich, Maxim Y.; Yurchenko, Stanislav O.

    2016-04-01

    Development of novel methods for non-destructive evaluation of composite materials (CMs) at manufacturing and operational stages remains challenging problem of applied physics, optics and material science. In this paper, we have considered the ability to use the terahertz (THz) time-domain spectroscopy (TDS) for non-destructive evaluation of CMs. By combining the TDS technique with appropriate methods of solving the inverse ill-posed problems, we have shown that TDS could be applied for CM testing. At first, we have demonstrated that TDS could be used to control the polymerization process and, as a consequence, the CM binder curing. Secondary, we have shown the ability to detect the internal defects (non-impregnated voids) inside the CMs via the TDS-based THz time-of-flight tomography. Thereby, the results of our study allow highlighting the prospective of non-destructive evaluation of CMs using the TDS.

  7. Microwave Nondestructive Sensing of Moisture Content in Shelled Peanuts Independent of Bulk Density with Temperature Compensation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric methods for rapid and nondestructive sensing of moisture content in shelled peanuts from free-space measurement of attenuation and phase shift, and their corresponding dielectric properties at 10 GHz, are presented. These methods provide moisture content independent of bulk density and c...

  8. A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1979-01-01

    Techniques for quantitative assessment of the mechanical strength and integrity of fiber composites during manufacture and service and following repair operations are presented. Problems and approaches are discussed relative to acceptance criteria, calibrating standards, and methods for nondestructive evaluation of composites in strength-critical applications. Acousto-ultrasonic techniques provide the methods of choice in this area.

  9. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  10. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    PubMed

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications.

  11. Nondestructive ultrasonic characterization of two-phase materials

    NASA Technical Reports Server (NTRS)

    Salama, Kamel

    1987-01-01

    The development of ultrasonic methods for the nondestructive characterization of mechanical properties of two phase engineering materials are described. The primary goal was to establish relationships between the nonlinearity parameter and the percentage of solid solution phase in two phase systems such as heat treatable aluminum alloys. The acoustoelastic constant was also measured on these alloys. A major advantage of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes the method more applicable to inservice nondestructive characterization. The results obtained on the heat treatable 7075 and the work hardenable 5086 and 5456 aluminum alloys show that both the acoustoelastic constant and the acoustic nonlinearity parameter change considerable with the volume fraction of second phase precipitates in these aluminum alloys. A mathematical model was also developed to relate the effective acoustic nonlinearity parameter to volume fraction of second phase precipitates in an alloy. The equation is approximated to within experimental error by a linear expression for volume fractions up to approx. 10%.

  12. Nondestructive examination of the TRMM RCS propellant tanks

    NASA Technical Reports Server (NTRS)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination of determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  13. Techniques for enhancing laser ultrasonic nondestructive evaluation

    SciTech Connect

    Candy, J; Chinn, D; Huber, R; Spicer, J; Thomas, G

    1999-02-16

    Ultrasonic nondestructive evaluation is an extremely powerful tool for characterizing materials and detecting defects. A majority of the ultrasonic nondestructive evaluation is performed with piezoelectric transducers that generate and detect high frequency acoustic energy. The liquid needed to couple the high frequency acoustic energy from the piezoelectric transducers restricts the applicability of ultrasonics. For example, traditional ultrasonics cannot evaluate parts at elevated temperatures or components that would be damaged by contact with a fluid. They are developing a technology that remotely generates and detects the ultrasonic pulses with lasers and consequently there is no requirement for liquids. Thus the research in laser-based ultrasound allows them to solve inspection problems with ultrasonics that could not be done before. This technology has wide application in many Lawrence Livermore National Laboratory programs, especially when remote and/or non-contact sensing is necessary.

  14. Nondestructive evaluation by acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1988-01-01

    Acousto-ultrasonics is an ultrasonic technique that was originally devised to cope with the particular problems associated with nondestructive evaluation (NDE) of fiber/polymer composite structures. The fiber/polymer composites are more attenuating to ultrasound than any other material presently of interest. This limits the applicability of high-frequency ultrasonics. A common use of ultrasound is the imaging of flaws internal to a structure by scattering from the interface with the flaw. However, structural features of composites can scatter ultrasound internally, thus obscuring the flaws. A need relative to composites is to be able to nondestructively measure the strength of laminar boundaries in order to assess the integrity of a structure. Acousto-ultrasonics has exhibited the ability to use the internal scattering to provide information for determining the strength of laminar boundaries. Analysis of acousto-ultrasonic signals by the wave ray paths that compose it leads to waveform partitioning that enhances the sensitivity to mechanical strength parameters.

  15. Edward's sword? - A non-destructive study of a medieval king's sword

    SciTech Connect

    Segebade, Chr.

    2013-04-19

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  16. Nondestructive assay of spent boiling-water-reactor fuel by active neutron interrogation

    SciTech Connect

    Blakeman, E.D.; Ricker, C.W.; Ragan, G.L.; Difilippo, F.C.; Slaughter, G.G.

    1981-01-01

    Spent boiling water reactor (BWR) fuel from Dresden I was assayed for total fissile mass, using the active neutron interrogation method. The nondestructive assay (NDA) system used has four Sb-Be sources for interrogation of the fuels; the induced fission neutrons from the fuel are counted by four lead-shielded methane-filled proportional counters biased above the energy of the source neutrons. Results agreed with results from the chemical analyses to within 2 to 3%. Similar agreement was obtained when two combinations of canned spent fuel were used as standards for the nondestructive assays.

  17. Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens

    NASA Technical Reports Server (NTRS)

    Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.

    2008-01-01

    A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.

  18. Development of instrumentation for magnetic nondestructive evaluation

    SciTech Connect

    Hariharan, S.

    1991-09-23

    The use of failure-prone components in critical applications has been traditionally governed by removing such components from service prior to the expiration of their predicted life expectancy. Such early retirement of materials does not guarantee that a particular sample will not fail in actual usage. The increasing cost of such life expectancy based operation and increased demand for improved reliability in industrial settings has necessitated an alternate form of quality control. Modern applications employ nondestructive evaluation (NDE), also known as nondestructive testing (NDT), as a means of monitoring the levels and growth of defects in a material throughout its operational life. This thesis describes the modifications made to existing instrumentation used for magnetic measurements at the Center for Nondestructive Evaluation at Iowa State University. Development of a new portable instrument is also given. An overview of the structure and operation of this instrumentation is presented. This thesis discusses the application of the magnetic hysteresis and Barkhausen measurement techniques, described in Sections 1.3.1 and 1.3.2 respectively, to a number of ferromagnetic specimens. Specifically, measurements were made on a number of railroad steel specimens for fatigue characterization, and on specimens of Damascus steel and Terfenol-D for materials evaluation. 60 refs., 51 figs., 5 tabs.

  19. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  20. Nondestructive evaluation of pyroshock propagation using hydrocodes

    NASA Astrophysics Data System (ADS)

    Lee, Juho; Hwang, Dae-Hyeon; Jang, Jae-Kyeong; Lee, Jung-Ryul; Han, Jae-Hung

    2016-04-01

    Pyroshock or pyrotechnic shock generated by explosive events of pyrotechnic devices can induce fatal failures in electronic payloads. Therefore, understanding and estimation of pyroshock propagation through complex structures are necessary. However, an experimental approach using real pyrotechnic devices is quite burdensome because pyrotechnic devices can damage test structures and newly manufactured test structures are necessary for each experiment. Besides, pyrotechnic experiments are quite expensive, time-consuming, and dangerous. Consequently, nondestructive evaluation (NDE) of pyroshock propagation without using real pyrotechnic devices is necessary. In this study, nondestructive evaluation technique for pyroshock propagation estimation using hydrocodes is proposed. First, pyroshock propagation is numerically analyzed using AUTODYN, a commercial hydrocodes. Hydrocodes can handle stress wave propagation including elastic, plastic, and shock wave in the time domain. Test structures are modeled and pyroshock time history is applied to where the pyroshock propagation originates. Numerical NDE results of pyroshock propagation on test structures are analyzed in terms of acceleration time histories and acceleration shock response spectra (SRS) results. To verify the proposed numerical methodology, impact tests using airsoft gun are performed. The numerical analysis results for the impact tests are compared with experimental results and they show good agreements. The proposed numerical techniques enable us to nondestructively characterize pyroshock propagation.

  1. Composite Curing Process Nondestructive Evaluation

    DTIC Science & Technology

    1988-06-01

    selected cure cycles, and conservative methods have been adopted to offset potentially degrading conditions. This approach invariably increases...fluoresce in ordinary solvents will, however, fluoresce strongly in viscous media such as glycerol at low temperatures. A number of studies on the...viscosity solvents is due to fasL nonradiative deactivation (relaxation) of the excited state by intramolecular torsional motions. When such torsional

  2. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    NASA Technical Reports Server (NTRS)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  3. Holographic Nondestructive Testing: Review Of A Laser Inspection Tool

    NASA Astrophysics Data System (ADS)

    Erf, Robert K.

    1982-10-01

    A great deal has been written about holography, especially in the years since Gabor won the Nobel Prize (1971) for his "invention and development" of the method. While it is fairly safe to state that the movie and T.V. industries are not on the verge of a revolution as a result of the highly touted three-dimensional characteristics of the process, it can be said that holography may offer considerable scientific potential in such diverse areas as computer storage, display systems, correlation techniques, medical diagnostics (acoustical holography) and radar (microwave holography), to mention just a few. Another promising application of holography, and one that has been given considerable attention at United Technologies Corporation and other industrial laboratories, is nondestructive testing. Consideration shall be given to this subject in the present paper by starting with a very brief review of holography (The Basic Tool), followed by a description of interferometric hologra-phy (Preparing the Tool for Use), and how it can be employed to nondestructively identify defects (Applying the Tool). This sets the stage for two final topics which establish the holographic process as a viable NDT technique: pulsed holography (Adapting the Tool to the Industrial Environment) and special HNDT techniques (Simplifying and Diversifying Tool Application).

  4. Nondestructive estimation of oil and moisture content using NIR spectroscopy in Valencia and Virginia peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oil and moisture content of peanuts are important factors in peanut grading. A method by which these parameters could be measured rapidly and nondestructively for peanut pods (in-shell peanuts) would be useful for the industry. In this work, an attempt was made to measure oil and moisture content of...

  5. Nondestructive Inspection Techniques for Friction Stir Weld Verification on the Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Suits, Michael W.; Leak, Jeffery; Bryson, Craig

    2003-01-01

    Friction Stir Welding (FSW) has gained wide acceptance as a reliable joining process for aerospace hardware as witnessed by its recent incorporation into the Delta Launch vehicle cryotanks. This paper describes the development of nondestructive evaluation methods and techniques used to verify the FSW process for NASA's Space Shuttle.

  6. Instrumentation. Nondestructive Examination for Verification of Canister and Cladding Integrity - FY2013 Status Update

    SciTech Connect

    Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.; Denslow, Kayte M.; Crawford, Susan L.; Larche, Michael R.

    2013-09-30

    This report documents FY13 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) characterize hydrogen effects in UNF cladding to facilitate safe storage and retrieval.

  7. Using magnetic levitation for non-destructive quality control of plastic parts.

    PubMed

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-04

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated.

  8. Instrumentation: Nondestructive Examination for Verification of Canister and Cladding Integrity. FY2014 Status Update

    SciTech Connect

    Meyer, Ryan M.; Suter, Jonathan D.; Jones, Anthony M.

    2014-09-12

    This report documents FY14 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) verify the integrity of dry storage cask internals.

  9. Nondestructive testing of ceramic engine components. Final progress report for completed CRADAs

    SciTech Connect

    Ellingson, W.A.; Happoldt, G.P.

    1993-07-15

    This report describes a method for the nondestructive testing of ZrO{sub 2} plasma-sprayed layers with intentional disbonds. A theoretical analysis was conducted to determine the surface-temperature difference for each disbond using a given input heat pulse.

  10. Quantitative non-destructive testing

    NASA Technical Reports Server (NTRS)

    Welch, C. S.

    1985-01-01

    The work undertaken during this period included two primary efforts. The first is a continuation of theoretical development from the previous year of models and data analyses for NDE using the Optical Thermal Infra-Red Measurement System (OPTITHIRMS) system, which involves heat injection with a laser and observation of the resulting thermal pattern with an infrared imaging system. The second is an investigation into the use of the thermoelastic effect as an effective tool for NDE. As in the past, the effort is aimed towards NDE techniques applicable to composite materials in structural applications. The theoretical development described produced several models of temperature patterns over several geometries and material types. Agreement between model data and temperature observations was obtained. A model study with one of these models investigated some fundamental difficulties with the proposed method (the primitive equation method) for obtaining diffusivity values in plates of thickness and supplied guidelines for avoiding these difficulties. A wide range of computing speeds was found among the various models, with a one-dimensional model based on Laplace's integral solution being both very fast and very accurate.

  11. NONDESTRUCTIVE ANALYSIS OF THE BRITTLE FRACTURE BEHAVIOR OF CERAMIC MATERIALS

    DTIC Science & Technology

    CERAMIC MATERIALS , *NONDESTRUCTIVE TESTING, BRITTLENESS, DIELECTRIC PROPERTIES, DIFFUSION, ELASTIC PROPERTIES, FRACTURE (MECHANICS), IMPURITIES, MECHANICAL PROPERTIES, RESONANCE, STRESSES, THERMAL DIFFUSION, THERMAL STRESSES

  12. PREFACE: III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing (SibTest 2015)

    NASA Astrophysics Data System (ADS)

    2016-01-01

    This issue of the journal is devoted to the research and studies presented at the III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing SibTest. The conference was held in Altai, Russia, on 27-31 July 2015. The conference brought together experts from different countries and organizations who had a great opportunity to share knowledge during oral and poster presentations and to initiate discussions on topics that are of interest to the conference attendees. The conference aimed to discuss innovative methods and the application of advanced technologies in non-destructive testing. The conference also attempted to bring together university, academic and industrial science, to expand the co-operation of scientists from different countries in research and development and the commercialization of innovative technologies in non-destructive testing. The key themes of the conference were: ultrasonic and acoustic testing; electromagnetic and thermal testing; various types of radiation non-destructive testing; passive and active testing techniques. The conference organizers are the Institute of Non-Destructive Testing, Tomsk Polytechnic University, with the assistance of the Russian Society for Non-Destructive Testing and Technical Diagnostics, Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, National Research Tomsk State University, Moscow State Institute of Radio Engineering, Electronics and Automation.

  13. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    SciTech Connect

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-15

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  14. A Sparse Reconstruction Algorithm for Ultrasonic Images in Nondestructive Testing

    PubMed Central

    Guarneri, Giovanni Alfredo; Pipa, Daniel Rodrigues; Junior, Flávio Neves; de Arruda, Lúcia Valéria Ramos; Zibetti, Marcelo Victor Wüst

    2015-01-01

    Ultrasound imaging systems (UIS) are essential tools in nondestructive testing (NDT). In general, the quality of images depends on two factors: system hardware features and image reconstruction algorithms. This paper presents a new image reconstruction algorithm for ultrasonic NDT. The algorithm reconstructs images from A-scan signals acquired by an ultrasonic imaging system with a monostatic transducer in pulse-echo configuration. It is based on regularized least squares using a l1 regularization norm. The method is tested to reconstruct an image of a point-like reflector, using both simulated and real data. The resolution of reconstructed image is compared with four traditional ultrasonic imaging reconstruction algorithms: B-scan, SAFT, ω-k SAFT and regularized least squares (RLS). The method demonstrates significant resolution improvement when compared with B-scan—about 91% using real data. The proposed scheme also outperforms traditional algorithms in terms of signal-to-noise ratio (SNR). PMID:25905700

  15. Non-destructive monitoring of river embankments using GPR

    NASA Astrophysics Data System (ADS)

    di Prinzio, Monica; Bittelli, Marco; Castellarin, Attilio; Rossi Pisa, Paola

    2010-05-01

    Non-destructive investigations and controls of civil structures are improving day by day, however the scientific literature reports only a few documented cases of Ground Penetrating Radar (GPR) applications to the detection of voids and discontinuities in hydraulic defense structures such as river embankments and levee systems. GPR can assist decision making in a number of fields by enhancing our knowledge of subsurface features. We applied successfully GPR to the monitoring of river levees for the detectioning of animal burrows in river levees, which may trigger levee failures by piping. The manageability and the non-invasivity of GPR have resulted to be particularly suitable for this application. First because GPR is an extensive investigation method that enables one to rapidly cover a wide area, locating voids that are difficult and costly to locate using other intrusive methods. Second, GPR returns detailed information about the possible presence of voids and discontinuities within river embankments.

  16. Field verification of a nondestructive damage location algorithm

    SciTech Connect

    Farrar, C.R.; Stubbs, N.

    1996-12-31

    Over the past 25 years, the use of modal parameters for detecting damage has received considerable attention from the civil engineering community. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. In this paper, a method for nondestructive damage location in bridges, as determined by changes in the modal properties, is described. The damage detection algorithm is applied to pre- and post-damage modal properties measured on a bridge. Results of the analysis indicate that the method accurately locates the damage. Subjects relating to practical implementation of this damage identification algorithm that need further study are discussed.

  17. Non-destructive photoacoustic imaging of metal surface defects

    NASA Astrophysics Data System (ADS)

    Jeon, Seungwan; Kim, Jeesu; Yun, Jong Pil; Kim, Chulhong

    2016-11-01

    The detection of metal surface defects is important in achieving the goals of product quality enhancement and manufacturing cost reduction. Identifying the defects with visual inspection is difficult, inaccurate, and time-consuming. Thus, several inspection methods using line cameras, magnetic field, and ultrasound have been proposed. However, identifying small defects on metal surfaces remains a challenge. To deal with this problem, we propose the use of photoacoustic imaging (PAI) as a new non-destructive imaging tool to detect metal surface defects. We successfully visualized two types of cracks (i.e., unclassified and seam cracks) in metal plate samples using PAI. In addition, we successfully extracted cracked edges from height-encoded photoacoustic maximum amplitude projection images using the Laplacian of Gaussian filtering method, and then, quantified the detected edges for a statistical analysis. We concluded that PAI can be useful in detecting metal surface defects reducing the defect rate and manufacturing cost during metal production.

  18. FIRST 100 T NON-DESTRUCTIVE MAGNET

    SciTech Connect

    J. R. SIMS; ET AL

    1999-10-01

    The first 100 T non-destructive (100 T ND) magnet and power supplies as currently designed are described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND magnet will provide a 100 T pulsed field of 5 ms duration (above 90% of full field) in a 15 mm diameter bore once per hour. Magnet operation will be non-destructive. The magnet will consist of a controlled power outer coil set which produces a 47 T platform field in a 225 mm diameter bore. Located within the outer coil set will be a 220 mm outer diameter capacitor powered insert coil. Using inertial energy storage a synchronous motor/generator will provide ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters will energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. The insert will then be energized to produce the balance of the 100 T peak field using a 2.3 MJ, 18 kV (charged to 15 kV), 14.4 mF capacitor bank controlled with solid-state switches. The magnet will be the first of its kind and the first non-destructive, reusable 100 T pulsed magnet. The operation of the magnet will be described along with special features of its design and construction.

  19. Nondestructive measurement of environmental radioactive strontium

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Okamiya, Tomohiro; Tanaka, Saki; Tanuma, Ryosuke; Totsuka, Yumi; Murata, Jiro

    2014-03-01

    The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days), Cs-134 (2.1 years), Cs-137 (30 years), Sr-89 (51 days), and Sr-90 (29 years). We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  20. Nondestructive assay confirmatory assessment experiments: mixed oxide

    SciTech Connect

    Lemming, J.F.

    1980-04-30

    The confirmatory assessment experiments demonstrate traceable nondestructive assay (NDA) measurements of plutonium in mixed oxide powder using commercially available spontaneous-fission assay systems. The experiments illustrate two major concepts: the production of calibration materials using calorimetric assay, and the use of paired measurements for measurement assurance. Two batches of well-characterized mixed oxide powder were used to establish the random and systematic error components. The major components of an NDA measurement assurance technique to establish and maintain traceability are identified and their functions are demonstrated. 20 refs., 10 figs., 10 tabs.

  1. Automation for nondestructive inspection of aircraft

    NASA Technical Reports Server (NTRS)

    Siegel, M. W.

    1994-01-01

    We discuss the motivation and an architectural framework for using small mobile robots as automated aids to operators of nondestructive inspection (NDI) equipment. We review the need for aircraft skin inspection, and identify the constraints in commercial airlines operations that make small mobile robots the most attractive alternative for automated aids for NDI procedures. We describe the design and performance of the robot (ANDI) that we designed, built, and are testing for deployment of eddy current probes in prescribed commercial aircraft inspections. We discuss recent work aimed at also providing robotic aids for visual inspection.

  2. Nondestructive identification of the Bell diagonal state

    SciTech Connect

    Jin Jiasen; Yu Changshui; Song Heshan

    2011-03-15

    We propose a scheme for identifying an unknown Bell diagonal state. In our scheme the measurements are performed on the probe qubits instead of the Bell diagonal state. The distinct advantage is that the quantum state of the evolved Bell diagonal state ensemble plus probe states will still collapse on the original Bell diagonal state ensemble after the measurement on probe states; i.e., our identification is quantum state nondestructive. How to realize our scheme in the framework of cavity electrodynamics is also shown.

  3. Nondestructive Technique To Assess Embrittlement In Steels

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Yost, William T.; Cantrell, John H.

    1990-01-01

    Recent research at NASA Langley Research Center led to identification of nondestructive technique for detection of temper embrittlement in HY80 steel. Measures magnetoacoustic emission associated with reversible motion of domain walls at low magnetic fields. Of interest to engineers responsible for reliability and safety of various dynamically loaded and/or thermally cycled steel parts. Applications include testing of landing gears, naval vessels, and parts subjected to heat, such as those found in steam-pipe fittings, boilers, turbine rotors, and nuclear pressure vessels.

  4. Microwave sensors for nondestructive testing of materials

    NASA Astrophysics Data System (ADS)

    Lasri, Tuami; Glay, David; Mamouni, Ahmed; Leroy, Yves

    1999-10-01

    Much of today's applications in nondestructive testing by microwaves use an automatic network analyzer. As a result, there is a need for systems to reduce the cost of this kind of techniques. Fortunately, now we can benefit from the cost reduction of the microwave components, induced by the considerable development of the communication market, around 2 and 10 GHz. So, it seems reasonable to think that microwaves will take advantage of this new situation to assert themselves in this application field. In this context we conceive and develop original equipment competitive in term of price and reliability.

  5. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    SciTech Connect

    Davenport, Matthew Nicholas

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility study described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.

  6. Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products.

    PubMed

    He, Hong-Ju; Wu, Di; Sun, Da-Wen

    2015-01-01

    Nowadays, people have increasingly realized the importance of acquiring high quality and nutritional values of fish and fish products in their daily diet. Quality evaluation and assessment are always expected and conducted by using rapid and nondestructive methods in order to satisfy both producers and consumers. During the past two decades, spectroscopic and imaging techniques have been developed to nondestructively estimate and measure quality attributes of fish and fish products. Among these noninvasive methods, visible/near-infrared (VIS/NIR) spectroscopy, computer/machine vision, and hyperspectral imaging have been regarded as powerful and effective analytical tools for fish quality analysis and control. VIS/NIR spectroscopy has been widely applied to determine intrinsic quality characteristics of fish samples, such as moisture, protein, fat, and salt. Computer/machine vision on the other hand mainly focuses on the estimation of external features like color, weight, size, and surface defects. Recently, by incorporating both spectroscopy and imaging techniques in one system, hyperspectral imaging cannot only measure the contents of different quality attributes simultaneously, but also obtain the spatial distribution of such attributes when the quality of fish samples are evaluated and measured. This paper systematically reviews the research advances of these three nondestructive optical techniques in the application of fish quality evaluation and determination and discuss future trends in the developments of nondestructive technologies for further quality characterization in fish and fish products.

  7. Comparative Study of Nondestructive Pavement Testing, MacDill Air Force Base, Florida

    DTIC Science & Technology

    1987-07-01

    analyses. Six private firms each with a different nondestructive testing ( NDT ) evaluation method provided evaluation results in terms of allowable aircraft... methods characterize the pavement structural layers based on the response measured with the NDT devices. Most procedures produce moduli values for the...of agreement between the allowable load ratings and overlay thickness predictions of the NDT evaluation methods to the standard test pit rating, and a

  8. Nondestructive evaluation of thick concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  9. Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.

  10. Characterization of pottery fragments by nondestructive neutron diffraction

    NASA Astrophysics Data System (ADS)

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Venuti, Valentina; Barone, Germana; Kockelmann, Winfried

    2005-11-01

    The aim of the present work is the characterization of pottery fragments coming from the town of Caltagirone (Sicily, Italy). The samples belong to very different historical periods, from 18th century B.C. to 16th century A.D., and have finely decorated surfaces. Time-of-flight neutron-diffraction measurements were performed in order to obtain a quantitative identification of the mineralogical composition of the samples. A good determination of the relative weight fractions of the phases was obtained using the Rietveld analysis method. The application of neutron-diffraction technique allowed us to carry out a detailed analysis in a nondestructive way, so intact large fragments were investigated without damaging the precious decoration on the surface.

  11. Physical Model Assisted Probability of Detection in Nondestructive Evaluation

    NASA Astrophysics Data System (ADS)

    Li, M.; Meeker, W. Q.; Thompson, R. B.

    2011-06-01

    Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk.

  12. Nondestructive evaluation of a ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1992-01-01

    Monolithic ceramic materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited because of their sensitivity to small imperfections. To overcome this extreme sensitivity to small imperfections, ceramic matrix composite materials have been developed that have the ability to withstand some distributed damage. A borosilicate glass reinforced with several layers of silicon-carbide fiber mat has been studied. Four-point flexure and tension tests were performed not only to determine some of the material properties, but also to initiate a controlled amount of damage within each specimen. Acousto-ultrasonic (AU) measurements were performed periodically during mechanical testing. This paper will compare the AU results to the mechanical test results and data from other nondestructive methods including acoustic emission monitoring and X-ray radiography. It was found that the AU measurements were sensitive to the damage that had developed within the material.

  13. Nondestructive Evaluation of a Graphite Aluminum Composite Space Radiator Panel

    DTIC Science & Technology

    1991-12-01

    techniques: ultrasound, x-ray, dye penetrant, and visual inspection. The results illustrate the importance of nondestructive evaluation ( NDE ) in the...importance of nondestructive evaluation ( NDE ) from the time the composite is fabricated through the time it is implemented into the spacecraft. These... NDE technologies will help detect external or internal irregularities (anomalies) at each increment of the fabrication and qualification testing of

  14. Destructive and non-destructive determination of the transport current density radial distribution: Application to Bi-2212 textured rods

    NASA Astrophysics Data System (ADS)

    Martínez, E.; Natividad, E.; Angurel, L. A.; Navarro, R.; Yang, Y.; Beduz, C.

    2003-03-01

    Destructive and non-destructive methods to estimate the radial distribution of the transport critical current, Jc( r), of long cylindrical superconductors are presented. The non-destructive method is based on the measurement of self-field AC losses as a function of the current amplitude, Q( I0) and takes into account the E- J characteristics of the material. Both methods have been used to derive the Jc( r) profiles of long and thin Bi-2212 rods textured by laser-induced zone melting techniques. The obtained results have been correlated with the microstructure of the samples and their critical temperature.

  15. Application of real-time holographic interferometry in the nondestructive inspection of electronic parts and assemblies

    NASA Astrophysics Data System (ADS)

    Wood, Craig P.; Trolinger, James D.

    1991-01-01

    Nondestructive inspection by holographic interferometry (HI) is quickly gaining acceptance in the electronics industry as a sensitive and accurate method of locating manufacturing and assembly flaws in a wide range of electronics, from individual components to assembled modules. This paper describes the specific application of real-time HI in the nondestructive analysis of circuit board heat exchangers and multiple-layer printed wiring boards to locate areas of debonding and delamination. In the application of HI, the choice of a stressing method is often as important as the choice of a specific HI technique. Methods for component stressing include thermal, vibrational, and pressure-induced stressing methods, and these are described in detail. In addition, two techniques for sensitivity enhancement, phase shift interferometry and beam tilt correction, are discussed in detail.

  16. Proceedings of the ARPA/AFML Review of Progress in Quantitative Nondestructive Evaluation

    DTIC Science & Technology

    1978-05-01

    Nuaoiardi, M. F. Uhalen, and M. D. Johnson Adaptronios, Ina 50 APPLICATION OF A NEW INVERSE METHOD TO NONDESTRUCTIVE EVALUATION N...Gauteeen, and H. HoHaken Northueetem Univereity 102 SESSION IV • NEW TECHNIQUES AND PHENOMENA (POSTERS) NEW METHODS OF DETECTION AND...HIGH RESOLUTION REAL TIME ACOUSTIC MICROSCOPY C. W. KfiUr and D. K. Yuhas Sonotoan, Tno 241 MICROWAVE TECHNIQUES FOR NDE OF CERAMICS A. J

  17. Nondestructive determination of the depth of planar p-n junctions by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Chi, J.-Y.; Gatos, H. C.

    1977-01-01

    A method was developed for measuring nondestructively the depth of planar p-n junctions in simple devices as well as in integrated-circuit structures with the electron-beam induced current (EBIC) by scanning parallel to the junction in a scanning electron microscope (SEM). The results were found to be in good agreement with those obtained by the commonly used destructive method of lapping at an angle to the junction and staining to reveal the junction.

  18. Preliminary nondestructive evaluation manual for the space shuttle. [preliminary nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Pless, W. M.

    1974-01-01

    Nondestructive evaluation (NDE) requirements are presented for some 134 potential fracture-critical structural areas identified, for the entire space shuttle vehicle system, as those possibly needing inspection during refurbishment/turnaround and prelaunch operations. The requirements include critical area and defect descriptions, access factors, recommended NDE techniques, and descriptive artwork. Requirements discussed include: Orbiter structure, external tank, solid rocket booster, and thermal protection system (development area).

  19. NON-DESTRUCTIVE FLAW DETECTION APPARATUS

    DOEpatents

    Stateman, M.J.; Holloway, H.R.

    1957-12-17

    An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.

  20. Nondestructive Assay Options for Spent Fuel Encapsulation

    SciTech Connect

    Tobin, Stephen J.; Jansson, Peter

    2014-10-02

    This report describes the role that nondestructive assay (NDA) techniques and systems of NDA techniques may have in the context of an encapsulation and deep geological repository. The potential NDA needs of an encapsulation and repository facility include safeguards, heat content, and criticality. Some discussion of the facility needs is given, with the majority of the report concentrating on the capability and characteristics of individual NDA instruments and techniques currently available or under development. Particular emphasis is given to how the NDA techniques can be used to determine the heat production of an assembly, as well as meet the dual safeguards needs of 1) determining the declared parameters of initial enrichment, burn-up, and cooling time and 2) detecting defects (total, partial, and bias). The report concludes with the recommendation of three integrated systems that might meet the combined NDA needs of the encapsulation/repository facility.

  1. Quantitative nondestructive evaluation: Requirements for tomorrow's reliability

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1991-01-01

    Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice.

  2. Nondestructive assay (NDA) techniques and procedures

    SciTech Connect

    Not Available

    1994-05-01

    Report No. 4 is precursory to Report No. 5 {open_quotes}Determination of the Quantity and Locations of the Pu Currently Retained in the Cimarron Fuel Plant Systems{close_quotes} which will be presented upon completion of the decontamination of the Cimarron Plutonium Fuel Fabrication Facility. This report presents the Non-Destructive Assay (NDA) procedures which were developed and used by Sequoyah Fuels Corporation (successor to Kerr-McGee Nuclear Corporation) to measure equipment hold-up of plutonium materials for inventory purposes during operation of the plant. These procedures are also used to measure plutonium contamination on the equipment removed from the Material Balance Areas (MBA`s) during final decontamination. Report No. 5 will compare the measurements taken during this final decontamination period to previous inventory hold-up measurements, the date will be statistically analyzed, and a long-term assessment of the performance of the NDA equipment will be described.

  3. A study of the stress wave factor technique for nondestructive evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Sarrafzadeh-Khoee, A.; Kiernan, M. T.; Duke, J. C., Jr.; Henneke, E. G., II

    1986-01-01

    The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes.

  4. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  5. Proceedings of the Second Annual Symposium for Nondestructive Evaluation of Bond Strength

    NASA Technical Reports Server (NTRS)

    Roberts, Mark J. (Compiler)

    1999-01-01

    Ultrasonics, microwaves, optically stimulated electron emission (OSEE), and computational chemistry approaches have shown relevance to bond strength determination. Nonlinear ultrasonic nondestructive evaluation methods, however, have shown the most effectiveness over other methods on adhesive bond analysis. Correlation to changes in higher order material properties due to microstructural changes using nonlinear ultrasonics has been shown related to bond strength. Nonlinear ultrasonic energy is an order of magnitude more sensitive than linear ultrasound to these material parameter changes and to acoustic velocity changes caused by the acoustoelastic effect when a bond is prestressed. Signal correlations between non-linear ultrasonic measurements and initialization of bond failures have been measured. This paper reviews bond strength research efforts presented by university and industry experts at the Second Annual Symposium for Nondestructive Evaluation of Bond Strength organized by the NDE Sciences Branch at NASA Langley in November 1998.

  6. Photoacoustic Spectroscopy as a Non-destructive Tool for Quantification of Pesticide Residue in Apple Cuticle

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Wang, Yafei; Gao, Chunming; Huan, Huiting; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Photoacoustic spectroscopy (PAS), the non-destructive method to detect residue of dimethyl-dichloro-vinyl-phosphate (DDVP) pesticide in a cuticle of apple, is described. After constructing the PA experimental setup and identifying three characteristic peaks of DDVP in the near ultraviolet region, the PA spectra of an apple cuticle contaminated with DDVP were collected. The artificial neural network method was then applied to analyze data quantitatively. The results show a correlation coefficient exceeding 0.99 and a detection limit of 0.2 ppm, which is within the national food safety standard for maximum residue limits for pesticides in food (GB 2763-2012). This fact and the non-destructive character of PAS make the approach promising for detection of pesticide residue in fruits.

  7. Nondestructive evaluation of fatigue damage on low-alloy steel by magnetic technique

    SciTech Connect

    Hirasawa, T.; Komura, I.; Chujow, N.

    1994-12-31

    In the nuclear power plant, fatigue damage is one of the most significant degradation behavior which is expected that the structural components is received during long term operation. In order to estimate the plant life and to ensure the reliability of the plants, nondestructive detection and evaluation of fatigue damage of the components are a key technology. Magneto mechanical acoustic emission (MAE) method was applied to the evaluation of fatigue damage of reactor pressure vessel steel. Several MAE parameters which were obtained from the signal processing and waveform analysis on fatigue specimens, were measured and investigated as a function of cumulative fatigue damage factor. Consequently, these MAE parameters were compared to the results by X-ray diffraction technique, hardness testing and microstructural observation. The usefulness of MAE method as the nondestructive evaluation technique of fatigue damage was discussed.

  8. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-1A (1988), Personnel Qualification and Certification in Nondestructive Testing.” (d) Within 30 days... 46 Shipping 1 2012-10-01 2012-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3... and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may...

  9. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    SciTech Connect

    Larimer, Curtis; Suter, Jonathan D.; Bonheyo, George; Addleman, Raymond Shane

    2016-03-15

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolution as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.

  10. Instrument performs nondestructive chemical analysis, data can be telemetered

    NASA Technical Reports Server (NTRS)

    Turkevich, A.

    1965-01-01

    Instrument automatically performs a nondestructive chemical analysis of surfaces and transmits the data in the form of electronic signals. It employs solid-state nuclear particle detectors with a charged nuclear particle source and an electronic pulse-height analyzer.

  11. Non-Destructive Classification Approaches for Equilibrated Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-09-01

    In order to compare a few non-destructive classification techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Mössbauer spectroscopy.

  12. 12. VIEW OF THE NONDESTRUCTIVE TESTING EQUIPMENT BEING USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF THE NON-DESTRUCTIVE TESTING EQUIPMENT BEING USED TO DETECT FLAWS IN FABRICATED COMPONENTS. (6/76) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  13. Partially Nondestructive Continuous Detection of Individual Traveling Optical Photons

    NASA Astrophysics Data System (ADS)

    Hosseini, Mahdi; Beck, Kristin M.; Duan, Yiheng; Chen, Wenlan; Vuletić, Vladan

    2016-01-01

    We report the continuous and partially nondestructive measurement of optical photons. For a weak light pulse traveling through a slow-light optical medium (signal), the associated atomic-excitation component is detected by another light beam (probe) with the aid of an optical cavity. We observe strong correlations of gsp (2 )=4.4 (5 ) between the transmitted signal and probe photons. The observed (intrinsic) conditional nondestructive quantum efficiency ranges between 13% and 1% (65% and 5%) for a signal transmission range of 2% to 35%, at a typical time resolution of 2.5 μ s . The maximal observed (intrinsic) device nondestructive quantum efficiency, defined as the product of the conditional nondestructive quantum efficiency and the signal transmission, is 0.5% (2.4%). The normalized cross-correlation function violates the Cauchy-Schwarz inequality, confirming the nonclassical character of the correlations.

  14. Non-Destructive Evaluation of Materials via Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2008-01-01

    A document discusses the use of ultraviolet spectroscopy and imaging for the non-destructive evaluation of the degree of cure, aging, and other properties of resin-based composite materials. This method can be used in air, and is portable for field use. This method operates in reflectance, absorbance, and luminescence modes. The ultraviolet source is used to illuminate a composite surface of interest. In reflectance mode, the reflected response is acquired via the imaging system or via the spectrometer. The spectra are analyzed for organic compounds (conjugated organics) and inorganic compounds (semiconducting band-edge states; luminescing defect states such as silicates, used as adhesives for composite aerospace applications; and metal oxides commonly used as thermal coating paints on a wide range of spacecraft). The spectra are compared with a database for variation in conjugation, substitution, or length of molecule (in the case of organics) or band edge position (in the case of inorganics). This approach is useful in the understanding of material quality. It lacks the precision in defining the exact chemical structure that is found in other materials analysis techniques, but it is advantageous over methods such as nuclear magnetic resonance, infrared spectroscopy, and chromatography in that it can be used in the field to assess significant changes in chemical structure that may be linked to concerns associated with weaknesses or variations in structural integrity, without disassembly of or destruction to the structure of interest.

  15. Super-resolution image reconstruction for ultrasonic nondestructive evaluation.

    PubMed

    Li, Shanglei; Chu, Tsuchin Philip

    2013-12-01

    Ultrasonic testing is one of the most successful nondestructive evaluation (NDE) techniques for the inspection of carbon-fiber-reinforced polymer (CFRP) materials. This paper discusses the application of the iterative backprojection (IBP) super-resolution image reconstruction technique to carbon epoxy laminates with simulated defects to obtain high-resolution images for NDE. Super-resolution image reconstruction is an approach used to overcome the inherent resolution limitations of an existing ultrasonic system. It can greatly improve the image quality and allow more detailed inspection of the region of interest (ROI) with high resolution, improving defect evaluation and accuracy. First, three artificially simulated delamination defects in a CFRP panel were considered to evaluate and validate the application of the IBP method. The results of the validation indicate that both the contrast-tonoise ratio (CNR) and the peak signal-to-noise ratio (PSNR) value of the super-resolution result are better than the bicubic interpolation method. Then, the IBP method was applied to the low-resolution ultrasonic C-scan image sequence with subpixel displacement of two types of defects (delamination and porosity) which were obtained by the micro-scanning imaging technique. The result demonstrated that super-resolution images achieved better visual quality with an improved image resolution compared with raw C-scan images.

  16. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  17. Nondestructive evaluation of advanced ceramic composite materials

    SciTech Connect

    Lott, L.A.; Kunerth, D.C.; Walter, J.B.

    1991-09-01

    Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

  18. An overview of the nondestructive inspection techniques for coiled tubing and pipe

    SciTech Connect

    Stanley, R.K.

    1996-11-01

    Coiled steel tubing and pipe in the diameter range 20--90 mm (0.75--3.5 in.) are replacing conventional oilfield materials for a variety of purposes including workovers, drilling, production tubing, umbilicals, and flowlines. They offer all the advantages of long tubes with no threaded connections. Because coiled tubing is being produced to high quality standards, it is lasting longer than ever before, and the need has arisen for careful nondestructive inspection at frequent intervals to determine accumulated damage to the string and the need for repair. Currently, derating of used coiled tubing using nondestructive testing (NDT) is not performed. While NDT devices for oilfield tubulars have been well documented, little has been written regarding the NDT of coiled tubing. This paper outlines the current NDT methods used during the manufacture of new tubing and the inspection of used coiled tubing.

  19. Nondestructive imaging of materials microstructure using x-ray tomographic microscopy

    SciTech Connect

    Kinney, J.H.; Saroyan, R.A. ); Nichols, M.C. ); Bonse, U. . Fachbereich Physik); Stock, S.R.; Breunig, T.M.; Guvenilir, A. . School of Material Engineering)

    1990-11-01

    A technique for nondestructively imaging microstructures of materials in situ, especially a technique capable of delineating the time evolution of chemical changes or damage, will greatly benefit studies of materials processing and failure. X-ray tomographic microscopy (XTM) is a high resolution, three-dimensional inspection method which is capable of imaging composite materials microstructures with a resolution of a few micrometers. Because XTM is nondestructive, it will be possible to examine materials under load or during processing, and obtain three-dimensional images of fiber positions, microcracks, and pores. This will allow direct imaging of microstructural evolution, and will provide time-dependent data for comparison to fracture mechanics and processing models. 23 refs., 8 figs.

  20. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam.

    PubMed

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A; Vick, Andrew J

    2016-09-02

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  1. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-09-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  2. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  3. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    PubMed Central

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-01-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices. PMID:27586090

  4. Microwaving Blood as a Non-Destructive Technique for Haemoglobin Measurements on Microlitre Samples

    PubMed Central

    Basey-Fisher, Toby H.; Guerra, Nadia; Triulzi, Chiara; Gregory, Andrew; Hanham, Stephen M.; Stevens, Molly M.; Maier, Stefan A.; Klein, Norbert

    2016-01-01

    The non-destructive ex vivo determination of haemoglobin (Hgb) concentration offers the capability to conduct multiple red blood cell haematological measurements on a single sample, an advantage that current optical techniques are unable to offer. Here, a microwave method and device for the accurate and non-destructive determination of Hgb concentration in microlitre blood samples are described. Using broadband microwave spectroscopy, a relationship is established between the dielectric properties of murine blood and Hgb concentration that is utilized to create a technique for the determination of Hgb concentration. Subsequently, a microwave dielectric resonator-microfluidic system is implemented in the analysis of 52 murine samples with microlitre volumes and Hgb concentrations ranging from 0 to 17 g dL−1. Using the characterized relationship, independent and minimally invasive Hgb measurements are made on nine healthy mice as well as seven with mutations in the Adenomatous polyposis coli (APC) gene that leads to colorectal cancer and consequently anaemia. PMID:24002989

  5. Nondestructive and rapid detection of potato black heart based on machine vision technology

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Peng, Yankun; Wei, Wensong

    2016-05-01

    Potatoes are one of the major food crops in the world. Potato black heart is a kind of defect that the surface is intact while the tissues in skin become black. This kind of potato has lost the edibleness, but it's difficult to be detected with conventional methods. A nondestructive detection system based on the machine vision technology was proposed in this study to distinguish the normal and black heart of potatoes according to the different transmittance of them. The detection system was equipped with a monochrome CCD camera, LED light sources for transmitted illumination and a computer. Firstly, the transmission images of normal and black heart potatoes were taken by the detection system. Then the images were processed by algorithm written with VC++. As the transmitted light intensity was influenced by the radial dimension of the potato samples, the relationship between the grayscale value and the potato radial dimension was acquired by analyzing the grayscale value changing rule of the transmission image. Then proper judging condition was confirmed to distinguish the normal and black heart of potatoes after image preprocessing. The results showed that the nondestructive system built coupled with the processing methods was accessible for the detection of potato black heart at a considerable accuracy rate. The transmission detection technique based on machine vision is nondestructive and feasible to realize the detection of potato black heart.

  6. Nondestructive testing, evaluation, and rehabilitation for roadway pavement: Warren County, Mississippi, Cincinnati, Ohio, and Berkeley, California

    NASA Astrophysics Data System (ADS)

    Grau, Richard H.; Alexander, Don R.

    1994-07-01

    This report documents the results of one FIS technology transfer initiative: the demonstration of nondestructive pavement evaluation technology (NDT) to cooperating Federal and non-federal partners. The demonstrations utilized Falling Weight Deflectometer (FWD) technology, a commercially available nondestructive procedure for determining the structural adequacy of a pavement system. Data obtained from FWD tests were combined with pavement material properties and estimated future traffic volumes to design rehabilitation strategies for the existing streets and roadways of three communities. The specific objectives of the study were to: (1) Evaluate and develop improvements to the initial guide specification used for contracting FWD technology; (2) Evaluate the three analytical methods used by each contractor to develop the pavement repair strategies; (3) Document and explain the differences in the results of the pavement evaluation methods; (4) Document the benefits of FWD technology over other conventional techniques; and (5) Transfer nondestructive testing of pavements technology to non-federal partners, and demonstrate how analysis of the test results can be used to develop rehabilitation strategies for roadway pavements.

  7. [Study on Non-Destructive Testing of Guqin Interior Structure Based on Computed Tomography].

    PubMed

    Zhao, De-da; Liu, Xing-e; Yang, Shu-min; Yu, Shenz; Tian, Gen-lin; Ma, Jian-feng; Wang, Qing-ping

    2015-12-01

    The wood property and production process affect quality of Guqin. At the same time, Guqin shape with cavity layout relations to the improvement of Guqin technology and inheritance, so it's very important to get the internal cavity characteristics and parameters on the condition of non-destructive the structure of Guqin. The image of interior structure in Guqin was investigated by overall scanning based on non-destructive testing technology of computed tomography, which texture of faceplate, connection method between faceplate and soleplate and interior defects were studied. The three-dimensional reconstruction of Guqin cavity was achieved through Mimics software of surface rendering method and put the two-dimensional CT tomography images convert into three-dimensional, which more complete show interior structural form in Guqin, and finally the parameter of cavity dimensions was obtained. Experimental research shows that there is significant difference in Guqin interior structure between Zhong-ni and Luo-xia type, in which the fluctuation of the interior surfacein Zhong-ni type's is larger than that in Luo-xia type; the interior volume of Zhong-ni typeis less than that of Luo-xia type, especially in Guqin neck. The accurate internal information of Guqin obtained through the computed tomography (CT) technology will provide technical support for the Guqin manufacture craft and the quality examination, as well as provide the reference in the aspect of non-destructive testing for other traditional precious internal structure research.

  8. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.

    PubMed

    Hu, Tian; Yang, Hai-Long; Tang, Qing; Zhang, Hui; Nie, Lei; Li, Lian; Wang, Jin-Feng; Liu, Dong-Ming; Jiang, Wei; Wang, Fei; Zang, Heng-Chang

    2014-10-01

    As one very precious traditional Chinese medicine (TCM), Huoshan Dendrobium has not only high price, but also significant pharmaceutical efficacy. However, different species of Huoshan Dendrobium exhibit considerable difference in pharmaceutical efficacy, so rapid and absolutely non-destructive discrimination of Huoshan Dendrobium nobile according to different species is crucial to quality control and pharmaceutical effect. In this study, as one type of miniature near-infrared (NIR) spectrometer, MicroNIR 1700 was used for absolutely nondestructive determination of NIR spectra of 90 batches of Dendrobium from five species of differ- ent commodity grades. The samples were intact and not smashed. Soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis (PCA) was used to classify and recognize different species of Dendrobium samples. The results indicated that the SIMCA qualitative models established with pretreatment method of standard normal variate transformation (SNV) in the spectra range selected by Qs method had 100% recognition rates and 100% rejection rates. This study demonstrated that a rapid and absolutely non-destructive analytical technique based on MicroNIR 1700 spectrometer was developed for successful discrimination of five different species of Huoshan Dendrobium with acceptable accuracy.

  9. Nondestructive characterization of the elastic constants of fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Mal, Ajit K.; Lih, Shyh-Shiuh; Bar-Cohen, Yoseph

    1993-01-01

    Composite structural components may be subjected to a variety of defects resulting in a sharp reduction in their load carrying capacity or even catastrophic failure. Thus, it is extremely important to have the means to monitor the degradation suffered by critical components of a structure for safe operation during its service life. A nondestructive method based on ultrasonics has recently been developed for the quantitative evaluation of composite structural components during service. The experimental part of the technique uses a two-transducer, pitch-catch type arrangement to generate a variety of elastic waves within the specimen immersed in water. The recorded reflection data are then analyzed by means of a theoretical model to back out the relevant properties. In this paper the method is applied to determine the stiffness constants of unidirectional graphite/epoxy materials. The measurements are shown to be efficient and sufficiently accurate so that it can be used for early detection of material degradation in composite structural elements during service.

  10. Non-destructive evaluation of mechanical properties of magnetic materials

    SciTech Connect

    Kankolenski, K.P.; Hua, S.Z.; Yang, D.X.; Hicho, G.E.; Swartzendruber, L.J.; Zang, Z.; Chopra, H.D.

    2000-07-01

    A magnetic-based non-destructive evaluation (NDE) method, which employs Barkhausen effect and measurement of the hysteresis loops, is used to correlate the magnetic and mechanical properties of ultra low carbon (ULC) steel. In particular, the NDE method was used to detect small deviations from linearity that occur in the stress-strain curve well below the 0.2% offset strain, and which generally defines the yield point in materials. Results show that three parameters: jumpsum and jumpsum rate (derived from the Barkhausen spectrum), and the relative permeability (derived from the B-H loops) varies sensitively with small permanent strains, and can be related to the plastic deformation in ULC steels. Investigation of micromagnetic structure revealed that plastic deformation leaves a residual stress state in the samples; the associated magneto-elastic energy makes the favorable easy axis of magnetization in a given grain to be the one that lies closest to the tensile axis. The consequence of this realignment of domains is that wall motion becomes intergranular in nature (as opposed to intragranular in unstrained samples). As a result, the more complex grain boundaries instead of dislocations, become the dominant pinning sites for domain walls. These observations provide a microscopic interpretation of the observed changes in the measured magnetic properties.

  11. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.

    2008-01-01

    Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter extracted from acoustic harmonic generation measurements. The parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4, 410Cb stainless steel, and IN100 nickel-base superalloy specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.

  12. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect

    Clayton, Dwight; Smith, Cyrus

    2014-02-18

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  13. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  14. Non-destructive evaluation of anchorage zones by ultrasonics techniques.

    PubMed

    Kharrat, M; Gaillet, L

    2015-08-01

    This work aims to evaluate the efficiency and reliability of two Non-Destructive Testing (NDT) methods for damage assessment in bridges' anchorages. The Acousto-Ultrasonic (AU) technique is compared to classical Ultrasonic Testing (UT) in terms of defect detection and structural health classification. The AU technique is firstly used on single seven-wire strands damaged by artificial defects. The effect of growing defects on the waves traveling through the strands is evaluated. Thereafter, three specimens of anchorages with unknown defects are inspected by the AU and UT techniques. Damage assessment results from both techniques are then compared. The structural health conditions of the specimens can be then classified by a damage severity criterion. Finally, a damaged anchorage socket with mastered defects is controlled by the same techniques. The UT allows the detection and localization of damaged wires. The AU technique is used to bring out the effect of defects on acoustic features by comparing a healthy and damaged anchorage sockets. It is concluded that the UT method is suitable for local and crack-like defects, whereas the AU technique enables the assessment of the global structural health of the anchorage zones.

  15. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics

    NASA Astrophysics Data System (ADS)

    Cantrell, John H.

    2009-03-01

    Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter β extracted from acoustic harmonic generation measurements. The β parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4 and 410 Cb stainless steel specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.

  16. Nondestructive evaluation of near-surface residual stress in shot-peened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Yu, Feng

    Surface enhancement methods, which produce beneficial compressive residual stresses and increased hardness in a shallow near-surface region, are widely used in a number of industrial applications, including gas-turbine engines. Nondestructive evaluation of residual stress gradients in surface-enhanced materials has great significance for turbine engine component life extension and their reliability in service. It has been recently found that, in sharp contrast with most other materials, shot-peened nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, which can be exploited for nondestructive residual stress assessment. The primary goal of this research is to develop a quantitative eddy current method for nondestructive residual stress profiles in surface-treated nickel-base superalloys. Our work have been focused on five different aspects of this issue, namely, (i) validating the noncontacting eddy current technique for electroelastic coefficients calibration, (ii) developing inversion procedures for determining the subsurface residual stress profiles from the measured apparent eddy current conductivity (AECC), (iii) predicting the adverse effect of surface roughness on the eddy current characterization of shot-peened metals, (iv) separating excess AECC caused by the primary residual stress effect from intrinsic conductivity variations caused by material inhomogeneity, and (v) investigating different mechanisms through which cold work could influence the AECC in surface-treated nickel-base superalloys. The results of this dissertation have led to a better understanding of the underlying physical phenomenon of the measured excess AECC on nickel-base engine alloys, and solved a few critical applied issues in eddy current nondestructive residual stress assessment in surface-treated engine components and, ultimately, contributed to the better utilization and safer operation of the Air Force's aging

  17. Non-destructive detection and quantification of blueberry bruising using near-infrared (NIR) hyperspectral reflectance imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, blueberry bruising is evaluated by either human visual/tactile inspection or firmness measurement instruments. These methods are destructive and time-consuming. The goal of this paper was to develop a non-destructive approach for blueberry bruising detection and quantification. The spe...

  18. Nondestructive Analysis of Phytochemical Components by Near Infared (NIR) Spectroscopy: Measurement of Rosmarinic Acid in Prunella Vulgaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NIR spectroscopy has developed into a rapid nondestructive method to analyze, in a single event, an increasingly complex number of general and specific components in solid and liquid samples, including dissolved solids, acids, density, pH, microbial contamination, and percent oil, carbohydrate, prot...

  19. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-1, Fundamentals of Ultrasonic Testing.

    ERIC Educational Resources Information Center

    Spaulding, Bruce

    This first in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II introduces the student/trainee to the basic behavior of ultrasound, describes ultrasonic test equipment, and outlines the principal methods of ultrasonic testing. The module follows a typical format that includes the following sections: (1)…

  20. Monte-Carlo Application for Nondestructive Nuclear Waste Analysis

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.

    2014-06-01

    Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum

  1. Destructive versus non-destructive methods for geochemical analyses of ceramic artifacts: comparison of portable XRF and ICP-MS data on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain

    NASA Astrophysics Data System (ADS)

    Stremtan, Ciprian; Ashkanani, Hasan; Tykot, Robert H.

    2013-04-01

    glass and MACS-3 pressed powder) were also measured to check for accuracy and precision. Our preliminary data shows that most of the major and trace elemental data acquired by both methods are consistent. Some transition metals (e.g. Y, Fe, and Mn) yielded overall lower values when measured with pXRF device (ranging from 27 to 60 % difference), while Ni and Ba showed systematically higher values (20 to 53 %). If samples are chosen properly for pXRF measurements (i.e. thoroughly cleaned, fine grained, well sorted) and the device is properly calibrated, the results are comparable with DCP-OES and ICP-MS data, thus being suitable to use for geochemical fingerprinting

  2. Nondestructive radioassay for waste management: an assessment

    SciTech Connect

    Lehmkuhl, G.D.

    1981-06-01

    Nondestructive Assay (NDA) for Transuranic Waste Management is used to mean determining the amount of transuranic (TRU) isotopes in crates, drums, boxes, cans, or other containers without having to open the container. It also means determining the amount of TRU in soil, bore holes, and other environmental testing areas without having to go through extensive laboratory wet chemistry analyses. it refers to radioassay techniques used to check for contamination on objects after decontamination and to determine amounts of TRU in waste processing streams without taking samples to a laboratory. Gednerally, NDA instrumentation in this context refers to all use of radioassay which does not involve taking samples and using wet chemistry techniques. NDA instruments have been used for waste assay at some sites for over 10 years and other sites are just beginning to consider assay of wastes. The instrumentation used at several sites is discussed in this report. Almost all these instruments in use today were developed for special nuclear materials safeguards purposes and assay TRU waste down to the 500 nCi/g range. The need for instruments to assay alpha particle emitters at 10 nCi/g or less has risen from the wish to distinguish between Low Level Waste (LLW) and TRU Waste at the defined interface of 10 nCi/g. Wastes have historically been handled as TRU wastes if they were just suspected to be transuranically contaminated but their exact status was unknown. Economic and political considerations make this practice undesirable since it is easier and less costly to handle LLW. This prompted waste generators to want better instrumentation and led the Transuranic Waste Management Program to develop and test instrumentation capable of assaying many types of waste at the 10 nCi/g level. These instruments are discussed.

  3. Cryogenic Storage Tank Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  4. Nondestructive Evaluation Correlated with Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Azid, Ali; Baaklini, George Y.

    1999-01-01

    Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.

  5. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  6. Non-destructive analysis of extracellular matrix development in cardiovascular tissue-engineered constructs.

    PubMed

    Tuemen, M; Nguyen, D V A; Raffius, J; Flanagan, T C; Dietrich, M; Frese, J; Schmitz-Rode, T; Jockenhoevel, S

    2013-05-01

    In the field of tissue engineering, there is an increasing demand for non-destructive methods to quantify the synthesis of extracellular matrix (ECM) components such as collagens, elastin or sulphated glycosaminoglycans (sGAGs) in vitro as a quality control before clinical use. In this study, procollagen I carboxyterminal peptide (PICP), procollagen III aminoterminal peptide (PIIINP), tropoelastin and sGAGs are investigated for their potential use as non-destructive markers in culture medium of statically cultivated cell-seeded fibrin gels. Measurement of PICP as marker for type I collagen synthesis, and PIIINP as marker of type III collagen turnover, correlated well with the hydroxyproline content of the fibrin gels, with a Pearson correlation coefficient of 0.98 and 0.97, respectively. The measurement of tropoelastin as marker of elastin synthesis correlated with the amount of elastin retained in fibrin gels with a Pearson correlation coefficient of 0.99. sGAGs were retained in fibrin gels, but were not detectable in culture medium at any time of measurement. In conclusion, this study demonstrates the potential of PICP and tropoelastin as non-destructive culture medium markers for collagen and elastin synthesis. To our knowledge, this is the first study in cardiovascular tissue engineering investigating the whole of here proposed biomarkers of ECM synthesis to monitor the maturation process of developing tissue non-invasively, but for comprehensive assessment of ECM development, these biomarkers need to be investigated in further studies, employing dynamic cultivation conditions and more complex tissue constructs.

  7. A new non-destructive readout by using photo-recovered surface potential contrast.

    PubMed

    Wang, Le; Jin, Kui-juan; Gu, Jun-xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-an; Gu, Lin; He, Meng; Lu, Hui-bin; Yang, Guo-zhen

    2014-11-10

    Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory.

  8. Identifying Fracture Origin in Ceramics by Combination of Nondestructive Testing and Discrete Element Analysis

    NASA Astrophysics Data System (ADS)

    Senapati, Rajeev; Zhang, Jianmei

    2010-02-01

    Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing—laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC2D is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.

  9. Non-destructive techniques for determining the material characteristics of Cr-Mo-V rotor steel

    SciTech Connect

    Goto, Toru; Kadoya, Yoshikuni; Konishi, Takashi; Kamimura, Takeo; Suyama, Shouji; Haruki, Nirou; Ikuno, Takeshi; Yoshimura, Kouji

    1994-12-31

    Long-term service causes material deterioration, such as the accumulation of creep and fatigue damage, as well as softening and embrittlement, in the high-temperature components of fossil fuel power plants. Therefore, in order to extend plant life at minimum cost without any accidental outages, it is important to observe the material state, especially of rotors and conduct necessary repairs or replace them at the most appropriate time. Therefore, there is a need for non-destructive techniques to evaluate the material characteristics of Cr-Mo-V rotors under service. In this paper, a comparative report of non-destructive techniques using artificially aged and crept Cr-Mo-V steel specimens is given. The techniques tested include replication, hardness measurement, electro-magnetic and ultrasonic techniques, and conventional metallurgical techniques, which have been here to fore usable only in the laboratory, but due to expected advances in the non-destructive sampling of material from service rotors these techniques are now usable in the field. As a result of the studies, the features of each technique are well recognized and the suggestions for the further development of NDE methods for the evaluation of creep damage in Cr-Mo-V rotors are presented.

  10. IDENTIFYING FRACTURE ORIGIN IN CERAMICS BY COMBINATION OF NONDESTRUCTIVE TESTING AND DISCRETE ELEMENT ANALYSIS

    SciTech Connect

    Senapati, Rajeev; Zhang Jianmei

    2010-02-22

    Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC{sup 2D} is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.

  11. ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR DESTRUCTIVE AND NONDESTRUCTIVE ANALYSIS FOR PROCESS MONITORING AND SAFEGUARDS MEASURMENTS

    SciTech Connect

    Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Duckworth, Douglas C.

    2010-05-07

    A timely, accurate, and precise analysis of uranium reprocessing streams is import for process monitoring and nuclear material accountability. For material accountancy, it is critical to detect both acute and chronic diversions of nuclear materials. Therefore, both on-line nondestructive (NDA) and destructive analysis (DA) approaches are desirable. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. Direct on-line gamma measurements of Pu, while desirable, are not possible due to contributions from other actinides and fission products. Electrochemically-modulated separation (EMS) is a straightforward, cost effective alternative technology being investigated at Pacific Northwest National Laboratory for highly selective, slip-stream sampling of U or Pu from reprocessing streams. The EMS selectivity results from simultaneous surface and redox chemistry that allows the affinity of the electrode to be turned “on” or “off” under potential control. Once isolated, the accumulated Pu can be measured by gamma spectroscopy or retained in a small quantity (nanogram-milligram) to reduce radiological concerns and to facilitate transport to laboratory based mass spectrometry instrumentation. In this study, we investigate both destructive and nondestructive applications of EMS. First, nondestructive Pu gamma analysis is performed using dissolved BWR spent fuel. Reduction factors for actinide and fission products and initial estimates of measurement uncertainties were measured. The methodology for DA sampling will also be reported for both Pu and U.

  12. A new non-destructive readout by using photo-recovered surface potential contrast

    PubMed Central

    Wang, Le; Jin, Kui-juan; Gu, Jun-xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-an; Gu, Lin; He, Meng; Lu, Hui-bin; Yang, Guo-zhen

    2014-01-01

    Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory. PMID:25381929

  13. A nondestructive characterization system of periodically poled crystals

    NASA Astrophysics Data System (ADS)

    Chen, Huaixi; Zhou, Huang; Chen, Liyuan; Zou, Xiaolin; Miao, Long; Feng, Xinkai; Li, Guangwei; Liang, Wanguo

    2015-08-01

    Periodically poled crystals are widely used as SHG, DFG, SFG, OPO and THz generation, and there is a broad application prospect in some areas such as the laser display, optical fiber communication, atmospheric exploration and military confrontation. At present, to get the parameters of periodically poled crystals, like duty ratio, the main method is chemical etching of the samples. In this paper, we present a nondestructive characterization system of periodically poled crystals. When we apply a proper high voltage on both sides of the periodically poled crystal, the refractive index difference of positive and negative domain will be increased and we can observe a clear domain pattern by the a microscope so as to obtain general information. Then a single frequency laser is prepared to radiate on +z surface of the periodically poled crystal, we can get some orders of diffraction according to diffraction optics principle. Finally, we can measure the parameters such as period, duty ratio by use of numerical analysis. The testing sample size of this system can be up to 60mm, The accuracy of the testing period can be 0.1μm, and the measurement range of duty ratio is 20%-50%.

  14. Nondestructive and Real-time Measurement of Moisture in Plant

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi; Kawase, Kodo; Mizuno, Maya; Yamashita, Masatsugu; Otani, Chiko

    We constructed a THz transillumination system for water content monitoring, and we succeeded in measuring the moisture level in plants. Our measurement system uses a widely tunable coherent THz parametric oscillator source. As target we chose for this experiment a leaf of Japanese basil. The time variation of the water content in the leaf was monitored in two situations: a leaf freshly cut which is left to dry out, and the leaf of a water stressed plant. We found by real-time measurements that the water content of a cut leaf does not decrease uniformly in time. Also, the response to water stress is delayed by about 5-10 minutes. Furthermore, we demonstrated a moisture measurement using a transillumination THz imaging system. As target we chose for this experiment a leaf of Hedera helix held between two thin plastic sheets. The change of the moisture distribution is clearly visible. These results show that the method described here can be applied to nondestructive and real-time monitoring of water content in plants.

  15. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  16. FIRST 100 T NON-DESTRUCTIVE MAGNET OUTER COIL SET

    SciTech Connect

    J. BACON; A. BACA; ET AL

    1999-09-01

    The controlled power outer coil set of the first 100 T non-destructive (100 T ND) magnet is described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND controlled power outer coil set consists of seven nested, mechanically independent externally reinforced coils. These coils, in combination, will produce a 47 T platform field in a 225-mm diameter bore. Using inertial energy storage a synchronous motor/generator provides ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. Each coil consists of a multi-layer winding of high strength conductor supported by an external high strength stainless steel shell. Coils with the highest magnetic loads will utilize a reinforcing shell fabricated from highly cold worked 301 stainless steel strip. The autofrettage conditioning method will be used to pre-stress the coils and thereby limit conductor and reinforcement strains to the elastic range. The purpose of pre-stressing the coils is to attain a design life of 10,000 full field pulses. The operation and conditioning of the coil set will be described along with special features of its design, magnetic and structural analyses and construction.

  17. Ultrasonic nondestructive testing of composite materials using disturbed coincidence conditions

    NASA Astrophysics Data System (ADS)

    Bause, F.; Olfert, S.; Schröder, A.; Rautenberg, J.; Henning, B.; Moritzer, E.

    2012-05-01

    In this contribution we present a new method detecting changes in the composite material's acoustic behavior by analyzing disturbed coincidence conditions on plate-like test samples. The coincidence condition for an undamaged GFRP test sample has been experimentally identified using Schlieren measurements. Disturbances of this condition follow from a disturbed acoustic behavior of the test sample which is an indicator for local damages in the region inspected. An experimental probe has been realized consisting of two piezoceramic elements adhered to the nonparallel sides of an isosceles trapezoidal body made of silicone. The base angles of the trapezoidal body have been chosen such that the incident wave meets pre-measured condition of coincidence. The receiving element receives the geometric reflection of the acoustic wave scattered at the test sample's surface which corresponds to the non-coupled part of the incident wave as send by the sending element. Analyzing the transfer function or impulse response of the electro-acoustic system (transmitter, scattering at test sample, receiver), it is possible to detect local disturbances with respect to Cramer's coincidence rule. Thus, it is possible to realize a very simple probe for local ultrasonic nondestructive testing of composite materials (as well as non-composite material) which can be integrated in a small practical device and is good for small size inspection areas.

  18. Nondestructive test to track pollutant transport into landfill liners

    NASA Astrophysics Data System (ADS)

    Bezzar, A.; Ghomari, F.

    2009-03-01

    Over the last decade, waste disposal has become a particularly sensitive issue in Algeria. New legislation concerning landfill liner design has been adopted. Traditional methods of landfill liner characterization involve soil sampling and chemical analysis, which are costly, destructive and time-consuming. New techniques are currently being investigated that aim to provide nondestructive liner characterisation. This paper details technical aspects associated with electrical conductivity measurements within landfill liners and presents experimental work to show the direct application of electrical techniques to track ionic movement through a sand bentonite liner under chemically induced flow. Samples of sand bentonite were mixed and compacted with NaCl electrolytes at different concentrations. The electrical conductivities of compacted specimens were measured with a two-electrode cell. The effects of frequency and electrolyte concentration on the conductivity measurement were explored. The relationship between the soil electrical conductivity and the NaCl electrolyte concentration in interstitial pore fluid was determined. The conductivity measurements were used to quantify the pore fluid concentration and effective diffusion coefficient of sand bentonite liners. It is concluded here that the electrical conductivity of compacted specimens depends mainly on the salt concentration in the pore fluid, and that this approach could therefore be used to track ionic movement through liners during diffusion.

  19. Advanced nondestructive examination technologies for measuring fatigue damage in nuclear power plant components

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Akers, D.W.

    1995-12-01

    This paper presents recent results from an ongoing project at the Idaho National Engineering Laboratory (INEL) to develop advanced nondestructive methods to characterize the aging degradation of nuclear power plant pressure boundary components. One of the advanced methods, positron annihilation, is being developed for in situ characterization of fatigue damage in nuclear power plant piping and other components. This technique can detect and correlate the microstructural changes that are precursors of fatigue cracking in austenitic stainless steel components. In fact, the initial INEL test results show that the method can detect fatigue damage in stainless steel ranging from a few percent of the fatigue life up to 40 percent.

  20. Nondestructive Evaluation of Foam Insulation for the External Tank Return to Flight

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Nondestructive evaluation methods have been developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Terahertz imaging and backscatter radiography have been brought from prototype lab systems to production hardened inspection tools in just a few years. These methods have been demonstrated to be capable of detecting void type defects under many inches of foam which, if not repaired, could lead to detrimental foam loss. The evolution of these methods from lab tools to implementation on the ET will be discussed.

  1. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  2. Evaluation of Nondestructive Methods for Determining Pavement Thickness

    DTIC Science & Technology

    2011-09-01

    Road ...................................................................... 20 Figure 15. The flowable fill section is shown here on the right and...section constructed for testing flowable fill pavement repairs. The last site recycled a previously tested Air Force PCC test section constructed for a...limestone N/A 31 Forest Service Road Unknown AC2 Unknown N/A 32 Forest Service Road, Flowable Fill 6-in. PCC 30-in. flowable fill N/A 33 Forest Service

  3. Aluminum analysis in biological reference material by nondestructive methods

    SciTech Connect

    Landsberger, S.; Arendt, A.; Keck, B.; Glascock, M.

    1988-01-01

    In recent years, the determination of aluminum in biological materials has become the subject of many research projects. This interest stems from an increasing knowledge of the toxicity of aluminum to both aquatic and human life. Unfortunately, the detection of aluminum in biological materials has proven troublesome. The use of traditional chemical determinations has been shown to be very long and somewhat complicated. Several attempts have been made using neutron activation analysis, but an interfering reaction must be taken into account. In this experiment the rabbit irradiation facilities at the University of Missouri Research Reactor were used. The aluminum concentrations for eight certified reference materials are shown. When US National Bureau of Standards (NBS) value is given as certified or as an information value, results agree very well. The results for NBS 1572 citrus leaves agree, and NBS 1577 results agree very well with that of Glascock et al.

  4. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    NASA Astrophysics Data System (ADS)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-02-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  5. Assessing the reliability of nondestructive evaluation methods for damage characterization

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Annis, Charles; Sabbagh, Harold A.; Knopp, Jeremy S.; Lindgren, Eric A.

    2014-02-01

    A comprehensive approach to NDE characterization error evaluation is presented that follows the framework of the `ahat-versus-a' model evaluation process for probability of detection (POD) assessment. Before characterization error model building is performed, an intermediate step must evaluate the presence and frequency of several possible classes of poor characterization results. A case study is introduced based on the estimation the length, depth and width of surface breaking cracks using bolt hole eddy current (BHEC) NDE. This study highlights the importance of engineering and statistical expertise in the model-building process to ensure all key effects and possible interactions are addressed.

  6. Computational Methods in Nondestructive Evaluation: A Revolution in Maintenance (Postprint)

    DTIC Science & Technology

    2011-10-01

    2007), 1731-1738. [2] J.C. Aldrin, C.V. Kropas-Hughes, J.S Knopp, J. Mandeville , D. Judd, E. Lindgren, Advanced echo-dynamic measures for the...beam/spar cap", Aging Aircraft Conf., Palm Springs, California, Jan 31 -Feb. 3, 2005. [5] J.C. Aldrin, J.R. Mandeville , D. Judd, J.R. Mandeville

  7. Non-Destructive Inspection Methods for Propulsion Systems and Components

    DTIC Science & Technology

    1979-04-01

    components has been carried out using reactor sources. Alternative transportable or mobile sources may be convenient to apply on the premises of the... mobile work appears to be californium 252 (Cf 252). The radiographs produced by the high energy x-ray/beryllium route are also lacking in quality for...the ’residue core’ problem there are others which should be mentioned here. Mobile equipment using the isotope Cf 252 has been used to detect

  8. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    NASA Astrophysics Data System (ADS)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  9. Proceedings: Eleventh annual EPRI nondestructive evaluation information meeting

    SciTech Connect

    Avioli, M.J. Jr.; Behravesh, M.M.; Gehl, S.M.; Lang, J.; McCloskey, T.; Stein, J.; Viswanathan, R.; Welty, C.S.

    1991-08-01

    In increasing cost of equipment for power generating plants and the potential increases in productivity and safety available through rapidly developing nondestructive evaluation (NDE) technology led EPRI to begin a Nondestructive Evaluation Program in 1974. The major focus has been on light water reactor (LWR) inspection problems; however, increased application to other systems is now under way. This report, NP7047-M, presents a summary of companion report NP7047- SD Nondestructive Evaluation Research Progress in 1990: Proceedings from the Eleventh Annual EPRI NDE Information Meeting.'' NP7047-SD presents EPRI's effort in the NDE area. Most of the report consists of contractor-supplied progress reports on current NDE projects. In addition, organization plans of the program are presented from different perspectives; in-service inspection vendor, R D engineer, and utility owner. 1 fig., 1 tab.

  10. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  11. Nondestructive inspection of explosive materials using linearly polarized two-colored photon beam

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Hayakawa, T.; Shizuma, T.; Hajima, R.; Masuda, K.; Ohgaki, H.

    2011-10-01

    A nondestructive inspection method for screening explosive materials that are hidden in passenger vehicles, trucks, and cargo containers with radiation shielding was presented. The method was examined experimentally using linearly polarized two-colored photon beam. A sample object was irradiated with the photon beam, followed by an emission of gamma-rays in nuclear resonance fluorescence. The gamma-rays from oxygen and nitrogen emitted through nuclear resonance fluorescence were measured using high-purity germanium detectors. We were able to evaluate the element concentration ratio.

  12. Concepts for the Development of a Nondestructive Testing and Evaluation System for Rigid Airfield Pavements.

    DTIC Science & Technology

    1985-11-01

    1981. 31. Desai, C.S. and Christian, J.T., Numerical Methods in Geotechnical Engineering , MacGraw-Hill, 1977. 32. Aag, A.H.S. and Newmark, N.M., A...therefore, are not well suited for the 1* purposes of this research. "N 2.3 Nondestructive Evaluation Methods N In contrast to the wide variety of NDT ...development of the procedures used throughout this study. 27 CHAPTER 3 .’. THE FIELD RESEARCH PROGRAM The engineer performing NDT & E of an airfield

  13. Application of Advanced Nondestructive Evaluation Techniques for Cylindrical Composite Test Samples

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Roth, Donald J.; Salem, Jonathan A.

    2013-01-01

    Two nondestructive methods were applied to composite cylinder samples pressurized to failure in order to determine manufacturing quality and monitor damage progression under load. A unique computed tomography (CT) image processing methodology developed at NASA Glenn Research was used to assess the condition of the as-received samples while acoustic emission (AE) monitoring was used to identify both the extent and location of damage within the samples up to failure. Results show the effectiveness of both of these methods in identifying potentially critical fabrication issues and their resulting impact on performance.

  14. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    NASA Astrophysics Data System (ADS)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  15. Non-destructive detection of corrosion for life management

    NASA Astrophysics Data System (ADS)

    Bruce, David A.

    1995-01-01

    In recent years, aircraft operators have been driven to increased use of Non-Destructive Evaluation (NDE) to ensure airworthiness during life extensions for ageing aircraft or as an integral part of a damage tolerant lifting philosophy. Major airframe static and fatigue tests are routinely used to highlight problem areas on airframes where design limitations or changes of usage may lead to early failures. The results of such tests become progressively less reliable as the age of the airframe increases and the operating conditions diverge from those under which the tests were conducted. Increased inspection, whether by visual or other means is usually the only alternative to wholesale refurbishment or replacement of aircraft or components. Almost all of the development to date of NDE techniques for corrosion detection and characterization has been concentrated on existing airframe materials, principally Aluminum alloys and steels. The current capabilities of corrosion detection techniques will be reviewed and current research aimed at areas where there is a requirement for improved detection capability will be described. New materials, such as Polymer Matrix Composites, will experience different types of 'corrosive' deterioration. The capability of NDE methods to detect material degradation in new composite materials will be discussed. Finally, reliance on NDE, choice of NDE technique and optimal scheduling of inspections all require an assessment of the reliability of NDE methods. It will be shown that a range of NDE techniques with differing capabilities and characteristics will be required to ensure compatibility with maintenance schedules if full use is to be made of NDE for life management of structures which may be subject to corrosion.

  16. Unsupervised classification of ultrasonic nondestructive testing (NDT) data

    NASA Astrophysics Data System (ADS)

    Ylaekoski, Ilkka

    1994-10-01

    Ultrasonic non-destructive testing is used both in manufacturing and in maintenance to ensure quality. In ultrasonic testing, a scanning probe transmits ultrasound pulses and the signal scattered back is detected by a receiver. The time of flight information is often called the A- scan. The A-scans form two dimensional images (B, C, D-scans) corresponding to different projection planes. The scanning over a surface provides information about both the location and the size of the defects and produces huge data files. Therefore, A-scans are often reduced to a single C-scan. In this set-up, the probe angle is zero degrees and the inspection plane is near the focus plane. The inspector uses C-scans or also A and B-scans, if they are available, in defect assessment. An approach to combine the reduction of memory space and the categorization of defects is proposed. Each A-scan is clustered in an unsupervised manner into a number of classes using a self-organizing feature map. The self-organizing process produces a feature map where similar A-scans are close to one another. The classes are visualized by assigning a color for each neurone, so that similar A-scans will get similar colors. In the classified C-scan, different defects can be easily distinguished by their color. The proposed method supersedes the typical C-scan methods by its ability to classify the defects using the characteristic features of the A-scans.

  17. Quantitative non-destructive evaluation of composite materials based on ultrasonic parameters

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Research into the nondestructive evaluation of advanced reinforced composite laminates is summarized. The applicability of the Framers-Kronig equations to the nondestructive evaluation of composite materials is described.

  18. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may...

  19. NonDestructive Evaluation for Industrial & Development Applications

    SciTech Connect

    Hunter, James F.

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  20. Nondestructive Crack Detection in a Fuel System Component

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Ruffino, Norman; Wincheski, Russell; Prosser, William; Winfree, William; Russell, Richard; Bryson, Craig; Devries, Robert; Engel, James; Landy, James

    2010-01-01

    The presentation examines the background and objective of nondestructive crack detection, flow control valve assembly and poppet post flight evaluation, poppet properties. magnetic property characterization of lab data, NDE, eddy current inspection, simulation, eddy current criteria, poppet cycle testing and NDE criteria, and the use of ultrasonic surface wave for crack detection.

  1. Microwave moisture sensor for rapid and nondestructive grading of peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low-cost microwave moisture sensor operating at a single frequency for instantaneous and nondestructive determination of moisture content in peanut kernels from microwave dielectric measurements on peanut pods was developed and tested. The sensor operates at a frequency of 5.8 GHz and uses the pr...

  2. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in...

  3. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in...

  4. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in...

  5. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in...

  6. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in...

  7. An Instructional Program for Training Nondestructive Testing and Inspection Technicians.

    ERIC Educational Resources Information Center

    Stokes, Vernon L.

    This document, the second portion of a two-part study, is designed to provide a guide for the formal training of technicians for nondestructive testing and inspection. Information in the guide is based on results of the industrial survey discussed in Part I. The subject matter is intended to be both flexible and comprehensive, and instructional…

  8. Nondestructive and Strain Testing of Composite Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Goyings, Ryan

    In April 2006, Sikorsky Aircraft received a contract from the United States Marine Corps (USMC) to develop a successor to their CH-53E heavy-lift helicopter. The new designation is the CH-53K "Super Stallion" and provides increased operating capabilities through the use of design revisions that incorporate extensive use of carbon fiber composites and composite sandwich panels. "The CH-53K will have five times the capability at half of the operational cost of the aircraft it's replacing. It will be the most capable helicopter ever produced. With more than twice the combat radius of the CH-53E, the CH-53K uses mature technology to deliver a fully shipboard compatible platform to meet current and future Marine Corps requirements". Upon introduction, it will be the largest rotary wing aircraft in the United States Department of Defense. The USMC will incorporate the CH-53K into the Joint Operations Concept of Full Spectrum Dominance and Sea Power 21 thereby enabling rapid, decisive operations and the early termination of conflict by projecting and sustaining forces to distant anti-access, area-denial environments. Even with an increased lift capability, the CH-53K is a slow moving, low flying helicopter susceptible to damage from small arms fire. There is no field level composite repair capability within any maintained documents published by the Department of Defense. Purdue University has developed a field level rapid repair technique capable of returning strength and integrity to damaged carbon composite structural components. The patch is made from carbon fiber weave that is applied using a field capable Vacuum Assisted Resin Transfer Molding (VARTM). This thesis seeks to validate, using nondestructive testing methods and strain monitoring, the manufacturing, damage, and repair process of composite sandwich panels representative of the CH-53K structural panels.

  9. Technologies for Nondestructive Evaluation of Surfaces and Thin Coatings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The effort included in this project included several related activities encompassing basic understanding, technological development, customer identification and commercial transfer of several methodologies for nondestructive evaluation of surfaces and thin surface coatings. Consistent with the academic environment, students were involved in the effort working with established investigators to further their training, provide a nucleus of experienced practitioners in the new technologies during their industrial introduction, and utilize their talents for project goals. As will be seen in various portions of the report, some of the effort has led to commercialization. This process has spawned other efforts related to this project which are supported from outside sources. These activities are occupying the efforts of some of the people who were previously supported within this grant and its predecessors. The most advanced of the supported technologies is thermography, for which the previous joint efforts of the investigators and NASA researchers have developed several techniques for extending the utility of straight thermographic inspection by producing methods of interpretation and analysis accessible to automatic image processing with computer data analysis. The effort reported for this technology has been to introduce the techniques to new user communities, who are then be able to add to the effective uses of existing products with only slight development work. In a related development, analysis of a thermal measurement situation in past efforts led to a new insight into the behavior of simple temperature probes. This insight, previously reported to the narrow community in which the particular measurement was made, was reported to the community of generic temperature measurement experts this year. In addition to the propagation of mature thermographic techniques, the development of a thermoelastic imaging system has been an important related development. Part of the

  10. Correlation of mechanical properties with nondestructive evaluation of babbitt metal/bronze composite interface

    NASA Astrophysics Data System (ADS)

    Ijiri, Y.; Liaw, P. K.; Taszarek, B. J.; Frohlich, S.; Gungor, M. N.

    1988-09-01

    Interfaces of the babbitt metal-bronze composite were examined ultrasonically and were fractured using the Chalmers test method. It was found that the ultrasonic results correlated with the bond strength, the ductility, and the degree of bonding at the tested interface. Specifically, high ultrasonic reflection percentages were associated with low bond strength, low ductility, and low percentages of bonded regions. The fracture mechanism in the bonded area of the babbitt-bronze interface is related to the presence of the intermetallic compound, Cu6Sn5, at the interface. It is suggested that the non-destructive ultrasonic technique can detect the bond integrity of babbitted metals.

  11. Fast Non-Destructive Evaluation of Superconducting Magnet Wires using a Flow-Through SQUID Microscope

    NASA Astrophysics Data System (ADS)

    Matthews, John; Wellstood, Frederick; Weinstock, Harold

    2006-03-01

    We have developed a cryocooled high-Tc SQUID microscope for fast non-destructive evaluation (NDE) of long wires, designed for detecting defects in superconducting magnet wire. A feedthrough mechanism pulls the wire at speeds of up to 20 cm/s through a thin mylar tube that separates the room temperature wire from the SQUID. We present results on test wires where we detect defects down to about 0.3 mm diameter. We discuss how we extract information from the data, such as defect size and location, and also outline a method for fast automated detection of defects in long wires.

  12. Nondestructive analysis of lithographic patterns with natural line edge roughness from Mueller matrix ellipsometric data

    NASA Astrophysics Data System (ADS)

    Chen, Xiuguo; Shi, Yating; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2016-12-01

    Mueller matrix ellipsometry (MME) is applied to characterize lithographic patterns with natural line edge roughness (LER). A computationally efficient approach based on effective medium approximation is proposed to model the effects of LER in MME measurements. We present both the theoretical and experimental results on lithographic patterns with realistic LER which demonstrate that MME in combination with the proposed effective modeling method is capable of quantifying LER amplitudes. Quantitative comparisons between the MME and scanning electron microscopy measured results also reveal the strong potential of this technique for in-line nondestructive line roughness monitoring.

  13. Application of magnetic resonance imaging to non-destructive void detection in watermelon

    NASA Astrophysics Data System (ADS)

    Saito, K.; Miki, T.; Hayashi, S.; Kajikawa, H.; Shimada, M.; Kawate, Y.; Nishizawa, T.; Ikegaya, D.; Kimura, N.; Takabatake, K.; Sugiura, N.; Suzuki, M.

    A novel application of magnetic resonance imaging (MRI) is described. The possibility of utilizing MRI for non-destructive quality evaluation of watermelons was studied. In this study, we applied MRI to the detection of internal voids in watermelons. In order to increase the measurement rate, we employed a one-dimensional projection profile method instead of observing a two-dimensional cross-sectional image. The void detection was carried out with this technique over 30 samples and 28 samples were correctly evaluated. The measurement rate was 900 ms per sample, which is an acceptable speed for a sorting machine in the agricultural field.

  14. Nondestructive Testing of Aeronautic Bearing Ceramic Balls by Resonant Ultrasound Spectroscopy

    NASA Astrophysics Data System (ADS)

    Petit, S.; Duquennoy, M.; Ouaftouh, M.; Deneuville, F.; Jenot, F.; Ourak, M.

    2005-04-01

    Although ceramic balls are used for bearings in the aerospace industries, defects in ceramic material could be dangerous, particularly if such defects are located close to the surface. We propose a non-destructive testing method for silicon nitride balls, based on ultrasonic resonance spectroscopy. From their elastic vibrations, it is possible to characterize the balls. The proposed methodology can both excite and detect vibrations over a large frequency range, in order to estimate the velocity of surface waves, which permits cortical areas to be tested specifically.

  15. Nondestructive Evaluation (NDE) Results on Sikorsky Aircraft Survivable Affordable Reparable Airframe Program (SARAP) Samples

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Anastasi, Robert F.; Madaras, Eric I.

    2004-01-01

    The Survivable, Affordable, Reparable Airframe Program (SARAP) will develop/produce new structural design concepts with lower structural weight, reduced manufacturing complexity and development time, increased readiness, and improved threat protection. These new structural concepts will require advanced field capable inspection technologies to help meet the SARAP structural objectives. In the area of repair, damage assessment using nondestructive inspection (NDI) is critical to identify repair location and size. The purpose of this work is to conduct an assessment of new and emerging NDI methods that can potentially satisfy the SARAP program goals.

  16. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging.

    PubMed

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-06-14

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  17. Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring

    PubMed Central

    Cheng, Yuhua; Deng, Yiming; Cao, Jing; Xiong, Xin; Bai, Libing; Li, Zhaojun

    2013-01-01

    In this article, the state-of-the-art multi-wave and hybrid imaging techniques in the field of nondestructive evaluation and structural health monitoring were comprehensively reviewed. A new direction for assessment and health monitoring of various structures by capitalizing the advantages of those imaging methods was discussed. Although sharing similar system configurations, the imaging physics and principles of multi-wave phenomena and hybrid imaging methods are inherently different. After a brief introduction of nondestructive evaluation (NDE), structure health monitoring (SHM) and their related challenges, several recent advances that have significantly extended imaging methods from laboratory development into practical applications were summarized, followed by conclusions and discussion on future directions. PMID:24287536

  18. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  19. The research development of hyperspectral imaging in apple nondestructive detection and grading

    NASA Astrophysics Data System (ADS)

    Feng, Di; Ji, Jian-wei; Zhang, Li; Liu, Si-jia; Tian, You-wen

    2016-10-01

    Hyperspectral imaging is a new technology for nondestructive detection of fruit which developed rapidly in recent years. It can get the image and spectral information of the detected object from "three-dimensional", can also reflect the internal and external qualities simultaneously, is a new efficient grading method for fruit. This article induces system types by introducing the hardware structure, determine light source and scanning mode which apply to apple grading. We describe detecting process of apple external and internal indicators according to two directions in apple grading. For internal quality detection, we generalize the methods of image enhancement and image segmentation. For quality indicator detection, we elaborate the process of system calibration and spectral preprocessing, also we discuss the significance of optimal band selection, classify the methods of prediction model establishment and evaluation. Then we summarize the domestic and foreign research results of several main indicators of apple grading, the external quality including color, size, slight injury and contamination, and the internal quality including soluble solids content (SSC), firmness and bruise. We illustrate accuracy, modeling methods, research progress of all indicators and express personal comments for the research progress of single indicator. Finally, this article proposes the deficiency, research direction and application prospect of hyperspectral imaging in apple nondestructive detection and grading.

  20. Quantitative nondestructive electronic and magnetic property assessment of heat treated grade p91 steel

    NASA Astrophysics Data System (ADS)

    Meir, Shai Shmuel

    Structural steels experience aging from fatigue, creep and corrosion. Prolonged high temperature service accelerates creep and stress-corrosion cracking. Microstructural degradation of structural steels is a serious problem that limits the integrity of high-temperature parts in power plants. Some power plants that utilize fossil fuels have experienced lifecycle issues with heat-treated steel alloys that have experienced progressive damage over time. A nondestructive technique for the evaluation of the microstructure of key structural materials and the prediction of lifecycle has been the focus of extensive research for many years. Advanced nondestructive wave assessment techniques are being developed using electronic and magnetic perturbation analysis. These methods are applied to ferrous materials to determine whether a designed heat-treatment provides an acceptable microstructure offering specific set of required properties for the full service life of the component. The methods used in this research include impedance spectroscopy and hysteresis measurement as preliminary assessment methods and hysteresis frequency analysis and Barkhausen noise measurement as secondary assessment methods.