Science.gov

Sample records for acoustic-wave sensor apparatus

  1. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  2. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  3. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  4. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  5. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  6. Surface acoustic wave devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  7. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  8. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  9. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  10. Coded acoustic wave sensors and system using time diversity

    NASA Technical Reports Server (NTRS)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  11. Optimizing surface acoustic wave sensors for trace chemical detection

    SciTech Connect

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  12. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  13. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  14. Modeling of a Surface Acoustic Wave Strain Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  15. Dual output acoustic wave sensor for molecular identification

    DOEpatents

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  16. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  17. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    SciTech Connect

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  18. Multiple-frequency surface acoustic wave devices as sensors

    NASA Astrophysics Data System (ADS)

    Ricco, Antonio J.; Martin, Stephen J.

    We have designed, fabricated, and tested a multiple-frequency acoustic wave (MUFAW) device on ST-cut quartz with nominal surface acoustic wave (SAW) center frequencies of 16, 40, 100, and 250 MHz. The four frequencies are obtained by patterning four sets of input and output interdigital transducers of differing periodicities on a single substrate. Such a device allows the frequency dependence of AW sensor perturbations to be examined, aiding in the elucidation of the operative interaction mechanism(s). Initial measurements of the SAW response to the vacuum deposition of a thin nickel film show the expected frequency dependence of mass sensitivity in addition to the expected frequency independence of the magnitude of the acoustoelectric effect. By measuring changes in both wave velocity and attenuation at multiple frequencies, extrinsic perturbations such as temperature and pressure changes are readily differentiated from one another and from changes in surface mass.

  19. Surface acoustic wave vapor sensors based on resonator devices

    NASA Astrophysics Data System (ADS)

    Grate, Jay W.; Klusty, Mark

    1991-05-01

    Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.

  20. Dual mode acoustic wave sensor for precise pressure reading

    NASA Astrophysics Data System (ADS)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  1. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    1985-12-01

    The first surfce acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposted on the acoustic progagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectric coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in N2 has been demonstrated.

  2. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    The first surface acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposited on the acoustic propagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectic coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in Ne was demonstrated.

  3. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  4. Following butter flavour deterioration with an acoustic wave sensor.

    PubMed

    Gaspar, Cláudia R B S; Gomes, M Teresa S R

    2012-09-15

    Off-flavours develop naturally in butter and the process is accelerated by heat. An acoustic wave sensor was used to detect the aroma compounds evolved from heated butter and the results have shown that registered marked changes were coincident to odour changes detected by sensory analysis. The flavour compounds have also been analysed by GC/MS for identification. The response of the sensor was fully characterized in terms of the sensitivity to each of the identified compounds, and sensitivities of the system SPME/sensor were compared with the sensitivities of the system SPME/GC/MS. It was found that the sensor analytical system was more sensitive to methylketones than to fatty acids. The SPME/GC/MS system also showed the highest sensitivity to 2-heptanone, followed by 2-nonanone, but third place was occupied by undecanone and butanoic acid, to which the sensor showed moderate sensitivity. 2-heptanone was found to be an appropriate model compound to follow odour changes till the 500 h, and the lower sensitivity of the sensor to butanoic acid showed to be a positive characteristic, as saturation was prevented, and other more subtle changes in the flavour could be perceived.

  5. Langasite surface acoustic wave gas sensors: modeling and verification

    SciTech Connect

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  6. Starch viscoelastic properties studied with an acoustic wave sensor.

    PubMed

    Santos, M D; Gomes, M T S R

    2014-01-01

    Gelatinization and retrogradation of starch was followed in real time with an acoustic wave sensor. This study relies on the monitorization of the frequency of oscillation of a piezoelectric quartz crystal in contact with a 2.5% emulsion of a commercial maize starch, during heating and cooling. The technique showed to be very powerful and sensitive to most of the changes described in the literature, which have been elucidated by some other techniques. The value for the temperature of gelatinization found using the sensor was confirmed by the analysis of the same starch emulsion by polarized light microscopy. Temperatures of gelatinization were found to vary with the sample heating rate, as follows: 73.5 °C at 2.0 °C/min, 66.0 °C at 1.0 °C/min, and 65.0 °C at 0.5 °C/min. Hysteresis of the studied system was evidenced by the frequency shift before heating and after cooling till the initial temperature. Analysis performed on a 1.5% emulsion of a rice starch heated at 2.0 °C/min and cooled as before, evidenced no hysteresis and showed complete reversibility, in which concerns to the series frequency of the piezoelectric quartz crystal.

  7. Structural configuration study for an acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Biaobiao

    A continuous structure has several response characteristics that make it a candidate for a sensor used to locate an acoustic source. Primary goals in developing such a sensor structure are to ensure that the response is rich enough to provide information about the impinging acoustic wave and to detect the direction of travel without being too sensitive to background noise. As such, there are several factors that must be examined with regard to sensor configuration and measurement requirements. This dissertation describes a set of studies that examine various configuration requirements for such a sensor. Some of the parameters of interest include the size, or aperture of the structure, boundary conditions, material properties, and thickness. The response of the structure to transient sinusoidal wave excitations will be examined analytically. The time-domain response of an Euler-Bernoulli beam excited by a traveling sinusoidal excitation is obtained based on modal superposition and verified by using a finite element method. Then, an approach using simple basis functions will be applied to achieve the goal of more efficient response and force identification. The moving force is identified in the time domain by extending previous inverse approaches. The Tikhonov regularization technique provides bounds to the ill-conditioned results in the identification problem. Both simulated displacement and velocity are considered for use in the inverse. To evaluate the method and examine various configurations, simulations with different numbers of sinusoidal half-cycles exciting the sensor structure are studied. Various levels of random noise are also added to the simulated displacements and velocities responses in order to study the effect of noise in moving wave load identification. Such a new approach in acoustic sensing has applications in the areas of security and disaster recovery.

  8. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  9. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  10. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  11. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    NASA Technical Reports Server (NTRS)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  12. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  13. An all fiber-optic sensor for surface acoustic wave measurements

    NASA Technical Reports Server (NTRS)

    Bowers, J. E.; Jungerman, R. L.; Khuri-Yakub, B. T.; Kino, G. S.

    1983-01-01

    A surface acoustic wave (SAW) sensor constructed from single-mode fiber-optic components is described. An analysis of reciprocal and nonreciprocal modes of operation of the sensor is presented. Results from measurements on a variety of SAW devices illustrate the use of the sensor. The amplitude sensitivity is 0.0003 A for an integration time of 0.1 s.

  14. Sensor apparatus

    DOEpatents

    Deason, Vance A [Idaho Falls, ID; Telschow, Kenneth L [Idaho Falls, ID

    2009-12-22

    A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

  15. Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices

    SciTech Connect

    Hughes, R.C.; Moreno, D.J.; Jenkins, M.W.; Rodriguez, J.L.

    1993-10-01

    Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

  16. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices.

  17. Wireless surface acoustic wave sensors for displacement and crack monitoring in concrete structures

    NASA Astrophysics Data System (ADS)

    Perry, M.; McKeeman, I.; Saafi, M.; Niewczas, P.

    2016-03-01

    In this work, we demonstrate that wireless surface acoustic wave devices can be used to monitor millimetre displacements in crack opening during the cyclic and static loading of reinforced concrete structures. Sensors were packaged to extend their gauge length and to protect them against brittle fracture, before being surface-mounted onto the tensioned surface of a concrete beam. The accuracy of measurements was verified using computational methods and optical-fibre strain sensors. After packaging, the displacement and temperature resolutions of the surface acoustic wave sensors were 10 μ {{m}} and 2 °C respectively. With some further work, these devices could be retrofitted to existing concrete structures to facilitate wireless structural health monitoring.

  18. The quality of our drinking water: aluminium determination with an acoustic wave sensor.

    PubMed

    Veríssimo, Marta I S; Gomes, M Teresa S R

    2008-06-09

    A new methodology based on an inexpensive aluminium acoustic wave sensor is presented. Although the aluminium sensor has already been reported, and the composition of the selective membrane is known, the low detection limits required for the analysis of drinking water, demanded the inclusion of a preconcentration stage, as well as an optimization of the sensor. The necessary coating amount was established, as well as the best preconcentration protocol, in terms of oxidation of organic matter and aluminium elution from the Chelex-100. The methodology developed with the acoustic wave sensor allowed aluminium quantitation above 0.07 mg L(-1). Several water samples from Portugal were analysed using the acoustic wave sensor, as well as by UV-vis spectrophotometry. Results obtained with both methodologies were not statistically different (alpha=0.05), both in terms of accuracy and precision. This new methodology proved to be adequate for aluminium quantitation in drinking water and showed to be faster and less reagent consuming than the UV spectrophotometric methodology.

  19. Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds.

    SciTech Connect

    McGrath, Lucas K.; Wright, Jerome L.; Ho, Clifford Kuofei; Rawlinson, Kim Scott; Lindgren, Eric Richard

    2003-08-01

    This paper describes the development of a surface-acoustic-wave (SAW) sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene), which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.

  20. Measurement of Plasma Clotting Using Shear Horizontal Surface Acoustic Wave Sensor

    NASA Astrophysics Data System (ADS)

    Nagayama, Tatsuya; Kondoh, Jun; Oonishi, Tomoko; Hosokawa, Kazuya

    2013-07-01

    The monitoring of blood coagulation is important during operation. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied to monitor plasma clotting. An SH-SAW sensor with a metallized surface for mechanical perturbation detection can detect plasma clotting. As plasma clotting is a gel formation reaction, the SH-SAW sensor detects viscoelastic property changes. On the other hand, an SH-SAW sensor with a free surface for electrical perturbation detection detects only the liquid mixing effect. No electrical property changes due to plasma clotting are obtained using this sensor. A planar electrochemical sensor is also used to monitor plasma clotting. In impedance spectral analysis, plasma clotting is measured. However, in the measurement of time responses, no differences between clotting and nonclotting are obtained. Therefore, the SH-SAW sensor is useful for monitoring plasma clotting.

  1. Surface Acoustic Wave Ammonia Sensors Based on ST-cut Quartz under Periodic Al Structure.

    PubMed

    Hsu, Cheng-Liang; Shen, Chi-Yen; Tsai, Rume-Tze; Su, Ming-Yau

    2009-01-01

    Surface acoustic wave (SAW) devices are key components for sensing applications. SAW propagation under a periodic grating was investigated in this work. The theoretical method used here is the space harmonic method. We also applied the results of SAW propagation studied in this work to design a two-port resonator with an Al grating on ST-cut quartz. The measured frequency responses of the resonator were similar to the simulation ones. Then, the chemical interface of polyaniline/WO(3) composites was coated on the SAW sensor for ammonia detection. The SAW sensor responded to ammonia gas and could be regenerated using dry nitrogen.

  2. Measurement of cantilever vibration using impedance-loaded surface acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Hamashima, Hiromitsu; Kondoh, Jun

    2016-07-01

    In this study, an impedance-loaded surface acoustic wave (SAW) sensor was demonstrated to monitor the vibration frequency. Commercialized pressure sensors and a variable capacitor were chosen as external sensors, which were connected to a reflector on a SAW device. As the reflection coefficient of the reflector depended on the impedance, the echo amplitude was influenced by changes in the impedance of the external sensor. The vibration frequency of the cantilever was determined by monitoring the echo amplitude of the SAW device. Moreover, the attenuation constant of an envelope was estimated. The results of our feasibility study indicate that the impedance-loaded SAW sensor can be applied as a detector for structural health monitoring.

  3. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    SciTech Connect

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  4. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review.

    PubMed

    Afzal, Adeel; Iqbal, Naseer; Mujahid, Adnan; Schirhagl, Romana

    2013-07-17

    The necessity of selectively detecting various organic vapors is primitive not only with respect to regular environmental and industrial hazard monitoring, but also in detecting explosives to combat terrorism and for defense applications. Today, the huge arsenal of micro-sensors has revolutionized the traditional methods of analysis by, e.g. replacing expensive laboratory equipment, and has made the remote screening of atmospheric threats possible. Surface acoustic wave (SAW) sensors - based on piezoelectric crystal resonators - are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. Combined with suitably designed molecular recognition materials SAW devices could develop into highly selective and fast responsive miniaturized sensors, which are capable of continuously monitoring a specific organic gas, preferably in the sub-ppm regime. For this purpose, different types of recognition layers ranging from nanostructured metal oxides and carbons to pristine or molecularly imprinted polymers and self-assembled monolayers have been applied in the past decade. We present a critical review of the recent developments in nano- and micro-engineered synthetic recognition materials predominantly used for SAW-based organic vapor sensors. Besides highlighting their potential to realize real-time vapor sensing, their limitations and future perspectives are also discussed.

  5. Multilayer graphene electrodes for one-port surface acoustic wave resonator mass sensor

    NASA Astrophysics Data System (ADS)

    Leong, Ainan; Swamy, Varghese; Ramakrishnan, N.

    2017-02-01

    A one-port surface acoustic wave (SAW) resonator mass sensor composed of multilayer graphene (MLG) electrodes was investigated by the finite element method (FEM) and analyses were carried out to study the enhancement of sensitivity and the secondary effects caused by MLG electrodes on the performance of the resonator. Unlike metal electrodes, MLG electrode offers elastic loading to the contact surface, as evidenced by the increase in the surface velocity of the SAW device. In terms of the sensitivity of the mass sensor, MLG electrode showed the largest center frequency shift in response to a change in mass loading, as well as when used as a gas sensor to detect volatile organic compounds (VOCs). Also, MLG electrodes offered the least triple transit signal (TTS) and bulk acoustic wave (BAW) generations compared with Al and Au–Cr electrodes. Thus, the one-port SAW resonator with graphene electrodes not only possesses excellent performance characteristics but also gives rise to new opportunities in the development of highly sensitive mass sensors.

  6. Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.

    PubMed

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-05-05

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.

  7. Investigation of phononic crystals for dispersive surface acoustic wave ozone sensors

    NASA Astrophysics Data System (ADS)

    Westafer, Ryan S.

    The object of this research was to investigate dispersion in surface phononic crystals (PnCs) for application to a newly developed passive surface acoustic wave (SAW) ozone sensor. Frequency band gaps and slow sound already have been reported for PnC lattice structures. Such engineered structures are often advertised to reduce loss, increase sensitivity, and reduce device size. However, these advances have not yet been realized in the context of surface acoustic wave sensors. In early work, we computed SAW dispersion in patterned surface structures and we confirmed that our finite element computations of SAW dispersion in thin films and in one dimensional surface PnC structures agree with experimental results obtained by laser probe techniques. We analyzed the computations to guide device design in terms of sensitivity and joint spectral operating point. Next we conducted simulations and experiments to determine sensitivity and limit of detection for more conventional dispersive SAW devices and PnC sensors. Finally, we conducted extensive ozone detection trials on passive reflection mode SAW devices, using distinct components of the time dispersed response to compensate for the effect of temperature. The experimental work revealed that the devices may be used for dosimetry applications over periods of several days.

  8. Implementation of Surface Acoustic Wave Vapor Sensor Using Complementary Metal-Oxide-Semiconductor Amplifiers

    NASA Astrophysics Data System (ADS)

    Chiu, Chia-Sung; Chang, Ching-Chun; Ku, Chia-Lin; Peng, Kang-Ming; Jeng, Erik S.; Chen, Wen-Lin; Huang, Guo-Wei; Wu, Lin-Kun

    2009-04-01

    A surface acoustic wave (SAW) vapor sensor is presented in this work. A SAW delay line oscillator on quartz substrate with the high gain complementary metal-oxide-semiconductor (CMOS) amplifier using a two-poly-two-metal (2P2M) 0.35 µm process was designed. The gain of the CMOS amplifier and its total power consumption are 20 dB and 70 mW, respectively. The achieved phase noise of this SAW oscillator is -150 dBc/Hz at 100 kHz offset. The sensing is successfully demonstrated by a thin poly(epichlorohydrin) (PECH) polymer film on a SAW oscillator with alcohol vapor. This two-in-one sensor unit includes the SAW device and the CMOS amplifier provides designers with comprehensive model for using these components for sensor circuit fabrication. Furthermore it will be promising for future chemical and biological sensing applications.

  9. Design of acoustic wave biochemical sensors using micro-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Valentine, Jane E.; Przybycien, Todd M.; Hauan, Steinar

    2007-03-01

    Acoustic wave biochemical sensors work by detecting the frequency shifts resulting from the binding of target molecules to a functionalized resonator. Resonator types currently in use or under development include macroscopic quartz crystal microbalances (QCMs) as well as a number of different integrated Micro-electro-mechanical Systems (MEMS) structures. Due to an increased resonator surface area to mass ratio, we believe that membrane-based MEMS systems are particularly promising with regard to sensitivity. Prototypes have been developed [S. Hauan et al., U.S. Patent Application (filed 6 Nov. 2003)] and preliminary calculations [M. J. Bartkovsky et al., paper 385e presented at the AIChE Annual Meeting, Nov. 2003; J. E. Valentine et al., paper 197h presented at the AICHE Annual Meeting, Nov. 2003] indicate significant improvements over other methods, both macroscopic and MEMS based. In this article we describe our work on a MEMS-based acoustic wave biochemical sensor using a membrane resonator. We demonstrate the effects of spatial distributions of mass on the membrane on sensitivity and show how to use this spatial sensitivity to detect multiple targets simultaneously. To do so we derive a function approximating the membrane response surface to spatial mass loadings under the applicable range of conditions. We verify the agreement using finite element methods, and present our initial sensitivity calculations demonstrating the advantages of variable mass loadings.

  10. Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors.

    PubMed

    Hao, Hsu-Chao; Chang, Hwan-You; Wang, Tsung-Pao; Yao, Da-Jeng

    2013-02-01

    Techniques to separate cells are widely applied in immunology. The technique to separate a specific antigen on a microfluidic platform involves the use of a shear horizontal surface-acoustic-wave (SH-SAW) sensor. With specific antibodies conjugated onto the surface of the SH-SAW sensors, this technique can serve to identify specific cells in bodily fluids. Jurkat cells, used as a target in this work, provide a model of cells in small abundance (1:1000) for isolation and purification with the ultimate goal of targeting even more dilute cells. T cells were separated from a mixed-cell medium on a chip (Jurkat cells/K562 cells, 1/1000). A novel microchamber was developed to capture cells during the purification, which required a large biosample. Cell detection was demonstrated through the performance of genetic identification on the chip.

  11. Development of a novel odor measurement system using gas chromatography with surface acoustic wave sensor.

    PubMed

    Staples, Edward J; Viswanathan, Shekar

    2008-12-01

    This paper describes a novel odor measurement system for creating arrays of virtual chemical sensors with nonoverlapping responses using ultrahigh-speed gas chromatography with a surface acoustic wave sensor (GC/SAW). This GC/SAW system provides high-resolution two-dimensional olfactory images for easy recognition of many complex odors. Separation and quantification of the individual chemicals within an odor is performed in seconds. Using a solid-state mass-sensitive detector, picogram sensitivity, universal nonpolar selectivity, and electronically variable sensitivity are achieved. An integrated vapor preconcentrator coupled with the electronically variable detector allows the system to measure vapor concentrations spanning 6 or more orders of magnitude. The system attributes of high speed, accuracy, and precision provide a cost-effective and complimentary tool for traditional sensory evaluations.

  12. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.

    1995-09-01

    A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

  13. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film.

    PubMed

    Wang, Shuang-Yue; Ma, Jin-Yi; Li, Zhi-Jie; Su, H Q; Alkurd, N R; Zhou, Wei-Lie; Wang, Lu; Du, Bo; Tang, Yong-Liang; Ao, Dong-Yi; Zhang, Shou-Chao; Yu, Q K; Zu, Xiao-Tao

    2015-03-21

    A surface acoustic wave (SAW) resonator with ZnO/SiO2 (ZS) composite film was used as an ammonia sensor in this study. ZS composite films were deposited on the surface of SAW devices using the sol-gel method, and were characterized using SEM, AFM, and XRD. The performance of the sensors under ammonia gas was optimized by adjusting the molar ratio of ZnO:SiO2 to 1:1, 1:2 and 1:3, and the sensor with the ratio of ZnO to SiO2 equaling to 1:2 was found to have the best performance. The response of sensor was 1.132 kHz under 10 ppm NH3, which was much higher than that of the sensor based on a pristine ZnO film. Moreover, the sensor has good selectivity, reversibility and stability at room temperature. These can be attributed to the enhanced absorption of ammonia and unique surface reaction on composite films due to the existence of silica.

  14. Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Bo; Gu, Hang; He, Xing-Li; Xuan, Wei-Peng; Chen, Jin-Kai; Wang, Xiao-Zhi; Luo, Ji-Kui

    2015-05-01

    Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274037 and 61301046) and the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120101110031 and 20120101110054).

  15. New Application of Shear Horizontal Surface Acoustic Wave Sensors to Identifying Fruit Juices

    NASA Astrophysics Data System (ADS)

    Kondoh, Jun; Shiokawa, Showko

    1994-05-01

    The objective of this paper is to present a new application of shear horizontal surface acoustic wave (SH-SAW) devices on 36° rotated Y-cut X-propagating LiTaO3 for a sensing system that can identify liquid samples, such as fruit juices. Theoretical sensor sensitivity for acoustoelectric interaction with a liquid loaded on the SAW propagation surface was derived and confirmed with experimental results. The results strongly suggested that by employing SH-SAW devices with different center frequencies the sensor can recognize many liquid samples without a film coated on the substrate surface. In the experiment, the sensing system which identifies fruit juices was fabricated using three SH-SAW devices with center frequencies of 30, 50, and 100 MHz. Identification of samples, eleven kinds of fruit juices, was achieved by classification in principal component analysis and discriminant analysis. Since the SH-SAW sensor without a coating film has intrinsically good reproducibility and stability, it is effective for identification and quality control of liquid samples.

  16. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    PubMed

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  17. Mass sensitivity analysis and designing of surface acoustic wave resonators for chemical sensors

    NASA Astrophysics Data System (ADS)

    Kshetrimayum, Roshan; Yadava, R. D. S.; Tandon, R. P.

    2009-05-01

    The sensitivity of surface acoustic wave (SAW) chemical sensors depends on several factors such as the frequency and phase point of SAW device operation, sensitivity of the SAW velocity to surface mass loading, sensitivity of the SAW oscillator resonance to the loop phase shift, film thickness and oscillator electronics. This paper analyzes the influence of the phase point of operation in SAW oscillator sensors based on two-port resonator devices. It is found that the mass sensitivity will be enhanced if the SAW device has a nonlinear dependence on the frequency (delay ~ frequency-1). This requires the device to generate and operate in a ωτg(ω) = const region in the device passband, where ω denotes the angular frequency of oscillation and τg(ω) denotes the phase slope of the SAW resonator device. A SAW coupled resonator filter (CRF) that take advantage of mode coupling is considered in realizing such a device to help in shaping the phase transfer characteristics of a high mass sensitivity sensor. The device design and simulation results are presented within the coupling-of-modes formalism.

  18. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors.

    PubMed

    Mohanan, Ajay Achath; Islam, Md Shabiul; Ali, Sawal Hamid; Parthiban, R; Ramakrishnan, N

    2013-02-06

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  19. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    PubMed

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection.

  20. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

    PubMed Central

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.

    2014-01-01

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications. PMID:25425458

  1. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

    NASA Astrophysics Data System (ADS)

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.

    2014-11-01

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications.

  2. Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer.

    PubMed

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J K

    2014-11-26

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications.

  3. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor

    PubMed Central

    Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong

    2016-01-01

    Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers—wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order—wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119

  4. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration

    PubMed Central

    Hao, Wenchang; Liu, Jiuling; Liu, Minghua; Liang, Yong; He, Shitang

    2016-01-01

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO2) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device. PMID:27104540

  5. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration.

    PubMed

    Hao, Wenchang; Liu, Jiuling; Liu, Minghua; Liang, Yong; He, Shitang

    2016-04-20

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO₂) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device.

  6. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    PubMed Central

    Martinez, Jairo; Sisman, Alper; Onen, Onursal; Velasquez, Dean; Guldiken, Rasim

    2012-01-01

    In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in) thickness, a 6.4 mm (¼ in) grade 8 bolt and a stainless steel washer with 19 mm (¾ in) of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR) analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  7. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  8. Mechanism of operation and design considerations for surface acoustic wave device vapor sensors

    NASA Astrophysics Data System (ADS)

    Wohltjen, H.

    1984-04-01

    Surface acoustic wave (SAW) devices offer many attractive features for application as vapor phase chemical microsensors. This paper describes the characteristics of SAW devices and techniques by which they can be employed as vapor sensors. The perturbation of SAW amplitude and velocity by polymeric coating films was investigated both theoretically and experimentally. High sensitivity can be achieved when the device is used as the resonating element in a delay line oscillator circuit. A simple equation has been developed from theoretical considerations which offers reasonably accurate quantitative predictions of SAW Device frequency shifts when subjected to a given mass loading. In this mode the SAW device behaves in a fashion very similar to conventional bulk wave quartz crystal microbalance except that the sensitivity can be several orders of magnitude higher and the device size can be several orders of magnitude smaller. Detection of mass changes of less than 1 femtogram by a SAW device having a surface area of 0.0001 square cm. is theoretically possible.

  9. First-Order Acoustic Wave Equation Reverse Time Migration Based on the Dual-Sensor Seismic Acquisition System

    NASA Astrophysics Data System (ADS)

    You, Jiachun; Liu, Xuewei; Wu, Ru-Shan

    2017-03-01

    We analyze the mathematical requirements for conventional reverse time migration (RTM) and summarize their rationale. The known information provided by current acquisition system is inadequate for the second-order acoustic wave equations. Therefore, we introduce a dual-sensor seismic acquisition system into the coupled first-order acoustic wave equations. We propose a new dual-sensor reverse time migration called dual-sensor RTM, which includes two input variables, the pressure and vertical particle velocity data. We focus on the performance of dual-sensor RTM in estimating reflection coefficients compared with conventional RTM. Synthetic examples are used for the study of estimating coefficients of reflectors with both dual-sensor RTM and conventional RTM. The results indicate that dual-sensor RTM with two inputs calculates amplitude information more accurately and images structural positions of complex substructures, such as the Marmousi model, more clearly than that of conventional RTM. This shows that the dual-sensor RTM has better accuracy in backpropagation and carries more information in the directivity because of particle velocity injection. Through a simple point-shape model, we demonstrate that dual-sensor RTM decreases the effect of multi-pathing of propagating waves, which is helpful for focusing the energy. In addition, compared to conventional RTM, dual-sensor RTM does not cause extra memory costs. Dual-sensor RTM is, therefore, promising for the computation of multi-component seismic data.

  10. Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids.

    PubMed

    Josse, F; Bender, F; Cernose, R W

    2001-12-15

    The design and performance of guided shear horizontal surface acoustic wave (guided SH-SAW) devices on LiTaO3 substrates are investigated for high-sensitivity chemical and biochemical sensors in liquids. Despite their structural similarity to Rayleigh SAW, SH-SAWs often propagate slightly deeper within the substrate, hence preventing the implementation of high-sensitivity detectors. The device sensitivity to mass and viscoelastic loading is increased using a thin guiding layer on the device surface. Because of their relatively low shear wave velocity, various polymers including poly(methyl methacrylate) (PMMA) and cyanoethyl cellulose (cured or cross-linked) are investigated as the guiding layers to trap the acoustic energy near the sensing surface. The devices have been tested in biosensing and chemical sensing experiments. Suitable design principles for these applications are discussed with regard to wave guidance, electrical passivation of the interdigital transducers from the liquid environments, acoustic loss, and sensor signal distortion. In biosensing experiments, using near-optimal PMMA thickness of approximately 2 microm, mass sensitivity greater than 1500 Hz/(ng/mm2) is demonstrated, resulting in a minimum detection limit less than 20 pg/mm2. For chemical sensor experiments, it is found that optimal waveguide thickness must be modified to account for the chemically sensitive layer which also acts to guide the SH-SAW. A detection limit of 780 (3 x peak-to-peak noise) or 180 ppb (3 x rms noise) is estimated from the present measurements for some organic compounds in water.

  11. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  12. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  13. Layered surface acoustic wave devices for film characterization and sensor applications

    NASA Astrophysics Data System (ADS)

    Pedrick, Michael K.

    2007-05-01

    This work has introduced novel applications for Layered Surface Acoustic Wave (SAW) devices along with concepts for enhanced sensitivity via refined modeling techniques. The derivation of Love Wave and Rayleigh wave propagation pertinent to SAW substrates with thin film overlayers was explored. Novel aspects were presented for Finite Element analysis of Layered SAW sensors. This included coordinate transformations of model geometries to coincide with crystallographic orientations known to generate Surface Skimming Bulk Waves (SSBW) and various Rayleigh wave types of propagation in ST Quartz, 90° rotated ST Quartz, and 77° Y rotated Lithium Tantalate. This work has shown for the first time, FEM prediction of SSBW, Generalized SAW and High Velocity SAW waves. Rayleigh damping properties were extended to develop a Finite element model capable of predicting Layered SAW response to glass transition in a polymer film. The ability to monitor localized mechanical behavior in a PMMA film was explored with Love Waves generated by 90° rotated ST Quartz and Shear Vertical (SV)-SAWs generated by 77° Y rotated Lithium Tantalate. Similar trends were found experimentally as compared to the Finite element models. The capability of Love Wave devices for monitoring polymer film curing behavior was investigated. The ability to qualitatively assess the bond quality between film and substrate was also demonstrated based on the characteristics of the transmitted frequency response. The results of these developments have laid the ground work for developing diagnostic tools to better characterize film behavior in practical applications. Several sensor applications for Layered SAW devices were discussed. The Shear Horizontal displacement of the Love Wave device was exploited to demonstrate the capability of such a sensor for ice detection. A clear distinction between air, water, and ice loading was found with Love Waves whereas SV-SAWs were unable to distinguish between liquid and ice

  14. Development of a surface acoustic wave gas sensor for organophosphorus nerve agents employing lanthanide compounds as the chemical interface.

    PubMed

    Nieuwenhuizen, M S; Harteveld, J L

    1994-03-01

    The results of a study dealing with surface acoustic wave gas sensors for organophosphorus compounds such as nerve agents are described. Several lanthanum coordination compounds were applied as the chemical interface. The various sensors prepared were challenged with both the nerve agent sarin and the simulant dimethyl methylphosphonate. Many aspects were studied, such as sensitivity, selectivity, reversibility and response rate as well as the effect of temperature and structural features. Detection limits down to 0.1 ppm were found. Response rates require further improvement. Degradation phenomena were observed which in some cases yielded irreversible responses. The selectivity for organophosphorus compounds was found to be promising.

  15. A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films

    NASA Astrophysics Data System (ADS)

    Sheng, Lei; Dajing, Chen; Yuquan, Chen

    2011-07-01

    Humidity detection has been widely used in a variety of fields. A humidity sensor with high sensitivity is reported in this paper. A surface acoustic wave resonator (SAWR) with high resonance frequency was fabricated as a basic sensitive component. Various nanotechnologies were used to improve the sensor's performance. A multi-walled carbon nanotube/Nafion (MWCNT/Nafion) composite material was prepared as humidity-sensitive films, deposited on the surface of an SAWR by the electrospinning method. The electrospun MWCNT/Nafion nanofiber films showed a three-dimensional (3D) porous structure, which was profitable for improving the sensor's performance. The new nano-water-channel model of Nafion was also applied in the humidity sensing process. Compared to other research, the present sensor showed excellent sensitivity (above 400 kHz/% relative humidity (RH) in the range from 10% RH to 80% RH), good linearity (R2 > 0.98) and a short response time (~3 s@63%).

  16. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    PubMed

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time.

  17. Expendable oceanographic sensor apparatus

    DOEpatents

    McCoy, Kim O.; Downing, Jr., John P.; DeRoos, Bradley G.; Riches, Michael R.

    1993-01-01

    An expendable oceanographic sensor apparatus is deployed from an airplane or a ship to make oceanographic observations in a profile of the surface-to-ocean floor, while deployed on the floor, and then a second profile when returning to the ocean surface. The device then records surface conditions until on-board batteries fail. All data collected is stored and then transmitted from the surface to either a satellite or other receiving station. The apparatus is provided with an anchor that causes descent to the ocean floor and then permits ascent when the anchor is released. Anchor release is predetermined by the occurrence of a pre-programmed event.

  18. Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors During Exposure to Gas-Phase Analytes

    SciTech Connect

    Hierlemann, A.; Hill, M.; Ricco, A.J.; Staton, A.W.; Thomas, R.C.

    1999-01-11

    We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseous analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes.

  19. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.

    PubMed

    Grate, J W; Patrash, S J; Kaganovet, S N; Abraham, M H; Wise, B M; Gallagher, N B

    2001-11-01

    In previous work, it was shown that, in principle, vapor descriptors could be derived from the responses of an array of polymer-coated acoustic wave devices. This new chemometric classification approach was based on polymer/vapor interactions following the well-established linear solvation energy relationships (LSERs) and the surface acoustic wave (SAW) transducers being mass sensitive. Mathematical derivations were included and were supported by simulations. In this work, an experimental data set of polymer-coated SAW vapor sensors is investigated. The data set includes 20 diverse polymers tested against 18 diverse organic vapors. It is shown that interfacial adsorption can influence the response behavior of sensors with nonpolar polymers in response to hydrogen-bonding vapors; however, in general, most sensor responses are related to vapor interactions with the polymers. It is also shown that polymer-coated SAW sensor responses can be empirically modeled with LSERs, deriving an LSER for each individual sensor based on its responses to the 18 vapors. Inverse least-squares methods are used to develop models that correlate and predict vapor descriptors from sensor array responses. Successful correlations can be developed by multiple linear regression (MLR), principal components regression (PCR), and partial least-squares (PLS) regression. MLR yields the best fits to the training data, however cross-validation shows that prediction of vapor descriptors for vapors not in the training set is significantly more successful using PCR or PLS. In addition, the optimal dimension of the PCR and PLS models supports the dimensionality of the LSER formulation and SAW response models.

  20. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    PubMed

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  1. Surface Acoustic Wave Based Pressure Sensor with Ground Shielding over Cavity on 41° YX LiNbO3

    NASA Astrophysics Data System (ADS)

    Lee, Keekeun; Wang, Wen; Kim, Geunyoung; Yang, Sangsik

    2006-07-01

    A surface acoustic wave (SAW)-based pressure sensor was fabricated for stable mechanical compression force measurement. A single phase unidirectional transducer (SPUDT) and two acoustic tracks were employed to minimize inherent insertion loss and improve reflectivity from the reflectors. The coupling of modes (COM) theory and finite element methods (FEMs) were used to determine optimal design parameters. A LiNbO3 diaphragm was bonded to a heavily doped silicon substrate with a cavity of ˜250 μm deep, in which gold was lined all over the inner cavity to reduce the coupling loss of SAW energy to the surrounding atmosphere. As a mechanical compression force was applied to the diaphragm, the diaphragm bent, resulting in phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of mechanical compression applied. The measured reflection coefficient S11 showed good agreement with simulated results.

  2. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    DOEpatents

    Pfeifer, K.B.; Frye, G.C.; Schneider, T.W.

    1996-11-05

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO{sub 2}. In another embodiment, the SiO{sub 2} is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system. 8 figs.

  3. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    DOEpatents

    Pfeifer, Kent B.; Frye, Gregory C.; Schneider, Thomas W.

    1996-01-01

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO.sub.2. In another embodiment, the SiO.sub.2 is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system.

  4. Graphene-like nano-sheets for surface acoustic wave gas sensor applications

    NASA Astrophysics Data System (ADS)

    Arsat, R.; Breedon, M.; Shafiei, M.; Spizziri, P. G.; Gilje, S.; Kaner, R. B.; Kalantar-zadeh, K.; Wlodarski, W.

    2009-01-01

    The gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO 3) surface acoustic wave (SAW) transducers are reported. The thin graphene-like nano-sheets were produced via the reduction of graphite oxide which was deposited on SAW interdigitated transducers (IDTs). Their sensing performance was assessed towards hydrogen (H 2) and carbon monoxide (CO) in a synthetic air carrier gas at room temperature (25 °C) and 40 °C. Raman and X-ray photoelectron spectroscopy (XPS) revealed that the deposited graphite oxide (GO) was not completely reduced creating small, graphitic nanocrystals ˜2.7 nm in size.

  5. Highly sensitive room-temperature surface acoustic wave (SAW) ammonia sensors based on Co₃O₄/SiO₂ composite films.

    PubMed

    Tang, Yong-Liang; Li, Zhi-Jie; Ma, Jin-Yi; Su, Hai-Qiao; Guo, Yuan-Jun; Wang, Lu; Du, Bo; Chen, Jia-Jun; Zhou, Weilie; Yu, Qing-Kai; Zu, Xiao-Tao

    2014-09-15

    Surface acoustic wave (SAW) sensors based on Co3O4/SiO2 composite sensing films for ammonia detection were investigated at room temperature. The Co3O4/SiO2 composite films were deposited onto ST-cut quartz SAW resonators by a sol-gel method. SEM and AFM characterizations showed that the films had porous structures. The existence of SiO2 was found to enhance the ammonia sensing property of the sensor significantly. The sensor based on a Co3O4/SiO2 composite film, with 50% Co3O4 loading, which had the highest RMS value (3.72), showed the best sensing property. It exhibited a positive frequency shift of 3500 Hz to 1 ppm ammonia as well as excellent selectivity, stability and reproducibility at room temperature. Moreover, a 37% decrease in the conductance of the composite film as well as a positive frequency shift of 12,500 Hz were observed when the sensor was exposed to 20 ppm ammonia, indicating the positive frequency shift was derived from the decrease in film conductance.

  6. Characterization of the HIV-1 TAR RNA-Tat peptide and drug interactions by on-line acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Tassew, Nardos Gobena

    This thesis presents the application of the thickness shear-mode (TSM) acoustic wave sensor to the study of RNA-protein and RNA-drug interactions at the solid-liquid interface. The binding of the human immunodeficiency virus-type 1 Tat protein to the trans-activation responsive RNA element (TAR) has been studied using this sensor. Data from such measurements show that the sensor is able to discriminate between different Tat peptides derived from the parent protein based on size. The effects of mutations introduced at specific sites in the protein and RNA on the TAR-Tat binding have also been examined in detail. Reduced level of response in acoustic parameters due to mutations was observed indicating that the decrease in binding in response to site specific mutations can be acoustically detected. Data from acoustic wave sensor measurements indicate that the TAR-Tat binding is also affected by ionic strength. Both the frequency and motional resistance signals show periodic responses when varying concentrations of salt are introduced on a TAR-modified surface. The binding of the two molecules seems to be a function of the response of the nucleic acid to salt concentrations. The kinetics of binding of Tat peptides to TAR RNA and to a bulge mutant analogue (MTAR) is also examined from the rate of change of the series resonant frequency. Results from such analysis illustrate longer Tat peptides formed more stable complexes with TAR RNA and exhibited increased discrimination between mutant and wild type TAR. The binding of two aminoglycoside antibiotics, neomycin and streptomycin, to TAR RNA and their effectiveness in preventing TAR-Tat complex formation has been studied in detail. Binding affinity is directly correlated with the inhibitory potency of these molecules and the TSM sensor shows that neomycin exhibits at least a ten fold greater affinity to TAR and that it is also a more potent inhibitor than streptomycin. The results from this research involving TAR-Tat and

  7. Quantitative determination of size and shape of surface-bound DNA using an acoustic wave sensor.

    PubMed

    Tsortos, Achilleas; Papadakis, George; Mitsakakis, Konstantinos; Melzak, Kathryn A; Gizeli, Electra

    2008-04-01

    DNA bending plays a significant role in many biological processes, such as gene regulation, DNA replication, and chromosomal packing. Understanding how such processes take place and how they can, in turn, be regulated by artificial agents for individual oriented therapies is of importance to both biology and medicine. In this work, we describe the application of an acoustic wave device for characterizing the conformation of DNA molecules tethered to the device surface via a biotin-neutravidin interaction. The acoustic energy dissipation per unit mass observed upon DNA binding is directly related to DNA intrinsic viscosity, providing quantitative information on the size and shape of the tethered molecules. The validity of the above approach was verified by showing that the predesigned geometries of model double-stranded and triple-helix DNA molecules could be quantitatively distinguished: the resolution of the acoustic measurements is sufficient to allow discrimination between same size DNA carrying a bent at different positions along the chain. Furthermore, the significance of this analysis to the study of biologically relevant systems is shown during the evaluation of DNA conformational change upon protein (histone) binding.

  8. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    DOE PAGES

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; ...

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less

  9. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    SciTech Connect

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Gallis, Dorina F. S.

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs, we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.

  10. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-04

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM

  11. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  12. Above-ground and in situ field screening of VOCs using portable acoustic wave sensor (PAWS) systems

    SciTech Connect

    Frye, G.C.; Cernosek, R.W.; Steinfort, T.D.; Gilbert, D.W.; Colburn, C.

    1995-12-31

    PAWS systems have been developed for real-time, on-line and in situ monitoring of volatile organic compounds (VOCs). These systems utilize the high sensitivity of surface acoustic wave (SAW) devices to changes in the mass or other physical properties of a film cast onto the device surface. Using thin polymer films that rapidly (few seconds) and reversibly absorb the chemical species of interest, these sensors can be used to detect and monitor a wide range of VOCs. Current minimum detection levels range from about 1 to 10 ppm for typical VOCs in a real-time mode and, by incorporating an adsorbent preconcentrator, periodic (every few minutes) analysis down to the 10--100 ppb range, even in the presence of high concentrations of corrosive vapors, can be achieved. Sensor responses are reproducible, leading to accurate measurements, and the devices can operate over a wide concentration range. Above ground and down-hole systems have been demonstrated at environmental restoration sites for: (1) on-line monitoring of off-gas streams from soil vapor extractions, (2) real-time analysis of gas samples pulled to the surface from a cone penetrometer probe, and (3) in situ monitoring of contaminants in vadose zone monitoring wells.

  13. Above-ground and in situ field screening of VOCs using Portable Acoustic Wave Sensor (PAWS) systems

    SciTech Connect

    Frye, G.C.; Cernosek, R.W.; Steinfort, T.D.; Gilbert, D.W.; Colburn, C.

    1995-05-01

    PAWS systems have been developed for real-time, on-line and in situ monitoring of volatile organic compounds (VOCs). These systems utilize the high sensitivity of surface acoustic wave (SAW) devices to changes in the mass or other physical properties of a film cast onto the device surface. Using thin polymer films that rapidly (few seconds) and reversibly absorb the chemical species of interest, these sensors can be used to detect and monitor a wide range of VOCs. Current minimum detection levels range from about 1 to 10 ppm for typical VOCs in a real-time mode and, by incorporating an adsorbent preconcentrator, periodic (every few minutes) analysis down to the 10 - 100 ppb range, even in the presence of high concentrations of corrosive vapors, can be achieved. Sensor responses are reproducible, leading to accurate measurements, and the devices can operate over a wide concentration range. Above ground and down-hole systems have been demonstrated at environmental restoration sites for: (1) on-line monitoring of off-gas streams from soil vapor extractions, (2) real-time analysis of gas samples pulled to the surface from a cone penetrometer probe, and (3) in situ monitoring of contaminants in vadose zone monitoring wells.

  14. Alarm sensor apparatus for closures

    DOEpatents

    Carlson, J.A.; Stoddard, L.M.

    1984-01-31

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or framework and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  15. Alarm sensor apparatus for closures

    DOEpatents

    Carlson, James A.; Stoddard, Lawrence M.

    1986-01-01

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or frame work and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  16. Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of β-Cyclodextrin Derivative

    PubMed Central

    Pan, Yong; Mu, Ning; Shao, Shengyu; Yang, Liu; Wang, Wen; Xie, Xiao; He, Shitang

    2015-01-01

    Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a β-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  17. Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor.

    PubMed

    Oh, Se Yeon; Shin, Hyun Du; Kim, Sung Jean; Hong, Jongki

    2008-03-07

    A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC/SAW) has been developed for the detection of volatile aroma compounds emanated from lilac blossom (Syringa species: Syringa vulgaris variginata and Syringa dilatata). GC/SAW could detect and quantify various fragrance emitted from lilac blossom, enabling to provide fragrance pattern analysis results. The fragrance pattern analysis could easily characterize the delicate differences in aromas caused by the substantial difference of chemical composition according to different color and shape of petals. Moreover, the method validation of GC/SAW was performed for the purpose of volatile floral actual aroma analysis, achieving a high reproducibility and excellent sensitivity. From the validation results, GC/SAW could serve as an alternative analytical technique for the analysis of volatile floral actual aroma of lilac. In addition, headspace solid-phase microextraction (HS-SPME) GC-MS was employed to further confirm the identification of fragrances emitted from lilac blossom and compared to GC/SAW.

  18. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors

    SciTech Connect

    Grate, J.W.; Kaganove, S.N.; Patrash, S.J.

    1997-05-01

    Hybrid organic/inorganic polymers have been prepared incorporating fluoroalkyl-substituted bisphenol groups linked using oligosiloxane spacers. These hydrogen-bond acidic materials have glass-to-rubber transition temperatures below room temperature and are excellent sorbents for basic vapors. The physical properties such as viscosity and refractive index can be tuned by varying the length of the oligosiloxane spacers and the molecular weight. In addition, the materials are easily cross-linked to yield solid elastomers. The potential use of these materials for chemical sensing has been demonstrated by applying them to surface acoustic wave devices as thin films and detecting the hydrogen-bond basic vapor dimethyl methylphosphonate with high sensitivity. It has also been demonstrated that one of these materials with suitable viscosity and refractive index can be used to clad silica optical fibers; the cladding was applied to freshly drawn fiber using a fiber drawing tower. These fibers have potential as evanescent wave optical fiber sensors. 38 refs., 2 figs.

  19. Theoretical investigation of conductivity sensitivities of SiC-based bio-chemical acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Fan, Li; Chen, Zhe; Zhang, Shu-yi; Zhang, Hui

    2014-02-01

    The phase velocities, electromechanical coupling coefficients, conductivity sensitivities, insert losses, and minimum detectable masses of Rayleigh and Lamb waves sensors based on silicon carbide (SiC) substrates are theoretically studied. The results are compared with the performances of the sensors based on conventional silicon substrates. It is found that the sensors using SiC substrates have higher electromechanical coupling coefficients and conductivity sensitivities than the conventional silicon-based sensors in virtue of piezoelectricity of the SiC. Moreover, higher phase velocities in SiC substrates can reduce the insert losses and minimum detectable masses of the sensors. In this case, in the detection of the gas with the tiny mass as the hydrogen, in which the conductivity sensitivity is more important than the mass sensitivity, the sensor based on the SiC substrate has a higher sensitivity and exhibits the potential to detect the gas with the concentration below the ppm level. According to the results, the performances of the sensors based on the Rayleigh and Lamb waves using the SiC substrates can be optimized by properly selecting piezoelectric films, structural parameters, and operating wavelengths.

  20. The Biological Sensor for Detection of Bacterial Cells in Liquid Phase Based on Plate Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Borodina, Irina; Zaitsev, Boris; Shikhabudinov, Alexander; Guliy, Olga; Ignatov, Oleg; Teplykh, Andrey

    The interactions "bacterial cells - bacteriophages", "bacterial cells - antibodies" and "bacterial cells - mini- antibodies" directly in liquid phase were experimentally investigated with a help of acoustic sensor. The acoustic sensor under study represents two-channel delay line based on the plate of Y-X lithium niobate. One channel of delay line was electrically shorted, the second channel was electrically open. The liquid container was glued on plate surface between transducers of delay line. The dependencies of the change in phase and insertion loss on concentration of bacteriophages, antibodies, and mini- antibodies were obtained for both channels of delay line.

  1. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Pollard, Thomas B

    Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity

  2. Aluminum nitride thin film based acoustic wave sensors for biosensing applications

    NASA Astrophysics Data System (ADS)

    Xu, Jianzeng

    In recent years, SAW devices have drawn enormous interest from the analytical assay and sensing business, especially in the biosensing area where highly sensitive, cost efficient and miniaturized sensors are in urgent needs. This dissertation focuses on the development of AIN thin film based SAW devices suitable for biosensing applications. AIN thin films have been synthesized on different orientations of sapphire substrates by a plasma source molecular beam epitaxy system. Surface and structural characterization techniques have been applied to investigate the film quality and the results show that high quality c-plane AIN was epitaxially grown on both c-plane and a-plane sapphire substrates. Complete process flows have been developed for the fabrication of SAW delay line and resonator devices. Important electrical parameters such as the insertion loss, bandwidth, and impedance have been measured to assist the design optimization and derivation the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency. On both c-plane and a-plane sapphire substrates, the SAW phase velocities (˜5700 m/s) and electromechanical coupling coefficients (˜0.3%) have been thoroughly mapped out with respect to the propagation direction and film thickness to wavelength ratio. The data are of practical importance for designing AIN-based SAW devices. A higher velocity (>6000 m/s) shear horizontal SAW mode has been discovered only at isolated propagating directions. This mode is especially suitable for aqueous biosensing due to its weak energy coupling to liquid. Much stronger response of the SH-SAW mode has been detected on the c-plane AIN on a-plane sapphire structure than on the c-plane AIN on c-plane sapphire structure, which could be attributed to large anisotropy in a-plane sapphire substrate. Linear frequency-temperature relationship has also been observed for both modes. We further quantify the mass sensitivity of the SAW and SH-SAW by

  3. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    PubMed

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  4. Properties of high sensitivity ZnO surface acoustic wave sensors on SiO 2/(1 0 0) Si substrates

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Soumya; Iliadis, Agis A.

    2008-11-01

    The properties of ZnO/SiO2/Si surface acoustic wave (SAW) Love mode sensors were examined and optimized to achieve high mass sensitivity. SAW devices A and B, were designed and fabricated to operate at resonant frequencies around 0.7 and 1.5 GHz. The ZnO films grown by pulsed laser deposition on SiO2/Si demonstrated c-axis growth and the fabricated devices showed guided shear horizontal surface acoustic wave (or Love mode) propagation. Acoustic phase velocity in the ZnO layer was measured in both devices A and B and theoretical and experimental evaluation of the mass sensitivity showed that the maximum sensitivity is obtained for devices with ZnO guiding layer thicknesses of 340 nm and 160 nm for devices A and B, respectively. The performance of the SAW sensors was validated by measuring the mass of a well-characterized polystyrene-polyacrylic acid diblock copolymer film. For the optimized sensors, maximum mass sensitivity values were as high as 4.309 μm2/pg for device A operating at 0.7477 GHz, and 8.643 μm2/pg for device B operating at 1.5860 GHz. The sensors demonstrated large frequency shifts per applied mass (0.1-4 MHz), excellent linearity, and extended range in the femto-gram region. The large frequency shifts indicated that these sensors have the potential to measure mass two to three orders of magnitude lower in the atto-gram range.

  5. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  6. Temperature-stabilized silicon-based surface-acoustic-wave gas sensors for the detection of solvent vapors

    NASA Astrophysics Data System (ADS)

    Bender, Stefan; Mokwa, W.

    1998-12-01

    In the current paper a dual-delay-line- and a resonator- device based on CMOS-silicon-technology is presented. As a piezoelectric layer ZnO is used. The layer was deposited at room temperature in a RF magnetron sputter process. Using x- ray diffraction it could be shown that the crystals are mostly oriented with the c-axis (hexagonal structure) perpendicular to the surface which is necessary to conduct surface acoustic waves. Pt electrodes were designed for frequencies between 140 and 600 MHz and were deposited on top using a lift-off-process. A poly-silicon heating resistor was integrated as a sublayer for controlling and changing of the temperature of the SAW-device for studying the influence of temperature on the mass sensitive layer. A Pt thin film resistance served for temperature measurement. The performance of the devices were compared to standard quartz based SAWs.

  7. Method of and apparatus for determining deposition-point temperature

    DOEpatents

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  8. Method of and apparatus for determining deposition-point temperature

    DOEpatents

    Mansure, Arthur J.; Spates, James J.; Martin, Stephen J.

    1998-01-01

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  9. The Fractional Free Volume of the Sorbed Vapor in Modeling the Viscoelastic Contribution to Polymer-Coated Surface Acoustic Wave Vapor Sensor Responses

    SciTech Connect

    Grate, Jay W. ); Zellers, Edward T.

    1999-12-01

    Surface acoustic wave (SAW) vapor sensors with polymeric sorbent layers can respond to vapors based on mass-loading and modulus decreases of the polymer film. The modulus changes are associated with volume changes that occur as vapor is sorbed by the film. A factor based on the fractional free volume of the vapor as a liquid has been incorporated into a model for the contribution of swelling-induced modulus changes to observed SAW vapor sensor responses. In this model, it is not the entire volume added to the film by the vapor molecules that causes the modulus to decrease. The free volume effect is calibrated from thermal expansion experiments. The amplification of the SAW vapor sensor response due to modulus effects that are predicted by this model have been compared to amplification factors determined by comparing the responses of polymer-coated SAW vapor sensors with the responses of similarly-coated thickness shear mode (TSM) vapor sensors, the latter being gravimetric. Results for six vapors on each of two polymers, poly(isobutylene) and poly(epichlorohydrin), were examined. The model correctly predicts amplification factors are related to the specific volume of the vapor as a liquid. The fractional free volume factor provides a physically meaningful addition to the model and is consistent with conventional polymer physics treatments of the effects of temperature and plasticization on polymer modulus.

  10. High-resolution, high-linearity temperature sensor using surface acoustic wave device based on LiNbO3/SiO2/Si substrate

    NASA Astrophysics Data System (ADS)

    Tian, Xiang-Guang; Liu, Heng; Tao, Lu-Qi; Yang, Yi; Jiang, Hanjun; Ren, Tian-Ling

    2016-09-01

    A high-resolution and high-linearity surface acoustic wave (SAW) temperature sensor, consisting of a SAW resonator device fabricated on novel X-cut LiNbO3/SiO2/Si piezoelectric substrate and a resonance frequency readout chip using standard 180 nm CMOS technology, is presented for the first time. High temperature performance substrate LiNbO3/SiO2/Si is prepared mainly by ion implantation and wafer bonding at first. RF SAW device with resonance frequency near 900 MHz is designed and fabricated on the substrate. Traditional probe method using network analyzer and the readout chip method are both implemented to characterize the fabricated SAW device. Further measurement of temperature using resonance frequency shift of SAW device demonstrates the feasibility of the combined system as a portable SAW temperature sensor. The obtained frequency-temperature relation of the fabricated device is almost linear. The frequency resolution of the readout chip is 733 Hz and the corresponding temperature accuracy is 0.016 ° C. Resolution of the sensor in this work is superior to most of the commercial temperature measurement sensors. Theory analysis and finite element simulation are also presented to prove the mechanism and validity of using SAW device for temperature detection applications. We conclude that the high-linearity frequency-temperature relation is achieved by the offset between high-order coefficients of LiNbO3 and SiO2 with opposite signs. This work offers the possibility of temperature measuring in ultra-high precision sensing and control applications.

  11. Guided acoustic wave inspection system

    SciTech Connect

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  12. Determination of ammonium in Kjeldahl digests by gas-diffusion flow-injection analysis with a bulk acoustic wave-impedance sensor.

    PubMed

    Su, X L; Nie, L H; Yao, S Z

    1997-11-01

    A novel flow-injection analysis (FIA) system has been developed for the rapid and direct determination of ammonium in Kjeldahl digests. The method is based on diffusion of ammonia across a PTFE gas-permeable membrane from an alkaline (NaOH/EDTA) stream into a stream of diluted boric acid. The trapped ammonium in the acceptor is determined on line by a bulk acoustic wave (BAW)-impedance sensor and the signal is proportional to the ammonium concentration present in the digests. The proposed system exhibits a favorable frequency response to 5.0 x 10(-6)-4.0 x 10(-3) mol l(-1) ammonium with a detection limit of 1.0 x 10(-6) mol l(-1), and the precision was better than 1% (RSD) for 0.025-1.0 mM ammonium at a through-put of 45-50 samples h(-1). Results obtained for nitrogen determination in amino acids and for proteins determination in blood products are in good agreement with those obtained by the conventional distillation/titration method, respectively. The effects of composition of acceptor stream, cell constant of conductivity electrode, sample volume, flow rates and potential interferents on the FIA signals were discussed in detail.

  13. Precision cleaning apparatus and method

    DOEpatents

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  14. Precision cleaning apparatus and method

    DOEpatents

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  15. Predictive sensor method and apparatus

    NASA Technical Reports Server (NTRS)

    Nail, William L. (Inventor); Koger, Thomas L. (Inventor); Cambridge, Vivien (Inventor)

    1990-01-01

    A predictive algorithm is used to determine, in near real time, the steady state response of a slow responding sensor such as hydrogen gas sensor of the type which produces an output current proportional to the partial pressure of the hydrogen present. A microprocessor connected to the sensor samples the sensor output at small regular time intervals and predicts the steady state response of the sensor in response to a perturbation in the parameter being sensed, based on the beginning and end samples of the sensor output for the current sample time interval.

  16. Effect of film thickness and viscoelasticity on separability of vapour classes by wavelet and principal component analyses of polymer-coated surface acoustic wave sensor transients

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Yadava, R. D. S.

    2011-02-01

    The transient response of a polymer-coated surface acoustic wave (SAW) vapour sensor depends on partitioning and diffusion of vapour species into the polymer in conjunction with its thickness and viscoelastic properties. The shapes of transient signals carry information about vapour identities due to specificity of the partition coefficient and the diffusion coefficient. The analysis of transient signals therefore offers a simpler approach for vapour identification in comparison to conventional electronic nose systems that employ a broadly selective sensor array. The transient response-based methods are however not developed to a similar level of maturity as their sensor array counterparts. The main reason for this is associated with complex signal generation kinetics and polymer viscoelasticity. The latter is independent of vapour identities (assuming low concentrations) but influences sensor response through nonlinear dependences on polymer thickness and viscoelastic coefficients. In this paper, we endeavour to find out whether viscoelasticity and its manifestation through thickness dependences could be turned into an advantage for transient-based vapour identification. Using an established SAW sensor model with additive noise we analyse sensor transients by wavelet decomposition and principal component analysis (PCA) for various combinations of polymer thickness, viscoelastic storage and loss moduli and noise level. We calculate vapour class separability measures defined on the basis of scatter matrices of principal components of wavelet coefficients to determine the discrimination ability of sensor transients for various combinations of film thickness and viscoelastic parameters. The simulation experiments are performed by considering a polyisobutylene-coated SAW oscillator sensor under exposure to seven volatile organic compounds (chloroform, chlorobenzene, o-dichlorobenzene, n-heptane, toluene, n-hexane and n-octane). The film thicknesses are varied from thin

  17. Methods and apparatus for improving sensor performance

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Kenny, Thomas W. (Inventor); Reynolds, Joseph K. (Inventor); Van Zandt, Thomas R. (Inventor); Waltman, Steven B. (Inventor)

    1993-01-01

    Methods and apparatus for improving performance of a sensor having a sensor proof mass elastically suspended at an initial equilibrium position by a suspension force, provide a tunable force opposing that suspension force and preset the proof mass with that tunable force to a second equilibrium position less stable than the initial equilibrium position. The sensor is then operated from that preset second equilibrium position of the proof mass short of instability. The spring constant of the elastic suspension may be continually monitored, and such continually monitored spring constant may be continually adjusted to maintain the sensor at a substantially constant sensitivity during its operation.

  18. Surface acoustic wave microfluidics.

    PubMed

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  19. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  20. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  1. Surface acoustic wave hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Bhethanabotla, Venkat R. (Inventor); Bhansali, Shekhar (Inventor)

    2006-01-01

    The present invention provides a delay line SAW device fabricated on a lithium niobate substrate and coated with a bilayer of nanocrystalline or other nanomaterials such as nanoparticles or nanowires of palladiumn and metal free pthalocyanine which will respond to hydrogen gas in near real time, at low (room) temperature, without being affected by CO, O.sub.2, CH.sub.4 and other gases, in air ambient or controlled ambient, providing sensitivity to low ppm levels.

  2. Surface acoustic wave devices for harsh environment wireless sensing

    SciTech Connect

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  3. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    PubMed Central

    Greve, David W.; Chin, Tao-Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-01-01

    Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity. PMID:23708273

  4. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, P.W.; Stampfer, J.F.; Bradley, O.D.

    1999-02-02

    A universal penetration test apparatus is described for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material. 23 figs.

  5. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, Phillip W.; Stampfer, Joseph F.; Bradley, Orvil D.

    1999-01-01

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  6. Gas sensing with surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Martin, S. J.; Schweizer, K. S.; Ricco, A. J.; Zipperian, T. E.

    1985-03-01

    The use of a ZnO-on-Si surface acoustic wave (SAW) resonator as a gas sensor is discussed. In particular, the sensitivity of the device to organic vapors is examined. The planar nature of the SAW device, in which the acoustic energy is confined to within roughly one acoustic wavelength of the surface, makes the device extremely sensitive to surface perturbations. This characteristic has been exploited in the construction of SAW gas sensors in which the surface wave propagation characteristics are altered by species adsorbed from the ambient gas. The porous nature of the sputtered ZnO film, in conjunction with the microbalance capability of the SAW device, gives the sensor the ability to distinguish molecules on the basis of both size and mass.

  7. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGES

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; ...

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  8. Monolithic GaAs surface acoustic wave chemical microsensor array

    SciTech Connect

    HIETALA,VINCENT M.; CASALNUOVO,STEPHEN A.; HELLER,EDWIN J.; WENDT,JOEL R.; FRYE-MASON,GREGORY CHARLES; BACA,ALBERT G.

    2000-03-09

    A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

  9. Method and apparatus for sensor fusion

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Inventor); Shaw, Scott (Inventor); Defigueiredo, Rui J. P. (Inventor)

    1991-01-01

    Method and apparatus for fusion of data from optical and radar sensors by error minimization procedure is presented. The method was applied to the problem of shape reconstruction of an unknown surface at a distance. The method involves deriving an incomplete surface model from an optical sensor. The unknown characteristics of the surface are represented by some parameter. The correct value of the parameter is computed by iteratively generating theoretical predictions of the radar cross sections (RCS) of the surface, comparing the predicted and the observed values for the RCS, and improving the surface model from results of the comparison. Theoretical RCS may be computed from the surface model in several ways. One RCS prediction technique is the method of moments. The method of moments can be applied to an unknown surface only if some shape information is available from an independent source. The optical image provides the independent information.

  10. Surface acoustic wave frequency comb

    NASA Astrophysics Data System (ADS)

    Matsko, A. B.; Savchenkov, A. A.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2012-02-01

    We investigate opto-mechanical oscillation (OMO) and subsequent generation of acoustic wave frequency combs in monolithic crystalline whispering gallery mode (WGM) resonators. The OMO is observed in resonators made of electro-optic (lithium tantalate), non-electro-optic birefringent (magnesium fluoride), and non-birefringent (calcium fluoride) materials. The phenomenon manifests itself as generation of optical harmonics separated by the eigenfrequency of a surface acoustic wave (SAW) mechanical mode of the same WGM resonator. We show that the light escaping the resonator and demodulated on a fast photodiode produces a spectrally pure radio frequency (RF) signal. For instance, we demonstrate generation of 200 MHz signals with instantaneous linewidth of 0.2 Hz.

  11. Imaging of Acoustic Waves in Sand

    SciTech Connect

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  12. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    SciTech Connect

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  13. Love Acoustic Wave-Based Devices and Molecularly-Imprinted Polymers as Versatile Sensors for Electronic Nose or Tongue for Cancer Monitoring

    PubMed Central

    Dejous, Corinne; Hallil, Hamida; Raimbault, Vincent; Lachaud, Jean-Luc; Plano, Bernard; Delépée, Raphaël; Favetta, Patrick; Agrofoglio, Luigi; Rebière, Dominique

    2016-01-01

    Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5′-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm−1 of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3′AMP and CMP, in accordance with previously published results on bulk MIP. PMID:27331814

  14. Sensor apparatus using an electrochemical cell

    DOEpatents

    Thakur, Mrinal

    2003-07-01

    A method for sensing mechanical quantities such as force, stress, strain, pressure and acceleration is disclosed. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electro negativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors. An apparatus for sensing such mechanical quantities using materials such as doped 1,4 cis-polyisopropene and nafion. The 1,4 cis-polyisopropene may be doped with lithium perchlorate or iodine. The output voltage signal increases with an increase of the sensing area for a given stress. The device can be used as an intruder alarm, among other applications.

  15. Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications

    NASA Astrophysics Data System (ADS)

    Kalantar-Zadeh, Kourosh; Trinchi, Adrian; Wlodarski, Wojtek; Holland, Anthony; Galatsis, Kosmas

    2001-11-01

    Layered Surface Acoustic Wave (SAW) devices that allow the propagation of Love mode acoustic waves will be studied in this paper. In these devices, the substrate allows the propagation of Surface Skimming Bulks Waves (SSBWs). By depositing layers, that the speed of Shear Horizontal (SH) acoustic wave propagation is less than that of the substrate, the propagation mode transforms to Love mode. Love mode devices which will be studied in this paper, have SiO2 and ZnO acoustic guiding layers. As Love mode of propagation has no movement of particles component normal to the active sensor surface, they can be employed for the sensing applications in the liquid media.

  16. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  17. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  18. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.

    1978-01-01

    A number of 401.2 MHz surface acoustic wave (SAW) controlled oscillators were built and tested. The performance of these oscillators was evaluated for possible use as stable oscillators in communication systems. A short term frequency stability of better than 1 x 10 to the minus 9th power for one second was measured for the SAW oscillators. Long term frequency drift was measured and was found to be dependent on SAW design and packaging. Drift rates ranging from 15 ppm in twenty weeks to 2.5 ppm in twenty weeks were observed. Some further improvement was required. The temperature dependence of the saw oscillators was evaluated and it was concluded that some form of temperature compensation will be necessary to meet the requirements of some communication systems.

  19. Swimming Using Surface Acoustic Waves

    PubMed Central

    Bourquin, Yannyk; Cooper, Jonathan M.

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  20. Swimming using surface acoustic waves.

    PubMed

    Bourquin, Yannyk; Cooper, Jonathan M

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel.

  1. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  2. Surface acoustic wave devices including Langmuir-Blodgett films (Review)

    NASA Astrophysics Data System (ADS)

    Plesskii, V. P.

    1991-06-01

    Recent theoretical and experimental research related to the use of Langmuir-Blodgett (LB) films in surface acoustic wave (SAW) devices is reviewed. The sensitivity of the different cuts of quartz and lithium niobate to inertial loading is investigated, and it is shown that some cuts in lithium niobate are twice as sensitive to mass loading than the commonly used YZ-cut. The large variety of organic compounds suitable for the production of LB films makes it possible to create SAW sensors reacting selectively to certain substances. The existing SAW sensors based on LB films are characterized by high sensitivity and fast response.

  3. Ultrasound acoustic wave energy transfer and harvesting

    NASA Astrophysics Data System (ADS)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  4. Surface acoustic wave biosensors: a review.

    PubMed

    Länge, Kerstin; Rapp, Bastian E; Rapp, Michael

    2008-07-01

    This review presents an overview of 20 years of worldwide development in the field of biosensors based on special types of surface acoustic wave (SAW) devices that permit the highly sensitive detection of biorelevant molecules in liquid media (such as water or aqueous buffer solutions). 1987 saw the first approaches, which used either horizontally polarized shear waves (HPSW) in a delay line configuration on lithium tantalate (LiTaO(3)) substrates or SAW resonator structures on quartz or LiTaO(3) with periodic mass gratings. The latter are termed "surface transverse waves" (STW), and they have comparatively low attenuation values when operated in liquids. Later Love wave devices were developed, which used a film resonance effect to significantly reduce attenuation. All of these sensor approaches were accompanied by the development of appropriate sensing films. First attempts used simple layers of adsorbed antibodies. Later approaches used various types of covalently bound layers, for example those utilizing intermediate hydrogel layers. Recent approaches involve SAW biosensor devices inserted into compact systems with integrated fluidics for sample handling. To achieve this, the SAW biosensors can be embedded into micromachined polymer housings. Combining these two features will extend the system to create versatile biosensor arrays for generic lab use or for diagnostic purposes.

  5. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  6. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    NASA Astrophysics Data System (ADS)

    Ivry, Yachin; Wang, Nan; Durkan, Colm

    2014-03-01

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  7. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    PubMed

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO.

  8. Differentiation of red wines using an electronic nose based on surface acoustic wave devices.

    PubMed

    García, M; Fernández, M J; Fontecha, J L; Lozano, J; Santos, J P; Aleixandre, M; Sayago, I; Gutiérrez, J; Horrillo, M C

    2006-02-15

    An electronic nose, utilizing the principle of surface acoustic waves (SAW), was used to differentiate among different wines of the same variety of grapes which come from the same cellar. The electronic nose is based on eight surface acoustic wave sensors, one is a reference sensor and the others are coated by different polymers by spray coating technique. Data analysis was performed by two pattern recognition methods; principal component analysis (PCA) and probabilistic neuronal network (PNN). The results showed that electronic nose was able to identify the tested wines.

  9. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  10. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  11. Topological charge pump by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Yi, Zheng; Shi-Ping, Feng; Shi-Jie, Yang

    2016-06-01

    Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves. Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

  12. Writing magnetic patterns with surface acoustic waves

    SciTech Connect

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  13. Cryogenic Liquid Level Sensor Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Parker, Allen R., Jr. (Inventor); Richards, W. Lance (Inventor); Piazza, Anthony (Inventor); Man, Hon Chan (Inventor); Bakalyar, John A. (Inventor)

    2015-01-01

    The invention proposed herein is a system and method for measuring the liquid level in a container that employs an optic fiber sensor which is heated using a simple power source and a wire and making an anemometry measurement. The heater wire is cycled between two levels of heat and the liquid level is obtained by measuring the heat transfer characteristics of the surrounding environment.

  14. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  15. Sensor apparatus using an electrochemical cell

    DOEpatents

    Thakur, Mrinal

    2002-01-01

    A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.

  16. Well casing-based geophysical sensor apparatus, system and method

    DOEpatents

    Daily, William D.

    2010-03-09

    A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

  17. A Comparison of Surface Acoustic Wave Modeling Methods

    NASA Technical Reports Server (NTRS)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  18. Ram-air sample collection device for a chemical warfare agent sensor

    DOEpatents

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  19. Active micromixer using surface acoustic wave streaming

    SciTech Connect

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  20. Acoustic waves in medical imaging and diagnostics.

    PubMed

    Sarvazyan, Armen P; Urban, Matthew W; Greenleaf, James F

    2013-07-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term ultrasonography, or its abbreviated version sonography, meant an imaging modality based on the use of ultrasonic compressional bulk waves. Beginning in the 1990s, there started to emerge numerous acoustic imaging modalities based on the use of a different mode of acoustic wave: shear waves. Imaging with these waves was shown to provide very useful and very different information about the biological tissue being examined. We discuss the physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities and frequencies that have been used in different imaging applications is presented. We discuss the potential for future shear wave imaging applications.

  1. 25 years of dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Merlino, Robert L.; Merlino

    2014-12-01

    The dust acoustic wave (DAW) was first discussed by P. K. Shukla in May of 1989 at the First Capri Workshop on Dusty Plasmas. In the past 25 years, the subsequent publication of the linear and nonlinear properties of the DAW (Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543) has generated and sustained a large body of theoretical and experimental research that has clarified the physics of collective effects in dusty plasmas. A unique feature of the DAW is that it can be observed (literally) using laser illumination and high-speed videography, revealing details of wave-particle interactions at an unprecedented single particle level. This paper attempts to review some of the contributions and extensions of dust acoustic wave physics, as well as identify recent findings that illustrate the potential importance of this dust wave in the agglomeration of dust particles.

  2. Acoustic waves superimposed on incompressible flows

    NASA Technical Reports Server (NTRS)

    Hodge, Steve

    1990-01-01

    The use of incompressible approximations in deriving solutions to the Lighthill wave equation was investigated for problems where an analytical solution could be found. A particular model problem involves the determination of the sound field of a spherical oscillating bubble in an ideal fluid. It is found that use of incompressible boundary conditions leads to good approximations in the important region of high acoustic wave number.

  3. Investigation of Shallow Bulk Acoustic Waves

    DTIC Science & Technology

    1981-11-12

    with the theoretical calculation using equivalent circuit model. How- ever, the spurious bulk wave level at high frequencies is much lower than that of...effect of a metallic grating on SBAW devices on quartz. 7 A periodic metallic structure will support horizontal shear surface waves if the finger...We have extensively investigated shallow bulk acoustic waves in. terms of material aspects, transducer equivalent circuits and device dev-.iopment

  4. Modulation of a quantum positron acoustic wave

    NASA Astrophysics Data System (ADS)

    Amin, M. R.

    2015-09-01

    Amplitude modulation of a positron acoustic wave is considered in a four-component electron-positron plasma in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the particle exchange-correlation potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to viscosity in the momentum balance equation of the charged carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the quantum positron acoustic wave by employing the standard reductive perturbation technique. Detailed analysis of the linear and nonlinear dispersions of the quantum positron acoustic wave is presented. For a typical parameter range, relevant to some dense astrophysical objects, it is found that the quantum positron acoustic wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the quantum effect due to the particle exchange-correlation potential is significant in comparison to the effect due to the Bohm potential for smaller values of the carrier wavenumber. However, for comparatively larger values of the carrier wavenumber, the Bohm potential effect overtakes the effect of the exchange-correlation potential. It is found that the critical wavenumber for the modulation instability depends on the ratio of the equilibrium hot electron number density and the cold positron number density and on the ratio of the equilibrium hot positron number density and the cold positron number density. A numerical result on the growth rate of the modulation instability is also presented.

  5. Identification of rocket-induced acoustic waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Mabie, Justin; Bullett, Terence; Moore, Prentiss; Vieira, Gerald

    2016-10-01

    Acoustic waves can create plasma disturbances in the ionosphere, but the number of observations is limited. Large-amplitude acoustic waves generated by energetic sources like large earthquakes and tsunamis are more readily observed than acoustic waves generated by weaker sources. New observations of plasma displacements caused by rocket-generated acoustic waves were made using the Vertically Incident Pulsed Ionospheric Radar (VIPIR), an advanced high-frequency radar. Rocket-induced acoustic waves which are characterized by low amplitudes relative to those induced by more energetic sources can be detected in the ionosphere using the phase data from fixed frequency radar observations of a plasma layer. This work is important for increasing the number and quality of observations of acoustic waves in the ionosphere and could help improve the understanding of energy transport from the lower atmosphere to the thermosphere.

  6. Surface acoustic wave sensing of VOCs in harsh chemical environments

    SciTech Connect

    Pfeifer, K.B.; Martin, S.J.; Ricco, A.J.

    1993-06-01

    The measurement of VOC concentrations in harsh chemical and physical environments is a formidable task. A surface acoustic wave (SAW) sensor has been designed for this purpose and its construction and testing are described in this paper. Included is a detailed description of the design elements specific to operation in 300{degree}C steam and HCl environments including temperature control, gas handling, and signal processing component descriptions. In addition, laboratory temperature stability was studied and a minimum detection limit was defined for operation in industrial environments. Finally, a description of field tests performed on steam reforming equipment at Synthetica Technologies Inc. of Richmond, CA is given including a report on destruction efficiency of CCl{sub 4} in the Synthetica moving bed evaporator. Design improvements based on the field tests are proposed.

  7. Cyclodextrin-based surface acoustic wave chemical microsensors

    SciTech Connect

    Li, D.Q.; Shi, J.X.; Springer, K.; Swanson, B.I.

    1996-07-01

    Cyclodextrin thin films were fabricated using either self-assembled monolayer (SAM) or solgel techniques. The resulting host receptor thin films on the substrates of surface acoustic wave (SAW) resonators were studied as method of tracking organic toxins in vapor phase. The mass loading of surface-attached host monolayers on SAW resonators gave frequency shifts corresponding to typical monolayer surface coverages for SAM methods and ``multilayer`` coverages for sol-gel techniques. Subsequent exposure of the coated SAW resonators to organic vapors at various concentrations, typically 5,000 parts per millions (ppm) down to 100 parts per billions (ppb) by mole, gave responses indicating middle-ppb-sensitivity ({approximately}50 ppb) for those sensor-host-receptors and organic-toxin pairs with optimum mutual matching of polarity, size, and structural properties.

  8. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    SciTech Connect

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  9. Cloaking of the momentum in acoustic waves.

    PubMed

    Sklan, Sophia

    2010-01-01

    Through an appropriate change in variables, we find that the three-dimensional acoustic wave equation is subject to the transformation media interpretation. In particular, we determine that this interpretation can be extended beyond the pressure difference to also account for the momentum transported by the wave. The suitability of momentum transport is especially interesting as it is an example where the field of interest is not governed by a wave equation. We examine how both fields behave in the case of cloaking. Explicit consideration of the boundary conditions shows that perfect cloaking is preserved, even when the incoming momentum is nonzero at the surface of the cloak.

  10. Surface-Acoustic-Wave Piezoelectric Microbalance

    NASA Technical Reports Server (NTRS)

    Chuan, Raymond L.; Bowers, William D.

    1992-01-01

    Improved piezoelectric microbalances developed for use in measuring masses of volcanic, aerosol, and other small particles suspended in air. Sensitive microbalance used to analyze airborne particles in real time in environments as diverse as clean rooms or upper atmosphere. Surface-acoustic-wave resonator includes input and output sets of interdigitated electrodes and two passive conductive patterns acting as reflectors. Mechanical energy travels both ways out from middle and reflected back toward middle. Microbalance and associated circuitry fit in small package. Circuit draws only 80 mA at 5 V. Sensitivity more than 400 times that of bulk piezoelectric microbalance.

  11. Ring waveguide resonator on surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Martin, G.; Weihnacht, M.

    2007-04-01

    A simple regular electrode structure for surface acoustic wave (SAW) devices is proposed. The structure consists of an interdigital transducer in the form of a ring placed on the Z cut of a hexagonal piezoelectric crystal. Finite thickness electrodes produce the known slowing effect for a SAW in comparison with this SAW on a free surface. The closed "slow" electrode region with the "fast" surrounding region forms an open waveguide resonator structure with the acoustic field concentrated in the electrode region. If the radius of the structure is large enough for a given wavelength, an acceptable level of radiation losses can be reached. The electrical admittance of such resonator does not have sidelobes.

  12. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  13. Surface acoustic wave propagation in graphene film

    NASA Astrophysics Data System (ADS)

    Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula

    2015-09-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  14. Absorption of surface acoustic waves by graphene

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Xu, W.

    2011-06-01

    We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs). We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  15. Surface acoustic wave propagation in graphene

    NASA Astrophysics Data System (ADS)

    Thalmeier, Peter; Dóra, Balázs; Ziegler, Klaus

    2010-01-01

    Surface acoustic wave (SAW) propagation is a powerful method to investigate two-dimensional (2D) electron systems. We show how SAW observables are influenced by coupling to the 2D massless Dirac electrons of graphene and argue that Landau oscillations in SAW propagation can be observed as function of gate voltage for constant field. Contrary to other transport measurements, the zero-field SAW propagation gives the wave-vector dependence of graphene conductivity for small wave numbers. We predict a crossover from Schrödinger to Dirac-like behavior as a function of gate voltage, with no attenuation in the latter for clean samples.

  16. Surface Acoustic Wave Atomizer and Electrostatic Deposition

    NASA Astrophysics Data System (ADS)

    Yamagata, Yutaka

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  17. Surface acoustic wave atomizer and electrostatic deposition.

    PubMed

    Yamagata, Yutaka

    2010-01-01

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  18. Computation of acoustic waves in a jet

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Turkel, E.

    1978-01-01

    A numerical treatment of acoustic waves in a jet is described. The full time dependent Euler equations are used in both linear and nonlinear formulations. The computational region of integration is artificially bounded and boundary conditions are developed to simulate outgoing waves and to enable the computational domain to be substantially restricted. Higher order methods and coordinate transformations are introduced to further reduce the number of grid points as well as to increase the efficiency of the program. Numerical results are presented for time harmonic sources as well as for sources with more complicated time dependence.

  19. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    SciTech Connect

    Ivry, Yachin E-mail: cd229@eng.cam.ac.uk; Wang, Nan; Durkan, Colm E-mail: cd229@eng.cam.ac.uk

    2014-03-31

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  20. Surface acoustic wave technique for the characterization of porous properties of microporous silicate thin films

    NASA Astrophysics Data System (ADS)

    Hietala, Susan Leslie

    1997-12-01

    Features of gas adsorption onto sol-gel derived microporous silicate thin films, for characterization of porous properties, are detailed using a surface acoustic wave (SAW) technique. Mass uptake and film effective modulus changes calculated from the SAW data are investigated in detail. The effects of stress and surface tension on the SAW sensor are calculated and found to be negligible in these experiments. Transient behavior recorded during nitrogen adsorption at 77 K is discussed in the context of mass uptake and effective modulus contributions. The time constant associated with the effective modulus calculation is consistent with that of diffusivity of nitrogen into a 5A zeolite. Further calculations indicate that the transient behavior is not due to thermal effects. A unique dual sensor SAW experiment to decouple the mass and effective modulus contributions to the frequency response was performed in conjunction with a Silicon beam-bending experiment. The beam-bending experiment results in a calculation of stress induced during adsorption of methanol on a microporous silicate thin film. The decoupled mass and effective modulus calculated from the SAW data have similar shaped isotherms, and are quite different from that of the stress developed in the Silicon beam. The total effective modulus change calculated from the SAW data is consistent with that calculated using Gassmann's equation. The SAW system developed for this work included unique electronics and customized hardware which is suitable for work under vacuum and at temperatures from 77K to 473K. This unique setup is suitable for running thin film samples on a Micromeritics ASAP 2000 Gas Adsorption unit in automatic mode. This setup is also general enough to be compatible with a custom gas adsorption unit and the beam bending apparatus, both using standard vacuum assemblies.

  1. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  2. Acoustic Wave Filter Technology - A Review.

    PubMed

    Ruppel, Clemens

    2017-04-04

    Today, acoustic filters are the filter technology to meet the requirements with respect to performance dictated by the cellular phone standards and their form factor. Around 2 billion cellular phones are sold every year, and smart phones are of a very high percentage of approximately two thirds. Smart phones require a very high number of filter functions ranging from the low double-digit range up to almost triple digit numbers in the near future. In the frequency range up to 1 GHz surface acoustic wave (SAW) filters are almost exclusively employed, while in the higher frequency range bulk acoustic wave (BAW) and SAW filters are competing for their shares. Prerequisites for the success of acoustic filters were the availability of high quality substrates, advanced and highly reproducible fabrication technologies, optimum filter techniques, precise simulation software, and advanced design tools that allow the fast and efficient design according to customer specifications. The paper will try to focus on innovations leading to high volume applications of intermediate frequency (IF) and radio frequency (RF) acoustic filters, e.g., TV IF filters, IF filters for cellular phones, and SAW/BAW RF filters for the RF front-end of cellular phones.

  3. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOEpatents

    Josten, Nicholas E.; Svoboda, John M.

    1999-01-01

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.

  4. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOEpatents

    Josten, N.E.; Svoboda, J.M.

    1999-05-25

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.

  5. Acoustic wave based MEMS devices for biosensing applications.

    PubMed

    Voiculescu, Ioana; Nordin, Anis Nurashikin

    2012-03-15

    This paper presents a review of acoustic-wave based MEMS devices that offer a promising technology platform for the development of sensitive, portable, real-time biosensors. MEMS fabrication of acoustic wave based biosensors enables device miniaturization, power consumption reduction and integration with electronic circuits. For biological applications, the biosensors are integrated in a microfluidic system and the sensing area is coated with a biospecific layer. When a bioanalyte interacts with the sensing layer, mass and viscosity variations of the biospecific layer can be detected by monitoring changes in the acoustic wave properties such as velocity, attenuation, resonant frequency and delay time. Few types of acoustic wave devices could be integrated in microfluidic systems without significant degradation of the quality factor. The acoustic wave based MEMS devices reported in the literature as biosensors and presented in this review are film bulk acoustic wave resonators (FBAR), surface acoustic waves (SAW) resonators and SAW delay lines. Different approaches to the realization of FBARs, SAW resonators and SAW delay lines for various biochemical applications are presented. Methods of integration of the acoustic wave MEMS devices in the microfluidic systems and functionalization strategies will be also discussed.

  6. Standing surface acoustic wave based cell coculture.

    PubMed

    Li, Sixing; Guo, Feng; Chen, Yuchao; Ding, Xiaoyun; Li, Peng; Wang, Lin; Cameron, Craig E; Huang, Tony Jun

    2014-10-07

    Precise reconstruction of heterotypic cell-cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell-cell interactions.

  7. Standing Surface Acoustic Wave Based Cell Coculture

    PubMed Central

    2015-01-01

    Precise reconstruction of heterotypic cell–cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell–cell interactions. PMID:25232648

  8. Acoustic wave science realized by metamaterials.

    PubMed

    Lee, Dongwoo; Nguyen, Duc Minh; Rho, Junsuk

    2017-01-01

    Artificially structured materials with unit cells at sub-wavelength scale, known as metamaterials, have been widely used to precisely control and manipulate waves thanks to their unconventional properties which cannot be found in nature. In fact, the field of acoustic metamaterials has been much developed over the past 15 years and still keeps developing. Here, we present a topical review of metamaterials in acoustic wave science. Particular attention is given to fundamental principles of acoustic metamaterials for realizing the extraordinary acoustic properties such as negative, near-zero and approaching-infinity parameters. Realization of acoustic cloaking phenomenon which is invisible from incident sound waves is also introduced by various approaches. Finally, acoustic lenses are discussed not only for sub-diffraction imaging but also for applications based on gradient index (GRIN) lens.

  9. Surface acoustic wave microsensors and applications

    NASA Astrophysics Data System (ADS)

    Galipeau, David W.; Story, Patrick R.; Vetelino, Kevin A.; Mileham, Russell D.

    1997-12-01

    Surface acoustic wave (SAW) devices have been studied for the last twenty years as highly sensitive yet relatively inexpensive microsensors for applications ranging from temperature and stress to gas and biological sensing. This wide range of applications is due to the SAW microsensors' high sensitivity to several physical parameters including mass, temperature, stress, and conductivity. Their low cost results from the use of standard batch microelectronic fabrication techniques for their manufacture. In this paper several chemical sensing applications for SAW devices are described. These include: gas detection; thin-film polymer characterization; dew-point measurements; surface energy measurements; and as a method to measure surface cleanliness. Experimental results are presented along with comparisons to other measurement techniques.

  10. Surface acoustic wave microsensors and applications

    NASA Astrophysics Data System (ADS)

    Galipeau, David W.; Story, Patrick R.; Vetelino, Kevin A.; Mileham, R. D.

    1997-06-01

    Surface acoustic wave (SAW) devices have been studied for the last twenty years as highly sensitive yet relatively inexpensive microsensors for applications ranging from gas and biological sensing to thin film and surface characterization. This wide range of applications is due to SAW microsensors high sensitivity to several physical parameters including mass, conductivity, permittivity, stress, temperature and electric fields. Their low cost results from the use of standard batch microelectronic fabrication techniques for their manufacture. In this work several SAW sensing applications are described. These include: gas detection; thin film polymer characterization; dew-point measurements; surface energy measurements; and as a method to measure surface cleanliness. Experimental results are presented along with comparisons to other measurement techniques.

  11. Marble Ageing Characterization by Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  12. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    SciTech Connect

    Xiong, Jichuan; Xu, Xiaodong E-mail: christ.glorieux@fys.kuleuven.be; Glorieux, Christ E-mail: christ.glorieux@fys.kuleuven.be; Matsuda, Osamu; Cheng, Liping

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  13. Resonant attenuation of surface acoustic waves by a disordered monolayer of microspheres

    NASA Astrophysics Data System (ADS)

    Eliason, J. K.; Vega-Flick, A.; Hiraiwa, M.; Khanolkar, A.; Gan, T.; Boechler, N.; Fang, N.; Nelson, K. A.; Maznev, A. A.

    2016-02-01

    Attenuation of surface acoustic waves (SAWs) by a disordered monolayer of polystyrene microspheres is investigated. Surface acoustic wave packets are generated by a pair of crossed laser pulses in a glass substrate coated with a thin aluminum film and detected via the diffraction of a probe laser beam. When a 170 μm-wide strip of micron-sized spheres is placed on the substrate between the excitation and detection spots, strong resonant attenuation of SAWs near 240 MHz is observed. The attenuation is caused by the interaction of SAWs with a contact resonance of the microspheres, as confirmed by acoustic dispersion measurements on the microsphere-coated area. Frequency-selective attenuation of SAWs by such a locally resonant metamaterial may lead to reconfigurable SAW devices and sensors, which can be easily manufactured via self-assembly techniques.

  14. Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles.

    DTIC Science & Technology

    1983-06-01

    AD-A129 282 NONLINEAR SCATTERING OF ACOUSTIC WAVES BY VIBRATING OBSTACLES (U) NAVAL RESEARCH LAR WASHINOTON DC d C PIQUETTE 01 JUN 83 NRL-MR-5077...MICROCOPY RESOLUTION TEST CHART NAIOAL IBtJ[IAU Of S1ANDARD~If A3 NRL Memorandum Report 5077 Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles ... Obstacles continuing problem. S. PERFORMING ORG. REPORT NUMMER 7. AUTHOR(s) 6. CONTRACT OR GRANT NUMIISER( ) Jean C. Piquette* S. PERFORMING

  15. Thin Superconducting Film Characterization by Surface Acoustic Waves.

    DTIC Science & Technology

    2014-09-26

    NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENT’S CA ALOG NUMBER ~~AFOSR TR -0 8 4. TITLE (and Subtitle) 5 TYPE OF REPORT & PERIOD COVERED Thin Superconducting ...thin film superconductor surface acoustic waves I SAW electron phonon interaction superconducting energy gap electron mean free path vortex...electrical resistivity and the attenuation of surface ,e J -acoustic waves (SAW) were measured in the superconducting state of a L granular lead film

  16. Strongly driven ion acoustic waves in laser produced plasmas

    SciTech Connect

    Baldis, H.A.; Labaune, C.; Renard, N.

    1994-09-20

    This paper present an experimental study of ion acoustic waves with wavenumbers corresponding to stimulated Brillouin scattering. Time resolved Thomson scattering in frequency and wavenumber space, has permitted to observe the dispersion relation of the waves as a function of the laser intensity. Apart from observing ion acoustic waves associated with a strong second component is observed at laser intensities above 10{sup 13}Wcm{sup {minus}2}.

  17. Extraordinary transmission of gigahertz surface acoustic waves

    PubMed Central

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  18. Nozzleless Spray Cooling Using Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Ang, Kar Man; Yeo, Leslie; Friend, James; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Due to its reliability and portability, surface acoustic wave (SAW) atomization is an attractive approach for the generation of monodispersed microdroplets in microfluidics devices. Here, we present a nozzleless spray cooling technique via SAW atomization with key advantage of downward scalability by simply increasing the excitation frequency. With generation of micron size droplets through surface destabilization using SAW, the clogging issues commonly encountered by spraying nozzle can be neutralized. Using deionised water, cooling is improved when the atomization rate is increased and the position of the device is optimized such that the atomized droplets can be easily seeded into the upstream of the flow circulation. Cooling is further improved with the use of nanofluids; a suspension of nanoparticles in water. By increasing nanoparticle mass concentration from 1% to 3%, cooling is enhanced due to the deposition and formation of nanoparticle clusters on heated surface and eventually increase the surface area. However, further increase the concentration to 10% reduces the cooling efficiency due to drastic increase in viscosity μ that leads to lower atomization rate which scales as ṁ ~μ - 1 / 2 .

  19. Surface Acoustic Waves to Drive Plant Transpiration

    PubMed Central

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-01-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems. PMID:28361922

  20. Surface Acoustic Waves to Drive Plant Transpiration.

    PubMed

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  1. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    NASA Astrophysics Data System (ADS)

    Gelda, Dhruv; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif; Sinha, Sanjiv

    2016-04-01

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1-100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ˜100 GHz.

  2. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    PubMed

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  3. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  4. Acoustic wave network and multivariate analysis for biosensing in space

    NASA Astrophysics Data System (ADS)

    Jayarajah, Christine N.; Thompson, Michael

    2005-03-01

    Bioanalytical techniques play an important role in monitoring the effects of environmental stress factors on fundamental life processes. In terms of space flight and extraterrestrial research, radiation, altered and microgravity are known to induce changes in gene expression. We report the use of an on-line transverse shear mode (TSM) acoustic wave biosensor to detect the initiation of gene transcription and DNA — drug binding. Since this biosensor offers real-time, label free monitoring of biological processes, it is possible to detect sequential binding steps as demonstrated in this paper. Furthermore, this sensor responds to several factors in the liquid phase such as viscosity, elasticity, surface tension, charge distribution and mass loading, which can in turn be influenced by specific gravity. The sensing device is a piezoelectric quartz crystal onto which the probe molecule (DNA in this case) is immobilized. Change in resonance frequency of the crystal in response to the binding of the target molecule(s), RNA polymerase and actinomycin-D, is fit to an equivalent circuit model from which multidimensional data is extracted. By performing multivariate analysis on this data we are able to observe interactions between several of these data series representing parameters such as motional resistance and capacitance. As well, we are able to observe the dominating parameters (for instance, frequency vs. motional resistance, which in turn can correspond to mass loading vs. energy dissipation) during the course of the experiment, as they vary between the different steps. Such advantages offered by the TSM sensor along with multivariate analysis are indispensable for biotechnological work under the influence of microgravity as several variables come into play.

  5. Ultrafast microfluidics using surface acoustic waves

    PubMed Central

    Yeo, Leslie Y.; Friend, James R.

    2009-01-01

    We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions

  6. Theoretical and experimental study on the acoustic wave energy after the nonlinear interaction of acoustic waves in aqueous media

    NASA Astrophysics Data System (ADS)

    Lan, Chao-feng; Li, Feng-chen; Chen, Huan; Lu, Di; Yang, De-sen; Zhang, Meng

    2015-06-01

    Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves' amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.

  7. Monitoring polymer properties using shear horizontal surface acoustic waves.

    PubMed

    Gallimore, Dana Y; Millard, Paul J; Pereira da Cunha, Mauricio

    2009-10-01

    Real-time, nondestructive methods for monitoring polymer film properties are increasingly important in the development and fabrication of modern polymer-containing products. Online testing of industrial polymer films during preparation and conditioning is required to minimize material and energy consumption, improve the product quality, increase the production rate, and reduce the number of product rejects. It is well-known that shear horizontal surface acoustic wave (SH-SAW) propagation is sensitive to mass changes as well as to the mechanical properties of attached materials. In this work, the SH-SAW was used to monitor polymer property changes primarily dictated by variations in the viscoelasticity. The viscoelastic properties of a negative photoresist film were monitored throughout the ultraviolet (UV) light-induced polymer cross-linking process using SH-SAW delay line devices. Changes in the polymer film mass and viscoelasticity caused by UV exposure produced variations in the phase velocity and attenuation of the SH-SAW propagating in the structure. Based on measured polymer-coated delay line scattering transmission responses (S(21)) and the measured polymer layer thickness and density, the viscoelastic constants c(44) and eta(44) were extracted. The polymer thickness was found to decrease 0.6% during UV curing, while variations in the polymer density were determined to be insignificant. Changes of 6% in c(44) and 22% in eta(44) during the cross-linking process were observed, showing the sensitivity of the SH-SAW phase velocity and attenuation to changes in the polymer film viscoelasticity. These results indicate the potential for SH-SAW devices as online monitoring sensors for polymer film processing.

  8. Hybrid Surface Acoustic Wave- Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films

    PubMed Central

    Choi, Kyung Hyun; Kim, Hyun Bum; Ali, Kamran; Sajid, Memoon; Uddin Siddiqui, Ghayas; Chang, Dong Eui; Kim, Hyung Chan; Ko, Jeong Beom; Dang, Hyun Woo; Doh, Yang Hoi

    2015-01-01

    Conventional surface acoustic wave - electrostatic deposition (SAW-ED) technology is struggling to compete with other thin film fabrication technologies because of its limitation in atomizing high density solutions or solutions with strong inter-particle bonding that requires very high frequency (100 MHz) and power. In this study, a hybrid surface acoustic wave - electrohydrodynamic atomization (SAW-EHDA) system has been introduced to overcome this problem by integrating EHDA with SAW to achieve the deposition of different types of conductive inks at lower frequency (19.8 MHZ) and power. Three materials, Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV), Zinc Oxide (ZnO), and Poly(3, 4-ethylenedioxythiophene):Polystyrene Sulfonate (PEDOT:PSS) have been successfully deposited as thin films through the hybrid SAW-EHDA. The films showed good morphological, chemical, electrical, and optical characteristics. To further evaluate the characteristics of deposited films, a humidity sensor was fabricated with active layer of PEDOT:PSS deposited using the SAW-EHDA system. The response of sensor was outstanding and much better when compared to similar sensors fabricated using other manufacturing techniques. The results of the device and the films’ characteristics suggest that the hybrid SAW-EHDA technology has high potential to efficiently produce wide variety of thin films and thus predict its promising future in certain areas of printed electronics. PMID:26478189

  9. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  10. Anisotropic diffraction of bulk acoustic wave beams in lithium niobate.

    PubMed

    Naumenko, Natalya F; Chizhikov, Sergey I; Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2015-12-01

    The formalism of planar diffraction tensor was applied to the analysis of anisotropy of bulk acoustic wave diffraction and to build a full map of anisotropic diffractional coefficients for three bulk acoustic wave modes propagating in lithium niobate. For arbitrary propagation direction the diffractional coefficients derived allow estimation of ultrasonic beam divergence in far-field. Analysis of obtained data revealed that the maxima of acousto-optic figure of merit for anisotropic diffraction in the YZ plane correspond to moderate diffractional spreading of the beams exceeding isotropic diffraction 2-3 times.

  11. Is dust acoustic wave a new plasma acoustic mode?

    NASA Astrophysics Data System (ADS)

    Dwivedi, C. B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi et al. [J. Plasma Phys. 41, 219 (1989)]. It is suggested that both correct and more usable nomenclature of the ALM should be the so-called acoustic mode.

  12. Diffraction of three-colour radiation on an acoustic wave

    SciTech Connect

    Kotov, V M

    2015-07-31

    We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)

  13. Apparatus and method for a light direction sensor

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2011-01-01

    The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.

  14. Single photon imaging and timing array sensor apparatus and method

    DOEpatents

    Smith, R. Clayton

    2003-06-24

    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  15. Development of Highly Sensitive Bulk Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer

    DTIC Science & Technology

    2009-01-01

    Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer PRINCIPAL INVESTIGATOR: Anthony J. Dickherber, Ph.D...Arrays for Screening and Early Detection of Prostate Cancer 5b. GRANT NUMBER W81XWH-07-1-0099 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...of developing a cost-effective, highly sensitive and highly selective sensor array for the detection of early cancer proliferation. First I report

  16. Sensitivity of surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Filipiak, Jerzy; Zubko, Konrad

    2001-08-01

    The SAW devices are widely used as filters, delay lines, resonators and gas sensors. It is possible to use it as mechanical force. The paper describes sensitivity of acceleration sensor based on SAW using the Rayleigh wave propagation. Since characteristic of acceleration SAW sensors are largely determined by piezoelectric materials, it is very important to select substrate with required characteristics. Researches and numerical modeling based on simply sensor model include piezoelectric beam with unilateral free end. An aggregated mass is connected to the one. The dimension and aggregated mass are various. In this case a buckling stress and sensitivity are changed. Sensitivity in main and perpendicular axis are compare for three sensor based on SiO2, LiNbO3, Li2B4O7. Influences of phase velocity, electro-mechanical coupling constant and density on sensitivity are investigated. Some mechanical parameters of the substrates in dynamic work mode are researched using sensor model and Rayleigh model of vibrations without vibration damping. The model is useful because it simply determines dependencies between sensor parameters and substrate parameters. Differences between measured and evaluated quantities are less than 5 percent. Researches based on sensor modes, which fulfilled mechanical specifications similarly to aircraft navigation.

  17. Remote vibration measurement: A wireless passive surface acoustic wave resonator fast probing strategy

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Droit, C.; Ballandras, S.; Alzuaga, S.; Martin, G.; Sandoz, P.

    2012-05-01

    Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.

  18. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.

    PubMed

    Friedt, J-M; Droit, C; Ballandras, S; Alzuaga, S; Martin, G; Sandoz, P

    2012-05-01

    Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.

  19. Porous silicon bulk acoustic wave resonator with integrated transducer

    PubMed Central

    2012-01-01

    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697

  20. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  1. Application of surface acoustic wave devices to radio telemetry

    NASA Technical Reports Server (NTRS)

    Strasilla, U.

    1983-01-01

    Three experimental Surface Acoustic Wave Resonators (SAWR) are developed and evaluated. A desired center frequency is obtained by correct spacing of the Inter-Digital Transducers (IDT). Transmitting and receiving IDT's must be close for adequate coupling and a sufficient number of reflectors are required to create a high quality standing wave. A review of oscillator theory is given and current technology evaluated.

  2. Propagation of acoustic waves in multifractional polydisperse gas suspension

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Teregulova, E. A.

    2017-01-01

    The propagation of acoustic waves in multifractional polydisperse gas suspension is studied. A mathematical model is presented, the dispersion equation is obtained, dispersion curves are calculated. The influence of the particle size and the parameters of the dispersed phase for multifractional gas mixture with ice particles, aluminum and sand on dissipation and dispersion of sound waves is analyzed.

  3. Gasoline identifier based on SH0 plate acoustic waves.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible.

  4. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGES

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  5. Systems, Methods and Apparatus for Position Sensor Digital Conditioning Electronics

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor)

    2012-01-01

    Systems, methods and apparatus are provided through which in some implementations determine the amplitude of an amplitude modulated signal, modulated by the position of an object being sensed. In some aspects, the apparatus accepts an excitation signal and the amplitude modulated signal and divides the amplitude modulated by the excitation signal to produce an output signal that is proportional to the position of the object being sensed. In other aspects, the division is performed only when the excitation signal is non-zero, such as close to the peaks in the excitation signal. In other aspects, the excitation signal and amplitude modulated signal are degraded due to an air gap and the degraded signals are used to correct for amplitude fluctuations due to the air gap, and produce an output signal, tolerant of the air gaps, that is proportional to the position of the object being sensed.

  6. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  7. Acoustic Wave Propagation in Pressure Sense Lines

    NASA Technical Reports Server (NTRS)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  8. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids.

  9. Acoustoelectric effects in reflection of leaky-wave-radiated bulk acoustic waves from piezoelectric crystal-conductive liquid interface.

    PubMed

    Rimeika, Romualdas; Čiplys, Daumantas; Jonkus, Vytautas; Shur, Michael

    2016-01-01

    The leaky surface acoustic wave (SAW) propagating along X-axis of Y-cut lithium tantalate crystal strongly radiates energy in the form of an obliquely propagating narrow bulk acoustic wave (BAW) beam. The reflection of this beam from the crystal-liquid interface has been investigated. The test liquids were solutions of potassium nitrate in distilled water and of lithium chloride in isopropyl alcohol with the conductivity varied by changing the solution concentration. The strong dependences of the reflected wave amplitude and phase on the liquid conductivity were observed and explained by the acoustoelectric interaction in the wave reflection region. The novel configuration of an acoustic sensor for liquid media featuring important advantages of separate measuring and sensing surfaces and rigid structure has been proposed. The application of leaky-SAW radiated bulk waves for identification of different brands of mineral water has been demonstrated.

  10. Ion acoustic waves at comet 67P/Churyumov-Gerasimenko. Observations and computations

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Nilsson, H.; Hamrin, M.; Eriksson, A.; Odelstad, E.; Maggiolo, R.; Henri, P.; Vallieres, X.; Altwegg, K.; Tzou, C.-Y.; Rubin, M.; Glassmeier, K.-H.; Stenberg Wieser, G.; Simon Wedlund, C.; De Keyser, J.; Dhooghe, F.; Cessateur, G.; Gibbons, A.

    2017-03-01

    Context. On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5 AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the Sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in the cometary environment. Aims: Observations of plasma waves by the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) can be explained by dispersion relations calculated based on measurements of ions by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA), and this gives insight into the relationship between plasma phenomena and the neutral coma, which is observed by the Comet Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument (ROSINA-COPS). Methods: We use the simple pole expansion technique to compute dispersion relations for waves on ion timescales based on the observed ion distribution functions. These dispersion relations are then compared to the waves that are observed. Data from the instruments RPC-LAP, RPC-ICA and the mutual impedance probe (RPC-MIP) are compared to find the best estimate of the plasma density. Results: We find that ion acoustic waves are present in the plasma at comet 67P/Churyumov-Gerasimenko, where the major ion species is H2O+. The bulk of the ion distribution is cold, kBTi = 0.01 eV when the ion acoustic waves are observed. At times when the neutral density is high, ions are heated through acceleration by the solar wind electric field and scattered in collisions with the neutrals. This process heats the ions to about 1 eV, which leads to significant damping of the ion acoustic waves. Conclusions: In conclusion, we show that ion acoustic waves appear in the H2O+ plasmas at comet 67P/Churyumov-Gerasimenko and how the interaction between the neutral and ion populations affects the wave properties. Computer code for the dispersion analysis is

  11. Apparatus for particulate matter analysis

    DOEpatents

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  12. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    DOEpatents

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  13. Dust acoustic waves in strongly coupled dissipative plasmas

    NASA Astrophysics Data System (ADS)

    Xie, B. S.; Yu, M. Y.

    2000-12-01

    The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.

  14. Chromospheric extents predicted by time-dependent acoustic wave models

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.

  15. Chromospheric extents predicted by time-dependent acoustic wave models

    SciTech Connect

    Cuntz, M. Heidelberg Universitaet )

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.

  16. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  17. HF Doppler observations of acoustic waves excited by the earthquake

    NASA Technical Reports Server (NTRS)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  18. Scanning Michelson interferometer for imaging surface acoustic wave fields.

    PubMed

    Knuuttila, J V; Tikka, P T; Salomaa, M M

    2000-05-01

    A scanning homodyne Michelson interferometer is constructed for two-dimensional imaging of high-frequency surface acoustic wave (SAW) fields in SAW devices. The interferometer possesses a sensitivity of ~10(-5)nm/ radicalHz , and it is capable of directly measuring SAW's with frequencies ranging from 0.5 MHz up to 1 GHz. The fast scheme used for locating the optimum operation point of the interferometer facilitates high measuring speeds, up to 50,000 points/h. The measured field image has a lateral resolution of better than 1 mu;m . The fully optical noninvasive scanning system can be applied to SAW device development and research, providing information on acoustic wave distribution that cannot be obtained by merely electrical measurements.

  19. Reflection and transmission of acoustic waves from a moving layer

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Singh, J. J.

    1972-01-01

    The refraction of acoustic waves by a moving medium layer is theoretically treated and the expressions for reflection and transmission coefficients are determined. The moving medium layer velocity is assumed to have a space dependence in one direction. A partitioning of the moving medium layer into constant-velocity sublayers is introduced and the number of sublayers is allowed to increase until the reflection and transmission coefficients converage to their respective values. Numerical results for several sublayer approximations of Poiseuille's flow are presented as functions of the moving layer velocity for several angles of incidence of the acoustic wave. The degenerate case of single constant-velocity layer is also treated, both theoretically and by a numerical analysis.

  20. Is dust acoustic wave a new plasma acoustic mode?

    SciTech Connect

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of the ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}

  1. Laser-generated acoustic wave studies on tattoo pigment

    NASA Astrophysics Data System (ADS)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  2. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  3. Drops subjected to surface acoustic waves: flow dynamics

    NASA Astrophysics Data System (ADS)

    Brunet, Philippe; Baudoin, Michael; Bou Matar, Olivier; Dynamique Des Systèmes Hors Equilibre Team; Aiman-Films Team

    2012-11-01

    Ultrasonic acoustic waves of frequency beyond the MHz are known to induce streaming flow in fluids that can be suitable to perform elementary operations in microfluidics systems. One of the currently appealing geometry is that of a sessile drop subjected to surface acoustic waves (SAW). Such Rayleigh waves produce non-trival actuation in the drop leading to internal flow, drop displacement, free-surface oscillations and atomization. We recently carried out experiments and numerical simulations that allowed to better understand the underlying physical mechanisms that couple acoustic propagation and fluid actuation. We varied the frequency and amplitude of actuation, as well as the properties of the fluid, and we measured the effects of these parameters on the dynamics of the flow. We compared these results to finite-elements numerical simulations.

  4. Waveform inversion of acoustic waves for explosion yield estimation

    SciTech Connect

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  5. Standing surface acoustic wave (SSAW)-based cell washing

    PubMed Central

    Li, Sixing; Ding, Xiaoyun; Mao, Zhangming; Chen, Yuchao; Nama, Nitesh; Guo, Feng; Li, Peng; Wang, Lin; Cameron, Craig E.; Huang, Tony Jun

    2014-01-01

    Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications. PMID:25372273

  6. An Integrated Surface Acoustic Wave-Based Chemical Microsensor Array for Gas-Phase Chemical Analysis Microsystems

    SciTech Connect

    Casalnuovo, stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carolyn M.

    1999-07-20

    This paper describes preliminary results in the development of an acoustic wave (SAW) microsensor array. The array is based on a novel configuration that allows for three sensors and a phase reference. Two configurations of the integrated array are discussed: a hybrid multichip-module based on a quartz SAW sensor with GaAs microelectronics and a fully monolithic GaAs-based SAW. Preliminary data are also presented for the use of the integrated SAW array in a gas-phase chemical micro system that incorporates microfabricated sample collectors and concentrators along with gas chromatography (GC) columns.

  7. Ion-Acoustic Waves in Self-Gravitaing Dusty Plasma

    SciTech Connect

    Kumar, Nagendra; Kumar, Vinod; Kumar, Anil

    2008-09-07

    The propagation and damping of low frequency ion-acoustic waves in steady state, unmagnetised, self-gravitating dusty plasma are studied taking into account two important damping mechanisms creation damping and Tromso damping. It is found that imaginary part of wave number is independent of frequency in case of creation damping. But when we consider the case of creation and Tromso damping together, an additional contribution to damping appears with the increase in frequency attributed to Tromso effect.

  8. Surface acoustic wave probe implant for predicting epileptic seizures

    DOEpatents

    Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  9. Spectral solution of acoustic wave-propagation problems

    NASA Technical Reports Server (NTRS)

    Kopriva, David A.

    1990-01-01

    The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.

  10. Optimum contact conditions for miniaturized surface acoustic wave linear motor

    PubMed

    Takasaki; Kurosawa; Higuchi

    2000-03-01

    This paper reports the successful operation of a 70 MHz driving surface acoustic wave (SAW) linear motor with a miniaturized stator transducer. This paper also deals with an investigation into an optimized slider design for the miniaturized SAW linear motor. The performance of three silicon type sliders, with different projection size, was compared. Output forces of the three sliders were measured with change of pre-load. It was found that the slider with smaller projection tended to produce greater output force.

  11. Creating and studying ion acoustic waves in ultracold neutral plasmas

    SciTech Connect

    Killian, T. C.; Castro, J.; McQuillen, P.; O'Neil, T. M.

    2012-05-15

    We excite ion acoustic waves in ultracold neutral plasmas by imprinting density modulations during plasma creation. Laser-induced fluorescence is used to observe the density and velocity perturbations created by the waves. The effect of expansion of the plasma on the evolution of the wave amplitude is described by treating the wave action as an adiabatic invariant. After accounting for this effect, we determine that the waves are weakly damped, but the damping is significantly faster than expected for Landau damping.

  12. Probing Acoustic Nonlinearity by Mixing Surface Acoustic Waves

    SciTech Connect

    Hurley, David Howard; Telschow, Kenneth Louis

    2000-07-01

    Measurement methods aimed at determining material properties through nonlinear wave propagation are sensitive to artifacts caused by background nonlinearities inherent in the ultrasonic generation and detection methods. The focus of this paper is to describe our investigation of nonlinear mixing of surface acoustic waves (SAWs) as a means to decrease sensitivity to background nonlinearity and increase spatial sensitivity to acoustic nonlinearity induced by material microstructure.

  13. S-Band Shallow Bulk Acoustic Wave (SBAW) microwave source

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques necessary to fabricate a high performance S-band microwave single source using state-of-the-art shallow bulk acoustic wave (SBAW) were explored. The bulk wave structures of the AlN/Al 2O3 were investigated for both the R plane and basal plane of sapphire. A 1.072 GHz SBAW delay line and oscillators were developed. A method of selecting and setting oscillator output frequency by selecting substrate orientation angle was also established.

  14. Space manufacturing of surface acoustic wave devices, appendix D

    NASA Technical Reports Server (NTRS)

    Sardella, G.

    1973-01-01

    Space manufacturing of transducers in a vibration free environment is discussed. Fabrication of the masks, and possible manufacturing of the surface acoustic wave components aboard a space laboratory would avoid the inherent ground vibrations and the frequency limitation imposed by a seismic isolator pad. The manufacturing vibration requirements are identified. The concepts of space manufacturing are analyzed. A development program for manufacturing transducers is recommended.

  15. R&D 100 Winner 2010: Acoustic Wave Biosensors

    SciTech Connect

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-06-07

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  16. Broadband Metamaterial for Nonresonant Matching of Acoustic Waves

    DTIC Science & Technology

    2012-03-28

    transmission (EOT)5–8. Lately, it has been extended to acoustic waves, as extraordinary acoustic transmission ( EAT )9–11. Usually these phenomena are achieved... EAT limitations. To this goal, we show a way to manipulate the effective constitutive properties (density reff and sound velocity ceff) of an...obtained. Most EAT phenomena rely on resonance effects that are inherently narrow-band, and for which large transmission is usually hindered by

  17. Method and apparatus for coupling seismic sensors to a borehole wall

    DOEpatents

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  18. Inverse Scattering Problems for Acoustic Waves in AN Inhomogeneous Medium.

    NASA Astrophysics Data System (ADS)

    Kedzierawski, Andrzej Wladyslaw

    1990-01-01

    This dissertation considers the inverse scattering problem of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far-field patterns of the scattered fields corresponding to many incident time -harmonic plane waves. First, we consider the inverse problem in the case when the scattering object is an inhomogeneous medium with complex refraction index having compact support. Our approach to this problem is the orthogonal projection method of Colton-Monk (cf. The inverse scattering problem for time acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math. 41 (1988), 97-125). After that, we prove the analogue of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. We then generalize some of these results to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. We solve the inverse impedance problem of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (cf. R. Kress, Linear Integral Equations, Springer-Verlag, New York, 1989).

  19. Microfluidic particle manipulation using high frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Collins, David J.

    2016-11-01

    Precise manipulation of particles and biological cells remains a very active research area in microfluidics. Among various force fields applied for microfluidic manipulations, acoustic waves have superior propagating properties in solids and fluids, which can readily enable non-contact cell manipulation in long operating distances. Exploiting acoustic waves for fluid and cell manipulation in microfluidics has led to a newly emerging research area, acoustofluidics. In this work, I will present particle and cell manipulation in microfluidics using high frequency surface acoustic waves (SAW). In particular, I will discuss a unique design of a focused IDT (FIDT) structure, which is able to generate a highly localized SAW field on the order of 20 µm wide. This highly focused acoustic beam has an effective manipulation area size that is comparable to individual micron-sized particles. Here, I demonstrate the use of this highly localized SAW field for single particle level sorting with sub-millisecond pulses and selective capture of particles. Based on the presented studies on acoustic particle manipulation, I envision that the merging of acoustics and microfluidics could enable various particle and cell manipulations needed in microfluidic applications. We acknowledge the support received from Singapore University of Technology and Design (SUTD)-Massachusetts Institute of Technology (MIT) International Design Center (IDG11300101) and SUTD Startup Research Grant (SREP13053) awarded to Y.A.

  20. Surface Acoustic Waves Enhance Neutrophil Killing of Bacteria

    PubMed Central

    Loike, John D.; Plitt, Anna; Kothari, Komal; Zumeris, Jona; Budhu, Sadna; Kavalus, Kaitlyn; Ray, Yonatan; Jacob, Harold

    2013-01-01

    Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW) on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm2, significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria. PMID:23936303

  1. Reflection and Refraction of Acoustic Waves by a Shock Wave

    NASA Technical Reports Server (NTRS)

    Brillouin, J.

    1957-01-01

    The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.

  2. Synchronization of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Suranga Ruhunusiri, W. D.; Goree, John

    2012-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. Dust acoustic wave synchronization has been experimentally studied previously in laboratory and in microgravity conditions, e.g. [Pilch PoP 2009] and [Menzel PRL 2010]. We perform a laboratory experiment to study synchronization of self-excited dust acoustic waves. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. Dust acoustic waves are self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the waves, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency.

  3. Surface acoustic waves/silicon monolithic sensor processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Fathimulla, M. A.; Mehter, E. A.

    1981-01-01

    Progress is reported in the creation of a two dimensional Fourier transformer for optical images based on the zinc oxide on silicon technology. The sputtering of zinc oxide films using a micro etch system and the possibility of a spray-on technique based on zinc chloride dissolved in alcohol solution are discussed. Refinements to techniques for making platinum silicide Schottky barrier junctions essential for constructing the ultimate convolver structure are described.

  4. Surface Acoustic Wave Devices as Chemical Vapor Sensors

    DTIC Science & Technology

    2009-03-26

    Plasma-Enhanced Chemical Vapor Deposited Surfaces,” Advanced Materials, 2006. 45. S . C. Huang, K. D. Caldwell , J. N. Lin, H . K. Wang, and J. N. Herron...exposure, 45 s develop, titanium. 59 Figure 4.4: SEM image of one of the devices from Series 3. 4.2 Testing AFRL- Designed SAW Devices Through...Approach for the Detection of Explosives,” Jour- nal of Hazardous Materials,, vol. 144, pp. 15–28, June 2007. 4. M. H . Ervin, S . J. Kilpatrick, C

  5. Interaction of High Frequency Acoustic Waves and Optical Waves Propagating in Single Mode Fibers.

    NASA Astrophysics Data System (ADS)

    de Paula, Ramon Perez

    This paper develops a frequency dependent model for the acousto-optic interaction with a single mode fiber of acoustic waves having wavelengths comparable to the fiber diameter. This paper also presents optical techniques for experimental observation and measurement of such effects. The acoustic waves are both normally and obliquelly incident on the fiber. The solutions to the elastic problem studied here are constructed using scalar and vector potentials. The principal strains induced by a plane wave propagating in a fluid is calculated through the solution of the wave equation and the associated boundary condition. The optical beam propagation is analyzed starting with Maxwell's, equations and the required solution for single mode (degenerate double mode) propagation is presented. For the perturbed fiber the anisotropic solution is discussed. The optical indicatrix is derived from the electric energy density, with the major axis parallel to the induced principal strains obtained from the solution of the elastic problem. The solution of the optical indicatrix equation (index ellipsoid) yields two independent propagation modes that are linear polarized plane waves with two different propagation velocities. The induced phase shift and birefringence are calculated from the index ellipsoid. The birefringence and phase shift are also measured experimentally using a fiber optic interferometer and a fiber optic polariscope. The experimental apparatus is discussed in detail and the techniques used to make the measurements are presented. The results are separated into two parts: first, the results for ultrasonic waves of normal incidence are presented, theoretical and experimental results are discussed, and the two compared; second, the results for angular incidence are presented in the same format as above, and compared with the results for perpendicular incidence.

  6. Method and apparatus for measuring surface changes, in porous materials, using multiple differently-configured acoustic sensors

    DOEpatents

    Hietala, Susan Leslie; Hietala, Vincent Mark; Tigges, Chris Phillip

    2001-01-01

    A method and apparatus for measuring surface changes, such as mass uptake at various pressures, in a thin-film material, in particular porous membranes, using multiple differently-configured acoustic sensors.

  7. Method and apparatus for a Fabry-Perot multiple beam fringe sensor

    NASA Technical Reports Server (NTRS)

    James, Kenneth A. (Inventor); Quick, William H. (Inventor); Strahan, Virgil H. (Inventor)

    1982-01-01

    A method and the resulting apparatus for implementing a unique multiple beam fringe sensor that is adapted to be interfaced with a low cost, compact fiber optic transmission system in order to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor is fabricated so as to include a Fabry-Perot gap formed between the ends of two mated optical fibers. By examining the optical characteristics of light that is transmitted through the Fabry-Perot sensor gap, an indication of gap width can be ascertained. Accordingly, a change in Fabry-Perot sensor gap width is related to a change in the particular physical parameter to be measured.

  8. A high sensitivity wireless mass-loading surface acoustic wave DNA biosensor

    NASA Astrophysics Data System (ADS)

    Cai, Hua-Lin; Yang, Yi; Zhang, Yi-Han; Zhou, Chang-Jian; Guo, Cang-Ran; Liu, Jing; Ren, Tian-Ling

    2014-03-01

    In this paper, a surface acoustic wave (SAW) biosensor with gold delay area on LiNbO3 substrate detecting DNA sequences is proposed. By well-designed device parameters of the SAW sensor, it achieves a high performance for highly sensitive detection of target DNA. In addition, an effective biological treatment method for DNA immobilization and abundant experimental verification of the sensing effect have made it a reliable device in DNA detection. The loading mass of the probe and target DNA sequences is obtained from the frequency shifts, which are big enough in this work due to an effective biological treatment. The experimental results show that the biosensor has a high sensitivity of 1.2 pg/ml/Hz and high selectivity characteristic is also verified by the few responses of other substances. In combination with wireless transceiver, we develop a wireless receiving and processing system that can directly display the detection results.

  9. On-line surveillance of lubricants in bearings by means of surface acoustic waves.

    PubMed

    Lindner, Gerhard; Schmitt, Martin; Schubert, Josephine; Krempel, Sandro; Faustmann, Hendrik

    2010-01-01

    The acoustic wave propagation in bearings filled with lubricants and driven by pulsed excitation of surface acoustic waves has been investigated with respect to the presence and the distribution of different lubricants. Experimental setups, which are based on the mode conversion between surface acoustic waves and compression waves at the interface between a solid substrate of the bearing and a lubricant are described. The results of preliminary measurements at linear friction bearings, rotation ball bearings and axial cylinder roller bearings are presented.

  10. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    PubMed Central

    Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection. PMID:23459387

  11. Depolarization of surface-attached hypothalamic mouse neurons studied by acoustic wave (thickness shear mode) detector.

    PubMed

    Cheung, Shilin; Fick, Laura J; Belsham, Denise D; Thompson, Michael

    2010-02-01

    Isolation of neurons from animal tissue is an important aspect of understanding basic biochemical processes such as the action of hormones and neurotransmitters. In the present work, the focus is on an effort to evaluate the utility of acoustic wave physics for the study of such cells. Immortalised hypothalamic neuronal cells from mouse embryos were cultured on the surface of the gold electrode of a 9.0 MHz thickness-shear mode acoustic wave sensor. These cells, which are clonal, are imposed on the surface of the device at a confluence in the range of 80-100%. The coated sensor is incorporated into a flow-injection configuration such that electrolytes can be introduced in order to examine their effects through measurement by network analysis. Both series resonance frequency, fs, and motional resistance, R(m), were measured in a number of experiments involving the injection of KCl and NaCl into the sensor-neuron system. The various responses to these electrolytes were interpreted in terms of changes in cellular structure associated with the depolarization process. The sensor-neuron system was found to elicit different responses to the addition of KCl and NaCl. Preliminary findings indicate that the TSM sensor does not purely measure changes in the membrane potential upon KCl addition. Typical changes in fs for 15 mM, 30 mM and 60 mM KCl additions were 54 +/- 15, 80 +/- 26 and 142 +/- 58 Hz (mean +/- standard deviation) respectively. Typical changes in R(m) for these KCl additions were 7 +/- 3, 13 +/- 4 and 23 +/- 6 Omega, respectively. These results were concluded after 17 runs at each concentration. Despite the large relative standard deviations, the dependence of f(s) and R(m) with respect to concentration was apparent. Controls performed by coating the TSM sensor with laminin or a cell attachment matrix showed no significant changes in either f(s) or R(m) for the same solutions tested on the sensor-neuron system.

  12. Switchable and Tunable Ferroelectric Bulk Acoustic Wave Resonators and Filters

    NASA Astrophysics Data System (ADS)

    Saddik, George Nabih

    Ferroelectric materials such as barium titanate (BaTiO 3 or BTO), strontium titanate (SrTiO3 or STO), and their solid solution barium strontium titanate (BaxSr1-xTiO 3 or BST) have been under investigation for over 50 years. BTO, STO, and BST are high-k dielectric materials, with a field dependent permittivity and a perovskite crystal structure. At room temperature BTO is a ferroelectric with a ferroelectric to paraelectric transition temperature of about 116°C (Curie temperature), while STO has no ferroelectric phase. The formation of a solid solution between BTO and STO allows for the engineering of the Curie temperature; the Curie temperature decreses as the mole ratio of barium decreases. Extensive research went into understanding the properties of BST and developing RF circuits such as tunable capacitors, tunable matching networks, tunable filters, phase shifters and harmonic generators. BST tunable capacitors have always had anomalous resonances in the one port scattering parameter measurements, although they are very small they degrade the quality factor of the device, and research went into reducing these resonances as much as possible. The goal of this thesis is to investigate these anomalous resonances and exploit them into RF devices and circuits. Careful investigation showed that these resonances were field induced piezoelectric resonance. Piezoelectric materials such as AlN, ZnO, and PZT are used in many applications, such as resonators, and filters. Thin film bulk acoustic wave resonators (FBAR) have been in use by research and industry since the early 1980s, and in high volume production for cell phone duplexers since early 2000s. FBAR filters and duplexers have several advantages over surface acoustic wave (SAW) and ceramic devices such as high quality factors necessary for sharp filter skirts, small size, high performance, and ease of integration. There are two approaches to designing bulk acoustic wave resonators. The first is an FBAR where a

  13. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.

    1990-01-01

    The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.

  14. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    NASA Technical Reports Server (NTRS)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  15. Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)

    NASA Technical Reports Server (NTRS)

    Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)

    2003-01-01

    A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.

  16. Synchronized photonic modulators driven by surface acoustic waves.

    PubMed

    Crespo-Poveda, A; Hey, R; Biermann, K; Tahraoui, A; Santos, P V; Gargallo, B; Muñoz, P; Cantarero, A; de Lima, M M

    2013-09-09

    Photonic modulators are one of the most important elements of integrated photonics. We have designed, fabricated, and characterized a tunable photonic modulator consisting of two 180°-dephased output waveguide channels, driven by a surface acoustic wave in the GHz frequency range built on (Al,Ga)As. Odd multiples of the fundamental driven frequency are enabled by adjusting the applied acoustic power. A good agreement between theory and experimental results is achieved. The device can be used as a building block for more complex integrated functionalities and can be implemented in several material platforms.

  17. The study of surface acoustic wave charge transfer device

    NASA Technical Reports Server (NTRS)

    Papanicolaou, N.; Lin, H. C.

    1978-01-01

    A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.

  18. Attenuation of acoustic waves in glacial ice and salt domes

    NASA Astrophysics Data System (ADS)

    Price, P. B.

    2006-02-01

    Two classes of natural solid media, glacial ice and salt domes, are under consideration as media in which to deploy instruments for detection of neutrinos with energy ≥1018 eV. Though insensitive to 1011 to 1016 eV neutrinos for which observatories (e.g., AMANDA and IceCube) that utilize optical Cherenkov radiation detectors are designed, radio and acoustic methods are suited for searches for the very low fluxes of neutrinos with energies >1017 eV. This is because owing to the very long attenuation lengths of radio and acoustic waves produced by interactions of such neutrinos in ice and salt, detection modules can be spaced at horizontal distances ˜1 km, in contrast to the 0.12 km distances between strings of IceCube modules. In this paper, I calculate the absorption and scattering coefficients as a function of frequency and grain size for acoustic waves in glacial ice and salt domes and show that experimental measurements on laboratory samples and in glacial ice and salt domes are consistent with theory. For South Pole ice with grain size ˜0.2 cm at depths ≤600 m, scattering lengths are calculated to be 2000 and 25 km at frequencies 10 and 30 kHz, respectively; for grain size ˜0.4 cm at 1500 m (the maximum depth to be instrumented acoustically), scattering lengths are calculated to be 250 and 3 km. These are within the range of frequencies where most of the energy of the acoustic wave is concentrated. The absorption length is calculated to be 9 ± 3 km at all frequencies above ˜100 Hz. For NaCl (rock salt) with grain size 0.75 cm, scattering lengths are calculated to be 120 and 1.4 km at 10 and 30 kHz, and absorption lengths are calculated to be 3 × 104 and 3300 km at 10 and 30 kHz. Existing measurements are consistent with theory. For ice, absorption is the limiting factor; for salt, scattering is the limiting factor. Both media would be suitable for detection of acoustic waves from ultrahigh-energy neutrino interactions.

  19. R&D 100 Winner 2010: Acoustic Wave Biosensors

    ScienceCinema

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-07-12

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  20. Coupling between ion-acoustic waves and neutrino oscillations.

    PubMed

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  1. Surface Acoustic Wave Microwave Oscillator and Frequency Synthesizer.

    DTIC Science & Technology

    1980-06-01

    AD-A086 336 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/ A /5 SURFACE ACOUSTIC WAVE MICROWA VE OSC ILLATOR AND FR EQUENCY SYNTME--ETC(U...DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703 HISAŕ 78 UNCLASSIFIED 6 URTSfaceIO A si WHS ae Micowvef scilltr nermepteOt󈧫 BEFORE COEPETINFOR RE~~~ a ...D OKUI UBRj~ ~~n SpaReT ParkWCAIO OP T05HIS A .11eu.0t13..... IINCLASSTFTF[ gCUNTY CLASSIFICATION OF THIS PAOI(Whin DEla AIRIm Fminimum frequency step

  2. Relationship between dust acoustic waves in two and three dimensions

    SciTech Connect

    Piel, A.; Goree, J.

    2006-10-15

    Low frequency electrostatic waves are investigated for a monolayer suspension of dust particles that are shielded by an ambient plasma of three-dimensional extension. The dispersion of the resulting dust acoustic surface waves is compared with dust acoustic waves in three dimensions and with lattice modes in two dimensions. It is found that the wave dispersion is determined by shielding of electric fields by electrons and ions on either side of the dust monolayer; this differs from previously studied cases of charged sheets in a vacuum. The phase velocity of these surface waves suggests the definition of a proper dust plasma frequency for monolayer systems.

  3. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  4. Coupling between ion-acoustic waves and neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  5. The integrated extinction for broadband scattering of acoustic waves.

    PubMed

    Sohl, Christian; Gustafsson, Mats; Kristensson, Gerhard

    2007-12-01

    In this paper, physical bounds on scattering of acoustic waves over a frequency interval are discussed based on the holomorphic properties of the scattering amplitude in the forward direction. The result is given by a dispersion relation for the extinction cross section which yields an upper bound on the product of the extinction cross section and the associated bandwidth of any frequency interval. The upper bound is shown to depend only on the geometry and the material properties of the scatterer in the static or low-frequency limit. The results are exemplified by permeable and impermeable scatterers with homogeneous and isotropic material properties.

  6. Numerical investigation of diffraction of acoustic waves by phononic crystals

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent

    2012-05-01

    Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.

  7. Determination of hydrocarbon levels in water via laser-induced acoustics wave

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman

    2016-04-01

    Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.

  8. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  9. Apparatus to characterize gas sensor response under real-world conditions in the lab.

    PubMed

    Kneer, J; Eberhardt, A; Walden, P; Ortiz Pérez, A; Wöllenstein, J; Palzer, S

    2014-05-01

    The use of semiconducting metal-oxide (MOX) based gas sensors in demanding applications such as climate and environmental research as well as industrial applications is currently hindered by their poor reproducibility, selectivity, and sensitivity. This is mainly due to the sensing mechanism which relies on the change of conductivity of the metal-oxide layer. To be of use for advanced applications metal-oxide (MOX) gas sensors need to be carefully prepared and characterized in laboratory environments prior to deployment. This paper describes the working principle, design, and use of a new apparatus that can emulate real-world conditions in the laboratory and characterize the MOX gas sensor signal in tailor-made atmospheres. In particular, this includes the control of trace gas concentrations and the control of oxygen and humidity levels which are important for the surface chemistry of metal-oxide based sensors. Furthermore, the sensor temperature can be precisely controlled, which is a key parameter of semiconducting, sensitive layers, and their response to particular gas compositions. The setup also allows to determine the power consumption of each device individually which may be used for performance benchmarking or monitoring changes of the temperature of the gas composition. Both, the working principle and the capabilities of the gas measurement chamber are presented in this paper employing tin dioxide (SnO2) based micro sensors as exemplary devices.

  10. Apparatus to characterize gas sensor response under real-world conditions in the lab

    NASA Astrophysics Data System (ADS)

    Kneer, J.; Eberhardt, A.; Walden, P.; Ortiz Pérez, A.; Wöllenstein, J.; Palzer, S.

    2014-05-01

    The use of semiconducting metal-oxide (MOX) based gas sensors in demanding applications such as climate and environmental research as well as industrial applications is currently hindered by their poor reproducibility, selectivity, and sensitivity. This is mainly due to the sensing mechanism which relies on the change of conductivity of the metal-oxide layer. To be of use for advanced applications metal-oxide (MOX) gas sensors need to be carefully prepared and characterized in laboratory environments prior to deployment. This paper describes the working principle, design, and use of a new apparatus that can emulate real-world conditions in the laboratory and characterize the MOX gas sensor signal in tailor-made atmospheres. In particular, this includes the control of trace gas concentrations and the control of oxygen and humidity levels which are important for the surface chemistry of metal-oxide based sensors. Furthermore, the sensor temperature can be precisely controlled, which is a key parameter of semiconducting, sensitive layers, and their response to particular gas compositions. The setup also allows to determine the power consumption of each device individually which may be used for performance benchmarking or monitoring changes of the temperature of the gas composition. Both, the working principle and the capabilities of the gas measurement chamber are presented in this paper employing tin dioxide (SnO2) based micro sensors as exemplary devices.

  11. Excitation of Ion Acoustic Waves by Electron Beams

    NASA Astrophysics Data System (ADS)

    Sydorenko, Dmytro; Tokluoglu, Erinc; Kaganovich, Igor; Startsev, Edward; Davidson, Ronald

    2012-10-01

    The interaction of electron beams with plasmas is of considerable importance particularly for hybrid DC/RF coupled plasma sources used in plasma processing [1]. An electron beam is formed by emission from one surface, is accelerated through a dc bias electric field and enters the bulk plasma. Emitted electrons excite electron plasma (Langmuir) waves through the two-stream instability. Due to the high localized plasmon pressure, ion acoustic waves are excited parametrically. The plasma waves saturate by non-linear wave trapping. Eventually coupling between electron plasma waves and ion acoustic waves deteriorates the Langmuir waves, which leads to a bursting behavior. The two-stream instability and the consequent ion fluctuations are studied over a wide range of system parameters using the particle-in-cell codes EDIPIC and LSP. The influenceof these instabilities on collisionless electron heating are presented for a hybrid RF-DC plasma source.[4pt] [1] Lin Xu, et al, Appl. Phys. Lett., 93, 261502 (2008).

  12. Ferroelectric film bulk acoustic wave resonators for liquid viscosity sensing

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Gevorgian, S.

    2013-08-01

    A concept of accurate liquid viscosity sensing, using bulk acoustic wave (BAW) resonators, is proposed. The proposed BAW resonators use thin ferroelectric films with the dc field induced piezoelectric effect allowing for generation of pure longitudinal acoustic waves in the thickness excitation mode. This makes it possible to utilize exclusively shear liquid particle displacement at the resonator side walls and, therefore, accurate viscosity evaluation. The BAW resonators with the dc field induced piezoelectric effect in 0.67BiFeO3-0.33BaTiO3 ferroelectric films are fabricated and their liquid viscosity sensing properties are characterized. The resonator response is analyzed using simple model of a harmonic oscillator damped by a viscous force. It is shown that the resonator Q-factor is inversely proportional to the square root of the viscosity-density product. The viscosity measurement resolution is estimated to be as high as 0.005 mPa.s, which is 0.5% of the water viscosity.

  13. Inverse scattering problems for acoustic waves in an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Kedzierawski, Andrzej Wladyslaw

    The inverse scattering problem is considered of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far field patterns of the scattered field corresponding to many incident time-harmonic plane waves. First, the inverse problem is studied in the case when the scattering object is an inhomogeneous medium with complex refractive index having compact support. The approach to this problem is the orthogonal projection method of Colton-Monk (1988). After that, the analogue is proven of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. Some of these results are then generalized to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. The inverse impedance problem is solved of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (1989).

  14. Tunable nanowire patterning using standing surface acoustic waves.

    PubMed

    Chen, Yuchao; Ding, Xiaoyun; Steven Lin, Sz-Chin; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E; Huang, Tony Jun

    2013-04-23

    Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 s. In this approach, SSAWs were generated by interdigital transducers, which induced a periodic alternating current (ac) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shaped nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications.

  15. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    SciTech Connect

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  16. Standing surface acoustic wave (SSAW)-based microfluidic cytometer

    PubMed Central

    Chen, Yuchao; Nawaz, Ahmad Ahsan; Zhao, Yanhui; Huang, Po-Hsun; McCoy, J. Phillip; Levine, Stewart; Wang, Lin; Huang, Tony Jun

    2014-01-01

    The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events/s when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles. PMID:24406848

  17. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  18. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  19. Synchronization of the dust acoustic wave under microgravity

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, W. D. Suranga; Goree, J.

    2013-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. To prepare for experiments under microgravity conditions using the PK-4 facility on the International Space Station, we perform a laboratory experiment to observe synchronization of the self-excited dust acoustic wave. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. The dust acoustic wave is self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the wave, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency. Supported by NASA's Physical Science Research Program.

  20. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  1. Tuning of acoustic wave dispersion in ferroelectrics—A theoretical study

    NASA Astrophysics Data System (ADS)

    Chang, Wontae

    2017-02-01

    Tuning of acoustic wave dispersion in ferroelectrics due to its electrostrictive effect is theoretically investigated. As the acoustic wave is excited electrically in ferroelectrics, the elastic stiffness tensor can be modified by both the linear piezoelectric and nonlinear electrostrictive electromechanical couplings depending on the wave excitation direction of the crystal, where the linear piezoelectric modification has been well characterized and extensively used for the application of piezoelectric-based acoustic wave devices over the past 50 years, but the nonlinear electrostrictive modification, determining the tuning of acoustic wave dispersion in the medium, is still too premature to use the properties in application. For the tuning application, it is essential to know how the electrostrictive strain actually tunes the propagation and displacement of the ferroelectrically active acoustic waves, and this information is currently unavailable. In this paper, the ferroelectrically active acoustic wave propagation and displacement in conjunction with the nonlinear electrostrictive modification are calculated using the plane wave expansion method, and the tunable wave properties associated with the propagation and displacement, are discussed. The electrically excited acoustic wave properties in ferroelectrics are largely modified from the electrostrictive effect, e.g., tuned, excited, vanished, coupled, decoupled, etc., and this should be taken into account in the development of ferroelectric-based acoustic wave devices.

  2. Experimental quiescent drifting dusty plasmas and temporal dust acoustic wave growth

    SciTech Connect

    Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L.

    2011-11-15

    We report on dust acoustic wave growth rate measurements taken in a dc (anode glow) discharge plasma device. By introducing a mesh with a variable bias 12-17 cm from the anode, we developed a technique to produce a drifting dusty plasma. A secondary dust cloud, free of dust acoustic waves, was trapped adjacent to the anode side of the mesh. When the mesh was returned to its floating potential, the secondary cloud was released and streamed towards the anode and primary dust cloud, spontaneously exciting dust acoustic waves. The amplitude growth of the excited dust acoustic waves was measured directly along with the wavelength and Doppler shifted frequency. These measurements were compared to fluid and kinetic dust acoustic wave theories. As the wave growth saturated a transition from linear to nonlinear waves was observed. The merging of the secondary and primary dust clouds was also observed.

  3. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  4. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  5. Acoustic Wave Treatment For Cellulite—A New Approach

    NASA Astrophysics Data System (ADS)

    Russe-Wilflingseder, Katharina; Russe, Elisabeth

    2010-05-01

    Background and Objectives: Cellulite is a biological caused modification of the female connective tissue. In extracorporeal shockwave therapy (ESWT) pulses are penetrating into the tissue without causing a thermal effect or micro lesions, but leading to a stimulation of tissue metabolism and blood circulation, inducing a natural repair process with cell activation and stem cells proliferation. Recently ESWT treatment showed evidence of remodelling collagen within the dermis and of stimulating microcirculation in fatty tissue. Study Design and Methods: The study was designed to assess acoustic wave treatment for cellulite by comparison treated vs. untreated side (upper-leg and buttock). Each individual served as its own control. 11 females with a BMI less then 30 and an age over 18 years were included. 6 treatments were given weekly with radial acoustic waves. Documentation was done before and 1, 4, 12 weeks after last treatment by standardized photo documentation, relaxed and with muscle contraction, measurement of body weight and circumference of the thigh, pinch test, and evaluation of hormonal status and lifestyle. The efficacy of AWT/EPAT was evaluated before and 1, 4, 12 weeks after last treatment. Patients rated the improvement of cellulite, overall satisfaction and acceptance. The therapist assessed improvement of cellulite, side effects and photo documentation treated vs. untreated side, before vs. after treatment. The blinded investigator evaluated the results using photo documentation right vs. left leg, before vs. after treatment in a frontal, lateral and dorsal view, relaxed and with muscle contraction. Results: The improvement of cellulite at the treated side was rated by patients with 27,3% at week 4 and 12, by the therapist with 34,1% at week 4 and 31,2% at week 12 after the last treatment The blinded investigator could verify an improvement of cellulite in an increasing number of patients with increasing time interval after treatment. No side

  6. High frequency acoustic wave scattering from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Narra, Venkateswarlu

    This thesis describes an experimental investigation of high frequency acoustic wave scattering from turbulent premixed flames. The objective of this work was to characterize the scattered incoherent acoustic field and determine its parametric dependence on frequency, flame brush thickness, incident and measurement angles, mean velocity and flame speed. The experimental facility consists of a slot burner with a flat flame sheet that is approximately 15 cm wide and 12 cm tall. The baseline cold flow characteristics and flame sheet statistics were extensively characterized. Studies were performed over a wide range of frequencies (1-24 kHz) in order to characterize the role of the incident acoustic wave length. The spectrum of the scattered acoustic field showed distinct incoherent spectral sidebands on either side of the driving frequency. The scattered incoherent field was characterized in terms of the incoherent field strength and spectral bandwidth and related to the theoretical predictions. The role of the flame front wrinkling scale, i.e., flame brush thickness, was also studied. Flame brush thickness was varied independent of the mean velocity and flame speed by using a variable turbulence generator. Results are reported for five flame brush thickness cases, ranging from 1.2 mm to 5.2 mm. Some dependence of scattered field characteristics on flame brush thickness was observed, but the magnitude of the effect was much smaller than expected from theoretical considerations. The spatial dependence of the scattered field was investigated by measuring the scattered field at four measurement angles and exciting the flame at four incident angles. Theory predicts that these variations influence the spatial scale of the acoustic wave normal to the flame, a result confirmed by the measurements. Measurements were performed for multiple combinations of mean velocities and flame speeds. The scattered field was observed to depend strongly on the flame speed. Further analysis

  7. Multilayer-graphene-based amplifier of surface acoustic waves

    SciTech Connect

    Yurchenko, Stanislav O. Komarov, Kirill A.; Pustovoit, Vladislav I.

    2015-05-15

    The amplification of surface acoustic waves (SAWs) by a multilayer graphene (MLG)-based amplifier is studied. The conductivity of massless carriers (electrons or holes) in graphene in an external drift electric field is calculated using Boltzmann’s equation. At some carrier drift velocities, the real part of the variable conductivity becomes negative and MLG can be employed in SAW amplifiers. Amplification of Blustein’s and Rayleigh’s SAWs in CdS, a piezoelectric hexagonal crystal of the symmetry group C{sub 6v}, is considered. The corresponding equations for SAW propagation in the device are derived and can be applied to other substrate crystals of the same symmetry. The results of the paper indicate that MLG can be considered as a perspective material for SAW amplification and related applications.

  8. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    PubMed

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  9. A fractional calculus model of anomalous dispersion of acoustic waves.

    PubMed

    Wharmby, Andrew W

    2016-09-01

    An empirical formula based on viscoelastic analysis techniques that employs concepts from the fractional calculus that was used to model the dielectric behavior of materials exposed to oscillating electromagnetic fields in the radiofrequency, terahertz, and infrared bands. This work adapts and applies the formula to model viscoelastic behavior of materials that show an apparent increase of phase velocity of vibration with an increase in frequency, otherwise known as anomalous dispersion. A fractional order wave equation is derived through the application of the classic elastic-viscoelastic correspondence principle whose analytical solution is used to describe absorption and dispersion of acoustic waves in the viscoelastic material displaying anomalous dispersion in a specific frequency range. A brief discussion and comparison of an alternative fractional order wave equation recently formulated is also included.

  10. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2016-12-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  11. Transport Powder and Liquid Samples by Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  12. Surface acoustic wave unidirectional transducers for quantum applications

    NASA Astrophysics Data System (ADS)

    Ekström, Maria K.; Aref, Thomas; Runeson, Johan; Björck, Johan; Boström, Isac; Delsing, Per

    2017-02-01

    The conversion efficiency of electric microwave signals into surface acoustic waves in different types of superconducting transducers is studied with the aim of quantum applications. We compare delay lines containing either conventional symmetric transducers (IDTs) or unidirectional transducers (UDTs) at 2.3 GHz and 10 mK. The UDT delay lines improve the insertion loss with 4.7 dB and a directivity of 22 dB is found for each UDT, indicating that 99.4% of the acoustic power goes in the desired direction. The power lost in the undesired direction accounts for more than 90% of the total loss in IDT delay lines, but only ˜3% of the total loss in the floating electrode unidirectional transducer delay lines.

  13. Surface acoustic wave micromotor with arbitrary axis rotational capability

    NASA Astrophysics Data System (ADS)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  14. Acoustic waves switch based on meta-fluid phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Xue-Feng

    2012-08-01

    The acoustic waves switch based on meta-fluid phononic crystals (MEFL PCs) is theoretically investigated. The MEFL PCs consist of fluid matrix and fluid-like inclusions with extremely anisotropic-density. The dispersion relations are calculated via the plane wave expansion method, which are in good agreement with the transmitted sound pressure level spectra obtained by the finite element method. The results show that the width of absolute band gap in MEFL PCs depends sensitively upon the orientation of the extremely anisotropic-density inclusions and reaches maximum at the rotating angle of 45°, with the gap position nearly unchanged. Also, the inter-mode conversion inside anisotropic-density inclusions can be ignored due to large acoustic mismatch. The study gives a possibility to realize greater flexibility and stronger effects in tuning the acoustic band gaps, which is very significant in the enhanced control over sound waves and has potential applications in ultrasonic imaging and therapy.

  15. New Biosensor Using Shear Horizontal Surface Acoustic Wave Device

    NASA Astrophysics Data System (ADS)

    Kondoh, Jun; Matsui, Yoshikazu; Shiokawa, Showko

    1993-05-01

    This paper describes a new biosensor to detect an enzyme reaction in liquid using surface acoustic wave (SAW) devices fabricated on 36°-rotated Y-cut, X-propagating LiTaO3. The sensing wave on the substrate is a predominantly shear-horizontal-mode SAW (SH-SAW) and is affected by a strong acoustoelectric interaction between the piezoelectric potential and electrical properties of the materials in the adjacent liquid. As an example of an electrical property, pH change associated with an enzyme reaction leads to measurable perturbation in the wave-propagation characteristic. Taking advantage of this phenomenon we realized a SAW biosensor which consists of an immobilized urease membrane on the surface. Also, highly sensitive detection for the urea solution was obtained in our preliminary experiments.

  16. Surface Acoustic Wave Tag-Based Coherence Multiplexing

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Malocha, Donald (Inventor); Saldanha, Nancy (Inventor)

    2016-01-01

    A surface acoustic wave (SAW)-based coherence multiplexing system includes SAW tags each including a SAW transducer, a first SAW reflector positioned a first distance from the SAW transducer and a second SAW reflector positioned a second distance from the SAW transducer. A transceiver including a wireless transmitter has a signal source providing a source signal and circuitry for transmitting interrogation pulses including a first and a second interrogation pulse toward the SAW tags, and a wireless receiver for receiving and processing response signals from the SAW tags. The receiver receives scrambled signals including a convolution of the wideband interrogation pulses with response signals from the SAW tags and includes a computing device which implements an algorithm that correlates the interrogation pulses or the source signal before transmitting against the scrambled signals to generate tag responses for each of the SAW tags.

  17. Analytical description of nonlinear acoustic waves in the solar chromosphere

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.; Chae, Jongchul

    2017-02-01

    Aims: Vertical propagation of acoustic waves of finite amplitude in an isothermal, gravitationally stratified atmosphere is considered. Methods: Methods of nonlinear acoustics are used to derive a dispersive solution, which is valid in a long-wavelength limit, and a non-dispersive solution, which is valid in a short-wavelength limit. The influence of the gravitational field on wave-front breaking and shock formation is described. The generation of a second harmonic at twice the driving wave frequency, previously detected in numerical simulations, is demonstrated analytically. Results: Application of the results to three-minute chromospheric oscillations, driven by velocity perturbations at the base of the solar atmosphere, is discussed. Numerical estimates suggest that the second harmonic signal should be detectable in an upper chromosphere by an instrument such as the Fast Imaging Solar Spectrograph installed at the 1.6-m New Solar Telescope of the Big Bear Observatory.

  18. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Deng, Yu-Qiang; Xu, Di-Hu; Fan, Ren-Hao; Peng, Ru-Wen; Chen, Ze-Guo; Lu, Ming-Hui; Huang, X. R.; Wang, Mu

    2015-01-01

    In this letter, we have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing, and acoustic devices.

  19. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  20. Attenuation of 7 GHz surface acoustic waves on silicon

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Cahill, David G.

    2016-09-01

    We measured the attenuation of GHz frequency surface acoustic waves (SAWs) on the Si (001) surface using an optical pump-probe technique at temperatures between 300 and 600 K. SAWs are generated and detected by a 700 nm Al grating fabricated by nanoimprint lithography. The grating for SAW generation is separated from the grating for SAW detection by ≈150 μ m . The amplitude of SAWs is attenuated by coupling to bulk waves created by the Al grating, diffraction due to the finite size of the source, and the intrinsic relaxational Akhiezer damping of elastic waves in Si. Thermal phonon relaxation time and Grüneisen parameters are fitted using temperature-dependent measurement. The f Q product of a hypothetical micromechanical oscillator limited by Akhiezer damping at this frequency is ˜3 ×1013 Hz.

  1. Subharmonic phased array for crack evaluation using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Ouchi, Akihiro; Sugawara, Azusa; Ohara, Yoshikazu; Yamanaka, Kazushi

    2015-07-01

    To accurately measure closed crack length, we proposed an imaging method using a subharmonic phased array for crack evaluation using surface acoustic waves (SAW SPACE) with water immersion. We applied SAW SPACE to the hole specimen in a fundamental array (FA) image. The hole was imaged with high resolution. Subsequently, SAW SPACE was applied to fatigue crack and stress corrosion crack (SCC) specimens. A fatigue crack was imaged in FA and subharmonic array (SA) images, and the length of this particular fatigue crack measured in the images was almost the same as that measured by optical observation. The SCC was imaged and its length was accurately measured in the SA image, whereas it was underestimated in the FA image and by optical observation. Thus, we demonstrated that SAW SPACE with water immersion is useful for the accurate measurement of closed crack length and for imaging the distribution of open and closed parts of cracks with high resolution.

  2. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  3. Visualization of Surface Acoustic Waves in Thin Liquid Films

    PubMed Central

    Rambach, R. W.; Taiber, J.; Scheck, C. M. L.; Meyer, C.; Reboud, J.; Cooper, J. M.; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  4. Absorption of surface acoustic waves by topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Xu, W.

    2014-08-01

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  5. Multilayer-graphene-based amplifier of surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Yurchenko, Stanislav O.; Komarov, Kirill A.; Pustovoit, Vladislav I.

    2015-05-01

    The amplification of surface acoustic waves (SAWs) by a multilayer graphene (MLG)-based amplifier is studied. The conductivity of massless carriers (electrons or holes) in graphene in an external drift electric field is calculated using Boltzmann's equation. At some carrier drift velocities, the real part of the variable conductivity becomes negative and MLG can be employed in SAW amplifiers. Amplification of Blustein's and Rayleigh's SAWs in CdS, a piezoelectric hexagonal crystal of the symmetry group C6v, is considered. The corresponding equations for SAW propagation in the device are derived and can be applied to other substrate crystals of the same symmetry. The results of the paper indicate that MLG can be considered as a perspective material for SAW amplification and related applications.

  6. Nonextensive dust acoustic waves in a charge varying dusty plasma

    NASA Astrophysics Data System (ADS)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  7. Interaction of acoustic waves generated by coupled plate

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    When two substructures are coupled, the acoustic field generated by the motion of each of the substructures will interact with the motion of the other substructure. This would be the case of a structure enclosing an acoustic cavity. A technique to model the interaction of the generated sound fields from the two components of a coupled structure, and the influence of this interaction on the vibration of the structural components is presented. Using a mobility power flow approach, each element of the substructure is treated independently both when developing the structural response and when determining the acoustic field generated by this component. The presence of the other substructural components is introduced by assuming these components to be rigid baffles. The excitation of one of the substructures is assumed to be by an incident acoustic wave which is dependent of the motion of the substructure. The sound field generated by the motion of the substructure is included in the solution of the response.

  8. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  9. Surface acoustic-wave piezoelectric crystal aerosol mass microbalance

    NASA Astrophysics Data System (ADS)

    Bowers, W. D.; Chuan, R. L.

    1989-07-01

    The development of a particulate mass-sensing instrument based on a quartz-crystal microbalance and enhanced with the new surface acoustic-wave (SAW) technology is reported. Mass sensitivity comparisons of a 158-MHz SAW piezoelectric microbalance and a conventional 10-MHz quartz-crystal microbalance show that the SAW crystal is 266 times more sensitive, in good agreement with the theoretical value of 250. The frequency stability of a single SAW resonator is 6 parts in 10 to the 8th over 1 min. The response to temperature changes is found to be very linear over the range +30 to -30 C. A strong response to 15 ppm SO2 has been demonstrated on a chemically coated SAW crystal.

  10. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.

    PubMed

    Chiu, Chi-Shun; Gwo, Shangjr

    2008-05-01

    The immobilization scheme of monodispersed gold nanoparticles (10-nm diameter) on piezoelectric substrate surfaces using organosilane molecules as cross-linkers has been developed for lithium niobate (LiNbO3) and silicon oxide (SiO2)/gold-covered lithium tantalate (LiTaO3) of Rayleigh and guided shear horizontal- (guided SH) surface acoustic wave (SAW) sensors. In this study, comparative measurements of gold nanoparticle adsorption kinetics using high-resolution field-emission scanning electron microscopy and SAW sensors allow the frequency responses of SAW sensors to be quantitatively correlated with surface densities of adsorbed nanoparticles. Using this approach, gold nanoparticles are used as the "nanosized mass standards" to scale the mass loading in a wide dynamical range. Rayleigh-SAW and guided SH-SAW sensors are employed here to monitor the surface mass changes on the device surfaces in gas and liquid phases, respectively. The mass sensitivity ( approximately 20 Hz.cm2/ng) of Rayleigh-SAW device (fundamental oscillation frequency of 113.3 MHz in air) is more than 2 orders of magnitude higher than that of conventional 9-MHz quartz crystal microbalance sensors. Furthermore, in situ (aqueous solutions), real-time measurements of adsorption kinetics for both citrate-stabilized gold nanoparticles and DNA-gold nanoparticle conjugates are also demonstrated by guided SH-SAW (fundamental oscillation frequency of 121.3 MHz). By comparing frequency shifts between the adsorption cases of gold nanoparticles and DNA-gold nanoparticle conjugates, the average number of bound oligonucleotides per gold nanoparticle can also be determined. The high mass sensitivity ( approximately 6 Hz.cm2/ng) of guided SH-SAW sensors and successful detection of DNA-gold nanoparticle conjugates paves the way for real-time biosensing in liquids using nanoparticle-enhanced SAW devices.

  11. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  12. Wireless SAW Sensors Having Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Gallagher, Mark (Inventor); Malocha, Donald C. (Inventor)

    2015-01-01

    A wireless surface acoustic wave sensor includes a piezoelectric substrate, a surface acoustic wave device formed on the substrate, and an antenna formed on the substrate. In some embodiments, the antenna is formed on the surface of the substrate using one or more of photolithography, thin film processing, thick film processing, plating, and printing.

  13. Method and apparatus for a Fabry-Perot multiple beam fringe sensor

    NASA Technical Reports Server (NTRS)

    James, Kenneth A. (Inventor); Quick, William H. (Inventor); Strahan, Virgil H. (Inventor)

    1986-01-01

    A method and, in one embodiment of the invention, the resulting apparatus for implementing a unique multiple beam fringe sensor that is adapted to be interfaced with a low cost, compact fiber optic transmission system in order to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor is fabricated so as to include a Fabry-Perot gap formed between the ends of two mated optical fibers. By examining the optical characteristics of light that is transmitted through the Fabry-Perot sensor gap, an indication of gap width can be ascertained. Accordingly, a change in Fabry-Perot sensor gap width is related to a change in the particular physical parameter to be measured. In another embodiment of the invention, a second unique multiple beam fringe sensor having a Fabry-Perot gap is disclosed that is also adapted to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor may be fabricated in two segments. A fiber containing segment includes each of a driving optical fiber for supplying incident light signals to the Fabry-Perot gap and a sensing optical fiber for receiving output light signals that have been transmitted twice through the Fabry-Perot gap, the optical characteristics of which output signals provide an indication of the parameter to be sensed. A transducer segment includes the Fabry-Perot gap formed therein and means responsive to the physical parameter for changing the width of the Fabry-Perot gap and, accordingly, the optical characteristics of the light signals passing therethrough.

  14. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet

    2017-03-02

    It has been reported that acoustic waves are generated when a high energy pulsed proton beam is deposited in a small volume within tissue. One possible application of the proton induced acoustics is to get a real-time feedback for intratreatment adjustments by monitoring such acoustic waves. High spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution to the proton induced acoustic wave is presented to reveal the dependence of signal on beam parameters, and then combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration, and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of proton-acoustic signals. Our results show that smaller spill time of proton beam upsurges the amplitude of acoustic wave for constant number of protons, and hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  15. Influence of intermediate aminodextran layers on the signal response of surface acoustic wave biosensors.

    PubMed

    Länge, Kerstin; Rapp, Michael

    2008-06-15

    Surface acoustic wave (SAW) devices based on horizontally polarized surface shear waves enable direct and label-free detection of proteins in real time. Binding reactions on the sensor surface are detected by determining changes in surface wave velocity caused mainly by mass adsorption or change of viscoelasticity in the sensing layer. Intermediate hydrogel layers have been proven to be useful to immobilize capture molecules or ligands corresponding to the analyte. However, the SAW signal response strongly depends on the morphology of the hydrogel due to different relative changes of its acoustomechanical parameters such as viscoelasticity and density. In this work five aminodextrans (AMD) and one diamino polyethylene glycol (DA-PEG) were used as intermediate hydrogel layers. Sensors with immobilized streptavidin and samples containing biotinylated bovine serum albumin were used to exemplify affinity assays based on immobilized capture molecules for protein detection. The effects of the three-dimensional AMDs and the two-dimensional (2D) DA-PEG on the SAW signal response were investigated. The signal height decreased with increasing molar mass and increasing amount of immobilized AMD. Consequently, thin hydrogel layers are ideal to obtain optimum signal responses in this type of assay, whereas it is not necessarily a 2D hydrogel that gives the best results.

  16. Experimental observation of surface acoustic wave Brillouin scattering in a small-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Tchahame, Joël. Cabrel; Sylvestre, Thibaut; Phan Huy, Kien; Kudlinski, Alexandre; Laude, Vincent; Beugnot, Jean-Charles

    2016-04-01

    Light propagation in small-core photonic crystal fibers enables tight optical confinement over long propagation lengths to enhance light-matter interactions. Not only can photonic crystal fibers compress light spatially, they also provide a tunable means to control light-hypersound interactions. By exploring Brillouin light scattering in a small-core and high air-filling fraction microstructured fiber, we report the observation of Brillouin scattering from surface acoustic waves at lower frequencies than standard Brillouin scattering from bulk acoustic waves. This effect could find potential applications for optical sensing technologies that exploit surface acoustic waves.

  17. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  18. Coupling of acoustic waves to clouds in the jovian troposphere

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick; Mosser, Benoît

    2005-11-01

    Seismology is the best tool for investigating the interior structure of stars and giant planets. This paper deals with a photometric study of jovian global oscillations. The propagation of acoustic waves in the jovian troposphere is revisited in order to estimate their effects on the planetary albedo. According to the standard model of the jovian cloud structure there are three major ice cloud layers (e.g., [Atreya et al., 1999. A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet Space Sci. 47, 1243-1262]). We consider only the highest layers, composed of ammonia ice, in the region where acoustic waves are trapped in Jupiter's atmosphere. For a vertical wave propagating in a plane parallel atmosphere with an ammonia ice cloud layer, we calculate first the relative variations of the reflected solar flux due to the smooth oscillations at about the ppm level. We then determine the phase transitions induced by the seismic waves in the clouds. These phase changes, linked to ice particle growth, are limited by kinetics. A Mie model [Mishchenko et al., 2002. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge Univ. Press, Cambridge, pp. 158-190] coupled with a simple radiation transfer model allows us to estimate that the albedo fluctuations of the cloud perturbed by a seismic wave reach relative variations of 70 ppm for a 3-mHz wave. This albedo fluctuation is amplified by a factor of ˜70 relative to the previously published estimates that exclude the effect of the wave on cloud properties. Our computed amplifications imply that jovian oscillations can be detected with very precise photometry, as proposed by the microsatellite JOVIS project, which is dedicated to photometric seismology [Mosser et al., 2004. JOVIS: A microsatellite dedicated to the seismic analysis of Jupiter. In: Combes, F., Barret, D., Contini, T., Meynadier, F., Pagani, L. (Eds.), SF2A-2004

  19. Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Yuan, Baoguo; Cheng, Ying; Liu, Xiaojun

    2016-02-01

    We have realized the acoustic rainbow trapping in the low frequency region (200-500 Hz) through micro Mie resonance-based structures. The structure has eight channels with a high refractive index obtained by coiling space, that can excite strong interactions with incident waves and support various orders of multipoles due to the Mie resonances of the microstructure. By utilizing the structure, the precise spatial modulation of the acoustic wave is demonstrated both theoretically and experimentally. The effect of trapping broadband acoustic waves and spatially separating different frequency components are ascribed to the monopolar Mie resonances of the structures. The trapping frequency is derived and the trapping positions can be tuned arbitrarily. With enhanced wave-structure interactions and tailored frequency responses, such micro structures show precise spectral-spatial control of acoustic waves and open a diverse venue for high performance acoustic wave detection, sensing, filtering, and a nondestructive test.

  20. Computation of Acoustic Waves Through Sliding-Zone Interfaces Using an Euler/Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    1996-01-01

    The effect of a patched sliding-zone interface on the transmission of acoustic waves is examined for two- and three-dimensional model problems. A simple but general interpolation scheme at the patched boundary passes acoustic waves without distortion, provided that a sufficiently small time step is taken. A guideline is provided for the maximum permissible time step or zone speed that gives an acceptable error introduced by the sliding-zone interface.

  1. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    PubMed

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-07

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  2. Diffraction correction for precision surface acoustic wave velocity measurements

    NASA Astrophysics Data System (ADS)

    Ruiz M., Alberto; Nagy, Peter B.

    2002-09-01

    Surface wave dispersion measurements can be used to nondestructively characterize shot-peened, laser shock-peened, burnished, and otherwise surface-treated specimens. In recent years, there have been numerous efforts to separate the contribution of surface roughness from those of near-surface material variations, such as residual stress, texture, and increased dislocation density. As the accuracy of the dispersion measurements was gradually increased using state-of-the-art laser-ultrasonic scanning and sophisticated digital signal processing methods, it was recognized that a perceivable dispersive effect, similar to the one found on rough shot-peened specimens, is exhibited by untreated smooth surfaces as well. This dispersion effect is on the order of 0.1%, that is significantly higher than the experimental error associated with the measurements and comparable to the expected velocity change produced by near-surface compressive residual stresses in metals below their yield point. This paper demonstrates that the cause of this apparent dispersion is the diffraction of the surface acoustic wave (SAW) as it travels over the surface of the specimen. The results suggest that a diffraction correction may be introduced to increase the accuracy of surface wave dispersion measurements. A simple diffraction correction model was developed for surface waves and this correction was subsequently validated by laser-interferometric velocity measurements on aluminum specimens. copyright 2002 Acoustical Society of America.

  3. Nonlinear behavior of acoustic waves in combustion chambers

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1975-01-01

    The nonlinear growth and limiting amplitude of acoustic waves in a combustion chamber are considered. A formal framework is provided within which practical problems can be treated with a minimum of effort and expense. The general conservation equations were expanded in two small parameters, one characterizing the mean flow field and one measuring the amplitude of oscillations, and then combined to yield a nonlinear inhomogeneous wave equation. The unsteady pressure and velocity fields were expressed as syntheses of the normal modes of the chamber, but with unknown time-varying amplitudes. This procedure yielded a representation of a general unsteady field as a system of coupled nonlinear oscillators. The system of nonlinear equations was treated by the method of averaging to produce a set of coupled nonlinear first order differential equations for the amplitudes and phases of the modes. The analysis is applicable to any combustion chamber. The most interesting applications are probably to solid rockets, liquid rockets, or thrust augmentors on jet engines.

  4. Acoustic wave filter based on periodically poled lithium niobate.

    PubMed

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  5. Simulation of surface acoustic wave motor with spherical slider.

    PubMed

    Morita, T; Kurosawa, M K; Higuchi, T

    1999-01-01

    The operation of a surface acoustic wave (SAW) motor using spherical-shaped sliders was demonstrated by Kurosawa et al. (1994). It was necessary to modify the previous simulation models for usual ultrasonic motors because of this slider shape and the high frequency vibration. A conventional ultrasonic motor has a flat contact surface slider and a hundredth driving frequency; so, the tangential motion caused by the elasticity of the slider and stator with regard to the spherical slider of the SAW motor requires further investigation. In this paper, a dynamic simulation model for the SAW motor is proposed. From the simulation result, the mechanism of the SAW motor was clarified (i.e., levitation and contact conditions were repeated during the operation). The transient response of the motor speed was simulated. The relationships between frictional factor and time constant and vibration velocity of the stator and the slider speed were understood. The detailed research regarding the elastic deformation caused by preload would be helpful to construct an exact simulation model for the next work.

  6. Surface acoustic wave enabled pipette on a chip.

    PubMed

    Sesen, Muhsincan; Devendran, Citsabehsan; Malikides, Sean; Alan, Tuncay; Neild, Adrian

    2017-01-31

    Mono-disperse droplet formation in microfluidic devices allows the rapid production of thousands of identical droplets and has enabled a wide range of chemical and biological studies through repeat tests performed at pico-to-nanoliter volume samples. However, it is exactly this efficiency of production which has hindered the ability to carefully control the location and quantity of the distribution of various samples on a chip - the key requirement for replicating micro well plate based high throughput screening in vastly reduced volumetric scales. To address this need, here, we present a programmable microfluidic chip capable of pipetting samples from mobile droplets with high accuracy using a non-contact approach. Pipette on a chip (PoaCH) system selectively ejects (pipettes) part of a droplet into a customizable reaction chamber using surface acoustic waves (SAWs). Droplet pipetting is shown to range from as low as 150 pL up to 850 pL with precision down to tens of picoliters. PoaCH offers ease of integration with existing lab on a chip systems as well as a robust and contamination-free droplet manipulation technique in closed microchannels enabling potential implementation in screening and other studies.

  7. Controlling cell-cell interactions using surface acoustic waves.

    PubMed

    Guo, Feng; Li, Peng; French, Jarrod B; Mao, Zhangming; Zhao, Hong; Li, Sixing; Nama, Nitesh; Fick, James R; Benkovic, Stephen J; Huang, Tony Jun

    2015-01-06

    The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.

  8. A Schamel equation for ion acoustic waves in superthermal plasmas

    SciTech Connect

    Williams, G. Kourakis, I.; Verheest, F.; Hellberg, M. A.; Anowar, M. G. M.

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  9. Effects of acoustic wave resonance oscillation on immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-03-01

    In aiming at developing a new method to artificially activate enzyme catalysts immobilized on surface, the effects of resonance oscillation of bulk acoustic waves were studied. Glucose oxidase (GOD) was immobilized by a covalent coupling method on a ferroelectric lead zirconate titanate (PZT) device that was able to generate thickness-extensional resonance oscillation (TERO). Glucose oxidation by the GOD enzyme was studied in a microreactor. The generation of TERO immediately increased the catalytic activity of immobilized GOD by a factor of 2-3. With turn-off of TERO, no significant activity decrease occurred, and 80-90% of the enhanced activity was maintained while the reaction proceeded. The almost complete reversion of the activity to the original low level before TERO generation was observed when the immobilized GOD was exposed to a glucose substrate-free solution. These results indicated that the presence of glucose substrate was essential for TERO-induced GOD activation and preservation of the increased activity level. The influences of reaction temperature, glucose concentration, pH, and rf electric power on the TERO activation showed that TERO strengthened the interactions of the immobilized enzyme with glucose substrate and hence promoted the formation of an activation complex.

  10. Radiative Amplification of Acoustic Waves in Hot Stars

    NASA Technical Reports Server (NTRS)

    Wolf, B. E.

    1985-01-01

    The discovery of broad P Cygni profiles in early type stars and the detection of X-rays emitted from the envelopes of these stars made it clear, that a considerable amount of mechanical energy has to be present in massive stars. An attack on the problem, which has proven successful when applied to late type stars is proposed. It is possible that acoustic waves form out of random fluctuations, amplify by absorbing momentum from stellar radiation field, steepen into shock waves and dissipate. A stellar atmosphere was constructed, and sinusoidal small amplitude perturbations of specified Mach number and period at the inner boundary was introduced. The partial differential equations of hydrodynamics and the equations of radiation transfer for grey matter were solved numerically. The equation of motion was augmented by a term which describes the absorption of momentum from the radiation field in the continuum and in lines, including the Doppler effect and allows for the treatment of a large number of lines in the radiative acceleration term.

  11. Spatial selective manipulation of microbubbles by tunable surface acoustic waves

    PubMed Central

    Zhou, Wei; Niu, Lili; Cai, Feiyan; Li, Fei; Wang, Chen; Huang, Xiaowei; Wang, Jingjing; Wu, Junru; Meng, Long; Zheng, Hairong

    2016-01-01

    A microfluidic device based on a pair of slant-finger interdigital transducers (SFITs) is developed to achieve a selective and flexible manipulation of microbubbles (MBs) by surface acoustic waves (SAWs). The resonance frequency of SAWs generated by the SFITs depends on the location of its parallel pathway; the particles at different locations of the SAWs' pathway can be controlled selectively by choosing the frequency of the excitation signal applied on the SFITs. By adjusting the input signal continuously, MBs can be transported along the acoustic aperture precisely. The displacement of MBs has a linear relationship with the frequency shift. The resolution of transportation is 15.19 ± 2.65 μm when the shift of input signal frequency is at a step of 10 kHz. In addition, the MBs can be controlled in a two-dimensional plane by combining variations of the frequency and the relative phase of the excitation signal applied on the SFITs simultaneously. This technology may open up the possibility of selectively and flexibly manipulating MBs using a simple one-dimensional device. PMID:27462381

  12. Propagation and localization of acoustic waves in Fibonacci phononic circuits

    NASA Astrophysics Data System (ADS)

    Aynaou, H.; El Boudouti, E. H.; Djafari-Rouhani, B.; Akjouj, A.; Velasco, V. R.

    2005-07-01

    A theoretical investigation is made of acoustic wave propagation in one-dimensional phononic bandgap structures made of slender tube loops pasted together with slender tubes of finite length according to a Fibonacci sequence. The band structure and transmission spectrum is studied for two particular cases. (i) Symmetric loop structures, which are shown to be equivalent to diameter-modulated slender tubes. In this case, it is found that besides the existence of extended and forbidden modes, some narrow frequency bands appear in the transmission spectra inside the gaps as defect modes. The spatial localization of the modes lying in the middle of the bands and at their edges is examined by means of the local density of states. The dependence of the bandgap structure on the slender tube diameters is presented. An analysis of the transmission phase time enables us to derive the group velocity as well as the density of states in these structures. In particular, the stop bands (localized modes) may give rise to unusual (strong normal) dispersion in the gaps, yielding fast (slow) group velocities above (below) the speed of sound. (ii) Asymmetric tube loop structures, where the loops play the role of resonators that may introduce transmission zeros and hence new gaps unnoticed in the case of simple diameter-modulated slender tubes. The Fibonacci scaling property has been checked for both cases (i) and (ii), and it holds for a periodicity of three or six depending on the nature of the substrates surrounding the structure.

  13. Application of the Parareal Algorithm for Acoustic Wave Propagation

    SciTech Connect

    Mercerat, Diego; Guillot, Laurent; Vilotte, Jean-Pierre

    2009-09-09

    We present an application of the parareal algorithm to solve wave propagation problems in the time domain. The parareal algorithm is based on a decomposition of the integration time interval in time slices. It involves a serial prediction step based on a coarse approximation, and a correction step (computed in parallel) based on a fine approximation within each time slice. In our case, the spatial discretization is based on a spectral element approximation which allows flexible and accurate wave simulations in complex geological media. Fully explicit time advancing schemes are classically used for both coarse and fine solvers.In a first stage, we solve the 1D acoustic wave equation in an homogeneous medium in order to test stability and convergence properties of the parareal algorithm. We confirmed the stability problems outlined by Bal and Farhat et al. for hyperbolic problems. These stability issues are mitigated by a time-discontinuous Galerkin discretization of the coarse solver. It may also involve a coarser spatial discretization (hp-refinement) which helps to preserve stability and allows more significant computer savings. Besides, we explore the contribution of elastodynamic homogenization to build consistent coarse grid solvers. Extension to 2D/3D realistic geological media is an ongoing work.

  14. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions.

  15. Growth and characterization of zinc oxide and PZT films for micromachined acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sang Hoon

    The ability to detect the presence of low concentrations of harmful substances, such as biomolecular agents, warfare agents, and pathogen cells, in our environment and food chain would greatly advance our safety, provide more sensitive tools for medical diagnostics, and protect against terrorism. Acoustic wave (AW) devices have been widely studied for such applications due to several attractive properties, such as rapid response, reliability, portability, ease of use, and low cost. The principle of these sensors is based on a fundamental feature of the acoustic wave that is generated and detected by a piezoelectric material. The performance of the device, therefore, greatly depends on the properties of piezoelectric thin film. The required properties include a high piezoelectric coefficient and high electromechanical coefficients. The surface roughness and the mechanical properties, such as Young's modulus and hardness, are also factors that can affect the wave propagation of the device. Since the film properties are influenced by the structure of the material, understanding thin film structure is very important for the design of high-performance piezoelectric MEMS devices for biosensor applications. In this research, two piezoelectric thin film materials were fabricated and investigated. ZnO films were fabricated by CSD (Chemical Solution Deposition) and sputtering, and PZT films were fabricated by CSD only. The process parameters for solution derived ZnO and PZT films, such as the substrate type, the effect of the chelating agent, and heat treatment, were studied to find the relationship between process parameters and thin film structure. In the case of the sputtered ZnO films, the process gas types and their ratio, heat treatment in situ, and post deposition were investigated. The key results of systematic experiments show that the combined influence of chemical modifiers and substrates in chemical solution deposition have an effect on the crystallographic

  16. Analysis of Acoustic Wave and Current Data Offshore of Mytle Beach, South Carolina

    NASA Astrophysics Data System (ADS)

    Fall, K. A.; Wren, A.

    2008-12-01

    Two bottom boundary layer (BBL) instrument frames have been deployed on the shoreface and inner-shelf of Long Bay, South Carolina offshore of Myrtle Beach as part of a South Carolina Sea Grant funded project to measure sediment transport over two hardbottom habitats. The inshore instrument frame is located on an extensive hardbottom surface 850 meters offshore. The second instrumented frame is secured to a hardbottom surface on the inner-shelf at a distance of approximately 2.5 km offshore. The nearshore BBL observing system is composed of a downward-looking RDI/ Teledyne 1200 kHz Pulse-Coherent Acoustic Doppler Current Profiler, an upward-looking Nortek Acoustic Wave and Current Profiler (AWAC), and an Aquatec Acoustic Backscatter Sensor. As part of this larger study, the wave and current data from the AWAC have been analyzed. Long-term continuous time series data include wave height, wave period, directional wave spectra, and the magnitude and direction of currents in the water column. Within the data set are several wave events, including several frontal passages and Tropical Storm Hanna which hit the Myrtle Beach area in early September. Wave data have been correlated with meteorological data, and a comparison of shoreface wave characteristics during each type of event are presented.

  17. Development of Surface Acoustic Wave-Based Microgyroscope Utilizing Progressive Wave

    NASA Astrophysics Data System (ADS)

    Oh, Haekwan; Yang, Sangsik; Lee, Keekeun

    2010-06-01

    An 80 MHz surface acoustic wave (SAW)-based gyroscope utilizing a progressive wave was developed on a 128° YX LiNbO3 piezoelectric substrate. The sensor developed consists of two SAW oscillators in which one is used as the sensing element and has metallic dots in the cavity between input and output interdigital transducers (IDTs). The other is used as the reference element. Coupling of modes (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. On the basis of the simulation results, the device was fabricated and then measured on a rate table. When the device was subjected to an angular rotation, oscillation frequency differences between the two oscillators were observed because of the Coriolis force acting on the metallic dots. Depending on the angular velocity, the difference in oscillation frequency was modulated. The obtained sensitivity was approximately 52.35 Hz deg-1 s-1 at an angular rate range of 0-1000 deg/s. Device performances at different mass weights, mass positions, and temperatures were characterized. Good thermal stability was also observed during the evaluation process.

  18. Vapor sensing by means of a ZnO-on-Si surface acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Martin, S. J.; Schweizer, K. S.; Schwartz, S. S.; Gunshor, R. L.

    Surface Acoustic Wave (SAW) devices can function as sensitive detectors of vapors. The high surface acoustic energy density of the device makes it extremely sensitive to the presence of molecules adsorbed from the gas phase. Mass loading by the adsorbate is the primary mechanism for the surface wave velocity perturbation. If the device is used as the frequency control element of an oscillator, perturbations in wave velocity on the order of 10 parts per billion may be resolved by means of a frequency counter. Zno-on-Si SAW resonators have been examined as vapor sensors. The piezoelectric ZnO layer permits transduction between electrical and acoustic energies, as well as endowing the surface with particular adsorptive properties. These devices exhibit C-values up to 12,000 at a resonant frequency of 109 MHZ. The resonant frequency of the device shifts upon exposure to a vapor-air mixture, with a transient response which is distinct for each of the organic vapors tested. Due to the permeability of the polycrystalline ZnO layer, the instantaneous reversibility of the resonant frequency shift is found to depend on the type of adsorbed molecule.

  19. Finite element method analysis of surface acoustic wave devices with microcavities for detection of liquids

    NASA Astrophysics Data System (ADS)

    Senveli, Sukru U.; Tigli, Onur

    2013-12-01

    This paper introduces the use of finite element method analysis tools to investigate the use of a Rayleigh type surface acoustic wave (SAW) sensor to interrogate minute amounts of liquids trapped in microcavities placed on the delay line. Launched surface waves in the ST-X quartz substrate couple to the liquid and emit compressional waves. These waves form a resonant cavity condition and interfere with the surface waves in the substrate. Simulations show that the platform operates in a different mechanism than the conventional mass loading of SAW devices. Based on the proposed detection mechanism, it is able to distinguish between variations of 40% and 90% glycerin based on phase relations while using liquid volumes smaller than 10 pl. Results from shallow microcavities show high correlation with sound velocity parameter of the liquid whereas deeper microcavities display high sensitivities with respect to glycerin concentration. Simulated devices yield a maximum sensitivity of -0.77°/(% glycerin) for 16 μm wavelength operation with 8 μm deep, 24 μm wide, and 24 μm long microcavities.

  20. Development of novel acoustic wave biosensor platforms based on magnetostriction and fabrication of magnetostrictive nanowires

    NASA Astrophysics Data System (ADS)

    Li, Suiqiong

    There is an urgent need for biosensors that are able to detect and quantify the presence of a small amount of biological threat agents in a real-time manner. Acoustic wave (AW) devices, whose performance is defined by mass sensitivity (Sm) and merit quality factor (Q value), have been extensively studied as high performance biosensor platforms. However, current AW devices face some challenges in practical applications. In this research, two types of AW devices---magnetostrictive microcantilever (MSMC) and completely free-standing magnetostrictive particle (MSP)---were developed. The research consists of two parts: (1) Design and the feasibility study of MSMC and MSP based sensor technology; (2) Fabrication and characterization of micro/nano MSPs made of amorphous Fe-B alloy. Both MSMC and MSP based sensors are wireless/remote and work well in liquid, which makes the sensors good candidates for in-situ detection. The performance of MSMC was simulated and compared with the state of art AW devices: microcantilevers. The MSMC exhibits the following advantages: (1) remote/wireless driving and sensing; (2) ease of fabrication; (3) works well in liquid; (4) exhibits a high Q value (> 500 in air); (5) well suited for sensor array development. MSMCs in milli/micro sizes were fabricated and their performance was characterized in air and liquid. The experimental results confirm the advantages of MSMC mentioned above. The in situ detection of the yeast cells and Bacillus anthracis spores in water were performed using MSMC biosensors. MSPs in the shape of strip and bar were investigated. Strip-shape MSPs in milli/micro sizes were fabricated. The resonance behaviors of MSPs at the even and odd vibration modes were analyzed. MSP exhibits a Sm about 100 times greater, and a Q value about 10 times greater, than MCs. A multiple-sensor and a multiple-target approach were developed to further enhance the performance of MSP-based sensors. A unique methodology was created to detect the

  1. Sensor chip and apparatus for tactile and/or flow sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2008-01-01

    A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.

  2. Sensor chip and apparatus for tactile and/or flow sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2009-01-01

    A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.

  3. Method and apparatus for signal processing in a sensor system for use in spectroscopy

    DOEpatents

    O'Connor, Paul; DeGeronimo, Gianluigi; Grosholz, Joseph

    2008-05-27

    A method for processing pulses arriving randomly in time on at least one channel using multiple peak detectors includes asynchronously selecting a non-busy peak detector (PD) in response to a pulse-generated trigger signal, connecting the channel to the selected PD in response to the trigger signal, and detecting a pulse peak amplitude. Amplitude and time of arrival data are output in first-in first-out (FIFO) sequence. An apparatus includes trigger comparators to generate the trigger signal for the pulse-receiving channel, PDs, a switch for connecting the channel to the selected PD, and logic circuitry which maintains the write pointer. Also included, time-to-amplitude converters (TACs) convert time of arrival to analog voltage and an analog multiplexer provides FIFO output. A multi-element sensor system for spectroscopy includes detector elements, channels, trigger comparators, PDs, a switch, and a logic circuit with asynchronous write pointer. The system includes TACs, a multiplexer and analog-to-digital converter.

  4. Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows

    SciTech Connect

    Uchava, E. S.; Shergelashvili, B. M.; Tevzadze, A. G.; Poedts, S.

    2014-08-15

    We present a linear stability analysis of the perturbation modes in anisotropic magnetohydrodynamic (MHD) flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model that takes into account not only the effect of pressure anisotropy but also the effect of anisotropic heat fluxes. In this model, the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also important in astrophysical environments, where it will limit the maximal value of magnetic field that a low density ionized anisotropic flow can sustain.

  5. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    NASA Astrophysics Data System (ADS)

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  6. A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light

    NASA Astrophysics Data System (ADS)

    Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.

    2014-06-01

    A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.

  7. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    PubMed

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  8. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1

    PubMed Central

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-01-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976

  9. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.

    PubMed

    George, Joseph; Sujith, R I

    2009-10-01

    Chagelishvili et al. [Phys. Rev. Lett. 79, 3178 (1997)] discovered a linear mechanism of acoustic wave emergence from vorticity fluctuations in shear flows. This paper illustrates how this "nonresonant" phenomenon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is proposed in this paper. The correct "acoustic source" is identified and the reason for the abrupt nature of wave emergence is explained. The impact of viscous damping is also discussed.

  10. Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu

    2017-03-01

    Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.

  11. Method and apparatus for separating mixtures of gases using an acoustic wave

    DOEpatents

    Geller, Drew A.; Swift, Gregory W.; Backhaus, Scott N.

    2004-05-11

    A thermoacoustic device separates a mixture of gases. An elongated duct is provided with first and second ends and has a length that is greater than the wavelength of sound in the mixture of gases at a selected frequency, and a diameter that is greater than a thermal penetration depth in the mixture of gases. A first acoustic source is located at the first end of the duct to generate acoustic power at the selected frequency. A plurality of side branch acoustic sources are spaced along the length of the duct and are configured to introduce acoustic power into the mixture of gases so that a first gas is concentrated at the first end of the duct and a second gas is concentrated at the second end of the duct.

  12. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole.

    PubMed

    Ayankojo, Akinrinade George; Tretjakov, Aleksei; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres; Rappich, Jörg; Furchner, Andreas; Hinrichs, Karsten; Syritski, Vitali

    2016-01-19

    The synergistic effect of combining molecular imprinting and surface acoustic wave (SAW) technologies for the selective and label-free detection of sulfamethizole as a model antibiotic in aqueous environment was demonstrated. A molecularly imprinted polymer (MIP) for sulfamethizole (SMZ) selective recognition was prepared in the form of a homogeneous thin film on the sensing surfaces of SAW chip by oxidative electropolymerization of m-phenylenediamine (mPD) in the presence of SMZ, acting as a template. Special attention was paid to the rational selection of the functional monomer using computational and spectroscopic approaches. SMZ template incorporation and its subsequent release from the polymer was supported by IR microscopic measurements. Precise control of the thicknesses of the SMZ-MIP and respective nonimprinted reference films (NIP) was achieved by correlating the electrical charge dosage during electrodeposition with spectroscopic ellipsometry measurements in order to ensure accurate interpretation of label-free responses originating from the MIP modified sensor. The fabricated SMZ-MIP films were characterized in terms of their binding affinity and selectivity toward the target by analyzing the binding kinetics recorded using the SAW system. The SMZ-MIPs had SMZ binding capacity approximately more than eight times higher than the respective NIP and were able to discriminate among structurally similar molecules, i.e., sulfanilamide and sulfadimethoxine. The presented approach for the facile integration of a sulfonamide antibiotic-sensing layer with SAW technology allowed observing the real-time binding events of the target molecule at nanomolar concentration levels and could be potentially suitable for cost-effective fabrication of a multianalyte chemosensor for analysis of hazardous pollutants in an aqueous environment.

  13. Acousto-Optic Interaction in Surface Acoustic Waves and Its Application to Real Time Signal Processing.

    DTIC Science & Technology

    1977-12-30

    ACOUSTO - OPTIC INTERACTION IN SURFACE ACOUSTIC WAVES AND ITS APP--ETC(U) DEC 77 0 SCHUMER, P DAS NOOOIJ -75-C-0772 NCLASSIFIED MA-ONR-30 Nt.EE E’h...CHART NAT*NAL BUREAU OF STANDARDS 1-63- ACOUSTO - OPTIC INTERACTION IN SURFACE ACOUSTIC WAVES AND ITS APPLICATION TO REAL TIME SIGNAL PROCESSING By 00 D... Acousto - optics , Integrated optics, Optical Signal Processing. 20. AbSKTRACT (Continue an reverse side it neceary and idewnt& by block mum ber) The

  14. Asymptotic permanent profile of the ion acoustic wave driven by the Langmuir wave

    NASA Astrophysics Data System (ADS)

    Kaup, D. J.; Latifi, A.; Leon, J.

    1992-08-01

    We study the evolution of Langmuir waves coupled to the ion acoustic wave by means of the ponderomotive force in the Karpman limit (caviton equation). Using the spectral transform with singular dispersion relation, it is shown that the background noise (fluctuations in the ion density) is amplified and its time asymptotic behavior will be a static solution which is totally reflective for the Langmuir wave. Moreover, if the initial ion density contains a local depression, the asymptotic profile will contain a number of permanent localized density depressions (cavitons), static in the rest frame of the acoustic wave and entrained in its wake.

  15. Simultaneous realization of negative group velocity, fast and slow acoustic waves in a metamaterial

    NASA Astrophysics Data System (ADS)

    Li, Xiao-juan; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Chen, Zhe; Ding, Jin; Zhang, Hui

    2016-06-01

    An acoustic metamaterial is designed based on a simple and compact structure of one string of side pipes arranged along a waveguide, in which diverse group velocities are achieved. Owing to Fabry-Perot resonance of the side pipes, a negative phase time is achieved, and thus, acoustic waves transmitting with negative group velocities are produced near the resonant frequency. In addition, both fast and slow acoustic waves are also observed in the vicinity of the resonance frequency. The extraordinary group velocities can be explained based on spectral rephasing induced by anomalous dispersion on the analogy of Lorentz dispersion in electromagnetic waves.

  16. Bleustein-Gulyaev-Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals.

    PubMed

    Hsu, Jin-Chen; Wu, Tsung-Tsong

    2006-06-01

    In this paper, we present a study on the existence of Bleustein-Gulyaev-Shimizu piezoelectric surface acoustic waves in a two-dimensional piezoelectric phononic crystal (zinc oxide, ZnO, and cadmium-sulfide, CdS) using the plane wave expansion method. In the configuration of ZnO (100)/CdS(100) phononic crystal, the calculated results show that this type of surface waves has higher acoustic wave velocities, high electromechanical coupling coefficients, and larger band gap width than those of the Rayleigh surface waves and pseudosurface waves. In addition, we find that the folded modes of the Bleustein-Gulyaev-Shimizu surface waves have higher coupling coefficients.

  17. Peculiar transmission property of acoustic waves in a one-dimensional layered phononic crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Wang, Wengang; Liu, Zhengyou; Shi, Jing; Wen, Weijia

    2007-03-01

    In this article, we report both theoretical calculation and experimental observation of acoustic waves abnormally through a one-dimensional layered transmitted phononic crystal at frequencies within the band gap into a material of large acoustic impedance mismatch, with an efficiency as high as unity. The transmission peaks can be interpreted as a result of the interference of acoustic waves reflected from all periodically aligned interfaces. The condition for the appearance of peaks is analyzed in detail and the optimized layer number is given for different configurations.

  18. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.

    PubMed

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze

    2017-03-29

    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed.

  19. Theoretical and experimental investigations of acoustic waves in embedded fluid-solid multi-string structures

    NASA Astrophysics Data System (ADS)

    Liu, Yang; D'Angelo, Ralph M.; Sinha, Bikash K.; Zeroug, Smaine

    2017-03-01

    Current acoustic measurements provide viable inspection for single cased wells, yet their interpretation for complicated multi-string wellbores where, for instance, two or more nested steel strings are deployed, is largely hampered by a lack of knowledge of the measured acoustic wave fields. This letter reports on theoretical and experimental investigations of the acoustic wave propagation in fluid-filled double string systems. Experimental measurements show excellent agreement with the theoretical predictions by a Sweeping Frequency Finite Element Method. The results lead to the identification of acoustic signatures that are crucial for an effective diagnosis of cement conditions in double-string cased wellbores.

  20. Resonant mechanical meta-interface suppressing transmission of acoustic waves without mode conversion

    NASA Astrophysics Data System (ADS)

    Gusev, Vitalyi E.

    2015-02-01

    Physical principles for the creation of meta-interfaces between two elastic media supporting transmission of only mode-converted acoustic waves by use of arrays of resonant mechanical elements that transfer shear and compression/dilatation forces are revealed. Analytical modelling of mechanical structural vibrations according to a lumped-element approximation for mechanical elements oriented obliquely to the interface shows that such meta-interfaces can be applied to the directional transmission of the acoustic waves between solids and liquids. Applications include the acoustic isolation of solid objects in a liquid environment and the reduction of the detection efficiency of solid-object vibrations.

  1. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  2. Nonreciprocal propagation of surface acoustic wave in Ni/LiNbO 3

    NASA Astrophysics Data System (ADS)

    Sasaki, R.; Nii, Y.; Iguchi, Y.; Onose, Y.

    2017-01-01

    We investigated surface acoustic wave propagation in a Ni/LiNbO3 hybrid device. We found that the absorption and phase velocity are dependent on the sign of the wave vector, which indicates that the surface acoustic wave propagation has nonreciprocal characteristics induced by simultaneous breaking of time-reversal and spatial inversion symmetries. The nonreciprocity was reversed by 180∘ rotation of the magnetic field. The origin of the nonreciprocity is ascribed to interference of shear-type and longitudinal-type magnetoelastic couplings.

  3. Observation of stimulated electron acoustic wave scattering: the case for nonlinear kinetic effects

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Cobble, J. A.; Fernandez, J. C.; Rose, H. A.; Focia, R. J.; Russell, D. A.

    2001-10-01

    Electrostatic waves with a frequency and phase velocity between an ion acoustic wave (IAW) and an electron plasma wave (EPW) have been observed with Thomson scattering in inhomogeneous plasmas, and in the backscattered spectrum for homogeneous single hot spot laser plasmas. We show that these waves are consistent with an electron-acoustic wave (EAW) that is a BGK-like mode due to electron trapping. The nonlinear dispersion relation for BGK-like EPW and EAW is discussed, and previous inhomogeneous Trident and Nova data are re-examined in this context. The possible implications of these results for backscattered SRS on the NIF are discussed.

  4. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  5. Numerical simulation of scattering of acoustic waves by inelastic bodies using hypersingular boundary integral equation

    SciTech Connect

    Daeva, S.G.; Setukha, A.V.

    2015-03-10

    A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.

  6. Acoustic-wave generation in the process of CO2-TEA-laser-radiation interaction with metal targets in air

    NASA Astrophysics Data System (ADS)

    Apostol, Ileana; Teodorescu, G.; Serbanescu-Oasa, Anca; Dragulinescu, Dumitru; Chis, Ioan; Stoian, Razvan

    1995-03-01

    Laser radiation interaction with materials is a complex process in which creation of acoustic waves or stress waves is a part of it. As a function of the laser radiation energy and intensity incident on steel target surface ultrasound signals were registered and studied. Thermoelastic, ablation and breakdown mechanisms of generation of acoustic waves were analyzed.

  7. A Dry Membrane Protection Technique to Allow Surface Acoustic Wave Biosensor Measurements of Biological Model Membrane Approaches

    PubMed Central

    Reder-Christ, Katrin; Schmitz, Patrick; Bota, Marian; Gerber, Ursula; Falkenstein-Paul, Hildegard; Fuss, Christian; Enachescu, Marius; Bendas, Gerd

    2013-01-01

    Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW) biosensor SAM®5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM®5 blue in biomedical sciences. PMID:24064603

  8. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    SciTech Connect

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.; Ricco, A.J.

    1998-12-09

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.

  9. Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials.

    PubMed

    Ao, Xianyu; Chan, C T

    2008-02-01

    A kind of two-dimensional acoustic metamaterial is designed so that it exhibits strong anisotropy along two orthogonal directions. Based on the rectangular equal frequency contour of this metamaterial, magnifying lenses for acoustic waves, analogous to electromagnetic hyperlenses demonstrated recently in the optical regime, can be realized. Such metamaterial may offer applications in imaging for systems that obey scalar wave equations.

  10. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing.

  11. Generation and amplification of acoustic waves by thermal process - 2. Thermoacoustics effects in combustion

    SciTech Connect

    Abugov, D.I.; Obrezkov, O.I.

    1980-01-01

    Results are presented of a theoretical analysis of thermoacoustic effects observed during combustion, i.e., turbulent flame noise, amplification of acoustic waves by the combustion front, and acoustic instability of combustion in through-flow chambers. Relations are obtained which describe these phenomena. 8 refs.

  12. Molecular recognition in gas sensing: Results from acoustic wave and in-situ FTIR measurements

    SciTech Connect

    Hierlemann, A.; Ricco, A.J.; Bodenhoefer, K.; Goepel, W.

    1998-06-01

    Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.

  13. Transporting and manipulating single electrons in surface-acoustic-wave minima

    NASA Astrophysics Data System (ADS)

    Ford, Christopher J. B.

    2017-03-01

    A surface acoustic wave (SAW) can produce a moving potential wave that can trap and drag electrons along with it. We review work on using a SAW to create moving quantum dots containing single electrons, with the aims of developing a current standard, emitting single photons, transferring single electrons between static quantum dots, and investigating non-adiabatic effects.

  14. On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes

    ERIC Educational Resources Information Center

    Chandran, Pallath

    2004-01-01

    The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…

  15. Reflection of an acoustic wave from a bubble layer of finite thickness

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Fedorov, Yu. V.

    2016-10-01

    The problem of reflection of an acoustic wave from a two-layer medium containing a layer of bubble liquid is considered. The wave reflectance for a water-water mixture with an air bubble-air mixture is calculated and compared with experimental data. The parameters of the problem at which the reflectance takes extreme values are found and illustrated.

  16. Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate

    SciTech Connect

    Mayorov, A. S.; Hunter, N.; Muchenje, W.; Wood, C. D.; Rosamond, M.; Linfield, E. H.; Davies, A. G.; Cunningham, J. E.

    2014-02-24

    We demonstrate the feasibility of using graphene as a conductive electrode for the generation and detection of surface acoustic waves at 100 s of MHz on a lithium niobate substrate. The graphene interdigitated transducers (IDTs) show sensitivity to doping and temperature, and the characteristics of the IDTs are discussed in the context of a lossy transmission line model.

  17. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  18. Modification and characterization of aluminum nitride surfaces for an acoustic wave biosensor

    NASA Astrophysics Data System (ADS)

    Rosenberger, Leland W.

    Aluminum nitride (AlN) is a piezoelectric material that is being developed for use in a surface acoustic wave sensor for the detection of bacteria in fluid media. An AlN film is deposited on a sapphire or silicon substrate. After conductor deposition, an electronic signal is applied across the device and the signal is modified by changes in the mass immobilized on the sensor surface. Bacteria are immobilized on the surface by antibodies specific to the bacterial species. The problem addressed in this dissertation is how to form a bridge between the inorganic surface and the antibodies. The approach used is to form a new chemical layer on the AlN by using silanes. Functional groups on the silane surface can then be used as anchor points for the antibodies. This approach was carried out in three steps: (1) characterize the AlN surface, (2) explore four surface treatment methods that prepare the AlN surface for silanization and (3) silanize the resulting surface. AlN films were deposited by a Plasma Source Molecular Beam Epitaxy method. The films were characterized by RHEED, X-ray diffraction, air/water contact angle, atomic force microscopy (AFM), ellipsometry and X-ray photoelectron spectroscopy (XPS). The four surface treatment methods explored were: immersion in boiling water, exposure to laser light, immersion in piranha solution and treatment with plasma. Samples were characterized by contact angle, AFM and XPS. Plasma treatment was preferred because it prepared the surface most effectively, without any loss of sub-surface AlN. Samples of AlN were silanized with two types of silane, along with silicon controls. Samples were characterized by contact angle, AFM and XPS. The effectiveness of silanes on AlN was equal to or somewhat less than that observed on silicon. AlN samples were also co-deposited with two different silanes and then the end group on one of the silanes was chemically modified. This demonstrated that the density of functional groups on the

  19. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.

    2017-02-01

    Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.

  20. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2015-09-01

    Recent measurements of GPS-derived total electron content (TEC) reveal acoustic wave periods of ˜1-4 min in the F region ionosphere following natural hazard events, such as earthquakes, severe weather, and volcanoes. Here we simulate the ionospheric responses to infrasonic-acoustic waves, generated by vertical accelerations at the Earth's surface or within the lower atmosphere, using a compressible atmospheric dynamics model to perturb a multifluid ionospheric model. Response dependencies on wave source geometry and spectrum are investigated at middle, low, and equatorial latitudes. Results suggest constraints on wave amplitudes that are consistent with observations and that provide insight on the geographical variability of TEC signatures and their dependence on the geometry of wave velocity field perturbations relative to the ambient geomagnetic field. Asymmetries of responses poleward and equatorward from the wave sources indicate that electron perturbations are enhanced on the equatorward side while field aligned currents are driven principally on the poleward side, due to alignments of acoustic wave velocities parallel and perpendicular to field lines, respectively. Acoustic-wave-driven TEC perturbations are shown to have periods of ˜3-4 min, which are consistent with the fraction of the spectrum that remains following strong dissipation throughout the thermosphere. Furthermore, thermospheric acoustic waves couple with ion sound waves throughout the F region and topside ionosphere, driving plasma disturbances with similar periods and faster phase speeds. The associated magnetic perturbations of the simulated waves are calculated to be observable and may provide new observational insight in addition to that provided by GPS TEC measurements.

  1. Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation

    SciTech Connect

    S. J. Reese; D. H. Hurley; H.W. Rollins

    2006-04-01

    The effect of surface acoustic waves, generated on a silver catalyst using a comb transducer, on the catalytic decomposition of ethanol is examined. The comb transducer employs purely mechanical means for surface acoustic wave (SAW) transduction. Unlike interdigital SAW transducers on piezoelectric substrates, the complicating effects of heat generation due to electromechanical coupling, high electric fields between adjacent electrodes, and acoustoelectric currents are avoided. The ethanol decomposition reactions are carried out at 473 K. The rates of acetaldehyde and ethylene production are retarded when acoustic waves are applied. The rates recover to varying degrees when acoustic excitation ceases.

  2. Directional Acoustic Density Sensor

    DTIC Science & Technology

    2010-09-13

    fluctuations of fluid density at a point . (2) DESCRIPTION OF THE PRIOR ART [0004] Conventional vector sensors measure particle velocity, v (vx,Vytvz...dipole-type or first order sensor that is realized by measuring particle velocity at a point , (which is the vector sensor sensing approach for...underwater sensors), or by measuring the gradient of the acoustic pressure at two closely spaced (less than the wavelength of an acoustic wave) points as it

  3. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    NASA Astrophysics Data System (ADS)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  4. Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.

  5. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  6. LOCAL HELIOSEISMIC AND SPECTROSCOPIC ANALYSES OF INTERACTIONS BETWEEN ACOUSTIC WAVES AND A SUNSPOT

    SciTech Connect

    Rajaguru, S. P.; Wachter, R.; Couvidat, S.; Sankarasubramanian, K.

    2010-10-01

    Using a high-cadence imaging spectropolarimetric observation of a sunspot and its surroundings in magnetically sensitive (Fe I 6173 A) and insensitive (Fe I 7090 A) upper photospheric absorption lines, we map the instantaneous wave phases and helioseismic travel times as a function of observation height and inclination of magnetic field to the vertical. We confirm the magnetic inclination-angle-dependent transmission of incident acoustic waves into upward propagating waves and derive (1) proof that helioseismic travel times receive direction-dependent contributions from such waves and hence cause errors in conventional flow inferences, (2) evidences for acoustic wave sources beneath the umbral photosphere, and (3) significant differences in travel times measured from the chosen magnetically sensitive and insensitive spectral lines.

  7. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  8. A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).

  9. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  10. Microcrack Identification in Cement-Based Materials Using Nonlinear Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Kim, J.-Y.; Qu, J.; Kurtis, K. E.; Wu, S. C.; Jacobs, L. J.

    2007-03-01

    This paper presents results from tests that use nonlinear acoustic waves to distinguish microcracks in cement-based materials. Portland cement mortar samples prepared with alkali-reactive aggregate were exposed to an aggressive environment to induce cracking were compared to control samples, of the same composition, but which were not exposed to aggressive conditions. Two nonlinear ultrasonic methods were used to characterize the samples, with the aim of identifying the time and extent of microcracking; these techniques were a nonlinear acoustical modulation (NAM) method and a harmonic amplitude relation (HAR) method. These nonlinear acoustic results show that both methods can distinguish damaged samples from undamaged ones, demonstrating the potential of nonlinear acoustic waves to provide a quantitative evaluation of the deterioration of cement-based materials.

  11. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  12. High-frequency acoustic waves are not sufficient to heat the solar chromosphere.

    PubMed

    Fossum, Astrid; Carlsson, Mats

    2005-06-16

    One of the main unanswered questions in solar physics is why the Sun's outer atmosphere is hotter than its surface. Theory predicts abundant production of high-frequency (10-50 mHz) acoustic waves in subsurface layers of the Sun, and such waves are believed by many to constitute the dominant heating mechanism of the chromosphere (the lower part of the outer solar atmosphere) in non-magnetic regions. Such high-frequency waves are difficult to detect because of high-frequency disturbances in Earth's atmosphere (seeing) and other factors. Here we report the detection of high-frequency waves, and we use numerical simulations to show that the acoustic energy flux of these waves is too low, by a factor of at least ten, to balance the radiative losses in the solar chromosphere. Acoustic waves therefore cannot constitute the dominant heating mechanism of the solar chromosphere.

  13. High-resolution spectrograms of ion acoustic waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1979-01-01

    High-resolution, frequency-time spectrograms of ion acoustic waves in the solar wind obtained by the Voyager spacecraft at distances of up to 1.7 AU are examined. The plasma wave instrument on board the Voyager spacecraft used to acquire the spectra employs an electric dipole antenna with a 16-channel step frequency receiver and a high-bit-rate waveform receiver to detect and measure the electric field of plasma waves. Voyager spectrograms show that the ion acoustic waves consist of narrowband, rapidly varying bursts, lasting a few seconds or less, usually in the range between the plasma ion and electron frequencies. Spectrograms taken at 1.7 AU are shown to be essentially identical to similar measurements taken upstream of the earth's magnetosphere, which are produced by suprathermal protons streaming into the solar wind from the bow shock, and to those taken upstream of interplanetary shocks.

  14. Acoustic waves in the atmosphere and ground generated by volcanic activity

    NASA Astrophysics Data System (ADS)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-01

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  15. Low-loss unidirectional transducer for high frequency surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Martin, G.; Schmidt, H.; Wall, B.

    2011-10-01

    A multi-track unidirectional transducer for surface acoustic wave devices is presented. This transducer consists of periodic cells containing in each of the multiple tracks, only two electrodes and two gaps with quarter period width. So the structure has maximal possible dimensions of its elements for a cell period equal to one wavelength. In spite of current technological limitations this permits to implement unidirectional transducers in GHz range. In contrast to known structures with active tracks only, the structure contains alternating both active transducer tracks and passive reflector tracks with different apertures comparable to surface acoustic wave (SAW) wavelength. The tracks strongly interact due to diffraction of waves excited by such electrode structure on a piezoelectric substrate. A structure analysis by means of finite element method shows that complete unidirectionality can be reached. First experimental results are given.

  16. Anomalous negative reflection of acoustic waves from a two-dimensional phononic crystal immersed in water

    NASA Astrophysics Data System (ADS)

    Kang, Hwi Suk; Yoon, Suk Wang; Lee, Kang Il

    2017-02-01

    In the present study, we experimentally and theoretically demonstrated anomalous negative reflection of acoustic waves obliquely incident upon the boundary of a two-dimensional phononic crystal (PC) consisting of periodic square arrays of stainless-steel cylinders immersed in water. The angular spectrogram showing the frequency as a function of the angle was measured for the reflection from the PC when the incidence angle of the sound beam was fixed to be 20°. To understand the negative reflection from the PC, we considered the boundary of the PC to behave as an acoustic diffraction grating, and we calculated the acoustic pressure fields at specific frequencies of interest by using the finite element method. We found that the grating law could be successfully applied to the boundary of the PC in order to determine the direction of the acoustic waves diffracted in water.

  17. Droplet actuation by surface acoustic waves: an interplay between acoustic streaming and radiation pressure

    NASA Astrophysics Data System (ADS)

    Brunet, Philippe; Baudoin, Michael; Matar, Olivier Bou; Zoueshtiagh, Farzam

    2010-11-01

    Surface acoustic waves (SAW) are known to be a versatile technique for the actuation of sessile drops. Droplet displacement, internal mixing or drop splitting, are amongst the elementary operations that SAW can achieve, which are useful on lab-on-chip microfluidics benches. On the purpose to understand the underlying physical mechanisms involved during these operations, we study experimentally the droplet dynamics varying different physical parameters. Here in particular, the influence of liquid viscosity and acoustic frequency is investigated: it is indeed predicted that both quantities should play a role in the acoustic-hydrodynamic coupling involved in the dynamics. The key point is to compare the relative magnitude of the attenuation length, i.e. the scale within which the acoustic wave decays in the fluid, and the size of the drop. This relative magnitude governs the relative importance of acoustic streaming and acoustic radiation pressure, which are both involved in the droplet dynamics.

  18. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    NASA Astrophysics Data System (ADS)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  19. Measurements of Finite Dust Temperature Effects in the Dispersion Relation of the Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Snipes, Erica; Williams, Jeremiah

    2009-04-01

    A dusty plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of these charged microparticles gives rise to new plasma wave modes, including the dust acoustic wave. Recent measurements [1, 2] of the dispersion relationship for the dust acoustic wave in a glow discharge have shown that finite temperature effects are observed at higher values of neutral pressure. Other work [3] has shown that these effects are not observed at lower values of neutral pressure. We present the results of ongoing work examining finite temperature effects in the dispersion relation as a function of neutral pressure. [4pt] [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [0pt] [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [0pt] [3] T. Trottenberg, D. Block, and A. Piel, Phys. Plasmas 13, 042105 (2006).

  20. Excitation and propagation of shear-horizontal-type surface and bulk acoustic waves.

    PubMed

    Hashimoto, K Y; Yamaguchi, M

    2001-09-01

    This paper reviews the basic properties of shear-horizontal (SH)-type surface acoustic waves (SAWs) and bulk acoustic waves (BAWs). As one of the simplest cases, the structure supporting Bleustein-Gulyaev-Shimizu waves is considered, and their excitation and propagation are discussed from various view points. First, the formalism based on the complex integral theory is presented, where the surface is assumed to be covered with an infinitesimally thin metallic film, and it is shown how the excitation and propagation of SH-type waves are affected by the surface perturbation. Then, the analysis is extended to a periodic grating structure, and the behavior of SH-type SAWs under the grating structure is discussed. Finally, the origin of the leaky nature is explained.

  1. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  2. Algorithmic Extensions of Low-Dispersion Scheme and Modeling Effects for Acoustic Wave Simulation. Revised

    NASA Technical Reports Server (NTRS)

    Kaushik, Dinesh K.; Baysal, Oktay

    1997-01-01

    Accurate computation of acoustic wave propagation may be more efficiently performed when their dispersion relations are considered. Consequently, computational algorithms which attempt to preserve these relations have been gaining popularity in recent years. In the present paper, the extensions to one such scheme are discussed. By solving the linearized, 2-D Euler and Navier-Stokes equations with such a method for the acoustic wave propagation, several issues were investigated. Among them were higher-order accuracy, choice of boundary conditions and differencing stencils, effects of viscosity, low-storage time integration, generalized curvilinear coordinates, periodic series, their reflections and interference patterns from a flat wall and scattering from a circular cylinder. The results were found to be promising en route to the aeroacoustic simulations of realistic engineering problems.

  3. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    SciTech Connect

    Amour, Rabia; Tribeche, Mouloud

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  4. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  5. Excitation of Ion Acoustic Waves in Confined Plasmas with Untrapped Electrons

    NASA Astrophysics Data System (ADS)

    Schamis, Hanna; Dow, Ansel; Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand the electron kinetics in plasmas with strong emission, we have performed simulations using a reduced model with the LSP particle-in-cell code. This model aims to show the instability generated by the electron emission, in the form of ion acoustic waves near the sheath. It also aims to show the instability produced by untrapped electrons that propagate across the plasma, similarly to a beam, and can drive ion acoustic waves in the plasma bulk. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  6. A surface acoustic wave technique for monitoring the growth behavior of small surface fatigue cracks

    SciTech Connect

    Resch, M.T.; Nelson, D.V.; Ramvsat, G.F.; Yuce, H.H.

    1985-03-01

    The theory of Kino and Auld which relates the reflection coefficient of acoustic waves from a crack to its size is summarized. A scattering model is evaluated from this theory concerning the reflection of surface acoustic waves (SAW) from a small surface fatigue crack at a frequency such that the crack depth is much smaller than the acoustic wavelength. Acoustic predictions of crack depth are compared to postfracture measurements of depth for small surface cracks in Pyrex glass, 7075-T651 aluminum, and 4340 steel. Additionally, the minimum detectable crack depth as limited by the acoustic noise level is determined for several typical aluminum and steel alloys. The utility of SAW reflection coefficient measurements for inferring crack depth, crack growth, and crack opening behavior in situ during fatigue cycling is discussed.

  7. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.

    PubMed

    Balram, Krishna C; Davanço, Marcelo I; Song, Jin Dong; Srinivasan, Kartik

    2016-05-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains.

  8. Development of a GaAs Monolithic Surface Acoustic Wave Integrated Circuit

    SciTech Connect

    Baca, A.G.; Casalnuovo, S.C.; Drummond, T.J.; Frye, G.C.; Heller, E.J.; Hietala, V.M.; Klem, J.F.

    1999-03-08

    An oscillator technology using surface acoustic wave delay lines integrated with GaAs MESFET electronics has been developed for GaAs-based integrated microsensor applications. The oscillator consists of a two-port SAW delay line in a feedback loop with a four-stage GaAs MESFET amplifier. Oscillators with frequencies of 470, 350, and 200 MHz have been designed and fabricated. These oscillators are also promising for other RF applications.

  9. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    SciTech Connect

    Niknam, A. R.; Haghtalab, T.; Khorashadizadeh, S. M.

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  10. Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media

    NASA Astrophysics Data System (ADS)

    Baev, A. V.

    2016-12-01

    A three-dimensional inverse scattering problem for the acoustic wave equation is studied. The task is to determine the density and acoustic impedance of a medium. A necessary and sufficient condition for the unique solvability of this problem is established in the form of an energy conservation law. The interpretation of the solution to the inverse problem and the construction of medium images are discussed.

  11. Reflection of Microwave Pulses From Acoustic Waves: Summary of Experimental and Computational Studies

    DTIC Science & Technology

    2005-05-31

    Braden Shielding Systems) at the aperture of the antenna . No significant difference can be seen between the two cases. The combination of ferrite tiles...and pyramidal ferrite absorbers that was used provides a broad range of power absorption in the frequency range of the antenna . Therefore, these results...acoustic wave front. 1 2 EXPERIMENTAL SET-UP The guiding wave structure is a TEM half plane antenna , as shown in Figure 1. An electromagnetic wave is

  12. Comment on Weakly dissipative dust-ion acoustic wave modulation (J. Plasma Phys. 82, 905820104, 2016)

    NASA Astrophysics Data System (ADS)

    Kourakis, I.; Elkamash, I. S.

    2016-10-01

    In a recent article (J. Plasma Phys., vol. 82, 2009, 905820104), weakly dissipative dust-ion acoustic wave modulation in dusty plasmas was considered. It is shown in this Comment that the analysis therein involved severe fallacies, and is in fact based on an erroneous plasma fluid model, which fails to satisfy an equilibrium condition, among other shortcomings. The subsequent analysis therefore is dubious and of limited scientific value.

  13. On-Demand Droplet Capture and Release Using Microwell-Assisted Surface Acoustic Waves.

    PubMed

    Jung, Jin Ho; Destgeer, Ghulam; Park, Jinsoo; Ahmed, Husnain; Park, Kwangseok; Sung, Hyung Jin

    2017-02-21

    We demonstrate an acoustofluidic platform that uses surface acoustic waves (SAWs) for the facile capture of droplets inside microwells and their on-demand release. When the ac signal applied to the device is tuned to modulate the location of the SAW, the SAW-based acoustic radiation force retracts or pushes the droplets into or out of one of three microwells fabricated inside a microchannel to selectively capture or release the droplet.

  14. Surface-acoustic-wave device incorporating conducting Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Holcroft, B.; Roberts, G. G.; Barraud, A.; Richard, J.

    1987-04-01

    Surface-acoustic-wave devices incorporating conducting Langmuir-Blodgett films are reported for the first time. Excellent characteristics have been obtained using a mixed valence charge transfer salt of a substituted pyridinium tetracyanoquinodimethane. The control afforded by the deposition technique has enabled the fractional change in surface wave velocity due to the electrical effects to be distinguished from those due to mass loading. The resistivity of the organic surface layer is measured to be 2 ohm-cm.

  15. Surface Acoustic-Wave-Induced Magnetoresistance Oscillations in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Robinson, John P.; Kennett, Malcolm P.; Cooper, Nigel R.; Fal'Ko, Vladimir I.

    2004-07-01

    We study the geometrical commensurability oscillations imposed on the resistivity of 2D electrons in a perpendicular magnetic field by a propagating surface acoustic wave (SAW). We show that, for ω<ωc, this effect contains an anisotropic dynamical classical contribution increasing the resistivity and a nonequilibrium quantum contribution isotropically decreasing the resistivity, and we predict zero-resistance states associated with geometrical commensurability at large SAW amplitude.

  16. Modulation instability of ion acoustic waves, solitons, and their interactions in nonthermal electron-positron-ion plasmas

    SciTech Connect

    Zhang Jiefang; Wang Yueyue; Wu Lei

    2009-06-15

    The propagation of ion acoustic waves in plasmas composed of ions, positrons, and nonthermally distributed electrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability of ion acoustic wave is analyzed, where the nonthermal parameter is found to be of significant importance. Furthermore, analytical expressions for the bright and dark solitons are obtained, and the interaction of multiple solitons is discussed.

  17. JOINT RIGIDITY ASSESSMENT WITH PIEZOELECTRIC WAFERS AND ACOUSTIC WAVES

    SciTech Connect

    Montoya, Angela C.; Maji, Arup K.

    2010-02-22

    There has been an interest in the development of rapid deployment satellites. In a modular satellite design, different panels of specific functions can be pre-manufactured. The satellite can then be assembled and tested just prior to deployment. Traditional vibration testing is time-consuming and expensive. An alternative test method to evaluate the connection between two plates will be proposed. The method investigated and described employs piezoelectric wafers to induce and sense lamb waves in two aluminum plates, which were joined by steel brackets to form an 'L-Style' joint. Lamb wave behavior and piezoelectric material properties will be discussed; the experimental setup and results will be presented. A set of 4 piezoelectric ceramic wafers were used alternately as source and sensor. The energy transmitted was shown to correlate with a mechanical assessment of the joint, demonstrating that this method of testing is a feasible and reliable way to inspect the rigidity of joints.

  18. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  19. MEASUREMENTS OF THE WAVEFUNCTIONS OF SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS

    SciTech Connect

    Zhao Hui; Chou, Dean-Yi; Yang, Ming-Hsu

    2011-10-20

    Solar acoustic waves are scattered by sunspots because of the interaction between the acoustic waves and sunspots. We use a deconvolution scheme to obtain the wavefunction of the acoustic wave on the solar surface at various times from cross-correlation functions computed between an incident wave and the signals at other points on the surface. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We study the wavefunctions of scattered waves with the incident waves of radial order n = 0-5 for two sunspots, NOAAs 11084 and 11092. The scattered wave is predominant in the forward direction of the incident wave, but its wavefronts are curved. The shape of the wavefronts depends on the ratio of sunspot dimension to wavelength of the incident wave. The smaller the ratio is, the closer to circular the scattered wave is. The scattering strength, i.e. the magnitude of the scattered wave relative to that of the incident wave, decreases with the radial order n. This suggests that the region generating the scattered wave is shallower than the depth of the f-modes.

  20. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves

    PubMed Central

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J.

    2015-01-01

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves. PMID:26001199

  1. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  2. Dynamics of the positron acoustic waves in electron-positron-ion magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Ali, Rustam; Saha, Asit; Chatterjee, Prasanta

    2017-01-01

    Dynamics of the positron acoustic waves in electron-positron-ion (e-p-i) magnetoplasmas with κ-distributed hot electrons and positrons is investigated in the frameworks of the Kadomtsev-Petviashili (KP) and modified Kadomtsev-Petviashili (mKP) equations. Employing the reductive perturbation technique, the KP and mKP equations are derived. Using the bifurcation theory of planar dynamical systems, the positron acoustic solitary wave solutions, the kink and anti-kink wave solutions are obtained. Considering an external periodic perturbation in the electron-positron-ion magnetoplasmas, the perturbed KP and mKP equations are studied via some qualitative and quantitative approaches. To corroborate in the fact that the perturbed KP and mKP equations can indeed give rise to the quasiperiodic and chaotic motions, the phase plane plots, time series plots, and the Poincaré section are used. The quasiperiodic and developed chaos can be observed for the perturbed positron acoustic waves. The frequency (ω ) of the external periodic perturbation plays the role of the switching parameter in chaotic motions of the perturbed positron acoustic waves through quasiperiodic route to chaos. This work can be useful to understand the dynamics of nonlinear electromagnetic perturbations in space and laboratory plasmas consisting of κ-distributed hot electrons and positrons.

  3. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    SciTech Connect

    Graczykowski, B. Alzina, F.; Gomis-Bresco, J.; Sotomayor Torres, C. M.

    2016-01-14

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.

  4. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    PubMed

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  5. Modulational excitation of low-frequency dust acoustic waves in the Earth's lower ionosphere

    SciTech Connect

    Kopnin, S. I.; Popel, S. I.; Yu, M. Y.

    2007-04-15

    During the observation of Perseid, Leonid, Gemenid, and Orionid meteor showers, stable low-frequency lines in the frequency range of 20-60 Hz were recorded against the radio-frequency noise background. A physical mechanism for this effect is proposed, and it is established that the effect itself is related to the modulational interaction between electromagnetic and dust acoustic waves. The dynamics of the components of a complex (dusty) ionospheric plasma with dust produced from the evolution of meteoric material is described. The conditions for the existence of dust acoustic waves in the ionosphere are considered, and the waves are shown to dissipate energy mainly in collisions of neutral particles with charged dust grains. The modulational instability of electromagnetic waves in a complex (dusty) ionospheric plasma is analyzed and is found to be driven by the nonlinear Joule heating, the ponderomotive force, and the processes governing dust charging and dynamics. The conditions for the onset of the modulational instability of electromagnetic waves, as well as its growth rate and threshold, are determined for both daytime and nighttime. It is shown that low-frequency perturbations generated in the modulational interaction are related to dust acoustic waves.

  6. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect

    Saikia, Partha Saikia, Bipul Kumar; Goswami, Kalyan Sindhu; Phukan, Arindam

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  7. Local probing of propagating acoustic waves in a gigahertz echo chamber

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin V.; Santos, Paulo V.; Johansson, Göran; Delsing, Per

    2012-04-01

    In the same way that micro-mechanical resonators resemble guitar strings and drums, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface rather than through air. In contrast with oscillations in suspended resonators, such propagating mechanical waves have not before been studied near the quantum mechanical limits. Here, we demonstrate local probing of surface acoustic waves with a displacement sensitivity of 30amRMSHz-1/2 and detection sensitivity on the single-phonon level after averaging, at a frequency of 932MHz. Our probe is a piezoelectrically coupled single-electron transistor, which is sufficiently fast, non-destructive and localized to enable us to track pulses echoing back and forth in a long acoustic cavity, self-interfering and ringing the cavity up and down. We project that strong coupling to quantum circuits will enable new experiments, and hybrids using the unique features of surface acoustic waves. Prospects include quantum investigations of phonon-phonon interactions, and acoustic coupling to superconducting qubits for which we present favourable estimates.

  8. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-05-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  9. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    SciTech Connect

    Wang, Wenbo; He, Xingli; Ye, Zhi E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi; Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  10. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  11. A centrifugally actuated point-of-care testing system for the surface acoustic wave immunosensing of cardiac troponin I.

    PubMed

    Lee, Woochang; Jung, Jaeyeon; Hahn, Young Ki; Kim, Sang Kyu; Lee, Yeolho; Lee, Joonhyung; Lee, Tae-Han; Park, Jin-Young; Seo, Hyejung; Lee, Jung Nam; Oh, Jin Ho; Choi, Youn-Suk; Lee, Soo Suk

    2013-05-07

    A fully automated point-of-care testing (POCT) system with a surface acoustic wave (SAW) immunosensor was developed for rapid and sensitive detection of cardiac troponin I (cTnI) in body fluid (plasma and whole blood). The assay, based on gold nanoparticle sandwich immunoassay and subsequent gold staining, was performed on the SAW immunosensor packaged inside a disposable microfluidic cartridge. The entire fluidic process, including plasma separation, reagent transport, metering, and mixing, was carried out by controlling the centrifugal force acting on the rotating cartridge and laser-irradiated ferrowax microvalves. On investigation of sensor response to various cTnI concentrations, the system exhibited a high performance with a detection limit of 6.7 pg mL(-1), and the coefficient of variation was less than 10% over the entire test range (10 pg mL(-1) to 25 ng mL(-1)). On comparing this POCT system with a clinically utilized system in a physical laboratory (Centaur® XP; Siemens), a correlation coefficient of 0.998 was found, validating the diagnostic capability of the SAW immunosensor.

  12. Method and apparatus for packaging optical fiber sensors for harsh environments

    DOEpatents

    Pickrell, Gary; Duan, Yuhong; Wang, Anbo

    2005-08-09

    A package for an optical fiber sensor having a metal jacket surrounding the sensor, and heat-shrink tubing surrounding the metal jacket. The metal jacket is made of a low melting point metal (e.g. lead, tin). The sensor can be disposed in a rigid tube (e.g. stainless steel or glass) that is surrounded by the metal jacket. The metal jacket provides a hermetic, or nearly hermetic seal for the sensor. The package is made by melting the metal jacket and heating the heat shrink tubing at the same time. As the heat-shrink tubing shrinks, it presses the low melting point metal against the sensor, and squeezes out the excess metal.

  13. Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect

    DOEpatents

    Su, Ming [Oviedo, FL; Thundat, Thomas G [Knoxville, TN; Hedden, David [Lenoir City, TN

    2010-02-23

    A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample. The method and apparatus can be used to detect chemical composition or visual features. A transmission mode and a reflection mode of operation are disclosed. The method and apparatus can be applied at nanoscale to detect molecules in a biological sample.

  14. An Investigation of Acoustic Wave Propagation in Mach 2 Flow

    NASA Astrophysics Data System (ADS)

    Nieberding, Zachary J.

    source and sensors increases. Individual studies including detection sensor and source comparison, material selection, transfer rates, and shadowgraph imagery are also investigated. The acoustic signal is affected by the boundary layer, which is impacted by the shock train and its location. With the capability to characterize an acoustic signal within a scramjet engine to detect the shock train location, any disturbance in the acoustic signals can be linked to shock train displacement that could lead to an inlet unstart. With these results in mind, it is possible that acoustic hardware can be designed to be implemented into the scramjet engine to detect an inlet unstart before it should happen.

  15. Interaction of Acoustic Waves with a Laminar Line-Flame

    NASA Astrophysics Data System (ADS)

    Fehrenbach, Shea Donald

    Current diagnostic tools used to sample the thermodynamic structure of the Atmospheric Boundary Layer (ABL) include radiosondes, manned aircraft, radar, and towers. One objective, for sampling the atmosphere, is to supplement the Oklahoma Mesonet with UASs outfitted with meteorological sensors, which will be used to predict thunderstorms, wind gusts, heat bursts, dryness, etc. The goal of this project is to provide meteorological and the atmospheric science community with an effective system to rapidly sample the ABL. Thunderchief is a two part system that incorporates rocket and glider components which launches a UAS to altitude and profiles the atmosphere on its descent. Deployment at higher altitudes allows an atmospheric profiler to collect a larger quasi-dimensional array of thermodynamic data used for data assimilation weather prediction. The use of a rocket launch glidersonde was determined to be effective in situations of rapid weather formations and system deployment, but similar in usefulness for day-to-day meteorological operations of atmospheric profiling of the ABL.

  16. Apparatus and method for imaging metallic objects using an array of giant magnetoresistive sensors

    DOEpatents

    Chaiken, Alison

    2000-01-01

    A portable, low-power, metallic object detector and method for providing an image of a detected metallic object. In one embodiment, the present portable low-power metallic object detector an array of giant magnetoresistive (GMR) sensors. The array of GMR sensors is adapted for detecting the presence of and compiling image data of a metallic object. In the embodiment, the array of GMR sensors is arranged in a checkerboard configuration such that axes of sensitivity of alternate GMR sensors are orthogonally oriented. An electronics portion is coupled to the array of GMR sensors. The electronics portion is adapted to receive and process the image data of the metallic object compiled by the array of GMR sensors. The embodiment also includes a display unit which is coupled to the electronics portion. The display unit is adapted to display a graphical representation of the metallic object detected by the array of GMR sensors. In so doing, a graphical representation of the detected metallic object is provided.

  17. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  18. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Slobodan; Datskou, Irene C.; Egert, Charles M.

    2002-01-01

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  19. Control apparatus

    NASA Technical Reports Server (NTRS)

    Derkacs, Thomas (Inventor); Fetheroff, Charles W. (Inventor); Matay, Istvan M. (Inventor); Toth, Istvan J. (Inventor)

    1982-01-01

    Although the method and apparatus of the present invention can be utilized to apply either a uniform or a nonuniform covering of material over many different workpieces, the apparatus (20) is advantageously utilized to apply a thermal barrier covering (64) to an airfoil (22) which is used in a turbine engine. The airfoil is held by a gripper assembly (86) while a spray gun (24) is effective to apply the covering over the airfoil. When a portion of the covering has been applied, a sensor (28) is utilized to detect the thickness of the covering. A control apparatus (32) compares the thickness of the covering of material which has been applied with the desired thickness and is subsequently effective to regulate the operation of the spray gun to adaptively apply a covering of a desired thickness with an accuracy of at least plus or minus 0.0015 inches (1.5 mils) despite unanticipated process variations.

  20. Method and apparatus of high dynamic range image sensor with individual pixel reset

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric R. (Inventor)

    2001-01-01

    A wide dynamic range image sensor provides individual pixel reset to vary the integration time of individual pixels. The integration time of each pixel is controlled by column and row reset control signals which activate a logical reset transistor only when both signals coincide for a given pixel.

  1. Apparatus and process for an off-surface cone penetrometer sensor

    DOEpatents

    Smail, Timothy R.; French, Phillip J.; Huffman, Russell K.

    2003-04-29

    A cone penetrometer is provided having a pivoting arm which deploys a variable distance from the surface of the cone penetrometer. Sensors placed on the end of the deployable arm provide for data collection outside a compression zone created by the insertion of the cone penetrometer.

  2. MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS

    SciTech Connect

    Zhao, Hui; Chou, Dean-Yi

    2013-11-20

    We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |Δn|, where Δn ≡ n' – n. The scattered waves of Δn = ±1 are visible for n ≤ 1, and significant for n ≥ 2. For the scattered wave of Δn = ±2, only few cases are visible. None of the scattered waves of Δn = ±3 are visible. The properties of scattered waves for Δn = 0 and Δn ≠ 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for Δn = 0, while it increases with n for Δn ≠ 0. The scattered wave amplitudes of Δn = 0 are greater for the larger sunspot, while those of Δn ≠ 0 are insensitive to the sunspot size.

  3. Full-circular surface acoustic wave excitation for high resolution acoustic microscopy using spherical lens and time gate technology.

    PubMed

    Ishikawa, I; Katakura, K; Ogura, Y

    1999-01-01

    With a fixed gate width under the condition where the focus of an acoustic lens was set inside the sample, we varied signal taking-in time. Discrimination was made between differences in time required for an ultrasonic signal reflected from the sample to reach the acoustic lens. This process also enabled three types of images to be obtained separately: the surface reflection wave image, a combination of images based on the interference of the surface reflection wave with surface acoustic waves, and the surface acoustic wave image. Thus it was presumed that this process also would reveal the causes of image contrast and allow an easy interpretation of images. Furthermore, the image resolution was improved, because the surface acoustic wave image was drawn by an ultrasonic beam produced by full-circular surface acoustic wave excitation propagating toward the center converging concentrically; the theoretical resolution was 0.4 times the value of the surface acoustic wave wavelength lambda(R) and independent of the defocus value of the acoustic lens. Several kinds of samples were observed with this method. The results showed that the new method permitted observation of the internal structures of samples while offering new knowledge through the data reflecting the ultrasonic wave damping and scatter drawn on the display.

  4. Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves

    SciTech Connect

    Destgeer, Ghulam; Im, Sunghyuk; Hang Ha, Byung; Ho Jung, Jin; Ahmad Ansari, Mubashshir; Jin Sung, Hyung

    2014-01-13

    We demonstrate a simple device to generate chemical concentration gradients in a microfluidic channel using focused travelling surface acoustic waves (F-TSAW). A pair of curved interdigitated metal electrodes deposited on the surface of a piezoelectric (LiNbO{sub 3}) substrate disseminate high frequency sound waves when actuated by an alternating current source. The F-TSAW produces chaotic acoustic streaming flow upon its interaction with the fluid inside a microfluidic channel, which mixes confluent streams of chemicals in a controlled fashion for an adjustable and rapidly switching gradient generation.

  5. Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin

    2008-09-07

    The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.

  6. On the Propagation of Nonlinear Acoustic Waves in Viscous and Thermoviscous Fluids

    DTIC Science & Technology

    2012-01-01

    25–39. [14] P.A. Thompson, Compressible— Fluid Dynamics , McGraw-Hill, 1972. [15] S. Makarov, M. Ochmann, Nonlinear and thermoviscous phenomena in...European Journal of Mechanics B/ Fluids 34 (2012) 56–63 Contents lists available at SciVerse ScienceDirect European Journal of Mechanics B/ Fluids ...journal homepage: www.elsevier.com/locate/ejmflu On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids P.M. Jordan a,∗, G.V

  7. Integrated microfluidics system using surface acoustic wave and electrowetting on dielectrics technology.

    PubMed

    Li, Y; Fu, Y Q; Brodie, S D; Alghane, M; Walton, A J

    2012-03-01

    This paper presents integrated microfluidic lab-on-a-chip technology combining surface acoustic wave (SAW) and electro-wetting on dielectric (EWOD). This combination has been designed to provide enhanced microfluidic functionality and the integrated devices have been fabricated using a single mask lithographic process. The integrated technology uses EWOD to guide and precisely position microdroplets which can then be actuated by SAW devices for particle concentration, acoustic streaming, mixing and ejection, as well as for sensing using a shear-horizontal wave SAW device. A SAW induced force has also been employed to enhance the EWOD droplet splitting function.

  8. Amplification and directional emission of surface acoustic waves by a two-dimensional electron gas

    SciTech Connect

    Shao, Lei; Pipe, Kevin P.

    2015-01-12

    Amplification of surface acoustic waves (SAWs) by electron drift in a two-dimensional electron gas (2DEG) is analyzed analytically and confirmed experimentally. Calculations suggest that peak power gain per SAW radian occurs at a more practical carrier density for a 2DEG than for a bulk material. It is also shown that SAW emission with tunable directionality can be achieved by modulating a 2DEG's carrier density (to effect SAW generation) in the presence of an applied DC field that amplifies SAWs propagating in a particular direction while attenuating those propagating in the opposite direction.

  9. An instability of acoustic waves caused by radiation and the influence of chemical reactions on it

    SciTech Connect

    De Jagher, P.C. )

    1990-06-20

    In a gas which absorbs radiation an acoustic wave can be unstable. This instability is caused by the fact that the irradiant energy is absorbed preferentially in the high density region of the wave. If in the gas the chemical equilibrium AB {r reversible} A + B is maintained by photo dissociation balancing the reactions due to collisions, the instability increases. This is due to the density dependence of the reaction rate of the reverse reaction. It is argued that this process may explain the excitation or amplification of disturbances in the upper atmosphere.

  10. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  11. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  12. An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans

    NASA Astrophysics Data System (ADS)

    Wilkinson, James T.; Whitehouse, Christopher B.; Oulton, Rupert F.; Gennaro, Sylvain D.

    2016-01-01

    We describe a novel undergraduate research project that highlights the physics of metamaterials with acoustic waves and soda cans. We confirm the Helmholtz resonance nature of a single can by measuring its amplitude and phase response to a sound wave. Arranging multiple cans in arrays smaller than the wavelength, we then design an antenna that redirects sound into a preferred direction. The antenna can be thought of as a new resonator, composed of artificially engineered meta-atoms, similar to a metamaterial. These experiments are illustrative, tactile, and open ended so as to enable students to explore the physics of matter/wave interaction.

  13. On the fully nonlinear acoustic waves in a plasma with positrons beam impact and superthermal electrons

    SciTech Connect

    Ali Shan, S.; El-Tantawy, S. A.; Moslem, W. M.

    2013-08-15

    Arbitrary amplitude ion-acoustic waves in an unmagnetized plasma consisting of cold positive ions, superthermal electrons, and positrons beam are reported. The basic set of fluid equations is reduced to an energy-balance like equation. The latter is numerically analyzed to examine the existence regions for solitary and shock waves. It is found that only solitary waves can propagate, however, the model cannot support shocks. The effects of superthermality and beam parameters (via, positrons concentration and streaming velocity) on the existence region, as well as solitary wave profile have been discussed.

  14. Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Destgeer, Ghulam; Im, Sunghyuk; Hang Ha, Byung; Ho Jung, Jin; Ahmad Ansari, Mubashshir; Jin Sung, Hyung

    2014-01-01

    We demonstrate a simple device to generate chemical concentration gradients in a microfluidic channel using focused travelling surface acoustic waves (F-TSAW). A pair of curved interdigitated metal electrodes deposited on the surface of a piezoelectric (LiNbO3) substrate disseminate high frequency sound waves when actuated by an alternating current source. The F-TSAW produces chaotic acoustic streaming flow upon its interaction with the fluid inside a microfluidic channel, which mixes confluent streams of chemicals in a controlled fashion for an adjustable and rapidly switching gradient generation.

  15. Damping of dust-acoustic waves due to dust-dust interactions in dusty plasmas

    NASA Astrophysics Data System (ADS)

    de Angelis, U.; Shukla, P. K.

    1998-08-01

    The results of a kinetic model are presented which includes dust-dust collisions as a damping mechanism for the low-phase velocity dust-acoustic waves which have been observed [Pieper and Goree, Phys. Rev. Lett. 77 (1976) 3137] in a dusty plasma device. A comparison of our theoretical results with those of observations exhibits a good agreement, and it also leads to quantitative estimates that are close to the predictions of the modified fluid theory, which has introduced a damping rate in an ad hoc manner.

  16. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities

    NASA Astrophysics Data System (ADS)

    Goryachev, Maxim; Farr, Warrick G.; Galliou, Serge; Tobar, Michael E.

    2014-08-01

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity ( Q > 3 > 10 9), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

  17. Transmission of acoustic waves through mixing layers and 2D isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Juve, D.; Blanc-Benon, P.; Comte-Bellot, G.

    Ray tracing and parabolic equation methods have been used to study the properties of acoustic waves transmitted through turbulent velocity fields. A numerical simulation permits individual realizations of the turbulent field, which then allow, if desired, an ensemble averaging of the fields. Two flows have been considered, 2D isotropic turbulence and a 2D mixing layer. The following complementary aspects are developed: the occurrence of caustics, the reinforced or weakened zones of the acoustic field, the eigenrays between a source and a receiver, and the associated travel times, variances, and scintillation index.

  18. Visualization of Acoustic Waves Propagating within a Single Anisotropic Crystalline Plate

    SciTech Connect

    Chiaki Miyasaka; Kenneth L. Telschow; Jeffry T. Sadler; Roman. Gr. Maev

    2007-04-01

    High frequency acoustic waves propagating within a thin anisotropic plate were imaged using a hybrid system consisting of an acoustic lens (Frequency: 200MHz; Point Focus) for point excitation on one side and a laser displacement interferometer for point detection on the opposite side. The laser beam spot was about 5µm diameter on the surface and the sample was scanned to provide an image of the lateral spatial distribution of the resultant displacement. Theoretical prediction of the resultant displacement was performed using the Angular Spectrum Analysis approach for propagation through the [100] oriented silicon. Comparison of the theoretical predictions with experimental measurements is presented.

  19. Determination of Surface Stress Distributions in Steel Using Laser-Generated Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Shi; Yifei; Ni; Chenyin; Shen; Zhonghua; Ni; Xiaowu; Lu; Jian

    2008-05-01

    High frequency surface acoustic waves (SAWs) are excited by a pulsed laser and detected by a specially designed poly(vinylidene fluoride) (PVDF) transducer to investigate surface stress distribution. Two kinds of stressed surfaces are examined experimentally. One is a steel plate elastically deformed under simple bending forces, where the surface stress varies slowly. The other is a welded steel plate for which the surface stress varies very rapidly within a small area near the welding seam. Applying a new signal processing method developed from correlation technique, the velocity distribution of the SAWs, which reflects the stress distribution, is obtained in these two samples with high resolution.

  20. Resonance reflection of acoustic waves in piezoelectric bi-crystalline structures.

    PubMed

    Darinskii, Alexander N; Weihnacht, Manfred

    2005-05-01

    The paper studies the bulk wave reflection from internal interfaces in piezoelectric media. The interfaces of two types have been considered. Infinitesimally thin metallic layer inserted into homogeneous piezoelectric crystal of arbitrary symmetry. Rigidly bonded crystals whose piezoelectric coefficients differ by sign but the other material constants are identical. Analytic expressions for the coefficients of mode conversion have been derived. An analysis has been carried out of specific singularities arising when the angle of incidence is such that the resonance excitation of leaky interface acoustic waves occurs. The conditions for the resonance total reflection have been established. The computations performed for lithium niobate (LiNbO3) illustrate general conclusions.

  1. Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas

    SciTech Connect

    Seadawy, A. R.

    2014-05-15

    The quantum hydrodynamic model is applied to two-dimensional ion-acoustic waves in quantum plasmas. The two-dimensional quantum hydrodynamic model is used to obtain a deformed Kortewegde Vries (dKdV) equation by reductive perturbation method. By using the solution of auxiliary ordinary equations, a extended direct algebraic method is described to construct the exact solutions for nonlinear quantum dKdV equation. The present results are describing the generation and evolution of such waves, their interactions, and their stability.

  2. Reflection and transmission of acoustical waves from a layer with space-dependent velocity.

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Singh, J. J.

    1972-01-01

    The refraction of acoustical waves by a moving medium layer is theoretically treated and the reflection and transmission coefficients are determined. The moving-medium-layer velocity is uniform but with a space dependence in one direction. A partitioning of the moving medium layer into constant-velocity sublayers is introduced and numerical results for a three-sublayer approximation of Poiseuille flow are presented. The degenerate case of a single constant-velocity layer is also treated theoretically and numerically. The numerical results show the reflection and transmission coefficients as functions of the peak moving-medium-layer normalized velocity for several angles of incidence.

  3. Surface acoustic wave response to optical absorption by graphene composite film.

    PubMed

    Chivukula, Venkata S; Ciplys, Daumantas; Kim, Jin Ho; Rimeika, Romualdas; Xu, Jimmy M; Shur, Michael S

    2012-02-01

    Propagation of surface acoustic waves in YZ LiNbO3 overlaid with graphene flakes has been investigated and its optical response to illumination by 633-nm light from a He-Ne laser was studied. The heating of the sample surface caused by optical absorption by the graphene led to a downshift in the transmitted SAW phase caused by the wave velocity's dependence on temperature. The proposed simple model based on optothermal SAW phase modulation was found to be in good agreement with the experimental results.

  4. Acoustic carrier transportation induced by surface acoustic waves in graphene in solution

    NASA Astrophysics Data System (ADS)

    Okuda, Satoshi; Ikuta, Takashi; Kanai, Yasushi; Ono, Takao; Ogawa, Shinpei; Fujisawa, Daisuke; Shimatani, Masaaki; Inoue, Koichi; Maehashi, Kenzo; Matsumoto, Kazuhiko

    2016-04-01

    The acoustic charge transportation induced by surface acoustic wave (SAW) propagation in graphene in solution was investigated. The sign of acoustic current (I A) was found to switch when crossing the Dirac point because the major carrier was transitioned from holes to electrons by the change in electrolyte-gate voltage. I A also exhibited a peak value under conditions of both hole and electron conduction. These results can be explained on the basis of a change in the type of major carrier in graphene, as well as a change in the carrier mobility of graphene.

  5. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    NASA Astrophysics Data System (ADS)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  6. The anomalous manipulation of acoustic waves based on planar metasurface with split hollow sphere

    NASA Astrophysics Data System (ADS)

    Ding, Changlin; Chen, Huaijun; Zhai, Shilong; Liu, Song; Zhao, Xiaopeng

    2015-02-01

    This paper presents an acoustic metasurface (AMS) model consisting of split hollow sphere (SHS) resonator arrays with the property of negative modulus. It shows that the AMS can imprint phase discontinuities on an acoustic reflected wave as it traverses the interface between two media. By designing suitable phase gradients, the AMS enables the perpendicularly incident acoustic wave to be converted to a surface wave or reflected in any angle. Four kinds of AMSs, which can anomalously manipulate the reflected wave’s direction, are simulated to fulfill the generalized Snell’s law. The results provide an available and simple path to experimentally achieving the AMS.

  7. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities

    SciTech Connect

    Goryachev, Maxim Farr, Warrick G.; Tobar, Michael E.; Galliou, Serge

    2014-08-11

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity (Q>3>10{sup 9}), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

  8. Optical Generation And Spatially Distinct Interferometric Detection Of Ultrahigh Frequency Surface Acoustic Waves

    SciTech Connect

    David H. Hurley

    2006-05-01

    Generation and interferometric detection of 22 GHz surface acoustic waves (SAWs) using two laterally separated absorption gratings on a Si substrate are presented. Optical phase sensitive detection of SAWs is demonstrated using a modified Sagnac interferometer. The reflection characteristics of the suboptical wavelength grating necessitate the use of only linear polarization. This is accomplished by employing a Faraday rotator to ensure path reversal of the reference and signal pulses. The enhanced sensitivity of the interferometer is exploited to measure the acoustic disturbance on an identical absorption grating at a distance of ~4.5 µm from the generation site.

  9. Lagrangian-Eulerian micromotion and wave heating in nonlinear self-excited dust-acoustic waves.

    PubMed

    Liao, Chen-Ting; Teng, Lee-Wen; Tsai, Chen-Yu; Io, Chong-Wai; I, Lin

    2008-05-09

    We investigate particle-wave microdynamics in the large amplitude self-excited dust acoustic wave at the discrete level through direct visualization. The wave field induces dust oscillations which in turn sustain wave propagation. In the regular wave with increasing wave amplitude, dust-wave interaction with uncertain temporary crest trapping and dust-dust interaction lead to the transition from cyclic to disordered dust motion associated with the liquid to the gas transition, and anisotropic non-Gaussian heating. In the irregular wave, particle trough-trapping is also observed, and the heating is nearly Gaussian and less anisotropic.

  10. In situ high-temperature characterization of AlN-based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

    2013-07-01

    We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

  11. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers.

    PubMed

    Yang, Zengtao; Yang, Jiashi; Hu, Yuantai

    2008-11-01

    Weakly nonlinear behavior of electric power transmission through an elastic wall by piezoelectric transducers and acoustic waves near resonance is studied based on the cubic theory of nonlinear electroelasticity. An approximate analytical solution is obtained. Output voltage is calculated and plotted. Basic nonlinear behaviors of the power transmission structure are examined. It is found that near nonlinear resonance the electrical input-output relation loses its linearity, becomes multi-valued, and experiences jumps due to large mechanical deformations. The behavior below and above resonance is qualitatively different and is qualitatively material dependent.

  12. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  13. Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves.

    PubMed

    Kulkarni, Ketav P; Ramarathinam, Sri H; Friend, James; Yeo, Leslie; Purcell, Anthony W; Perlmutter, Patrick

    2010-06-21

    A new method for in-gel sample processing and tryptic digestion of proteins is described. Sample preparation, rehydration, in situ digestion and peptide extraction from gel slices are dramatically accelerated by treating the gel slice with surface acoustic waves (SAWs). Only 30 minutes total workflow time is required for this new method to produce base peak chromatograms (BPCs) of similar coverage and intensity to those observed for traditional processing and overnight digestion. Simple set up, good reproducibility, excellent peptide recoveries, rapid turnover of samples and high confidence protein identifications put this technology at the fore-front of the next generation of proteomics sample processing tools.

  14. Influence of material parameters on acoustic wave propagation modes in ZnO/Si bi-layered structures.

    PubMed

    Gao, Hui-dong; Zhang, Shu-Yi; Qi, Xue; Wasa, Kiyotaka; Wu, Hao-Dong

    2005-12-01

    The influences of material properties on acoustic wave propagation modes in ZnO/Si bi-layered structures are studied. The transfer matrix method is used to calculate dispersion relations, wave field distributions, and electromechanical coupling coefficients of acoustic wave propagation modes in ZnO/Si bi-layered systems, in which the thickness of the substrate is of the same order of magnitude as the wavelength of the propagating wave modes. The influences of the thin film parameters on the acoustic wave propagation modes and their electromechanical coupling coefficients of the wave modes also are obtained. In addition, some experimental results for characterizing the wave propagation modes and their frequencies have also been obtained, which agree well with the theoretical predictions.

  15. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T. Tazwell; Keller, Jay O.

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  16. Method and apparatus for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor

    DOEpatents

    Seibert, Michael; Benson, David K.; Flynn, Timothy Michael

    2001-01-01

    The invention provides an assay system for identifying a hydrogen-gas-producing organism, including a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate disposed proximally to the outer surface of the second layer, the organism being isolated on the substrate.

  17. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    SciTech Connect

    Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.

    2011-06-15

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B{sub 0}. It is noted that the growth rate is proportional to the unperturbed electron number density n{sub oe} and is independent of inhomogeneity beyond L{sub e}=2 cm. An extraordinary growth rate is observed with the quantum effect.

  18. A novel unsplit perfectly matched layer for the second-order acoustic wave equation.

    PubMed

    Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan

    2014-08-01

    When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach.

  19. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

    2013-04-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

  20. Generalized Discrete Model of Systems with Distributed Feedback Based on Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Sveshnikov, B. V.; Bagdasaryan, A. S.

    2016-11-01

    We have developed a self-consistent physical model that improves the accuracy of calculating the characteristics of the devices based on both surface and pseudosurface acoustic waves. The model is free from restrictions inherent in the well-known method of coupled modes and other phenomenological methods for studying distributed systems. The compact relationships describing all the characteristics of the acoustoelectric transducers of all types with allowance for the possible directionality of their radiation and its propagation loss are obtained using analytical solution of the difference equations. The method for determining the spatial orientation of the elastic-polarization ellipse in an anisotropic crystal, which allows one to unambiguously calculate the phase shift between the oscillations of two coupled dynamical subsystems, i.e., elastic displacements and the corresponding electric field, is proposed. The obtained results, which considerably facilitate the task of fast and accurate design of various devices on the basis of surface and pseudosurface acoustic waves, are valid in the general case for any frequency, including the harmonics of the frequency of the fundamental acoustic synchronism.