Science.gov

Sample records for acoustic-wave sensor apparatus

  1. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  2. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  3. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  4. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  5. Surface Acoustic Wave (SAW) Vibration Sensors

    PubMed Central

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  6. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  7. Surface acoustic wave devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  8. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  9. Coded acoustic wave sensors and system using time diversity

    NASA Technical Reports Server (NTRS)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  10. Optimization of surface acoustic wave-based rate sensors.

    PubMed

    Xu, Fangqian; Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liang, Yong

    2015-01-01

    The optimization of an surface acoustic wave (SAW)-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO₃, and a thicker Au dot array, and low operation frequency were used to structure the sensor. PMID:26473865

  11. Optimization of Surface Acoustic Wave-Based Rate Sensors

    PubMed Central

    Xu, Fangqian; Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liang, Yong

    2015-01-01

    The optimization of an surface acoustic wave (SAW)-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor. PMID:26473865

  12. Optimizing surface acoustic wave sensors for trace chemical detection

    SciTech Connect

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  13. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  14. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  15. Modeling of a Surface Acoustic Wave Strain Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  16. Dual output acoustic wave sensor for molecular identification

    DOEpatents

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  17. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    SciTech Connect

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  18. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  19. Dual mode acoustic wave sensor for precise pressure reading

    NASA Astrophysics Data System (ADS)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  20. A micromachined surface acoustic wave sensor for detecting inert gases

    SciTech Connect

    Ahuja, S.; Hersam, M.; Ross, C.; Chien, H.T.; Raptis, A.C.

    1996-12-31

    Surface acoustic wave (SAW) sensors must be specifically designed for each application because many variables directly affect the acoustic wave velocity. In the present work, the authors have designed, fabricated, and tested an SAW sensor for detection of metastable states of He. The sensor consists of two sets of micromachined interdigitated transducers (IDTs) and delay lines fabricated by photolithography on a single Y-cut LiNbO{sub 3} substrate oriented for Z-propagation of the SAWs. One set is used as a reference and the other set employs a delay line coated with a titanium-based thin film sensitive to electrical conductivity changes when exposed to metastable states of He. The reference sensor is used to obtain a true frequency translation in relation to a voltage controlled oscillator. An operating frequency of 109 MHz has been used, and the IDT finger width is 8 {micro}m. Variation in electrical conductivity of the thin film at the delay line due to exposure to He is detected as a frequency shift in the assembly, which is then used as a measure of the amount of metastable He exposed to the sensing film on the SAW delay line. A variation in the He pressure versus frequency shifts indicates the extent of the metastable He interaction.

  1. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  2. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    SciTech Connect

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  3. Acoustic wave flow sensor using quartz thickness shear mode resonator.

    PubMed

    Qin, Lifeng; Zeng, Zijing; Cheng, Hongbin; Wang, Qing-Ming

    2009-09-01

    A quartz thickness shear mode (TSM) bulk acoustic wave resonator was used for in situ and real-time detection of liquid flow rate in this study. A special flow chamber made of 2 parallel acrylic plates was designed for flow measurement. The flow chamber has a rectangular flow channel, 2 flow reservoirs for stabilizing the fluid flow, a sensor mounting port for resonator holding, one inlet port, and one outlet port for pipe connection. A 5-MHz TSM quartz resonator was edge-bonded to the sensor mounting port with one side exposed to the flowing liquid and other side exposed to air. The electrical impedance spectra of the quartz resonator at different volumetric flow rate conditions were measured by an impedance analyzer for the extraction of the resonant frequency through a data-fitting method. The fundamental, 3rd, 5th, 7th, and 9th resonant frequency shifts were found to be around 920, 3572, 5947, 8228, and 10,300 Hz for flow rate variation from 0 to 3000 mL/min, which had a corresponding Reynolds number change from 0 to 822. The resonant frequency shifts of different modes are found to be quadratic with flow rate, which is attributed to the nonlinear effect of quartz resonator due to the effective normal pressure imposing on the resonator sensor by the flowing fluid. The results indicate that quartz TSM resonators can be used for flow sensors with characteristics of simplicity, fast response, and good repeatability. PMID:19811997

  4. Starch viscoelastic properties studied with an acoustic wave sensor.

    PubMed

    Santos, M D; Gomes, M T S R

    2014-01-01

    Gelatinization and retrogradation of starch was followed in real time with an acoustic wave sensor. This study relies on the monitorization of the frequency of oscillation of a piezoelectric quartz crystal in contact with a 2.5% emulsion of a commercial maize starch, during heating and cooling. The technique showed to be very powerful and sensitive to most of the changes described in the literature, which have been elucidated by some other techniques. The value for the temperature of gelatinization found using the sensor was confirmed by the analysis of the same starch emulsion by polarized light microscopy. Temperatures of gelatinization were found to vary with the sample heating rate, as follows: 73.5 °C at 2.0 °C/min, 66.0 °C at 1.0 °C/min, and 65.0 °C at 0.5 °C/min. Hysteresis of the studied system was evidenced by the frequency shift before heating and after cooling till the initial temperature. Analysis performed on a 1.5% emulsion of a rice starch heated at 2.0 °C/min and cooled as before, evidenced no hysteresis and showed complete reversibility, in which concerns to the series frequency of the piezoelectric quartz crystal. PMID:24274480

  5. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  6. Dual output acoustic wave sensor for molecular identification

    SciTech Connect

    Frye, G.C.; Martin, S.J.

    1990-10-03

    The invention comprises a method for the identification and quantification of sorbed chemical species onto a coating of a device capable of generating and receiving an acoustic wave, by measuring the changes in the velocity of the acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating and by measuring the changes in the attenuation of an acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating. The inventive method further correlates the magnitudes of the changes of velocity with respect to changes of the attenuation of the acoustic wave to identify the sorbed chemical species. The absolute magnitudes of the velocity changes or the absolute magnitude of the attenuation changes are used to determine the concentration of the identified chemical species.

  7. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  8. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  9. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    NASA Technical Reports Server (NTRS)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  10. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  11. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

    NASA Technical Reports Server (NTRS)

    Dhawan, R.; Gunther, M. F.; Claus, R. O.

    1991-01-01

    Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

  12. Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices

    SciTech Connect

    Hughes, R.C.; Moreno, D.J.; Jenkins, M.W.; Rodriguez, J.L.

    1993-10-01

    Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

  13. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices. PMID:25643594

  14. A thickness mode acoustic wave sensor for measuring interface stiffness between two elastic materials.

    PubMed

    Chen, Jiankang; Wang, Wencai; Wang, Ji; Yang, Zengtao; Yang, Jiashi

    2008-08-01

    We studied thickness vibration of 2 elastic layers with an elastic interface mounted on a plate piezoelectric resonator. The effect of the interface elasticity on resonant frequencies was examined. The result obtained suggests an acoustic wave sensor for measuring the elastic property of an interface between 2 materials. PMID:18986911

  15. Hydrogen-Bond Basic Siloxane Phosphonate Polymers for Surface Acoustic Wave (Saw) Sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A surface acoustic wave (SAW) sensor coated with a novel hydrogen-bond basic siloxane phosphonate SAW polymer gave excellent initial response and long-term performance when tested against phenol vapor and compared with polyethyleneimine (PEI), a conventional hydrogent-bond basic SAW polymer....

  16. Sensor apparatus

    DOEpatents

    Deason, Vance A [Idaho Falls, ID; Telschow, Kenneth L [Idaho Falls, ID

    2009-12-22

    A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

  17. Wireless surface acoustic wave sensors for displacement and crack monitoring in concrete structures

    NASA Astrophysics Data System (ADS)

    Perry, M.; McKeeman, I.; Saafi, M.; Niewczas, P.

    2016-03-01

    In this work, we demonstrate that wireless surface acoustic wave devices can be used to monitor millimetre displacements in crack opening during the cyclic and static loading of reinforced concrete structures. Sensors were packaged to extend their gauge length and to protect them against brittle fracture, before being surface-mounted onto the tensioned surface of a concrete beam. The accuracy of measurements was verified using computational methods and optical-fibre strain sensors. After packaging, the displacement and temperature resolutions of the surface acoustic wave sensors were 10 μ {{m}} and 2 °C respectively. With some further work, these devices could be retrofitted to existing concrete structures to facilitate wireless structural health monitoring.

  18. Experimental Study of Highly Sensitive Sensor Using a Surface Acoustic Wave Resonator for Wireless Strain Detection

    NASA Astrophysics Data System (ADS)

    Bao; Zhongqing; Hara, Motoaki; Mitsui, Misato; Sano, Koji; Nagasawa, Sumito; Kuwano, Hiroki

    2012-07-01

    We developed a highly sensitive strain sensor employing a surface acoustic wave (SAW) resonator for a wireless sensing system. The aim of this study is to monitor the distribution of the strain in the earth crust or giant infrastructures, such as bridges, skyscrapers and power plants, for disaster prevention. A SAW strain sensor was fabricated using LiNbO3 and a quartz substrate, and applied in a tensile test by attaching the steel specimen based on Japanese Industrial Standards (JIS Z2441-1). The results confirmed that the developed sensor could detect a strain of 10-6 order with linearity.

  19. Measurement of Plasma Clotting Using Shear Horizontal Surface Acoustic Wave Sensor

    NASA Astrophysics Data System (ADS)

    Nagayama, Tatsuya; Kondoh, Jun; Oonishi, Tomoko; Hosokawa, Kazuya

    2013-07-01

    The monitoring of blood coagulation is important during operation. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied to monitor plasma clotting. An SH-SAW sensor with a metallized surface for mechanical perturbation detection can detect plasma clotting. As plasma clotting is a gel formation reaction, the SH-SAW sensor detects viscoelastic property changes. On the other hand, an SH-SAW sensor with a free surface for electrical perturbation detection detects only the liquid mixing effect. No electrical property changes due to plasma clotting are obtained using this sensor. A planar electrochemical sensor is also used to monitor plasma clotting. In impedance spectral analysis, plasma clotting is measured. However, in the measurement of time responses, no differences between clotting and nonclotting are obtained. Therefore, the SH-SAW sensor is useful for monitoring plasma clotting.

  20. A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    PubMed Central

    EL Gowini, Mohamed M.; Moussa, Walied A.

    2010-01-01

    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced. PMID:22205865

  1. Measurement of cantilever vibration using impedance-loaded surface acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Hamashima, Hiromitsu; Kondoh, Jun

    2016-07-01

    In this study, an impedance-loaded surface acoustic wave (SAW) sensor was demonstrated to monitor the vibration frequency. Commercialized pressure sensors and a variable capacitor were chosen as external sensors, which were connected to a reflector on a SAW device. As the reflection coefficient of the reflector depended on the impedance, the echo amplitude was influenced by changes in the impedance of the external sensor. The vibration frequency of the cantilever was determined by monitoring the echo amplitude of the SAW device. Moreover, the attenuation constant of an envelope was estimated. The results of our feasibility study indicate that the impedance-loaded SAW sensor can be applied as a detector for structural health monitoring.

  2. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    SciTech Connect

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  3. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    PubMed Central

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-01-01

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications. PMID:25951337

  4. Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption

    PubMed Central

    Liu, Jiansheng; Lu, Yanyan

    2014-01-01

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data. PMID:24743157

  5. A lateral field excited (yxl)88° LiTaO3 bulk acoustic wave sensor with interdigital electrodes.

    PubMed

    Ma, Tingfeng; Wang, Ji; Du, Jianke; Yuan, Lili; Qian, Zhenghua; Zhang, Zhitian; Zhang, Chao

    2013-03-01

    In this work, to improve the sensitivity of lateral field excited (LFE) sensors to changes of liquid conductivity, LFE bulk acoustic wave sensors with interdigital electrodes are investigated. LFE bulk acoustic wave on thickness-shear mode is excited successfully by interdigital electrodes on (yxl)88° LiTaO(3) and applied in liquid-phase sensor. The electric field direction of LFE (yxl)88° LiTaO(3) plates is determined. Based on this, several LFE bulk acoustic wave sensors with interdigital electrodes are designed and fabricated to increase the sensitivity of LiTaO(3) LFE sensors. The results show that the (yxl)88° LiTaO(3) LFE sensor with interdigital electrodes is 10.9 times and 2.1 times more sensitive to changes in liquid conductivity compared to traditional LFE devices with single gap circular electrodes and Archimedes spiral electrodes, respectively. The results are important for investigating high-sensitivity LFE bulk acoustic wave sensors by using LiTaO(3) crystal. PMID:23339996

  6. A wireless demodulation system for passive surface acoustic wave torque sensor

    NASA Astrophysics Data System (ADS)

    Ji, Xiaojun; Fan, Yanping; Qi, Hongli; Chen, Jing; Han, Tao; Cai, Ping

    2014-12-01

    Surface acoustic wave (SAW) resonators are utilized as torque sensors for their passive and wireless features. However, the response of a SAW torque sensor is difficult to detect because of the transient response duration and interruption of channel noise, which limit the application of SAW torque sensors. The sensitive mechanism and response function of a passive wireless SAW torque sensor are analyzed in this study. A novel demodulation system involving both hardware and software is developed for the SAW torque sensor. A clipping amplifier is utilized in the hardware to widen the dynamic response range and increase the length of the valid signal. Correlation extension and centroid algorithms are designed to lengthen the received signal and improve the estimation accuracy of the center frequency of the response signal, respectively. Meanwhile, a fast binary search algorithm is proposed to accelerate the scanning cycle according to the developed response function. Finally, the SAW torque sensor demodulation system is set up and SAW resonators with high sensitivity are fabricated on a quartz substrate. The presented demodulation system is tested, and a standard deviation of 0.28 kHz is achieved. This value is much smaller than that of classic and modern spectrum estimation methods. The sensitivity of resonance frequency shift versus torque on the shaft of the assembled senor is 2.03 kHz/Nm; the coefficient of determination is 0.999, and the linearity is 0.87%. Experimental results verify the validity and feasibility of the proposed SAW torque sensor demodulation system.

  7. Response of a Pt-polyyne membrane in surface acoustic wave sensors: Experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Caliendo, Cinzia; Fratoddi, Ilaria; Russo, Maria Vittoria; Lo Sterzo, Claudio

    2003-06-01

    A surface acoustic wave (SAW) sensor, based on a polymeric sensitive membrane, has been realized for sensor applications and materials characterization. A platinum-containing rigid-rod organometallic polymer [-Pt(PPh3)2(-C≡C-pC6H2(2,5-OC16H33)2-C≡C-)]n (Pt-P-HDOB), obtained by the reaction of cis-[Pt(PPh3)2Cl2] with 1,4-diethynyl-2,5-dihexadeciloxybenzene (HDOB) by means of the recently assessed "Extended one pot" polymerization route, was here studied. The chemical structure and chain length of Pt-P-HDOB polymer were defined by spectroscopic techniques and gel permeation chromatography measurements. The acoustic characterization of the Pt-P-HDOB film was developed with the aid of the perturbation theory applied to different polymer-coated-piezoelectric substrates and the shear modulus of Pt-P-HDOB film have been estimated. A SAW delay line has been implemented on ZnO/Si substrate and a thin polymeric film has been spin deposited on the device surface to realize a chemical sensor. The sensor has been exposed to different chemicals and its response has been measured for different chemical concentrations. High sensitivity and reproducibility of the sensor response to relative humidity and methanol vapors were found.

  8. ZnO nanomaterials based surface acoustic wave ethanol gas sensor.

    PubMed

    Wu, Y; Li, X; Liu, J H; He, Y N; Yu, L M; Liu, W H

    2012-08-01

    ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature. PMID:22962774

  9. Temperature Measurements on Hot Spots of Power Substations Utilizing Surface Acoustic Wave Sensors

    NASA Astrophysics Data System (ADS)

    Cavaco, M. A. M.; Benedet, M. E.; Neto, L. R.

    2011-12-01

    In several applications in the field of metrology, the direct connection of the sensor element with the respective signal-processing unit of the measurement system is not trivial. It can be mentioned, as an example, the measurement of hot points in electric power substations because of the high electrical potential. To solve that problem, two alternatives were studied, one using active surface acoustic wave (SAW) sensors and other using passive SAW tags. For the passive sensor, a SAW radio-frequency identification (RFID) temperature detector was used. That technology is widely applied for typical transport identification (grain transportation, road traffic control), but its application in the field of metrology is innovative. The variation in temperature makes an alteration in the characteristics of the piezoelectric material of the SAW matrix, changing mostly the resonance frequency. Using SAW-RFID, the problem of measuring temperature basically is directed to the identification of the frequency of resonance of the SAW. The use of active SAW sensors has been demonstrated to be much more satisfactory for the solution of such a problem because of the limitation in the range of the passive sensors.

  10. Surface acoustic wave sensor array system for trace organic vapor detection using pattern recognition analysis

    NASA Astrophysics Data System (ADS)

    Rose-Pehrsson, Susan L.; Grate, Jay W.; Klusty, Mark

    1993-03-01

    A sensor system using surface acoustic wave (SAW) vapor sensors has been fabricated and tested against hazardous organic vapors, simulants of these vapors, and potential background vapors. The vapor tests included two- and three-component mixtures, and covered a wide relative humidity range. The sensor system was compared of four SAW devices coated with different sorbent materials with different vapor selectivities. Preconcentrators were included to improve sensitivity. The vapor experiments were organized into a large data set analyzed using pattern recognition techniques. Pattern recognition algorithms were developed to identify two different classes of hazards. The algorithms were verified against a second data set not included in the training. Excellent sensitivity was achieved by the sensor coatings, and the pattern recognition analysis, and was also examined by the preconcentrators. The system can detect hazardous vapors of interest in the ppb range even in varying relative humidity and in the presence of background vapors. The system does not false alarm to a variety of other vapors including gasoline, jet fuel, diesel fuel and cigarette smoke.

  11. Surface acoustic wave acceleration sensor with high sensitivity incorporating ST-X quartz cantilever beam

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Huang, Yangqing; Liu, Xinlu; Liang, Yong

    2015-01-01

    The implementation and performance of a surface acoustic wave (SAW)-based acceleration sensor is described. The sensor was composed of a flexible ST-X quartz cantilever beam with a relatively substantial proof mass at the undamped end, a pattern of a two-port SAW resonator deposited directly on the surface of the beam adjacent to the clamped end for maximum strain sensitivity and a SAW resonator affixed on the metal package base for temperature compensation. The acceleration was directed to the proof mass flex of the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW traveling along the beams. The frequency signal from the differential oscillation structure utilizing the SAW resonators as the feedback element varies as a function of acceleration. The sensor response mechanism was analyzed theoretically, with the aim of determining the optimized dimension of the cantilever beam. The coupling of modes (COM) model was used to simulate the synchronous SAW resonator prior to fabrication. The oscillator frequency stability was improved using the phase modulation approach; the obtained typical short-term frequency stability ranged up to 1 Hz s-1. The performance of the developed acceleration sensor was evaluated using the precise vibration table and was also evaluated in comparison to the theoretical calculation. A high frequency sensitivity of 29.7 kHz g-1, good linearity and a lower detection limit (˜1 × 10-4 g) were achieved in the measured results.

  12. A wireless demodulation system for passive surface acoustic wave torque sensor.

    PubMed

    Ji, Xiaojun; Fan, Yanping; Qi, Hongli; Chen, Jing; Han, Tao; Cai, Ping

    2014-12-01

    Surface acoustic wave (SAW) resonators are utilized as torque sensors for their passive and wireless features. However, the response of a SAW torque sensor is difficult to detect because of the transient response duration and interruption of channel noise, which limit the application of SAW torque sensors. The sensitive mechanism and response function of a passive wireless SAW torque sensor are analyzed in this study. A novel demodulation system involving both hardware and software is developed for the SAW torque sensor. A clipping amplifier is utilized in the hardware to widen the dynamic response range and increase the length of the valid signal. Correlation extension and centroid algorithms are designed to lengthen the received signal and improve the estimation accuracy of the center frequency of the response signal, respectively. Meanwhile, a fast binary search algorithm is proposed to accelerate the scanning cycle according to the developed response function. Finally, the SAW torque sensor demodulation system is set up and SAW resonators with high sensitivity are fabricated on a quartz substrate. The presented demodulation system is tested, and a standard deviation of 0.28 kHz is achieved. This value is much smaller than that of classic and modern spectrum estimation methods. The sensitivity of resonance frequency shift versus torque on the shaft of the assembled senor is 2.03 kHz/Nm; the coefficient of determination is 0.999, and the linearity is 0.87%. Experimental results verify the validity and feasibility of the proposed SAW torque sensor demodulation system. PMID:25554317

  13. Recent developments on surface acoustic wave (SAW) sensors for harsh conditions

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Chilibon, Irinela; Grosu, Neculai; Craciun, Alexandru

    2015-02-01

    The results of research into Surface Acoustic Waves (SAW) devices have been recognized for their efficiency and versatility in the electrical signals processing. Actual progress in the industrial application of piezoelectric materials such as Lithium Niobate (LiNbO3), Langasite (LGS), Lanthanum-Gallium Silicate La3Ga5SiO14 and Gallium Orthophosphate (GaPO4), allows the manufacturing of devices with piezoelectric performances, which overcome the limits obtained with quartz crystals. The single crystal materials have a long term high stability - near to infinite - and moreover, some of these have an excellent behavior with temperature variation. Today, GaPO4 with its properties is by far the best suited piezoelectric material to be used in sensor applications for machine monitoring and pressure measurements, at high temperatures. SAW micro devices based on GaPO4 operate at temperatures of up to 8000C. For a particular case, of harsh-environment applications, additional challenges need to be overcome, relating to substrate integrity and operation, thin film electrode fabrication, device packaging, and sensor interrogation. This paper reviews the novel progres in the area of (SAW) sensors for harsh conditions.

  14. High frequency stability oscillator for surface acoustic wave-based gas sensor

    NASA Astrophysics Data System (ADS)

    Wang, Wen; He, Shitang; Li, Shunzhou; Pan, Yong

    2006-12-01

    This paper presents a 158 MHz surface acoustic wave (SAW) oscillator used for a gas sensor. As the oscillator element, a SAW delay line on ST-X quartz substrate with low insertion loss (<8 dB) and single mode selection capability was developed. Low insertion loss was achieved by an electrode width control single phase unidirectional transducer (EWC/SPUDT) configuration. Single mode selection was simply accomplished by a comb transducer which is a means of combining the frequency selectivity of two interdigital transducers (IDTs). Coupling of modes (COM) simulation was performed to predict device performance prior to fabrication. The measured frequency response S12 showed a good agreement with simulated results. The effect of the oscillator circuit system temperature shift upon frequency stability was observed in detail. The experimental results showed that the baseline noise was typically up to ~0.7 × 10-7 in a laboratory environment with temperature control. The oscillator was successfully applied to a gas sensor coated self-assembled composite monolayer as a sensor material for dimethyl-methyl-phosphonate (DMMP). The sensitivity for low DMMP concentration detection was evaluated as ~25 Hz mg-1 m-3, and the threshold detection limit was up to 0.5 mg m-3.

  15. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    PubMed

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-01-01

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed. PMID:24577520

  16. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    PubMed Central

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-01-01

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz·deg·s−1) and good linearity were observed. PMID:24577520

  17. High-sensitivity open-loop electronics for gravimetric acoustic-wave-based sensors.

    PubMed

    Rabus, David; Friedt, Jean-Michel; Ballandras, Sylvain; Martin, Gilles; Carry, Emile; Blondeau-Patissier, Virginie

    2013-06-01

    Detecting chemical species in gas phase has recently received an increasing interest mainly for security control, trying to implement new systems allowing for extended dynamics and reactivity. In this work, an open-loop interrogation strategy is proposed to use radio-frequency acoustic transducers as micro-balances for that purpose. The resulting system is dedicated to the monitoring of chemical compounds in gaseous or liquid-phase state. A 16 Hz standard deviation is demonstrated at 125 MHz, with a working frequency band in the 60 to 133 MHz range, answering the requirements for using Rayleigh- and Love-wave-based delay lines operating with 40-μm acoustic wavelength transducers. Moreover, this electronic setup was used to interrogate a high-overtone bulk acoustic wave resonator (HBAR) microbalance, a new sensor class allowing for multi-mode interrogation for gravimetric measurement improvement. The noise source still limiting the system performance is due to the analog-to-digital converter of the microcontroller, thus leaving open degrees-of-freedom for improving the obtained results by optimizing the voltage reference and board layout. The operation of the system is illustrated using a calibrated galvanic deposition at the surface of Love-wave delay lines to assess theoretical predictions of their gravimetric sensitivity and to compare them with HBAR-based sensor sensitivity. PMID:25004485

  18. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    PubMed

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. PMID:26095144

  19. Temperature compensation of ball surface acoustic wave sensor by two-frequency measurement using undersampling

    NASA Astrophysics Data System (ADS)

    Tsuji, Toshihiro; Oizumi, Toru; Takeda, Nobuo; Akao, Shingo; Tsukahara, Yusuke; Yamanaka, Kazushi

    2015-07-01

    To realize a practical two-frequency measurement (TFM) system for precise temperature compensation in a ball surface acoustic wave (SAW) sensor, the application of undersampling (US) was investigated. The subtraction coefficient for the temperature compensation in US was theoretically explained. The principle of the TFM system using US was simulated by the decimation of the oversampling (OS) waveform after applying a narrow band-pass filter, and the delay time was measured using a wavelet transform. In the application of the method to trace moisture measurement, the delay time response due to US matched that due to OS with a correlation coefficient higher than 0.9999. Although rms noise was increased by US, the response to the concentration change of 4-17 nmol/mol was measured with a signal-to-noise ratio higher than 20. From these results, it was shown that the precise output of the ball SAW sensor could be obtained even when using US, which was equivalent to that using OS.

  20. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

    PubMed Central

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.

    2014-01-01

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications. PMID:25425458

  1. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  2. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration

    PubMed Central

    Hao, Wenchang; Liu, Jiuling; Liu, Minghua; Liang, Yong; He, Shitang

    2016-01-01

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO2) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device. PMID:27104540

  3. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor.

    PubMed

    Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong; Yao, Da-Jeng

    2016-01-01

    Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers-wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order-wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119

  4. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration.

    PubMed

    Hao, Wenchang; Liu, Jiuling; Liu, Minghua; Liang, Yong; He, Shitang

    2016-01-01

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO₂) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device. PMID:27104540

  5. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  6. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  7. Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors.

    PubMed

    Patrash, S J; Zellers, E T

    1993-08-01

    Responses from an array of four polymer-coated surface acoustic wave sensors exposed to a series of 39 organic vapors were used to investigate sensor response models based on vapor boiling point, solubility parameters, and solvation parameters in conjunction with linear solvation energy relationships. As part of this effort, sensor response data were used to estimate the solubility parameters and solvation parameters of the sensor coatings by adaptation of methods originally developed for use with gas-liquid chromatographic retention data. Values of these parameters were found to be consistent with the structures of the coatings though in some cases different from those determined by other methods. Discrepancies were attributed to differences in the conditions used for the determinations. Sensor responses were linear over the concentration ranges examined and could be summarized using the empirically determined partition coefficient, Ke, for each vapor-coating pair. Linear correlations were found between log Ke and vapor boiling point, and the slopes of the regressions lines were similar to those expected for ideal behavior. The strength of the correlations decreased with increasing coating polarity, and it was necessary to divide the vapors into two or three broad chemical classes in order to obtain satisfactory results. Improved correlations were found by use of Hildebrand solubility parameters in a model based on regular solution theory which attempts to account for nonideal vapor-coating interactions. The use of solvation parameters in linear solvation energy relationships, however, provided the strongest correlations, with modeled K values falling within a factor of 2 of experimental values in all cases and within +/- 25% of experimental values in 83% of the cases. Application of these models to the prediction of sensor array response patterns appears promising. PMID:8372969

  8. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    PubMed

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. PMID:25624226

  9. Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors During Exposure to Gas-Phase Analytes

    SciTech Connect

    Hierlemann, A.; Hill, M.; Ricco, A.J.; Staton, A.W.; Thomas, R.C.

    1999-01-11

    We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseous analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes.

  10. Evaluating the adhesion of SU-8 thin films using an AlN/Si surface acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    El Gowini, Mohamed M.; Moussa, Walied A.

    2015-03-01

    A new approach is developed for evaluating the adhesion of SU-8 thin films using a surface acoustic wave (SAW) sensor. The SAW sensor consists of a silicon (Si) substrate coated with a thin aluminum nitride (AlN) film and two sets of inter-digital electrodes (IDT) patterned on the AlN surface. Two sensor configurations are developed in order to evaluate the adhesion of SU-8. In the first configuration the SU-8 layer is patterned on top of a gold film that is deposited on the AlN surface. In the second configuration the gold film is coated with an omnicoat layer prior to patterning the SU-8 film. Omnicoat is an adhesion promoter for SU-8, which is used to increase its adhesion to gold. The frequency responses from both configurations are measured and the shift in the center frequency value is evaluated. The results illustrate that without omnicoat the center frequency shifts to a higher value indicating an increase in the wave velocity. This is because the poor adhesion of the SU-8 layer without omnicoat causes the wave to be more concentrated in the AlN/Si structure and AlN has a higher acoustic wave velocity in comparison to the SU-8 layer. In addition, four SAW sensors operating at four different center frequencies are developed to investigate the change in sensor sensitivity with the increase in center frequency. The results indicate that the sensor sensitivity increases proportionally to the increase in operating frequency. Finally, a theoretical model is developed to calculate the wave dispersion profile for the SU-8/AlN/Si configuration. The interface of the SU-8/AlN layers is modeled as a layer of mass-less springs with stiffness K(N m-3). The shifts in the wave dispersion profile at different levels of interface spring stiffness are compared to the experimental values to evaluate the adhesion of the SU-8 layer.

  11. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    DOEpatents

    Pfeifer, Kent B.; Frye, Gregory C.; Schneider, Thomas W.

    1996-01-01

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO.sub.2. In another embodiment, the SiO.sub.2 is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system.

  12. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    DOEpatents

    Pfeifer, K.B.; Frye, G.C.; Schneider, T.W.

    1996-11-05

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO{sub 2}. In another embodiment, the SiO{sub 2} is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system. 8 figs.

  13. Characterization of the HIV-1 TAR RNA-Tat peptide and drug interactions by on-line acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Tassew, Nardos Gobena

    This thesis presents the application of the thickness shear-mode (TSM) acoustic wave sensor to the study of RNA-protein and RNA-drug interactions at the solid-liquid interface. The binding of the human immunodeficiency virus-type 1 Tat protein to the trans-activation responsive RNA element (TAR) has been studied using this sensor. Data from such measurements show that the sensor is able to discriminate between different Tat peptides derived from the parent protein based on size. The effects of mutations introduced at specific sites in the protein and RNA on the TAR-Tat binding have also been examined in detail. Reduced level of response in acoustic parameters due to mutations was observed indicating that the decrease in binding in response to site specific mutations can be acoustically detected. Data from acoustic wave sensor measurements indicate that the TAR-Tat binding is also affected by ionic strength. Both the frequency and motional resistance signals show periodic responses when varying concentrations of salt are introduced on a TAR-modified surface. The binding of the two molecules seems to be a function of the response of the nucleic acid to salt concentrations. The kinetics of binding of Tat peptides to TAR RNA and to a bulge mutant analogue (MTAR) is also examined from the rate of change of the series resonant frequency. Results from such analysis illustrate longer Tat peptides formed more stable complexes with TAR RNA and exhibited increased discrimination between mutant and wild type TAR. The binding of two aminoglycoside antibiotics, neomycin and streptomycin, to TAR RNA and their effectiveness in preventing TAR-Tat complex formation has been studied in detail. Binding affinity is directly correlated with the inhibitory potency of these molecules and the TSM sensor shows that neomycin exhibits at least a ten fold greater affinity to TAR and that it is also a more potent inhibitor than streptomycin. The results from this research involving TAR-Tat and

  14. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors.

    PubMed

    Grate, J W; Kaganove, S N; Bhethanabotla, V R

    1998-01-01

    Apparent partition coefficients, K, for the sorption of toluene by four different polymer thin films on thickness shear mode (TSM) and surface acoustic wave (SAW) devices are compared. The polymers examined were poly(isobutylene) (PIB), poly(epichlorohydrin) (PECH), poly(butadiene) (PBD), and poly(dimethylsiloxane) (PDMS). Independent data on partition coefficients for toluene in these polymers were compiled for comparison, and TSM sensor measurements were made using both oscillator and impedance analysis methods. K values from SAW sensor measurements were about twice those calculated from TSM sensor measurements when the polymers were PIB and PECH, and they were also at least twice the values of the independent partition coefficient data, which is interpreted as indicating that the SAW sensor responds to polymer modulus changes as well as to mass changes. K values from SAW and TSM measurements were in agreement with each other and with independent data when the polymer was PBD. Similarly, K values from the PDMS-coated SAW sensor were not much larger than values from independent measurements. These results indicate that modulus effects were not contributing to the SAW sensor responses in the cases of PBD and PDMS. However, K values from the PDMS-coated TSM device were larger than the values from the SAW device or independent measurements, and the impedance analyzer results indicated that this sensor using our sample of PDMS at the applied thickness did not behave as a simple mass sensor. Differences in behavior among the test polymers on SAW devices are interpreted in terms of their differing viscoelastic properties. PMID:21644612

  15. Expendable oceanographic sensor apparatus

    DOEpatents

    McCoy, Kim O.; Downing, Jr., John P.; DeRoos, Bradley G.; Riches, Michael R.

    1993-01-01

    An expendable oceanographic sensor apparatus is deployed from an airplane or a ship to make oceanographic observations in a profile of the surface-to-ocean floor, while deployed on the floor, and then a second profile when returning to the ocean surface. The device then records surface conditions until on-board batteries fail. All data collected is stored and then transmitted from the surface to either a satellite or other receiving station. The apparatus is provided with an anchor that causes descent to the ocean floor and then permits ascent when the anchor is released. Anchor release is predetermined by the occurrence of a pre-programmed event.

  16. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    DOE PAGESBeta

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Gallis, Dorina F. S.

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less

  17. TOPICAL REVIEW: Sensors and actuators based on surface acoustic waves propagating along solid liquid interfaces

    NASA Astrophysics Data System (ADS)

    Lindner, Gerhard

    2008-06-01

    The propagation of surface acoustic waves (SAWs) along solid-liquid interfaces depends sensitively on the properties of the liquid covering the solid surface and may result in a momentum transfer into the liquid and thus a propulsion effect via acoustic streaming. This review gives an overview of the design of different SAW devices used for the sensing of liquids and the basic mechanisms of the interaction of SAWs with overlaying liquids. In addition, applications of devices based on these phenomena with respect to touch sensing and the measurement of liquid properties such as density, viscosity or the composition of mixed liquids are described, including microfabricated as well as macroscopic devices made from non-piezoelectric materials. With respect to the rapidly growing field of acoustic streaming applications, recent developments in the movement of nanolitre droplets on a single piezoelectric chip, the rather macroscopic approaches to the acoustic pumping of liquids in channels and recent attempts at numerical simulations of acoustic streaming are reported.

  18. Quantitative determination of size and shape of surface-bound DNA using an acoustic wave sensor.

    PubMed

    Tsortos, Achilleas; Papadakis, George; Mitsakakis, Konstantinos; Melzak, Kathryn A; Gizeli, Electra

    2008-04-01

    DNA bending plays a significant role in many biological processes, such as gene regulation, DNA replication, and chromosomal packing. Understanding how such processes take place and how they can, in turn, be regulated by artificial agents for individual oriented therapies is of importance to both biology and medicine. In this work, we describe the application of an acoustic wave device for characterizing the conformation of DNA molecules tethered to the device surface via a biotin-neutravidin interaction. The acoustic energy dissipation per unit mass observed upon DNA binding is directly related to DNA intrinsic viscosity, providing quantitative information on the size and shape of the tethered molecules. The validity of the above approach was verified by showing that the predesigned geometries of model double-stranded and triple-helix DNA molecules could be quantitatively distinguished: the resolution of the acoustic measurements is sufficient to allow discrimination between same size DNA carrying a bent at different positions along the chain. Furthermore, the significance of this analysis to the study of biologically relevant systems is shown during the evaluation of DNA conformational change upon protein (histone) binding. PMID:18178642

  19. Quantitative Determination of Size and Shape of Surface-Bound DNA Using an Acoustic Wave Sensor

    PubMed Central

    Tsortos, Achilleas; Papadakis, George; Mitsakakis, Konstantinos; Melzak, Kathryn A.; Gizeli, Electra

    2008-01-01

    DNA bending plays a significant role in many biological processes, such as gene regulation, DNA replication, and chromosomal packing. Understanding how such processes take place and how they can, in turn, be regulated by artificial agents for individual oriented therapies is of importance to both biology and medicine. In this work, we describe the application of an acoustic wave device for characterizing the conformation of DNA molecules tethered to the device surface via a biotin-neutravidin interaction. The acoustic energy dissipation per unit mass observed upon DNA binding is directly related to DNA intrinsic viscosity, providing quantitative information on the size and shape of the tethered molecules. The validity of the above approach was verified by showing that the predesigned geometries of model double-stranded and triple-helix DNA molecules could be quantitatively distinguished: the resolution of the acoustic measurements is sufficient to allow discrimination between same size DNA carrying a bent at different positions along the chain. Furthermore, the significance of this analysis to the study of biologically relevant systems is shown during the evaluation of DNA conformational change upon protein (histone) binding. PMID:18178642

  20. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    SciTech Connect

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Gallis, Dorina F. S.

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs, we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.

  1. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-01

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM

  2. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  3. A method for achieving monotonic frequency-temperature response for langasite surface-acoustic-wave high-temperature sensor

    NASA Astrophysics Data System (ADS)

    Shaoming, Bao; Yabing, Ke; Yanqing, Zheng; Lina, Cheng; Honglang, Li

    2016-02-01

    To achieve the monotonic frequency-temperature response for a high-temperature langasite (LGS) surface-acoustic-wave (SAW) sensor in a wide temperature range, a method utilizing two substrate cuts with different propagation angles on the same substrate plane was proposed. In this method, the theory of effective permittivity is adopted to calculate the temperature coefficients of frequency (TCF), electromechanical coupling coefficients (k2), and power flow angle (PFA) for different propagation angles on the same substrate plane, and then the two substrate cuts were chosen to have large k2 and small PFA, as well as the difference in their TCFs (ΔTCF) to always have the same sign of their values. The Z-cut LGS substrate plane was taken as an example, and the two suitable substrate cuts with propagation angles of 74 and 80° were chosen to derive a monotonic frequency-temperature response for LGS SAW sensors at -50 to 540 °C. Experiments on a LGS SAW sensor using the above two substrate cuts were designed, and its measured frequency-temperature response at -50 to 540 °C agreed well with the theory, demonstrating the high accuracy of the proposed method.

  4. Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of β-Cyclodextrin Derivative.

    PubMed

    Pan, Yong; Mu, Ning; Shao, Shengyu; Yang, Liu; Wang, Wen; Xie, Xiao; He, Shitang

    2015-01-01

    Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a b-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  5. Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of β-Cyclodextrin Derivative

    PubMed Central

    Pan, Yong; Mu, Ning; Shao, Shengyu; Yang, Liu; Wang, Wen; Xie, Xiao; He, Shitang

    2015-01-01

    Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a β-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  6. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors

    SciTech Connect

    Grate, J.W.; Kaganove, S.N.; Patrash, S.J.

    1997-05-01

    Hybrid organic/inorganic polymers have been prepared incorporating fluoroalkyl-substituted bisphenol groups linked using oligosiloxane spacers. These hydrogen-bond acidic materials have glass-to-rubber transition temperatures below room temperature and are excellent sorbents for basic vapors. The physical properties such as viscosity and refractive index can be tuned by varying the length of the oligosiloxane spacers and the molecular weight. In addition, the materials are easily cross-linked to yield solid elastomers. The potential use of these materials for chemical sensing has been demonstrated by applying them to surface acoustic wave devices as thin films and detecting the hydrogen-bond basic vapor dimethyl methylphosphonate with high sensitivity. It has also been demonstrated that one of these materials with suitable viscosity and refractive index can be used to clad silica optical fibers; the cladding was applied to freshly drawn fiber using a fiber drawing tower. These fibers have potential as evanescent wave optical fiber sensors. 38 refs., 2 figs.

  7. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Pollard, Thomas B

    Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity

  8. Alarm sensor apparatus for closures

    DOEpatents

    Carlson, James A.; Stoddard, Lawrence M.

    1986-01-01

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or frame work and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  9. Alarm sensor apparatus for closures

    DOEpatents

    Carlson, J.A.; Stoddard, L.M.

    1984-01-31

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or framework and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  10. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  11. Plate acoustic wave sensor for detection of small amounts of bacterial cells in micro-litre liquid samples.

    PubMed

    Anisimkin, V I; Kuznetsova, I Е; Kolesov, V V; Pyataikin, I I; Sorokin, V V; Skladnev, D A

    2015-09-01

    Ultrasonic acoustic waves propagating in thin piezoelectric plates with free faces are used for bacteria detection in micro-litre liquid samples deposited on one of the plate surface. The limits of the detection at normal conditions are as low as 0.04% for highly diluted rich cultural Luria-Bertani broth (LB-media) in distillate water, 0.07% for bacterial cells in distillate water, and 0.6% for bacterial cells in LB-media. For all analytes the most probable detection mechanism is the change in liquid conductivity. Because of no using any sorbent film the long-term stability of the detection is expected as very high. PMID:26049732

  12. Surface acoustic wave gas sensor for nitrogen dioxide using phthalocyanines as chemical interfaces. Effects of nitric oxide, halogen gases, and prolonged heat treatment

    SciTech Connect

    Nieuwenhuizen, M.S.; Nederlof, A.J.

    1988-02-01

    The effect of CO, NO, and O/sub 2/ on the response of a SAW (surface acoustic wave) chemosensor for NO/sub 2/ has been studied. A description is given of the measuring equipment existing of a mass flow controlled automatic gas dilution system. Copper and iron phthalocyanine were used as the chemical interface. Simultaneously, the influence of ambient atmospheres (N/sub 2/ and O/sub 2/) was investigated. Predictions from ultraviolet-visible experiments in solution do not hold for gaseous environments. Also the effect of electronegative gases like the halogens was studied. Response up to 40 times the NO/sub 2/ response was measured. Prolonged heat treatment affects the sensitivity for NO/sub 2/ negatively as well as the response time. This asks for a more stable chemical interface. All results are discussed in terms of general performance criteria for gas sensors such as selectivity, sensitivity, response time, reversibility, and stability.

  13. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  14. Method of and apparatus for determining deposition-point temperature

    DOEpatents

    Mansure, Arthur J.; Spates, James J.; Martin, Stephen J.

    1998-01-01

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  15. Method of and apparatus for determining deposition-point temperature

    DOEpatents

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  16. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  17. Strong acoustic wave action

    NASA Astrophysics Data System (ADS)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  18. An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor.

    PubMed

    Oh, Se Yeon

    2015-01-01

    Fast gas chromatography-surface acoustic wave sensor (GC/SAW) has been applied for the detection of the pharmacological volatiles emanated from Houttuynia cordata Thunb which is from South Korea. H. cordata Thunb with unpleasant and fishy odors shows a variety of pharmacological activities such as anti-microbial, anti-inflammatory, anti-cancer, and insect repellent. The aim of this study is to show a novel quality control by GC/SAW methodology for the discrimination of the three different parts of the plant such as leaves, aerial stems, and underground stems for H. cordata Thunb. Sixteen compounds were identified. β-Myrcene, cis-ocimene and decanal are the dominant volatiles for leaves (71.0%) and aerial stems (50.1%). While, monoterpenes (74.6%) are the dominant volatiles for underground stems. 2-Undecanone (1.3%) and lauraldehyde (3.5%) were found to be the characteristic components for leaves. Each part of the plant has its own characteristic fragrance pattern owing to its individual chemical compositions. Moreover, its individual characteristic fragrance patterns are conducive to discrimination of the three different parts of the plant. Consequently, fast GC/SAW can be a useful analytical method for quality control of the different parts of the plant with pharmacological volatiles as it provides second unit analysis, a simple and fragrant pattern recognition. PMID:26046325

  19. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  20. Precision cleaning apparatus and method

    DOEpatents

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  1. Precision cleaning apparatus and method

    DOEpatents

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  2. Surface acoustic wave hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Bhethanabotla, Venkat R. (Inventor); Bhansali, Shekhar (Inventor)

    2006-01-01

    The present invention provides a delay line SAW device fabricated on a lithium niobate substrate and coated with a bilayer of nanocrystalline or other nanomaterials such as nanoparticles or nanowires of palladiumn and metal free pthalocyanine which will respond to hydrogen gas in near real time, at low (room) temperature, without being affected by CO, O.sub.2, CH.sub.4 and other gases, in air ambient or controlled ambient, providing sensitivity to low ppm levels.

  3. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  4. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    PubMed Central

    Greve, David W.; Chin, Tao-Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-01-01

    Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity. PMID:23708273

  5. Surface acoustic wave devices for harsh environment wireless sensing

    SciTech Connect

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  6. Methods and apparatus for improving sensor performance

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Kenny, Thomas W. (Inventor); Reynolds, Joseph K. (Inventor); Van Zandt, Thomas R. (Inventor); Waltman, Steven B. (Inventor)

    1993-01-01

    Methods and apparatus for improving performance of a sensor having a sensor proof mass elastically suspended at an initial equilibrium position by a suspension force, provide a tunable force opposing that suspension force and preset the proof mass with that tunable force to a second equilibrium position less stable than the initial equilibrium position. The sensor is then operated from that preset second equilibrium position of the proof mass short of instability. The spring constant of the elastic suspension may be continually monitored, and such continually monitored spring constant may be continually adjusted to maintain the sensor at a substantially constant sensitivity during its operation.

  7. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGESBeta

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  8. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1985-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have derived a theory, and tested it on tissues, for predicting the composition of composite materials using mixture rules, such as the one we derived for the nonlinear parameter two years ago; (2) We have published one article and another is in review on our use of modulated acoustic radiation pressure on levitated drops to characterize interfaces with and without surfactants. We have begun to study in a systematic way the nonlinear dynamics of drops, including drop fission: (3) we have improved apparatus for 30 MHz ultrasonic scattering from microparticles (approx. micron size), which should allow us to discriminate between different microparticles in a liquid; (4) We have begun to study the nonlinear mechanics of hydrodynamic solitons in cylindrical (2-d) geometry; and (5) We have been studying the use of acoustic levitation for transducer calibration.

  9. Imaging of Acoustic Waves in Sand

    SciTech Connect

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  10. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, P.W.; Stampfer, J.F.; Bradley, O.D.

    1999-02-02

    A universal penetration test apparatus is described for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material. 23 figs.

  11. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, Phillip W.; Stampfer, Joseph F.; Bradley, Orvil D.

    1999-01-01

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  12. Love Acoustic Wave-Based Devices and Molecularly-Imprinted Polymers as Versatile Sensors for Electronic Nose or Tongue for Cancer Monitoring

    PubMed Central

    Dejous, Corinne; Hallil, Hamida; Raimbault, Vincent; Lachaud, Jean-Luc; Plano, Bernard; Delépée, Raphaël; Favetta, Patrick; Agrofoglio, Luigi; Rebière, Dominique

    2016-01-01

    Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5′-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm−1 of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3′AMP and CMP, in accordance with previously published results on bulk MIP. PMID:27331814

  13. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    SciTech Connect

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  14. Love Acoustic Wave-Based Devices and Molecularly-Imprinted Polymers as Versatile Sensors for Electronic Nose or Tongue for Cancer Monitoring.

    PubMed

    Dejous, Corinne; Hallil, Hamida; Raimbault, Vincent; Lachaud, Jean-Luc; Plano, Bernard; Delépée, Raphaël; Favetta, Patrick; Agrofoglio, Luigi; Rebière, Dominique

    2016-01-01

    Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5'-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm(-1) of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3'AMP and CMP, in accordance with previously published results on bulk MIP. PMID:27331814

  15. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  16. Dust-Acoustic Waves: Visible Sound Waves

    SciTech Connect

    Merlino, Robert L.

    2009-11-10

    A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.

  17. Method and apparatus for sensor fusion

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Inventor); Shaw, Scott (Inventor); Defigueiredo, Rui J. P. (Inventor)

    1991-01-01

    Method and apparatus for fusion of data from optical and radar sensors by error minimization procedure is presented. The method was applied to the problem of shape reconstruction of an unknown surface at a distance. The method involves deriving an incomplete surface model from an optical sensor. The unknown characteristics of the surface are represented by some parameter. The correct value of the parameter is computed by iteratively generating theoretical predictions of the radar cross sections (RCS) of the surface, comparing the predicted and the observed values for the RCS, and improving the surface model from results of the comparison. Theoretical RCS may be computed from the surface model in several ways. One RCS prediction technique is the method of moments. The method of moments can be applied to an unknown surface only if some shape information is available from an independent source. The optical image provides the independent information.

  18. Reflection properties of gravito-acoustic waves

    NASA Astrophysics Data System (ADS)

    Jovanović, Gordana

    2016-03-01

    We derive the dispersion equation for gravito-acoustic waves in an isothermal gravitationally stratified nonmagnetized atmosphere. In this model, with constant sound speed, it is possible to derive analytically the equations for gravito-acoustic waves. The large value of the viscous Reynolds number in the solar atmosphere imply that the dissipative terms in HD (hydrodynamics) equations are negligible. We consider the plane boundary z = 0 between two isothermal atmosphere regions and using the boundary conditions we derive the equation for the reflection coeffcient of gravito-acoustic waves. For the frequencies much greater than acoustic cutoff frequency, the reflection coefficient of the acoustic waves modified by gravity is the same as in the case of the pure acoustic waves. Reflection coefficient for the gravity waves is very high, R ≈ 1.

  19. Swimming using surface acoustic waves.

    PubMed

    Bourquin, Yannyk; Cooper, Jonathan M

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  20. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.

    1978-01-01

    A number of 401.2 MHz surface acoustic wave (SAW) controlled oscillators were built and tested. The performance of these oscillators was evaluated for possible use as stable oscillators in communication systems. A short term frequency stability of better than 1 x 10 to the minus 9th power for one second was measured for the SAW oscillators. Long term frequency drift was measured and was found to be dependent on SAW design and packaging. Drift rates ranging from 15 ppm in twenty weeks to 2.5 ppm in twenty weeks were observed. Some further improvement was required. The temperature dependence of the saw oscillators was evaluated and it was concluded that some form of temperature compensation will be necessary to meet the requirements of some communication systems.

  1. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.; Lee, D. L.; Leja, I.

    1979-01-01

    Four areas of surface acoustic wave (SAW) controlled oscillators were investigated and a number of 401.2 MHz oscillators were constructed that showed improved performance. Aging studies on SAW devices packaged in HC36/U cold weld enclosures produced frequency drifts as low as 0.4 ppm in 35 weeks and drift rates well under 0.5 ppm/year. Temperature compensation circuits have substantially improved oscillator temperature stability, with a deviation of + or - 4 ppm observed over the range -45 C to + 40 C. High efficiency amplifiers were constructed for SAW oscillators and a dc to RF efficiency of 44 percent was obtained for an RF output of 25 mW. Shock and vibration tests were made on four oscillators and all survived 500 G shock pulses unchanged. Only when white noise vibration (20 Hz to 2000 Hz) levels of 20 G's rms were applied did some of the devices fail.

  2. Swimming Using Surface Acoustic Waves

    PubMed Central

    Bourquin, Yannyk; Cooper, Jonathan M.

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  3. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  4. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1984-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have refined our modulated radiation pressure technique for characterizing the interfaces between liquids so that we can automatically track changes in interfacial tension over time due to contaminants, surfactants, etc. (2) We have improved and simplified our acoustic scattering apparatus for measuring distributions of the properties of microparticle samples, which will allow us to distinguish particulates in liquids by size, compressibility, and density. (3) We are continuing work on theoretical approaches to nonlinear acoustics which should permit us to cast problems with geometric and other complexities into a manageable form. (4) Our studies of cavitation have enabled us to derive an analytic expression which predicts the acoustic pressure threshold for cavitation at the micrometer scale - where surface tension effects are important. This work has relevance to the consideration of possible bioeffects from diagnostic ultrasound. (5) Other projects include the calibration of hydrophones using acoustically levitated samples, and the investigation of solitary waves of the sort discovered by Wu, Keolian and Rudnick.

  5. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  6. Sensor apparatus using an electrochemical cell

    DOEpatents

    Thakur, Mrinal

    2003-07-01

    A method for sensing mechanical quantities such as force, stress, strain, pressure and acceleration is disclosed. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electro negativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors. An apparatus for sensing such mechanical quantities using materials such as doped 1,4 cis-polyisopropene and nafion. The 1,4 cis-polyisopropene may be doped with lithium perchlorate or iodine. The output voltage signal increases with an increase of the sensing area for a given stress. The device can be used as an intruder alarm, among other applications.

  7. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    PubMed

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO. PMID:26653465

  8. Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks

    NASA Astrophysics Data System (ADS)

    Kozdon, Jeremy E.; Dunham, Eric M.

    2014-06-01

    Great earthquakes along subduction-zone plate boundaries, like the 2011 magnitude 9.0 Tohoku-Oki, Japan, event, deform the seafloor to generate massive tsunamis. Tsunami wave heights near shore are greatest when excitation occurs far offshore near the trench, where water depths are greatest and fault slip is shallow. The Tohoku event, featuring over 30 m of slip near the trench, exemplifies this hazard. Unfortunately the rupture process that far offshore is poorly constrained with land-based geodetic and even most seafloor deformation measurements, and seismic inferences of shallow slip are often nonunique. Here we demonstrate, through dynamic rupture simulations of the Tohoku event, that long-period guided waves in the ocean (specifically, leaking oceanic P-wave modes known as PL waves) can resolve the shallow rupture process and tsunami excitation near the trench. With predicted pressure changes of ∼0.1-1 MPa along most of the seafloor landward of the trench, and periods of several seconds, these PL waves should be observable with ocean-bottom pressure sensors and/or seismometers. With cabled sensor networks like those being deployed offshore Japan and in other subduction zones, these waves could be used to rapidly quantify shallow slip and near-trench seafloor uplift and improve local tsunami early warning systems.

  9. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  10. Tunable damper for an acoustic wave guide

    SciTech Connect

    Rogers, S.C.

    1984-06-05

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  11. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  12. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  13. Differentiation of red wines using an electronic nose based on surface acoustic wave devices.

    PubMed

    García, M; Fernández, M J; Fontecha, J L; Lozano, J; Santos, J P; Aleixandre, M; Sayago, I; Gutiérrez, J; Horrillo, M C

    2006-02-15

    An electronic nose, utilizing the principle of surface acoustic waves (SAW), was used to differentiate among different wines of the same variety of grapes which come from the same cellar. The electronic nose is based on eight surface acoustic wave sensors, one is a reference sensor and the others are coated by different polymers by spray coating technique. Data analysis was performed by two pattern recognition methods; principal component analysis (PCA) and probabilistic neuronal network (PNN). The results showed that electronic nose was able to identify the tested wines. PMID:18970446

  14. Potential of surface acoustic wave biosensors for early sepsis diagnosis.

    PubMed

    Csete, Marie; Hunt, William D

    2013-08-01

    Early diagnosis of sepsis is a difficult problem for intensivists and new biomarkers for early diagnosis have been difficult to come by. Here we discuss the potential of adapting a technology from the electronics industry, surface acoustic wave (SAW) sensors, for diagnosis of multiple markers of sepsis in real time, using non-invasive assays of exhaled breath condensate. The principles and advantages of the SAW technology are reviewed as well as a proposed plan for adapting this flexible technology to early sepsis detection. PMID:23471596

  15. Topological charge pump by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Yi, Zheng; Shi-Ping, Feng; Shi-Jie, Yang

    2016-06-01

    Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves. Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

  16. Writing magnetic patterns with surface acoustic waves

    SciTech Connect

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  17. Ion Acoustic Waves in Ultracold Neutral Plasmas

    SciTech Connect

    Castro, J.; McQuillen, P.; Killian, T. C.

    2010-08-06

    We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbations oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.

  18. Acoustic Wave Chemical Microsensors in GaAs

    SciTech Connect

    Albert G. Baca; Edwin J. Heller; Gregory C. Frye-Mason; John L. Reno; Richard Kottenstette; Stephen A. Casalnuovo; Susan L. Hietala; Vincent M. Hietala

    1998-09-20

    High sensitivity acoustic wave chemical microsensors are being developed on GaAs substrates. These devices take advantage of the piezoelectric properties of GaAs as well as its mature microelectronics fabrication technology and nascent micromachining technology. The design, fabrication, and response of GaAs SAW chemical microsensors are reported. Functional integrated GaAs SAW oscillators, suitable for chemical sensing, have been produced. The integrated oscillator requires 20 mA at 3 VK, operates at frequencies up to 500 MHz, and occupies approximately 2 mmz. Discrete GaAs sensor components, including IC amplifiers, SAW delay lines, and IC phase comparators have been fabricated and tested. A temperature compensation scheme has been developed that overcomes the large temperature dependence of GaAs acoustic wave devices. Packaging issues related to bonding miniature flow channels directly to the GaAs substrates have been resolved. Micromachining techniques for fabricating FPW and TSM microsensors on thin GaAs membranes are presented and GaAs FPW delay line performance is described. These devices have potentially higher sensitivity than existing GaAs and quartz SAW sensors.

  19. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  20. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre.

    PubMed

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s(-1) and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  1. A Comparison of Surface Acoustic Wave Modeling Methods

    NASA Technical Reports Server (NTRS)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  2. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  3. Potential wells for classical acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Lin, ShuYu; Mo, RunYang; Fu, ZhiQiang

    2014-01-01

    The acceleration theorem of Bloch waves is utilized to construct random potential wells for classical acoustic waves in systems composed of alternating `cavities' and `couplers'. One prominent advantage of this method is these `cavities' and `couplers' are all monolayer structures. It allows forming more compact classical potential wells, which leads to the miniaturization of acoustic devices. We systematically investigate properties of harmonic, tangent, hyperbolic function, and square classical potential wells in quasi-periodic superlattices. Results show these classical potential wells are analogues of quantum potential wells. Thus some technologies and concepts in quantum potential well fields may be generalized to classical acoustic wave fields. In addition, some abnormal cases regarding forming classical potential wells are also found.

  4. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  5. Acoustic waves superimposed on incompressible flows

    NASA Technical Reports Server (NTRS)

    Hodge, Steve

    1990-01-01

    The use of incompressible approximations in deriving solutions to the Lighthill wave equation was investigated for problems where an analytical solution could be found. A particular model problem involves the determination of the sound field of a spherical oscillating bubble in an ideal fluid. It is found that use of incompressible boundary conditions leads to good approximations in the important region of high acoustic wave number.

  6. Exciton transport by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Rudolph, J.; Hey, R.; Santos, P. V.

    2007-05-01

    Long-range acoustic transport of excitons in GaAs quantum wells (QWs) is demonstrated. The mobile strain field of a surface acoustic wave creates a dynamic lateral type I modulation of the conduction and valence bands in a double-quantum-well (DQW) structure. This mobile potential modulation transports long-living indirect excitons in the DQW over several hundreds of μm.

  7. Acoustic wave-equation-based earthquake location

    NASA Astrophysics Data System (ADS)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  8. Ram-air sample collection device for a chemical warfare agent sensor

    DOEpatents

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  9. Fabrication of new Interdigital Transducers for Surface Acoustic Wave Device

    NASA Astrophysics Data System (ADS)

    Fissi, L. El; Jaouad, A.; Vandormael, D.; Francis, L. A.

    We investigate high-performance interdigital transducers (IDTs) for the generation of surface acoustic waves (SAWs) on AT-cut quartz, where the metal fingers are embedded in the substrate. Three micromachining techniques are used to manufacture SAW structures, namely an inductively coupled plasma, a laser etching and a reactive ion etching. An evaporated layer of Al and a Ni thick electroplating are used to grow the metals in the micromachining structures. A chemical mechanical polishing (CMP) technique is used to remove the exceeding metal and keep a flat surface. The electrical characterizations indicate that the fabricated devices are suited for sensing proposes with a low insertion loss and a linear phase. Results are reported emphasizing the efficiency of the Ni damascene process to manufacture SAW sensors with the embedded structures.

  10. Cryogenic Liquid Level Sensor Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Parker, Allen R., Jr. (Inventor); Richards, W. Lance (Inventor); Piazza, Anthony (Inventor); Man, Hon Chan (Inventor); Bakalyar, John A. (Inventor)

    2015-01-01

    The invention proposed herein is a system and method for measuring the liquid level in a container that employs an optic fiber sensor which is heated using a simple power source and a wire and making an anemometry measurement. The heater wire is cycled between two levels of heat and the liquid level is obtained by measuring the heat transfer characteristics of the surrounding environment.

  11. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  12. Nonlinear holography for acoustic wave detection

    NASA Astrophysics Data System (ADS)

    Bortolozzo, U.; Dolfi, D.; Huignard, J. P.; Molin, S.; Peigné, A.; Residori, S.

    2015-03-01

    A liquid crystal medium is used to perform nonlinear dynamic holography and is coupled with multimode optical fibers for optical sensing applications. Thanks to the adaptive character of the nonlinear holography, and to the sensitivity of the multimode fibers, we demonstrate that the system is able to perform efficient acoustic wave detection even with noisy signals. The detection limit is estimated and multimode versus monomode optical fiber are compared. Finally, a wavelength multiplexing protocol is implemented for the spatial localization of the acoustic disturbances.

  13. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1986-01-01

    In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  14. Simulation of dust-acoustic waves

    SciTech Connect

    Winske, D.; Murillo, M.S.; Rosenberg, M.

    1998-12-01

    The authors use molecular dynamics (MD) and particle-in-cell (PIC) simulation methods to investigate the dispersion relation of dust-acoustic waves in a one-dimensional, strongly coupled (Coulomb coupling parameter = {Lambda} = ratio of the Coulomb energy to the thermal energy = 120) dusty plasma. They study both cases where the dust is represented by a small number of simulation particles that form into a regular array structure (crystal limit) as well as where the dust is represented by a much larger number of particles (fluid limit).

  15. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  16. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    SciTech Connect

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  17. Sensor apparatus using an electrochemical cell

    DOEpatents

    Thakur, Mrinal

    2002-01-01

    A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.

  18. Well casing-based geophysical sensor apparatus, system and method

    DOEpatents

    Daily, William D.

    2010-03-09

    A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

  19. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    SciTech Connect

    Ivry, Yachin E-mail: cd229@eng.cam.ac.uk; Wang, Nan; Durkan, Colm E-mail: cd229@eng.cam.ac.uk

    2014-03-31

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  20. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  1. Isomorphic surface acoustic waves on multilayer structures

    NASA Astrophysics Data System (ADS)

    Hunt, William D.

    2001-03-01

    There has been growing interest in recent years over the investigation of bulk acoustic waves (BAWs) which propagate along certain directions in anisotropic crystals with a minimum of diffraction. One application of these BAWs is for multichannel acousto-optic devices. The fact that the beams propagate with the minimum diffraction implies that the channels in such a device can be closely packed. Since surface acoustic waves (SAWs) are constrained to be within roughly one acoustic wavelength from the surface, the possibility exists to deposit thin films of isotropic or anisotropic material on the substrate and embue the aggregate multilayer structure with properties not present in the beginning substrate material. The characteristic investigated in this article is the velocity anisotropy which, as is known, predominates SAW diffraction. Specifically, we present a method whereby self-collimating SAWs can be generated on surfaces even though the substrate material itself does not exhibit this behavior. We discuss the particular case of a ZnO layer on (001)-cut <110>-propagating GaAs for which a fair amount of slowness surface data exists. Finally, using angular spectrum of plane waves diffraction theory, we present data which substantiate the claim that self-collimating can more accurately be viewed as isomorphic because the SAW beam profile can propagate without changing its shape.

  2. Surface acoustic wave technique for the characterization of porous properties of microporous silicate thin films

    NASA Astrophysics Data System (ADS)

    Hietala, Susan Leslie

    1997-12-01

    Features of gas adsorption onto sol-gel derived microporous silicate thin films, for characterization of porous properties, are detailed using a surface acoustic wave (SAW) technique. Mass uptake and film effective modulus changes calculated from the SAW data are investigated in detail. The effects of stress and surface tension on the SAW sensor are calculated and found to be negligible in these experiments. Transient behavior recorded during nitrogen adsorption at 77 K is discussed in the context of mass uptake and effective modulus contributions. The time constant associated with the effective modulus calculation is consistent with that of diffusivity of nitrogen into a 5A zeolite. Further calculations indicate that the transient behavior is not due to thermal effects. A unique dual sensor SAW experiment to decouple the mass and effective modulus contributions to the frequency response was performed in conjunction with a Silicon beam-bending experiment. The beam-bending experiment results in a calculation of stress induced during adsorption of methanol on a microporous silicate thin film. The decoupled mass and effective modulus calculated from the SAW data have similar shaped isotherms, and are quite different from that of the stress developed in the Silicon beam. The total effective modulus change calculated from the SAW data is consistent with that calculated using Gassmann's equation. The SAW system developed for this work included unique electronics and customized hardware which is suitable for work under vacuum and at temperatures from 77K to 473K. This unique setup is suitable for running thin film samples on a Micromeritics ASAP 2000 Gas Adsorption unit in automatic mode. This setup is also general enough to be compatible with a custom gas adsorption unit and the beam bending apparatus, both using standard vacuum assemblies.

  3. Raising Photoemission Efficiency with Surface Acoustic Waves

    SciTech Connect

    A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

    2012-07-01

    We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.

  4. Marble Ageing Characterization by Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  5. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    SciTech Connect

    Xiong, Jichuan; Xu, Xiaodong E-mail: christ.glorieux@fys.kuleuven.be; Glorieux, Christ E-mail: christ.glorieux@fys.kuleuven.be; Matsuda, Osamu; Cheng, Liping

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  6. Resonant attenuation of surface acoustic waves by a disordered monolayer of microspheres

    NASA Astrophysics Data System (ADS)

    Eliason, J. K.; Vega-Flick, A.; Hiraiwa, M.; Khanolkar, A.; Gan, T.; Boechler, N.; Fang, N.; Nelson, K. A.; Maznev, A. A.

    2016-02-01

    Attenuation of surface acoustic waves (SAWs) by a disordered monolayer of polystyrene microspheres is investigated. Surface acoustic wave packets are generated by a pair of crossed laser pulses in a glass substrate coated with a thin aluminum film and detected via the diffraction of a probe laser beam. When a 170 μm-wide strip of micron-sized spheres is placed on the substrate between the excitation and detection spots, strong resonant attenuation of SAWs near 240 MHz is observed. The attenuation is caused by the interaction of SAWs with a contact resonance of the microspheres, as confirmed by acoustic dispersion measurements on the microsphere-coated area. Frequency-selective attenuation of SAWs by such a locally resonant metamaterial may lead to reconfigurable SAW devices and sensors, which can be easily manufactured via self-assembly techniques.

  7. Generation of currents in the solar atmosphere by acoustic waves

    NASA Astrophysics Data System (ADS)

    Riutov, D. D.; Riutova, M. P.

    The novel mechanism presented for current and magnetic field generation by acoustic-wave fluxes in solar plasmas is especially potent in the region where acoustic-wave damping is due to such nonlinear effects as weak-shock formation. An evaluation is made of the significance of this effect for the solar atmosphere, under the proviso that this treatment is restricted to effects due to the usual acoustic waves. Wave absorption is governed by the classical collisional effects of thermal conductivity, viscosity, and ohmic losses.

  8. Method and apparatus for multipole acoustic wave borehole logging

    SciTech Connect

    Winbow, G.A.; Baker, L.J.

    1987-03-10

    A method is described for determining the radial thickness of an invaded zone of an earth formation surrounding a borehole where a virgin earth formation surrounds the borehole and is separated from the borehole by the invaded zone. The method comprises: (a) transmitting a 2/sup n/-pole P-wave from a point in the borehole into the earth formation surrounding the borehole, n being an integer greater than zero; (b) measuring the P-wave velocity of a zone of the earth formation located at a first radial distance from the borehole by detecting the arrival of the 2/sup n/-pole P-wave at a first location and at a second location in the borehole spaced longitudinally along the borehole from the point of transmission and from each other. The second location is spaced farther from the point of transmission than is the first location, the time arrival between the detections of the 2/sup n/-pole P-wave arrival is measured at the first location and the second location; and (c) repeating the steps (a) and (b) with successively increased longitudinal spacings between the point of transmission and the first location and between the point of transmission and the second location to measure the P-wave velocities of zones of the earth formation located successively radially farther away from the borehole.

  9. Nozzleless Spray Cooling Using Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Ang, Kar Man; Yeo, Leslie; Friend, James; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Due to its reliability and portability, surface acoustic wave (SAW) atomization is an attractive approach for the generation of monodispersed microdroplets in microfluidics devices. Here, we present a nozzleless spray cooling technique via SAW atomization with key advantage of downward scalability by simply increasing the excitation frequency. With generation of micron size droplets through surface destabilization using SAW, the clogging issues commonly encountered by spraying nozzle can be neutralized. Using deionised water, cooling is improved when the atomization rate is increased and the position of the device is optimized such that the atomized droplets can be easily seeded into the upstream of the flow circulation. Cooling is further improved with the use of nanofluids; a suspension of nanoparticles in water. By increasing nanoparticle mass concentration from 1% to 3%, cooling is enhanced due to the deposition and formation of nanoparticle clusters on heated surface and eventually increase the surface area. However, further increase the concentration to 10% reduces the cooling efficiency due to drastic increase in viscosity μ that leads to lower atomization rate which scales as ṁ ~μ - 1 / 2 .

  10. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  11. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOEpatents

    Josten, N.E.; Svoboda, J.M.

    1999-05-25

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.

  12. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOEpatents

    Josten, Nicholas E.; Svoboda, John M.

    1999-01-01

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.

  13. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    PubMed

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  14. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    NASA Astrophysics Data System (ADS)

    Gelda, Dhruv; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif; Sinha, Sanjiv

    2016-04-01

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1-100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ˜100 GHz.

  15. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  16. Propagation of plate acoustic waves in contact with fluid medium

    NASA Astrophysics Data System (ADS)

    Ghatadi Suraji, Nagaraj

    The characteristics of acoustic waves propagating in thin piezoelectric plates in the presence of a fluid medium contacting one or both of the plate surfaces are investigated. If the velocity of plate wave in the substrate is greater than velocity of bulk wave in the fluid, then a plate acoustic wave (PAW) traveling in the substrate will radiate a bulk acoustic wave (BAW) in the fluid. It is found that, under proper conditions, efficient conversion of energy from plate acoustic waves to bulk acoustic waves and vice versa can be obtained. For example, using the fundamental anti symmetric plate wave mode (A0 mode) propagating in a lithium niobate substrate and water as the fluid, total mode conversion loss (PAW to BAW and back from BAW to PAW) of less than 3 dB has been obtained. This mode conversion principle can be used to realize miniature, high efficiency transducers for use in ultrasonic flow meters. Similar type of transducer based on conversion of energy from surface acoustic wave (SAW) to bulk acoustic wave (BAW) has been developed previously. The use of plate waves has several advantages. Since the energy of plate waves is present on both plate surfaces, the inter digital transducer (IDT) can be on the surface opposite from that which is in contact with the fluid. This protects the IDT from possible damage due to the fluid and also simplifies the job of making electrical connections to the IDT. Another advantage is that one has wider choice of substrate materials with plate waves than is the case with SAWs. Preliminary calculations indicate that the mode conversion principle can also be used to generate and detect ultrasonic waves in air. This has potential applications for realizing transducers for use in non-contact ultrasonic's. The design of an ASIC (Application Specific Integrated Circuit) chip containing an amplifier and frequency counter for use with ultrasonic transducers is also presented in this thesis.

  17. Acoustic wave generation by microwaves and applications to nondestructive evaluation.

    PubMed

    Hosten, Bernard; Bacon, Christophe; Guilliorit, Emmanuel

    2002-05-01

    Although acoustic wave generation by electromagnetic waves has been widely studied in the case of laser-generated ultrasounds, the literature on acoustic wave generation by thermal effects due to electromagnetic microwaves is very sparse. Several mechanisms have been suggested to explain the phenomenon of microwave generation, i.e. radiation pressure, electrostriction or thermal expansion. Now it is known that the main cause is the thermal expansion due to the microwave absorption. This paper will review the recent advances in the theory and experiments that introduce a new way to generate ultrasonic waves without contact for the purpose of nondestructive evaluation and control. The unidirectional theory based on Maxwell's equations, heat equation and thermoviscoelasticity predicts the generation of acoustic waves at interfaces and inside stratified materials. Acoustic waves are generated by a pulsed electromagnetic wave or a burst at a chosen frequency such that materials can be excited with a broad or narrow frequency range. Experiments show the generation of acoustic waves in water, viscoelastic polymers and composite materials shaped as rod and plates. From the computed and measured accelerations at interfaces, the viscoelastic and electromagnetic properties of materials such as polymers and composites can be evaluated (NDE). Preliminary examples of non-destructive testing applications are presented. PMID:12159977

  18. Nonlinear surface acoustic waves in cubic crystals

    NASA Astrophysics Data System (ADS)

    Kumon, Ronald Edward

    Model equations developed by Hamilton, Il'inskii, and Zabolotskaya [J. Acoust. Soc. Am. 105, 639-651 (1999)] are used to perform theoretical and numerical studies of nonlinear surface acoustic waves in a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, quasilinear solutions of the equations are derived, and expressions are developed for the shock formation distance and nonlinearity coefficient. A time-domain equation corresponding to the frequency-domain model equations is derived and shown to reduce to a time-domain equation introduced previously for Rayleigh waves [E. A. Zabolotskaya, J. Acoust. Soc. Am. 91, 2569-2575 (1992)]. Numerical calculations are performed to predict the evolution of initially monofrequency surface waves in the (001), (110), and (111) planes of the crystals RbCl, KCl, NaCl, CaF2, SrF2, BaF2, C (diamond), Si, Ge, Al, Ni, Cu in the moverline 3m point group, and the crystals Cs-alum, NH4- alum, and K-alum in the moverline 3 point group. The calculations are based on measured second- and third- order elastic constants taken from the literature. Nonlinearity matrix elements which describe the coupling strength of harmonic interactions are shown to provide a powerful tool for characterizing waveform distortion. Simulations in the (001) and (110) planes show that in certain directions the velocity waveform distortion may change in sign, generation of one or more harmonies may be suppressed and shock formation postponed, or energy may be transferred rapidly to the highest harmonics and shock formation enhanced. Simulations in the (111) plane show that the nonlinearity matrix elements are generally complex-valued, which may lead to asymmetric distortion and the appearance of low frequency oscillations near the peaks and shocks in the velocity waveforms. A simple transformation based on the phase of the nonlinearity matrix is shown to provide a reasonable approximation of asymmetric waveform

  19. Ultrafast microfluidics using surface acoustic waves

    PubMed Central

    Yeo, Leslie Y.; Friend, James R.

    2009-01-01

    We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions

  20. Nonlinear propagation and control of acoustic waves in phononic superlattices

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.

    2016-05-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"

  1. Ionospheric signatures of acoustic waves generated by transient tropospheric forcing

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2013-10-01

    Acoustic waves generated by tropospheric sources may attain significant amplitudes in the thermosphere and overlying ionosphere. Although they are weak precursors to gravity waves in the mesosphere below, acoustic waves may achieve temperature and vertical wind perturbations on the order of approximately tens of Kelvin and m/s throughout the E and F regions. Their perturbations to total electron content are predicted to be detectable by ground-based radar and GPS receivers; they also drive field-aligned currents that may be detectable in situ via magnetometers. Although transient and short lived, ionospheric signatures of acoustic waves may provide new and quantitative insight into the forcing of the upper atmosphere from below.

  2. A pseudo-spin surface-acoustic-wave quantum computer.

    PubMed

    Barnes, C H W

    2003-07-15

    A modification to the surface-acoustic-wave quantum computer is described. The use of pseudo-spin qubits is introduced as a way to simplify the fabrication and programming of the computer. A form of optical readout that relies on the electrons in each surface-acoustic-wave minimum recombining with holes in a two-dimensional hole gas is suggested as a means to measure the output. The suggested modification would allow the quantum computer to be made smaller and to operate faster. PMID:12869323

  3. Linear and nonlinear acoustic wave propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping

    1988-01-01

    The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.

  4. Controlling acoustic-wave propagation through material anisotropy

    NASA Astrophysics Data System (ADS)

    Tehranian, Aref; Amirkhizi, Alireza V.; Irion, Jeffrey; Isaacs, Jon; Nemat-Nasser, Sia

    2009-03-01

    Acoustic-wave velocity is strongly direction dependent in an anisotropic medium. This can be used to design composites with preferred acoustic-energy transport characteristics. In a unidirectional fiber-glass composite, for example, the preferred direction corresponds to the fiber orientation which is associated with the highest stiffness and which can be used to guide the momentum and energy of the acoustic waves either away from or toward a region within the material, depending on whether one wishes to avoid or harvest the corresponding stress waves. The main focus of this work is to illustrate this phenomenon using numerical simulations and then check the results experimentally.

  5. Hybrid Surface Acoustic Wave- Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films

    PubMed Central

    Choi, Kyung Hyun; Kim, Hyun Bum; Ali, Kamran; Sajid, Memoon; Uddin Siddiqui, Ghayas; Chang, Dong Eui; Kim, Hyung Chan; Ko, Jeong Beom; Dang, Hyun Woo; Doh, Yang Hoi

    2015-01-01

    Conventional surface acoustic wave - electrostatic deposition (SAW-ED) technology is struggling to compete with other thin film fabrication technologies because of its limitation in atomizing high density solutions or solutions with strong inter-particle bonding that requires very high frequency (100 MHz) and power. In this study, a hybrid surface acoustic wave - electrohydrodynamic atomization (SAW-EHDA) system has been introduced to overcome this problem by integrating EHDA with SAW to achieve the deposition of different types of conductive inks at lower frequency (19.8 MHZ) and power. Three materials, Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV), Zinc Oxide (ZnO), and Poly(3, 4-ethylenedioxythiophene):Polystyrene Sulfonate (PEDOT:PSS) have been successfully deposited as thin films through the hybrid SAW-EHDA. The films showed good morphological, chemical, electrical, and optical characteristics. To further evaluate the characteristics of deposited films, a humidity sensor was fabricated with active layer of PEDOT:PSS deposited using the SAW-EHDA system. The response of sensor was outstanding and much better when compared to similar sensors fabricated using other manufacturing techniques. The results of the device and the films’ characteristics suggest that the hybrid SAW-EHDA technology has high potential to efficiently produce wide variety of thin films and thus predict its promising future in certain areas of printed electronics. PMID:26478189

  6. Hybrid Surface Acoustic Wave- Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films

    NASA Astrophysics Data System (ADS)

    Choi, Kyung Hyun; Kim, Hyun Bum; Ali, Kamran; Sajid, Memoon; Uddin Siddiqui, Ghayas; Chang, Dong Eui; Kim, Hyung Chan; Ko, Jeong Beom; Dang, Hyun Woo; Doh, Yang Hoi

    2015-10-01

    Conventional surface acoustic wave - electrostatic deposition (SAW-ED) technology is struggling to compete with other thin film fabrication technologies because of its limitation in atomizing high density solutions or solutions with strong inter-particle bonding that requires very high frequency (100 MHz) and power. In this study, a hybrid surface acoustic wave - electrohydrodynamic atomization (SAW-EHDA) system has been introduced to overcome this problem by integrating EHDA with SAW to achieve the deposition of different types of conductive inks at lower frequency (19.8 MHZ) and power. Three materials, Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV), Zinc Oxide (ZnO), and Poly(3, 4-ethylenedioxythiophene):Polystyrene Sulfonate (PEDOT:PSS) have been successfully deposited as thin films through the hybrid SAW-EHDA. The films showed good morphological, chemical, electrical, and optical characteristics. To further evaluate the characteristics of deposited films, a humidity sensor was fabricated with active layer of PEDOT:PSS deposited using the SAW-EHDA system. The response of sensor was outstanding and much better when compared to similar sensors fabricated using other manufacturing techniques. The results of the device and the films’ characteristics suggest that the hybrid SAW-EHDA technology has high potential to efficiently produce wide variety of thin films and thus predict its promising future in certain areas of printed electronics.

  7. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    SciTech Connect

    Martin, S.J.; Ricco, A.J.

    1991-12-31

    This invention consists of a chemical sensor that includes two or more pairs of interdigital electrodes having different periodicities. Each pair is comprised of a first electrode and a second electrode. The electrodes are patterned on a surface of a piezoelectric substrate. Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region exists between each pair of electrodes. Circuitry is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  8. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  9. Application of surface acoustic wave devices to radio telemetry

    NASA Technical Reports Server (NTRS)

    Strasilla, U.

    1983-01-01

    Three experimental Surface Acoustic Wave Resonators (SAWR) are developed and evaluated. A desired center frequency is obtained by correct spacing of the Inter-Digital Transducers (IDT). Transmitting and receiving IDT's must be close for adequate coupling and a sufficient number of reflectors are required to create a high quality standing wave. A review of oscillator theory is given and current technology evaluated.

  10. Porous silicon bulk acoustic wave resonator with integrated transducer

    PubMed Central

    2012-01-01

    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697

  11. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGESBeta

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  12. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  13. Gasoline identifier based on SH0 plate acoustic waves.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible. PMID:27125559

  14. Observation of the coupling of the driven dust acoustic wave

    SciTech Connect

    Williams, Jeremiah D.; Duff, James

    2010-03-15

    In this study, the coupling between the naturally occurring dust acoustic wave (DAW) and the discharge current modulation is examined. It is confirmed that, when the wave is driven by modulating the discharge current, the DAW is driven at the same frequency as the current modulation.

  15. Observations of dust acoustic waves driven at high frequencies: Finite dust temperature effects and wave interference

    SciTech Connect

    Thomas, Edward Jr.; Fisher, Ross; Merlino, Robert L.

    2007-12-15

    An experiment has been performed to study the behavior of dust acoustic waves driven at high frequencies (f>100 Hz), extending the range of previous work. In this study, two previously unreported phenomena are observed--interference effects between naturally excited dust acoustic waves and driven dust acoustic waves, and the observation of finite dust temperature effects on the dispersion relation.

  16. Acoustic Wave Propagation in Pressure Sense Lines

    NASA Technical Reports Server (NTRS)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  17. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    SciTech Connect

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  18. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz. PMID:26026514

  19. Universal Quantum Transducers Based on Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Schuetz, M. J. A.; Kessler, E. M.; Giedke, G.; Vandersypen, L. M. K.; Lukin, M. D.; Cirac, J. I.

    2015-07-01

    We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits, including quantum dots, trapped ions, nitrogen-vacancy centers, or superconducting qubits. The quantized modes of surface acoustic waves lie in the gigahertz range and can be strongly confined close to the surface in phononic cavities and guided in acoustic waveguides. We show that this type of surface acoustic excitation can be utilized efficiently as a quantum bus, serving as an on-chip, mechanical cavity-QED equivalent of microwave photons and enabling long-range coupling of a wide range of qubits.

  20. Surface spin-electron acoustic waves in magnetically ordered metals

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.; Kuz'menkov, L. S.

    2016-05-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.

  1. Characterization of energy trapping in a bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Kokkonen, Kimmo; Meltaus, Johanna; Pensala, Tuomas; Kaivola, Matti

    2010-12-01

    Acoustic wave fields both within the active electrode area of a solidly mounted 1.8 GHz bulk acoustic wave resonator, and around it in the surrounding region, are measured using a heterodyne laser interferometer. Plate-wave dispersion diagrams for both regions are extracted from the measurement data. The experimental dispersion data reveal the cutoff frequencies of the acoustic vibration modes in the region surrounding the resonator, and, therefore, the energy trapping range of the resonator can readily be determined. The measured dispersion properties of the surrounding region, together with the abruptly diminishing amplitude of the dispersion curves in the resonator, signal the onset of acoustic leakage from the resonator. This information is important for verifying and further developing the simulation tools used for the design of the resonators. Experimental wave field images, dispersion diagrams for both regions, and the threshold for energy leakage are discussed.

  2. Chromospheric extents predicted by time-dependent acoustic wave models

    SciTech Connect

    Cuntz, M. Heidelberg Universitaet )

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.

  3. Chromospheric extents predicted by time-dependent acoustic wave models

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.

  4. Waveform inversion of acoustic waves for explosion yield estimation

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A.

    2016-07-01

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<˜30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  5. On acoustic wave generation in uniform shear flow

    NASA Astrophysics Data System (ADS)

    Gogoberidze, G.

    2016-07-01

    The linear dynamics of acoustic waves and vortices in uniform shear flow is studied. For flows with very low shear rates, the dynamics of perturbations is adiabatic and can be described by the WKB approximation. However, for flows with moderate and high shear rates the WKB approximation is not appropriate, and alternative analysis shows that two important phenomena occur: acoustic wave over-reflection and wave generation by vortices. The later phenomenon is a known linear mechanisms for sound generation in shear flows, a mechanism that is related to the continuous spectrum that arises in linear shear flow dynamics. A detailed analytical study of these phenomena is performed and the main quantitative and qualitative characteristics of the radiated acoustic field are obtained and analyzed.

  6. Standing surface acoustic wave (SSAW)-based cell washing

    PubMed Central

    Li, Sixing; Ding, Xiaoyun; Mao, Zhangming; Chen, Yuchao; Nama, Nitesh; Guo, Feng; Li, Peng; Wang, Lin; Cameron, Craig E.; Huang, Tony Jun

    2014-01-01

    Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications. PMID:25372273

  7. HF Doppler observations of acoustic waves excited by the earthquake

    NASA Technical Reports Server (NTRS)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  8. Ion-Acoustic Waves in Self-Gravitaing Dusty Plasma

    SciTech Connect

    Kumar, Nagendra; Kumar, Vinod; Kumar, Anil

    2008-09-07

    The propagation and damping of low frequency ion-acoustic waves in steady state, unmagnetised, self-gravitating dusty plasma are studied taking into account two important damping mechanisms creation damping and Tromso damping. It is found that imaginary part of wave number is independent of frequency in case of creation damping. But when we consider the case of creation and Tromso damping together, an additional contribution to damping appears with the increase in frequency attributed to Tromso effect.

  9. R&D 100 Winner 2010: Acoustic Wave Biosensors

    ScienceCinema

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-06-29

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures ? viruses, bacteria, proteins, and DNA ? at clinically relevant levels. This detection occurs within minutes ? not hours ? at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  10. Spectral solution of acoustic wave-propagation problems

    NASA Technical Reports Server (NTRS)

    Kopriva, David A.

    1990-01-01

    The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.

  11. Surface acoustic wave probe implant for predicting epileptic seizures

    DOEpatents

    Gopalsami, Nachappa; Kulikov, Stanislav; Osorio, Ivan; Raptis, Apostolos C.

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  12. Surface acoustic wave-driven planar light-emitting device

    NASA Astrophysics Data System (ADS)

    Cecchini, Marco; De Simoni, Giorgio; Piazza, Vincenzo; Beltram, Fabio; Beere, H. E.; Ritchie, D. A.

    2004-10-01

    Electroluminescence emission controlled by means of surface acoustic waves (SAWs) in planar light-emitting diodes (pLEDs) is demonstrated. Interdigital transducers for SAW generation were integrated onto pLEDs fabricated following the scheme which we have recently developed [Cecchini et al., Appl. Phys. Lett. 82, 636 (2003)]. Current-voltage, light-voltage, and photoluminescence characteristics are presented at cryogenic temperatures. We argue that this scheme represents a valuable building block for advanced optoelectronic architectures.

  13. The behavior of acoustic waves in the lakes bottom sediments.

    NASA Astrophysics Data System (ADS)

    Krylov, Pavel; Nourgaliev, Danis; Yasonov, Pavel

    2016-04-01

    Seismic studies are used for various tasks, such as the study of the bottom sediments properties, finding sunken objects, reconstruction the reservoir history, etc. Multiple acoustic waves are an enormous obstacle in obtaining full seismic record. Multiples from the bottom of a body of water (the surface of the base of water and the rock or sediment beneath it) and the air-water surface are common in lake seismic data. Multiple reflections on the seismic cross-sections are usually located on the double distance from the air/water surface. However, sometime multiple reflections from liquid deposits cannot be generated or they reflected from the deeper horizons. It is observed the phenomenon of changes in reflectance of the water/weakly consolidated sediments acoustic boundary under the influence of the acoustic wave. This phenomenon lies in the fact that after the first acoustic impact and reflection of acoustic wave for some time the reflectance of this boundary remains close to 0. This event on a cross-section can explain by the short-term changes in the properties of bottom sediments under the influence of shock? acoustic wave, with a further reduction of these properties to the next wave generation (generation period of 2 seconds). Perhaps in these deposits occurs thixotropic process. The paper presents the seismic acoustic cross-sections of Lake Balkhash (Kazakhstan), Turgoyak (Russia). The work was carried out according to the Russia Government's Program of Competitive Growth of Kazan Federal University, supported by the grant provided to the Kazan State University for performing the state program in the field of scientific research, and partially supported by the Russian Foundation for Basic research (grants № 14-05-00785, 16-35-00452).

  14. Effect of Thermal Conduction on Acoustic Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.

    2006-05-01

    The influence of classical (Spitzer) thermal conduction on longitudinal acoustic waves in a coronal loop is determined through an idealized but exactly solvable model. The model consists of an isothermal, stratified (constant gravity) atmosphere in which a monochromatic acoustic wave, traveling in the direction of decreasing density, is imposed throughout the lower half of the atmosphere. Based on the linearized equations of motion, the complete steady state (t-->∞) solution is obtained. In addition to the imposed driving wave, the solution also contains reflected and transmitted acoustic and thermal conduction waves. The mode transformation and mixing occurs in the vicinity of the atmospheric layer where the gas pressure passes through a critical value set by the magnitude of the thermal conduction and other model parameters. For 5 minute waves in a million degree loop, this critical pressure is on the order of 8×10-4 in cgs units. Since the apex gas pressure of many coronal loops of current interest is thought to be comfortably in excess of this value, mode mixing and transformation is not likely to be a relevant factor for understanding acoustic waves in these structures. On the other hand, enhanced thermal conductivity as a result of plasma instabilities, for example, could revive the importance of this mechanism for coronal loops. If this mixing layer is present, the calculations show that the pair of thermal conduction waves invariably gains the overwhelming majority of the energy flux of the incoming acoustic wave. This energy is rapidly dissipated in the neighborhood of the mixing layer.

  15. S-Band Shallow Bulk Acoustic Wave (SBAW) microwave source

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques necessary to fabricate a high performance S-band microwave single source using state-of-the-art shallow bulk acoustic wave (SBAW) were explored. The bulk wave structures of the AlN/Al 2O3 were investigated for both the R plane and basal plane of sapphire. A 1.072 GHz SBAW delay line and oscillators were developed. A method of selecting and setting oscillator output frequency by selecting substrate orientation angle was also established.

  16. Space manufacturing of surface acoustic wave devices, appendix D

    NASA Technical Reports Server (NTRS)

    Sardella, G.

    1973-01-01

    Space manufacturing of transducers in a vibration free environment is discussed. Fabrication of the masks, and possible manufacturing of the surface acoustic wave components aboard a space laboratory would avoid the inherent ground vibrations and the frequency limitation imposed by a seismic isolator pad. The manufacturing vibration requirements are identified. The concepts of space manufacturing are analyzed. A development program for manufacturing transducers is recommended.

  17. EXCITATION OF ACOUSTIC WAVES BY VORTICES IN THE QUIET SUN

    SciTech Connect

    Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2011-02-01

    The five-minute oscillations are one of the basic properties of solar convection. Observations show a mixture of a large number of acoustic wave fronts propagating from their sources. We investigate the process of acoustic waves excitation from the point of view of individual events, by using a realistic three-dimensional radiative hydrodynamic simulation of the quiet Sun. The results show that the excitation events are related to the dynamics of vortex tubes (or swirls) in intergranular lanes of solar convection. These whirlpool-like flows are characterized by very strong horizontal velocities (7-11 km s{sup -1}) and downflows ({approx}7 km s{sup -1}), and are accompanied by strong decreases of temperature, density, and pressure at the surface and 0.5-1 Mm below the surface. High-speed whirlpool flows can attract and capture other vortices. According to our simulation results the processes of vortex interaction, such as vortex annihilation, can cause excitation of acoustic waves on the Sun.

  18. Synchronization of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Suranga Ruhunusiri, W. D.; Goree, John

    2012-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. Dust acoustic wave synchronization has been experimentally studied previously in laboratory and in microgravity conditions, e.g. [Pilch PoP 2009] and [Menzel PRL 2010]. We perform a laboratory experiment to study synchronization of self-excited dust acoustic waves. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. Dust acoustic waves are self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the waves, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency.

  19. Apparatus and method for a light direction sensor

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2011-01-01

    The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.

  20. An Integrated Surface Acoustic Wave-Based Chemical Microsensor Array for Gas-Phase Chemical Analysis Microsystems

    SciTech Connect

    Casalnuovo, stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carolyn M.

    1999-07-20

    This paper describes preliminary results in the development of an acoustic wave (SAW) microsensor array. The array is based on a novel configuration that allows for three sensors and a phase reference. Two configurations of the integrated array are discussed: a hybrid multichip-module based on a quartz SAW sensor with GaAs microelectronics and a fully monolithic GaAs-based SAW. Preliminary data are also presented for the use of the integrated SAW array in a gas-phase chemical micro system that incorporates microfabricated sample collectors and concentrators along with gas chromatography (GC) columns.

  1. Single photon imaging and timing array sensor apparatus and method

    DOEpatents

    Smith, R. Clayton

    2003-06-24

    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  2. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  3. Surface acoustic waves/silicon monolithic sensor processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Fathimulla, M. A.; Mehter, E. A.

    1981-01-01

    Progress is reported in the creation of a two dimensional Fourier transformer for optical images based on the zinc oxide on silicon technology. The sputtering of zinc oxide films using a micro etch system and the possibility of a spray-on technique based on zinc chloride dissolved in alcohol solution are discussed. Refinements to techniques for making platinum silicide Schottky barrier junctions essential for constructing the ultimate convolver structure are described.

  4. Generation of acoustic waves by focused infrared neodymium-laser radiation

    NASA Astrophysics Data System (ADS)

    Ward, Barry

    1991-02-01

    When the radiation from a sufficiently powerful pulsed laser is focused into the transparent gaseous, liquid or solid media, dielectric breakdown may occur around the beam waist giving rise to a short-lived high-temperature plasma which quickly heats the surrounding material. As a consequence of various energy-coupling mechanisms, this phenomenon causes the emission of one or more high-frequency ultrasonic acoustic waves whose speeds of propagation are dependent upon the physical properties of the host medium. In the high-speed photographic studies described, the 1.06 micron near-infrared radiation from an 8-ns, 10-mJ Q-switched Nd:YAG laser is focused in or onto a variety of fluid and solid materials. The rapid variations in density around the resulting plasma events are visualized using a Mach-Zehnder interferometer with a sub-nanosecond dye-laser light source and a video-imaging system. Calculations of the corresponding transient pressure distributions are then enacted from the digitally-recorded interferograms using a semi-automatic procedure under the control of a personal computer. Measurements of position, displacement, and velocity are also carried out using the same optical apparatus in schlieren and focused shadowgraph high-speed photographic measurements. The experimental work outlined in the following chapters is divided into three broad fields of interest. In the first of these, a study of the laser-generation of spherical shock waves in atmospheric air is carried out. In the second, the neodymium-laser beam is focused onto different solid-fluid interfaces resulting in the formation of bulk longitudinal and shear waves and surface acoustic waves. The interactions of these waves with various obstacles and defects are investigated with reference to their application to non-destructive testing. In the third and most important field, a detailed study of the dynamics of laser-induced cavitation bubbles in water is carried out. With regard to the associated

  5. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  6. Systems, Methods and Apparatus for Position Sensor Digital Conditioning Electronics

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor)

    2012-01-01

    Systems, methods and apparatus are provided through which in some implementations determine the amplitude of an amplitude modulated signal, modulated by the position of an object being sensed. In some aspects, the apparatus accepts an excitation signal and the amplitude modulated signal and divides the amplitude modulated by the excitation signal to produce an output signal that is proportional to the position of the object being sensed. In other aspects, the division is performed only when the excitation signal is non-zero, such as close to the peaks in the excitation signal. In other aspects, the excitation signal and amplitude modulated signal are degraded due to an air gap and the degraded signals are used to correct for amplitude fluctuations due to the air gap, and produce an output signal, tolerant of the air gaps, that is proportional to the position of the object being sensed.

  7. Cylindrical and spherical ion acoustic waves in a plasma with nonthermal electrons and warm ions

    SciTech Connect

    Sahu, Biswajit; Roychoudhury, Rajkumar

    2005-05-15

    Using the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg-de Vries (KdV) and modified KdV equations are derived for ion acoustic waves in an unmagnetized plasma consisting of warm adiabatic ions and nonthermal electrons. The effects of nonthermally distributed electrons on cylindrical and spherical ion acoustic waves are investigated. It is found that the nonthermality has a very significant effect on the nature of ion acoustic waves.

  8. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    PubMed Central

    Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection. PMID:23459387

  9. Ultrafast strain gauge: Observation of THz radiation coherently generated by acoustic waves

    SciTech Connect

    Armstrong, M; Reed, E; Kim, K; Glownia, J; Howard, W M; Piner, E; Roberts, J

    2008-08-14

    The study of nanoscale, terahertz frequency (THz) acoustic waves has great potential for elucidating material and chemical interactions as well as nanostructure characterization. Here we report the first observation of terahertz radiation coherently generated by an acoustic wave. Such emission is directly related to the time-dependence of the stress as the acoustic wave crosses an interface between materials of differing piezoelectric response. This phenomenon enables a new class of strain wave metrology that is fundamentally distinct from optical approaches, providing passive remote sensing of the dynamics of acoustic waves with ultrafast time resolution. The new mechanism presented here enables nanostructure measurements not possible using existing optical or x-ray approaches.

  10. Synchronized photonic modulators driven by surface acoustic waves.

    PubMed

    Crespo-Poveda, A; Hey, R; Biermann, K; Tahraoui, A; Santos, P V; Gargallo, B; Muñoz, P; Cantarero, A; de Lima, M M

    2013-09-01

    Photonic modulators are one of the most important elements of integrated photonics. We have designed, fabricated, and characterized a tunable photonic modulator consisting of two 180°-dephased output waveguide channels, driven by a surface acoustic wave in the GHz frequency range built on (Al,Ga)As. Odd multiples of the fundamental driven frequency are enabled by adjusting the applied acoustic power. A good agreement between theory and experimental results is achieved. The device can be used as a building block for more complex integrated functionalities and can be implemented in several material platforms. PMID:24104040

  11. Hydrogen Adsorption Studies Using Surface Acoustic Waves on Nanoparticles

    SciTech Connect

    A.B. Phillips; G. Myneni; B.S. Shivaram

    2005-06-13

    Vanadium nanoparticles, on the order of 20 nm, were deposited on a quartz crystal surface acoustic wave resonator (SAW) using a Nd:YAG pulsed laser deposition system. Due to the high Q and resonant frequency of the SAW, mass changes on the order of 0.1 nanogram can be quantitatively measured. Roughly 60 nanogram of V was deposited on the SAW for these experiments. The SAW was then moved into a hydrogen high pressure cell.At room temperature and 1 atmosphere of hydrogen pressure, 1 wt% H, or H/V {approx} 0.5 (atomic ratio) absorption was measured.

  12. Location Dependence of Mass Sensitivity for Acoustic Wave Devices

    PubMed Central

    Zhang, Kewei; Chai, Yuesheng; Cheng, Z.-Y.

    2015-01-01

    It is introduced that the mass sensitivity (Sm) of an acoustic wave (AW) device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices. PMID:26404313

  13. Relationship between dust acoustic waves in two and three dimensions

    SciTech Connect

    Piel, A.; Goree, J.

    2006-10-15

    Low frequency electrostatic waves are investigated for a monolayer suspension of dust particles that are shielded by an ambient plasma of three-dimensional extension. The dispersion of the resulting dust acoustic surface waves is compared with dust acoustic waves in three dimensions and with lattice modes in two dimensions. It is found that the wave dispersion is determined by shielding of electric fields by electrons and ions on either side of the dust monolayer; this differs from previously studied cases of charged sheets in a vacuum. The phase velocity of these surface waves suggests the definition of a proper dust plasma frequency for monolayer systems.

  14. Relationship between dust acoustic waves in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Piel, A.; Goree, J.

    2006-10-01

    Low frequency electrostatic waves are investigated for a monolayer suspension of dust particles that are shielded by an ambient plasma of three-dimensional extension. The dispersion of the resulting dust acoustic surface waves is compared with dust acoustic waves in three dimensions and with lattice modes in two dimensions. It is found that the wave dispersion is determined by shielding of electric fields by electrons and ions on either side of the dust monolayer; this differs from previously studied cases of charged sheets in a vacuum. The phase velocity of these surface waves suggests the definition of a proper dust plasma frequency for monolayer systems.

  15. Decay of transverse acoustic waves in a pulsed gas laser

    SciTech Connect

    Kulkarny, V.A.

    1980-11-01

    The long-term characteristics of transverse acoustic waves in the cavity of a pulsed gaseous laser were studied by analyzing them in a straight duct configuration with nonlinear techniques used in sonic boom problems. A decaying sawtooth waveform containing a shockwave reverberated in the cavity transverse to the flow direction. In the asymptotic decay, the relative pressure perturbation of the wave varies as the 2/5 power of the product of the relative overpressure from the pulse and the speed of sound in the gas.

  16. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Frankel, M. S.; Peterson, A. M.

    1977-01-01

    This paper considers the interaction of electromagnetic and acoustic waves where a Radio Acoustic Sounding System (RASS) is operated in a stochastic environment characterized by turbulence, winds and mean-temperature gradients. It has been shown that for a RASS operating at acoustic frequencies below a few kilohertz propagating under typical atmospheric conditions, turbulence has little effect on the strength of the received radio signal scattered from the pulse at heights up to a few kilometers. This result implies that the received RF signal level (power) is primarily a function of sound intensity which decreases as x exp minus 2 where x is the altitude.

  17. Numerical investigation of diffraction of acoustic waves by phononic crystals

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent

    2012-05-01

    Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.

  18. Trapping and Frequency Variability in Electron Acoustic Waves

    SciTech Connect

    Driscoll, C. F.; Anderegg, F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-10

    Electron Acoustic Waves (EAWs) with a phase velocity less than twice the plasma thermal velocity are observed on pure ion plasma columns. At low excitation amplitudes, the EAW frequencies agree with theory; but at moderate excitation the EAW is more frequency-variable than typical Langmuir waves, and at large excitations resonance is observed over a broad range. Laser Induced Fluorescence measurements of the wave-coherent ion velocity distribution show phase-reversals and wave-particle trapping plateaux at {+-}v{sub ph}, as expected, and corroborate the unusual role of kinetic pressure in the EAW.

  19. Volumetric measurements of a spatially growing dust acoustic wave

    SciTech Connect

    Williams, Jeremiah D.

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  20. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  1. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.

    1990-01-01

    The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.

  2. Apparatus for particulate matter analysis

    DOEpatents

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  3. Determination of hydrocarbon levels in water via laser-induced acoustics wave

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman

    2016-04-01

    Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.

  4. Nonlinear scattering of acoustic waves by vibrating obstacles

    NASA Astrophysics Data System (ADS)

    Piquette, J. C.

    1983-06-01

    The problem of the generation of sum- and difference-frequency waves produced via the scattering of an acoustic wave by an obstacle whose surface vibrates harmonically was studied both theoretically and experimentally. The theoretical approach involved solving the nonlinear wave equation, subject to appropriate boundary conditions, by the use of a perturbation expansion of the fields and a Green's function method. In addition to ordinary rigid-body scattering, Censor predicted nongrowing waves at frequencies equal to the sum and to the difference of the frequencies of the primary waves. The solution to the nonlinear wave equation also yields scattered waves at the sum and difference frequencies. However, the nonlinearity of the medium causes these waves to grow with increasing distance from the scatter's surface and, after a very small distance, dominate those predicted by Censor. The simple-source formulation of the second-order nonlinear wave equation for a lossless fluid medium has been derived for arbitrary primary wave fields. This equation was used to solve the problem of nonlinear scattering of acoustic waves by a vibrating obstacle for three geometries: (1) a plane-wave scattering by a vibrating plane, (2) cylindrical-wave scattering by a vibrating cylinder, and (3) plane-wave scattering by a vibrating cylinder. Successful experimental validation of the theory was inhibited by previously unexpected levels of nonlinearity in the hydrophones used. Such high levels of hydrophone nonlinearity appeared in hydrophones that, by their geometry of construction, were expected to be fairly linear.

  5. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    SciTech Connect

    Mukherjee, Abhik; Janaki, M. S.; Bose, Anirban

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  6. Adaptive laser array-receivers for acoustic waves detection

    NASA Astrophysics Data System (ADS)

    Tuovinen, Hemmo; Murray, Todd W.; Krishnaswamy, Sridhar

    2000-05-01

    Interferometric detection systems typically use a single focused laser point receiver for the detection of acoustic waves. In some cases, where optical damage of the structure is of concern, it may be advantageous to distribute the detection laser energy over an area. This can be done, for example, by using a point-array or a line-array probe. Other advantages of an array receiver include directional sensitivity and frequency selectivity. It is important to notice that laser-array reception is possible only with self-referential interferometers. In this paper adaptive array interferometric detection schemes, which are based on wave mixing in photorefractive bismuth silicate crystal, are described. An adaptive narrow-band laser array receiver of surface acoustic waves is demonstrated. The interferometer is also configured as a linearly frequency modulated (chirped) array receiver. The chirped receiver, when excited with a similarly chirped ultrasonic source, allows pulse compression of the ultrasonic signal thus maintaining high temporal resolution. The signal-to-noise ratio for the different array detection schemes are determined and compared. Several applications of laser-array reception are presented.

  7. Surface Acoustic Waves on Piezoelectrics: The KGBS Connection

    NASA Astrophysics Data System (ADS)

    Hickernell, Fred S.

    2003-10-01

    In December of 1968 Jeffrey Bleustein of Yale University published an article in Applied Physics Letters predicting the existence of a new type of transverse surface acoustic wave that could propagate on the surface of a piezoelectric crystal. This was followed within 20 days by an article published in Soviet Physics JETP Letters by Yuri Gulyaev in January of 1969 predicting the same basic property. The wave took on the name Bleustein-Gulyaev or BG-wave, joining the names of Rayleigh, Love, Sezawa, and Stonely for distinct types of surface acoustic waves. But is there more to the story than this? Did Kagonov and Sklovskaya anticipate this development in a publication as early as 1966? Also, what about the work of Shimizu, Nakamura, and Ohta, who in April of 1969 published both theoretical and experimental verification of the existence of such a wave independent of the knowledge of the Bleustein and Gulyaev papers? This presentation explores the early roots and characteristics of what could be called the KGBS wave.

  8. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  9. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  10. RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Bard, S.; Carlsson, M.

    2010-10-10

    We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.

  11. Activation of immobilized enzymes by acoustic wave resonance oscillation.

    PubMed

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-12-01

    Acoustic wave resonance oscillation has been used successfully in the development of methods to activate immobilized enzyme catalysts. In this study, resonance oscillation effects were demonstrated for enzyme reactions on galactose oxidase (GAD), D-amino acid oxidase (DAAO), and L-amino acid oxidase (LAAO), all of which were immobilized covalently on a ferroelectric lead zirconate titanate (PZT) device that could generate thickness-extensional resonance oscillations (TERO) of acoustic waves. For galactose oxidation on immobilized GAD in a microreactor, TERO generation immediately increased enzyme activity 2- to 3-fold. Eliminating TERO caused a slight decrease in the activity, with ∼90% of the enhanced activity retained while the reaction proceeded. Contact of the enhanced enzyme with a galactose-free solution caused almost complete reversion of the activity to the original low level before TERO generation, indicating that, not only TERO-induced GAD activation, but also preservation of the increased activity, required a galactose substrate. Similar activity changes with TERO were observed for enzyme reactions on DAAO and LAAO. Kinetic analysis demonstrated that TERO helped strengthen the interactions of the immobilized enzyme with the reactant substrate and promoted formation of an activation complex. PMID:25442945

  12. Effect of strong coupling on dust acoustic waves and instabilities

    SciTech Connect

    Rosenberg, M. Kalman, G.

    1998-10-01

    The presence of charged dust in a plasma can lead to very low frequency dust acoustic waves and instabilities. In certain laboratory plasmas the dust is strongly coupled, as characterized by the condition {Gamma}{sub d}=Q{sub d}{sup 2} exp({minus}d/{lambda}{sub D})/dT{sub d}{ge}1, where Q{sub d} is the dust charge, {ital d} is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. When the dust is strongly coupled, the spatial correlation of the grains can affect the dispersion relation of these waves. We review our recent work [1] on the dispersion properties of dust acoustic waves in the strongly coupled (liquid) phase in a dusty plasma, including also the effects of dust-neutral collisions. We then discuss a preliminary analysis of the effect of strong dust coupling on an ion dust two-stream instability in a collisional dusty plasma. Applications to laboratory dusty plasmas are discussed. {copyright} {ital 1998 American Institute of Physics.}

  13. Effect of strong coupling on dust acoustic waves and instabilities

    SciTech Connect

    Rosenberg, M.; Kalman, G.

    1998-10-21

    The presence of charged dust in a plasma can lead to very low frequency dust acoustic waves and instabilities. In certain laboratory plasmas the dust is strongly coupled, as characterized by the condition {gamma}{sub d}=Q{sub d}{sup 2} exp(-d/{lambda}{sub D})/dT{sub d}{>=}1, where Q{sub d} is the dust charge, d is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. When the dust is strongly coupled, the spatial correlation of the grains can affect the dispersion relation of these waves. We review our recent work [1] on the dispersion properties of dust acoustic waves in the strongly coupled (liquid) phase in a dusty plasma, including also the effects of dust-neutral collisions. We then discuss a preliminary analysis of the effect of strong dust coupling on an ion dust two-stream instability in a collisional dusty plasma. Applications to laboratory dusty plasmas are discussed.

  14. Tunable Nanowire Patterning Using Standing Surface Acoustic Waves

    PubMed Central

    Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun

    2014-01-01

    Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330

  15. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. PMID:26070191

  16. Tunable nanowire patterning using standing surface acoustic waves.

    PubMed

    Chen, Yuchao; Ding, Xiaoyun; Steven Lin, Sz-Chin; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E; Huang, Tony Jun

    2013-04-23

    Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 s. In this approach, SSAWs were generated by interdigital transducers, which induced a periodic alternating current (ac) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shaped nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330

  17. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGESBeta

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  18. Synchronization of the dust acoustic wave under microgravity

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, W. D. Suranga; Goree, J.

    2013-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. To prepare for experiments under microgravity conditions using the PK-4 facility on the International Space Station, we perform a laboratory experiment to observe synchronization of the self-excited dust acoustic wave. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. The dust acoustic wave is self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the wave, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency. Supported by NASA's Physical Science Research Program.

  19. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    SciTech Connect

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  20. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  1. Method and apparatus for coupling seismic sensors to a borehole wall

    DOEpatents

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  2. Development of a combined surface plasmon resonance/surface acoustic wave device for the characterization of biomolecules

    NASA Astrophysics Data System (ADS)

    Bender, Florian; Roach, Paul; Tsortos, Achilleas; Papadakis, George; Newton, Michael I.; McHale, Glen; Gizeli, Electra

    2009-12-01

    It is known that acoustic sensor devices, if operated in liquid phase, are sensitive not just to the mass of the analyte but also to various other parameters, such as size, shape, charge and elastic constants of the analyte as well as bound and viscously entrained water. This can be used to extract valuable information about a biomolecule, particularly if the acoustic device is combined with another sensor element which is sensitive to the mass or amount of analyte only. The latter is true in good approximation for various optical sensor techniques. This work reports on the development of a combined surface plasmon resonance/surface acoustic wave sensor system which is designed for the investigation of biomolecules such as proteins or DNA. Results for the deposition of neutravidin and DNA are reported.

  3. Gas mixing apparatus for automated gas sensor characterization

    NASA Astrophysics Data System (ADS)

    Helwig, Nikolai; Schüler, Marco; Bur, Christian; Schütze, Andreas; Sauerwald, Tilman

    2014-05-01

    We developed a computer-controlled gas mixing system that provides automated test procedures for the characterization of gas sensors. The focus is the generation of trace gases (e.g. VOCs like benzene or naphthalene) using permeation furnaces and pre-dilution of test gases. With these methods, the sensor reaction can be analyzed at very low gas concentrations in the ppb range (parts per billion) and even lower. The pre-dilution setup enables to cover a high concentration range (1:62 500) within one test procedure. Up to six test gases, humidity, oxygen content, total flow and their variation over time can be controlled via a LabVIEW-based user-interface.

  4. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  5. Observations of vertically propagating driven dust acoustic waves: Finite temperature effects

    SciTech Connect

    Williams, Jeremiah D.; Thomas, Edward Jr.; Marcus, Lydia

    2008-04-15

    In this study, the first measurement of the dispersion relationship for a vertically propagating (i.e., parallel to gravity), driven dust acoustic wave is reported. Finite dust temperature effects were observed in the dispersion relation of the dust acoustic wave.

  6. Interfacial destabilization and atomization driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Qi, Aisha; Yeo, Leslie Y.; Friend, James R.

    2008-07-01

    Surface acoustic wave atomization is a rapid means for generating micron and submicron aerosol droplets. Little, however, is understood about the mechanisms by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory, and simple numerical modeling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Using a millimeter-order fluid drop exposed to surface acoustic waves as it sits atop a single-crystal lithium niobate piezoelectric substrate, large aerosol droplets on the length scale of the parent drop dimension are ejected through a whipping and pinch-off phenomenon, which occurs at the asymmetrically formed crest of the drop due to leakage of acoustic radiation at the Rayleigh angle. Smaller micron order droplets, on the other hand, are formed due to the axisymmetric breakup of cylindrical liquid jets that are ejected as a consequence of interfacial destabilization. The 10μm droplet dimension correlates with the jet radius and the instability wavelength, both determined from a simple scaling argument involving a viscous-capillary dominant force balance. The results are further supported by numerical solution of the evolution equation governing the interfacial profile of a sessile drop along which an acoustic pressure wave is imposed. Viscous and capillary forces dominate in the bulk of the parent drop, but inertia is dominant in the ejected jets and within a thin boundary layer adjacent to the substrate where surface and interfacial accelerations are large. With the specific exception of parent drops that spread into thin films with thicknesses on the order of the boundary layer dimension prior to atomization, the free surface of the drop is always observed to vibrate at the capillary-viscous resonance frequency—even if the exciting frequency of the surface acoustic wave is several orders of magnitude larger—contrary to

  7. Acoustic Wave Treatment For Cellulite—A New Approach

    NASA Astrophysics Data System (ADS)

    Russe-Wilflingseder, Katharina; Russe, Elisabeth

    2010-05-01

    Background and Objectives: Cellulite is a biological caused modification of the female connective tissue. In extracorporeal shockwave therapy (ESWT) pulses are penetrating into the tissue without causing a thermal effect or micro lesions, but leading to a stimulation of tissue metabolism and blood circulation, inducing a natural repair process with cell activation and stem cells proliferation. Recently ESWT treatment showed evidence of remodelling collagen within the dermis and of stimulating microcirculation in fatty tissue. Study Design and Methods: The study was designed to assess acoustic wave treatment for cellulite by comparison treated vs. untreated side (upper-leg and buttock). Each individual served as its own control. 11 females with a BMI less then 30 and an age over 18 years were included. 6 treatments were given weekly with radial acoustic waves. Documentation was done before and 1, 4, 12 weeks after last treatment by standardized photo documentation, relaxed and with muscle contraction, measurement of body weight and circumference of the thigh, pinch test, and evaluation of hormonal status and lifestyle. The efficacy of AWT/EPAT was evaluated before and 1, 4, 12 weeks after last treatment. Patients rated the improvement of cellulite, overall satisfaction and acceptance. The therapist assessed improvement of cellulite, side effects and photo documentation treated vs. untreated side, before vs. after treatment. The blinded investigator evaluated the results using photo documentation right vs. left leg, before vs. after treatment in a frontal, lateral and dorsal view, relaxed and with muscle contraction. Results: The improvement of cellulite at the treated side was rated by patients with 27,3% at week 4 and 12, by the therapist with 34,1% at week 4 and 31,2% at week 12 after the last treatment The blinded investigator could verify an improvement of cellulite in an increasing number of patients with increasing time interval after treatment. No side

  8. Development of a standing wave apparatus for calibrating acoustic vector sensors and hydrophones.

    PubMed

    Lenhart, Richard D; Sagers, Jason D; Wilson, Preston S

    2016-01-01

    An apparatus was developed to calibrate acoustic hydrophones and vector sensors between 25 and 2000 Hz. A standing wave field is established inside a vertically oriented, water-filled, elastic-walled waveguide by a piston velocity source at the bottom and a pressure-release boundary condition at the air/water interface. A computer-controlled linear positioning system allows a device under test to be precisely located in the water column while the acoustic response is measured. Some of the challenges of calibrating hydrophones and vector sensors in such an apparatus are discussed, including designing the waveguide to mitigate dispersion, understanding the impact of waveguide structural resonances on the acoustic field, and developing algorithms to post-process calibration measurement data performed in a standing wave field. Data from waveguide characterization experiments and calibration measurements are presented and calibration uncertainty is reported. PMID:26827015

  9. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  10. Method and apparatus for measuring surface changes, in porous materials, using multiple differently-configured acoustic sensors

    DOEpatents

    Hietala, Susan Leslie; Hietala, Vincent Mark; Tigges, Chris Phillip

    2001-01-01

    A method and apparatus for measuring surface changes, such as mass uptake at various pressures, in a thin-film material, in particular porous membranes, using multiple differently-configured acoustic sensors.

  11. Method and apparatus for a Fabry-Perot multiple beam fringe sensor

    NASA Technical Reports Server (NTRS)

    James, Kenneth A. (Inventor); Quick, William H. (Inventor); Strahan, Virgil H. (Inventor)

    1982-01-01

    A method and the resulting apparatus for implementing a unique multiple beam fringe sensor that is adapted to be interfaced with a low cost, compact fiber optic transmission system in order to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor is fabricated so as to include a Fabry-Perot gap formed between the ends of two mated optical fibers. By examining the optical characteristics of light that is transmitted through the Fabry-Perot sensor gap, an indication of gap width can be ascertained. Accordingly, a change in Fabry-Perot sensor gap width is related to a change in the particular physical parameter to be measured.

  12. Preliminary measurements of thermal effects in the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, Jeremiah

    2009-11-01

    A complex (dusty) plasma (CDP) is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of the microparticles gives rise to new plasma phenomena, including collective modes such as the dust acoustic wave. Recent measurements of the dispersion relationship of this wave mode [E. Thomas, Jr., et. al., Phys. Plasmas 14, 123701 (2007), J.D. Williams, et. al., Phys. Plasmas 15, 043704 (2008)] have shown that, over a range of neutral gas pressures, it is necessary to include thermal effects to accurately fit the measured dispersion relations. In this work, initial measurements of the dispersion relation in a new dusty plasma experiment, the Wittenberg University DUsty Plasma Experiment (WUDUPE), will be presented. In particular, the dependence of the kinetic dust temperature on the neutral gas pressure will be presented.

  13. Collective Lipid Bilayer Dynamics Excited by Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Reusch, T.; Schülein, F. J. R.; Nicolas, J. D.; Osterhoff, M.; Beerlink, A.; Krenner, H. J.; Müller, M.; Wixforth, A.; Salditt, T.

    2014-09-01

    We use standing surface acoustic waves to induce coherent phonons in model lipid multilayers deposited on a piezoelectric surface. Probing the structure by phase-controlled stroboscopic x-ray pulses we find that the internal lipid bilayer electron density profile oscillates in response to the externally driven motion of the lipid film. The structural response to the well-controlled motion is a strong indication that bilayer structure and membrane fluctuations are intrinsically coupled, even though these structural changes are averaged out in equilibrium and time integrating measurements. Here the effects are revealed by a timing scheme with temporal resolution on the picosecond scale in combination with the sub-nm spatial resolution, enabled by high brilliance synchrotron x-ray reflectivity.

  14. Multilayer magnetostrictive structure based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Talbi, A.; Tiercelin, N.; Bou Matar, O.

    2014-03-01

    This study addresses the experimental and theoretical investigations of guided elastic waves propagation in piezo-magnetic multi-layered structure. The structure is composed of a 20×TbCo2(5nm)/FeCo(5nm) nanostructured multi-layer deposited between two Aluminum (Al) Inter-Digitals Transducers forming a surface acoustic wave delay line, on a Y-cut LiNbO3 substrate. We compare the calculated and measured phase velocity variation under the action of the external magnetic field orientation and magnitude. We find quantitative agreement between the measured and modeled phase velocity shift for all external magnetic field configurations (hard axis and easy axis) and for different shape modes of elastic waves at their first and third harmonic operation frequencies. The shear horizontal mode exhibits a maximum phase velocity shift close to 20% for a ratio close to 1 between magneto-elastic film thickness and wavelength.

  15. Optically tunable acoustic wave band-pass filter

    SciTech Connect

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-15

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  16. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  17. Drift and ion acoustic wave driven vortices with superthermal electrons

    SciTech Connect

    Ali Shan, S.; Haque, Q.

    2012-08-15

    Linear and nonlinear analysis of coupled drift and acoustic mode is presented in an inhomogeneous electron-ion plasma with {kappa}-distributed electrons. A linear dispersion relation is found which shows that the phase speed of both the drift wave and the ion acoustic wave decreases in the presence of superthermal electrons. Several limiting cases are also discussed. In the nonlinear regime, stationary solutions in the form of dipolar and monopolar vortices are obtained. It is shown that the condition for the boundedness of the solution implies that the speed of drift wave driven vortices reduces with increase in superthermality effect. Ignoring density inhomogeniety, it is investigated that the lower and upper limits on the speed of the ion acoustic driven vortices spread with the inclusion of high energy electrons. The importance of results with reference to space plasmas is also pointed out.

  18. A radioisotope-powered surface acoustic wave transponder

    NASA Astrophysics Data System (ADS)

    Tin, S.; Lal, A.

    2009-09-01

    We demonstrate a 63Ni radioisotope-powered pulse transponder that has a SAW (surface acoustic wave) device as the frequency transmission frequency selector. Because the frequency is determined by a SAW device, narrowband detection with an identical SAW device enables the possibility for a long-distance RF-link. The SAW transponders can be buried deep into structural constructs such as steel and concrete, where changing batteries or harvesting vibration or EM energy is not a reliable option. RF-released power to radioisotope- released power amplification is 108, even when regulatory safe amounts of 63Ni are used. Here we have achieved an 800 µW pulse (315 MHz, 10 µs pause) across a 50 Ω load every 3 min, using a 1.5 milli-Ci 63Ni source.

  19. Subharmonic phased array for crack evaluation using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Ouchi, Akihiro; Sugawara, Azusa; Ohara, Yoshikazu; Yamanaka, Kazushi

    2015-07-01

    To accurately measure closed crack length, we proposed an imaging method using a subharmonic phased array for crack evaluation using surface acoustic waves (SAW SPACE) with water immersion. We applied SAW SPACE to the hole specimen in a fundamental array (FA) image. The hole was imaged with high resolution. Subsequently, SAW SPACE was applied to fatigue crack and stress corrosion crack (SCC) specimens. A fatigue crack was imaged in FA and subharmonic array (SA) images, and the length of this particular fatigue crack measured in the images was almost the same as that measured by optical observation. The SCC was imaged and its length was accurately measured in the SA image, whereas it was underestimated in the FA image and by optical observation. Thus, we demonstrated that SAW SPACE with water immersion is useful for the accurate measurement of closed crack length and for imaging the distribution of open and closed parts of cracks with high resolution.

  20. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  1. Trapping of dust and dust acoustic waves in laboratory plasmas

    SciTech Connect

    Prabhakara, H.R.; Tanna, V.L.

    1996-08-01

    Trapping of negatively charged dust particles is observed in a hot cathode plasma discharge when a layer of dust is exposed to the plasma. The particles are visible in the scattered He{endash}Ne laser light. The trajectories of individual particles have been photographed. The dust particles are excluded from the sheath region of any object in the plasma. The intensity of scattered light as well as the potential on a floating Langmuir probe show coherent fluctuations in the frequency range 1{endash}15 Hz. After several hours of exposure to the plasma, the dust layer develops striations similar to those on sand dunes. Trapping of dust particles by the plasma and the possible identification of the observed low-frequency fluctuations with dust acoustic waves are discussed. {copyright} {ital 1996 American Institute of Physics.}

  2. Interaction of acoustic waves generated by coupled plate

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    When two substructures are coupled, the acoustic field generated by the motion of each of the substructures will interact with the motion of the other substructure. This would be the case of a structure enclosing an acoustic cavity. A technique to model the interaction of the generated sound fields from the two components of a coupled structure, and the influence of this interaction on the vibration of the structural components is presented. Using a mobility power flow approach, each element of the substructure is treated independently both when developing the structural response and when determining the acoustic field generated by this component. The presence of the other substructural components is introduced by assuming these components to be rigid baffles. The excitation of one of the substructures is assumed to be by an incident acoustic wave which is dependent of the motion of the substructure. The sound field generated by the motion of the substructure is included in the solution of the response.

  3. Visualization of Surface Acoustic Waves in Thin Liquid Films

    PubMed Central

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, J. M.; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  4. Ultrahigh Q Bulk Acoustic Wave Cavities at the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Tobar, Michael; Goryachev, Maxim; Ivanov, Eugene; van Kann, Frank; Galliou, Serge

    2015-03-01

    A Fabry-Perot cavity is an optical resonator, which can store photons for milliseconds and enhance interaction between light and matter. The acoustics analogue (phonon trapping), is the Bulk Acoustic Wave device (in thin film or crystal lattice). Measurements provide the ultimate material loss regimes, minimizing clamping losses and achieving record high Q.f products, allowing observation of various loss mechanisms such as Landau-Rumer, phonon-phonon dissipation and Rayleigh phonon scattering, as well as previously non-observed non-linear effects. This presentation will summarize our recent work towards cooling such modes to the ground state and operating the device at the Quantum Limit. This includes the first measurements of the Nyquist noise near at 4K, as well as details on using such devices to test fundamental physics. Funded by ARC Grant No. CE110001013.

  5. Visualization of Surface Acoustic Waves in Thin Liquid Films.

    PubMed

    Rambach, R W; Taiber, J; Scheck, C M L; Meyer, C; Reboud, J; Cooper, J M; Franke, T

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  6. Multilayer-graphene-based amplifier of surface acoustic waves

    SciTech Connect

    Yurchenko, Stanislav O. Komarov, Kirill A.; Pustovoit, Vladislav I.

    2015-05-15

    The amplification of surface acoustic waves (SAWs) by a multilayer graphene (MLG)-based amplifier is studied. The conductivity of massless carriers (electrons or holes) in graphene in an external drift electric field is calculated using Boltzmann’s equation. At some carrier drift velocities, the real part of the variable conductivity becomes negative and MLG can be employed in SAW amplifiers. Amplification of Blustein’s and Rayleigh’s SAWs in CdS, a piezoelectric hexagonal crystal of the symmetry group C{sub 6v}, is considered. The corresponding equations for SAW propagation in the device are derived and can be applied to other substrate crystals of the same symmetry. The results of the paper indicate that MLG can be considered as a perspective material for SAW amplification and related applications.

  7. Dust Acoustic Wave Excitation in a Plasma with Warm Dust

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.

    2008-11-01

    Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).

  8. Surface acoustic wave (SAW) acoustophoresis: now and beyond.

    PubMed

    Lin, Sz-Chin Steven; Mao, Xiaole; Huang, Tony Jun

    2012-08-21

    On-chip manipulation of micro-objects has long been sought to facilitate fundamental biological studies and point-of-care diagnostic systems. In recent years, research on surface acoustic wave (SAW) based micro-object manipulation (i.e., SAW acoustophoresis) has gained significant momentum due to its many advantages, such as non-invasiveness, versatility, simple fabrication, easy operation, and convenient integration with other on-chip units. SAW acoustophoresis is especially useful for lab-on-a-chip applications where a compact and non-invasive biomanipulation technique is highly desired. In this Focus article, we discuss recent advancements in SAW acoustophoresis and provide some perspectives on the future development of this dynamic field. PMID:22781941

  9. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  10. Transport Powder and Liquid Samples by Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  11. Nonlinear electron-acoustic waves in quantum plasma

    SciTech Connect

    Sah, O. P.; Manta, J.

    2009-03-15

    The nonlinear wave structure of electron-acoustic waves (EAWs) is investigated in a three component unmagnetized dense quantum plasma consisting of two distinct groups of electrons (one inertial cold electron, and other inertialess hot electrons) and immobile ions. By employing one dimensional quantum hydrodynamic model and standard reductive perturbation technique, a Korteweg-de-Vries equation governing the dynamics of EAWs is derived. Both compressive and rarefactive solitons along with periodical potential structures are found to exist for various ranges of dimensionless quantum parameter H. The quantum mechanical effects are also examined numerically on the profiles of the amplitude and the width of electron-acoustic solitary waves. It is observed that both the amplitude and the width of electron-acoustic solitary waves are significantly affected by the parameter H. The relevance of the present investigation to the astrophysical ultradense plasmas is also discussed.

  12. Microwave bulk-acoustic-wave reflection-grating resonators.

    PubMed

    Oates, D E; Pan, J Y

    1988-01-01

    A technique for fabrication of bulk-acoustic-wave (BAW) resonators operating at fundamental frequencies between 1 and 10 GHz is presented. The resonators utilize a reflection grating made by optical holographic methods in iron-doped lithium niobate. Q factors of 30000 at 1 GHz have been demonstrated. Extension to Q of 10000 at 10 GHz appears feasible. Projected limitations to performance are discussed. The high Q at the high fundamental frequency directly results in low-phase noise. Phase-noise measurements of BAW resonator-stabilized oscillators operating at 1.14 GHz are presented. The single-sideband noise floor of <-140 dBc/Hz is shown to be in agreement with an analytical model. Projected improvements in the devices and circuits promise performance of <-160 dBc/Hz. PMID:18290157

  13. Piezoelectric tube rotation effect owing to surface acoustic wave excitation

    NASA Astrophysics Data System (ADS)

    Biryukov, Sergey V.; Sotnikov, Andrei; Schmidt, Hagen

    2016-03-01

    It is shown experimentally that a macroscopic cylindrical solid shaped like a piezoelectric tube can be rotated due to the excitation of surface acoustic waves (SAWs) with different amplitudes propagating in opposite directions along the solid's surface. A unidirectional SAW transducer covering the whole cylindrical surface has been used for ac voltage excitation of waves with unequal amplitudes in both directions. The pattern of such a transducer consists of a periodic comb structure with two electrodes of different width per period. An external torque is not applied to the tube and, from the outside, its movement looks like a motion under the action of an internal force. The observed mechanical response of the piezoelectric cylindrical tube to excitation of waves is due to an angular momentum of SAWs, the value of which has been directly calculated from experimental results.

  14. Visualization of Surface Acoustic Waves in Thin Liquid Films

    NASA Astrophysics Data System (ADS)

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, J. M.; Franke, T.

    2016-02-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect.

  15. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  16. Dust acoustic waves in strongly coupled dusty plasmas

    SciTech Connect

    Rosenberg, M. Kalman, G.

    1997-12-01

    Dust grains, or solid particles of {mu}m to sub-{mu}m sizes, are observed in various low-temperature laboratory plasmas such as process plasmas and dust plasma crystals. The massive dust grains are generally highly charged, and it has been shown within the context of standard plasma theory that their presence can lead to new low-frequency modes such as dust acoustic waves. In certain laboratory plasmas, however, the dust may be strongly coupled, as characterized by the condition {Gamma}{sub d}=Q{sub d}{sup 2}exp({minus}d/{lambda}{sub D})/dT{sub d}{ge}1, where Q{sub d} is the dust charge, d is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. This paper investigates the dispersion relation for dust acoustic waves in a strongly coupled dusty plasma comprised of strongly coupled negatively charged dust grains, and weakly correlated classical ions and electrons. The dust grains are assumed to interact via a (screened Coulomb) Yukawa potential. The strongly coupled gas phase (liquid phase) is considered, and a quasilocalized charge approximation scheme is used, generalized to take into account electron and/or ion screening of the dust grains. The scheme relates the small-k dispersion to the total correlation energy of the system, which is obtained from the results of published numerical simulations. Some effects of collisions of charged particles with neutrals are taken into account. Applications to laboratory dusty plasmas are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  17. Flow velocity measurement with the nonlinear acoustic wave scattering

    NASA Astrophysics Data System (ADS)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  18. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  19. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    NASA Technical Reports Server (NTRS)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  20. Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)

    NASA Technical Reports Server (NTRS)

    Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)

    2003-01-01

    A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.

  1. Wireless SAW Sensors Having Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Gallagher, Mark (Inventor); Malocha, Donald C. (Inventor)

    2015-01-01

    A wireless surface acoustic wave sensor includes a piezoelectric substrate, a surface acoustic wave device formed on the substrate, and an antenna formed on the substrate. In some embodiments, the antenna is formed on the surface of the substrate using one or more of photolithography, thin film processing, thick film processing, plating, and printing.

  2. Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements.

    PubMed

    Monkkonen, Lucas; Edgar, J Scott; Winters, Daniel; Heron, Scott R; Mackay, C Logan; Masselon, Christophe D; Stokes, Adam A; Langridge-Smith, Patrick R R; Goodlett, David R

    2016-03-25

    An inexpensive digital microfluidic (DMF) chip was fabricated by screen-printing electrodes on a sheet of polyimide. This device was manually integrated with surface acoustic wave nebulization (SAWN) MS to conduct hydrogen/deuterium exchange (HDX) of peptides. The HDX experiment was performed by DMF mixing of one aqueous droplet of angiotensin II with a second containing various concentrations of D2O. Subsequently, the degree of HDX was measured immediately by SAWN-MS. As expected for a small peptide, the isotopically resolved mass spectrum for angiotensin revealed that maximum deuterium exchange was achieved using 50% D2O. Additionally, using SAWN-MS alone, the global HDX kinetics of ubiquitin were found to be similar to published NMR data and back exchange rates for the uncooled apparatus using high inlet capillary temperatures was less than 6%. PMID:26826755

  3. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    SciTech Connect

    Siemens, M.; Li, Q.; Murnane, M.; Kapteyn, H.; Yang, R.; Anderson, E.; Nelson, K.

    2009-03-02

    We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series for the first time. These measurements are critical for accurate characterization of thin films using this technique.

  4. Apparatus to characterize gas sensor response under real-world conditions in the lab.

    PubMed

    Kneer, J; Eberhardt, A; Walden, P; Ortiz Pérez, A; Wöllenstein, J; Palzer, S

    2014-05-01

    The use of semiconducting metal-oxide (MOX) based gas sensors in demanding applications such as climate and environmental research as well as industrial applications is currently hindered by their poor reproducibility, selectivity, and sensitivity. This is mainly due to the sensing mechanism which relies on the change of conductivity of the metal-oxide layer. To be of use for advanced applications metal-oxide (MOX) gas sensors need to be carefully prepared and characterized in laboratory environments prior to deployment. This paper describes the working principle, design, and use of a new apparatus that can emulate real-world conditions in the laboratory and characterize the MOX gas sensor signal in tailor-made atmospheres. In particular, this includes the control of trace gas concentrations and the control of oxygen and humidity levels which are important for the surface chemistry of metal-oxide based sensors. Furthermore, the sensor temperature can be precisely controlled, which is a key parameter of semiconducting, sensitive layers, and their response to particular gas compositions. The setup also allows to determine the power consumption of each device individually which may be used for performance benchmarking or monitoring changes of the temperature of the gas composition. Both, the working principle and the capabilities of the gas measurement chamber are presented in this paper employing tin dioxide (SnO2) based micro sensors as exemplary devices. PMID:24880407

  5. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  6. Surface acoustic wave biosensor as a tool to study the interaction of antimicrobial peptides with phospholipid and lipopolysaccharide model membranes.

    PubMed

    Andrä, Jörg; Böhling, Arne; Gronewold, Thomas M A; Schlecht, Ulrich; Perpeet, Markus; Gutsmann, Thomas

    2008-08-19

    Surface acoustic wave biosensors are a powerful tool for the study of biomolecular interactions. The modulation of a surface-confined acoustic wave is utilized here for the analysis of surface binding. Phase and amplitude of the wave correspond roughly to mass loading and viscoelastic properties of the surface, respectively. We established a procedure to reconstitute phospholipid and lipopolysaccharide bilayers on the surface of a modified gold sensor chip to study the mode of action of membrane-active peptides. The procedure included the formation of a self-assembled monolayer of 11-mercaptoundecanol, covalent coupling of carboxymethyl-dextran, and subsequent coating with a poly- l-lysine layer. The lipid coverage of the surface is highly reproducible and homogeneous as demonstrated in atomic force micrographs. Ethanol/triton treatment removed the lipids completely, which provided the basis for continuous sequences of independent experiments. The setup was applied to investigate the binding of human cathelicidin-derived peptide LL32, as an example for antimicrobial peptides, to immobilized phosphatidylserine membranes. The peptide-membrane interaction results in a positive phase shift and an increase in amplitude, indicating a mass increase along with a loss in viscosity. This suggests that the bilayer becomes more rigid upon interaction with LL32. PMID:18605705

  7. Design and simulation study of high frequency response for surface acoustic wave device by using CST software

    NASA Astrophysics Data System (ADS)

    Zakaria, M. R.; Hashim, U.; Amin, Mohd Hasrul I. M.; Ayub, R. Mat; Hashim, M. N.; Adam, T.

    2015-05-01

    This paper focuses on the enhancement and improvement of the Surface Acoustic Wave (SAW) device performance. Due to increased demand in the international market for biosensor product, the product must be emphasized in terms of quality. However, within the technological advances, demand for device with low cost, high efficiency and friendly-user preferred. Surface Acoustic Wave (SAW) device with the combination of pair electrode know as Interdigital Transducer (IDT) was fabricated on a piezoelectric substrate. The design of Interdigital Transducer (IDT) parameter is changes in several sizes and values for which it is able to provide greater efficiency in sensing sensitivity by using process simulation with CST STUDIO Suite software. In addition, Interdigital Transducer (IDT) parameters also changed to be created the products with a smaller size and easy to handle where it also reduces the cost of this product. Parameter values of an Interdigital Transducer (IDT) will be changed in the design is the total number of fingers pair, finger length, finger width and spacing, aperture and also the thickness of the Interdigital Transducer (IDT). From the result, the performance of the sensor is improved significantly after modification is done.

  8. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  9. Terahertz acoustic wave on piezoelectric semiconductor film via large-scale molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hikata, Ryo; Tsuruta, Kenji; Ishikawa, Atsushi; Fujimori, Kazuhiro

    2015-07-01

    By atomistic simulation, we investigate an acoustic wave at THz frequencies in nanoscale thin films of aluminum-nitride piezoelectric material. A mode analysis reveals that the thickness longitudinal mode along the [0001] direction exists stably at the atomic level. To control the acoustic wave, we introduce a phononic crystal (PC) structure in the films. We determine the band-gap frequency in the phonon dispersion of the PC structure and confirm via molecular dynamics simulation that the acoustic wave within the band-gap frequency can be confined by a waveguide structure with a PC. The possibility of designing and controlling a THz acoustic wave in a nanoscale thin film with a PC is thereby demonstrated.

  10. Laser induced plane acoustic wave generation, propagation, and interaction with rigid structures in water

    NASA Astrophysics Data System (ADS)

    Ko, Seung H.; Ryu, Sang G.; Misra, Nipun; Pan, Heng; Grigoropoulos, Costas P.; Kladias, Nick; Panides, Elias; Domoto, Gerald A.

    2008-10-01

    Short pulsed laser induced single acoustic wave generation, propagation, interaction with rigid structures, and focusing in water are experimentally and numerically studied. A large area short duration single plane acoustic wave was generated by the thermoelastic interaction of a homogenized nanosecond pulsed laser beam with a liquid-solid interface and propagated at the speed of sound in water. Laser flash schlieren photography was used to visualize the transient interaction of the plane acoustic wave with various submerged rigid structures [(a) a single block, (b) double blocks, (c) 33° tilted single block, and (d) concave cylindrical acoustic lens configurations]. Excellent agreement between the experimental results and numerical simulation is observed. Our simulation results demonstrate that the laser induced planar acoustic wave can be focused down to several tens of micron size and several bars in pressure.

  11. Interaction of surface acoustic waves with moving vortex structures in superconducting films

    SciTech Connect

    Gutlyansky, E. D.

    2007-07-15

    A method is proposed for describing a moving film vortex structure and its interaction with surface acoustic waves. It is shown that the moving vortex structure can amplify (generate) surface acoustic waves. In contrast to a similar effect in semiconductor films, this effect can appear when the velocity of the vortex structure is much lower than the velocity of the surface acoustic waves. A unidirectional collective mode is shown to exist in the moving vortex structure. This mode gives rise to an acoustic analogue of the diode effect that is resonant in the velocity of the vortex structure. This acoustic effect is manifested as an anomalous attenuation of the surface acoustic waves in the direction of the vortex-structure motion and as the absence of this attenuation for the propagation in the opposite direction.

  12. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    SciTech Connect

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-04-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  13. Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Yuan, Baoguo; Cheng, Ying; Liu, Xiaojun

    2016-02-01

    We have realized the acoustic rainbow trapping in the low frequency region (200-500 Hz) through micro Mie resonance-based structures. The structure has eight channels with a high refractive index obtained by coiling space, that can excite strong interactions with incident waves and support various orders of multipoles due to the Mie resonances of the microstructure. By utilizing the structure, the precise spatial modulation of the acoustic wave is demonstrated both theoretically and experimentally. The effect of trapping broadband acoustic waves and spatially separating different frequency components are ascribed to the monopolar Mie resonances of the structures. The trapping frequency is derived and the trapping positions can be tuned arbitrarily. With enhanced wave-structure interactions and tailored frequency responses, such micro structures show precise spectral-spatial control of acoustic waves and open a diverse venue for high performance acoustic wave detection, sensing, filtering, and a nondestructive test.

  14. On-chip droplet production regimes using surface acoustic waves.

    PubMed

    Brenker, Jason C; Collins, David J; Van Phan, Hoang; Alan, Tuncay; Neild, Adrian

    2016-04-26

    Aqueous droplets suspended in an immiscible carrier fluid are a key tool in microfluidic chemical analysis platforms. The approaches for producing droplets in microfluidic devices can be divided into three general categories: batch emulsification, continuous production and tailored on-demand production. The major distinctions between each category are the rate of production and the degree of control over the droplet formation process in terms of the size and quantity. On-demand methods are highly desirable when, for example, small numbers or even single droplets of one sample type are required at a time. Here, we present a method for the on-demand production of femtolitre droplets, utilising a pressure source generated by high frequency surface acoustic waves (SAW). An increase in the continuous phase flow rate is enabled by a quasi-3D feature at the droplet production nozzle. A wide range of accessible flow rates permits the identification of different physical regimes in which droplets of different dimensions are produced. In the system investigated droplets measuring as little as 200 fl have been produced, ∼1/60th of the minimum volume previously reported. The experimental findings are supported by a numerical model which demonstrates the link between the number of droplets formed and the pulse length used. PMID:27045939

  15. A superconducting qubit coupled to propagating acoustic waves

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin V.; Aref, Thomas; Frisk Kockum, Anton; Ekström, Maria K.; Johansson, Göran; Delsing, Per

    2015-03-01

    Mechanical devices in the quantum regime have so far consisted mainly of suspended resonators, where standing modes can be populated with quanta of vibrational energy. We present a fundamentally different system, where the mechanical excitation is not restricted to a specific mode and location. Instead, we demonstrate strong non-classical coupling between propagating phonons and a superconducting qubit. The qubit is fabricated on a piezoelectric substrate, and is designed to interact with Surface Acoustic Waves (SAWs) in the gigahertz frequency range. A separate on-chip transducer allows us to launch SAWs toward the qubit from a distance and pick up SAW phonons that the qubit reflects and emits. In a series of experiments where the qubit is addressed both electrically and acoustically, we show that the qubit couples much more strongly to SAWs than to any electrical modes. The low speed of sound sets phonons apart from photons as a medium for transporting quantum information, and should enable real-time manipulation of propagating quanta. The short acoustic wavelength and strong piezoelectric coupling should also allows regimes of interaction to be explored which cannot be reached in photonic systems.

  16. Excitation of nonlinear ion acoustic waves in CH plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Xiao, C. Z.; Wang, Q.; He, X. T.

    2016-08-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number k λ D e increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of T i / T e < 0.2 in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with k λ D e increasing. When k λ D e is not large, such as k λ D e = 0.1 , 0.3 , 0.5 , the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when k λ D e is large, such as k λ D e = 0.7 , the linear frequency cannot be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.

  17. Spatial selective manipulation of microbubbles by tunable surface acoustic waves

    PubMed Central

    Zhou, Wei; Niu, Lili; Cai, Feiyan; Li, Fei; Wang, Chen; Huang, Xiaowei; Wang, Jingjing; Wu, Junru; Meng, Long; Zheng, Hairong

    2016-01-01

    A microfluidic device based on a pair of slant-finger interdigital transducers (SFITs) is developed to achieve a selective and flexible manipulation of microbubbles (MBs) by surface acoustic waves (SAWs). The resonance frequency of SAWs generated by the SFITs depends on the location of its parallel pathway; the particles at different locations of the SAWs' pathway can be controlled selectively by choosing the frequency of the excitation signal applied on the SFITs. By adjusting the input signal continuously, MBs can be transported along the acoustic aperture precisely. The displacement of MBs has a linear relationship with the frequency shift. The resolution of transportation is 15.19 ± 2.65 μm when the shift of input signal frequency is at a step of 10 kHz. In addition, the MBs can be controlled in a two-dimensional plane by combining variations of the frequency and the relative phase of the excitation signal applied on the SFITs simultaneously. This technology may open up the possibility of selectively and flexibly manipulating MBs using a simple one-dimensional device. PMID:27462381

  18. A Schamel equation for ion acoustic waves in superthermal plasmas

    SciTech Connect

    Williams, G. Kourakis, I.; Verheest, F.; Hellberg, M. A.; Anowar, M. G. M.

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  19. A Schamel equation for ion acoustic waves in superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Williams, G.; Verheest, F.; Hellberg, M. A.; Anowar, M. G. M.; Kourakis, I.

    2014-09-01

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u0. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  20. Dispersion and mirror transmission characteristics of bulk acoustic wave resonators.

    PubMed

    Kokkonen, Kimmo; Pensala, Tuomas; Kaivola, Matti

    2011-01-01

    A heterodyne laser interferometer is used for a detailed study of the acoustic wave fields excited in a 932-MHz solidly mounted ZnO thin-film BAW resonator. The sample is manufactured on a glass substrate, which also allows direct measurement of the vibration fields from the bottom of the acoustic mirror. Vibration fields are measured both on top of the resonator and at the mirror-substrate interface in a frequency range of 350 to 1200 MHz. Plate wave dispersion diagrams are calculated from the experimental data in both cases and the transmission characteristics of the acoustic mirror are determined as a function of both frequency and lateral wave number. The experimental data are compared with 1-D and 2-D simulations to evaluate the validity of the modeling tools commonly used in mirror design. All the major features observed in the 1-D model are identified in the measured dispersion diagrams, and the mirror transmission characteristics predicted for the longitudinal waves, by both the 1-D and the 2-D models, match the measured values well. PMID:21244989

  1. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions. PMID:27262557

  2. Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J.; del Moro, D.; Berrilli, F.

    2016-07-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  3. Multiple scattering of a spherical acoustic wave from fluid spheres

    NASA Astrophysics Data System (ADS)

    Wu, J. H.; Liu, A. Q.; Chen, H. L.; Chen, T. N.

    2006-02-01

    The multiple scattering of a spherical acoustic wave from an arbitrary number of fluid spheres is investigated theoretically. The tool to attack the multiple scattering problem is a kind of addition formulas for the spherical wave functions, which are presented in the paper, based on the bicentric expansion form of Green function in the spherical coordinates. For an arbitrary configuration of N fluid spheres, the kind of addition formulas permits the field expansions (all referred to the center of each sphere). With these the sound fields scattered by each sphere can be described by a set of N equations. The interactions between any two fluid spheres are taken into account in these equations exactly and their coefficients are coupled through double sums in the spherical wave functions. By truncating the infinite series in the equations depending on certain calculation accuracy and solving the coefficients matrix by using the Gauss-Seidel iteration method, we can obtain the scattered sound field by the configuration of the fluid spheres. Finally, the scattering calculations by using the kind of addition formulas are carried out.

  4. Ion Acoustic Waves, A High School Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Buck, R.; Wise, J.; Gibson, N.; Buck, M.; Gekelman, W.; Wetzel, E.; Wetzel, C.; Moynihan, C.

    2001-10-01

    Over the last three the Los Angeles Physics Teachers Alliance Group (LAPTAG) has built a plasma device and designed experiments for high school students to learn about plasma properties and behavior. One of the first experiments performed by small student groups (two to three students at a time) is to create ion acoustic wave tonebursts in an Argon plasma, measure the wavelength and frequency of the wave and thereby calculate the velocity of the wave. A grid antenna immersed in the plasma, which is pulsed by a function generator, creates the waves. Measurements are made using a Langmuir probe and read out on a digital oscilloscope. From this information students calculate values such as the temperature of the plasma, the plasma density and percent ionization of the plasma. In order to do these experiments students must understand what plasma is, how plasma can be created using a helicon source, how to use an oscilloscope and many other aspects of the plasma chamber involved in the experiment. Other experiments are currently being done on the device and still others are being designed. For more information visit the LAPTAG website (http://coke.physics.ucla.edu/laptag).

  5. Experimental and numerical studies on standing surface acoustic wave microfluidics.

    PubMed

    Mao, Zhangming; Xie, Yuliang; Guo, Feng; Ren, Liqiang; Huang, Po-Hsun; Chen, Yuchao; Rufo, Joseph; Costanzo, Francesco; Huang, Tony Jun

    2016-02-01

    Standing surface acoustic waves (SSAW) are commonly used in microfluidics to manipulate cells and other micro/nano particles. However, except for a simple one-dimensional (1D) harmonic standing waves (HSW) model, a practical model that can predict particle behaviour in SSAW microfluidics is still lacking. Herein, we established a two-dimensional (2D) SSAW microfluidic model based on the basic theory in acoustophoresis and our previous modelling strategy to predict the acoustophoresis of microparticles in SSAW microfluidics. This 2D SSAW microfluidic model considers the effects of boundary vibrations, channel materials, and channel dimensions on the acoustic propagation; as an experimental validation, the acoustophoresis of microparticles under continuous flow through narrow channels made of PDMS and silicon was studied. The experimentally observed motion of the microparticles matched well with the numerical predictions, while the 1D HSW model failed to predict many of the experimental observations. Particularly, the 1D HSW model cannot account for particle aggregation on the sidewall in PDMS channels, which is well explained by our 2D SSAW microfluidic model. Our model can be used for device design and optimization in SSAW microfluidics. PMID:26698361

  6. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    PubMed

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-01

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis. PMID:22742654

  7. Effects of acoustic wave resonance oscillation on immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-03-01

    In aiming at developing a new method to artificially activate enzyme catalysts immobilized on surface, the effects of resonance oscillation of bulk acoustic waves were studied. Glucose oxidase (GOD) was immobilized by a covalent coupling method on a ferroelectric lead zirconate titanate (PZT) device that was able to generate thickness-extensional resonance oscillation (TERO). Glucose oxidation by the GOD enzyme was studied in a microreactor. The generation of TERO immediately increased the catalytic activity of immobilized GOD by a factor of 2-3. With turn-off of TERO, no significant activity decrease occurred, and 80-90% of the enhanced activity was maintained while the reaction proceeded. The almost complete reversion of the activity to the original low level before TERO generation was observed when the immobilized GOD was exposed to a glucose substrate-free solution. These results indicated that the presence of glucose substrate was essential for TERO-induced GOD activation and preservation of the increased activity level. The influences of reaction temperature, glucose concentration, pH, and rf electric power on the TERO activation showed that TERO strengthened the interactions of the immobilized enzyme with glucose substrate and hence promoted the formation of an activation complex.

  8. On-demand droplet splitting using surface acoustic waves.

    PubMed

    Jung, Jin Ho; Destgeer, Ghulam; Ha, Byunghang; Park, Jinsoo; Sung, Hyung Jin

    2016-08-16

    We demonstrated the operation of an acoustomicrofluidic device composed of a polydimethylsiloxane (PDMS) microchannel and a slanted-finger interdigitated transducer (SF-IDT), for the on-demand splitting of droplets in an active, accurate, rapid, and size-controllable manner. A narrow beam of surface acoustic waves (SAWs) that emanated from the SF-IDT exerted an acoustic radiation force (ARF) on the droplet's water-oil interface due to the acoustic contrast between the two fluids. The ARF split the mother droplet into two or more daughter droplets of various volumes in a split ratio that was readily controlled by varying the applied voltage or the flow rate. Theoretical estimates of the ARF acting on the droplet interface were used to investigate the mechanism underlying the droplet splitting properties and size control. The versatility of the acoustomicrofluidic device operation was demonstrated by selectively pushing/placing a suspended polystyrene particle into a specific/preferred split daughter droplet using the direct ARF acting on the particle. PMID:27435869

  9. Spatial selective manipulation of microbubbles by tunable surface acoustic waves.

    PubMed

    Zhou, Wei; Niu, Lili; Cai, Feiyan; Li, Fei; Wang, Chen; Huang, Xiaowei; Wang, Jingjing; Wu, Junru; Meng, Long; Zheng, Hairong

    2016-05-01

    A microfluidic device based on a pair of slant-finger interdigital transducers (SFITs) is developed to achieve a selective and flexible manipulation of microbubbles (MBs) by surface acoustic waves (SAWs). The resonance frequency of SAWs generated by the SFITs depends on the location of its parallel pathway; the particles at different locations of the SAWs' pathway can be controlled selectively by choosing the frequency of the excitation signal applied on the SFITs. By adjusting the input signal continuously, MBs can be transported along the acoustic aperture precisely. The displacement of MBs has a linear relationship with the frequency shift. The resolution of transportation is 15.19 ± 2.65 μm when the shift of input signal frequency is at a step of 10 kHz. In addition, the MBs can be controlled in a two-dimensional plane by combining variations of the frequency and the relative phase of the excitation signal applied on the SFITs simultaneously. This technology may open up the possibility of selectively and flexibly manipulating MBs using a simple one-dimensional device. PMID:27462381

  10. Simulation of surface acoustic wave motor with spherical slider.

    PubMed

    Morita, T; Kurosawa, M K; Higuchi, T

    1999-01-01

    The operation of a surface acoustic wave (SAW) motor using spherical-shaped sliders was demonstrated by Kurosawa et al. (1994). It was necessary to modify the previous simulation models for usual ultrasonic motors because of this slider shape and the high frequency vibration. A conventional ultrasonic motor has a flat contact surface slider and a hundredth driving frequency; so, the tangential motion caused by the elasticity of the slider and stator with regard to the spherical slider of the SAW motor requires further investigation. In this paper, a dynamic simulation model for the SAW motor is proposed. From the simulation result, the mechanism of the SAW motor was clarified (i.e., levitation and contact conditions were repeated during the operation). The transient response of the motor speed was simulated. The relationships between frictional factor and time constant and vibration velocity of the stator and the slider speed were understood. The detailed research regarding the elastic deformation caused by preload would be helpful to construct an exact simulation model for the next work. PMID:18238497

  11. Defect states of acoustic waves in a two-dimensional lattice of solid cylinders

    SciTech Connect

    Sigalas, M.M.

    1998-09-01

    Using the plane-wave expansion method, we study the propagation of acoustic waves through two-dimensional (2D) periodic composites consisting of solid cylinders in air. Defect in those structures create localized states inside the band gaps. We study both single and line defects. Line defects can act as a waveguide for acoustic waves while single defects can be used as acoustical filters. {copyright} {ital 1998 American Institute of Physics.}

  12. Ion acoustic waves and related plasma observations in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Marsch, E.; Pilipp, W.; Schwenn, R.; Rosenbauer, H.

    1979-01-01

    The paper presents a study of the relationship between the interplanetary ion acoustic waves detected by Helios and the macroscopic and microscopic characteristics of the solar wind plasma. Two major mechanisms, an electron heat flux instability and a double-ion beam instability, are considered for generating the ion-acoustic-like waves observed in the solar wind. The results provide support to both mechanisms for generating the solar wind ion acoustic waves, although each mechanism has problems under certain conditions.

  13. Surface acoustic wave velocity and elastic constants of cubic GaN

    NASA Astrophysics Data System (ADS)

    Jiménez Riobóo, Rafael J.; Cuscó, Ramon; Prieto, Carlos; Kopittke, Caroline; Novikov, Sergei V.; Artús, Luis

    2016-06-01

    We present high-resolution surface Brillouin scattering measurements on cubic GaN layers grown on GaAs substrate. By using a suitable scattering geometry, scattering by surface acoustic waves is recorded for different azimuthal angles, and the surface acoustic wave velocities are determined. A comparison of experimental results with numerical simulations of the azimuthal dependence of the surface wave velocity shows good agreement and allows a consistent set of elastic constants for c-GaN to be determined.

  14. Polyvinylpyrrolidone/Multiwall Carbon Nanotube Composite Based 36 deg. YX LiTaO{sub 3} Surface Acoustic Wave For Hydrogen Gas Sensing Applications

    SciTech Connect

    Chee, Pei Song; Arsat, Rashidah; He Xiuli; Arsat, Mahyuddin; Wlodarski, Wojtek; Kalantar-zadeh, Kourosh

    2011-05-25

    Poly-vinyl-pyrrolidone (PVP)/Multiwall Carbon Nanotubes (MWNTs) based Surface Acoustic Wave (SAW) sensors are fabricated and characterized, and their performances towards hydrogen gas are investigated. The PVP/MWNTs fibers composite are prepared by electrospinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nanostructure material is observed. From the dynamic response, frequency shifts of 530 Hz (1%H{sub 2}) and 11.322 kHz (0.25%H{sub 2}) are recorded for the sensors contain of 1.525 g and 1.025 g PVP concentrations, respectively.

  15. Growth and characterization of zinc oxide and PZT films for micromachined acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sang Hoon

    The ability to detect the presence of low concentrations of harmful substances, such as biomolecular agents, warfare agents, and pathogen cells, in our environment and food chain would greatly advance our safety, provide more sensitive tools for medical diagnostics, and protect against terrorism. Acoustic wave (AW) devices have been widely studied for such applications due to several attractive properties, such as rapid response, reliability, portability, ease of use, and low cost. The principle of these sensors is based on a fundamental feature of the acoustic wave that is generated and detected by a piezoelectric material. The performance of the device, therefore, greatly depends on the properties of piezoelectric thin film. The required properties include a high piezoelectric coefficient and high electromechanical coefficients. The surface roughness and the mechanical properties, such as Young's modulus and hardness, are also factors that can affect the wave propagation of the device. Since the film properties are influenced by the structure of the material, understanding thin film structure is very important for the design of high-performance piezoelectric MEMS devices for biosensor applications. In this research, two piezoelectric thin film materials were fabricated and investigated. ZnO films were fabricated by CSD (Chemical Solution Deposition) and sputtering, and PZT films were fabricated by CSD only. The process parameters for solution derived ZnO and PZT films, such as the substrate type, the effect of the chelating agent, and heat treatment, were studied to find the relationship between process parameters and thin film structure. In the case of the sputtered ZnO films, the process gas types and their ratio, heat treatment in situ, and post deposition were investigated. The key results of systematic experiments show that the combined influence of chemical modifiers and substrates in chemical solution deposition have an effect on the crystallographic

  16. Analysis of Acoustic Wave and Current Data Offshore of Mytle Beach, South Carolina

    NASA Astrophysics Data System (ADS)

    Fall, K. A.; Wren, A.

    2008-12-01

    Two bottom boundary layer (BBL) instrument frames have been deployed on the shoreface and inner-shelf of Long Bay, South Carolina offshore of Myrtle Beach as part of a South Carolina Sea Grant funded project to measure sediment transport over two hardbottom habitats. The inshore instrument frame is located on an extensive hardbottom surface 850 meters offshore. The second instrumented frame is secured to a hardbottom surface on the inner-shelf at a distance of approximately 2.5 km offshore. The nearshore BBL observing system is composed of a downward-looking RDI/ Teledyne 1200 kHz Pulse-Coherent Acoustic Doppler Current Profiler, an upward-looking Nortek Acoustic Wave and Current Profiler (AWAC), and an Aquatec Acoustic Backscatter Sensor. As part of this larger study, the wave and current data from the AWAC have been analyzed. Long-term continuous time series data include wave height, wave period, directional wave spectra, and the magnitude and direction of currents in the water column. Within the data set are several wave events, including several frontal passages and Tropical Storm Hanna which hit the Myrtle Beach area in early September. Wave data have been correlated with meteorological data, and a comparison of shoreface wave characteristics during each type of event are presented.

  17. Measurement of porcine haptoglobin in meat juice using surface acoustic wave biosensor technology.

    PubMed

    Klauke, Thorsten N; Gronewold, Thomas M A; Perpeet, Markus; Plattes, Susanne; Petersen, Brigitte

    2013-11-01

    Aim of the study was the application of biosensor technique to measure the concentration of an acute phase protein (APP) within complex matrices from animal origin. For the first time, acute phase protein haptoglobin (Hp) was detected from unpurified meat juice of slaughter pigs by a label-free biosensor-system, the SAW-based sam®5 system. The system uses a sensor chip with specific antibodies to catch Hp while the mass-related phase shift is measured. The concentration is calculated as a function of these measured phase shifts. The results correlate very well with reference measurement results obtained by enzyme-linked immunosorbent assay (ELISA), R=0.98. The robust setup of the surface acoustic wave (SAW)-based system and its ability to measure within very short time periods qualifies it for large-scale analyses and is apt to identify rapidly pigs in the meat production process whose consumption would have an increased risk for consumers. PMID:23601789

  18. Finite element method analysis of surface acoustic wave devices with microcavities for detection of liquids

    NASA Astrophysics Data System (ADS)

    Senveli, Sukru U.; Tigli, Onur

    2013-12-01

    This paper introduces the use of finite element method analysis tools to investigate the use of a Rayleigh type surface acoustic wave (SAW) sensor to interrogate minute amounts of liquids trapped in microcavities placed on the delay line. Launched surface waves in the ST-X quartz substrate couple to the liquid and emit compressional waves. These waves form a resonant cavity condition and interfere with the surface waves in the substrate. Simulations show that the platform operates in a different mechanism than the conventional mass loading of SAW devices. Based on the proposed detection mechanism, it is able to distinguish between variations of 40% and 90% glycerin based on phase relations while using liquid volumes smaller than 10 pl. Results from shallow microcavities show high correlation with sound velocity parameter of the liquid whereas deeper microcavities display high sensitivities with respect to glycerin concentration. Simulated devices yield a maximum sensitivity of -0.77°/(% glycerin) for 16 μm wavelength operation with 8 μm deep, 24 μm wide, and 24 μm long microcavities.

  19. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    PubMed

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. PMID:27309129

  20. Prospects for coupling Surface Acoustic Waves to superconducting qubits

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin

    2013-03-01

    Recent years have seen great development in the quantum control of mechanical resonators. These usually consist of membranes, cantilevers or suspended beams, whose vibrational modes can be cooled to the quantum ground state. This presentation will focus on a different kind of micromechanical system, where the motion is not confined to a mode with fixed boundaries, but propagates along the surface of a microchip. These modes are known as Surface Acoustic Waves (SAWs), and superficially resemble ripples on water, moving with low loss along the surfaces of solids. On a piezoelectric substrate, electrode gratings known as Interdigital Transducers (IDTs) can be used to convert power between the electric and acoustic domains. Devices based on this effect are of profound technological importance as filters and analog signal processors in the RF domain. In the realm of quantum information processing, SAWs have primarily been used to transport carriers and excitons through piezoelectric semiconductors, in the electric potential wells propagating along with the mechanical wave. Our approach, however, is different in that we aim to explore the mechanical wave itself as a carrier of quantum information. We have previously shown that a single-electron transistor can be used as a local probe for SAWs, with encouraging sensitivity levels. Building on this, we now investigate the prospects for coupling a SAW beam directly to a superconducting qubit. By merging a circuit model for an IDT with a quasi-classical description of a transmon qubit, we estimate that the qubit can couple to an acoustic transmission line with approximately the same strength as to an electrical one. This type of coupling opens for acoustic analogs of recent experiments in microwave quantum optics, including the generation of non-classical acoustic states.

  1. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization.

    PubMed

    Qi, Aisha; Friend, James R; Yeo, Leslie Y; Morton, David A V; McIntosh, Michelle P; Spiccia, Leone

    2009-08-01

    Pulmonary drug administration requires direct delivery of drug formulations into the lower pulmonary tract and alveoli of the lung in the form of inhaled particles or droplets, providing a distinct advantage over other methods for the treatment of respiratory diseases: the drug can be delivered directly to the site of inflammation, thus reducing the need for systemic exposure and the possibility of adverse effects. However, it is difficult to produce droplets of a drug solution within a narrow monodisperse size range (1-10 microm) needed for deposition in the lower pulmonary tract and alveoli. Here, we demonstrate the use of surface acoustic wave microfluidic atomization as an efficient means to generate appropriate aerosols containing a model drug, the short-acting beta2 agonist salbutamol, for the treatment of asthma. The mean aerosol diameter produced, 2.84+/-0.14 microm, lies well within the optimum size range, confirmed by a twin-stage impinger lung model, demonstrating that approximately 70 to 80% of the drug supplied to the atomizer is deposited within the lung. Our preliminary study explores how to control the aerosol diameter and lung delivery efficiency through the surface tension, viscosity, and input power, and also indicates which factors are irrelevant-like the fluid density. Even over a modest power range of 1-1.5 W, SAW atomization provides a viable and efficient generic nebulization platform for the delivery of drugs via the pulmonary route for the treatment of various diseases. The control offered over the aerosol size, low power requirements, high delivery efficiency, and the miniaturization of the system together suggest the proposed platform represents an attractive alternative to current nebulizers compatible with microfluidic technologies. PMID:19606295

  2. Method and apparatus for a Fabry-Perot multiple beam fringe sensor

    NASA Technical Reports Server (NTRS)

    James, Kenneth A. (Inventor); Quick, William H. (Inventor); Strahan, Virgil H. (Inventor)

    1986-01-01

    A method and, in one embodiment of the invention, the resulting apparatus for implementing a unique multiple beam fringe sensor that is adapted to be interfaced with a low cost, compact fiber optic transmission system in order to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor is fabricated so as to include a Fabry-Perot gap formed between the ends of two mated optical fibers. By examining the optical characteristics of light that is transmitted through the Fabry-Perot sensor gap, an indication of gap width can be ascertained. Accordingly, a change in Fabry-Perot sensor gap width is related to a change in the particular physical parameter to be measured. In another embodiment of the invention, a second unique multiple beam fringe sensor having a Fabry-Perot gap is disclosed that is also adapted to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor may be fabricated in two segments. A fiber containing segment includes each of a driving optical fiber for supplying incident light signals to the Fabry-Perot gap and a sensing optical fiber for receiving output light signals that have been transmitted twice through the Fabry-Perot gap, the optical characteristics of which output signals provide an indication of the parameter to be sensed. A transducer segment includes the Fabry-Perot gap formed therein and means responsive to the physical parameter for changing the width of the Fabry-Perot gap and, accordingly, the optical characteristics of the light signals passing therethrough.

  3. A novel surface acoustic wave-based biosensor for highly sensitive functional assays of olfactory receptors.

    PubMed

    Wu, Chunsheng; Du, Liping; Wang, Di; Wang, Le; Zhao, Luhang; Wang, Ping

    2011-04-01

    Olfactory receptors, which are responsible for sensing odor molecules, form the largest G protein-coupled receptor (GPCR) family in mammalian animals. These proteins play an important role in the detection of chemical signals and signal transduction to the brain. Currently, only a limited number of olfactory receptors have been characterized, which is mainly due to the lack of sensitive and efficient tools for performing functional assays of these receptors. This paper describes a novel surface acoustic wave (SAW)-based biosensor for highly sensitive functional assays of olfactory receptors. An olfactory receptor of Caenorhabditis elegans, ODR-10, was expressed on the plasma membrane of human breast cancer MCF-7 cells, which was used as a model system for this study. For specific odorant response assays, the membrane fraction of MCF-7 cells containing ODR-10 was extracted and integrated with our SAW sensors. The response of ODR-10 to various odorants was monitored by recording the resonance frequency shifts of SAWs applied to the sensor. Our results show that heterologously expressed ODR-10 receptors can specifically respond to diacetyl, its natural ligand. Dose-dependent responses were obtained by performing measurements using various concentrations of diacetyl. The sensitivity of this biosensor is 2kHz/ng and can detect concentrations as low as 10(-10)mM, which is 10× lower than what has previously been reported. This biosensor can be used to characterize odorant response profiles of olfactory receptors and provide information rich data for functional assays of olfactory receptors. In addition to providing a greater understanding of the biological mechanisms of GPCRs, such data holds great potential in many other fields such as food industry, biomedicine, and environmental protection. PMID:21333624

  4. Thomson-Scattering Study of the Subharmonic Decay of Ion-Acoustic Waves Driven by the Brillouin Instability

    NASA Astrophysics Data System (ADS)

    Bandulet, H. C.; Labaune, C.; Lewis, K.; Depierreux, S.

    2004-07-01

    Thomson scattering (TS) has been used to investigate the two-ion decay instability of ion acoustic waves generated by stimulated Brillouin scattering in an underdense CH plasma. Two complementary TS diagnostics, spectrally and spatially resolved, demonstrate the occurrence of the subharmonic decay of the primary ion acoustic wave into two secondary waves. The study of the laser intensity dependence shows that the secondary ion acoustic waves are correlated with the SBS reflectivity saturation, at a level of a few percent.

  5. Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows

    SciTech Connect

    Uchava, E. S.; Shergelashvili, B. M.; Tevzadze, A. G.; Poedts, S.

    2014-08-15

    We present a linear stability analysis of the perturbation modes in anisotropic magnetohydrodynamic (MHD) flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model that takes into account not only the effect of pressure anisotropy but also the effect of anisotropic heat fluxes. In this model, the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also important in astrophysical environments, where it will limit the maximal value of magnetic field that a low density ionized anisotropic flow can sustain.

  6. Wave envelopes method for description of nonlinear acoustic wave propagation.

    PubMed

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  7. Condition of resonant break-up of gas bubbles by an acoustic wave in liquid

    NASA Astrophysics Data System (ADS)

    Vanovskiy, V. V.; Petrov, A. G.

    2016-07-01

    The linear theory of damping of radial vibrations of a bubble in a liquid is constructed by taking into account the key dissipative mechanisms: thermal, viscous, and acoustic. The basic approximation of homobaricity made helps to obtain the results in a convenient and simple form. The results obtained for damping are used further in the description of the forced resonant oscillations of a bubble in an acoustic wave with the frequency equal to the eigenfrequency of the radial oscillation mode and twice as high as the frequency of the deformation oscillation mode (resonance 2:2:1). It is shown that the amplitude of deformation oscillations, which is reasonably large for breaking, is developed at a relatively small pressure amplitude of the exciting acoustic wave, and subharmonics arise in the acoustic-emission spectrum. The condition of bubble break-up is obtained for a fast and slow start of the acoustic wave.

  8. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    NASA Astrophysics Data System (ADS)

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  9. Coupling of an acoustic wave to shear motion due to viscous heating

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.

    2016-07-01

    Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profound in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.

  10. Absence of localized acoustic waves in a scale-free correlated random system.

    PubMed

    Costa, A E B; de Moura, F A B F

    2011-02-16

    We numerically study the propagation of acoustic waves in a one-dimensional medium with a scale-free long-range correlated elasticity distribution. The random elasticity distribution is assumed to have a power spectrum S(k) ∼ 1/k(α). By using a transfer-matrix method we solve the discrete version of the scalar wave equation and compute the localization length. In addition, we apply a second-order finite-difference method for both the time and spatial variables and study the nature of the waves that propagate in the chain. Our numerical data indicate the presence of extended acoustic waves for a high degree of correlations. In contrast with local correlations, we numerically demonstrate that scale-free correlations promote a stable phase of free acoustic waves in the thermodynamic limit. PMID:21406919

  11. Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-04-01

    Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).

  12. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole.

    PubMed

    Ayankojo, Akinrinade George; Tretjakov, Aleksei; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres; Rappich, Jörg; Furchner, Andreas; Hinrichs, Karsten; Syritski, Vitali

    2016-01-19

    The synergistic effect of combining molecular imprinting and surface acoustic wave (SAW) technologies for the selective and label-free detection of sulfamethizole as a model antibiotic in aqueous environment was demonstrated. A molecularly imprinted polymer (MIP) for sulfamethizole (SMZ) selective recognition was prepared in the form of a homogeneous thin film on the sensing surfaces of SAW chip by oxidative electropolymerization of m-phenylenediamine (mPD) in the presence of SMZ, acting as a template. Special attention was paid to the rational selection of the functional monomer using computational and spectroscopic approaches. SMZ template incorporation and its subsequent release from the polymer was supported by IR microscopic measurements. Precise control of the thicknesses of the SMZ-MIP and respective nonimprinted reference films (NIP) was achieved by correlating the electrical charge dosage during electrodeposition with spectroscopic ellipsometry measurements in order to ensure accurate interpretation of label-free responses originating from the MIP modified sensor. The fabricated SMZ-MIP films were characterized in terms of their binding affinity and selectivity toward the target by analyzing the binding kinetics recorded using the SAW system. The SMZ-MIPs had SMZ binding capacity approximately more than eight times higher than the respective NIP and were able to discriminate among structurally similar molecules, i.e., sulfanilamide and sulfadimethoxine. The presented approach for the facile integration of a sulfonamide antibiotic-sensing layer with SAW technology allowed observing the real-time binding events of the target molecule at nanomolar concentration levels and could be potentially suitable for cost-effective fabrication of a multianalyte chemosensor for analysis of hazardous pollutants in an aqueous environment. PMID:26704414

  13. Landau damping of ion acoustic wave in Lorentzian multi-ion plasmas

    SciTech Connect

    Arshad, Kashif; Mahmood, S.; Mirza, Arshad M.

    2011-09-15

    The Landau damping rates of ion acoustic wave are studied by using Vlasov-Poisson model for unmagnetized Lorentzian or kappa distributed plasma containing electrons, positively and negatively charged ions. It is found that the damping rate of ion acoustic wave is increased with the decrease of kappa (i.e., the spectral index of Lorentzian distribution) value. The damping rates of the electrostatic wave in multi-ion component plasmas are discussed in detail which depends on electron to ion temperature ratio and ions masses and density ratios. The numerical results are also shown by choosing some typical experimental parameters of multi-ion plasmas.

  14. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  15. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  16. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum. PMID:27415357

  17. Numerical simulation of scattering of acoustic waves by inelastic bodies using hypersingular boundary integral equation

    SciTech Connect

    Daeva, S.G.; Setukha, A.V.

    2015-03-10

    A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.

  18. Simultaneous realization of negative group velocity, fast and slow acoustic waves in a metamaterial

    NASA Astrophysics Data System (ADS)

    Li, Xiao-juan; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Chen, Zhe; Ding, Jin; Zhang, Hui

    2016-06-01

    An acoustic metamaterial is designed based on a simple and compact structure of one string of side pipes arranged along a waveguide, in which diverse group velocities are achieved. Owing to Fabry-Perot resonance of the side pipes, a negative phase time is achieved, and thus, acoustic waves transmitting with negative group velocities are produced near the resonant frequency. In addition, both fast and slow acoustic waves are also observed in the vicinity of the resonance frequency. The extraordinary group velocities can be explained based on spectral rephasing induced by anomalous dispersion on the analogy of Lorentz dispersion in electromagnetic waves.

  19. X33 cut quartz for temperature compensated SAW (Surface Acoustic Wave) devices

    NASA Astrophysics Data System (ADS)

    Webster, Richard T.

    1986-07-01

    An X-cut, 33.44 degree quartz crystal for propagating surface acoustic waves with a temperature stability in the order of - 0.0209 ppm/sq.cm. is described. The crystal orientation requires only a single rotation (33.44 degrees) from the crystal axes. This orientation is substantially simpler than previously reported cuts with comparable temperature stability which typically require three rotations. The X-cut orientation has a surface acoustic wave (SAW) velocity of 3175 m/sec, an electromechanical coupling of 0.0004, and a power flow angle of 2.7 degrees.

  20. Beam distortion detection and deflectometry measurements of gigahertz surface acoustic waves.

    PubMed

    Higuet, Julien; Valier-Brasier, Tony; Dehoux, Thomas; Audoin, Bertrand

    2011-11-01

    Gigahertz acoustic waves propagating on the surface of a metal halfspace are detected using different all-optical detection schemes, namely, deflectometry and beam distortion detection techniques. Both techniques are implemented by slightly modifying a conventional reflectometric setup. They are then based on the measurement of the reflectivity change but unlike reflectometric measurements, they give access to the sample surface displacement. A semi-analytical model, taking into account optical, thermal, and mechanical processes responsible for acoustic waves generation, allows analyzing the physical content of the detected waveforms. PMID:22129002

  1. A Dry Membrane Protection Technique to Allow Surface Acoustic Wave Biosensor Measurements of Biological Model Membrane Approaches

    PubMed Central

    Reder-Christ, Katrin; Schmitz, Patrick; Bota, Marian; Gerber, Ursula; Falkenstein-Paul, Hildegard; Fuss, Christian; Enachescu, Marius; Bendas, Gerd

    2013-01-01

    Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW) biosensor SAM®5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM®5 blue in biomedical sciences. PMID:24064603

  2. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    SciTech Connect

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.; Ricco, A.J.

    1998-12-09

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.

  3. Method and apparatus for separating mixtures of gases using an acoustic wave

    DOEpatents

    Geller, Drew A.; Swift, Gregory W.; Backhaus, Scott N.

    2004-05-11

    A thermoacoustic device separates a mixture of gases. An elongated duct is provided with first and second ends and has a length that is greater than the wavelength of sound in the mixture of gases at a selected frequency, and a diameter that is greater than a thermal penetration depth in the mixture of gases. A first acoustic source is located at the first end of the duct to generate acoustic power at the selected frequency. A plurality of side branch acoustic sources are spaced along the length of the duct and are configured to introduce acoustic power into the mixture of gases so that a first gas is concentrated at the first end of the duct and a second gas is concentrated at the second end of the duct.

  4. Acoustic wave detection of chemical species electrokinetically transported within a capillary tube.

    PubMed

    Li, Paul C H; Prasad, Ronald

    2003-06-01

    For the first time, we report the acoustic wave detection of chemical species being transported in a capillary tube to a region where acoustic coupling occurs. The measured parameter was a change in phase, which was originally only attributed to a change in solution density as the analyte passed by the detection region. Accordingly, we report the detection of change in phase as various chemical species (e.g. Cy5 dye, Cy5-derivatized glycine and underivatized glycine) were introduced into and migrated along a capillary tube through electrokinetic processes. To improve detection sensitivity, we modified various experimental parameters, such as run buffer concentration, capillary wall thickness and transducer frequency. Although acoustic wave detection was feasible, the peak width and detection limit were inadequate as compared to conventional detection methods for HPLC or CE. Nevertheless, the effects of various physical and chemical relaxation processes on acoustic wave absorption were discussed, and this has shed some light on explaining some observations, which cannot be explained by density differences alone. Accordingly, the acoustic wave method is suggested to investigate these processes, as studied in ultrasonic relaxation spectroscopy, in a flow system. PMID:12866892

  5. Cascading processes in the nonlinear diffraction of light by standing acoustic waves

    NASA Astrophysics Data System (ADS)

    Dadoenkova, Yu. S.; Dadoenkova, N. N.; Bentivegna, F. F. L.; Lyubchanskii, I. L.; Lee, Y. P.

    2016-01-01

    The contribution of two types of cascading process to the nonlinear optical diffraction of electromagnetic waves from a standing acoustic wave in a GaAs crystal is theoretically studied. The first type of cascading process results from second-harmonic generation followed by linear acousto-optical diffraction, while the second type involves linear acousto-optical diffraction from the standing acoustic wave and subsequent sum-frequency generation. In contrast to the third, direct, nonlinear acousto-optical diffraction process we previously investigated, the photoelastic interaction between electromagnetic and acoustic waves is here linear. We establish the rules governing the cascading processes and show that in most cases the output signal simultaneously results from two or even three of the possible nonlinear diffraction mechanisms. However, we demonstrate that a careful choice of the incidence angles of the incoming electromagnetic waves, of the polarization combinations of the incoming and diffracted waves, and of the type of acoustic wave (longitudinal or transverse) makes it always possible to distinguish between the direct and either of the two cascading processes.

  6. Molecular recognition in gas sensing: Results from acoustic wave and in-situ FTIR measurements

    SciTech Connect

    Hierlemann, A.; Ricco, A.J.; Bodenhoefer, K.; Goepel, W.

    1998-06-01

    Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.

  7. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  8. Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate

    SciTech Connect

    Mayorov, A. S.; Hunter, N.; Muchenje, W.; Wood, C. D.; Rosamond, M.; Linfield, E. H.; Davies, A. G.; Cunningham, J. E.

    2014-02-24

    We demonstrate the feasibility of using graphene as a conductive electrode for the generation and detection of surface acoustic waves at 100 s of MHz on a lithium niobate substrate. The graphene interdigitated transducers (IDTs) show sensitivity to doping and temperature, and the characteristics of the IDTs are discussed in the context of a lossy transmission line model.

  9. A semi-analytic model for localized variable charge dust acoustic waves

    SciTech Connect

    Tribeche, Mouloud; Gougam, Leila Ait; Aoutou, Kamal

    2006-09-15

    A semi-analytic model for nonlinear variable charge dust acoustic waves is outlined. It is shown that rarefactive variable charge dust acoustic solitons involving cusped density humps can exist. The effects of dust dynamics as well as equilibrium dust charge on these nonlinear localized structures are briefly discussed.

  10. On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes

    ERIC Educational Resources Information Center

    Chandran, Pallath

    2004-01-01

    The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…

  11. CMB distortions from damping of acoustic waves produced by cosmic strings

    SciTech Connect

    Tashiro, Hiroyuki; Sabancilar, Eray; Vachaspati, Tanmay E-mail: Eray.Sabancilar@asu.edu

    2013-08-01

    We study diffusion damping of acoustic waves in the photon-baryon fluid due to cosmic strings, and calculate the induced μ- and y-type spectral distortions of the cosmic microwave background. For cosmic strings with tension within current bounds, their contribution to the spectral distortions is subdominant compared to the distortions from primordial density perturbations.

  12. Nano-optomechanical system based on microwave frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic

  13. Sensor chip and apparatus for tactile and/or flow sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2009-01-01

    A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.

  14. Sensor chip and apparatus for tactile and/or flow sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2008-01-01

    A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.

  15. Acoustic waves in a stratified atmosphere. IV. Three-dimensional nonlinear hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.

    2010-09-01

    Context. The quiet solar chromosphere in the interior of supergranulation cells is believed to be heated by the dissipation of acoustic waves that originate with a typical period of 3 min in the photosphere. Aims: We investigate how the horizontal expansion with height of acoustic waves traveling upward into an isothermal, gravitationally stratified atmosphere depends on the size of the source region. Methods: We have solved the three-dimensional, nonlinear, time-dependent hydrodynamic equations for impulsively-generated, upward-propagating acoustic waves, assuming cylindrical symmetry. Results: When the diameter of the source of acoustic waves is small, the pattern of the upward-propagating waves is that of a point source, for which the energy travels upward in a vertical cone, qualitatively matching the observed pattern of bright-point expansion with height. For the largest plausible size of a source region, i.e., with granular size of 1 Mm, wave propagation in the low chromosphere is approximately that of plane waves, but in the middle and upper chromosphere it is also that of a point source. The assumption of plane-wave propagation is not a good approximation in the solar chromosphere. The upward-directed energy flux is larger than that of the solar chromosphere, at least in the middle and upper chromosphere, and probably throughout. Conclusions: Simulations of impulsively generated acoustic waves emitted from source regions with diameters that are small compared to the pressure scale height of the atmosphere qualitatively reproduce the upward expansion observed in chromospheric bright points. The emission features in the cores of the H and K lines are predicted to be blueshifted for a pulse and redshifted for the waves in its wake. The contribution of internal gravity waves to the upward energy flux is small and decreases with increasing size of the source region.

  16. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2015-09-01

    Recent measurements of GPS-derived total electron content (TEC) reveal acoustic wave periods of ˜1-4 min in the F region ionosphere following natural hazard events, such as earthquakes, severe weather, and volcanoes. Here we simulate the ionospheric responses to infrasonic-acoustic waves, generated by vertical accelerations at the Earth's surface or within the lower atmosphere, using a compressible atmospheric dynamics model to perturb a multifluid ionospheric model. Response dependencies on wave source geometry and spectrum are investigated at middle, low, and equatorial latitudes. Results suggest constraints on wave amplitudes that are consistent with observations and that provide insight on the geographical variability of TEC signatures and their dependence on the geometry of wave velocity field perturbations relative to the ambient geomagnetic field. Asymmetries of responses poleward and equatorward from the wave sources indicate that electron perturbations are enhanced on the equatorward side while field aligned currents are driven principally on the poleward side, due to alignments of acoustic wave velocities parallel and perpendicular to field lines, respectively. Acoustic-wave-driven TEC perturbations are shown to have periods of ˜3-4 min, which are consistent with the fraction of the spectrum that remains following strong dissipation throughout the thermosphere. Furthermore, thermospheric acoustic waves couple with ion sound waves throughout the F region and topside ionosphere, driving plasma disturbances with similar periods and faster phase speeds. The associated magnetic perturbations of the simulated waves are calculated to be observable and may provide new observational insight in addition to that provided by GPS TEC measurements.

  17. Method and apparatus for signal processing in a sensor system for use in spectroscopy

    DOEpatents

    O'Connor, Paul; DeGeronimo, Gianluigi; Grosholz, Joseph

    2008-05-27

    A method for processing pulses arriving randomly in time on at least one channel using multiple peak detectors includes asynchronously selecting a non-busy peak detector (PD) in response to a pulse-generated trigger signal, connecting the channel to the selected PD in response to the trigger signal, and detecting a pulse peak amplitude. Amplitude and time of arrival data are output in first-in first-out (FIFO) sequence. An apparatus includes trigger comparators to generate the trigger signal for the pulse-receiving channel, PDs, a switch for connecting the channel to the selected PD, and logic circuitry which maintains the write pointer. Also included, time-to-amplitude converters (TACs) convert time of arrival to analog voltage and an analog multiplexer provides FIFO output. A multi-element sensor system for spectroscopy includes detector elements, channels, trigger comparators, PDs, a switch, and a logic circuit with asynchronous write pointer. The system includes TACs, a multiplexer and analog-to-digital converter.

  18. Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications

    PubMed Central

    Jin, Hao; Zhou, Jian; He, Xingli; Wang, Wenbo; Guo, Hongwei; Dong, Shurong; Wang, Demiao; Xu, Yang; Geng, Junfeng; Luo, J. K.; Milne, W. I.

    2013-01-01

    Flexible electronics are a very promising technology for various applications. Several types of flexible devices have been developed, but there has been limited research on flexible electromechanical systems (MEMS). Surface acoustic wave (SAW) devices are not only an essential electronic device, but also are the building blocks for sensors and MEMS. Here we report a method of making flexible SAW devices using ZnO nanocrystals deposited on a cheap and bendable plastic film. The flexible SAW devices exhibit two wave modes - the Rayleigh and Lamb waves with resonant frequencies of 198.1 MHz and 447.0 MHz respectively, and signal amplitudes of 18 dB. The flexible devices have a high temperature coefficient of frequency, and are thus useful as sensitive temperature sensors. Moreover, strong acoustic streaming with a velocity of 3.4 cm/s and particle concentration using the SAW have been achieved, demonstrating the great potential for applications in electronics and MEMS. PMID:23828169

  19. Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation

    SciTech Connect

    S. J. Reese; D. H. Hurley; H.W. Rollins

    2006-04-01

    The effect of surface acoustic waves, generated on a silver catalyst using a comb transducer, on the catalytic decomposition of ethanol is examined. The comb transducer employs purely mechanical means for surface acoustic wave (SAW) transduction. Unlike interdigital SAW transducers on piezoelectric substrates, the complicating effects of heat generation due to electromechanical coupling, high electric fields between adjacent electrodes, and acoustoelectric currents are avoided. The ethanol decomposition reactions are carried out at 473 K. The rates of acetaldehyde and ethylene production are retarded when acoustic waves are applied. The rates recover to varying degrees when acoustic excitation ceases.

  20. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    NASA Astrophysics Data System (ADS)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  1. Repetitive Immunoassay with a Surface Acoustic Wave Device and a Highly Stable Protein Monolayer for On-Site Monitoring of Airborne Dust Mite Allergens.

    PubMed

    Toma, Koji; Miki, Daisuke; Kishikawa, Chisato; Yoshimura, Naoyuki; Miyajima, Kumiko; Arakawa, Takahiro; Yatsuda, Hiromi; Mitsubayashi, Kohji

    2015-10-20

    This work describes a sensor to be incorporated into the on-site monitoring system of airborne house dust mite (HDM) allergens. A surface acoustic wave (SAW) device was combined with self-assembled monolayers of a highly stable antibody capture protein on the SAW surface that have high resistance to pH change. A sandwich assay was used to measure a HDM allergen, Der f 1 derived from Dermatophagoides farinae. Capture antibodies were cross-linked to a protein G based capture layer (ORLA85) on the sensor surface, thereby only Der f 1 and detection antibodies were regenerated by changing pH, resulting in fast repetition of the measurement. The sensor was characterized through 10 repetitive measurements of Der f 1, which demonstrated high reproducibility of the sensor with the coefficient of variation of 5.6%. The limit of detection (LOD) of the sensor was 6.1 ng·mL(-1), encompassing the standard (20 ng·mL(-1)) set by the World Health Organization. Negligible sensor outputs were observed for five different major allergens including other HDM allergens which tend to have cross-reactivity to Der f 1 and their mixtures with Der f 1. Finally, the sensor lifetime was evaluated by conducting three measurements per day, and the sensor output did not substantially change for 4 days. These characteristics make the SAW immunosensor a promising candidate for incorporation into on-site allergen monitoring systems. PMID:26378678

  2. Reflection and refraction of acoustic waves at the interface between a gas and a disperse systems

    NASA Astrophysics Data System (ADS)

    Shagapov, V. Sh.; Sarapulova, V. V.

    2015-09-01

    The reflection and refraction of acoustic waves at different angles of incidence on the interface between a vapor-gas-droplet system and air are studied. From an analysis of analytical solutions, it has been found that in the case of incidence on the interface from the side of the vapor-gas-droplet medium, there is a critical angle of incidence at which the wave is completely reflected from the boundary, i.e., total internal reflection takes place. It is shown that for a certain angle of incidence on the interface both from the air side and from the mixture side and for a certain volume fraction of water in the disperse system, complete transmission of the acoustic wave through the medium is observed.

  3. Excitation of Ion Acoustic Waves in Confined Plasmas with Untrapped Electrons

    NASA Astrophysics Data System (ADS)

    Schamis, Hanna; Dow, Ansel; Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand the electron kinetics in plasmas with strong emission, we have performed simulations using a reduced model with the LSP particle-in-cell code. This model aims to show the instability generated by the electron emission, in the form of ion acoustic waves near the sheath. It also aims to show the instability produced by untrapped electrons that propagate across the plasma, similarly to a beam, and can drive ion acoustic waves in the plasma bulk. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  4. Confined aquifer as wave-guide and its responses to geo-acoustic waves

    NASA Astrophysics Data System (ADS)

    Jian, Wen-Bin; Chen, Bao-Ren; Lu, Hua-Fu

    1997-05-01

    On the basis of the hydro-geological model of a confined aquifer, the propagation mechanism of geo-acoustic waves along the confined aquifer outlined as a plate wave-guide is proposed. The harmonic frequency equation for geo-acoustic propagation along confined aquifer as waveguide is derived from Biot theory. The basic frequency of the confined aquifer with a deep well for geo-acoustic observation, located at Juxian county, Shandong province, China, is 35.0 Hz. By Wigner distribution of geo-acoustic signals observed at Juxian geo-acoustic well, the frequencies of geo-acoustics are basically the integral multiple of the basic frequency. The results show that the responses of the confined aquifer to geo-acoustic waves are characterized by frequency selection and frequency dependence. Only the waves whose frequency f is the integral multiple of basic frequency can propagate as guide waves in the aquifer, that is, the aquifer responds to the waves.

  5. Probing thermomechanics at the nanoscale: impulsively excited pseudosurface acoustic waves in hypersonic phononic crystals.

    PubMed

    Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco

    2011-10-12

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  6. Improvement of Temperature Characteristics of Boundary Acoustic Wave Resonators Using Multilayered Electrodes

    NASA Astrophysics Data System (ADS)

    Mimura, Masakazu; Tamazaki, Daisuke; Yamane, Takashi; Kando, Hajime

    2012-07-01

    In this paper, we describe a new boundary acoustic wave structure employing multilayered metal electrodes with a high-density metal and a low-density metal. By using this structure, such as Pt/Al/Pt, the electromechanical coupling coefficient (k2) and temperature coefficient of frequency (TCF) of the boundary acoustic wave can be changed. We theoretically studied the dependence of the energy distribution of the boundary wave on the position of the total electrode gravity center when the electrode layer structure is changed. It was experimentally confirmed that k2 and TCF can be changed simultaneously. By using this structure, we developed a novel filter with good electrical characteristics, and a very small variation of the filter characteristic with temperature (almost zero TCF) was successfully realized.

  7. Characterization of acoustic wave propagation in a concrete member after fire exposure

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Huang, Chin-Ting

    2001-04-01

    The acoustic wave propagation in a concrete member with embedded reinforcing bars was analyzed. Fire exposure was applied to two batches of concrete specimens prior to acoustic wave characterization. The fire duration and maximum temperature were simulated for experimental studies using a custom-built electric oven. A standard ultrasonic pulse velocity testing system for concrete was used to provide the through-transmission wave propagation. Multiple peaks were found in the frequency domain based on the fast Fourier transform of the waveform. This could be due to cracks induced by the incompatibility of thermal deformation of the constituents of concrete. Further study showed bond deterioration between reinforcing bars and concrete would also contribute to the variation in frequency content of the recorded waveform.

  8. Algorithmic Extensions of Low-Dispersion Scheme and Modeling Effects for Acoustic Wave Simulation. Revised

    NASA Technical Reports Server (NTRS)

    Kaushik, Dinesh K.; Baysal, Oktay

    1997-01-01

    Accurate computation of acoustic wave propagation may be more efficiently performed when their dispersion relations are considered. Consequently, computational algorithms which attempt to preserve these relations have been gaining popularity in recent years. In the present paper, the extensions to one such scheme are discussed. By solving the linearized, 2-D Euler and Navier-Stokes equations with such a method for the acoustic wave propagation, several issues were investigated. Among them were higher-order accuracy, choice of boundary conditions and differencing stencils, effects of viscosity, low-storage time integration, generalized curvilinear coordinates, periodic series, their reflections and interference patterns from a flat wall and scattering from a circular cylinder. The results were found to be promising en route to the aeroacoustic simulations of realistic engineering problems.

  9. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Teshigahara, Akihiko; Iwaki, Takao; Hashimoto, Ken-ya

    2016-07-01

    This paper describes a drastic enhancement of the effective coupling factor K\\text{e}2 by mass loading in layered surface acoustic wave (SAW) device structures such as the ScAlN film/Si substrate structure. This phenomenon occurs when the piezoelectric layer exhibits a high acoustic wave velocity. The mass loading decreases the SAW velocity and causes SAW energy confinement close to the top surface where an interdigital transducer is placed. It is shown that this phenomenon is obvious even when an amorphous SiO2 film is deposited on the top surface for temperature compensation. This K\\text{e}2 enhancement was also found in various combinations of electrode, piezoelectric layer, and/or substrate materials. The existence of this phenomenon was verified experimentally using the ScAlN film/Si substrate structure.

  10. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  11. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  12. Field theory for zero sound and ion acoustic wave in astrophysical matter

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2016-02-01

    We set up a field theory model to describe the longitudinal low-energy modes in high density matter present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  13. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    SciTech Connect

    Amour, Rabia; Tribeche, Mouloud

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  14. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  15. Using ion flows parallel and perpendicular to gravity to modify dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Fisher, R.

    2008-11-01

    Recent studies of dust acoustic waves have shown that the dust kinetic temperature can play an important role in determining the resulting dispersion relation [M. Rosenberg, et al., Phys. Plasmas, 15, 073701 (2008)]. In these studies, it is believed that ion flows play a dominant role in determining both the kinetic temperature of the charged microparticles as well as providing the source of energy for triggering the waves. In this presentation, results will be presented on the effects of ion flow on spatial structure and velocity distribution of dust acoustic waves. Here, the waves will be formed in dusty plasmas consisting of 3 ± 1 micron diameter silica microspheres. Two separate electrodes will be used to modify the ion flow in the plasma -- one parallel to the direction of gravity and one perpendicular to the direction of gravity. Particle image velocimetry (PIV) techniques will be used to observe the particles and to measure their velocity distributions.

  16. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    NASA Astrophysics Data System (ADS)

    Amour, Rabia; Tribeche, Mouloud

    2014-12-01

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  17. LOCAL HELIOSEISMIC AND SPECTROSCOPIC ANALYSES OF INTERACTIONS BETWEEN ACOUSTIC WAVES AND A SUNSPOT

    SciTech Connect

    Rajaguru, S. P.; Wachter, R.; Couvidat, S.; Sankarasubramanian, K.

    2010-10-01

    Using a high-cadence imaging spectropolarimetric observation of a sunspot and its surroundings in magnetically sensitive (Fe I 6173 A) and insensitive (Fe I 7090 A) upper photospheric absorption lines, we map the instantaneous wave phases and helioseismic travel times as a function of observation height and inclination of magnetic field to the vertical. We confirm the magnetic inclination-angle-dependent transmission of incident acoustic waves into upward propagating waves and derive (1) proof that helioseismic travel times receive direction-dependent contributions from such waves and hence cause errors in conventional flow inferences, (2) evidences for acoustic wave sources beneath the umbral photosphere, and (3) significant differences in travel times measured from the chosen magnetically sensitive and insensitive spectral lines.

  18. A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).

  19. Nonlinear structure of ion-acoustic waves in completely degenerate electron-positron and ion plasma

    SciTech Connect

    Rasheed, A.; Tsintsadze, N. L.; Murtaza, G.

    2010-07-15

    A rigorous theoretical investigation has been made of fully nonlinear ion-acoustic waves in nonrelativistic and ultrarelativistic, collisionless, unmagnetized plasma containing of degenerate electrons and positrons, and classical cold ions. In both (nonrelativistic and ultrarelativistic) regimes the electrons and positrons are assumed to follow the corresponding Fermi distribution while the ions are described by the hydrodynamic equations. An energy balancelike equation involving a Sagdeev-type pseudopotential is derived separately for both the regimes. In addition, stationary periodic and solitary waves are also investigated for the two cases. The present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in a degenerate plasma such as in superdense white dwarfs.

  20. Charge Fluctuation of Dust Grain and Its Impact on Dusty-Acoustic Wave Damping

    SciTech Connect

    Atamaniuk, B.; Zuchowski, K.

    2005-10-31

    We consider the influence of dust charge fluctuations on damping of the dust-ion-acoustic waves. It is assumed that all grains have equal masses but charges are not constant in time -- they may fluctuate in time. The dust charges are not really independent of the variations in the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the wave mode. In the case considered here, when the temperature of electrons is much greater than the temperature of the ions and the temperature of electrons is not great enough for further ionization of the ions, we show that attenuation of the acoustic wave depends only on one phenomenological coefficient.

  1. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  2. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  3. High-frequency acoustic waves are not sufficient to heat the solar chromosphere.

    PubMed

    Fossum, Astrid; Carlsson, Mats

    2005-06-16

    One of the main unanswered questions in solar physics is why the Sun's outer atmosphere is hotter than its surface. Theory predicts abundant production of high-frequency (10-50 mHz) acoustic waves in subsurface layers of the Sun, and such waves are believed by many to constitute the dominant heating mechanism of the chromosphere (the lower part of the outer solar atmosphere) in non-magnetic regions. Such high-frequency waves are difficult to detect because of high-frequency disturbances in Earth's atmosphere (seeing) and other factors. Here we report the detection of high-frequency waves, and we use numerical simulations to show that the acoustic energy flux of these waves is too low, by a factor of at least ten, to balance the radiative losses in the solar chromosphere. Acoustic waves therefore cannot constitute the dominant heating mechanism of the solar chromosphere. PMID:15959510

  4. Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell

    SciTech Connect

    Armstrong, M; Crowhurst, J; Reed, E; Zaug, J

    2008-02-04

    We have used sub-picosecond laser pulses to launch ultra-high strain rate ({approx} 10{sup 9} s{sup -1}) nonlinear acoustic waves into a 4:1 methanol-ethanol pressure medium which has been precompressed in a standard diamond anvil cell. Using ultrafast interferometry, we have characterized acoustic wave propagation into the pressure medium at static compression up to 24 GPa. We find that the velocity is dependent on the incident laser fluence, demonstrating a nonlinear acoustic response which may result in shock wave behavior. We compare our results with low strain, low strain-rate acoustic data. This technique provides controlled access to regions of thermodynamic phase space that are otherwise difficult to obtain.

  5. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    NASA Astrophysics Data System (ADS)

    Mondal, K. K.

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust- acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expres- sions for the growth rates have also been derived.

  6. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  7. Surface-acoustic-wave device incorporating conducting Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Holcroft, B.; Roberts, G. G.; Barraud, A.; Richard, J.

    1987-04-01

    Surface-acoustic-wave devices incorporating conducting Langmuir-Blodgett films are reported for the first time. Excellent characteristics have been obtained using a mixed valence charge transfer salt of a substituted pyridinium tetracyanoquinodimethane. The control afforded by the deposition technique has enabled the fractional change in surface wave velocity due to the electrical effects to be distinguished from those due to mass loading. The resistivity of the organic surface layer is measured to be 2 ohm-cm.

  8. Modulation instability of ion acoustic waves, solitons, and their interactions in nonthermal electron-positron-ion plasmas

    SciTech Connect

    Zhang Jiefang; Wang Yueyue; Wu Lei

    2009-06-15

    The propagation of ion acoustic waves in plasmas composed of ions, positrons, and nonthermally distributed electrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability of ion acoustic wave is analyzed, where the nonthermal parameter is found to be of significant importance. Furthermore, analytical expressions for the bright and dark solitons are obtained, and the interaction of multiple solitons is discussed.

  9. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves

    PubMed Central

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J.

    2015-01-01

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves. PMID:26001199

  10. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  11. Dynamic Motions of Ion Acoustic Waves in Plasmas with Superthermal Electrons

    NASA Astrophysics Data System (ADS)

    Saha, Asit; Chatterjee, Prasanta; Wong, C. S.

    2015-12-01

    The dynamic motions of ion acoustic waves an unmagnetized plasma with superthermal ( q-nonextensive) electrons are investigated employing the bifurcation theory of planar dynamical systems through direct approach. Using traveling wave transformation and initial conditions, basic equations are transformed to a planar dynamical system. Using numerical computations, all possible phase portraits of the dynamical system are presented. Corresponding to homoclinic and periodic orbits of the phase portraits, two new analytical forms of solitary and periodic wave solutions are derived depending on the nonextensive parameter q and speed v of the traveling wave. Considering an external periodic perturbation, the quasiperiodic and chaotic motions of ion acoustic waves are presented. Depending upon different ranges of nonextensive parameter q, the effect of q is shown on quasiperiodic and chaotic motions of ion acoustic waves with fixed value of v. It is seen that the unperturbed dynamical system has the solitary and periodic wave solutions, but the perturbed dynamical system has the quasiperiodic and chaotic motions with same values of parameters q and v.

  12. Self-heating study of bulk acoustic wave resonators under high RF power.

    PubMed

    Ivira, Brice; Fillit, René-Yves; Ndagijimana, Fabien; Benech, Philippe; Parat, Guy; Ancey, Pascal

    2008-01-01

    The present work first provides an experimental technique to study self-heating of bulk acoustic wave (BAW) resonators under high RF power in the gigahertz range. This study is specially focused on film bulk acoustic wave resonators and solidly mounted resonators processed onto silicon wafers and designed for wireless systems. Precisely, the reflection coefficient of a one-port device is measured while up to several watts are applied and power leads to electrical drifts of impedances. In the following, we describe how absorbed power can be determined from the incident one in real time. Therefore, an infrared camera held over the radio frequency micro electromechanical system (RF-MEMS) surface with an exceptional spatial resolution reaching up to 2 microm/pixels gives accurate temperature mapping of resonators after emissivity correction. From theoretical point of view, accurate three-dimensional (3-D) structures for finite-element modeling analyses are carried out to know the best materials and architectures to use for enhancing power handling. In both experimental and theoretical investigations, comparison is made between film bulk acoustic wave resonators and solidly mounted resonators. Thus, the trend in term of material, architecture, and size of device for power application such as in transmission path of a transceiver is clearly identified. PMID:18334320

  13. An investigation of the influence of acoustic waves on the liquid flow through a porous material

    NASA Astrophysics Data System (ADS)

    Poesio, Pietro; Ooms, Gijs; Barake, Sander; van der Bas, Fred

    2002-05-01

    An experimental and theoretical investigation has been made of the influence of high-frequency acoustic waves on the flow of a liquid through a porous material. The experiments have been performed on Berea sandstone cores. Two acoustic horns were used with frequencies of 20 and 40 kHz, and with maximum power output of 2 and 0.7 kW, respectively. Also, a temperature measurement of the flowing liquid inside the core was made. A high external pressure was applied in order to avoid cavitation. The acoustic waves were found to produce a significant effect on the pressure gradient at constant liquid flow rate through the core samples. During the application of acoustic waves the pressure gradient inside the core decreases. This effect turned out to be due to the decrease of the liquid viscosity caused by an increase in liquid temperature as a result of the acoustic energy dissipation inside the porous material. Also, a theoretical model has been developed to calculate the dissipation effect on the viscosity and on the pressure gradient. The model predictions are in reasonable agreement with the experimental data.

  14. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect

    Saikia, Partha Saikia, Bipul Kumar; Goswami, Kalyan Sindhu; Phukan, Arindam

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  15. 2D fluid simulations of acoustic waves in pulsed ICP discharges: Comparison with experiments

    NASA Astrophysics Data System (ADS)

    Despiau-Pujo, Emilie; Cunge, Gilles; Sadeghi, Nader; Braithwaite, N. St. J.

    2012-10-01

    Neutral depletion, which is mostly caused by gas heating under typical material processing conditions, is an important phenomenon in high-density plasmas. In low pressure pulsed discharges, experiments show that additional depletion due to electron pressure (Pe) may have a non-negligible influence on radical transport [1]. To evaluate this effect, comparisons between 2D fluid simulations and measurements of gas convection in Ar/Cl2 pulsed ICP plasmas are reported. In the afterglow, Pe drops rapidly by electron cooling which generates a neutral pressure gradient between the plasma bulk and the reactor walls. This in turn forces the cold surrounding gas to move rapidly towards the center, thus launching an acoustic wave in the reactor. Time-resolved measurements of atoms drift velocity and gas temperature by LIF and LAS in the early afterglow are consistent with gas drifting at acoustic wave velocity followed by rapid gas cooling. Similar results are predicted by the model. The ion flux at the reactor walls is also shown to oscillate in phase with the acoustic wave due to ion-neutral friction forces. Finally, during plasma ignition, experiments show opposite phenomena when Pe rises.[4pt] [1] Cunge et al, APL 96, 131501 (2010)

  16. Modulational excitation of low-frequency dust acoustic waves in the Earth's lower ionosphere

    SciTech Connect

    Kopnin, S. I.; Popel, S. I.; Yu, M. Y.

    2007-04-15

    During the observation of Perseid, Leonid, Gemenid, and Orionid meteor showers, stable low-frequency lines in the frequency range of 20-60 Hz were recorded against the radio-frequency noise background. A physical mechanism for this effect is proposed, and it is established that the effect itself is related to the modulational interaction between electromagnetic and dust acoustic waves. The dynamics of the components of a complex (dusty) ionospheric plasma with dust produced from the evolution of meteoric material is described. The conditions for the existence of dust acoustic waves in the ionosphere are considered, and the waves are shown to dissipate energy mainly in collisions of neutral particles with charged dust grains. The modulational instability of electromagnetic waves in a complex (dusty) ionospheric plasma is analyzed and is found to be driven by the nonlinear Joule heating, the ponderomotive force, and the processes governing dust charging and dynamics. The conditions for the onset of the modulational instability of electromagnetic waves, as well as its growth rate and threshold, are determined for both daytime and nighttime. It is shown that low-frequency perturbations generated in the modulational interaction are related to dust acoustic waves.

  17. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    PubMed

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves. PMID:26001199

  18. A mesh-free method with arbitrary-order accuracy for acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Takekawa, Junichi; Mikada, Hitoshi; Imamura, Naoto

    2015-05-01

    In the present study, we applied a novel mesh-free method to solve acoustic wave equation. Although the conventional finite difference methods determine the coefficients of its operator based on the regular grid alignment, the mesh-free method is not restricted to regular arrangements of calculation points. We derive the mesh-free approach using the multivariable Taylor expansion. The methodology can use arbitrary-order accuracy scheme in space by expanding the influence domain which controls the number of neighboring calculation points. The unique point of the method is that the approach calculates the approximation of derivatives using the differences of spatial variables without parameters as e.g. the weighting functions, basis functions. Dispersion analysis using a plane wave reveals that the choice of the higher-order scheme improves the dispersion property of the method although the scheme for the irregular distribution of the calculation points is more dispersive than that of the regular alignment. In numerical experiments, a model of irregular distribution of the calculation points reproduces acoustic wave propagation in a homogeneous medium same as that of a regular lattice. In an inhomogeneous model which includes low velocity anomalies, partially fine arrangement improves the effectiveness of computational cost without suffering from accuracy reduction. Our result indicates that the method would provide accurate and efficient solutions for acoustic wave propagation using adaptive distribution of the calculation points.

  19. An investigation of the influence of acoustic waves on the liquid flow through a porous material.

    PubMed

    Poesio, Pietro; Ooms, Gijs; Barake, Sander; van der Bas, Fred

    2002-05-01

    An experimental and theoretical investigation has been made of the influence of high-frequency acoustic waves on the flow of a liquid through a porous material. The experiments have been performed on Berea sandstone cores. Two acoustic horns were used with frequencies of 20 and 40 kHz, and with maximum power output of 2 and 0.7 kW, respectively. Also, a temperature measurement of the flowing liquid inside the core was made. A high external pressure was applied in order to avoid cavitation. The acoustic waves were found to produce a significant effect on the pressure gradient at constant liquid flow rate through the core samples. During the application of acoustic waves the pressure gradient inside the core decreases. This effect turned out to be due to the decrease of the liquid viscosity caused by an increase in liquid temperature as a result of the acoustic energy dissipation inside the porous material. Also, a theoretical model has been developed to calculate the dissipation effect on the viscosity and on the pressure gradient. The model predictions are in reasonable agreement with the experimental data. PMID:12051421

  20. Nonlinear ion acoustic waves in a quantum degenerate warm plasma with dust grains

    SciTech Connect

    Dubinov, A. E.; Kolotkov, D. Yu.; Sazonkin, M. A.

    2011-01-15

    A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli's pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.

  1. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-05-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  2. Local probing of propagating acoustic waves in a gigahertz echo chamber

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin V.; Santos, Paulo V.; Johansson, Göran; Delsing, Per

    2012-04-01

    In the same way that micro-mechanical resonators resemble guitar strings and drums, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface rather than through air. In contrast with oscillations in suspended resonators, such propagating mechanical waves have not before been studied near the quantum mechanical limits. Here, we demonstrate local probing of surface acoustic waves with a displacement sensitivity of 30amRMSHz-1/2 and detection sensitivity on the single-phonon level after averaging, at a frequency of 932MHz. Our probe is a piezoelectrically coupled single-electron transistor, which is sufficiently fast, non-destructive and localized to enable us to track pulses echoing back and forth in a long acoustic cavity, self-interfering and ringing the cavity up and down. We project that strong coupling to quantum circuits will enable new experiments, and hybrids using the unique features of surface acoustic waves. Prospects include quantum investigations of phonon-phonon interactions, and acoustic coupling to superconducting qubits for which we present favourable estimates.

  3. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  4. An Investigation of Acoustic Wave Propagation in Mach 2 Flow

    NASA Astrophysics Data System (ADS)

    Nieberding, Zachary J.

    source and sensors increases. Individual studies including detection sensor and source comparison, material selection, transfer rates, and shadowgraph imagery are also investigated. The acoustic signal is affected by the boundary layer, which is impacted by the shock train and its location. With the capability to characterize an acoustic signal within a scramjet engine to detect the shock train location, any disturbance in the acoustic signals can be linked to shock train displacement that could lead to an inlet unstart. With these results in mind, it is possible that acoustic hardware can be designed to be implemented into the scramjet engine to detect an inlet unstart before it should happen.

  5. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.

    PubMed

    Sankaranarayanan, Subramanian K R S; Bhethanabotla, Venkat R

    2009-03-01

    We develop a 3-D finite element model of a focused surface acoustic wave (F-SAW) device based on LiNbO(3) to analyze the wave generation and propagation characteristics for devices operating at MHz frequencies with varying applied input voltages. We compare the F-SAW device to a conventional SAW device with similar substrate dimensions and transducer finger periodicity. SAW devices with concentrically shaped focused interdigital transducer fingers (F-IDTs) are found to excite waves with high intensity and high beam-width compression ratio, confined to a small localized area. F-SAW devices are more sensitive to amplitude variations at regions close to the focal point than conventional SAW devices having uniform IDT configuration. We compute F-SAW induced streaming forces and velocity fields by applying a successive approximation technique to the Navier-Stokes equation (Nyborg's theory). The maximum streaming force obtained at the focal point varies as the square of the applied input voltage. Computed streaming velocities at the focal point in F-SAW devices are at least an order of magnitude higher than those in conventional SAW devices. Simulated frequency response indicates higher insertion losses in F-SAW devices than in conventional devices, reflecting their greater utility as actuators than as sensors. Our simulation findings suggest that F-SAW devices can be utilized effectively for actuation in microfluidic applications involving diffusion limited transport processes. PMID:19411221

  6. Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, Chunhui; Guan, Guangying; Li, Sinan; Huang, Zhihong; Wang, Ruikang K.

    2012-05-01

    The combined use of surface acoustic wave (SAW) and phase-sensitive optical coherence tomography (PhS-OCT) is useful to evaluate the elasticity of layered biological tissues, such as normal skin. However, the pathological tissue is often originated locally, leading to the alternation of mechanical properties along both axial and lateral directions. We present a feasibility study on whether the SAW technique is sensitive to detect the alternation of mechanical property along the lateral direction within tissue, which is important for clinical utility of this technique to localize diseased tissue. Experiments are carried out on purposely designed tissue phantoms and ex vivo chicken breast samples, simulating the localized change of elasticity. A PhS-OCT system is employed not only to provide the ultra-high sensitive measurement of the generated surface waves on the tissue surface, but also to provide the real time imaging of the tissue to assist the elasticity evaluation of the heterogeneous tissue. The experimental results demonstrate that with PhS-OCT used as a pressure sensor, the SAW is highly sensitive to the elasticity change of the specimen in both vertical and lateral directions with a sensing depth of ˜5 mm with our current system setup, thus promising its useful clinical applications where the quantitative elasticity of localized skin diseases is needed to aid in diagnosis and treatment.

  7. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    SciTech Connect

    Wang, Wenbo; He, Xingli; Ye, Zhi E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi; Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  8. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  9. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  10. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    NASA Astrophysics Data System (ADS)

    Gillinger, M.; Shaposhnikov, K.; Knobloch, T.; Schneider, M.; Kaltenbacher, M.; Schmid, U.

    2016-06-01

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (ScxAl1-xN) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S21 measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotating the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.

  11. Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.

  12. MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS

    SciTech Connect

    Zhao, Hui; Chou, Dean-Yi

    2013-11-20

    We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |Δn|, where Δn ≡ n' – n. The scattered waves of Δn = ±1 are visible for n ≤ 1, and significant for n ≥ 2. For the scattered wave of Δn = ±2, only few cases are visible. None of the scattered waves of Δn = ±3 are visible. The properties of scattered waves for Δn = 0 and Δn ≠ 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for Δn = 0, while it increases with n for Δn ≠ 0. The scattered wave amplitudes of Δn = 0 are greater for the larger sunspot, while those of Δn ≠ 0 are insensitive to the sunspot size.

  13. Dispersion of Plasma Dust Acoustic Waves in the Strong-Coupling Regime

    SciTech Connect

    Pieper, J.B.; Goree, J.

    1996-10-01

    Low-frequency compressional waves were observed in a suspension of strongly coupled 9.4 {mu}m spheres in an rf Kr plasma. Both parts of the complex wave number were measured to determine the dispersion relation, which agreed with a theoretical model of damped dust acoustic waves, ignoring strong coupling, but not with a strongly coupled dust-lattice wave model. The results yield experimental values for the dust plasma frequency, charge, Debye length, and damping rate, and support the applicability of fluid-based dispersion relations to strongly coupled dusty plasmas, which has been a controversy. {copyright} {ital 1996 The American Physical Society.}

  14. Damping of dust-acoustic waves due to dust-dust interactions in dusty plasmas

    NASA Astrophysics Data System (ADS)

    de Angelis, U.; Shukla, P. K.

    1998-08-01

    The results of a kinetic model are presented which includes dust-dust collisions as a damping mechanism for the low-phase velocity dust-acoustic waves which have been observed [Pieper and Goree, Phys. Rev. Lett. 77 (1976) 3137] in a dusty plasma device. A comparison of our theoretical results with those of observations exhibits a good agreement, and it also leads to quantitative estimates that are close to the predictions of the modified fluid theory, which has introduced a damping rate in an ad hoc manner.

  15. Modulational instability of ion acoustic wave with warm ions in electron-positron-ion plasmas

    SciTech Connect

    Mahmood, S.; Siddiqui, Sadiya; Jehan, Nusrat

    2011-05-15

    The nonlinear amplitude modulation of ion acoustic wave is studied in the presence of warm ions in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolsky (KBM) method is used to derive the nonlinear Schroedinger equation. The dispersive and nonlinear coefficients are obtained which depends on the ion temperature and positron density in electron-positron-ion plasmas. The modulationally stable and unstable regions are studied numerically for a wide range of wave number. It is found that both ion temperature and positron density play a significant role in the formation of bright and dark envelope solitons in electron-positron-ion plasmas.

  16. Oblique modulation of ion-acoustic waves and envelope solitons in electron-positron-ion plasma

    SciTech Connect

    Jehan, Nusrat; Salahuddin, M.; Mirza, Arshad M.

    2009-06-15

    The effect of oblique modulation on the amplitude dynamics of ion-acoustic wave propagating in a collisionless electron-positron-ion plasma is investigated. Using Krylov-Bogoliubov-Mitropolsky (KBM) perturbation method, a nonlinear Schroedinger (NLS) equation is derived which governs the evolution of obliquely modulated ion-acoustic envelope excitations. It is found that the presence of positron component significantly modifies the stability domains for small angles of propagation with the direction of modulation. The stationary solutions of NLS equation, i.e., bright and dark envelope solitons, become narrower as the concentration of positron component increases.

  17. Ion beam driven ion-acoustic waves in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Walia, Ritu; Sharma, Kavita

    2012-07-15

    An ion beam propagating through a magnetized potassium plasma cylinder having negatively charged dust grains drives electrostatic ion-acoustic waves to instability via Cerenkov interaction. The phase velocity of sound wave increases with the relative density of negatively charged dust grains. The unstable wave frequencies and the growth rate increase, with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales as one-third power of the beam density. The real part of frequency of the unstable mode increases with the beam energy and scales as almost the one-half power of the beam energy.

  18. Focus Adjustment System of Laser Probe for Radio Frequency Surface and Bulk Acoustic Wave Devices

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Kashiwa, Keisuke; Hashimoto, Ken-ya; Omori, Tatsuya; Yamaguchi, Masatsune; Kasai, Naoki

    2009-10-01

    In this paper, we describe a focus adjustment system designed especially for a fast-mechanical-scanning laser probe for radio-frequency surface and bulk acoustic wave devices. When high spatial resolution is necessary for the observation, one needs an objective lens of large magnifying power with extremely shallow focal depth. Then, a small inclination of a measurement device may cause severe defocus resulting in blurred images. We installed the focus adjustment system in the laser probe, and showed that even with inclination, high-quality information of the wave field can be acquired without reducing the scanning speed.

  19. Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin

    2008-09-07

    The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.

  20. An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans

    NASA Astrophysics Data System (ADS)

    Wilkinson, James T.; Whitehouse, Christopher B.; Oulton, Rupert F.; Gennaro, Sylvain D.

    2016-01-01

    We describe a novel undergraduate research project that highlights the physics of metamaterials with acoustic waves and soda cans. We confirm the Helmholtz resonance nature of a single can by measuring its amplitude and phase response to a sound wave. Arranging multiple cans in arrays smaller than the wavelength, we then design an antenna that redirects sound into a preferred direction. The antenna can be thought of as a new resonator, composed of artificially engineered meta-atoms, similar to a metamaterial. These experiments are illustrative, tactile, and open ended so as to enable students to explore the physics of matter/wave interaction.

  1. Experimental Evidence of the Collective Brillouin Scattering of Multiple Laser Beams Sharing Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Neuville, C.; Tassin, V.; Pesme, D.; Monteil, M.-C.; Masson-Laborde, P.-E.; Baccou, C.; Fremerye, P.; Philippe, F.; Seytor, P.; Teychenné, D.; Seka, W.; Katz, J.; Bahr, R.; Depierreux, S.

    2016-06-01

    The indirect-drive scheme to inertial confinement fusion uses a large number of laser beams arranged in a symmetric angular distribution. Collective laser plasma instabilities can therefore develop that couple all the incident laser waves located in a cone to the daughter wave growing along the cone symmetry axis [D. F. DuBois et al., Phys. Fluids B 4, 241 (1992)]. With complementary diagnostics of Thomson scattering and of the scattered light, we demonstrate the occurrence of collective stimulated Brillouin sidescattering driving collective acoustic waves in indirect-drive experiments.

  2. On the fully nonlinear acoustic waves in a plasma with positrons beam impact and superthermal electrons

    SciTech Connect

    Ali Shan, S.; El-Tantawy, S. A.; Moslem, W. M.

    2013-08-15

    Arbitrary amplitude ion-acoustic waves in an unmagnetized plasma consisting of cold positive ions, superthermal electrons, and positrons beam are reported. The basic set of fluid equations is reduced to an energy-balance like equation. The latter is numerically analyzed to examine the existence regions for solitary and shock waves. It is found that only solitary waves can propagate, however, the model cannot support shocks. The effects of superthermality and beam parameters (via, positrons concentration and streaming velocity) on the existence region, as well as solitary wave profile have been discussed.

  3. Measurement of the flow velocity in unmagnetized plasmas by counter propagating ion-acoustic waves

    SciTech Connect

    Ma, J.X.; Li Yangfang; Xiao Delong; Li Jingju; Li Yiren

    2005-06-15

    The diffusion velocity of an inhomogeneous unmagnetized plasma is measured by means of the phase velocities of ion-acoustic waves propagating along and against the direction of the plasma flow. Combined with the measurement of the plasma density distributions by usual Langmuir probes, the method is applied to measure the ambipolar diffusion coefficient and effective ion collision frequency in inhomogeneous plasmas formed in an asymmetrically discharged double-plasma device. Experimental results show that the measured flow velocities, diffusion coefficients, and effective collision frequencies are in agreement with ion-neutral collision dominated diffusion theory.

  4. Calculation of an axial temperature distribution using the reflection coefficient of an acoustic wave.

    PubMed

    Červenka, Milan; Bednařík, Michal

    2015-10-01

    This work verifies the idea that in principle it is possible to reconstruct axial temperature distribution of fluid employing reflection or transmission of acoustic waves. It is assumed that the fluid is dissipationless and its density and speed of sound vary along the wave propagation direction because of the fluid temperature distribution. A numerical algorithm is proposed allowing for calculation of the temperature distribution on the basis of known frequency characteristics of reflection coefficient modulus. Functionality of the algorithm is illustrated on a few examples, its properties are discussed. PMID:26520344

  5. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  6. Experimental Evidence of the Collective Brillouin Scattering of Multiple Laser Beams Sharing Acoustic Waves.

    PubMed

    Neuville, C; Tassin, V; Pesme, D; Monteil, M-C; Masson-Laborde, P-E; Baccou, C; Fremerye, P; Philippe, F; Seytor, P; Teychenné, D; Seka, W; Katz, J; Bahr, R; Depierreux, S

    2016-06-10

    The indirect-drive scheme to inertial confinement fusion uses a large number of laser beams arranged in a symmetric angular distribution. Collective laser plasma instabilities can therefore develop that couple all the incident laser waves located in a cone to the daughter wave growing along the cone symmetry axis [D. F. DuBois et al., Phys. Fluids B 4, 241 (1992)]. With complementary diagnostics of Thomson scattering and of the scattered light, we demonstrate the occurrence of collective stimulated Brillouin sidescattering driving collective acoustic waves in indirect-drive experiments. PMID:27341238

  7. Investigations of High Pressure Acoustic Waves in Resonators with Seal-Like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh

    2004-01-01

    1) Standing waves with maximum pressures of 188 kPa have been produced in resonators containing ambient pressure air; 2) Addition of structures inside the resonator shifts the fundamental frequency and decreases the amplitude of the generated pressure waves; 3) Addition of holes to the resonator does reduce the magnitude of the acoustic waves produced, but their addition does not prohibit the generation of large magnitude non-linear standing waves; 4) The feasibility of reducing leakage using non-linear acoustics has been confirmed.

  8. Effect of crystalline quality of diamond film to the propagation loss of surface acoustic wave devices.

    PubMed

    Fujii, Satoshi; Shikata, Shinichi; Uemura, Tomoki; Nakahata, Hideaki; Harima, Hiroshi

    2005-10-01

    Diamond films with various crystal qualities were grown by chemical vapor deposition on silicon wafers. Their crystallinity was characterized by Raman scattering and electron backscattering diffraction. By fabricating a device structure for surface acoustic wave (SAW) using these diamond films, the propagation loss was measured at 1.8 GHz and compared with the crystallinity. It was found that the propagation loss was lowered in relatively degraded films having small crystallites, a narrow distribution in the diamond crystallite size, and preferential grain orientation. This experiment clarifies diamond film characteristics required for high-frequency applications in SAW filters. PMID:16382634

  9. Amplification and directional emission of surface acoustic waves by a two-dimensional electron gas

    SciTech Connect

    Shao, Lei; Pipe, Kevin P.

    2015-01-12

    Amplification of surface acoustic waves (SAWs) by electron drift in a two-dimensional electron gas (2DEG) is analyzed analytically and confirmed experimentally. Calculations suggest that peak power gain per SAW radian occurs at a more practical carrier density for a 2DEG than for a bulk material. It is also shown that SAW emission with tunable directionality can be achieved by modulating a 2DEG's carrier density (to effect SAW generation) in the presence of an applied DC field that amplifies SAWs propagating in a particular direction while attenuating those propagating in the opposite direction.

  10. Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves

    SciTech Connect

    Destgeer, Ghulam; Im, Sunghyuk; Hang Ha, Byung; Ho Jung, Jin; Ahmad Ansari, Mubashshir; Jin Sung, Hyung

    2014-01-13

    We demonstrate a simple device to generate chemical concentration gradients in a microfluidic channel using focused travelling surface acoustic waves (F-TSAW). A pair of curved interdigitated metal electrodes deposited on the surface of a piezoelectric (LiNbO{sub 3}) substrate disseminate high frequency sound waves when actuated by an alternating current source. The F-TSAW produces chaotic acoustic streaming flow upon its interaction with the fluid inside a microfluidic channel, which mixes confluent streams of chemicals in a controlled fashion for an adjustable and rapidly switching gradient generation.

  11. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    NASA Astrophysics Data System (ADS)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  12. Interface motion and nucleation of solid helium-4 induced by acoustic waves.

    PubMed

    Nomura, R; Suzuki, Y; Kimura, S; Okuda, Y

    2003-02-21

    Crystallization and melting of helium-4 was experimentally observed to be induced by acoustic radiation pressure where the liquid-solid interface is highly mobile at low temperatures. We discuss the observed anomalous reversal of this effect as a function of temperature and the nucleation by acoustic wave pulses of crystals in the liquid phase or liquid bubbles in the solid phase. A high-speed camera was used for the in situ observation of large interface velocities as high as 1 m/sec. PMID:12633239

  13. Acoustic wave propagation in air-bubble curtains in water. Part 1. History and theory

    SciTech Connect

    Domenico, S.N.

    1982-03-01

    Air bubbles in water increase the compressibility several orders of magnitude above that in bubble-free water, thereby greatly reducing the velocity and increasing attenuation of acoustic waves. Currently, air bubble curtains are used to prevent damage of submerged structures (e.g., dams) by shock waves from submarine explosives. Also, air-bubble curtains are used to reduce damage to water-filler tanks in which metals are formed by explosives. Published results of laboratory experiments confirm theoretic velocity and attenuation functions and demonstrate that these quantities are dependent principally upon frequency, bubble size, and fractional volume of air. 31 references.

  14. Nonlinear behavior of electron acoustic waves in an un-magnetized plasma

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Chakrabarti, Nikhil

    2011-10-15

    The nonlinear electron acoustic wave, which is found in the earth's magnetosphere by satellite observations, is studied analytically by Lagrangian fluid description. The basic linear mode is observed in a two temperature electron species plasma where ions form stationary charge neutral background. We have obtained nonlinear description of this mode, which depends on both time and space. A possible solution shows a soliton like structure, which is localized in space, and the amplitude increases with time in the absence of dispersion. Small dispersive correction, however, shows spread of the solution in space. This method can be generalized to study the nonlinear behavior of a general class of multispecies plasma.

  15. In situ high-temperature characterization of AlN-based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

    2013-07-01

    We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

  16. Surface acoustic wave properties of (100) AlN films on diamond with different IDT positions.

    PubMed

    Lin, Zhi-Xun; Wu, Sean; Ro, Ruyen; Lee, Maw-Shung

    2009-06-01

    (100) AlN films have better surface acoustic wave (SAW) properties than (002) AlN films. In this research, (100) AlN films were combined with diamonds as a new composite SAW substrate. The SAW properties of (100) AlN films on diamonds were analyzed with 4 composite structures: interdigital transducer (IDT)/(100) AlN/diamond, (100) AlN/IDT/diamond, IDT/(100) AlN/metal/diamond, and metal/IDT/(100) AlN/diamond, and they exhibited some excellent SAW properties. Our research results provide a predictable and theoretical basis for further application on high-velocity SAW devices. PMID:19574132

  17. Identification of laser generated acoustic waves in the two-dimensional transient response of cylinders

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Rossignol, C.; Audoin, B.

    2005-06-01

    The published model [Appl. Phys. Lett. 82, 4379-4381 (2003)] for the two-dimensional transient wave propagation in a cylinder is modified to avoid the inherited integration of the numerical inverse scheme. The Fourier series expansion is introduced for one spatial coordinate to resolve the transient response problem: theoretical radial displacements in either the ablation or the thermoelastic regime are obtained with little numerical noise and short computation time. The normal mode expansion method fails to deliver results with the same accuracy. Acoustic waves are fully identified by the ray trajectory analysis. These identified waves are further verified on the experimental results observed with the laser ultrasonic technique. .

  18. Transformation of intense acoustic waves propagating vertically upward in an isothermally stratified atmosphere

    NASA Astrophysics Data System (ADS)

    Gusev, V. A.; Zhostkov, R. A.

    2015-09-01

    The specific features in the propagation of acoustic waves with a finite amplitude in the model of an isothermally viscous stratified atmosphere have been studied based on the analytical solutions. The Khokhlov—Zabolotskaya and Burgers equations have been generalized for a stratified atmosphere. The selfsimilar solution for a generalized Burgers equation with variable viscosity has been found. The asymptotic solution for an initial sinusoidal disturbance has been obtained. The solutions can be used to seismically analyze induced acoustic fields in a wide frequency band.

  19. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    SciTech Connect

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-11-20

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  20. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  1. Arbitrary amplitude ion-acoustic waves in a multicomponent plasma with superthermal species

    SciTech Connect

    El-Tantawy, S. A.; Moslem, W. M.

    2011-11-15

    Properties of fully nonlinear ion-acoustic waves in a multicomponent plasma consisting of warm positive ions, superthermal electrons, as well as positrons, and dust impurities have been investigated. By using the hydrodynamic model for ions and superthermal electron/positron distribution, a Sagdeev potential has been derived. Existence conditions for large amplitude solitary and shock waves are presented. In order to show that the characteristics of the solitary and shock waves are influenced by the plasma parameters, the relevant numerical analysis of the Sagdeev potential is presented. The nonlinear structures, as predicted here, may be associated with the electrostatic perturbations in interstellar medium.

  2. Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas

    SciTech Connect

    Seadawy, A. R.

    2014-05-15

    The quantum hydrodynamic model is applied to two-dimensional ion-acoustic waves in quantum plasmas. The two-dimensional quantum hydrodynamic model is used to obtain a deformed Kortewegde Vries (dKdV) equation by reductive perturbation method. By using the solution of auxiliary ordinary equations, a extended direct algebraic method is described to construct the exact solutions for nonlinear quantum dKdV equation. The present results are describing the generation and evolution of such waves, their interactions, and their stability.

  3. A method for reducing the level of spurious signals in surface acoustic wave filters

    NASA Astrophysics Data System (ADS)

    Borodii, Iu. N.; Grankin, I. M.; Zapunnyi, A. P.; Kolomeiko, A. V.

    1986-03-01

    A method for reducing spurious signals in surface acoustic wave (SAW) filters is proposed whereby both bulk and reflected wave signals are attenuated by electrodes of special configuration providing synphase addition of the useful signal and nonsynphase addition of spurious signal components. The electrodes of the input and output converters are made with a common focus point and equal angular apertures. The shape of the electrodes of the focusing converters on anisotropic crystal surfaces is determined by the corresponding SAW group velocity curve. An implementation of the method proposed here is examined together with some test results.

  4. A comparison of time domain boundary conditions for acoustic waves in wave guides

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Propst, G.; Silcox, R. J.

    1991-01-01

    Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.

  5. Undulate microarray fabrication on polymer film using standing surface acoustic waves and ultraviolet polymerization

    NASA Astrophysics Data System (ADS)

    Mei, Deqing; Xue, Dai; Wang, Yancheng; Chen, Shaochen

    2016-06-01

    By exciting standing surface acoustic waves (SAWs), a monomer solution can be shaped into a wavy structure. By applying ultraviolet (UV) polymerization, a linear undulate microarray can be fabricated on the polymer material using one-dimensional standing SAWs. When two-dimensional standing SAWs are applied, a latticed microarray, which presents periodically distributed bumps and wells, can be fabricated. The periodicity of the undulate microarray is dependent on the SAW wavelength. Also, the undulating amplitude of the microarray is tunable when applying different input voltages to generate SAWs. The integrated standing SAWs and UV polymerization process provide a rapid method for creating periodic surface patterns.

  6. Dispersion of low frequency surface acoustic waves of different polarizations in multilayered systems

    NASA Astrophysics Data System (ADS)

    Kosachev, V. V.; Shchegrov, A. V.

    1995-02-01

    Dispersion of surface acoustic waves (SAW) of sagittal and shear horizontal (SH) polarizations in a multilayered system of n isotropic layers on an isotropic substrate is investigated by the technique of effective boundary conditions in the framework of perturbation theory. The ratio of the total layer thickness to the wavelength of SAW is chosen to be a small parameter. Under such assumptions the dispersion relations for the SAW of both sagittal and SH-polarizations are derived. The results for sagittally polarized SAW derived by means of perturbation theory are compared with numerical solution for a bilayered structure. Possible applications of the results obtained are discussed.

  7. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  8. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities

    SciTech Connect

    Goryachev, Maxim Farr, Warrick G.; Tobar, Michael E.; Galliou, Serge

    2014-08-11

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity (Q>3>10{sup 9}), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

  9. Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect

    SciTech Connect

    Su, Ming; Thundat, Thomas G; Hedden, David

    2010-02-23

    A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample. The method and apparatus can be used to detect chemical composition or visual features. A transmission mode and a reflection mode of operation are disclosed. The method and apparatus can be applied at nanoscale to detect molecules in a biological sample.

  10. A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging

    SciTech Connect

    Kaneko, Shogo; Tomoda, Motonobu; Matsuda, Osamu

    2014-01-15

    We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.

  11. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  12. Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models

    NASA Technical Reports Server (NTRS)

    Schmitz, F.; Ulmschneider, P.; Kalkofen, W.

    1985-01-01

    The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.

  13. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    PubMed Central

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  14. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    PubMed Central

    Rocha-Gaso, María-Isabel; March-Iborra, Carmen; Montoya-Baides, Ángel; Arnau-Vives, Antonio

    2009-01-01

    This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), Surface Transverse Wave (STW), Love Wave (LW), Flexural Plate Wave (FPW), Shear Horizontal Acoustic Plate Mode (SH-APM) and Layered Guided Acoustic Plate Mode (LG-APM) - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications. PMID:22346725

  15. Microchannel Anechoic Corner for Microparticle Manipulation via Travelling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Destgeer, Ghulam; Ha, Byung Hang; Park, Jinsoo; Jung, Jin Ho; Alazzam, Anas; Sung, Hyung Jin

    We present a particle manipulation device composed of a pair of slanted interdigitated transducers (SIDTs) and a polydimethyl-siloxane (PDMS) microfluidic channel. Tunable travelling surface acoustic waves (TSAWs) produced by the SIDTs at desired locations are used to separate polystyrene (PS) microspheres of different diameters. The acoustic radiation force (ARF) acting on PS microspheres is estimated to predict the variable deflection of two distinct diameter microspheres that results in bi-separation of particles (3.2 and 4.8 μm). Interaction of TSAWs with the fluid and propagation of leaky acoustic waves at Rayleigh angle produce an anechoic corner inside the microchannel. An adequate choice of TSAW-frequency with reference to the particles' diameters, corresponding ARF-estimation and incorporation of the microchannel anechoic corner results in a tri-separation of PS microspheres (3, 4.2, 5 μm). The tri-separation is achieved by TSAWs - 135 MHz to deflect 5 μm particles upstream of microchannel and 175 MHz to deflect 4.2 μm particles downstream.

  16. Three-dimensional manipulation of single cells using surface acoustic waves

    PubMed Central

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444

  17. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.

    PubMed

    Ma, Zhichao; Collins, David J; Ai, Ye

    2016-05-17

    Components in biomedical analysis tools that have direct contact with biological samples, especially biohazardous materials, are ideally discarded after use to prevent cross-contamination. However, a conventional acoustofluidic device is typically a monolithic integration that permanently bonds acoustic transducers with microfluidic channels, increasing processing costs in single-use platforms. In this study, we demonstrate a detachable acoustofluidic system comprised of a disposable channel device and a reusable acoustic transducer for noncontact continuous particle separation via a traveling surface acoustic wave (TSAW). The channel device can be placed onto the SAW transducer with a high alignment tolerance to simplify operation, is made entirely of polydimethylsiloxane (PDMS), and does not require any additional coupling agent. A microstructured pillar is used to couple acoustic waves into the fluid channel for noncontact particle manipulation. We demonstrate the separation of 10 and 15 μm particles at high separation efficiency above 98% in a 49.5 MHz TSAW using the developed detachable acoustofluidic system. Its disposability and ease of assembly should enable broad use of noncontact, disposable particle manipulation techniques in practical biomedical applications related to sample preparation. PMID:27086552

  18. Electrostatic Generation of Bulk Acoustic Waves and Electrical Parameters of Si-MEMS Resonators.

    PubMed

    Dulmet, Bernard; Ivan, Mihaela Eugenia; Ballandras, Sylvain

    2016-02-01

    This paper proposes an analytical approach to model the generation of bulk acoustic waves in an electrostatically excited silicon MEMS structure, as well as its electromechanical response in terms of static and dynamic displacements, electromechanical coupling, and motional current. The analysis pertains to the single-port electrostatic drive of trapped-energy thickness-extensional (TE) modes in thin plates. Both asymmetric single-side and symmetric double-side electrostatic gap configurations are modeled. Green's function is used to describe the characteristic of the static displacement of the driven surface of the structure versus the dc bias voltage, which allows us to determine the electrical response of the resonator. Optical and electrical characterizations have been performed on resonator samples operating at 10.3 MHz on the fundamental of TE mode under single-side electrostatic excitation. The various figures of merit depend on the dc bias voltage. Typical values of 9000 for the Q-factor, and of 10(-5) for the electromechanical coupling factor k(2) have been obtained with [Formula: see text] for [Formula: see text]-thick gaps. Here-considered modes have a typical temperature coefficients of frequency (TCF) close to -30 ppm/(°)C. We conclude that the practical usability of such electrostatically excited bulk acoustic waves (BAW) resonators essentially depends on the efficiency of the compensation of feed-through capacitance. PMID:26642450

  19. A novel unsplit perfectly matched layer for the second-order acoustic wave equation.

    PubMed

    Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan

    2014-08-01

    When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach. PMID:24794509

  20. Simulations of acoustic waves in channels and phonation in glottal ducts

    NASA Astrophysics Data System (ADS)

    Yang, Jubiao; Krane, Michael; Zhang, Lucy

    2014-11-01

    Numerical simulations of acoustic wave propagation were performed by solving compressible Navier-Stokes equations using finite element method. To avoid numerical contamination of acoustic field induced by non-physical reflections at computational boundaries, a Perfectly Matched Layer (PML) scheme was implemented to attenuate the acoustic waves and their reflections near these boundaries. The acoustic simulation was further combined with the simulation of interaction of vocal fold vibration and glottal flow, using our fully-coupled Immersed Finite Element Method (IFEM) approach, to study phonation in the glottal channel. In order to decouple the aeroelastic and aeroacoustic aspects of phonation, the airway duct used has a uniform cross section with PML properly applied. The dynamics of phonation were then studied by computing the terms of the equations of motion for a control volume comprised of the fluid in the vicinity of the vocal folds. It is shown that the principal dynamics is comprised of the near cancellation of the pressure force driving the flow through the glottis, and the aerodynamic drag on the vocal folds. Aeroacoustic source strengths are also presented, estimated from integral quantities computed in the source region, as well as from the radiated acoustic field.

  1. Three-dimensional manipulation of single cells using surface acoustic waves.

    PubMed

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-01

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444

  2. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.

    PubMed

    Wang, Ding; Wang, Liji; Ding, Pinbo

    2016-08-01

    An illustrative theory is developed to analyze the acoustic wave propagation characteristics in the porous media with anisotropic permeability. We focus here on the role of fracture permeability in the unconsolidated porous media, looking in particular at the compressional P-wave phase velocity and attenuation. Two fluid pressure equilibration characteristic time factors are defined, which are corresponding to crack-pore system and crack-crack system, respectively. The theoretical results show that the dispersion and attenuation characteristics of acoustic wave are affected by porous matrix and fracture permeability simultaneously. Due to the fluid exchange that takes place between fractures and pores dominantly, the influence of the fracture connectivity on the wave propagation is very weak when the permeability of background medium is relatively high. However, correlation between wave propagation and fracture permeability is significant when the matrix permeability at a low level. A second attenuation peak occurs for the fluid flow within fractures in high-frequency region for more and more higher fracture permeability. The exact analytical solutions that are compared to numerical forward modeling of wave propagation in fractured media allow us to verify the correctness of the new model. If there exists another approach for obtaining the connectivity information of background media, we can use this model to analyze qualitatively the permeability of fractures or afford an indicator of in-situ permeability changes in a oil reservoir, for example, fracturing operations. PMID:27259119

  3. Anisotropic Swirling Surface Acoustic Waves from Inverse Filtering for On-Chip Generation of Acoustic Vortices

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Thomas, Jean-Louis; Charron, Eric; Bussonnière, Adrien; Bou Matar, Olivier; Baudoin, Michael

    2015-09-01

    From radio-electronics signal analysis to biological sample actuation, surface acoustic waves (SAWs) are involved in a multitude of modern devices. However, only the most simple standing or progressive waves such as plane and focused waves have been explored so far. In this paper, we expand the SAW toolbox with a wave family named "swirling surface acoustic waves" which are the 2D anisotropic analogue of bulk acoustic vortices. Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. After the rigorous mathematical definition of these waves, we synthesize them experimentally through the inverse filtering technique revisited for surface waves. For this purpose, we design a setup combining arrays of interdigitated transducers and a multichannel electronic that enables one to synthesize any prescribed wave field compatible with the anisotropy of the substrate in a region called the "acoustic scene." This work opens prospects for the design of integrated acoustic vortex generators for on-chip selective acoustic tweezing.

  4. A perturbative analysis of surface acoustic wave propagation and reflection in interdigital transducers

    NASA Astrophysics Data System (ADS)

    Thoma, Carsten Hilmar

    1997-12-01

    The coupling of stress and strain fields to electric fields present in anisotropic piezoelectric crystals makes them ideal for use as electromechanical transducers in a wide variety of applications. In recent years such crystals have been utilized to produce surface acoustic wave devices for signal processing applications, in which an applied metallic grating both transmits and receives, through the piezoelectric effect, electromechanical surface waves. The design of such interdigital transducers requires an accurate knowledge of wave propagation and reflection. The presence of the metal grating in addition to its ideal transduction function, by means of electrical and mechanical loading, also introduces a velocity shift as well as reflection into substrate surface waves. We seek to obtain a consistent formulation of the wave behavior due to the electrical and mechanical loading of the substrate crystal by the metallic grating. A perturbative solution up to second order in h//lambda is developed, where h is the maximum grating height and λ the acoustic wavelength. For the operating frequencies and physical parameters of modern surface acoustic wave devices such an analysis will provide an adequate description of device behavior in many cases, thereby circumventing the need for more computationally laborious methods. Numerical calculations are presented and compared with available experimental data.

  5. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies.

    PubMed

    Tadesse, Semere Ayalew; Li, Mo

    2014-01-01

    Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally, these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct, wideband link between optical and microwave photons for microwave photonics and quantum optomechanics. PMID:25400144

  6. Stability of two-dimensional ion-acoustic wave packets in quantum plasmas

    SciTech Connect

    Misra, A. P.; Marklund, M.; Brodin, G.; Shukla, P. K.

    2011-04-15

    The nonlinear propagation of two-dimensional (2D) quantum ion-acoustic waves (QIAWs) is studied in a quantum electron-ion plasma. By using a 2D quantum hydrodynamic model and the method of multiple scales, a new set of coupled nonlinear partial differential equations is derived which governs the slow modulation of the 2D QIAW packets. The oblique modulational instability (MI) is then studied by means of a corresponding nonlinear Schroedinger equation derived from the coupled nonlinear partial differential equations. It is shown that the quantum parameter H (ratio of the plasmon energy density to Fermi energy) shifts the MI domains around the k{theta} -plane, where k is the carrier wave number and {theta} is the angle of modulation. In particular, the ion-acoustic wave (IAW), previously known to be stable under parallel modulation in classical plasmas, is shown to be unstable in quantum plasmas. The growth rate of the MI is found to be quenched by the obliqueness of modulation. The modulation of 2D QIAW packets along the wave vector k is shown to be described by a set of Davey-Stewartson-like equations. The latter can be studied for the 2D wave collapse in dense plasmas. The predicted results, which could be important to look for stable wave propagation in laboratory experiments as well as in dense astrophysical plasmas, thus generalize the theory of MI of IAW propagations both in classical and quantum electron-ion plasmas.

  7. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    SciTech Connect

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-08-15

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  8. Removal of Malathion Insecticide from Water by Employing Acoustical Wave Technology

    PubMed Central

    Shayeghi, M; Dehghani, MH; Fadaei, AM

    2011-01-01

    Background: Organophosphorus pesticides are one of the most prevalent usages for pest control in the country. Such pesticides enter into water sources by different routes. Since drinking of contaminated water at the higher doses than the standard level, may causes undesirable effects to human health and ecosystem. The object of this research was to investigate the effect of various parameters including time, power and concentration on sonodecomposition of malathion insecticide in the water. Methods: The sonochemical degradation of malathion was investigated using acoustic wave technology (AWT). AWT with 130 kHz was used to study the decomposition of insecticide solution. Samples were analyzed using HPLC at different intervals times. Effectiveness of AWT at different times (20, 40, 60, 80, 100, and 120 minutes), concentrations of malathion at 2, 4 and 8 mg/L as well as powers of device (300W, 400W, 500W) are compared. Results: These findings showed that the degradation of the malathion insecticide at lower concentrations was greater in comparison to higher concentrations. Also, there was positive correlation between power increasing and the ability to malathion degradation Conclusion: The sonodegradation of malathion at different concentrations and powers was successfully achieved. It has been shown that acoustical wave technology can be used to reduce the concentration of dissolved insecticide using high frequency. PMID:23113111

  9. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

    2013-04-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

  10. Acoustic waves generated by pulsed microwaves in viscoelastic rods: modeling and experimental verification.

    PubMed

    Bacon, C; Guilliorit, E; Hosten, B; Chimenti, D E

    2001-09-01

    The acoustic wave generation in a specimen irradiated by a pulsed microwave is predicted theoretically. The specimen is a viscoelastic rod inserted into a wave guide. The model is based on Maxwell's equations, heat equation and thermoviscoelasticity theory. Computations show the presence of temperature oscillations due to the electromagnetic interferences in the irradiated rod if its electromagnetic absorption is low. An experimental method to infer indirectly the detailed behavior of microwave-generated acoustic waves in polymer rods, including the influence of electromagnetic wave reflection at the rod ends, is presented. The method consists of measuring the oscillations in the particle acceleration detected at the end of the rod that are induced by variations in the polymer rod length. The oscillations are caused by changing electromagnetic standing-wave conditions within the rod. It is found that these oscillations are in agreement in period, amplitude, and phase, with independent values of the complex dielectric constant and complex acoustic slowness of the polyvinyl chloride samples used in the study. PMID:11572350

  11. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  12. Equation-free Modeling of Ion Acoustic Wave with Particle Trapping

    NASA Astrophysics Data System (ADS)

    Stantchev, George

    2005-10-01

    Recently, Shay et al.[1] have successfully implemented equation-free projective integraion methods to simulate the propagation and steepening of a 1D ion acoustic wave. For the forward extrapolation step they have been using only a small number of lower moments of the probability density function (PDF) based on the assumption that the distribution would remain Maxwellian at all times. This however is no longer valid in many interesting situations, in particular for the case of particle trapping. To solve this problem we propose a generalization of Shay's algorithm to allow for tracking of an arbitrary PDF. We estimate the PDF at each micro-time step using statistical wavelet analysis. The resulting vectors of wavelet coefficents are used for forward extrapolation in time to obtain a multi-scale representation of the projected PDF after a coarse time step. An optimal wavelet basis is selected through adaptive refinement at the beginning of each microscopic simulation sequence. We discuss the application of this technique to the 1D acoustic wave problem with particle trapping. [1] M. Shay, J. Drake, W. Dorland, Multiscale modeling of plasmas via equation-free projective integration, in preparation

  13. Very low frequency subionospheric remote sensing of thunderstorm-driven acoustic waves in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Snively, J. B.

    2014-05-01

    We present observations of narrowband subionospheric VLF transmitter signals on 20 March 2001, exhibiting coherent fluctuations of over 1 dB peak to peak. Spectral analysis shows that the fluctuations have periods of 1-4min and are largely coherent. The subionospheric propagation path of the signal from Puerto Rico to Colorado passes over two regions of convective and lightning activity, as observed by GOES satellite imagery and National Lightning Detection Network lightning data. We suggest that these fluctuations are evidence of acoustic waves launched by the convective activity below, observed in the 80-90 km altitude range to which nighttime VLF subionospheric remote sensing is sensitive. These observations show that VLF subionospheric remote sensing may provide a unique, 24h remote sensing technique for acoustic and gravity wave activity. We reproduce this event in simulations using a fluid model of gravity and acoustic wave propagation to calculate the ionospheric disturbance, followed by an electromagnetic propagation model to calculate the perturbation amplitude at the location of the VLF receiver. Simulation results show that a very large and coherent convective source is required to produce these amplitude perturbations.

  14. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Jamil, M.; Shahid, M.; Ali, Waris; Salimullah, M.; Shah, H. A.; Murtaza, G.

    2011-06-01

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfvén waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfvén waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B0. It is noted that the growth rate is proportional to the unperturbed electron number density noe and is independent of inhomogeneity beyond Le=2 cm. An extraordinary growth rate is observed with the quantum effect.

  15. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits

    NASA Astrophysics Data System (ADS)

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-05-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1,550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radiofrequency field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic-crystal waveguides, or optically through the strong photoelastic effect. Together with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which radiofrequency-driven coherent mechanical motion is cancelled by optically driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical and mechanical domains.

  16. Numerics of surface acoustic wave (SAW) driven acoustic streaming and radiation force

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Kahler, Christian; Costanzo, Francesco; Jun Huang, Tony

    2015-11-01

    Recently, surface acoustic wave (SAW) based systems have shown great potential for various lab-on-a-chip applications. However, the physical understanding of the precise acoustic fields and associated acoustophoresis is rather limited. In this work, we present a numerical study of the acoustophoretic particle motion inside a SAW-actuated, liquid-filled polydimethylsiloxane (PDMS) microchannel. We utilize a perturbation approach to divide the flow variables into first- and second-order components. The first-order fields result in a time-averaged acoustic radiation force on suspended particles, as well as the time-averaged body force terms that drive the second-order fields. We model the SAW actuation by a displacement function while we utilize impedance boundary conditions to model the PDMS walls. We identify the precise acoustic fields generated inside the microchannel and investigate a range of particle sizes to characterize the transition from streaming-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Lastly, we demonstrate the ability of SAW devices to tune the position of vertical pressure node inside the microchannel by tuning the phase difference between the two incoming surface acoustic waves.

  17. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    SciTech Connect

    Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.

    2011-06-15

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B{sub 0}. It is noted that the growth rate is proportional to the unperturbed electron number density n{sub oe} and is independent of inhomogeneity beyond L{sub e}=2 cm. An extraordinary growth rate is observed with the quantum effect.

  18. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J.; Huang, Tony Jun

    2012-01-01

    Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based “acoustic tweezers” that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers’ compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering. PMID:22733731

  19. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  20. Surface crack detection for Al plate using the surface acoustic waves and neural network identification

    NASA Astrophysics Data System (ADS)

    Guan, Jianfei; Shen, Zhonghua; Xu, Baiqiang; Lu, Jian; Ni, Xiaowu

    2005-01-01

    This paper utilized the Finite Element Method to investigate the transient scattering of Rayleigh wave by a surface crack in a plate. The incident wave models the guided waves generated by a pulsed line source laser irradiation on the top surface of the plate. The pulsed laser is assumed to be transient heat source, and the surface acoustic wave is calculated based on the thermoelastic theory. We have computed the different results of the Al plates with the varied depth surface-breaking crack, then attained the temporal characteristics of reflected waves and transmitted waves which are generated by the initial surface acoustic waves interacted with the surface breaking cracks with different depth. The artificial neural networks (ANN) are applied to establish the mapping relationship between the characteristic of the reflected waveform and the crack depth. The results of crack damage detection for Al plates show that the method developed in this paper can be applied to online structural damage detection and health monitoring for various industrial structures.