Sample records for acoustically enhanced cyclone

  1. Hydrographic and acoustic evidence for enhanced plankton stocks in a small cyclone in the northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick H.; Jochens, Ann E.

    2003-01-01

    Mesoscale eddies (diameters of hundreds of km) have been shown to influence plankton production as well as the distribution of seabirds and marine mammals in the Gulf of Mexico. Smaller circulation features (eddies with diameters of tens of km) may have similar effects. We show that a small, sub-mesoscale cyclone located on the continental shelf and slope in the northeastern Gulf of Mexico during November 1997 was an area of enhanced nutrients, chlorophyll, and acoustic volume backscattering strength ( Sv). Nitrate concentrations at mid-depth in the euphotic zone were as high as 2 μM, surface chlorophyll exceeded 1 μg l -1, and Sv was as much as 15 dB referenced to 1 m -1 4 π-1 greater within this feature than in surrounding waters. Since Sv at 153 kHz is a proxy for the abundance of sound-scattering mesozooplankton and micronekton, we infer that this cyclone was locally enriched in biomass of these organisms. As with mesoscale eddies, smaller cyclones could also function as patches of favorable habitat for higher-trophic-level organisms and their prey.

  2. Acoustic estimates of zooplankton and micronekton biomass in cyclones and anticyclones of the northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick Henry

    2001-12-01

    In the Gulf of Mexico (GOM), coarse to mesoscale eddies can enhance the supply of limiting nutrients into the euphotic zone, elevating primary production. This leads to 'oases' of enriched standing stocks of zooplankton and micronekton in otherwise oligotrophic deepwater (>200 m bottom depth). A combination of acoustic volume backscattering (Sv) measurements with an acoustic Doppler current profiler (ADCP) and concurrent net sampling of zooplankton and micronekton biomass in GOM eddy fields between October 1996 and November 1998 confirmed that cyclones and flow confluences were areas of locally enhanced Sv and standing stock biomass. Net samples were used both to 'sea-truth' the acoustic measurements and to assess the influence of taxonomic composition on measured Sv. During October 1996 and August 1997, a mesoscale (200--300 km diameter) cyclone-anticyclone pair in the northeastern GOM was surveyed as part of a cetacean (whale and dolphin) and seabird habitat, study. Acoustic estimates of biomass in the upper 10--50 m of the water column showed that the cyclone and flow confluence were enriched relative to anticyclonic Loop Current Eddies during both years. Cetacean and seabird survey results reported by other project researchers imply that these eddies provide preferential habitat because they foster locally higher concentrations of higher-trophic-level prey. Sv measurements in November 1997 and 1998 showed that coarse scale eddies (30--150 km diameter) probably enhanced nutrients and S, in the deepwater GOM within 100 km of the Mississippi delta, an area suspected to be important habitat for cetaceans and seabirds. Finally, Sv, data collected during November-December 1997 and October-December 1998 from a mooring at the head of DeSoto Canyon in the northeastern GOM revealed temporal variability at a single location: characteristic temporal decorrelation scales were 1 day (diel vertical migration of zooplankton and micronekton) and 5 days (advective processes). A

  3. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves

    PubMed Central

    Zhang, Jinlun; Ashjian, Carin; Campbell, Robert; Hill, Victoria; Spitz, Yvette H; Steele, Michael

    2014-01-01

    [1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing

  4. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves.

    PubMed

    Zhang, Jinlun; Ashjian, Carin; Campbell, Robert; Hill, Victoria; Spitz, Yvette H; Steele, Michael

    2014-01-01

    [1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing

  5. Multiyear Composite View of Ozone Enhancements and Stratosphere-to-Troposphere Transport in Dry Intrusions of Northern Hemisphere Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Jaeglé, Lyatt; Wood, Robert; Wargan, Krzysztof

    2017-12-01

    We examine the role of extratropical cyclones in stratosphere-to-troposphere (STT) exchange with cyclone-centric composites of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES), contrasting them to composites obtained with the Modern-Era Retrospective-analysis for Research and Applications (MERRA and MERRA-2) reanalyses and the GEOS-Chem chemical transport model. We identify 15,978 extratropical cyclones in the northern hemisphere (NH) for 2005-2012. The lowermost stratosphere (261 hPa) and middle troposphere (424 hPa) composites feature a 1,000 km wide O3 enhancement in the dry intrusion (DI) airstream to the southwest of the cyclone center, coinciding with a lowered tropopause, enhanced potential vorticity, and decreased H2O. MLS composites at 261 hPa show that the DI O3 enhancements reach a 210 ppbv maximum in April. At 424 hPa, TES composites display maximum O3 enhancements of 27 ppbv in May. The magnitude and seasonality of these enhancements are captured by MERRA and MERRA-2, but GEOS-Chem is a factor of 2 too low. The MERRA-2 composites show that the O3-rich DI forms a vertically aligned structure between 300 and 800 hPa, wrapping cyclonically with the warm conveyor belt. In winter and spring DIs, O3 is enhanced by 100 ppbv or 100-130% at 300 hPa, with significant enhancements below 500 hPa (6-20 ppbv or 15-30%). We estimate that extratropical cyclones result in a STT flux of 119 ± 56 Tg O3 yr-1, accounting for 42 ± 20% of the NH extratropical O3 STT flux. The STT flux in cyclones displays a strong dependence on westerly 300 hPa wind speeds.

  6. Acoustic Purcell Effect for Enhanced Emission

    NASA Astrophysics Data System (ADS)

    Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun

    2018-03-01

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi's golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  7. The dynamical link between deep Atlantic extratropical cyclones and intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Raveh-Rubin, Shira; Flaounas, Emmanouil

    2017-04-01

    Breaking of atmospheric Rossby waves has been previously shown to lead to intense Mediterranean cyclones, one of the most prominent environmental risks in the region. Wave breaking may be enhanced by warm conveyor belts (WCBs) associated with extratropical cyclones developing over the Atlantic Ocean. More precisely, WCBs supply the upper troposphere with air masses of low potential vorticity that, in turn, amplify ridges and thus favor Rossby wave breaking. This study identifies and validates the relevance of the mechanism that connects Atlantic cyclones and intense mature Mediterranean cyclones through ridge amplification by WCBs. Using ECMWF ERA-Interim reanalyses and a feature-based approach, we analyze the 200 most intense Mediterranean cyclones for the years 1989-2008 and show that their majority (181 cases) is indeed associated with this mechanism upstream. Results show that multiple Atlantic cyclones are associated with each case of intense Mediterranean cyclone downstream. Moreover, the associated Atlantic cyclones are particularly deep compared to climatology.

  8. Multi-year composite view of ozone enhancements and stratosphere-to-troposphere transport in dry intrusions of northern hemisphere extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Jaegle, L.; Wood, R.; Wargan, K.

    2017-12-01

    We examine the role of extratropical cyclones in stratosphere-to-troposphere (STT) exchange by using cyclone-centric composites of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES) onboard the Aura satellite and contrasting them to composites obtained with Modern-Era Retrospective-analysis for Research and Applications (MERRA and MERRA-2) as well as with the GEOS-Chem chemical transport model. MERRA sea level pressure fields are used to identify 15,978 extratropical cyclones in the northern hemisphere (NH) between 2005 and 2012. The lowermost stratosphere (261 hPa) and middle troposphere (424 hPa) composites of these cyclones feature a distinct 1,000 km wide O3 enhancement in the dry intrusion to the southwest of the cyclone center, coinciding with a lowered tropopause, enhanced potential vorticity, and decreased water vapor. In the lowermost stratosphere, MLS composites show that the dry intrusion O3 enhancements reach a 210 ppbv maximum in April. In the middle troposphere, TES composites display dry intrusion maximum O3 enhancements of 27 ppbv in May. The magnitude and seasonality of these enhancements are captured by MERRA and MERRA-2, but GEOS-Chem is a factor of two too low. The MERRA-2 composites show that the O3-rich dry intrusion forms a coherent and vertically aligned structure between 300 and 800 hPa, wrapping cyclonically with the warm conveyor belt. In winter and spring dry intrusions, O3 is enhanced by 100 pbbv or 100-130% relative to background conditions at 300 hPa, with a significant contribution reaching pressure altitudes below 500 hPa (6-20 ppbv or 15-30% enhancement). We calculate that extratropical cyclones result in a STT flux of 119 Tg O3 yr-1, accounting for 42% of the annual NH O3 extratropical STT flux. The STT flux in cyclones is highest in spring and displays a strong dependence on westerly 300 hPa wind speeds.

  9. Microparticle Separation by Cyclonic Separation

    NASA Astrophysics Data System (ADS)

    Karback, Keegan; Leith, Alexander

    2017-11-01

    The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.

  10. Developing an enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; de Wit, Roald; Atalifo, Terry; Prakash, Bipendra; Waqaicelua, Alipate; Kunitsugu, Masashi; Caroff, Philippe; Chane-Ming, Fabrice

    2013-04-01

    Tropical cyclones are the most extreme weather phenomena which severely impact coastal communities and island nations. There is an ongoing research (i) on accurate analysis of observed trends in tropical cyclone occurrences, and (ii) how tropical cyclone frequency and intensity may change in the future as a result of climate change. Reliable historical records of cyclone activity are vital for this research. The Pacific Australia Climate Change Science and Adaptation Planning (PACCSAP) program is dedicated to help Pacific Island countries and Timor Leste gain a better understanding of how climate change will impact their regions. One of the key PACCSAP projects is focused on developing a tropical cyclone archive, climatology and seasonal prediction for the regions. As part of the project, historical tropical cyclone best track data have been examined and prepared to be subsequently displayed through the enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean. Data from the Regional Specialised Meteorological Centre (RSMC) Nadi, Fiji and Tropical Cyclone Warning Centres (TCWCs) in Brisbane, Darwin and Wellington for 1969-1970 to 2010-2011 tropical cyclone seasons have been carefully examined. Errors and inconsistencies which have been found during the quality control procedure have been corrected. To produce a consolidated data set for the South Pacific Ocean, best track data from these four centres have been used. Specifically, for 1969-1970 to 1994-1995 tropical cyclone seasons, data from TCWCs in Brisbane, Darwin and Wellington have been used. In 1995, RSMC Nadi, Fiji has been established with responsibilities for issuing tropical cyclone warnings and preparing best track data for the area south of the equator to 25°S, 160°E to 120°W. Consequently, data from RSMC Nadi have been used as a primary source for this area, starting from the 1995-1996 tropical cyclone season. These data have been combined with the data from

  11. Contrast-enhanced optical coherence microangiography with acoustic-actuated microbubbles

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsuan; Zhang, Jia-Wei; Yeh, Chih-Kuang; Wei, Kuo-Chen; Liu, Hao-Li; Tsai, Meng-Tsan

    2017-04-01

    In this study, we propose to use gas-filled microbubbles (MBs) simultaneously actuated by the acoustic wave to enhance the imaging contrast of optical coherence tomography (OCT)-based angiography. In the phantom experiments, MBs can result in stronger backscattered intensity, enabling to enhance the contrast of OCT intensity image. Moreover, simultaneous application of low-intensity acoustic wave enables to temporally induce local vibration of particles and MBs in the vessels, resulting in time-variant OCT intensity which can be used for enhancing the contrast of OCT intensitybased angiography. Additionally, different acoustic modes and different acoustic powers to actuate MBs are performed and compared to investigate the feasibility of contrast enhancement. Finally, animal experiments are performed. The findings suggest that acoustic-actuated MBs can effectively enhance the imaging contrast of OCT-based angiography and the imaging depth of OCT angiography is also extended.

  12. Acoustically Enhanced Electroplating Being Developed

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2002-01-01

    In cooperation with the NASA Glenn Research Center, Alchemitron Corp. is developing the Acoustically Enhanced Electroplating Process (AEEP), a new technique of employing nonlinear ultrasonics to enhance electroplating. The applications range from electroplating full-panel electronic circuit boards to electroplating microelectronics and microelectromechanical systems (MEMS) devices. In a conventional plating process, the surface area to be plated is separated from the nonplated areas by a temporary mask. The mask may take many forms, from a cured liquid coating to a simple tape. Generally, the mask is discarded when the plating is complete, creating a solid waste product that is often an environmental hazard. The labor and materials involved with the layout, fabrication, and tooling of masks is a primary source of recurring and nonrecurring production costs. The objective of this joint effort, therefore, is to reduce or eliminate the need for masks. AEEP improves selective plating processes by using directed beams of high-intensity acoustic waves to create nonlinear effects that alter the fluid dynamic and thermodynamic behavior of the plating process. It relies on two effects: acoustic streaming and acoustic heating. Acoustic streaming is observed when a high-intensity acoustic beam creates a liquid current within the beam. The liquid current can be directed as the beam is directed and, thus, users can move liquid around as desired without using pumps and nozzles. The current of the electroplating electrolyte, therefore, can be directed at distinct target areas where electroplating is desired. The current delivers fresh electrolyte to the target area while flushing away the spent electrolyte. This dramatically increases the plating rate in the target area. In addition, acoustic heating of both the liquid in the beam and the target surface increases the chemical reaction rate, which further increases the plating rate. The combined effects of acoustic streaming and

  13. Examining South Atlantic Subtropical Cyclone Anita using the Satellite-Enhanced Regional Downscaling for Applied Studies Hourly Outputs

    NASA Astrophysics Data System (ADS)

    Vaicberg, H.; Palmeira, A. C. P. A.; Nunes, A.

    2017-12-01

    Studies on South Atlantic cyclones are mainly compromised by scarcity of observations. Therefore, remote sensing and global (re) analysis products are usually employed in investigations of their evolution. However, the frequent use of global reanalysis might difficult the assessment of the characteristics of the cyclones found in South Atlantic. In that regard, studies on "subtropical" cyclones have been performed using the 25-km resolution, Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), a product developed at the Federal University of Rio de Janeiro in Brazil. In SRDAS, the Regional Spectral Model assimilates precipitation estimates from environmental satellites, while dynamically downscaling a global reanalysis using the spectral nudging technique to maintain the large-scale features in agreement with the regional model solution. The use of regional models in the downscaling of general circulation models provides more detailed information on weather and climate. As a way of illustrating the usefulness of SRDAS in the study of the subtropical South Atlantic cyclones, the subtropical cyclone Anita was selected because of its intensity. Anita developed near Brazilian south/southeast coast, with damages to local communities. Comparisons with available observations demonstrated the skill of SRDAS in simulating such an extreme event.

  14. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  15. Upper-level enhancement of microphysical processes in extratropical cyclones observed during OLYMPEX

    NASA Astrophysics Data System (ADS)

    Rowe, A.; McMurdie, L. A.; Houze, R.; Zagrodnik, J. P.; Schuldt, T.; Chaplin, M.

    2017-12-01

    Data collected during the Olympic Mountains Experiment (OLYMPEX) of fall 2015-winter 2016 offer a unique opportunity to document enhancement of precipitation on the windward side of a mountain range as mid-latitude cyclones encountered the complex terrain of the Olympic Mountains. During the campaign, extensive instrumentation was deployed, including ground-based dual-polarization Doppler radars on the windward and leeward sides of the mountains and research aircraft providing in situ microphysical measurements and triple-frequency radar data over the ground-based sites and highest elevations. These datasets provide unprecedented detail on microphysical and dynamical processes associated with precipitation enhancement. Previous studies of precipitation enhancement over mountains have focused on surface rainfall amounts. However, the airflow over the terrain affects precipitation throughout the vertical columns of the atmosphere passing over the mountains. The OLYMPEX data were collected in a way that allows the mechanisms leading to enhancement to be examined at all levels. In particular, NASA's S-band and the NSF/CSWR DOW6 X-band dual-polarization radars provided high-resolution vertical cross sections in sectors upwind and over the mountains. The degree of upper-level enhancement seen in these radar data was most pronounced when the integrated vapor transport was strong, stability was moist neutral, and melting levels were relatively high. These conditions were often found within the warm sectors of the mid-latitude cyclones observed in OLYMPEX. Within widespread stratiform echo, radar data revealed layers of enhanced differential reflectivity aloft in addition to the enhanced reflectivity. In situ microphysical probe data from the University of North Dakota Citation aircraft were obtained in the context of these ground-based radar observations, which along with observations from the APR3 radar aboard the DC8 research aircraft, provide a unique dataset for

  16. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    PubMed

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  17. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  18. Method and apparatus for shaping and enhancing acoustical levitation forces

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Berge, L. H.; Reiss, D. A.; Johnson, J. L. (Inventor)

    1980-01-01

    A method and apparatus for enhancing and shaping acoustical levitation forces in a single-axis acoustic resonance system wherein specially shaped drivers and reflectors are utilized to enhance to levitation force and better contain fluid substance by means of field shaping is described.

  19. Enhanced Synthesis of Carbon Nanomaterials Using Acoustically Excited Methane Diffusion Flames

    PubMed Central

    Hou, Shuhn-Shyurng; Chen, Kuan-Ming; Yang, Zong-Yun; Lin, Ta-Hui

    2015-01-01

    Acoustically modulated methane jet diffusion flames were used to enhance carbon nanostructure synthesis. A catalytic nickel substrate was employed to collect the deposit materials at sampling position z = 10 mm above the burner exit. The fabrication of carbon nano-onions (CNOs) and carbon nanotubes (CNTs) was significantly enhanced by acoustic excitation at frequencies near the natural flickering frequency (ƒ = 20 Hz) and near the acoustically resonant frequency (ƒ = 90 Hz), respectively. At these characteristic frequencies, flow mixing was markedly enhanced by acoustic excitation, and a flame structure with a bright slender core flame was generated, which provided a favorable flame environment for the growth of carbon nanomaterials. The production rate of CNOs was high at 20 Hz (near the natural flickering frequency), at which the gas temperature was about 680 °C. Additionally, a quantity of CNTs was obtained at 70–95 Hz, near the acoustically resonant frequency, at which the gas temperature was between 665 and 830 °C. However, no carbon nanomaterials were synthesized at other frequencies. The enhanced synthesis of CNOs and CNTs is attributed to the strong mixing of the fuel and oxidizer due to the acoustic excitation at resonant frequencies. PMID:28793473

  20. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    PubMed

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  1. Nonlinear Acoustics in Cicada Mating Calls Enhance Sound Propagation

    DTIC Science & Technology

    2009-03-01

    NUWC-NPT Reprint Report 11,907 1 March 2009 Nonlinear Acoustics in Cicada Mating Calls Enhance Sound Propagation Derke R. Hughes Albert H...vol. 125, no. 2, February 2009. Nonlinear acoustics in cicada mating calls enhance sound propagation Derke R. Hughes,3 Albert H. Nuttall,h Richard A...2008; revised 31 October 2008; accepted 15 November 2008) An analysis of cicada mating calls, measured in field experiments, indicates that the very

  2. Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation

    DTIC Science & Technology

    2008-03-01

    AD_________________ Award Number: W81XWH-06-1-0389 TITLE: Contrast Enhancement for Thermal...5a. CONTRACT NUMBER Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation 5b. GRANT NUMBER W81XWH-06-1-0389...13. SUPPLEMENTARY NOTES 14. ABSTRACT This research plans to develop enhanced contrast thermal acoustic imaging (TAI) technology for the

  3. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  4. Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity

    PubMed Central

    Song, Kyungjun; Lee, Seong-Hyun; Kim, Kiwon; Hur, Shin; Kim, Jedo

    2014-01-01

    The emission enhancement of sound without electronic components has wide applications in a variety of remote systems, especially when highly miniaturized (smaller than wavelength) structures can be used. The recent advent of acoustic metamaterials has made it possible to realize this. In this study, we propose, design, and demonstrate a new class of acoustic cavity using a double-walled metamaterial structure operating at an extremely low frequency. Periodic zigzag elements which exhibit Fabry-Perot resonant behavior below the phononic band-gap are used to yield strong sound localization within the subwavelength gap, thus providing highly effective emission enhancement. We show, both theoretically and experimentally, 10 dB sound emission enhancement near 1060 Hz that corresponds to a wavelength approximately 30 times that of the periodicity. We also provide a general guideline for the independent tuning of the quality factor and effective volume of acoustic metamaterials. This approach shows the flexibility of our design in the efficient control of the enhancement rate. PMID:24584552

  5. NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.

  6. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  7. On the cyclonic eddy generation in Panay Strait, Philippines

    NASA Astrophysics Data System (ADS)

    Flament, P. J.; Repollo, C. L. A.; Flores-vidal, X.; Villanoy, C.

    2016-12-01

    High Frequency Doppler Radar (HFDR), shallow pressure gauges and Acoustic Doppler Current Profiler (ADCP) time-series observations during the Philippine Straits Dynamics Experiment (PhilEx) were analyzed to describe the mesoscale currents in Panay Strait, Philippines. Low frequency surface currents inferred from three HFDR (July 2008 { July 2009), revealed a clear seasonal signal in concurrent with the reversal of the Asian monsoon. The mesoscale cyclonic eddy west of Panay Island is generated during the winter northeast (NE) monsoon. This causes changes in the strength, depth and width of the intra-seasonal Panay coastal jet as its eastern limb. Winds from QuikSCAT satellite and from a nearby airport indicate that these flow structures correlate with the strength and direction of the prevailing local wind. An intensive survey of the cyclonic eddy in February 8-9, 2009, obtaining a 24-hour successive cross-shore Conductivity-Temperature- Depth (CTD) sections in conjunction with shipboard ADCP measurements showed a well- developed cyclonic eddy characterized by near-surface velocities reaching 50 cm/s. This observation coincides with the intensification of the wind in between Mindoro and Panay islands generating a positive wind stress curl in the lee of Panay, which in turn induces divergent surface currents. Water column response from the mean transects showed a pronounced signal of upwelling, indicated by the doming of isotherms and isopycnals. A pressure gradient then was sets up, resulting in the spin-up of a cyclonic eddy in geostrophic balance. Evaluation of the surface vorticity balance equation suggests that the wind stress curl via Ekman pumping mechanism provides the necessary input in the formation and evolution of the cyclonic eddy. In particular, the cumulative effect of the wind stress curl plays a key role on the generation of the eddy. The Beta-effect on the other hand may led to propagation of the eddy westward.

  8. Enhanced viscous flow drag reduction using acoustic excitation

    NASA Technical Reports Server (NTRS)

    Nagel, R. T.

    1988-01-01

    Large eddy break up devices (LEBUs) constitute a promising method of obtaining drag reduction in a turbulent boundary layer. Enhancement of the LEBU effectiveness by exciting its trailing edge with acoustic waves phase locked to the large scale structure influencing the momentum transfer to the wall is sought. An initial estimate of the required sound pressure level for an effective pulse was obtained by considering the magnitude of the pressure perturbations at the near wake of a thin plate in inviscid flow. Detailed skin friction measurments were obtained in the flow region downstream of a LEBU excited with acoustic waves. The data are compared with skin friction measurements of a simply manipulated flow, without acoustic excitation and with a plain flow configuration. The properties and the scales of motion in the flow regime downstream of the acoustically excited LEBU are studied. A parametric study based upon the characteristics of the acoustic input was pursued in addition to the careful mapping of the drag reduction phenomenon within the acoustically manipulated boundary layer. This study of boundary layer manipulation has lead to improved skin friction drag reduction and further understanding of the turbulent boundary layer.

  9. Growing Land-Sea Temperature Contrast and the Intensification of Arctic Cyclones

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Hodges, Kevin I.

    2018-04-01

    Cyclones play an important role in the coupled dynamics of the Arctic climate system on a range of time scales. Modeling studies suggest that storminess will increase in Arctic summer due to enhanced land-sea thermal contrast along the Arctic coastline, in a region known as the Arctic Frontal Zone (AFZ). However, the climate models used in these studies are poor at reproducing the present-day Arctic summer cyclone climatology and so their projections of Arctic cyclones and related quantities, such as sea ice, may not be reliable. In this study we perform composite analysis of Arctic cyclone statistics using AFZ variability as an analog for climate change. High AFZ years are characterized both by increased cyclone frequency and dynamical intensity, compared to low years. Importantly, the size of the response in this analog suggests that General Circulation Models may underestimate the response of Arctic cyclones to climate change, given a similar change in baroclinicity.

  10. The contribution of tropical cyclones to rainfall in Mexico

    NASA Astrophysics Data System (ADS)

    Agustín Breña-Naranjo, J.; Pedrozo-Acuña, Adrián; Pozos-Estrada, Oscar; Jiménez-López, Salma A.; López-López, Marco R.

    Investigating the contribution of tropical cyclones to the terrestrial water cycle can help quantify the benefits and hazards caused by the rainfall generated from this type of hydro-meteorological event. Rainfall induced by tropical cyclones can enhance both flood risk and groundwater recharge, and it is therefore important to characterise its minimum, mean and maximum contributions to a region or country's water balance. This work evaluates the rainfall contribution of tropical depressions, storms and hurricanes across Mexico from 1998 to 2013 using the satellite-derived precipitation dataset TMPA 3B42. Additionally, the sensitivity of rainfall to other datasets was assessed: the national rain gauge observation network, real-time satellite rainfall and a merged product that combines rain gauges with non-calibrated space-borne rainfall measurements. The lower Baja California peninsula had the highest contribution from cyclonic rainfall in relative terms (∼40% of its total annual rainfall), whereas the contributions in the rest of the country showed a low-to-medium dependence on tropical cyclones, with mean values ranging from 0% to 20%. In quantitative terms, southern regions of Mexico can receive more than 2400 mm of cyclonic rainfall during years with significant TC activity. Moreover, (a) the number of tropical cyclones impacting Mexico has been significantly increasing since 1998, but cyclonic contributions in relative and quantitative terms have not been increasing, and (b) wind speed and rainfall intensity during cyclones are not highly correlated. Future work should evaluate the impacts of such contributions on surface and groundwater hydrological processes and connect the knowledge gaps between the magnitude of tropical cyclones, flood hazards, and economic losses.

  11. An updated climatology of explosive cyclones using alternative measures of cyclone intensity

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Caballero, R.

    2009-04-01

    Using a novel cyclone tracking and identification method, we compute a climatology of explosively intensifying cyclones or ‘bombs' using the ERA-40 and ERA-Interim datasets. Traditionally, ‘bombs' have been identified using a central pressure deepening rate criterion (Sanders and Gyakum, 1980). We investigate alternative methods of capturing such extreme cyclones. These methods include using the maximum wind contained within the cyclone, and using a potential vorticity column measure within such systems, as a measure of intensity. Using the different measures of cyclone intensity, we construct and intercompare maps of peak cyclone intensity. We also compute peak intensity probability distributions, and assess the evidence for the bi-modal distribution found by Roebber (1984). Finally, we address the question of the relationship between storm intensification rate and storm destructiveness: are ‘bombs' the most destructive storms?

  12. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2008-06-01

    Imaging with Acoustic Tissue-Selective Contrast Enhancement PRINCIPAL INVESTIGATOR: Gerald J. Diebold, Ph.D. CONTRACTING... Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement 5b. GRANT NUMBER W81XWH-04-1-0481 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...additional phase contrast features are visible at the interfaces of soft tissues as slight contrast enhancements . The image sequence in Fig. 2 shows an image

  13. Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.

    PubMed

    Zhao, Ying-Zheng; Dai, Dan-Dan; Lu, Cui-Tao; Lv, Hai-Feng; Zhang, Yan; Li, Xing; Li, Wen-Feng; Wu, Yan; Jiang, Lei; Li, Xiao-Kun; Huang, Pin-Tong; Chen, Li-Juan; Lin, Min

    2012-09-01

    Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy.

  14. The Sharav Cyclone: Observations and some theoretical considerations

    NASA Astrophysics Data System (ADS)

    Alpert, P.; Ziv, B.

    1989-12-01

    A special study of the Sharav Cyclones indicates that they are the result of large-scale weak baroclinicity, enhanced by vigorous boundary-layer baroclinicity between the North African coast and the Mediterranean. It is illustrated how the jet stream plays a major role in the vertical circulation in producing a complex cyclonic circulation dominated by at least three mechanisms: large-scale interior baroclinicity, boundary-layer baroclinicity, and jet stream related circulations. The main characteristics of the Sharav Cyclone (also called the Saharan Depression or Khamsin Depression) in the Mediterranean are reviewed. Unlike the cold winter cyclone, the Sharav Cyclone is a spring cyclone. Its tracks lie mainly along the North African coast and turn to the north near the southeastern Mediterranean. Its warm front is active and is sometimes associated with extremely high surface temperatures. Its cold front is shallow. The Sharav Cyclone moves eastward relatively fast, typically faster than 10 m s-1, and with a small speed variability. In general, there is an upper level trough to the west of the surface low and the surface horizontal scale is of the order of 500-1000 km. Finally, it is frequently associated with heavy dust/sand storms and low visibilities. Some of these features are illustrated in a case study of the April 28-30, 1986, cyclone. Vertical cross sections indicate a deep circulation associated with the exit region of an upper level jet. In addition to presenting evidence that the Sharav Cyclone is a deep tropospheric circulation, it is shown that the transverse indirect circulation at the exit region of the jet is a major component of its circulation. The classic two-level baroclinic model (Phillips, 1954) is applied. The effects of the major diabatic heating due to the sensible heat flux above the North African desert and the large north to south temperature gradients are incorporated through the thermal wind of the basic state. The model predicts the

  15. Diabatic processes and the evolution of two contrasting extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Two contrasting extratropical cyclones were observed over the United Kingdom during the summer 2012 field campaign of the DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) project. The first cyclone, observed in July, was a shallow system typical of summer over west Europe while the second cyclone, observed in August, was a much deeper system which developed a potential vorticity (PV) tower. The evolution of these two cyclones was analysed and compared in terms of diabatic effects with respect to two aspects. The first aspect is the amount and distribution of heat produced during the development of each cyclone, measured by the cross-isentropic motion around the cyclone centre. The second aspect is the modification to the circulation around the cyclones' centres, measured by area-averaged isentropic vorticity. The contributions from individual diabatic processes, such as convection, cloud microphysics and radiation, to these two aspects is also considered. The cyclones were analysed via hindcast simulations with a research version of the Met Office Unified Model, enhanced with on-line tracers of diabatic changes of potential temperature and PV. A new methodology for the interpretation of these tracers was also implemented and used. The hindcast simulations were compared with the available dropsonde observations from the field campaign as well as operational analyses and radar rainfall rates. It is shown that, while boundary layer and turbulent mixing processes and cloud microphysics processes contributed to the development of both cyclones, the main differences between the cyclones in terms of diabatic effects could be attributed to differences in convective activity. It is also shown that the contribution from all these diabatic processes to changes in the circulation was modulated by the characteristics of advection around each cyclone in a highly nonlinear fashion. This research establishes a new framework for a systematic comparison

  16. Cyclone energy: impact of inlet velocity and outlet évasé designs

    USDA-ARS?s Scientific Manuscript database

    Because electricity generation produces emissions, reducing cyclone pressure drop has the potential to benefit the environment. Enhanced 1D3D cyclones common in the cotton ginning industry were tested with various évasés, over a range of inlet velocities. With évasés it was possible to reduce the ...

  17. Cyclone-induced rapid creation of extreme Antarctic sea ice conditions

    PubMed Central

    Wang, Zhaomin; Turner, John; Sun, Bo; Li, Bingrui; Liu, Chengyan

    2014-01-01

    Two polar vessels, Akademik Shokalskiy and Xuelong, were trapped by thick sea ice in the Antarctic coastal region just to the west of 144°E and between 66.5°S and 67°S in late December 2013. This event demonstrated the rapid establishment of extreme Antarctic sea ice conditions on synoptic time scales. The event was associated with cyclones that developed at lower latitudes. Near the event site, cyclone-enhanced strong southeasterly katabatic winds drove large westward drifts of ice floes. In addition, the cyclones also gave southward ice drift. The arrival and grounding of Iceberg B9B in Commonwealth Bay in March 2011 led to the growth of fast ice around it, forming a northward protruding barrier. This barrier blocked the westward ice drift and hence aided sea ice consolidation on its eastern side. Similar cyclone-induced events have occurred at this site in the past after the grounding of Iceberg B9B. Future events may be predictable on synoptic time scales, if cyclone-induced strong wind events can be predicted. PMID:24937550

  18. Acoustic enhancement for photo detecting devices

    DOEpatents

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  19. Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography.

    PubMed

    Kim, Chulhong; Zemp, Roger J; Wang, Lihong V

    2006-08-15

    Biophotonic imaging with ultrasound-modulated optical tomography (UOT) promises ultrasonically resolved imaging in biological tissues. A key challenge in this imaging technique is a low signal-to-noise ratio (SNR). We show significant UOT signal enhancement by using intense time-gated acoustic bursts. A CCD camera captured the speckle pattern from a laser-illuminated tissue phantom. Differences in speckle contrast were observed when ultrasonic bursts were applied, compared with when no ultrasound was applied. When CCD triggering was synchronized with burst initiation, acoustic-radiation-force-induced displacements were detected. To avoid mechanical contrast in UOT images, the CCD camera acquisition was delayed several milliseconds until transient effects of acoustic radiation force attenuated to a satisfactory level. The SNR of our system was sufficiently high to provide an image pixel per acoustic burst without signal averaging. Because of the substantially improved SNR, the use of intense acoustic bursts is a promising signal enhancement strategy for UOT.

  20. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

    NASA Astrophysics Data System (ADS)

    McCoy, Daniel T.; Field, Paul R.; Schmidt, Anja; Grosvenor, Daniel P.; Bender, Frida A.-M.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Elsaesser, Gregory S.

    2018-04-01

    Aerosol-cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol-cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC). Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB) moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP). When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6-8.3 Wm-2 in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60 % of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  1. Acoustic Droplet Vaporization for the Enhancement of Ultrasound Thermal Therapy.

    PubMed

    Zhang, Man; Fabiilli, Mario; Carson, Paul; Padilla, Frederic; Swanson, Scott; Kripfgans, Oliver; Fowlkes, Brian

    2010-10-11

    Acoustic droplet vaporization (ADV) is an ultrasound method for converting biocompatible microdroplets into microbubbles. The objective is to demonstrate that ADV bubbles can enhance high intensity focused ultrasound (HIFU) therapy by controlling and increasing energy absorption at the focus. Thermal phantoms were made with or without droplets. Compound lesions were formed in the phantoms by 5-second exposures with 5-second delays. Center to center spacing of individual lesions was 5.5 mm in either a linear pattern or a spiral pattern. Prior to the HIFU, 10 cycle tone bursts with 0.25% duty cycle were used to vaporize the droplets, forming an "acoustic trench" within 30 seconds. The transducer was then focused in the middle of the back bubble wall to form thermal lesions in the trench. All lesions were imaged optically and with 2T MRI. With the use of ADV and the acoustic trench, a uniform thermal ablation volume of 15 cm(3) was achieved in 4 minutes; without ADV only less than 15% of this volume was filled. The commonly seen tadpole shape characteristic of bubble-enhanced HIFU lesions was not evident with the acoustic trench. In conclusion, ADV shows promise for the spatial control and dramatic acceleration of thermal lesion production by HIFU.

  2. Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Villamil-Otero, Gian A.; Zhang, Jing; He, Juanxiong; Zhang, Xiangdong

    2018-01-01

    Poleward atmospheric moisture transport (AMT) into the Arctic Ocean can change atmospheric moisture or water vapor content and cause cloud formation and redistribution, which may change downward longwave radiation and, in turn, surface energy budgets, air temperatures, and sea-ice production and melt. In this study, we found a consistently enhanced poleward AMT across 60°N since 1959 based on the NCAR-NCEP reanalysis. Regional analysis demonstrates that the poleward AMT predominantly occurs over the North Atlantic and North Pacific regions, contributing about 57% and 32%, respectively, to the total transport. To improve our understanding of the driving force for this enhanced poleward AMT, we explored the role that extratropical cyclone activity may play. Climatologically, about 207 extratropical cyclones move across 60°N into the Arctic Ocean each year, among which about 66 (32% of the total) and 47 (23%) originate from the North Atlantic and North Pacific Ocean, respectively. When analyzing the linear trends of the time series constructed by using a 20-year running window, we found a positive correlation of 0.70 between poleward yearly AMT and the integrated cyclone activity index (measurement of cyclone intensity, number, and duration). This shows the consistent multidecadal changes between these two parameters and may suggest cyclone activity plays a driving role in the enhanced poleward AMT. Furthermore, a composite analysis indicates that intensification and poleward extension of the Icelandic low and accompanying strengthened cyclone activity play an important role in enhancing poleward AMT over the North Atlantic region.

  3. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    1997-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an eleven year period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444 km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are converted to monthly rainfall amounts and then compared to those for non-tropical cyclone systems. The main results of this study indicate that: 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maxima in tropical cyclone rainfall are poleward (5 deg to 10 deg latitude depending on longitude) of the maxima in non-tropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% of the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the ITCZ; and 5) in general, tropical cyclone rainfall is enhanced during the El Nino years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  4. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    NASA Astrophysics Data System (ADS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  5. Clusters of cyclones encircling Jupiter's poles.

    PubMed

    Adriani, A; Mura, A; Orton, G; Hansen, C; Altieri, F; Moriconi, M L; Rogers, J; Eichstädt, G; Momary, T; Ingersoll, A P; Filacchione, G; Sindoni, G; Tabataba-Vakili, F; Dinelli, B M; Fabiano, F; Bolton, S J; Connerney, J E P; Atreya, S K; Lunine, J I; Tosi, F; Migliorini, A; Grassi, D; Piccioni, G; Noschese, R; Cicchetti, A; Plainaki, C; Olivieri, A; O'Neill, M E; Turrini, D; Stefani, S; Sordini, R; Amoroso, M

    2018-03-07

    The familiar axisymmetric zones and belts that characterize Jupiter's weather system at lower latitudes give way to pervasive cyclonic activity at higher latitudes. Two-dimensional turbulence in combination with the Coriolis β-effect (that is, the large meridionally varying Coriolis force on the giant planets of the Solar System) produces alternating zonal flows. The zonal flows weaken with rising latitude so that a transition between equatorial jets and polar turbulence on Jupiter can occur. Simulations with shallow-water models of giant planets support this transition by producing both alternating flows near the equator and circumpolar cyclones near the poles. Jovian polar regions are not visible from Earth owing to Jupiter's low axial tilt, and were poorly characterized by previous missions because the trajectories of these missions did not venture far from Jupiter's equatorial plane. Here we report that visible and infrared images obtained from above each pole by the Juno spacecraft during its first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones are observed about a single polar cyclone; in the south, one polar cyclone is encircled by five circumpolar cyclones. Cyclonic circulation is established via time-lapse imagery obtained over intervals ranging from 20 minutes to 4 hours. Although migration of cyclones towards the pole might be expected as a consequence of the Coriolis β-effect, by which cyclonic vortices naturally drift towards the rotational pole, the configuration of the cyclones is without precedent on other planets (including Saturn's polar hexagonal features). The manner in which the cyclones persist without merging and the process by which they evolve to their current configuration are unknown.

  6. Acoustic vibration can enhance bacterial biofilm formation.

    PubMed

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic

    2016-12-01

    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Objectively classifying Southern Hemisphere extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer

    2016-04-01

    There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.

  8. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  9. Extratropical Cyclones near Iceland

    NASA Image and Video Library

    2010-04-22

    A cyclone is a low-pressure area of winds that spiral inwards. Although tropical storms most often come to mind, these spiraling storms can also form at mid- and high latitudes. Two such cyclones formed in tandem in November 2006. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard NASA’s Terra satellite took this picture on November 20. This image shows the cyclones south of Iceland. Scotland appears in the lower right. The larger and perhaps stronger cyclone appears in the east, close to Scotland. Cyclones at high and mid-latitudes are actually fairly common, and they drive much of the Earth’s weather. In the Northern Hemisphere, cyclones move in a counter-clockwise direction, and both of the spiraling storms in this image curl upwards toward the northeast then the west. The eastern storm is fed by thick clouds from the north that swoop down toward the storm in a giant “V” shape on either side of Iceland. Skies over Iceland are relatively clear, allowing some of the island to show through. South of the storms, more diffuse cloud cover swirls toward the southeast. Credit: NASA NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  10. Characteristics and development of European cyclones with tropical origin in reanalysis data

    NASA Astrophysics Data System (ADS)

    Dekker, Mark M.; Haarsma, Reindert J.; Vries, Hylke de; Baatsen, Michiel; Delden, Aarnout J. van

    2018-01-01

    Major storm systems over Europe frequently have a tropical origin. This paper analyses the characteristics and dynamics of such cyclones in the observational record, using MERRA reanalysis data for the period 1979-2013. By stratifying the cyclones along three key phases of their development (tropical phase, extratropical transition and final re-intensification), we identify four radically different life cycles: the tropical cyclone and extratropical cyclone life cycles, the classic extratropical transition and the warm seclusion life cycle. More than 50% of the storms reaching Europe from low latitudes follow the warm seclusion life cycle. It also contains the strongest cyclones. They are characterized by a warm core and a frontal T-bone structure, with a northwestward warm conveyor belt and the effects of dry intrusion. Rapid deepening occurs in the latest phase, around their arrival in Europe. Both baroclinic instability and release of latent heat contribute to the strong intensification. The pressure minimum occurs often a day after entering Europe, which enhances the potential threat of warm seclusion storms for Europe. The impact of a future warmer climate on the development of these storms is discussed.

  11. Cyclone Chris Hits Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This false-color image shows Cyclone Chris shortly after it hit Australia's northwestern coast on February 6, 2002. This scene was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. (Please note that this scene has not been reprojected.) Cyclone Chris is one of the most powerful storms ever to hit Australia. Initially, the storm contained wind gusts of up to 200 km per hour (125 mph), but shortly after making landfall it weakened to a Category 4 storm. Meteorologists expect the cyclone to weaken quickly as it moves further inland.

  12. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    PubMed

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  13. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain

    PubMed Central

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-01-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a “smart needle” to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure. PMID:23927197

  14. Clusters of cyclones encircling Jupiter’s poles

    NASA Astrophysics Data System (ADS)

    Adriani, A.; Mura, A.; Orton, G.; Hansen, C.; Altieri, F.; Moriconi, M. L.; Rogers, J.; Eichstädt, G.; Momary, T.; Ingersoll, A. P.; Filacchione, G.; Sindoni, G.; Tabataba-Vakili, F.; Dinelli, B. M.; Fabiano, F.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Lunine, J. I.; Tosi, F.; Migliorini, A.; Grassi, D.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Plainaki, C.; Olivieri, A.; O’Neill, M. E.; Turrini, D.; Stefani, S.; Sordini, R.; Amoroso, M.

    2018-03-01

    The familiar axisymmetric zones and belts that characterize Jupiter’s weather system at lower latitudes give way to pervasive cyclonic activity at higher latitudes. Two-dimensional turbulence in combination with the Coriolis β-effect (that is, the large meridionally varying Coriolis force on the giant planets of the Solar System) produces alternating zonal flows. The zonal flows weaken with rising latitude so that a transition between equatorial jets and polar turbulence on Jupiter can occur. Simulations with shallow-water models of giant planets support this transition by producing both alternating flows near the equator and circumpolar cyclones near the poles. Jovian polar regions are not visible from Earth owing to Jupiter’s low axial tilt, and were poorly characterized by previous missions because the trajectories of these missions did not venture far from Jupiter’s equatorial plane. Here we report that visible and infrared images obtained from above each pole by the Juno spacecraft during its first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones are observed about a single polar cyclone; in the south, one polar cyclone is encircled by five circumpolar cyclones. Cyclonic circulation is established via time-lapse imagery obtained over intervals ranging from 20 minutes to 4 hours. Although migration of cyclones towards the pole might be expected as a consequence of the Coriolis β-effect, by which cyclonic vortices naturally drift towards the rotational pole, the configuration of the cyclones is without precedent on other planets (including Saturn’s polar hexagonal features). The manner in which the cyclones persist without merging and the process by which they evolve to their current configuration are unknown.

  15. Simulating the Cyclone Induced Turbulent Mixing in the Bay of Bengal using COAWST Model

    NASA Astrophysics Data System (ADS)

    Prakash, K. R.; Nigam, T.; Pant, V.

    2017-12-01

    Mixing in the upper oceanic layers (up to a few tens of meters from surface) is an important process to understand the evolution of sea surface properties. Enhanced mixing due to strong wind forcing at surface leads to deepening of mixed layer that affects the air-sea exchange of heat and momentum fluxes and modulates sea surface temperature (SST). In the present study, we used Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model to demonstrate and quantify the enhanced cyclone induced turbulent mixing in case of a severe cyclonic storm. The COAWST model was configured over the Bay of Bengal (BoB) and used to simulate the atmospheric and oceanic conditions prevailing during the tropical cyclone (TC) Phailin that occurred over the BoB during 10-15 October 2013. The model simulated cyclone track was validated with IMD best-track and model SST validated with daily AVHRR SST data. Validation shows that model simulated track & intensity, SST and salinity were in good agreement with observations and the cyclone induced cooling of the sea surface was well captured by the model. Model simulations show a considerable deepening (by 10-15 m) of the mixed layer and shoaling of thermocline during TC Phailin. The power spectrum analysis was performed on the zonal and meridional baroclinic current components, which shows strongest energy at 14 m depth. Model results were analyzed to investigate the non-uniform energy distribution in the water column from surface up to the thermocline depth. The rotary spectra analysis highlights the downward direction of turbulent mixing during the TC Phailin period. Model simulations were used to quantify and interpret the near-inertial mixing, which were generated by cyclone induced strong wind stress and the near-inertial energy. These near-inertial oscillations are responsible for the enhancement of the mixing operative in the strong post-monsoon (October-November) stratification in the BoB.

  16. The kinetic and available potential energy budget of a winter extratropical cyclone system

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Dare, P. M.

    1986-01-01

    The energy budget of an extratropical cyclone system which traversed North America and intensified through the period January 9-11, 1975 is presented. The objectives of the study are: (1) to document the complete energy budget of a significant winter cyclone event, and (2) to comment on the significance of latent heat release (LHR) in the cyclone's evolution. Results reveal an overall increase in both kinetic (K) and available potential energy (A). K increases are accounted for by boundary flux convergence of K, while A increases are due to generation by LHR and K to A conversion. In addition, the general A increase is accompanied by a 24 h oscillation that is explained largely by the flux quantity in the A budget equation and is correlated with a similar fluctuation in the K to A conversion. LHR does not appear to be critical in the development of this cyclone system. Rather, LHR acts to increase the intensity of the event. It is hypothesized that the direct influence that LHR had on the deepening cyclone's reduced mass was augmented by an indirect influence, in which pre-existing dry dynamical forcing was enhanced by diabatic heating, thus leading to accelerated cyclone development at a later time.

  17. Cyclone performance by velocity

    USDA-ARS?s Scientific Manuscript database

    Cyclones are used almost exclusively in the US cotton ginning industry for emission abatement on pneumatic conveying system exhausts because of their high efficiency, and low capital and operating cost.. Cyclone performance is improved by increasing collection effectiveness or decreasing energy cons...

  18. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    NASA Astrophysics Data System (ADS)

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-07-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process.

  19. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    PubMed Central

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-01-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474

  20. The Poleward Shift of Storm Tracks Under Climate Change: Tracking Cyclones in CMIP5

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Tamarin, T.

    2017-12-01

    Extratropical cyclones dominate the distribution of precipitation and wind in the midlatitudes, and therefore their frequency, intensity, and paths have a significant effect on weather and climate. Comprehensive climate models forced by enhanced greenhouse gas emissions suggest that under a climate change scenario, the latitudinal band of storm tracks would shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what is the dominant dynamical mechanism. Here we use a Lagrangian approach to study the poleward shift, by employing a storm-tracking algorithm on an ensemble of CMIP5 models forced by increased CO2 emissions. We demonstrate that in addition to a poleward shift in the latitude of storm genesis, associated with the expansion of the Hadley cell, the averaged cyclonic storm also propagates more poleward until it reaches its maximum intensity. A mechanism for enhanced poleward motion of cyclones in a warmer climate is proposed, supported by idealized global warming experiments, and relates the shift to changes in upper level jet and atmospheric water vapour content. Our results imply that under the RCP8.5 climate change scenario, the averaged latitude of peak cyclone intensity shifts poleward by about 1.2○ (1.0○) in the Atlantic (Pacific) storm track in the Northern Hemisphere (NH), and by about 1.6○ in the Southern Hemisphere (SH) storm track. These changes in cyclone tracks can have a significant impact on midlatitude climate.

  1. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense

  2. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep

  3. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    NASA Astrophysics Data System (ADS)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  4. Assessment of Mediterranean cyclones in the multi-ensemble EC-Earth

    NASA Astrophysics Data System (ADS)

    Gil, Victoria; Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2015-04-01

    The geographical location and characteristics of the Mediterranean basin make this a particularly active region in terms of cyclone forming and re-development (Trigo et al., 2002). The area is affected by moving depressions, most originated over the North Atlantic, which may later be forced by the orography surrounding the Mediterranean Sea and enhanced by the local source of moisture and heat fluxes over the Sea itself. The present work analyses the response of Mediterranean cyclones to climate change by means of 7 ensemble members of EC-EARTH model from CMIP5 (Fifth Coupled Model Intercomparison Project). We restrict the analysis to a relatively small subset (7 members) of the total number of ensemble members available in order to take into account only the members present in the three selected experiments for robust detection of extra-tropical cyclones in the Mediterranean (Trigo, 2006). We have applied the standard procedure by comparing a common 25-year period of the historical (1980-2004), present day simulations, and the future climate simulations (2074-2098) forced by RCP4.5 and RCP8.5 scenarios. The study area corresponds to the window between 10°W-42°E and 27°N-48°N. The analysis is performed with a focus in spatial distribution density and main characteristics of the overall cyclones for winter (DJF) and summer (JJA) seasons. Despite the discrepancies in cyclone numbers when compared with the ERA Interim common period (reducing to only 72% in DJF and 78% in JJA), the ensemble average matches relatively well the main spatial patterns of areas. Results indicate that the ensemble average is characterized by a small decrease in winter (-3%) and a notable increase in summer (+10%) in total number of cyclones and that the individual ensemble members reveal small spread. Such tendency is particularly pronounced under the high RCP8.5 emission scenario being more moderated under the RCP4.5 scenario. Additionally, an assessment of changes in the annual cycle

  5. Atmospheric water parameters in mid-latitude cyclones observed by microwave radiometry and compared to model calculations

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Hammarstrand, Ulla; Petty, Grant W.

    1990-01-01

    Existing and experimental algorithms for various parameters of atmospheric water content such as integrated water vapor, cloud water, precipitation, are used to examine the distribution of these quantities in mid latitude cyclones. The data was obtained from signals given by the special sensor microwave/imager (SSM/I) and compared with data from the nimbus scanning multichannel microwave radiometer (SMMR) for North Atlantic cyclones. The potential of microwave remote sensing for enhancing knowledge of the horizontal structure of these storms and to aid the development and testing of the cloud and precipitation aspects of limited area numerical models of cyclonic storms is investigated.

  6. Impacts of tropical cyclones on Fiji and Samoa

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage

  7. Energetics characteristics accounting for the explosive development of a twin extratropical cyclone over the Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Fu, Shenming

    2017-04-01

    A twin extratropical cyclone that appeared over the Northwest Pacific Ocean during the winter of 2011 is reproduced reasonably well by the fifth-generation PSU-NCAR Mesoscale Model (MM5). One cyclone in this event has developed into an extreme explosive extratropical cyclone (EEC), with a maximum deepening rate up to 2.7 Bergeron, a minimum SLP of 933 hPa, and a maximum surface wind of 33 m s-1, which means its intensity is comparable with the intensity of a typhoon. The rotational and divergent wind kinetic energy (KE) budget equations are applied to this twin cyclone event so as to understand the rapid enhancement of the wind speed in this case. Preliminary results indicate that, overall, the rotational wind KE is much larger than the divergent wind KE, however, the latter can be of comparable intensity with the rotational wind KE around the regions where the wind speed strengthened most rapidly. Different quadrants of the twin cyclone show significant unevenness, overall, the southeastern quadrant of the EEC features the rapidest enhancement of wind speed, whereas the northwestern quadrant shows the slowest wind-speed acceleration. The vertical stretching of the EEC show consistent variation features with the rotational wind KE. The transport of KE by rotational wind, the conversion from divergent wind KE to rotational wind KE, and the work done by pressure gradient force all contributed to the enhancement of rotational wind KE. In contrast, the divergent wind KE is mainly produced by the baroclinic energy conversion.

  8. Serial clustering of extratropical cyclones and relationship with NAO and jet intensity based on the IMILAST cyclone database

    NASA Astrophysics Data System (ADS)

    Ulbrich, Sven; Pinto, Joaquim G.; Economou, Theodoros; Stephenson, David B.; Karremann, Melanie K.; Shaffrey, Len C.

    2017-04-01

    Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area, particularly during wintertime. Given appropriate large-scale conditions, such series (clusters) of storms may cause large socio-economic impacts and cumulative losses. Recent studies analyzing reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. Based on winter (DJF) cyclone counts from the IMILAST cyclone database, we explore the representation of serial clustering in the ERA-Interim period and its relationship with the NAO-phase and jet intensity. With this aim, clustering is estimated by the dispersion of winter (DJF) cyclone passages for each grid point over the Euro-Atlantic area. Results indicate that clustering over the Eastern North Atlantic and Western Europe can be identified for all methods, although the exact location and the dispersion magnitude may vary. The relationship between clustering and (i) the NAO-phase and (ii) jet intensity over the North Atlantic is statistically evaluated. Results show that the NAO-index and the jet intensity show a strong contribution to clustering, even though some spread is found between methods. We conclude that the general features of clustering of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO and jet intensity on cyclone dispersion.

  9. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  10. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-04-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of

  11. Conceptual Models of Frontal Cyclones.

    ERIC Educational Resources Information Center

    Eagleman, Joe R.

    1981-01-01

    This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)

  12. Statistical characteristics of austral summer cyclones in Southern Ocean

    NASA Astrophysics Data System (ADS)

    Liu, Na; Fu, Gang; Kuo, Ying-Hwa

    2012-06-01

    Characteristics of cyclones and explosively developing cyclones (or `bombs') over the Southern Ocean in austral summer (December, January and February) from 2004 to 2008 are analyzed by using the Final Analysis (FNL) data produced by the National Centers for Environmental Prediction (NCEP) of the United States. Statistical results show that both cyclones and explosively developing cyclones frequently develop in January, and most of them occur within the latitudinal zone between 55°S and 70°S. These cyclones gradually approach the Antarctic Continent from December to February. Generally cyclones and bombs move east-southeastward with some exceptions of northeastward movement. The lifetime of cyclones is around 2-6 d, and the horizontal scale is about 1000 km. Explosive cyclones have the lifetime of about 1 week with the horizontal scale reaching up to 3000 km. Compared with cyclones developed in the Northern Hemisphere, cyclones over the southern ocean have much higher occurrence frequency, lower central pressure and larger horizontal scale, which may be caused by the unique geographical features of the Southern Hemisphere.

  13. Influence of the Saharan Air Layer on Atlantic tropical cyclone formation during the period 1-12 September 2003

    NASA Astrophysics Data System (ADS)

    Pan, Weiyu; Wu, Liguang; Shie, Chung-Lin

    2011-01-01

    Atmospheric Infrared Sounder (AIRS) data show that the Saharan air layer (SAL) is a dry, warm, and well-mixed layer between 950 and 500 hPa over the tropical Atlantic, extending westward from the African coast to the Caribbean Sea. The formations of both Hurricane Isabel and Tropical Depression 14 (TD14) were accompanied with outbreaks of SAL air during the period 1-12 September 2003, although TD14 failed to develop into a named tropical cyclone. The influence of the SAL on their formations is investigated by examining data from satellite observations and numerical simulations, in which AIRS data are incorporated into the MM5 model through the nudging technique. Analyses of the AIRS and simulation data suggest that the SAL may have played two roles in the formation of tropical cyclones during the period 1-12 September 2003. First, the outbreaks of SAL air on 3 and 8 September enhanced the transverse-vertical circulation with the rising motion along the southern edge of the SAL and the sinking motion inside the SAL, triggering the development of two tropical disturbances associated with Hurricane Isabel and TD14. Second, in addition to the reduced environmental humidity and enhanced static stability in the lower troposphere, the SAL dry air intruded into the inner region of these tropical disturbances as their cyclonic flows became strong. This effect may have slowed down the formation of Isabel and inhibited TD14 becoming a named tropical cyclone, while the enhanced vertical shear contributed little to tropical cyclone formation during this period. The 48-h trajectory calculations confirm that the parcels from the SAL can be transported into the inner region of an incipient tropical cyclone.

  14. Liver haemostasis using microbubble-enhanced ultrasound at a low acoustic intensity.

    PubMed

    Zhao, Xiaochen; Li, Lu; Zhao, Hongzhi; Li, Tao; Wu, Shengzheng; Zhong, Yu; Zhao, Yang; Liu, Zheng

    2012-02-01

    To explore the haemostatic effects of microbubble-enhanced ultrasound (MEUS) at a very low acoustic intensity on the bleeding liver of rabbits. Liver incisions made on 20 rabbits were treated with a pulsed therapeutic ultrasound transducer. The transducer was operated at 831 KHz with an acoustic intensity of 0.4 W/cm(2). The treatment was coordinated with intravenous injection of microbubbles. Ultrasound only and sham treatment served as the controls. Visual bleeding score and 10-min bleeding volume were evaluated for haemostatic efficacy. Contrast-enhanced ultrasound (CEUS) was performed to assess the liver perfusion. Nine treated livers were harvested for acute histological examination. Regarding the bleeding incisions made on rabbit livers, the haemorrhage stopped immediately after 2 min of MEUS treatment but bleeding continued in the controls treated by ultrasound or microbubble injection alone. The bleeding scores and the 10-min haemorrhagic volumes dropped significantly in the MEUS group compared with those of the controls (p < 0.01). The mechanism of MEUS haemostasis appears to involve the extensive swelling of hepatocytes and the haemorrhage of the portal area, which formed a joint compression on the regional liver circulation. Low acoustic intensity MEUS might provide a novel method for liver haemostasis. • This animal experiment demonstrates a novel method of controlling hepatic haemorrhage • The treatment uses therapeutic ultrasound during enhancement with intravenous microbubbles • This combined therapy was more effective than ultrasound or intravenous microbubbles alone • More work is required with larger animals before potential human trials.

  15. Cyclone: java-based querying and computing with Pathway/Genome databases.

    PubMed

    Le Fèvre, François; Smidtas, Serge; Schächter, Vincent

    2007-05-15

    Cyclone aims at facilitating the use of BioCyc, a collection of Pathway/Genome Databases (PGDBs). Cyclone provides a fully extensible Java Object API to analyze and visualize these data. Cyclone can read and write PGDBs, and can write its own data in the CycloneML format. This format is automatically generated from the BioCyc ontology by Cyclone itself, ensuring continued compatibility. Cyclone objects can also be stored in a relational database CycloneDB. Queries can be written in SQL, and in an intuitive and concise object-oriented query language, Hibernate Query Language (HQL). In addition, Cyclone interfaces easily with Java software including the Eclipse IDE for HQL edition, the Jung API for graph algorithms or Cytoscape for graph visualization. Cyclone is freely available under an open source license at: http://sourceforge.net/projects/nemo-cyclone. For download and installation instructions, tutorials, use cases and examples, see http://nemo-cyclone.sourceforge.net.

  16. Ocean barrier layers' effect on tropical cyclone intensification.

    PubMed

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  17. Advances in dust cyclone research

    USDA-ARS?s Scientific Manuscript database

    Dust cyclones reduce particulate emissions but their operation consumes electrical energy. Response surface methodology was used to compare two strategies to reduce energy costs without increasing emissions. Cyclones of a standard design (1D3D) were operated singly and in series, as was an ‘Experi...

  18. Citizen scientists analyzing tropical cyclone intensities

    NASA Astrophysics Data System (ADS)

    Hennon, Christopher C.

    2012-10-01

    A new crowd sourcing project called CycloneCenter enables the public to analyze historical global tropical cyclone (TC) intensities. The primary goal of CycloneCenter, which launched in mid-September, is to resolve discrepancies in the recent global TC record arising principally from inconsistent development of tropical cyclone intensity data. The historical TC record is composed of data sets called "best tracks," which contain a forecast agency's best assessment of TC tracks and intensities. Best track data have improved in quality since the beginning of the geostationary satellite era in the 1960s (because TCs could no longer disappear from sight). However, a global compilation of best track data (International Best Track Archive for Climate Stewardship (IBTrACS)) has brought to light large interagency differences between some TC best track intensities, even in the recent past [Knapp et al., 2010Knapp et al., 2010]. For example, maximum wind speed estimates for Tropical Cyclone Gay (1989) differed by as much as 70 knots as it was tracked by three different agencies.

  19. A Classification of Mediterranean Cyclones Based on Global Analyses

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Atlas, Robert

    2003-01-01

    The Mediterranean Sea region is dominated by baroclinic and orographic cyclogenesis. However, previous work has demonstrated the existence of rare but intense subsynoptic-scale cyclones displaying remarkable similarities to tropical cyclones and polar lows, including, but not limited to, an eye-like feature in the satellite imagery. The terms polar low and tropical cyclone have been often used interchangeably when referring to small-scale, convective Mediterranean vortices and no definitive statement has been made so far on their nature, be it sub-tropical or polar. Moreover, most of the classifications of Mediterranean cyclones have neglected the small-scale convective vortices, focusing only on the larger-scale and far more common baroclinic cyclones. A classification of all Mediterranean cyclones based on operational global analyses is proposed The classification is based on normalized horizontal shear, vertical shear, scale, low versus mid-level vorticity, low-level temperature gradients, and sea surface temperatures. In the classification system there is a continuum of possible events, according to the increasing role of barotropic instability and decreasing role of baroclinic instability. One of the main results is that the Mediterranean tropical cyclone-like vortices and the Mediterranean polar lows appear to be different types of events, in spite of the apparent similarity of their satellite imagery. A consistent terminology is adopted, stating that tropical cyclone- like vortices are the less baroclinic of all, followed by polar lows, cold small-scale cyclones and finally baroclinic lee cyclones. This classification is based on all the cyclones which occurred in a four-year period (between 1996 and 1999). Four cyclones, selected among all the ones which developed during this time-frame, are analyzed. Particularly, the classification allows to discriminate between two cyclones (occurred in October 1996 and in March 1999) which both display a very well

  20. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Chang, P.; Saravanan, R.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropicalmore » cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.« less

  1. Identification of a subtropical cyclone in the proximity of the Canary Islands and its analysis by numerical modeling

    NASA Astrophysics Data System (ADS)

    Quitián-Hernández, L.; Martín, M. L.; González-Alemán, J. J.; Santos-Muñoz, D.; Valero, F.

    2016-09-01

    Subtropical cyclones (STC) are low-pressure systems that share tropical and extratropical characteristics. Because of the great economic and social damage, the study of these systems has recently grown. This paper analyzes the cyclone formed in October 2014 near the Canary Islands and diagnoses such a cyclone in order to identify its correspondence to an STC category, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. An extratropical cyclone, in its early stage, experimented a process of cut-off and isolation from the midlatitude flow. The incursion of a trough in conjunction with a low-level baroclinic zone favored the formation of the STC northwestern of the Canary Islands. Streamers of high potential vorticity linked to the cyclone favored strong winds and precipitation in the study domain. Cyclone phase space diagrams are used to complement the synoptic analysis and the satellite images of the cyclone to categorize such system. The diagrams reveal the transition from extratropical cyclone to STC remaining for several days with a subtropical structure with a quite broad action radius. The study of the mesoscale environment parameters showed an enhanced conditional instability through a deep troposphere layer. It is shown that moderate to strong vertical wind shear together with relatively warm sea surface temperature determine conditions enabling the development of long-lived convective structures.

  2. Human Influence on Tropical Cyclone Intensity

    NASA Technical Reports Server (NTRS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  3. Large-Scale Influences on the Genesis of Tropical Cyclone Karl (2010)

    NASA Astrophysics Data System (ADS)

    Griffin, K.; Bosart, L. F.

    2012-12-01

    The events leading up to the genesis of Tropical Cyclone (TC) Karl (2010) provides a unique opportunity to examine the continuing problem of understanding tropical cyclogenesis. The PRE-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field campaign allowed for detailed investigation of the tropical disturbance that served as the precursor to TC Karl as it progressed westward through the Caribbean Sea. The purpose of this presentation is to examine the evolution of the pre-Karl disturbance using both common synoptic-scale analyses as well as statistically-based equatorial wave analyses, focusing on where these analyses complement and enhance each other. One of the major factors in the initial spin-up of the pre-Karl tropical disturbance is a surge of southerly and westerly winds from northern South America on 8-10 September 2010. As the surge entered the Caribbean on 9 September, it aided in the formation of a nearly closed earth-relative cyclonic circulation near the southern Leeward Islands. This circulation weakened late on 10 September and remained weak through 13 September before increased organization led to TC genesis on 14 September. This southerly wind surge can be traced to a well-defined surge of anomalously cold air and enhanced southerly winds originating in the lee of the Argentinian Andes over a week prior. While the temperature anomalies wash out prior to reaching the equator, anomalous low-level winds progress into Colombia and Venezuela, where topography aids in turning the southerly winds eastward. An investigation of the pre-Karl environment utilizing wavenumber-frequency filtering techniques also suggests that the initial spin-up of pre-Karl can be associated with the active phase of a convectively coupled Kelvin wave (CCKW). The observed formation of the nearly closed cyclonic circulation on 10 September is well timed with the passage of anomalous westerly winds along and behind the convectively active phase of a CCKW. These

  4. Low-cost high-resolution fast spin-echo MR of acoustic schwannoma: an alternative to enhanced conventional spin-echo MR?

    PubMed

    Allen, R W; Harnsberger, H R; Shelton, C; King, B; Bell, D A; Miller, R; Parkin, J L; Apfelbaum, R I; Parker, D

    1996-08-01

    To determine whether unenhanced high-resolution T2-weighted fast spin-echo MR imaging provides an acceptable and less expensive alternative to contrast-enhanced conventional T1-weighted spin-echo MR techniques in the diagnosis of acoustic schwannoma. We reviewed in a blinded fashion the records of 25 patients with pathologically documented acoustic schwannoma and of 25 control subjects, all of whom had undergone both enhanced conventional spin-echo MR imaging and unenhanced fast spin-echo MR imaging of the cerebellopontine angle/internal auditory canal region. The patients were imaged with the use of a quadrature head receiver coil for the conventional spin-echo sequences and dual 3-inch phased-array receiver coils for the fast spin-echo sequences. The size of the acoustic schwannomas ranged from 2 to 40 mm in maximum dimension. The mean maximum diameter was 12 mm, and 12 neoplasms were less than 10 mm in diameter. Acoustic schwannoma was correctly diagnosed on 98% of the fast spin-echo images and on 100% of the enhanced conventional spin-echo images. Statistical analysis of the data using the kappa coefficient demonstrated agreement beyond chance between these two imaging techniques for the diagnosis of acoustic schwannoma. There is no statistically significant difference in the sensitivity and specificity of unenhanced high-resolution fast spin-echo imaging and enhance T1-weighted conventional spin-echo imaging in the detection of acoustic schwannoma. We believe that the unenhanced high-resolution fast spin-echo technique provides a cost-effective method for the diagnosis of acoustic schwannoma.

  5. Synoptic and climatological aspects of extra-tropical cyclones

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.

    2010-09-01

    Mid-latitude cyclones are highly complex dynamical features embedded in the general atmospheric circulation of the extra-tropics. Although the basic mechanisms leading to the formation of cyclones are commonly understood, the specific conditions and physical reasons triggering extreme, partly explosive development, are still under investigation. This includes also the identification of processes which might modulate the frequency and intensity of cyclone systems on time scales from days to centennials. This overview presentation will thus focus on three main topics: Firstly, the dynamic-synoptic structures of cyclones, the possibility to objectively identify cyclones and wind storms, and actual statistical properties of cyclone occurrence under recent climate conditions are addressed. In a second part, aspects of the interannual variability and its causing mechanisms are related to the seasonal predictability of extreme cyclones producing severe storm events. Extending the time frame will mean to deduce information on decadal or even centennial time periods. Thus, actual work to decadal as well as climatological variability and changes will be presented. In the last part of the talk focus will be laid on potential socio-economical impacts of changed cyclone occurrence. By means of global and regional climate modeling, future damages in terms of insured losses will be investigated and measures of uncertainty estimated from a multi-model ensemble analysis will be presented.

  6. Human influence on tropical cyclone intensity.

    PubMed

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities. Copyright © 2016, American Association for the Advancement of Science.

  7. Global climatology of explosive cyclones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-03-01

    Explosive cyclones, which have rapidly intensifying winds and heavy rain, can seriously threaten life and property. These "meteorological bombs" are difficult to forecast, in part because scientists need a better understanding of the physical mechanisms by which they form. In particular, the large-scale circulation conditions that may contribute to explosive cyclone formation are not well understood.

  8. Carbon Dynamics within Cyclonic Eddies: Insights from a Biomarker Study

    PubMed Central

    Alonso-González, Iván J.; Arístegui, Javier; Lee, Cindy; Sanchez-Vidal, Anna; Calafat, Antoni; Fabrés, Joan; Sangrá, Pablo; Mason, Evan

    2013-01-01

    It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2–4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle. PMID:24386098

  9. Carbon dynamics within cyclonic eddies: insights from a biomarker study.

    PubMed

    Alonso-González, Iván J; Arístegui, Javier; Lee, Cindy; Sanchez-Vidal, Anna; Calafat, Antoni; Fabrés, Joan; Sangrá, Pablo; Mason, Evan

    2013-01-01

    It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2-4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle.

  10. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  11. Diabatic processes and the evolution of two contrasting extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Methven, John; Martinez-Alvarado, Oscar; Gray, Suzanne

    2017-04-01

    Extratropical cyclones are typically weaker and less frequent in summer as a result of differences in the background state flow and diabatic processes with respect to other seasons. Two extratropical cyclones were observed in summer 2012 with a research aircraft during the DIAMET (DIAbatic influences on Mesoscale structure in ExTratropical storms) field campaign. The first cyclone deepened only down to 995 hPa; the second cyclone deepened down to 978 hPa and formed a potential vorticity (PV) tower, a frequent signature of intense cyclones. The cyclones were analyzed through numerical simulations incorporating tracers for the effects of diabatic processes on potential temperature and PV. It was found that the observed maximum vapor flux in the stronger cyclone was twice as strong as in the weaker cyclone; the water vapor mass flow along the warm conveyor belt of the stronger cyclone was over half that typical in winter even though the flow was weaker. Did the greater water transport and latent heat release associated with condensation result in the greater circulation in the PV tower case? A cyclone-centred integral framework is introduced relating the tracers with cross-isentropic mass transport and circulation around the cyclone. It is shown that the circulation increases much more slowly than the amplitude of the diabatically-generated PV tower at its centre. This effect is explained using the PV impermeability theorem and the influence of diabatic heating on circulation around a cyclone is shown to scale with Rossby number. The implication is that the stronger a cyclone becomes (larger Rossby number), the stronger the influence of latent heating on circulation.

  12. The Intense Arctic Cyclone of Early August 2012: A Dynamically Driven Cyclogenesis Event

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Turchioe, A.; Adamchcik, E.

    2013-12-01

    warm sector of the developing cyclone over north-central Russia were indicative of the enhanced baroclinicity and instability in the cyclone warm sector and the ability of lower tropospheric warm-air advection to sustain deep ascent in the intensifying cyclone. The relative importance of dynamical versus thermodynamical forcing to the cyclogenesis process as well as the bulk upscale effects of the intense cyclone on the larger scale higher-latitude circulation and the distribution of sea ice will be discussed. A noteworthy aspect of the post-storm polar environment was the upscale growth of a midlevel cyclonic circulation to include most of the Arctic Ocean. The off-pole displacement of this midlevel cyclonic circulation toward northern Canada by mid-August may have contributed to the termination of the 2012 summer-long intensive heat wave over most of the continental United States.

  13. Promoting the confluence of tropical cyclone research

    PubMed Central

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community. PMID:26480001

  14. Promoting the confluence of tropical cyclone research.

    PubMed

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  15. A global slowdown of tropical-cyclone translation speed.

    PubMed

    Kossin, James P

    2018-06-01

    As the Earth's atmosphere warms, the atmospheric circulation changes. These changes vary by region and time of year, but there is evidence that anthropogenic warming causes a general weakening of summertime tropical circulation 1-8 . Because tropical cyclones are carried along within their ambient environmental wind, there is a plausible a priori expectation that the translation speed of tropical cyclones has slowed with warming. In addition to circulation changes, anthropogenic warming causes increases in atmospheric water-vapour capacity, which are generally expected to increase precipitation rates 9 . Rain rates near the centres of tropical cyclones are also expected to increase with increasing global temperatures 10-12 . The amount of tropical-cyclone-related rainfall that any given local area will experience is proportional to the rain rates and inversely proportional to the translation speeds of tropical cyclones. Here I show that tropical-cyclone translation speed has decreased globally by 10 per cent over the period 1949-2016, which is very likely to have compounded, and possibly dominated, any increases in local rainfall totals that may have occurred as a result of increased tropical-cyclone rain rates. The magnitude of the slowdown varies substantially by region and by latitude, but is generally consistent with expected changes in atmospheric circulation forced by anthropogenic emissions. Of particular importance is the slowdown of 30 per cent and 20 per cent over land areas affected by western North Pacific and North Atlantic tropical cyclones, respectively, and the slowdown of 19 per cent over land areas in the Australian region. The unprecedented rainfall totals associated with the 'stall' of Hurricane Harvey 13-15 over Texas in 2017 provide a notable example of the relationship between regional rainfall amounts and tropical-cyclone translation speed. Any systematic past or future change in the translation speed of tropical cyclones, particularly over

  16. Vertical transport of ozone and CO during super cyclones in the Bay of Bengal as detected by Tropospheric Emission Spectrometer.

    PubMed

    Fadnavis, S; Beig, G; Buchunde, P; Ghude, Sachin D; Krishnamurti, T N

    2011-02-01

    Vertical profiles of carbon monoxide (CO) and ozone retrieved from Tropospheric Emission Spectrometer have been analyzed during two super cyclone systems Mala and Sidr. Super cyclones Mala and Sidr traversed the Bay of Bengal (BOB) region on April 24-29, 2006 and November 12-16, 2007 respectively. The CO and ozone plume is observed as a strong enhancement of these pollutants in the upper troposphere over the BOB, indicating deep convective transport. Longitude-height cross-section of these pollutants shows vertical transport to the upper troposphere. CO mixing ratio ~90 ppb is observed near the 146-mb level during the cyclone Mala and near 316 mb during the cyclone Sidr. Ozone mixing ratio ~60-100 ppb is observed near the 316-mb level during both the cyclones. Analysis of National Centers for Environmental Prediction (NCEP) reanalysis vertical winds (omega) confirms vertical transport in the BOB.

  17. Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Zhang, Renyi; Saravanan, R.

    2014-01-01

    Increasing levels of anthropogenic aerosols in Asia have raised considerable concern regarding its potential impact on the global atmosphere, but the magnitude of the associated climate forcing remains to be quantified. Here, using a novel hierarchical modelling approach and observational analysis, we demonstrate modulated mid-latitude cyclones by Asian pollution over the past three decades. Regional and seasonal simulations using a cloud-resolving model show that Asian pollution invigorates winter cyclones over the northwest Pacific, increasing precipitation by 7% and net cloud radiative forcing by 1.0 W m-2 at the top of the atmosphere and by 1.7 W m-2 at the Earth’s surface. A global climate model incorporating the diabatic heating anomalies from Asian pollution produces a 9% enhanced transient eddy meridional heat flux and reconciles a decadal variation of mid-latitude cyclones derived from the Reanalysis data. Our results unambiguously reveal a large impact of the Asian pollutant outflows on the global general circulation and climate.

  18. Extra-tropical Cyclones and Windstorms in Seasonal Forecasts

    NASA Astrophysics Data System (ADS)

    Leckebusch, Gregor C.; Befort, Daniel J.; Weisheimer, Antje; Knight, Jeff; Thornton, Hazel; Roberts, Julia; Hermanson, Leon

    2015-04-01

    Severe damages and large insured losses over Europe related to natural phenomena are mostly caused by extra-tropical cyclones and their related windstorm fields. Thus, an adequate representation of these events in seasonal prediction systems and reliable forecasts up to a season in advance would be of high value for society and economy. In this study, state-of-the-art seasonal forecast prediction systems are analysed (ECMWF, UK Met Office) regarding the general climatological representation and the seasonal prediction of extra-tropical cyclones and windstorms during the core winter season (DJF) with a lead time of up to four months. Two different algorithms are used to identify cyclones and windstorm events in these datasets. Firstly, we apply a cyclone identification and tracking algorithm based on the Laplacian of MSLP and secondly, we use an objective wind field tracking algorithm to identify and track continuous areas of extreme high wind speeds (cf. Leckebusch et al., 2008), which can be related to extra-tropical winter cyclones. Thus, for the first time, we can analyse the forecast of severe wind events near to the surface caused by extra-tropical cyclones. First results suggest a successful validation of the spatial climatological distributions of wind storm and cyclone occurrence in the seasonal forecast systems in comparison with reanalysis data (ECMWF-ERA40 & ERAInterim) in general. However, large biases are found for some areas. The skill of the seasonal forecast systems in simulating the year-to-year variability of the frequency of severe windstorm events and cyclones is investigated using the ranked probability skill score. Positive skill is found over large parts of the Northern Hemisphere as well as for the most intense extra-tropical cyclones and its related wind fields.

  19. Quantitative observations on tropical cyclone tracks in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Gienko, Gennady

    2018-03-01

    The Arabian Sea basin represents a minor component of global total cyclones annually and has not featured so prominently in cyclone research compared with other basins where greater numbers of cyclones are registered each year. This paper presents the results of exploratory analysis of various features of cyclone tracks in the Arabian Sea, with a particular focus on examining their temporal and spatial patterns. Track morphometry also reveals further information on track shape. The study indicates how cyclones spawned during May in the early pre-monsoon period (often strong events) have a tendency to follow more sinuous tracks, whereas cyclones occurring in October in the post-monsoon period tend to follow straighter tracks. Track sinuosity is significantly related to other attributes, including cyclone longevity and intensity. Comparisons are also drawn between the general characteristics of cyclone tracks in the Arabian Sea and other ocean basins, suggesting how the size and geography of the Arabian Sea basin exert influences on these characteristics.

  20. Tropical cyclone Pam field survey in Vanuatu

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the

  1. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults

    PubMed Central

    Papalambros, Nelly A.; Santostasi, Giovanni; Malkani, Roneil G.; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A.; Zee, Phyllis C.

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60–84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses (“ON interval”) was followed by a pause of approximately equal length (“OFF interval”). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity. PMID:28337134

  2. How ocean color can steer Pacific tropical cyclones

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  3. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    PubMed

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  4. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems

    PubMed Central

    Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862

  5. A Climatological Study of Hurricane Force Extratropical Cyclones

    DTIC Science & Technology

    2012-03-01

    extratropical cyclone by months in the Pacific basin. Most of the storms occur from October through March...hurricane force extratropical cyclone. Starting from left to right; the first column is the storm name, second column is the year, month, day, hour (UTC...2000 through 2007 illustrates that the number of hurricane-force extratropical cyclones is quite significant: approximately 500 storms , nearly evenly

  6. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    PubMed

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. On the role of surface friction in tropical cyclone intensification

    NASA Astrophysics Data System (ADS)

    Wang, Yuqing

    2017-04-01

    Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.

  8. Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño.

    PubMed

    Guo, Yi-Peng; Tan, Zhe-Min

    2018-04-17

    The El Niño-Southern Oscillation (ENSO) can significantly affect the rapid intensification of tropical cyclones over the western North Pacific (WNP). However, ENSO events have various durations, which can lead to different atmospheric and oceanic conditions. Here we show that during short duration El Niño events, the WNP tropical cyclone rapid-intensification mean occurrence position migrates westward by ~8.0° longitude, which is caused by reduced vertical wind shear, increased mid-tropospheric humidity, and enhanced tropical cyclone heat potential over the westernmost WNP. The changes in these factors are caused by westward advected upper ocean heat during the decaying phase of a short duration El Niño. As super El Niño events tend to have short durations and their frequency is projected to increase under global warming, our findings have important implications for future projections of WNP tropical cyclone activity.

  9. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  10. Tropical cyclone intensity change. A quantitative forecasting scheme

    NASA Technical Reports Server (NTRS)

    Dropco, K. M.; Gray, W. M.

    1981-01-01

    One to two day future tropical cyclone intensity change from both a composite and an individual case point-of-view are discussed. Tropical cyclones occurring in the Gulf of Mexico during the period 1957-1977 form the primary data source. Weather charts of the NW Atlantic were initially examined, but few differences were found between intensifying and non-intensifying cyclones. A rawinsonde composite analysis detected composite differences in the 200 mb height fields, the 850 mb temperature fields, the 200 mb zonal wind and the vertical shears of the zonal wind. The individual cyclones which make up the composite study were then separately examined using this composite case knowledge. Similar parameter differences were found in a majority of individual cases. A cyclone intensity change forecast scheme was tested against independent storm cases. Correct predictions of intensification or non-intensification could be made approximately 75% of the time.

  11. FORMAT OF TROPICAL CYCLONE RECORDS ("TCVITALS")

    Science.gov Websites

    FORMAT OF TROPICAL CYCLONE VITAL STATISTICS RECORDS ("TCVITALS") 8-16-2007 CHARACTER(S - These appear only in records that have been processed by the NCEP tropical cyclone quality control program SYNDAT_QCTROPCY. BOLDFACE - These appear only in NHC records. 1 - Prior to 1999, report date was

  12. Enhanced and reduced transmission of acoustic waves with bubble meta-screens

    NASA Astrophysics Data System (ADS)

    Bretagne, Alice; Tourin, Arnaud; Leroy, Valentin

    2011-11-01

    We present a class of sonic meta-screens for manipulating air-borne acoustic waves at ultrasonic or audible frequencies. Our screens consist of periodic arrangements of air bubbles in water or possibly embedded in a soft elastic matrix. They can be used for soundproofing but also for exalting transmission at an air/water interface or even to achieve enhanced absorption.

  13. PFB Coal Fired Combined Cycle Development Program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this findingmore » offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)« less

  14. The environmental influence on tropical cyclone precipitation

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-01-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were (1) mean climatological sea surface temperatures, (2) vertical wind shear, (3) environmental tropospheric water vapor flux, and (4) upper-tropospheric eddy relative angular momentum flux convergence. The analyses revealed that (1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; (2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; (3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; (4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; (5) in regions with the combined warm sea surface temperatures (above 26 C) and low vertical wind shear (less than 5 m/s), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  15. The Environmental Influence on Tropical Cyclone Precipitation.

    NASA Astrophysics Data System (ADS)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-05-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were 1) mean climatological sea surface temperatures, 2) vertical wind shear, 3) environmental tropospheric water vapor flux, and 4) upper-tropospheric eddy relative angular momentum flux convergence.The analyses revealed that 1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; 2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; 3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; 4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; 5) in regions with the combined warm sea surface temperatures (above 26°C) and low vertical wind shear (less than 5 m s1), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  16. Bomb Cyclones Of The Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Adams, Ryan E.

    "Bomb" cyclones represent a small subset of mid-latitude cyclones characterized by rapid intensification and frequently are associated with extreme weather conditions along the eastern coast of North America. Like other extreme phenomena, bomb cyclone predictions are prone to error leading to inadequate or untimely hazard warnings. The rare nature of bomb cyclones and the uniqueness of their evolutions has made it difficult for researchers to make meaningful generalizations on bomb cyclone events. This paper describes bomb cyclone climatology for the western North Atlantic, using data from the NCEP-NCAR Reanalysis for 1948-2016, and uses a synoptic climatological analysis to relate these bombs to their associated atmospheric environments. A self-organizing map (SOM) of 300-hPa geopotential height tendency is created to partition the regional atmospheric environment. Thermodynamic fields are contrasted by each 300-hPa geopotential height tendency pattern for both bomb and non-bomb events in composite difference maps. The SOM patterns most significantly associated with western North Atlantic bomb cyclogenesis are characterized by both strongly and weakly negative height tendencies along the eastern United States. In both cases, these patterns exhibit strong meridional flow, a distinction marked by the weakening and breaking down of the polar vortex in the boreal Winter. The composite maps for each pattern show the mean differences in low-mid level ascent and near surface thermodynamics for bomb environments contrasted with non-bomb environments, resulting in diverse spatiotemporal distributions of bombs in the western North Atlantic.

  17. Gravity enhanced acoustic levitation method and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.; Granett, D. (Inventor)

    1985-01-01

    An acoustic levitation system is provided for acoustically levitating an object by applying a single frequency from a transducer into a resonant chamber surrounding the object. The chamber includes a stabilizer location along its height, where the side walls of the chamber are angled so they converge in an upward direction. When an acoustic standing wave pattern is applied between the top and bottom of the chamber, a levitation surface within the stabilizer does not lie on a horizontal plane, but instead is curved with a lowermost portion near the vertical axis of the chamber. As a result, an acoustically levitated object is urged by gravity towards the lowermost location on the levitation surface, so the object is kept away from the side walls of the chamber.

  18. Cyclonic eddies identified in the Cape Basin of the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Hall, C.; Lutjeharms, J. R. E.

    2011-03-01

    Inter-ocean exchange south of Africa takes place largely through the movement of Agulhas Rings into the Cape Basin. Recent observations have shown that the highly energetic flow field in this basin consists of anti-cyclonic rings as well as cyclonic eddies. Very little is known of the characteristics of the cyclonic eddies. Using altimetric data, this study determines the location, frequency and seasonality of these cyclonic eddies their size, trajectories, life spans and their association with Agulhas Rings. Cyclonic eddies were seen to split, merge and link with other cyclonic eddies, where splitting events created child cyclonic eddies. The 105 parent and 157 child cyclonic eddies identified over a decade show that on average 11 parent and 17 child cyclonic eddies appear annually in AVISO merged absolute dynamic topography data along the continental slope. Thirty-two percent follow an overall west south-westward direction, with 27% going west north-westward. Average translocation speeds are 2.2 ± 0.1 km/day for parent and 3.0 ± 0.2 km/day for child cyclonic eddies. Parent cyclonic eddy lifespan averaged 250 ± 18 days; whereas child cyclonic eddies survived for only 118 ± 11 days. A significant difference in lifespan for parent and child cyclonic eddies identified in the north and south region of the study area was detected. Seventy-seven percent of the northern and 93% of the southern cyclonic eddies were first detected directly adjacent to passing Agulhas Rings, suggesting a vital interaction between these mesoscale eddies within the region. Topographical features appeared to affect the behaviour and lifespan of these deep cyclonic eddies.

  19. Improvements of the cyclone separator performance by down-comer tubes.

    PubMed

    Ganegama Bogodage, Sakura; Leung, A Y T

    2016-07-05

    Enhancement of fine particle (PM2.5) separation is important for cyclone separators to reduce any extra purification process required at the outlet. Therefore, the present experimental research was performed to explore the performance of cyclone separators modified with down-comer tubes at solid loading rates from 0 to 8.0 g/m(3) with a 10 m/s inlet velocity. The study proved the effectiveness of down-comer tubes in reducing the particle re-entrainment and increasing the finer separation with acceptable pressure drops, which was pronounced at low solid loading conditions. The experimental results were compared with theories of Smolik and Muschelknautz. Theories were acceptable for certain ranges, and theory breakdown was mainly due to the neglect of particle agglomeration, re-entrainment and the reduction of swirling energy, as well as the increase of wall friction due to presence of particles. Copyright © 2016. Published by Elsevier B.V.

  20. 1994 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1995-01-01

    force winds exist near the center. . . . The NOGAPS model does not analyze Tropical Depression 20W as a distinct feature, nor does it develop the...NOGAPS model for very small westward-moving trop- ical cyclones (Figure 3-20-8). According to Carr, NOGAPS effective grid spacing is too large to properly...analyze a very small to small tropical cyclone. The bogus vortex inserted into the analysis starts out too large and usually expands if the model

  1. Tropical Cyclone Paul

    NASA Image and Video Library

    2010-03-30

    NASA image March 29, 2010 Tropical Cyclone Paul spanned the ocean waters between Australia and New Guinea on March 29, 2010. The MODIS on NASA’s Terra satellite captured this natural-color image the same day. The center of the cyclone is along the coast of Northern Territory’s Arnhem Land. Clouds run counter-clockwise across the Gulf of Carpentaria and Cape York Peninsula, over New Guinea’s Pulau Dolok, and over the Arafura Sea. On March 29, 2010, the U.S. Navy’s Joint Typhoon Warning Center (JTWC) reported that Tropical Cyclone Paul storm had maximum sustained winds of 60 knots (110 kilometers per hour) and gusts up to 75 knots (140 kilometers per hour). The storm was located roughly 315 nautical miles (585 kilometers) east of Darwin. The storm had moved slowly toward the southwest over the previous several hours. The JTWC forecast that the storm would likely maintain its current intensity for several more hours before slowly dissipating over land. Credit: NASA/GSFC/Jeff Schmaltz/MODIS To learn more about this image go to: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-0... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  2. Ocean barrier layers’ effect on tropical cyclone intensification

    PubMed Central

    Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-01-01

    Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298

  3. Temporal clustering of tropical cyclones and its ecosystem impacts

    PubMed Central

    Mumby, Peter J.; Vitolo, Renato; Stephenson, David B.

    2011-01-01

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another. PMID:22006300

  4. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  5. Acoustic emission beamforming for enhanced damage detection

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.

    2008-03-01

    As civil infrastructure ages, the early detection of damage in a structure becomes increasingly important for both life safety and economic reasons. This paper describes the analysis procedures used for beamforming acoustic emission techniques as well as the promising results of preliminary experimental tests on a concrete bridge deck. The method of acoustic emission offers a tool for detecting damage, such as cracking, as it occurs on or in a structure. In order to gain meaningful information from acoustic emission analyses, the damage must be localized. Current acoustic emission systems with localization capabilities are very costly and difficult to install. Sensors must be placed throughout the structure to ensure that the damage is encompassed by the array. Beamforming offers a promising solution to these problems and permits the use of wireless sensor networks for acoustic emission analyses. Using the beamforming technique, the azmuthal direction of the location of the damage may be estimated by the stress waves impinging upon a small diameter array (e.g. 30mm) of acoustic emission sensors. Additional signal discrimination may be gained via array processing techniques such as the VESPA process. The beamforming approach requires no arrival time information and is based on very simple delay and sum beamforming algorithms which can be easily implemented on a wireless sensor or mote.

  6. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  7. Contribution of Tropical Cyclones to the Interannual Variability of Baiu Precipitation

    NASA Astrophysics Data System (ADS)

    Yamaura, T.; Tomita, T.

    2011-12-01

    This work examines the contribution of tropical cyclones to the interannual variability of Baiu precipitation with the large-scale interannual variations in the tropics, that is, the El Niño/Southern Oscillation (ENSO) and the Tropospheric Biennial Oscillation (TBO) in the Asian monsoon. The data used are the Global Precipitation Climatology Project, the Japanese 25-year Reanalysis Project/Japan Meteorological Agency Climate Data Assimilation System, and the Joint Typhoon Warning Center. The diagnosed months and the time period are June and July, and 30 years from 1979 to 2008. When the negative precipitation anomalies appear in the entire Baiu front with the cold ENSO phase, the number of tropical cyclones increases around the northern part of the Philippines, and a larger-scale anomalous cyclone is formed there. Tropical cyclones contribute to strengthening the anomalous cyclone. Anomalous convective activity in the anomalous cyclone excites Rossby waves that propagate northward within the low-level jet and form an anomalous anticyclone around Japan. The anomalous anticyclone decreases the Baiu precipitation. On the other hand, the number of tropical cyclones decreases, and an anomalous anticyclone is set around the northern part of the Philippines, when the positive precipitation anomalies are observed in the Baiu front with the warm ENSO phase. The contribution of tropical cyclones is insignificant in this phase. The warm and cold TBO phases are judged from sea surface temperature (SST) anomalies in the equatorial central Pacific that is different from the region for ENSO. In the cold TBO phase with the negative SST anomalies, there appear the negative precipitation anomalies around Kyushu and the positive ones to the southeast of Japan. Concurrently, an anomalous cyclone appears, and the accumulated cyclone energy estimated from the tropical cyclones increases to the southeast of Japan. Tropical cyclones contribute to forming the anomalous cyclone, which

  8. Cyclone tolerance in new world arecaceae: biogeographic variation and abiotic natural selection.

    PubMed

    Griffith, M Patrick; Noblick, Larry R; Dowe, John L; Husby, Chad E; Calonje, Michael A

    2008-10-01

    Consistent abiotic factors can affect directional selection; cyclones are abiotic phenomena with near-discrete geographic limits. The current study investigates selective pressure of cyclones on plants at the species level, testing for possible natural selection. New World Arecaceae (palms) are used as a model system, as plants with monopodial, unbranched arborescent form are most directly affected by the selective pressure of wind load. Living specimens of known provenance grown at a common site were affected by the same cyclone. Data on percentage mortality were compiled and analysed in biogeographic and phylogenetic contexts. Palms of cyclone-prone provenance exhibited a much lower (one order of magnitude) range in cyclone tolerance, and significantly lower (P < 0.001) mean percentage mortality than collections from cyclone-free areas. Palms of cyclone-free provenance had much greater variation in tolerance, and significantly greater mean percentage mortality. A test for serial independence recovered no significant phylogenetic autocorrelation of percentage mortality. Variation in cyclone tolerance in New World Arecaceae correlates with biogeography, and is not confounded with phylogeny. These results suggest natural selection of cyclone tolerance in cyclone-prone areas.

  9. How Will Climate Change Affect Explosive Cyclones in the Extratropics of the Northern Hemisphere?

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.

    2015-12-01

    Explosive cyclones are rapidly intensifying low pressure systems generating severe wind speeds and heavy precipitation primarily in coastal and marine environments, such as the March 2014 nor'easter which developed along the United States coastline, with hurricane force winds in eastern Maine and the Maritimes. This study presents the first analysis on how explosive cyclones respond to climate change in the extratropics of the Northern Hemisphere. An objective-feature tracking algorithm is used to identify and track cyclones from 23 CMIP5 climate models for the recent past (1981-1999) and future (2081-2099). Explosive cyclones are projected to shift northwards by about 2.2° latitude on average in the northern Pacific, with fewer and weaker events south of 45°N, and more frequent and stronger events north of this latitude. This shift is correlated with a poleward shift of the jet stream in the inter-model spread (R = 0.56). In the Atlantic, the total number of explosive cyclones is projected to decrease by about 17% when averaging across models, with the largest changes occurring along North America's East Coast. This reduction is correlated with a decline in the lower-tropospheric Eady growth rate (R = 0.51), and is stronger for models with smaller frequency biases (R = -0.65). The same region is also projected to experience a small intensification of explosive cyclones, with larger vorticity values for models that predict stronger increases in the speed of the jet stream (R = 0.58). This strengthening of the jet stream is correlated with an enhanced sea surface temperature gradient in the North Atlantic (R = -0.63). The inverse relationship between model bias and projection, and the role of model resolution are discussed.

  10. Automated Historical and Real-Time Cyclone Discovery With Multimodal Remote Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ho, S.; Talukder, A.; Liu, T.; Tang, W.; Bingham, A.

    2008-12-01

    Existing cyclone detection and tracking solutions involve extensive manual analysis of modeled-data and field campaign data by teams of experts. We have developed a novel automated global cyclone detection and tracking system by assimilating and sharing information from multiple remote satellites. This unprecedented solution of combining multiple remote satellite measurements in an autonomous manner allows leveraging off the strengths of each individual satellite. Use of multiple satellite data sources also results in significantly improved temporal tracking accuracy for cyclones. Our solution involves an automated feature extraction and machine learning technique based on an ensemble classifier and Kalman filter for cyclone detection and tracking from multiple heterogeneous satellite data sources. Our feature-based methodology that focuses on automated cyclone discovery is fundamentally different from, and actually complements, the well-known Dvorak technique for cyclone intensity estimation (that often relies on manual detection of cyclonic regions) from field and remote data. Our solution currently employs the QuikSCAT wind measurement and the merged level 3 TRMM precipitation data for automated cyclone discovery. Assimilation of other types of remote measurements is ongoing and planned in the near future. Experimental results of our automated solution on historical cyclone datasets demonstrate the superior performance of our automated approach compared to previous work. Performance of our detection solution compares favorably against the list of cyclones occurring in North Atlantic Ocean for the 2005 calendar year reported by the National Hurricane Center (NHC) in our initial analysis. We have also demonstrated the robustness of our cyclone tracking methodology in other regions over the world by using multiple heterogeneous satellite data for detection and tracking of three arbitrary historical cyclones in other regions. Our cyclone detection and tracking

  11. Quartz-enhanced photo-acoustic spectroscopy for breath analyses

    NASA Astrophysics Data System (ADS)

    Petersen, Jan C.; Lamard, Laurent; Feng, Yuyang; Focant, Jeff-F.; Peremans, Andre; Lassen, Mikael

    2017-03-01

    An innovative and novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for highly sensitive and selective breath gas analysis is introduced. The QEPAS sensor consists of two acoustically coupled micro- resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF). The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. Due to the very low fabrication costs the QEPAS sensor presents a clear breakthrough in the field of photoacoustic spectroscopy by introducing novel disposable gas chambers in order to avoid cleaning after each test. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). Spectroscopic measurements of methane and methanol in the 3.1 μm to 3.7 μm wavelength region is conducted. Demonstrating a resolution bandwidth of 1 cm-1. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s for methane and that the background noise is solely due to the thermal noise of the QTF. Spectra of both individual molecules as well as mixtures of molecules were measured and analyzed. The molecules are representative of exhaled breath gasses that are bio-markers for medical diagnostics.

  12. Opposed-flow virtual cyclone for particle concentration

    DOEpatents

    Rader, Daniel J.; Torczynski, John R.

    2000-12-05

    An opposed-flow virtual cyclone for aerosol collation which can accurately collect, classify, and concentrate (enrich) particles in a specific size range. The opposed-flow virtual cyclone is a variation on the virtual cyclone and has its inherent advantages (no-impact particle separation in a simple geometry), while providing a more robust design for concentrating particles in a flow-through type system. The opposed-flow virtual cyclone consists of two geometrically similar virtual cyclones arranged such that their inlet jets are inwardly directed and symmetrically opposed relative to a plane of symmetry located between the two inlet slits. A top plate bounds both jets on the "top" side of the inlets, while the other or lower wall curves "down" and away from each inlet jet. Each inlet jet will follow the adjacent lower wall as it turns away, and that particles will be transferred away from the wall and towards the symmetry plane by centrifugal action. After turning, the two jets merge smoothly along the symmetry line and flow parallel to it through the throat. Particles are transferred from the main flows, across a dividing streamline, and into a central recirculating region, where particle concentrations become greatly increased relative to the main stream.

  13. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  14. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2015-04-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.

  15. Poleward transport of Saharan dust initiated by a Saharan cyclone.

    NASA Astrophysics Data System (ADS)

    Karam Francis, Diana Bou; Chaboureau, Jean-Pierre; Cuesta, Juan

    2016-04-01

    To enhance the understanding of the role of Saharan mineral dust in the Arctic climate system, this study focuses on dust emission and poleward transport associated with an intense Saharan cyclone that occurred over North Africa in early April 2011. Satellites observations at high spatio-temporal resolution are used in this study in order to characterize qualitatively (using MSG-SEVIRI and CALIPSO/CloudSat) and quantitatively (using MODIS and OMI) the dust activity over North Africa associated with the Saharan cyclone as well as the transport of dust toward the northern pole. Beside the observations, a simulation at high resolution is performed using the MesoNh model in order to estimation the dust load transported northward and to evaluate the dust deposition north to 60°N and its impact on the Albedo. In this study, we identify in new and important mechanism for the transport of dust over long distances toward the northern pole: the poleward migration of Saharan cyclones, in which the dust is transported toward the Arctic following a newly identified path; across the Northern Atlantic Ocean around the Icelandic Low. This path is to be added to the two preferable paths mentioned in previous studies i.e. through transport across Northern Europe and across the Atlantic Ocean around the Bermuda High. Key words: Arctic, North Africa, dust storm, dust deposition, surface albedo.

  16. Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.

    2013-01-01

    The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.

  17. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  18. The Relationship Between Extratropical Cyclone Steering and Blocking Along the North American East Coast

    NASA Astrophysics Data System (ADS)

    Booth, James F.; Dunn-Sigouin, Etienne; Pfahl, Stephan

    2017-12-01

    The path and speed of extratropical cyclones along the east coast of North America influence their societal impact. This work characterizes the climatological relationship between cyclone track path and speed, and blocking and the North Atlantic Oscillation (NAO). An analysis of Lagrangian cyclone track propagation speed and angle shows that the percentage of cyclones with blocks is larger for cyclones that propagate northward or southeastward, as is the size of the blocked region near the cyclone. Cyclone-centered composites show that propagation of cyclones relative to blocks is consistent with steering by the block: northward tracks more often have a block east/northeast of the cyclone; slow tracks tend to have blocks due north of the cyclone. Comparison with the NAO shows that to first-order blocking and the NAO steer cyclones in a similar manner. However, blocked cyclones are more likely to propagate northward, increasing the likelihood of cyclone related impacts.

  19. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  20. Associating extreme precipitation events to parent cyclones in gridded data

    NASA Astrophysics Data System (ADS)

    Rhodes, Ruari; Shaffrey, Len; Gray, Sue

    2015-04-01

    When analysing the relationship of regional precipitation to its parent cyclone, it is insufficient to consider the cyclone's region of influence as a fixed radius from the centre due to the irregular shape of rain bands. A new method is therefore presented which allows the use of objective feature tracking data in the analysis of regional precipitation. Utilising the spatial extent of precipitation in gridded datasets, the most appropriate cyclone(s) may be associated with regional precipitation events. This method is applied in the context of an analysis of the influence of clustering and stalling of extra-tropical cyclones in the North Atlantic on total precipitation accumulations over England and Wales. Cyclone counts and residence times are presented for historical records (ERA-Interim) and future projections (HadGEM2-ES) of extreme (> 98th percentile) precipitation accumulations over England and Wales, for accumulation periods ranging from one day to one month.

  1. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  2. Model finds bigger, stronger tropical cyclones with warming seas

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the wake of powerful tropical cyclones such as Hurricanes Sandy and Katrina and Typhoon Haiyan, questions about the likely effect of climate change on tropical cyclone activity are on the public's mind. The interactions between global warming and cyclone activity, however, are complex, with rising sea surface temperatures, changing energy distributions, and altered atmospheric dynamics all having some effect.

  3. A Subtropical Cyclone in the Canary Islands: the October 2014 event

    NASA Astrophysics Data System (ADS)

    Quitian, Lara; Martin, Maria Luisa; Jesús González-Alemán, Juan; Santos-Muñoz, Daniel; Valero Rodríguez, Francisco

    2016-04-01

    Depending on the thermal structure and dynamics, there are different types of cyclones in the troposphere. Subtropical cyclones (STC) are low pressure systems that share tropical and extratropical characteristics, having hybrid thermal structures. In October 2014, a cyclonic system landfall the Canary Islands, causing widespread damages. The system began to develop in October 18 and its effects lasted until October 21. Here, the diagnosis and identification of such cyclone as STC is carried out, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. The cyclone evolved from a typical extratropical cyclone, detached from the atmospheric circulation which was highly meridional and became a stationary cut-off low. The meridional intrusion of the trough as well as a low-level baroclinic zone favored the formation of a STC northwestern of the Canary Islands. Several cyclone phase space diagrams are used to classify the cyclone as a STC, highlighting a deep cold core in its early stages that develops into a shallow warm core. High potential vorticity areas associated with the cyclone promoted strong winds and precipitation over the Islands. Throughout the event, an increased conditional instability is observed in the different soundings, leading to strong vertical wind shear. Moreover, relatively warm sea surface temperature is obtained, establishing the conditions to favor the organization of long-lived convective structures.

  4. Tropical Cyclone Indlala

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On March 14, 2007, storm-weary Madagascar braced for its fourth land-falling tropical cyclone in as many months. Cyclone Indlala was hovering off the island's northeast coast when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this photo-like image at 1:40 p.m. local time (10:40 UTC). Just over a hundred kilometers offshore, the partially cloudy eye at the heart of the storm seems like a vast drain sucking in a disk of swirling clouds. According to reports from the Joint Typhoon Warning Center issued less than three hours after MODIS captured this image, Indlala had winds of 115 knots (132 miles per hour), with gusts up to 140 knots (161 mph). Wave heights were estimated to be 36 feet. At the time of the report, the storm was predicted to intensify through the subsequent 12-hour period, to turn slightly southwest, and to strike eastern Madagascar as a Category 4 storm with sustained winds up to 125 knots (144 mph), and gusts up to 150 knots (173 mph). According to Reuters AlertNet news service, Madagascar's emergency response resources were taxed to their limit in early March 2007 as a result of extensive flooding in the North, drought and food shortages in the South, and three previous hits from cyclones in the preceding few months: Bondo in December 2006, Clovis in January 2007, and Gamede in February.

  5. Simulated sensitivity of the tropical cyclone eyewall replacement cycle to the ambient temperature profile

    NASA Astrophysics Data System (ADS)

    Ma, Xulin; He, Jie; Ge, Xuyang

    2017-09-01

    In this study, the impacts of the environmental temperature profile on the tropical cyclone eyewall replacement cycle are examined using idealized numerical simulations. It is found that the environmental thermal condition can greatly affect the formation and structure of a secondary eyewall and the intensity change during the eyewall replacement cycle. Simulation with a warmer thermal profile produces a larger moat and a prolonged eyewall replacement cycle. It is revealed that the enhanced static stability greatly suppresses convection, and thus causes slow secondary eyewall formation. The possible processes influencing the decay of inner eyewall convection are investigated. It is revealed that the demise of the inner eyewall is related to a choking effect associated with outer eyewall convection, the radial distribution of moist entropy fluxes within the moat region, the enhanced static stability in the inner-core region, and the interaction between the inner and outer eyewalls due to the barotropic instability. This study motivates further research into how environmental conditions influence tropical cyclone dynamics and thermodynamics.

  6. Cyclonic circulation of Saturn's atmosphere due to tilted convection

    NASA Astrophysics Data System (ADS)

    Afanasyev, Y. D.; Zhang, Y.

    2018-03-01

    Saturn displays cyclonic vortices at its poles and the general atmospheric circulation at other latitudes is dominated by embedded zonal jets that display cyclonic circulation. The abundance of small-scale convective storms suggests that convection plays a role in producing and maintaining Saturn's atmospheric circulation. However, the dynamical influence of small-scale convection on Saturn's general circulation is not well understood. Here we present laboratory analogue experiments and propose that Saturn's cyclonic circulation can be explained by tilted convection in which buoyancy forces do not align with the planet's rotation axis. In our experiments—conducted with a cylindrical water tank that is heated at the bottom, cooled at the top and spun on a rotating table—warm rising plumes and cold sinking water generate small anticyclonic and cyclonic vortices that are qualitatively similar to Saturn's convective storms. Numerical simulations complement the experiments and show that this small-scale convection leads to large-scale cyclonic flow at the surface and anticyclonic circulation at the base of the fluid layer, with a polar vortex forming from the merging of smaller cyclonic storms that are driven polewards.

  7. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also

  8. Anti-cyclonic circulation driven by the estuarine circulation in a gulf type ROFI

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Sanford, L. P.; Nakatsuji, K.; Sugiyama, Y.

    1997-08-01

    Baroclinic residual circulation processes are examined in gulf type Regions Of Freshwater Influence (ROFIs), which have large rivers discharging into a rounded head wider than the Rossby internal deformation radius. Theoretical and observational investigations concentrate on Ise Bay, Japan, with supporting data from Osaka Bay and Tokyo Bay. Simplified analytical solutions are derived to describe the primary features of the circulation. Three dimensional residual current data collected using moored current meters and shipboard acoustic doppler current profilers (ADCPs), satellite imagery and density structure data observed using STDs, are presented for comparison to the theoretical predictions. There are three key points to understanding the resulting circulation in gulf type ROFIs. First, there are likely to be three distinct water masses: the river plume, a brackish upper layer, and a higher salinity lower layer. Second, baroclinic processes in gulf type ROFIs are influenced by the Earth's rotation at first order. Residual currents are quasi-geostrophic and potential vorticity is approximately conserved. Third, the combined effects of a classical longitudinal estuarine circulation and the Earth's rotation are both necessary to produce the resulting circulation. Anti-cyclonic vorticity is generated in the upper layer by the horizontal divergence associated with upward entrainment, which is part of the estuarine circulation. The interaction between anti-cyclonic vorticity and horizontal divergence results in two regions of qualitatively different circulation, with gyre-like circulation near the bay head and uniformly seaward anti-cyclonicly sheared flow further towards the mouth. The stagnation point separating the two regions is closer to (further away from) the bay head for stronger (weaker) horizontal divergence, respectively. The vorticity and spin-up time of this circulation are-(ƒ-ω 1)/2 and h/2w 0, respectively, where ƒ is the Coriolis parameter, ω 1 is

  9. Toward Clarity on Understanding Tropical Cyclone Intensification

    DTIC Science & Technology

    2015-08-01

    forefront of tropical cyclone research for a number of years , espe- cially in the context of the rapid intensification or decay of storms. Rapid...67, 1817 – 1830, doi:10.1175/2010JAS3318.1. Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos

  10. PFB coal fired combined cycle development program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. This finding suggestsmore » that large cyclones with natural or augmented electrostatic forces employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. This is of special importance since the use of many small cyclones in parallel, or multicyclones, commonly suffers from fouling and this approach is not recommended in the CFCC application. The original objective of this investigation was to assess the relative merits of the Aerodyne cyclone separator. It was found from both the cold flow and the hot flow tests that its separative efficiencies are disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones.« less

  11. Criteria for evaluating the condition of a tropical cyclone warning system.

    PubMed

    Parker, D

    1999-09-01

    This paper evaluates the condition (i.e. health) of a tropical cyclone warning system (TCWS) during a 'quiet period' between infrequent intense cyclones. Capacity to make pre-disaster evaluations is important--disaster warning systems need to be in sound condition before, not after, disaster. The research--part of the UK's International Decade of Natural Disaster Reduction Flagship Programme--focuses upon an evaluatory method first used on flood warning systems. The Criteria-development Matrix comprises social, organisational and institutional criteria by which a TCWS may be assessed using a five-stage development scale. This method is used to evaluate Mauritius's TCWS using in-depth interview data. Ways to enhance the method and apply it to other disaster warning systems are discussed. The TCWS in Mauritius is a relatively sound one from which others can learn. Weaknesses requiring attention for Mauritius's TCWS to progress to an advanced level of development are identified.

  12. Tropical Cyclone Genesis: A Dynamician's Point of View

    NASA Astrophysics Data System (ADS)

    Bouali, Safieddine; Leys, Jos

    The paper focuses the route to the maturity of a cyclone as a twist process of the Hadley cell. The approach is qualified by a "dynamician's viewpoint" since the aerologic mechanism of the cyclone genesis is replicated without the classical tools of the meteorological fluid framework. Indeed, we introduce a pure dynamical model of a 2D vertical rotor of an airparcel to emulate the Hadley cell. Twisted by an appropriate feedback to inject geophysical forcing, the simulation displays two stretched solenoid rolls with clockwise and anticlockwise paths representing the Hadley belts wrapping the Earth. When the forcing parameter is higher, computations simulate overlapped whirlwind funnels revealing strong similarities with the structure of cyclones, hurricanes, and typhoons described in the atmospheric science literature. We conjecture that ocean-atmosphere interactions separate and convert a "slice" of the Hadley rotor into a fully tropical cyclone.

  13. Resolving Tropical Cyclone Intensity in Models

    NASA Astrophysics Data System (ADS)

    Davis, C. A.

    2018-02-01

    In recent years, global weather forecast models and global climate models have begun to depict intense tropical cyclones, even up to category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, the author performs calculations, using the extended Best Track data for Atlantic tropical cyclones, to estimate the ability of models with differing grid spacing to represent Atlantic tropical cyclone intensity statistically. Results indicate that, under optimistic assumptions, models with horizontal grid spacing of one fourth degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, the case of Irma (2017) is used to demonstrate the importance of a realistic depiction of angular momentum and to motivate the use of angular momentum in model evaluation.

  14. Acoustically enhanced boiling heat transfer on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari

    2011-11-01

    Acoustic actuation is used to enhance boiling heat transfer on a submerged heated surface containing an array of open microchannels by controlling the formation and evolution of vapor bubbles and inhibiting the instability that leads to film boiling at the critical heat flux. The effect of actuation at millimeter and micrometer scales is investigated with emphasis on the behavior of bubble nucleation, growth, contact-line motion, condensation, and detachment. The results show that microchannels control the location of boiling and reduce the mean surface superheat. In addition, acoustic actuation increases the heat flux at a given surface temperature and leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. Supported by ONR.

  15. Trends in Northern Hemisphere surface cyclone frequency and intensity

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.; Serreze, Mark C.

    2001-01-01

    One of the hypothesized effects of global warming from increasing concentrations of greenhouse gases is a change in the frequency and/or intensity of extratropical cyclones. In this study, winter frequencies and intensities of extratropical cyclones in the Northern Hemisphere for the period 1959-97 are examined to determine if identifiable trends are occurring. Results indicate a statistically significant decrease in midlatitude cyclone frequency and a significant increase in high-latitude cyclone frequency. In addition, storm intensity has increased in both the high and midlatitudes. The changes in storm frequency correlate with changes in winter Northern Hemisphere temperature and support hypotheses that global warming may result in a northward shift of storm tracks in the Northern Hemisphere.

  16. Ensemble Prediction of Tropical Cyclone Genesis

    DTIC Science & Technology

    2017-02-23

    future changes in tropical cyclone (TC) activity around the Hawaiian Islands are investigated using the state-of-the-art climate models1–3. We find that...future warmer climate . This is in contrast to the NA, where BDI increases for all dynamic variables investigated while it shows little change for...Li, and A. Kitoh, 2013: Projected future increase in tropical cyclones near Hawaii. Nature Climate Change , 3, 749-754, doi:10.1038/nclimate1890

  17. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T. Tazwell; Keller, Jay O.

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  18. Intravascular ultrasound catheter to enhance microbubble-based drug delivery via acoustic radiation force.

    PubMed

    Kilroy, Joseph P; Klibanov, Alexander L; Wamhoff, Brian R; Hossack, John A

    2012-10-01

    Previous research has demonstrated that acoustic radiation force enhances intravascular microbubble adhesion to blood vessels in the presence of flow for moleculartargeted ultrasound imaging and drug delivery. A prototype acoustic radiation force intravascular ultrasound (ARFIVUS) catheter was designed and fabricated to displace a microbubble contrast agent in flow representative of conditions encountered in the human carotid artery. The prototype ARFIVUS transducer was designed to match the resonance frequency of 1.4- to 2.6-μm-diameter microbubbles modeled by an experimentally verified 1-D microbubble acoustic radiation force translation model. The transducer element was an elongated Navy Type I (hard) lead zirconate titanate (PZT) ceramic designed to operate at 3 MHz. Fabricated devices operated with center frequencies of 3.3 and 3.6 MHz with -6-dB fractional bandwidths of 55% and 50%, respectively. Microbubble translation velocities as high as 0.86 m/s were measured using a high-speed streak camera when insonating with the ARFIVUS transducer. Finally, the prototype was used to displace microbubbles in a flow phantom while imaging with a commercial 45-MHz imaging IVUS transducer. A sustained increase of 31 dB in average video intensity was measured following insonation with the ARFIVUS, indicating microbubble accumulation resulting from the application of acoustic radiation force.

  19. Assessing the impact of cyclones in the coastal zone of Bangladesh

    NASA Astrophysics Data System (ADS)

    Wolf, Judith; Bricheno, Lucy; Chowdury, Shahad; Rahman, Munsur; Ghosh, Tuhin; Kay, Susan; Caesar, John

    2014-05-01

    We review the state of knowledge regarding tropical cyclones and their impacts on coastal ecosystems, as well as the livelihood and health of the coastal communities, under the present and future climate, with application to the coastal zone of Bangladesh. This region is particularly vulnerable to tropical cyclones as it is very low-lying and densely populated. Cyclones cause damage due to the high wind speed and also the ensuing storm surge, which causes inundation and salinity intrusion into agricultural land and contaminates fresh water. The world's largest mangrove forest, the Sundarbans, protects the coast of the Brahmaputra-Ganges-Meghna (BGM) delta from these cyclonic storms but mangroves are themselves vulnerable to cyclone damage, as in 2007 when ~36% of the mangrove area was severely damaged leading to further losses of livelihood. We apply an idealised cyclone model and use the winds and pressures from this model to drive a storm surge model in the Bay of Bengal, in order to examine the impact of the intensity, track speed and landfall of the cyclones in terms of surge and inundation. The model is tested by reproducing the track and intensity of Cyclone Sidr of 2007. We also examine the projected future climate from the South Asia Regional Climate Model to understand how tropical cyclones may change under global warming and assess how this may impact the BGM Delta over the 21st century.

  20. Sea turtle species vary in their susceptibility to tropical cyclones.

    PubMed

    Pike, David A; Stiner, John C

    2007-08-01

    Severe climatic events affect all species, but there is little quantitative knowledge of how sympatric species react to such situations. We compared the reproductive seasonality of sea turtles that nest sympatrically with their vulnerability to tropical cyclones (in this study, "tropical cyclone" refers to tropical storms and hurricanes), which are increasing in severity due to changes in global climate. Storm surges significantly decreased reproductive output by lowering the number of nests that hatched and the number of hatchlings that emerged from nests, but the severity of this effect varied by species. Leatherback turtles (Dermochelys coriacea) began nesting earliest and most offspring hatched before the tropical cyclone season arrived, resulting in little negative effect. Loggerhead turtles (Caretta caretta) nested intermediately, and only nests laid late in the season were inundated with seawater during storm surges. Green turtles (Chelonia mydas) nested last, and their entire nesting season occurred during the tropical cyclone season; this resulted in a majority (79%) of green turtle nests incubating in September, when tropical cyclones are most likely to occur. Since this timing overlaps considerably with the tropical cyclone season, the developing eggs and nests are extremely vulnerable to storm surges. Increases in the severity of tropical cyclones may cause green turtle nesting success to worsen in the future. However, published literature suggests that loggerhead turtles are nesting earlier in the season and shortening their nesting seasons in response to increasing sea surface temperatures caused by global climate change. This may cause loggerhead reproductive success to improve in the future because more nests will hatch before the onset of tropical cyclones. Our data clearly indicate that sympatric species using the same resources are affected differently by tropical cyclones due to slight variations in the seasonal timing of nesting, a key life

  1. Effects of cyclone-generated disturbance on a tropical reef foraminifera assemblage.

    PubMed

    Strotz, Luke C; Mamo, Briony L; Dominey-Howes, Dale

    2016-04-29

    The sedimentary record, and associated micropalaeontological proxies, is one tool that has been employed to quantify a region's tropical cyclone history. Doing so has largely relied on the identification of allochthonous deposits (sediments and microfossils), sourced from deeper water and entrained by tropical cyclone waves and currents, in a shallow-water or terrestrial setting. In this study, we examine microfossil assemblages before and after a known tropical cyclone event (Cyclone Hamish) with the aim to better resolve the characteristics of this known signal. Our results identify no allochthonous material associated with Cyclone Hamish. Instead, using a swathe of statistical tools typical of ecological studies but rarely employed in the geosciences, we identify new, previously unidentified, signal types. These signals include a homogenising effect, with the level of differentiation between sample sites greatly reduced immediately following Cyclone Hamish, and discernible shifts in assemblage diversity. In the subsequent years following Hamish, the surface assemblage returns to its pre-cyclone form, but results imply that it is unlikely the community ever reaches steady state.

  2. Testing coral-based tropical cyclone reconstructions: An example from Puerto Rico

    USGS Publications Warehouse

    Kilbourne, K. Halimeda; Moyer, Ryan P.; Quinn, Terrence M.; Grottoli, Andrea G.

    2011-01-01

    Complimenting modern records of tropical cyclone activity with longer historical and paleoclimatological records would increase our understanding of natural tropical cyclone variability on decadal to centennial time scales. Tropical cyclones produce large amounts of precipitation with significantly lower δ18O values than normal precipitation, and hence may be geochemically identifiable as negative δ18O anomalies in marine carbonate δ18O records. This study investigates the usefulness of coral skeletal δ18O as a means of reconstructing past tropical cyclone events. Isotopic modeling of rainfall mixing with seawater shows that detecting an isotopic signal from a tropical cyclone in a coral requires a salinity of ~ 33 psu at the time of coral growth, but this threshold is dependent on the isotopic composition of both fresh and saline end-members. A comparison between coral δ18O and historical records of tropical cyclone activity, river discharge, and precipitation from multiple sites in Puerto Rico shows that tropical cyclones are not distinguishable in the coral record from normal rainfall using this approach at these sites.

  3. Characterization of flash floods induced by tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Real-Rangel, R. A.; Pedrozo-Acuña, A.

    2015-12-01

    This study investigates the role of tropical cyclones (hurricanes, tropical storms and depressions) in the generation of flash floods in Mexico. For this, a severity assessment during several cyclonic events for selected catchments was estimated through the evaluation of a flash flood index recently proposed by Kim and Kim (2014). This classification is revised, considering the forcing and areal extent of torrential rainfall generated by the incidence of tropical cyclones on the studied catchments, enabling the further study of the flood regime in catchments located in tropical regions. The analysis incorporates characteristics of the flood hydrographs such as the hydrograph shape (rising curve gradient, magnitude of the peak discharge and flood response time) in order to identify flash-flood prone areas. Results show the Qp-A scaling relationship in catchments that were impacted by tropical cyclones, enabling their comparison against floods generated by other meteorological events (e.g. convective and orographic storms). Results will inform on how peak flows relationships are modified by cyclonic events and highlighting the contribution of cyclonic precipitation to flash-flooding susceptibility.

  4. Acoustic Liquid Manipulation Used to Enhance Electrochemical Processes

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2005-01-01

    Working in concert with the NASA Technology Transfer and Partnership Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation of Elgin, Illinois, the NASA Glenn Research Center has applied nonlinear acoustic principles to industrial applications. High-intensity ultrasonic beam techniques employ the effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. This includes propelling liquids, moving bubbles, and ejecting liquids as droplets and fountains. Since these effects can be accomplished without mechanical pumps or moving parts, we are exploring how these techniques could be used to manipulate liquids in space applications. Some of these acoustic techniques could be used both in normal Earth gravity and in the microgravity of space.

  5. On the movement of tropical cyclone LEHAR

    NASA Astrophysics Data System (ADS)

    Dasari, Hari Prasad; V, Brahmananda Rao; SSVS, Ramakrishna; Gunta, Paparao; N, Nanaji Rao; P, Ramesh Kumar

    2017-12-01

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures ( θ e) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  6. The Teleconnection Between Atlantic Sea Surface Temperature and Eastern Pacific Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Patricola, C. M.; Saravanan, R.; Chang, P.

    2016-12-01

    The El Niño-Southern Oscillation (ENSO) is a major source of seasonal tropical cyclone (TC) predictability, in both local and remote ocean basins. Unusually warm eastern tropical Pacific sea-surface temperature (SST) during El Niño tends not only to enhance local TC activity in the eastern North Pacific (ENP) but also to suppress Atlantic TCs via well-known teleconnections. Here, we demonstrate that Atlantic SST variability likewise exerts a significant influence on remote TC activity in the eastern Pacific basin using observations and 27 km resolution tropical channel model simulations. Observed and simulated accumulated cyclone energy in the ENP is substantially reduced during the positive phase of the Atlantic Meridional Mode (AMM), which is characterized by warm and cool SST anomalies in the northern and southern tropical Atlantic respectively, and vice versa during the cool AMM phase. We find that the observed anti-correlation in seasonal TC activity between the Atlantic and ENP basins is driven by interannual climate variability in both the tropical Pacific (ENSO) and Atlantic (AMM). The physical mechanisms that drive the teleconnection between Atlantic SST and ENP TC activity will also be presented. This work provides information that can be used to improve seasonal forecasts and future projections of ENP tropical cyclone activity.

  7. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  8. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  9. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  10. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  11. Southern Hemisphere Extratropical Cyclones and their Relationship with ENSO in springtime

    NASA Astrophysics Data System (ADS)

    Reboita, M. S.; Ambrizzi, T.; Da Rocha, R.

    2013-05-01

    Extratropical cyclones occurrence is associated with the teleconnection mechanisms that produce climate variability. Among these mechanisms we have El Niño-Southern Oscillation (ENSO). Some works have indicated that during the ENSO positive phase there are more cyclogenetic conditions in some parts of the globe as the southwest of South Atlantic Ocean. Therefore, the purpose of this study is to verify if the extratropical cyclones number and location are altered in the different ENSO phases in the austral spring over the Southern Hemisphere (SH). The Melbourne University automatic tracking scheme was used to determine the cyclone climatology from 1980 to 2012. All cyclones that appear with lifetime higher or equal to 24 hours in the sea level pressure data from National Centers for Environment Prediction reanalysis I were included in the climatology. El Niño (EN), La Niña (LN) and Neutral (N) years were identified through the Oceanic Niño Index (ONI) from Climate Prediction Center/NOAA. The average number of cyclones in the spring over the SH is similar in the EN (200), N (184) and LN (197) episodes. By latitude bands, during EN episodes the cyclones occurrence reduces in 16% between 70-60 degrees and increases in ~15% between 80-70 and 50-40 degrees. On the other hand, during the LN episodes, the cyclones are 17% more frequent in 50-60 degrees and 22% less frequent in 30-20 degrees. One more detailed analysis of the cyclones trajectory density (that is a statistic product of the tracking algorithm) shows that in the South Atlantic Ocean, near the southeast of South America, the number of cyclones in EN years is higher than in the neutral period and lower than in the LN years. In the Indian Ocean, the EN year is characterized by a cyclones reduction in the west and east sector, near the continents. In the Pacific Ocean, the region southward the New Zealand presents more cyclones occurrence in EN years.

  12. From SYNOP to AMOC: Stirring by deep cyclones and the evolution of Denmark Strait Overflow Water observed at Line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M., Jr.; Joyce, T. M.; Curry, R. G.

    2016-02-01

    Shipboard velocity and property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40˚N are analyzed to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and its mixing with the interior. The transects were made between 1994 and 2014 and lie along Line W, which reaches from the continental shelf south of New England to Bermuda. Measurements comprise velocity from lowered acoustic Doppler current profilers (LADCPs), CTD profiles, and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths at 26 regular stations or a subset of these stations. In each transect, DSOW exhibits a distinct CFC concentration maximum in the abyssal ocean (> 3000 m depth) along the sloped western boundary. Sea surface height (SSH) maps from satellite altimetry indicate that quasi-stationary meander troughs of the Gulf Stream path in the upper ocean were present at Line W during 5 of the 18 sections. For these 5 sections, the LADCP velocity sections suggest the upper ocean trough is accompanied by a large cyclone in the deep ocean in the DSOW density layer. The occurrence of deep cyclones in conjunction with Gulf Stream troughs as inferred from the LADCP sections along Line W is consistent with previous observations (from 1988 to 1990) in the region from a moored array in the Synoptic Ocean Prediction (SYNOP) experiment. The SYNOP array suggested deep cyclones are present here about 35% of the time. The composite velocity section produced from the 5 Line W transects sampling through a Gulf Stream trough suggests that a typical cyclone reaches swirl speeds of greater than 30 cm/s at 3400 m depth and has a radius (distance between the center and the maximum velocity) of 75 km. The tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC and the interior.

  13. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  14. Intensity of prehistoric tropical cyclones

    NASA Astrophysics Data System (ADS)

    Nott, Jonathan F.

    2003-04-01

    Prediction of future tropical cyclone climate scenarios requires identification of quasi-periodicities at a variety of temporal scales. Extension of records to identify trends at century and millennial scales is important, but to date the emerging field of paleotempestology has been hindered by the lack of a suitable methodology to discern the intensity of prehistoric storms. Here a technique to quantify the central pressure of prehistoric tropical cyclones is presented in detail and demonstrated for the tropical southwest Pacific region. The importance of extending records to century time scales is highlighted for northeast Australia, where a virtual absence of category 5 cyclones during the 20th century stands in contrast to an active period of severe cyclogenesis during the previous century. Several land crossing storms during the 19th century achieved central pressures lower than that ever recorded historically and close to the theoretical thermodynamic limit of storms for the region. This technique can be applied to all tropical and subtropical regions globally and will assist in obtaining more realistic predictions for future storm scenarios with implications for insurance premiums, urban and infrastructural design, and emergency planning.

  15. Explosive cyclones in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.

    2014-12-01

    Explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. A better understanding of the potential impacts of climate change on these so called meteorological bombs is therefore of great societal relevance. This study evaluates how well CMIP5 climate models reproduce explosive cyclones in the extratropics of the northern hemisphere, and how these bombs respond to global warming. For this purpose an objective-feature tracking algorithm was used to identify and track extratropical cyclones from 25 CMIP5 models and 3 reanalysis products for the periods 1980 to 2005 and 2070 to 2099. Cyclones were identified as the maxima of T42 vorticity of 6h wind speed at 850 hPa. Explosive and non-explosive cyclones were separated based on the corresponding deepening rates of mean sea level pressure. Most models accurately reproduced the spatial distribution of bombs when compared to results from reanalysis data (R2 = 0.84, p-value = 0.00), with high frequencies along the Kuroshio Current and the Gulf Stream, as well as the exit regions of the polar jet streaks. Most models however significantly underestimated bomb frequencies by a third on average, and by 74% in the most extreme case. This negative frequency bias coincided with significant underestimations of either meridional sea surface temperature (SST) gradients, or wind speeds of the polar jet streaks. Bomb frequency biases were significantly correlated with the number vertical model levels (R2= 0.36, p-value = 0.001), suggesting that the vertical atmospheric model resolution is crucial for simulating bomb frequencies accurately. The impacts of climate change on the location, frequency, and intensity of explosive cyclones were then explored for the Representative Concentration Pathway 8.5. Projections were related to model bias, resolution, projected changes of SST gradients, and wind speeds

  16. The study of Merydunal and Zonal Index and its relationships with Cyclone Gonu

    NASA Astrophysics Data System (ADS)

    Ezzatian, Victoria

    2010-05-01

    Distinguish the integrated natural disaster management is basic, also there happens rarely during 100 years. Cyclone Gonu, an unusually strong tropical cyclone, developed in the eastern part of the Arabian Sea on June 1st. The cyclone made landfall in Oman on the 6th with maximum sustained winds near 148 km/hr. A few days prior to landfall, Gonu had intensified to a powerful super cyclonic storm with maximum sustained winds near 260 km/hr on the 5th, becoming the first documented super cyclone in the Arabian Sea and tied for the strongest cyclone in the North Indian Ocean. After making landfall in Oman, Gonu moved through the Gulf of Oman making a second landfall in Iran. Tropical Cyclone Gonu affected more than 20,000 people and was responsible for 49 fatalities and 27 missing people in Oman. Gonu brought heavy rainfall which caused floods and landslides. Meanwhile in Iran 5 fatalities were reported and 9 people remain missing. Tropical cyclones as strong as Gonu are rare in the Arabian Sea. Severe thunderstorms, associated with an outer band of the tropical cyclone Yemyin , produced heavy rains and winds during June 23-25. The storms produced heavy rains which caused floodings and destroyed thousands of homes .Tropical Cyclone Yemyin developed as a depression in the Bay of Bengal on the 21st and made landfall in India's southern state on the 22nd. Yemyin brought heavy rain in the southern parts of India, leaving over 254 mm of rain. After crossing over India, Yemyin moved into the Arabian Sea and began moving towards the northwest. On June 26, the cyclone intensified and maximum sustained winds reached 93 km/hr. The cyclone was responsible for at least 21 fatalities in the Baluchistan province. Meanwhile in Afghanistan, Yemyin produced heavy rainfall which prompted floods that were responsible for 56 deaths and left thousands of people homeless . Because of these happenings we decided surveying the synoptic patterns in this month. Key words: Tropical cyclones

  17. The threat to coral reefs from more intense cyclones under climate change.

    PubMed

    Cheal, Alistair J; MacNeil, M Aaron; Emslie, Michael J; Sweatman, Hugh

    2017-04-01

    Ocean warming under climate change threatens coral reefs directly, through fatal heat stress to corals and indirectly, by boosting the energy of cyclones that cause coral destruction and loss of associated organisms. Although cyclone frequency is unlikely to rise, cyclone intensity is predicted to increase globally, causing more frequent occurrences of the most destructive cyclones with potentially severe consequences for coral reef ecosystems. While increasing heat stress is considered a pervasive risk to coral reefs, quantitative estimates of threats from cyclone intensification are lacking due to limited data on cyclone impacts to inform projections. Here, using extensive data from Australia's Great Barrier Reef (GBR), we show that increases in cyclone intensity predicted for this century are sufficient to greatly accelerate coral reef degradation. Coral losses on the outer GBR were small, localized and offset by gains on undisturbed reefs for more than a decade, despite numerous cyclones and periods of record heat stress, until three unusually intense cyclones over 5 years drove coral cover to record lows over >1500 km. Ecological damage was particularly severe in the central-southern region where 68% of coral cover was destroyed over >1000 km, forcing record declines in the species richness and abundance of associated fish communities, with many local extirpations. Four years later, recovery of average coral cover was relatively slow and there were further declines in fish species richness and abundance. Slow recovery of community diversity appears likely from such a degraded starting point. Highly unusual characteristics of two of the cyclones, aside from high intensity, inflated the extent of severe ecological damage that would more typically have occurred over 100s of km. Modelling published predictions of future cyclone activity, the likelihood of more intense cyclones within time frames of coral recovery by mid-century poses a global threat to coral

  18. Extreme cyclone events in the Arctic: Wintertime variability and trends

    NASA Astrophysics Data System (ADS)

    Rinke, A.; Maturilli, M.; Graham, R. M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S. R.; Moore, J. C.

    2017-12-01

    Extreme cyclone events often occur during Arctic winters, and are of concern as they transport heat and moisture into the Arctic, which is associated with mixed-phase clouds and increased longwave downward radiation, and can cause temperatures to rise above freezing resulting in wintertime sea-ice melting or retarded sea-ice growth. With Arctic amplification and associated reduced sea-ice cover and warmer sea surface temperatures, the occurrence of extreme cyclones events could be a plausible scenario. We calculate the spatial patterns, and changes and trends of the number of extreme cyclone events in the Arctic based on ERA-Interim six-hourly sea level pressure (SLP) data for winter (November-February) 1979-2015. Further, we analyze the SLP data from the Ny-Ålesund station for the same 37 year period. We define an extreme cyclone event by an extreme low central pressure (SLP below 985 hPa, which is the 5th percentile of the Ny-Ålesund/N-ICE2015 SLP data). Typically 20-40 extreme cyclone events (sometimes called `weather bombs') occur in the Arctic North Atlantic per winter season, with an increasing trend of 6 events/decade, according to the Ny-Ålesund data. This increased frequency of extreme cyclones drive considerable warming in that region, consistent with the observed significant winter warming of 3 K/decade. The positive winter trend in extreme cyclones is dominated by a positive monthly trend of about 3-4 events/decade in November-December, due mainly to an increasing persistence of extreme cyclone events. A negative trend in January opposes this, while there is no significant trend in February. We relate the regional patterns of the trend in extreme cyclones to anomalously low sea-ice conditions in recent years, together with associated large-scale atmospheric circulation changes such as "blocking-like" circulation patterns (e.g. Scandinavian blocking in December and Ural blocking during January-February).

  19. Cyclone: A close air support aircraft for tomorrow

    NASA Technical Reports Server (NTRS)

    Cox, George; Croulet, Donald; Dunn, James; Graham, Michael; Ip, Phillip; Low, Scott; Vance, Gregg; Volckaert, Eric

    1991-01-01

    To meet the threat of the battlefield of the future, the U.S. ground forces will require reliable air support. To provide this support, future aircrews demand a versatile close air support aircraft capable of delivering ordinance during the day, night, or in adverse weather with pin-point accuracy. The Cyclone aircraft meets these requirements, packing the 'punch' necessary to clear the way for effective ground operations. Possessing anti-armor, missile, and precision bombing capability, the Cyclone will counter the threat into the 21st Century. Here, it is shown that the Cyclone is a realistic, economical answer to the demand for a capable close air support aircraft.

  20. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator,more » the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.« less

  1. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    NASA Astrophysics Data System (ADS)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  2. Coupling between the lower and middle atmosphere observed during a very severe cyclonic storm 'Madi'

    NASA Astrophysics Data System (ADS)

    Hima Bindu, H.; Venkat Ratnam, M.; Yesubabu, V.; Narayana Rao, T.; Eswariah, S.; Naidu, C. V.; Vijaya Bhaskara Rao, S.

    2018-04-01

    Synoptic-scale systems like cyclones can generate broad spectrum of waves, which propagate from its source to the middle atmosphere. Coupling between the lower and middle atmosphere over Tirupati (13.6°N, 79.4°E) is studied during a very severe cyclonic storm 'Madi' (06-13 December 2013) using Weather Research and Forecast (WRF) model assimilated fields and simultaneous meteor radar observations. Since high temporal and spatial measurements are difficult to obtain during these disturbances, WRF model simulations are obtained by assimilating conventional and satellite observations using 3DVAR technique. The obtained outputs are validated for their consistency in predicting cyclone track and vertical structure by comparing them with independent observations. The good agreement between the assimilated outputs and independent observations prompted us to use the model outputs to investigate the gravity waves (GWs) and tides over Tirupati. GWs with the periods 1-5 h are observed with clear downward phase propagation in the lower stratosphere. These upward propagating waves obtained from the model are also noticed in the meteor radar horizontal wind observations in the MLT region (70-110 km). Interestingly, enhancement in the tidal activity in both the zonal and meridional winds in the mesosphere and lower thermosphere (MLT) region is noticed during the peak cyclonic activity except the suppression of semi-diurnal tide in meridional wind. A very good agreement in the tidal activity is also observed in the horizontal winds in the troposphere and lower stratosphere from the WRF model outputs and ERA5. These results thus provide evidence on the vertical coupling of lower and middle atmosphere induced by the tropical cyclone.

  3. An important role of the moisture supply from the Kuroshio Current/Kuroshio Extension in the rapid development of an explosive cyclone

    NASA Astrophysics Data System (ADS)

    Hirata, H.; Kawamura, R.; Kato, M.; Shinoda, T.

    2014-12-01

    enhancement of the CCB. We anticipate that such a feedback process plays a key role in the rapid intensification of the cyclone highlighted in this study.

  4. Infectious Diseases and Tropical Cyclones in Southeast China.

    PubMed

    Zheng, Jietao; Han, Weixiao; Jiang, Baofa; Ma, Wei; Zhang, Ying

    2017-05-07

    Southeast China is frequently hit by tropical cyclones (TCs) with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RR s ) were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis ( ps < 0.05) than to decrease the risk, more likely to decrease the risk of measles, mumps, varicella and vivax malaria ( ps < 0.05) than to increase the risk. In conclusion, TCs have mixed effects on the risk of infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.

  5. Extreme cyclone events in the Arctic: Wintertime variability and trends

    NASA Astrophysics Data System (ADS)

    Rinke, A.; Maturilli, M.; Graham, R. M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S. R.; Moore, J. C.

    2017-09-01

    Typically 20-40 extreme cyclone events (sometimes called ‘weather bombs’) occur in the Arctic North Atlantic per winter season, with an increasing trend of 6 events/decade over 1979-2015, according to 6 hourly station data from Ny-Ålesund. This increased frequency of extreme cyclones is consistent with observed significant winter warming, indicating that the meridional heat and moisture transport they bring is a factor in rising temperatures in the region. The winter trend in extreme cyclones is dominated by a positive monthly trend of about 3-4 events/decade in November-December, due mainly to an increasing persistence of extreme cyclone events. A negative trend in January opposes this, while there is no significant trend in February. We relate the regional patterns of the trend in extreme cyclones to anomalously low sea-ice conditions in recent years, together with associated large-scale atmospheric circulation changes such as ‘blockinglike’ circulation patterns (e.g. Scandinavian blocking in December and Ural blocking during January-February).

  6. Baroclinic flows, transports, and kinematic properties in a cyclonic-anticyclonic-cyclonic ring triad in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Vidal, VíCtor M. V.; Vidal, Francisco V.; HernáNdez, Abel F.; Meza, Eustorgio; PéRez-Molero, José M.

    1994-04-01

    During October-November 1986 the baroclinic circulation of the central and western Gulf of Mexico was dominated by an anticyclonic ring that was being bisected by two north and south flanking cyclonic rings. The baroclinic circulation revealed a well-defined cyclonic-anticyclonic-cyclonic triad system. The anticyclone's collision against the western gulf continental slope at 22.5°N, 97°W originated the north and south flanking cyclonic rings. The weakening of the anticyclone's relative vorticity, during the collision, was compensated by along-shelf north (26 cm s-1) and south (58 cm s-1) jet currents and by the anticyclone's flanking water mass's gain of cyclonic vorticity from lateral shear contributed by east (56 cm s-1) and west (42 cm s-1) current jets with individual mass transports of ˜18 Sv. Within the 0-1000 and 0-500 dbar layers and across 96°W the magnitudes of the colliding westward transports were 17.80 and 8.59 Sv, respectively. These corresponding transports were 85 and 94% balanced by along-shelf jet currents north and south of the anticyclone's collision zone. This indicates that only minor amounts (<15%) of the anticyclone's colliding westward transports might have flowed into the western gulf's continental shelf water mass or else they sank into deeper water along the continental slope during the anticyclone's collision event. The resultant effect of the coupled interaction between the anticyclone and the cyclonic pair was the surging of the water mass in the cyclones and its sinking in the anticyclone. This mechanism controlled the magnitude, direction, location of vertical advection, and transfer of kinetic energy from the upper to the deeper water layers. Our vertical transport estimates through the 1000-m-depth surface revealed a net vertical descending transport of 0.4 Sv for the ring triad system. This mass flux occurred primordially within the south central gulf region and most likely constituted a principal mechanism that propelled the

  7. Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment

    NASA Astrophysics Data System (ADS)

    Gallet, B.; Campagne, A.; Cortet, P.-P.; Moisy, F.

    2014-03-01

    We characterize the statistical and geometrical properties of the cyclone-anticyclone asymmetry in a statistically steady forced rotating turbulence experiment. Turbulence is generated by a set of vertical flaps which continuously inject velocity fluctuations towards the center of a tank mounted on a rotating platform. We first characterize the cyclone-anticyclone asymmetry from conventional single-point vorticity statistics. We propose a phenomenological model to explain the emergence of the asymmetry in the experiment, from which we predict scaling laws for the root-mean-square velocity in good agreement with the experimental data. We further quantify the cyclone-anticyclone asymmetry using a set of third-order two-point velocity correlations. We focus on the correlations which are nonzero only if the cyclone-anticyclone symmetry is broken. They offer two advantages over single-point vorticity statistics: first, they are defined from velocity measurements only, so an accurate resolution of the Kolmogorov scale is not required; second, they provide information on the scale-dependence of the cyclone-anticyclone asymmetry. We compute these correlation functions analytically for a random distribution of independent identical vortices. These model correlations describe well the experimental ones, indicating that the cyclone-anticyclone asymmetry is dominated by the large-scale long-lived cyclones.

  8. Compact cyclone filter train for radiological and hazardous environments

    DOEpatents

    Bench, T.R.

    1998-04-28

    A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

  9. Compact cyclone filter train for radiological and hazardous environments

    DOEpatents

    Bench, Thomas R.

    1998-01-01

    A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

  10. Enhancement of coherent acoustic phonons in InGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan D.; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    Enhancement of coherent zone folded longitudinal acoustic phonon (ZFLAP) oscillations at terahertz frequencies was demonstrated in InGaN multiple quantum wells (MQWs) by using wavelength degenerate time resolved differential transmission spectroscopy. Screening of the piezoelectric field in InGaN MQWs by photogenerated carriers upon femtosecond pulse excitation gave rise to terahertz ZFLAPs, which were monitored at the Brillouin zone center in the transmission geometry. MQWs composed of 10 pairs InxGa1-xN wells and In0.03Ga0.97N barriers provided coherent phonon frequencies of 0.69-0.80 THz depending on the period of MQWs. Dependences of ZFLAP amplitude on excitation density and wavelength were also investigated. Possibility of achieving phonon cavity, incorporating a MQW placed between two AlN/GaN phonon mirrors designed to exhibit large acoustic gaps at the zone center, was also explored.

  11. Detection of centers of tropical cyclones using Communication, Ocean, and Meteorological Satellite data

    NASA Astrophysics Data System (ADS)

    Lee, Juhyun; Im, Jungho; Park, Seohui; Yoo, Cheolhee

    2017-04-01

    Tropical cyclones are one of major natural disasters, which results in huge damages to human and society. Analyzing behaviors and characteristics of tropical cyclones is essential for mitigating the damages by tropical cyclones. In particular, it is important to keep track of the centers of tropical cyclones. Cyclone center and track information (called Best Track) provided by Joint Typhoon Warning Center (JTWC) are widely used for the reference data of tropical cyclone centers. However, JTWC uses multiple resources including numerical modeling, geostationary satellite data, and in situ measurements to determine the best track in a subjective way and makes it available to the public 6 months later after an event occurred. Thus, the best track data cannot be operationally used to identify the centers of tropical cyclones in real time. In this study, we proposed an automated approach for identifying the centers of tropical cyclones using only Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) sensor derived data. It contains 5 bands—VIS (0.67µm), SWIR (3.7µm), WV (6.7µm), IR1 (10.8µm), and IR2 (12.0µm). We used IR1 band images to extract brightness temperatures of cloud tops over Western North Pacific between 2011 and 2012. The Angle deviation between brightness temperature-based gradient direction in a moving window and the reference angle toward the center of the window was extracted. Then, a spatial analysis index called circular variance was adopted to identify the centers of tropical cyclones based on the angle deviation. Finally, the locations of the minimum circular variance indexes were identified as the centers of tropical cyclones. While the proposed method has comparable performance for detecting cyclone centers in case of organized cloud convections when compared with the best track data, it identified the cyclone centers distant ( 2 degrees) from the best track centers for unorganized convections.

  12. Tropical Cyclone Evolution and Water and Energy Fluxes: A Hurricane Katrina Case Study

    NASA Astrophysics Data System (ADS)

    Pinheiro, M. C.; Zhou, Y.

    2015-12-01

    Tropical cyclones are a highly destructive force of nature, characterized by extreme precipitation levels and wind speeds and heavy flooding. There are concerns that climate change will cause changes in the intensity and frequency of tropical cyclones. Therefore, the quantification of the water and energy fluxes that occur during a tropical cyclone's life cycle are important for anticipating the magnitude of damages that are likely to occur. This study used HURDAT2 storm track information and data from the satellite-derived SeaFlux and TRMM products to determine changes in precipitation, wind, and latent and sensible heat throughout the life cycle of Hurricane Katrina. The variables were examined along and around the storm track, taking averages both at stationary 5x5 degree boxes and within the instantaneous hurricane domain. Analysis focused on contributions of convergence and latent heat to the storm evolution and examined how the total flux was related to the storm intensity. Certain features, such as the eye, were not resolved due to the data resolution, but the data captures the general trend of enhanced flux levels that are due to the storm's presence. Analysis also included examination of the water and energy budgets as related to convergence and the sensible and latent heat fluxes.

  13. Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects

    NASA Astrophysics Data System (ADS)

    Yoshiike, Satoki; Kawamura, Ryuichi

    2009-07-01

    The relationships between large-scale wintertime circulation and extratropical cyclones that develop explosively (the so-called bomb cyclones) over the western North Pacific are investigated using Japanese long-term reanalysis project data. On a monthly basis, the East Asian winter monsoon variability strongly modulates the bomb cyclone activity in terms of its geographical distribution. When the monsoon is strong, the bomb cyclone activity tends to concentrate in the vicinity of the Kuroshio Current and the Kuroshio Extension near Japan, while when the monsoon is weak, it disperses over the broader areas. The enhancement of the monsoon increases the heat and moisture supply from warm currents, facilitating unstable conditions within the atmospheric boundary layer and intensifying baroclinicity in the lower troposphere. These factors are believed to play a role in inducing bomb cyclones, particularly along the warm currents. On submonthly timescales, the stationary Rossby wave propagation along the South Asian waveguide serves as a prominent trigger for the rapid reinforcement of synoptic-scale disturbances around Japan. When a pronounced bomb cyclone comes to its mature stage northeast of Japan, it is capable of exciting stationary Rossby waves downstream from the Asian jet exit region as vorticity forcing. The stationary wave packets developing southeastward across the North Pacific Ocean basin induce surface cyclogenesis in the vicinity of the Hawaiian Islands by leading to the equatorward advection of higher potential vorticity from the midlatitudes, bringing about the occurrence of kona storms, which cause weather hazards in Hawaii.

  14. Impacts of Tropical Cyclones and Accompanying Precipitation on Infectious Diarrhea in Cyclone Landing Areas of Zhejiang Province, China

    PubMed Central

    Deng, Zhengyi; Xun, Huanmiao; Zhou, Maigeng; Jiang, Baofa; Wang, Songwang; Guo, Qing; Wang, Wei; Kang, Ruihua; Wang, Xin; Marley, Gifty; Ma, Wei

    2015-01-01

    Background: Zhejiang Province, located in southeastern China, is frequently hit by tropical cyclones. This study quantified the associations between infectious diarrhea and the seven tropical cyclones that landed in Zhejiang from 2005–2011 to assess the impacts of the accompanying precipitation on the studied diseases. Method: A unidirectional case-crossover study design was used to evaluate the impacts of tropical storms and typhoons on infectious diarrhea. Principal component analysis (PCA) was applied to eliminate multicollinearity. A multivariate logistic regression model was used to estimate the odds ratios (ORs) and the 95% confidence intervals (CIs). Results: For all typhoons studied, the greatest impacts on bacillary dysentery and other infectious diarrhea were identified on lag 6 days (OR = 2.30, 95% CI: 1.81–2.93) and lag 5 days (OR = 3.56, 95% CI: 2.98–4.25), respectively. For all tropical storms, impacts on these diseases were highest on lag 2 days (OR = 2.47, 95% CI: 1.41–4.33) and lag 6 days (OR = 2.46, 95% CI: 1.69–3.56), respectively. The tropical cyclone precipitation was a risk factor for both bacillary dysentery and other infectious diarrhea when daily precipitation reached 25 mm and 50 mm with the largest OR = 3.25 (95% CI: 1.45–7.27) and OR = 3.05 (95% CI: 2.20–4.23), respectively. Conclusions: Both typhoons and tropical storms could contribute to an increase in risk of bacillary dysentery and other infectious diarrhea in Zhejiang. Tropical cyclone precipitation may also be a risk factor for these diseases when it reaches or is above 25 mm and 50 mm, respectively. Public health preventive and intervention measures should consider the adverse health impacts from tropical cyclones. PMID:25622139

  15. Classic Maya civilization collapse associated with reduction in tropical cyclone activity

    NASA Astrophysics Data System (ADS)

    Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.

    2013-12-01

    In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.

  16. The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc K.; Glezer, Ari

    2012-11-01

    Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.

  17. Coal reburning for cyclone boiler NO sub x control demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  18. Climate extremes in the Pacific: improving seasonal prediction of tropical cyclones and extreme ocean temperatures to improve resilience

    NASA Astrophysics Data System (ADS)

    Kuleshov, Y.; Jones, D.; Spillman, C. M.

    2012-04-01

    Climate change and climate extremes have a major impact on Australia and Pacific Island countries. Of particular concern are tropical cyclones and extreme ocean temperatures, the first being the most destructive events for terrestrial systems, while the latter has the potential to devastate ocean ecosystems through coral bleaching. As a practical response to climate change, under the Pacific-Australia Climate Change Science and Adaptation Planning program (PACCSAP), we are developing enhanced web-based information tools for providing seasonal forecasts for climatic extremes in the Western Pacific. Tropical cyclones are the most destructive weather systems that impact on coastal areas. Interannual variability in the intensity and distribution of tropical cyclones is large, and presently greater than any trends that are ascribable to climate change. In the warming environment, predicting tropical cyclone occurrence based on historical relationships, with predictors such as sea surface temperatures (SSTs) now frequently lying outside of the range of past variability meaning that it is not possible to find historical analogues for the seasonal conditions often faced by Pacific countries. Elevated SSTs are the primary trigger for mass coral bleaching events, which can lead to widespread damage and mortality on reef systems. Degraded coral reefs present many problems, including long-term loss of tourism and potential loss or degradation of fisheries. The monitoring and prediction of thermal stress events enables the support of a range of adaptive and management activities that could improve reef resilience to extreme conditions. Using the climate model POAMA (Predictive Ocean-Atmosphere Model for Australia), we aim to improve accuracy of seasonal forecasts of tropical cyclone activity and extreme SSTs for the regions of Western Pacific. Improved knowledge of extreme climatic events, with the assistance of tailored forecast tools, will help enhance the resilience and

  19. Economics of oversized cyclones in the cotton ginning industry

    USDA-ARS?s Scientific Manuscript database

    Cost of reducing pollution to meet increasingly stringent air quality standards particularly for the U.S. cotton ginning industry is rising overtime. Most industry participants use cyclones to control air pollutants. These cyclones have no moving parts and their initial investment costs are relative...

  20. The influence of local sea surface temperatures on Australian east coast cyclones

    NASA Astrophysics Data System (ADS)

    Pepler, Acacia S.; Alexander, Lisa V.; Evans, Jason P.; Sherwood, Steven C.

    2016-11-01

    Cyclones are a major cause of rainfall and extreme weather in the midlatitudes and have a preference for genesis and explosive development in areas where a warm western boundary current borders a continental landmass. While there is a growing body of work on how extratropical cyclones are influenced by the Gulf Stream and Kuroshio Current in the Northern Hemisphere, there is little understanding of similar regions in the Southern Hemisphere including the Australian east coast, where cyclones that develop close to the coast are the main cause of severe weather and coastal flooding. This paper quantifies the impact of east Australian sea surface temperatures (SSTs) on local cyclone activity and behavior, using three different sets of sea surface temperature boundary conditions during the period 2007-2008 in an ensemble of Weather Research and Forecasting Model physics parameterizations. Coastal sea surface temperatures are demonstrated to have a significant impact on the overall frequency of cyclones in this region, with warmer SSTs acting as a trigger for the intensification of weak or moderate cyclones, particularly those of a subtropical nature. However, sea surface temperatures play only a minor role in the most intense cyclones, which are dominated by atmospheric conditions.

  1. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    NASA Astrophysics Data System (ADS)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  2. Risk factors for mortality in the Bangladesh cyclone of 1991.

    PubMed

    Bern, C; Sniezek, J; Mathbor, G M; Siddiqi, M S; Ronsmans, C; Chowdhury, A M; Choudhury, A E; Islam, K; Bennish, M; Noji, E

    1993-01-01

    Cyclones continue to pose a dangerous threat to the coastal populations of Bangladesh, despite improvements in disaster control procedures. After 138,000 persons died in the April 1991 cyclone, we carried out a rapid epidemiological assessment to determine factors associated with cyclone-related mortality and to identify prevention strategies. A nonrandom survey of 45 housing clusters comprising 1123 persons showed that mortality was greatest among under-10-year-olds (26%) and women older than 40 years (31%). Nearly 22% of persons who did not reach a concrete or brick structure died, whereas all persons who sought refuge in such structures survived. Future cyclone-associated mortality in Bangladesh could be prevented by more effective warnings leading to an earlier response, better access to designated cyclone shelters, and improved preparedness in high-risk communities. In particular, deaths among women and under-10-year-olds could be reduced by ensuring that they are given special attention by families, neighbours, local authorities, and especially those in charge of early warnings and emergency evacuation.

  3. Low loading of carbon nanotubes to enhance acoustical properties of poly(ether)urethane foams

    NASA Astrophysics Data System (ADS)

    Basirjafari, Sedigheh; Malekfar, Rasoul; Esmaielzadeh Khadem, Siamak

    2012-11-01

    The aim of this paper is to fabricate a sound absorber flexible semi-open cell polymeric foam based on polyether urethane (PEU) with carboxylic functionalized multi-walled carbon nanotubes (COOH-MWCNTs) as an energy decaying filler at low loadings up to 0.20 wt. %. This paper provides the relationship between the mentioned foam microstructure via field emission scanning electron microscopy and different acoustical and non-acoustical properties of PEU/COOH-MWCNT composites. Addition of just 0.05 wt. % COOH-MWCNTs enhanced the sound absorption coefficient of the mentioned nanocomposite foam over the entire frequency range. Raman spectra revealed the better dispersion of COOH-MWCNTs in the PEU matrix leading to more stress transfer between them to cause a significant dissipation of energy.

  4. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    NASA Technical Reports Server (NTRS)

    Leppert, Kenneth D., II; Cecil, D. J.

    2015-01-01

    Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due

  5. Tropical Cyclone-Driven Sediment Dynamics Over the Australian North West Shelf

    NASA Astrophysics Data System (ADS)

    Dufois, François; Lowe, Ryan J.; Branson, Paul; Fearns, Peter

    2017-12-01

    Owing to their strong forcing at the air-sea interface, tropical cyclones are a major driver of hydrodynamics and sediment dynamics of continental shelves, strongly impacting marine habitats and offshore industries. Despite the North West Shelf of Australia being one of the most frequently impacted tropical cyclone regions worldwide, there is limited knowledge of how tropical cyclones influence the sediment dynamics of this shelf region, including the significance of these episodic extreme events to the normal background conditions that occur. Using an extensive 2 year data set of the in situ sediment dynamics and 14 yearlong calibrated satellite ocean-color data set, we demonstrate that alongshore propagating cyclones are responsible for simultaneously generating both strong wave-induced sediment resuspension events and significant southwestward subtidal currents. Over the 2 year study period, two particular cyclones (Iggy and Narelle) dominated the sediment fluxes resulting in a residual southwestward sediment transport over the southern part of the shelf. By analyzing results from a long-term (37 year) wind and wave hindcast, our results suggest that at least 16 tropical cyclones had a strong potential to contribute to that southwestward sediment pathway in a similar way to Iggy and Narelle.

  6. Properties and circulation of Jupiter's circumpolar cyclones as measured by JunoCam

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Eichstaedt, G.; Rogers, J. H.; Hansen, C. J.; Caplinger, M.; Momary, T.; Tabataba-Vakili, F.; Intersoll, A. P.

    2017-09-01

    JunoCam has taken the first high-resolution visible images of Jupiter's poles, which show that each pole has a cluster of circumpolar cyclones, each one separated in longitude by roughly equal spacing. There are five at the south pole and eight at the north pole. These configurations, including their asymmetries and the characteristics of individual cyclones, have remained stable over 7 months from perijove 1 to perijove 5 as of this writing. Each cyclone has a circular outline with a prominent system of trailing spiral arms. In the north, the internal morphology of adjacent cyclones alternates from one to the next. Angular motions within each cyclone appear to be similar to each other but quite different from vortices at lower latitudes.

  7. A CFD Study on the Prediction of Cyclone Collection Efficiency

    NASA Astrophysics Data System (ADS)

    Gimbun, Jolius; Chuah, T. G.; Choong, Thomas S. Y.; Fakhru'L-Razi, A.

    2005-09-01

    This work presents a Computational Fluid Dynamics calculation to predict and to evaluate the effects of temperature, operating pressure and inlet velocity on the collection efficiency of gas cyclones. The numerical solutions were carried out using spreadsheet and commercial CFD code FLUENT 6.0. This paper also reviews four empirical models for the prediction of cyclone collection efficiency, namely Lapple [1], Koch and Licht [2], Li and Wang [3], and Iozia and Leith [4]. All the predictions proved to be satisfactory when compared with the presented experimental data. The CFD simulations predict the cyclone cut-off size for all operating conditions with a deviation of 3.7% from the experimental data. Specifically, results obtained from the computer modelling exercise have demonstrated that CFD model is the best method of modelling the cyclones collection efficiency.

  8. The persistent signature of tropical cyclones in ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M. E.; Ekström, Göran

    2018-02-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  9. Enhancement of electrically evoked oto-acoustic emissions associated with low-frequency stimulus bias of the basilar membrane towards scala vestibuli.

    PubMed

    Kirk, D L; Yates, G K

    1998-09-01

    Electrically evoked oto-acoustic emissions (EEOAEs) are sounds present in the ear canal when ac current is passed into the cochlea. EEOAEs are attributed to the activation of fast electromotile responses in outer hair cells (OHCs). An interesting property of EEOAEs is the phenomenon of "acoustic enhancement," where the emission amplitude is increased by moderate-level sound [D. C. Mountain and A. E. Hubbard, Hear. Res. 42, 195-202 (1989)]. In this report a form of enhancement is described which occurs with displacements of the basilar membrane toward scala vestibuli, during amplitude modulation of the EEOAE waveform by low-frequency tones. This "SV-bias enhancement" possibly consists of two components: (i) a low-level component induced by sound at levels which produce nonlinear growth of the cochlear microphonic and which may be equivalent to the "acoustic enhancement" described previously, and (ii) a high-level component which occurs at sound levels well above those which cause saturation of the cochlear microphonic. The low-level component could be explained by either an increased access of the extrinsically applied current to a membrane-based source of OHC motility, perhaps coupled with a reduction in negative feedback, or an increase in electromotile output during scala vestibuli displacements, but the origin of the high-level component is obscure.

  10. Do Tropical Cyclones Shape Shorebird Habitat Patterns? Biogeoclimatology of Snowy Plovers in Florida

    PubMed Central

    Convertino, Matteo; Elsner, James B.; Muñoz-Carpena, Rafael; Kiker, Gregory A.; Martinez, Christopher J.; Fischer, Richard A.; Linkov, Igor

    2011-01-01

    Background The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus) is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. Methodology/Principal Findings Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. Conclusions/Significance Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones. PMID:21264268

  11. Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China.

    PubMed

    Ouyang, Xiaoguang; Lee, Shing Yip; Connolly, Rod M; Kainz, Martin J

    2018-02-14

    Coastal wetlands are increasingly recognised for their pivotal role in mitigating the growing threats from cyclones (including hurricanes) in a changing climate. There is, however, insufficient information about the economic value of coastal wetlands for cyclone mitigation, particularly at regional scales. Analysis of data from 1990-2012 shows that the variation of cyclone frequencies is related to EI Niño strength in the Pacific Ocean adjacent to Australia, but not China. Among the cyclones hitting the two countries, there are significant relationships between the ratio of total economic damage to gross domestic production (TD/GDP) and wetland area within cyclone swaths in Australia, and wetland area plus minimum cyclone pressure despite a weak relationship in China. The TD/GDP ratio is significantly higher in China than in Australia. Despite their extensive and growing occurrence, seawalls in China appear not to play a critical role in cyclone mitigation, and cannot replace coastal wetlands, which provide other efficient ecosystem services. The economic values of coastal wetlands in Australia and China are respectively estimated at US$52.88 billion and 198.67 billion yr -1 for cyclone mitigation, albeit with large within-country geographic variation. This study highlights the urgency to integrate this value into existing valuations of coastal wetlands.

  12. Contrasting the projected change in extreme extratropical cyclones in the two hemispheres

    NASA Astrophysics Data System (ADS)

    Chang, E. K. M.

    2017-12-01

    Extratropical cyclones form an important part of the global circulation. They are responsible for much of the high impact weather in the mid-latitudes, including heavy precipitation, strong winds, and coastal storm surges. They are also the surface manifestation of baroclinic waves that are responsible for much of the transport of momentum, heat, and moisture across the mid-latitudes. Thus how these storms will change in the future is of much general interest. In particular, how the frequency of the extreme cyclones change are of most concern, since they are the ones that cause most damages. While the projection of a poleward shift of the Southern Hemisphere storm track and cyclone activity is widely accepted, together with a small decrease in the total number of extratropical cyclones, as discussed in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5), projected change in cyclone intensity is still rather uncertain. Several studies have suggested that cyclone intensity, in terms of absolute value of sea level pressure (SLP) minima or SLP perturbations, is projected to increase under global warming. However, other studies found no increase in wind speed around extratropical cyclones. In this study, CMIP5 multi-model projection of how the frequency of extreme cyclones in terms of near surface wind intensity may change under global warming has been examined. Results suggest significant increase in the occurrences of extreme cyclones in the Southern Hemisphere. In the Northern Hemisphere, CMIP5 models project a northeastward shift in extreme cyclone activity over the Pacific, and significant decrease over the Atlantic. Substantial differences are also found between projected changes in near surface wind intensity and wind intensity at 850 hPa, suggesting that wind change at 850 hPa is not a good proxy for change in surface wind intensity. Finally, projected changes in the large scale environment are examined to understand the

  13. Martian extratropical cyclones

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.; James, P. B.

    1979-01-01

    Physical properties of summer-season baroclinic waves on Mars are discussed on the basis of vidicon images and infrared thermal mapping generated by Viking Orbiter 1. The two northern-hemisphere storm systems examined here appear to be similar to terrestrial mid-latitude cyclonic storms. The Martian storm clouds are probably composed of water ice, rather than dust or CO2 ice particles.

  14. Monitoring by Control Technique - Cyclone

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about cyclone control techniques used to reduce pollutant emissions.

  15. Impacts of Particulate Matter on Gulf of Mexico Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cao, W.; Rohli, R. V.

    2017-12-01

    The purpose of this project is to analyze the relationship between tropical cyclones of the Gulf of Mexico-Atlantic basin and fine particulate matter (PM2.5). The daily mean PM2.5 concentration values were collected from United States Environmental Protection Agency (EPA). Tropical cyclone data were collected from Tropical Prediction Center Best Track Reanalysis in Unisys Weather®. The GRIdded Binary (GRIB-formatted) data were downloaded from the Data Support Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). Through ArcGIS®, the tropical cyclone tracks were compared with the interpolated daily mean PM2.5 concentration value. Results suggest that the tracks tend to avoid areas with higher PM2.5 concentrations, and the intensity was weakened significantly after passing the PM2.5-rich area. Through simulation using the Weather Research and Forecasting (WRF) model, the pressure and vertical structure of Hurricane Lili were weakened after passing the most PM2.5-rich area in Louisiana. Also, little evidence is found for the possibility of precipitation generated by the approaching tropical cyclone to cleanse the atmosphere of PM2.5 before storm passage. These results have important implications for tropical cyclone prediction as storms approach polluted areas or other places where PM2.5 particles are abundant, not only including urban environments but also in coastal areas where proscribed burns take place during tropical cyclone season, such as during sugarcane harvesting in southern Louisiana.

  16. Tropical Cyclone Intensity in Global Models

    NASA Astrophysics Data System (ADS)

    Davis, C. A.; Wang, W.; Ahijevych, D.

    2017-12-01

    In recent years, global prediction and climate models have begun to depict intense tropical cyclones, even up to Category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, we examine the how well these models treat tropical cyclone intensity, measured from several different perspectives. The models evaluated include the operational Global Forecast System, with a grid spacing of about 13 km, and the Model for Prediction Across Scales, with a variable resolution of 15 km over the Northwest Pacific transitioning to 60 km elsewhere. We focus on the Northwest Pacific for the period July-October, 2016. Results indicate that discrimination of tropical cyclone intensity is reasonably good up to roughly category 3 storms. The models are able to capture storms of category 4 intensity, but still exhibit a negative intensity bias of 20-30 knots at lead times beyond 5 days. This is partly indicative of the large number of super-typhoons that occurred in 2016. The question arises of how well global models should represent intensity, given that it is unreasonable for them to depict the inner core of many intense tropical cyclones with a grid increment of 13-15 km. We compute an expected "best-case" prediction of intensity based on filtering the observed wind profiles of Atlantic tropical cyclones according to different hypothetical model resolutions. The Atlantic is used because of the significant number of reconnaissance missions and more reliable estimate of wind radii. Results indicate that, even under the most optimistic assumptions, models with horizontal grid spacing of 1/4 degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, models with a grid spacing of 1/4 degree or greater are unlikely to systematically discriminate hurricanes with differing intensity. Finally, for simple wind profiles, it is shown how an accurate

  17. Enhancing acoustic signal response and absorption of an underwater coated plate by embedding periodical inhomogeneities.

    PubMed

    Zhang, Yanni; Pan, Jie

    2017-12-01

    An underwater structure is proposed for simultaneous detection and stealth purposes by embedding periodic signal conditioning plates (SCPs) at the interface of two elastic coatings attached to an elastic plate. Results show that the embedded SCPs can enhance sound absorption at frequencies below the coincidence frequency of the plate (f c ). Significantly enhanced absorption occurs at five peaks, of which the peak due to excited localized bending resonance in the outer coating between SCPs is the most significant. When the dilatational velocity of the outer coating equals that of the inner coating, nearly total absorption occurs in a wideband, owing to strong coupling between the localized waveguide resonance in the outer coating and that in the inner coating, and the diffraction waves by the SCPs. Meanwhile, an amplified acoustic signal of over 14 dB is observed at most frequencies within 0 ∼ f c at the coatings' interface close to the SCPs' edges, owing to focused stress formed there. Peaks in the signal response at maximal 30 dB are also observed. These peak frequencies are coincident with or close to the peak frequencies of absorption, demonstrating that significantly enhanced acoustic signal and absorption can be achieved simultaneously through the use of embedded periodic SCPs.

  18. The role of latent heat in kinetic energy conversions of South Pacific cyclones

    NASA Technical Reports Server (NTRS)

    Kann, Deirdre M.; Vincent, Dayton G.

    1986-01-01

    The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.

  19. A Composite Diagnosis of Synoptic-Scale Extratropical Cyclone Development over the United States

    NASA Technical Reports Server (NTRS)

    Rolfson, Donald M.; Smith, Phillip J.

    1996-01-01

    This paper presents a composite diagnosis of synoptic-scale forcing mechanisms associated with extratropical cyclone evolution. Drawn from 12 cyclone cases that occurred over the continental United States during the cool season months, the diagnosis provides a 'climatology' of development mechanisms for difference categories of cyclone evolution ranging from cyclone weakening through three stages of cyclone intensification. Computational results were obtained using an 'extended' form of the Zwack-Okossi equation applied to routine upper-air and surface data analyzed on a 230 km x 230 km grid. Results show that cyclonic vorticity advection, which maximizes in the upper troposphere, was the primary contributor to cyclone development regardless of the stage of development. A second consistent contributor to development was latent heat release. Horizontal temperature advection, often acknowledged as a development mechanism, was found to contribute to development only during more intense stages. During weakening and weaker development stages, temperature advection opposed development, as the warm-air advection invariably found at upper levels was dominated by cold air advection in the lower half of the troposphere. In the more intense stages, development was moderated by dry-adiabatic cooling associated with the ascending vertical motions.

  20. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, F.E.; Smolensky, L.A.

    1988-07-19

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

  1. Tropical and Extratropical Cyclone Damages under Climate Change

    NASA Astrophysics Data System (ADS)

    Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquinio, L.

    2014-12-01

    This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone losses under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 296 estimates of the temperature-damage relationship from twenty studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models (84 and 92 percent, respectively) predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5°C increase in global surface air temperature would cause hurricane damages to increase by 62 percent. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are approximately one third of that magnitude. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.

  2. Active field control (AFC) -electro-acoustic enhancement system using acoustical feedback control

    NASA Astrophysics Data System (ADS)

    Miyazaki, Hideo; Watanabe, Takayuki; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system using FIR filters to optimize auditory impressions, such as liveness, loudness, and spaciousness. This system has been under development at Yamaha Corporation for more than 15 years and has been installed in approximately 50 venues in Japan to date. AFC utilizes feedback control techniques for recreation of reverberation from the physical reverberation of the room. In order to prevent coloration problems caused by a closed loop condition, two types of time-varying control techniques are implemented in the AFC system to ensure smooth loop gain and a sufficient margin in frequency characteristics to prevent instability. Those are: (a) EMR (electric microphone rotator) -smoothing frequency responses between microphones and speakers by changing the combinations of inputs and outputs periodically; (b) fluctuating-FIR -smoothing frequency responses of FIR filters and preventing coloration problems caused by fixed FIR filters, by moving each FIR tap periodically on time axis with a different phase and time period. In this paper, these techniques are summarized. A block diagram of AFC using new equipment named AFC1, which has been developed at Yamaha Corporation and released recently in the US, is also presented.

  3. Tropical Cyclone Intensity Estimation Using Deep Convolutional Neural Networks

    NASA Technical Reports Server (NTRS)

    Maskey, Manil; Cecil, Dan; Ramachandran, Rahul; Miller, Jeffrey J.

    2018-01-01

    Estimating tropical cyclone intensity by just using satellite image is a challenging problem. With successful application of the Dvorak technique for more than 30 years along with some modifications and improvements, it is still used worldwide for tropical cyclone intensity estimation. A number of semi-automated techniques have been derived using the original Dvorak technique. However, these techniques suffer from subjective bias as evident from the most recent estimations on October 10, 2017 at 1500 UTC for Tropical Storm Ophelia: The Dvorak intensity estimates ranged from T2.3/33 kt (Tropical Cyclone Number 2.3/33 knots) from UW-CIMSS (University of Wisconsin-Madison - Cooperative Institute for Meteorological Satellite Studies) to T3.0/45 kt from TAFB (the National Hurricane Center's Tropical Analysis and Forecast Branch) to T4.0/65 kt from SAB (NOAA/NESDIS Satellite Analysis Branch). In this particular case, two human experts at TAFB and SAB differed by 20 knots in their Dvorak analyses, and the automated version at the University of Wisconsin was 12 knots lower than either of them. The National Hurricane Center (NHC) estimates about 10-20 percent uncertainty in its post analysis when only satellite based estimates are available. The success of the Dvorak technique proves that spatial patterns in infrared (IR) imagery strongly relate to tropical cyclone intensity. This study aims to utilize deep learning, the current state of the art in pattern recognition and image recognition, to address the need for an automated and objective tropical cyclone intensity estimation. Deep learning is a multi-layer neural network consisting of several layers of simple computational units. It learns discriminative features without relying on a human expert to identify which features are important. Our study mainly focuses on convolutional neural network (CNN), a deep learning algorithm, to develop an objective tropical cyclone intensity estimation. CNN is a supervised learning

  4. Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.

    1993-01-01

    Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.

  5. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the Northmore » American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. In conclusion, our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.« less

  6. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    NASA Astrophysics Data System (ADS)

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.; Frappier, Amy Benoit; Asmerom, Yemane; Liu, Kam-Biu; Prufer, Keith M.; Ridley, Harriet E.; Polyak, Victor; Kennett, Douglas J.; MacPherson, Colin G.; Aquino, Valorie V.; Awe, Jaime; Breitenbach, Sebastian F. M.

    2016-11-01

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the North American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. Our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.

  7. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    DOE PAGES

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.; ...

    2016-11-23

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the Northmore » American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. In conclusion, our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.« less

  8. Training on Eastern Pacific tropical cyclones for Latin American students

    NASA Astrophysics Data System (ADS)

    Farfán, L. M.; Raga, G. B.

    2009-05-01

    Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.

  9. A statistical analysis of the association between tropical cyclone intensity change and tornado frequency

    NASA Astrophysics Data System (ADS)

    Moore, Todd W.

    2016-07-01

    Tropical cyclones often produce tornadoes that have the potential to compound the injury and fatality counts and the economic losses associated with tropical cyclones. These tornadoes do not occur uniformly through time or across space. Multiple statistical methods were used in this study to analyze the association between tropical cyclone intensity change and tornado frequency. Results indicate that there is an association between the two and that tropical cyclones tend to produce more tornadoes when they are weakening, but the association is weak. Tropical cyclones can also produce a substantial number of tornadoes when they are relatively stable or strengthening.

  10. Characteristics of the internal and external sources of the Mediterranean synoptic cyclones for the period 1956-2013

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Awad, Adel M.; Nazrul Islam, M.

    2017-07-01

    This paper investigates the main sources and features of the Mediterranean synoptic cyclones affecting the basin, using the cyclone tracks. The cyclones' tracks are identified using sea level pressure (SLP) from the NCEP/NCAR reanalysis data for the period 1956-2013. The identified cyclones are classified into two categories: basin affected and basin non-affected. Most of the basin-affected (non-affected) cyclones are internal (external), i.e., generated inside (outside) the Mediterranean basin. This study reveals four (five) main sources of internal (external) cyclones. These four (five) main sources generated about 63.76% (57.25%) of the internal (external) cyclones. Seasonal analysis shows that most of the basin-affected internal (external) cyclones were generated in the winter (spring) season. The lowest number of cyclones were found in the summer. Moreover, the synoptic study of the atmospheric systems accompanied the highest- and lowest-generated years demonstrates that the deepening of the north Europe cyclones and the relative positions of Azores- and Siberian-high systems represent the important factors that influence the number of internal cyclones. Essential factors influencing the external cyclones are the strength of the maximum upper wind, Azores high, Siberian high, and orientations of their ridges.

  11. Performance and Characteristics of a Cyclone Gasifier for Gasification of Sawdust

    NASA Astrophysics Data System (ADS)

    Azman Miskam, Muhamad; Zainal, Z. A.; Idroas, M. Y.

    The performance and characteristics of a cyclone gasifier for gasification of sawdust has been studied and evaluated. The system applied a technique to gasify sawdust through the concept of cyclonic motion driven by air injected at atmospheric pressure. This study covers the results obtained for gasification of ground sawdust from local furniture industries with size distribution ranging from 0.25 to 1 mm. It was found that the typical wall temperature for initiating stable gasification process was about 400°C. The heating value of producer gas was about 3.9 MJ m-3 that is sufficient for stable combustion in a dual-fuel engine generator. The highest thermal output from the cyclone gasifier was 57.35 kWT. The highest value of mass conversion efficiency and enthalpy balance were 60 and 98.7%, respectively. The highest efficiency of the cyclone gasifier obtained was 73.4% and this compares well with other researchers. The study has identified the optimum operational condition for gasifying sawdust in a cyclone gasifier and made conclusions as to how the steady gasification process can be achieved.

  12. Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Awad, Adel M.

    2016-11-01

    The main synoptic patterns associated with the wet season (October-May) eastern Mediterranean cyclones have been analyzed and described using NCEP/NCAR reanalysis datasets for the period 1958-2013. The cyclone tracks detected in the eastern Mediterranean are classified into two types based on their positions: the local tracks and the long tracks. The local tracks are either stationary or short tracks. The long tracks distinguished into eleven very closed and highly correlated clusters, which are presented into three regimes namely the northern, the southern and the eastern border Mediterranean regimes. Among the 940 (44.78% of a total of 2099) long tracks, the northern, southern, and eastern border regime contributes respectively about 53.62%, 41.81% and 5% of the long tracks. In addition, the distribution of the long tracks reveals that a larger proportion of the cyclones are generated at the northern coast during November and spring months, while few cyclones are developed over the eastern Mediterranean border in warm months (April and May). Further, their synoptic features show that the regimes are associated with the extension of Azores high, specifically for each regime, the cyclogenesis areas of its clusters are controlled by the intersection of low level (850 hPa) trough and the position of the upper level (250 hPa) maximum wind. Furthermore, the orientations of clusters are controlled by the extension of Siberian high and the shape of cyclonic trough at 850 hPa. In addition, the synoptic study shows that most of the southern cyclones generated externally by African and Red Sea troughs, while most of the northern and eastern border cyclones are generated internally.

  13. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    DTIC Science & Technology

    2012-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that

  14. Coastal Hazard due to Tropical Cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Silva-Casarin, R.; Mendoza-Baldwin, E.; Marino-Tapia, I.; Enriquez, C.; Ruiz, G.; Escalante-MAncera, E.; Ruíz-Rentería, F.

    2013-05-01

    The Mexican coast is hit every year by at least 3 cyclones and it is affected for nearly 59 hours a year on average; this induces undesirable consequences, such as coastal erosion and flooding. To evaluate the hazard to which the coastal zone is exposes, a historical characterization of atmospheric conditions (surface winds and pressure conditions of the storms), waves (wave heights and their associated wave periods) and flooding levels due to tropical storms for more than 60 years is presented. The atmospheric and wave conditions were evaluated using a modification of the original parametric Hydromet-Rankin Vortex Model by Bretschneider (1990) and Holland (1980) as presented by Silva, et al. (2002). The flooding levels caused by hurricanes were estimated using a two-dimensional, vertically averaged finite volume model to evaluate the storm surge, Posada et al. (2008). The cyclone model was compared to the data series of 29 cyclones recorded by buoys of the National Data Buoy Center-NOAA and some data recorded in shallow waters near Cancun, Mexico and the flooding model was compared with observed data from Cancun, Mexico; both models gave good results. For the extreme analyses of wind, wave heights and maximum flooding levels on the Mexican coasts, maps of the scale and location parameters used in the Weibull cumulative distribution function and numerical results for different return periods are provided. The historical occurrence of tropical storms is also revised as some studies indicate that the average intensity of tropical cyclones is increasing; no definite trends pointing to an increase in storm frequency or intensity were found. What was in fact found is that although there are more cyclones in the Pacific Ocean and these persist longer, the intensity of the cyclones in the Atlantic Ocean is greater affecting. In any case, the strong necessity of avoiding storm induced coastal damage (erosion and flooding) is reflected in numerous works, such as this one

  15. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate

    USDA-ARS?s Scientific Manuscript database

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  16. Public understanding of cyclone warning in India: Can wind be predicted?

    PubMed

    Dash, Biswanath

    2015-11-01

    In spite of meteorological warning, many human lives are lost every year to cyclone mainly because vulnerable populations were not evacuated on time to a safe shelter as per recommendation. It raises several questions, most prominently what explains people's behaviour in the face of such danger from a cyclonic storm? How do people view meteorological advisories issued for cyclone and what role they play in defining the threat? What shapes public response during such situation? This article based on an ethnographic study carried out in coastal state of Odisha, India, argues that local public recognising inherent limitations of meteorological warning, fall back on their own system of observation and forecasting. Not only are the contents of cyclone warning understood, its limitations are accommodated and explained. © The Author(s) 2014.

  17. Submesoscale cyclones in the Agulhas current

    NASA Astrophysics Data System (ADS)

    Krug, M.; Swart, S.; Gula, J.

    2017-01-01

    Gliders were deployed for the first time in the Agulhas Current region to investigate processes of interactions between western boundary currents and shelf waters. Continuous observations from the gliders in water depths of 100-1000 m and over a period of 1 month provide the first high-resolution observations of the Agulhas Current's inshore front. The observations collected in a nonmeandering Agulhas Current show the presence of submesoscale cyclonic eddies, generated at the inshore boundary of the Agulhas Current. The submesoscale cyclones are often associated with warm water plumes, which extend from their western edge and exhibit strong northeastward currents. These features are a result of shear instabilities and extract their energy from the mean Agulhas Current jet.

  18. Statistical Detection of Anthropogenic Temporal Changes in the Distribution of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Joannes-boyau, R.; Bodin, T.; Scheffers, A.; Sambridge, M.

    2012-12-01

    Recent studies highlighting the potential impact of climate change on tropical cyclones have added fuel to the already controversial debates. The link between climate change and tropical cyclone intensity and frequency has been disputed, as both appear to remain in the natural variability. The difficulty lies in our ability to distinguish natural changes from anthropogenic-induced anomalies. The increased anthropogenic atmospheric carbon dioxide leads to environmental changes such as warmer Sea Surface Temperatures (SST) and thus could impact tropical cyclones intensities and frequencies. However, recent studies show that, against an increasing SST, no global trend in respect to cyclone frequency has yet emerged. Scientists have warned to consider the heterogeneity of the existing dataset; especially since the historical tropical cyclone record is frequently accused to be incomplete. Given the abundance of cyclone record data and its likely sensitivity to a number of environmental factors, the real limitation comes from our ability to understand the record as a whole. Thus, strong arguments against the impartiality of proposed models are often debated. We will present an impartial and independent statistical tool applicable to a wide variety of physical and biological phenomena such as processes described by power laws, to observe temporal variations in the tropical cyclone track record from 1842 to 2010. This methodology allows us to observe the impact of anthropogenic-induced modifications on climatic events, without being clustered in subjective parameterised models.

  19. The Life Cycles of Intense Cyclonic and Anticyclonic Circulation Systems Observed over Oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1996-01-01

    This report presents a summary of research accomplished over the past four years under the sponsorship of NASA grant #NAG8-915. Building on previously funded NASA grants, this part of the project focused on the following specific goals relative to cyclone/anticyclone systems: the jet streak link between block formation and upstream cyclone activity; the role of northward warm air advection in block formation; the importance of cooperative participation of several forcing mechanisms during explosive cyclone development; and the significance of the vertical distribution of forcing processes during cyclone/anticyclone development.

  20. Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Huadan; Dong, Lei; Wu, Hongpeng; Yin, Xukun; Xiao, Liantuan; Jia, Suotang; Curl, Robert F.; Tittel, Frank K.

    2018-01-01

    During the past 15 years since the first report of quartz enhanced photoacoustic spectroscopy (QEPAS), QEPAS has become one of the leading optical techniques for trace chemical gas sensing. This paper is a review of the current state-of-the art of QEPAS. QEPAS based spectrophones with different acoustic micro-resonators (AmR) configurations employing both standard quartz tuning forks (QTFs) and custom-made QTFs are summarized and discussed in detail.

  1. Tropical Cyclone Forecasters Reference Guide 2. Tropical Climatology

    DTIC Science & Technology

    1992-04-01

    stratosphere and discovered three periods of oscillation: 1.3.3 1 Quasi-biennial Oscillation (OBO) The QBO in tropical stratospheric winds is defined as a...The QBO may be associated with the seasonal weather activities. Gray (1984a,b) has used the QBO at the 30-mb level as one of the indexes to predict the...yearly number of tropical cyclones in the Atlantic with some success. However, the physical links between cyclone activity and QBO are not clearly

  2. Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization.

    PubMed

    Crake, Calum; Victor, Marie de Saint; Owen, Joshua; Coviello, Christian; Collin, Jamie; Coussios, Constantin-C; Stride, Eleanor

    2015-01-21

    Magnetic targeting of microbubbles functionalized with superparamagnetic nanoparticles has been demonstrated previously for diagnostic (B-mode) ultrasound imaging and shown to enhance gene delivery in vitro and in vivo. In the present work, passive acoustic mapping (PAM) was used to investigate the potential of magnetic microbubbles for localizing and enhancing cavitation activity under focused ultrasound. Suspensions of magnetic microbubbles consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), air and 10 nm diameter iron oxide nanoparticles were injected into a tissue mimicking phantom at different flow velocities (from 0 to 50 mm s(-1)) with or without an applied magnetic field. Microbubbles were excited using a 500 kHz single element focused transducer at peak negative focal pressures of 0.1-1.0 MPa, while a 64 channel imaging array passively recorded their acoustic emissions. Magnetic localization of microbubble-induced cavitation activity was successfully achieved and could be resolved using PAM as a shift in the spatial distribution and increases in the intensity and sustainability of cavitation activity under the influence of a magnetic field. Under flow conditions at shear rates of up to 100 s(-1) targeting efficacy was maintained. Application of a magnetic field was shown to consistently increase the energy of cavitation emissions by a factor of 2-5 times over the duration of exposures compared to the case without targeting, which was approximately equivalent to doubling the injected microbubble dose. These results suggest that magnetic targeting could be used to localize and increase the concentration of microbubbles and hence cavitation activity for a given systemic dose of microbubbles or ultrasound intensity.

  3. Classroom acoustics and intervention strategies to enhance the learning environment

    NASA Astrophysics Data System (ADS)

    Savage, Christal

    The classroom environment can be an acoustically difficult atmosphere for students to learn effectively, sometimes due in part to poor acoustical properties. Noise and reverberation have a substantial influence on room acoustics and subsequently intelligibility of speech. The American Speech-Language-Hearing Association (ASHA, 1995) developed minimal standards for noise and reverberation in a classroom for the purpose of providing an adequate listening environment. A lack of adherence to these standards may have undesirable consequences, which may lead to poor academic performance. The purpose of this capstone project is to develop a protocol to measure the acoustical properties of reverberation time and noise levels in elementary classrooms and present the educators with strategies to improve the learning environment. Noise level and reverberation will be measured and recorded in seven, unoccupied third grade classrooms in Lincoln Parish in North Louisiana. The recordings will occur at six specific distances in the classroom to simulate teacher and student positions. The recordings will be compared to the American Speech-Language-Hearing Association standards for noise and reverberation. If discrepancies are observed, the primary investigator will serve as an auditory consultant for the school and educators to recommend remediation and intervention strategies to improve these acoustical properties. The hypothesis of the study is that the classroom acoustical properties of noise and reverberation will exceed the American Speech-Language-Hearing Association standards; therefore, the auditory consultant will provide strategies to improve those acoustical properties.

  4. Emergency Department Presentations following Tropical Cyclone Yasi.

    PubMed

    Aitken, Peter; Franklin, Richard Charles; Lawlor, Jenine; Mitchell, Rob; Watt, Kerrianne; Furyk, Jeremy; Small, Niall; Lovegrove, Leone; Leggat, Peter

    2015-01-01

    Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED) of a tertiary level hospital (Townsville) following a tropical cyclone (Yasi). Specific areas of focus include changes in: patient demographics (age and gender), triage categories, and classification of diseases. Data were extracted from the Townsville Hospitals ED information system (EDIS) for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011) to six days after Yasi crossed the coast line (8 February 2012). The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level. There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories--4 and 5; and ICD categories--diseases of the skin and subcutaneous tissue (L00-L99), and factors influencing health care status (Z00-Z99). The most common diagnostic presentation across all years was injury (S00-T98). There was an increase in presentations to the ED of TTH, which peaked in the first 24-48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience.

  5. Real-time implementations of acoustic signal enhancement techniques for aerial based surveillance and rescue applications

    NASA Astrophysics Data System (ADS)

    Ramos, Antonio L. L.; Shao, Zhili; Holthe, Aleksander; Sandli, Mathias F.

    2017-05-01

    The introduction of the System-on-Chip (SoC) technology has brought exciting new opportunities for the development of smart low cost embedded systems spanning a wide range of applications. Currently available SoC devices are capable of performing high speed digital signal processing tasks in software while featuring relatively low development costs and reduced time-to-market. Unmanned aerial vehicles (UAV) are an application example that has shown tremendous potential in an increasing number of scenarios, ranging from leisure to surveillance as well as in search and rescue missions. Video capturing from UAV platforms is a relatively straightforward task that requires almost no preprocessing. However, that does not apply to audio signals, especially in cases where the data is to be used to support real-time decision making. In fact, the enormous amount of acoustic interference from the surroundings, including the noise from the UAVs propellers, becomes a huge problem. This paper discusses a real-time implementation of the NLMS adaptive filtering algorithm applied to enhancing acoustic signals captured from UAV platforms. The model relies on a combination of acoustic sensors and a computational inexpensive algorithm running on a digital signal processor. Given its simplicity, this solution can be incorporated into the main processing system of an UAV using the SoC technology, and run concurrently with other required tasks, such as flight control and communications. Simulations and real-time DSP-based implementations have shown significant signal enhancement results by efficiently mitigating the interference from the noise generated by the UAVs propellers as well as from other external noise sources.

  6. Field theoretical prediction of a property of the tropical cyclone

    NASA Astrophysics Data System (ADS)

    Spineanu, F.; Vlad, M.

    2014-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization , an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose-Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a classical field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all coherent structures known in natural systems. Therefore the field theoretical (FT) formulation finds that the cuasi-coherent form of the atmospheric vortex (tropical cyclone) at stationarity is an expression of this particular property. In the present work we examine a strong property of the tropical cyclone, which arises in the FT formulation in a natural way: the equality of the masses of the particles associated to the matter field and respectively to the gauge field in the FT model is translated into the equality between the maximum radial extension of the tropical cyclone and the Rossby radius. For the cases where the FT model is a good approximation we calculate characteristic quantities of the tropical cyclone and find good comparison with observational data.

  7. The short-term impacts of a cyclone on seagrass communities in Southwest Madagascar

    NASA Astrophysics Data System (ADS)

    Côté-Laurin, Marie-Claude; Benbow, Sophie; Erzini, Karim

    2017-04-01

    Cyclones are large-scale disturbances with highly destructive potential in coastal ecosystems. On February 22, 2013, a powerful tropical cyclone made landfall on the southwest coast of Madagascar, a region which is infrequently hit by such extreme weather events coming from the Mozambique Channel. Seagrass ecosystems, which provide valuable ecosystems services to local communities, are especially vulnerable because they thrive in shallow waters. The impact of Cyclone Haruna on seagrass diversity, height and coverage and associated fish diversity, abundance and biomass was assessed in 3 sites near Andavadoaka (22°07‧S, 43°23‧E) before and after the event using fish underwater visual census, video-transects, and seagrass quadrats. The cyclone caused a significant loss in seagrass cover at all 3 sites. Thalassia hemprichii and Syringodium isoetifolium were the most affected species. Andavadoaka beach, the most exposed site, which was also subject to human use and was most fragmented, suffered the largest negative effects of the cyclone. Cyclone Haruna was not found to significantly affect fish assemblages, which are highly mobile organisms able to use a diversity of niches and adjacent habitats after seagrass fragmentation. Extensive sampling and longer time-scale studies would be needed to fully evaluate the cyclone impact on communities of seagrass and fish, and track potential recovery in seagrass coverage. The intensity and destructive potential of cyclones is expected to increase with global warming, which is of concern for developing countries that encompass most of the world's seagrass beds. This study provided a unique and key opportunity to monitor immediate impacts of an extreme disturbance in a region where cyclones rarely hit coastal ecosystems and where local populations remain highly dependent on seagrass meadows.

  8. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-11-01

    Acoustic metasurfaces provide useful wavefront shaping capabilities, such as beam steering, acoustic focusing, and asymmetric transmission, in a compact structure. Most acoustic metasurfaces described in the literature are transmissive devices and focus their performance on steering sound beam of the fundamental diffractive order. In addition, the range of incident angles studied is usually below the critical incidence predicted by generalized Snell's law of reflection. In this work, we comprehensively analyze the wave interaction with a generic periodic phase-modulating structure in order to predict the behavior of all diffractive orders, especially for cases beyond critical incidence. Under the guidance of the presented analysis, a broadband reflective metasurface is designed based on an expanded library of labyrinthine acoustic metamaterials. Various local and nonlocal wavefront shaping properties are experimentally demonstrated, and enhanced absorption of higher order diffractive waves is experimentally shown for the first time. The proposed methodology provides an accurate approach for predicting practical diffracted wave behaviors and opens a new perspective for the study of acoustic periodic structures. The designed metasurface extends the functionalities of acoustic metasurfaces and paves the way for the design of thin planar reflective structures for broadband acoustic wave manipulation and extraordinary absorption.

  9. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.

    1989-01-01

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

  10. Orographic Modification of Precipitation Processes in a Tropical Cyclone Moving over a Continental Mountain Range

    NASA Astrophysics Data System (ADS)

    DeHart, Jennifer C.

    Airborne radar reflectivity data and numerical simulations are examined to determine how tropical cyclone precipitation processes are impacted by landfall over a continental mountain range. Analysis of the high-resolution radar data collected within Hurricane Karl (2010) during the Genesis and Rapid Intensification Processes (GRIP) shows that radar reflectivity enhancement in regions of upslope flow is constrained to low-levels. Reflectivity enhancement is not uniform and discrete regions of enhanced precipitation are embedded within a broad echo. In conjunction with an upstream dropsonde that exhibits weak instability, the radar data suggest a mix of gentle ascent and shallow convection occur. Regions of downslope flow are characterized by precipitation originating further aloft with little modification near low levels. Satellite data further indicate that deep convection develops after the high clouds dissipate, indicating that the evolving thermodynamic environment favors orographic modification processes beyond collection of orographically-generated cloud water. Numerical simulations examine how modification processes controlling precipitation are affected by the height of an idealized plateau. When terrain is minimal, the tropical cyclone decays slowly, the upper-level warm core remains robust, the moist neutral environment persists, and precipitation processes are largely concentrated within the eyewall and rainband. Movement over a tall topographic barrier induces rapid decay, which erodes the warm core and moist neutral environment. A mix of forced ascent and buoyant motions contribute to enhanced warm rain processes over the terrain. Overall, all microphysical quantities are greater for the tall plateau storm, but concentrations within the innermost core decay rapidly along with the storm. It is shown that the simulated tropical cyclone precipitation is heavily influenced by overestimated graupel production, which is a common problem of microphysical

  11. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  12. Interactions Between Vestige Atlantic Tropical Cyclones and Mid-Latitude Storms Over Mediterranean Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mehta, Amita; Mugnai, Alberto; Tripoli, Gregory J.

    2007-01-01

    One of the more interesting tropical-mid-latitude interactions is one that has important effects on precipitation within the Mediterranean basin. This interaction consists of an Atlantic tropical cyclone vestige whose original disturbance travels eastward and northward across Atlantic basin, eventually intermingling with a mid-latitude cyclone entering southern Europe and/or the \\bestern Mediterranean Sea. The period for these interactions is from mid-September through November. If the tropical cyclone and its vestige is able to make the eastward Atlantic transit within the low to mid-levels, or if an upper level potential vorticity perturbation Cjet streak) emitted by a Hurricane in its latter stages within the central Atlantic is able to propagate into and along the longwave pattern affecting the western Mediterranean Sea (MED), then there is the prospect for the tropical cyclone remnant to produce a major modification of the mid-latitude storm system preparing to affect the MED region. For such an occurrence to take place, it is necessary for an amplifying baroclinic perturbation to be already situated to the rear of a longwave trough, or to be excited by the emitted jet streak to the rear of a longwave trough -- in either case, preparing to affect the western MED. The Algiers City flood of 9-10 November 2001, which killed some 700 people, was produced by a Mediterranean cyclone that had been influenced by two vestige Atlantic tropical cyclones, 1,orenzo and Noel. A published modeling study involving various of this study's authors has already described the dynamical development of the Algiers storm as it amplified from a developing baroclinic disturbance in the Rossby wave train, into a northern Africa hazardous flood system, then lingered in the western MED as a semi-intense warm core cyclone. In our new modeling experiments, we investigate the impact of what might have happened in the eventual precipitation field. had the main features of the tropical

  13. Cyclone Center: Insights on Historical Tropical Cyclones from Citizen Volunteers

    NASA Astrophysics Data System (ADS)

    Thorne, P.; Hennon, C. C.; Knapp, K. R.; Schreck, C. J., III; Stevens, S. E.; Kossin, J. P.; Rennie, J.; Hennon, P. A.; Kruk, M. C.

    2015-12-01

    The cyclonecenter.org project started in fall 2012 and has been collecting citizen scientist volunteer tropical cyclone intensity estimates ever since. The project is hosted by the Citizen Science Alliance (zooniverse) and the platform is supported by a range of scientists. We have over 30 years of satellite imagery of tropical cyclones but the analysis to date has been done on an ocean-basin by ocean-basin basis and worse still practices have changed over time. We therefore do not, presently, have a homogeneous record relevant for discerning climatic changes. Automated techniques can classify many of the images but have a propensity to be challenged during storm transitions. The problem is fundamentally one where many pairs of eyes are invaluable as there is no substitute for human eyes in discerning patterns. Each image is classified by ten unique users before it is retired. This provides a unique insight into the uncertainty inherent in classification. In the three years of the project much useful data has accrued. This presentation shall highlight some of the results and analyses to date and touch on insights as to what has worked and what perhaps has not worked so well. There are still many images left to complete so its far from too late to jump over to www.cyclonecenter.org and help out.

  14. Impact of Climate Change on the Climatology of Vb Cyclones

    NASA Astrophysics Data System (ADS)

    Messmer, Martina; José Gómez-Navarro, Juan; Blumer, Sandro; Raible, Christoph C.

    2017-04-01

    Extra-tropical cyclones of type Vb develop over the western Mediterranean and move northeastward, leading to heavy precipitation over Central Europe and posing a major natural hazard. Since such cyclones are high-impact events that lead to important economical and personal damage, in Central Europe, and especially in the Alpine region, understanding their sensitivity to climate change is important to provide suitable adaptation measures. This communication aims at investigating the impact of climate change in Vb cyclones through a climate simulation covering the whole 21st century performed with the Community Earth System Model (CESM1). Further, some selected Vb episodes within the simulation are downscaled with the Weather Research and Forecasting Model (WRF). The analysis focuses on two different time periods. The reference period spans the ERA-Interim period 1979 to 2013, whereas the other one covers the last 30 years of the 21st century 2070-2099. The simulation uses the emissions from the business as usual scenario (RCP8.5). For both periods, the Vb cyclones were identified using a tracking tool and their main properties were characterized. During the reference period 86 Vb cyclones can be identified overall, which corresponds to approximately 2.5 Vb cyclones per year. This number corresponds very well to the 82 Vb cyclones found in the ERA-Interim reanalysis dataset in the same period of time. This number is reduced under future climate conditions, leading to 48 Vb cyclones in total, or to 1.6 Vb cyclones per year on average. Despite the reduction in their number, results indicate that there is a tendency for intensification in precipitation for high-impact Vb events of around 10% over the Alpine region in the future compared to the ones between 1979 and 2013. Interestingly, while the summer months are most prone for the occurrence of the 10 heaviest precipitation Vb events in the current conditions, the 10 heaviest precipitation Vb events in the future

  15. Tropical Cyclone - Equatorial Ionosphere Coupling: A Statistical Study

    NASA Astrophysics Data System (ADS)

    Bhagavathiammal, G. J.

    2016-07-01

    This paper describes the equatorial ionosphere response to tropical cyclone events which was observed over the Indian Ocean. This statistical study tries to reveal the possible Tropical Cyclone (TC) - Ionosphere coupling. Tropical cyclone track and data can be obtained from the India Meteorological Department, New Delhi. Digisonde/Ionosonde data for the equatorial latitudes can be obtained from Global Ionospheric Radio Observatory. It is believed that TC induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere and these propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). The convective regions are identified with the help of Outgoing Long wave radiation (OLR) data from NOAA Climate Data Center/ Precipitation data from TRMM Statellite. The variability of ionospheric parameter like Total Electron Content (TEC), foF2, h'F2 and Drift velocity are examined during TC periods. This study will report the possibility of TC-Ionosphere Coupling in equatorial atmosphere.

  16. Reduced death rates from cyclones in Bangladesh: what more needs to be done?

    PubMed Central

    Hashizume, Masahiro; Kolivras, Korine N; Overgaard, Hans J; Das, Bivash; Yamamoto, Taro

    2012-01-01

    Abstract Tropical storms, such as cyclones, hurricanes and typhoons, present major threats to coastal communities. Around two million people worldwide have died and millions have been injured over the past two centuries as a result of tropical storms. Bangladesh is especially vulnerable to tropical cyclones, with around 718 000 deaths from them in the past 50 years. However, cyclone-related mortality in Bangladesh has declined by more than 100-fold over the past 40 years, from 500 000 deaths in 1970 to 4234 in 2007. The main factors responsible for these reduced fatalities and injuries are improved defensive measures, including early warning systems, cyclone shelters, evacuation plans, coastal embankments, reforestation schemes and increased awareness and communication. Although warning systems have been improved, evacuation before a cyclone remains a challenge, with major problems caused by illiteracy, lack of awareness and poor communication. Despite the potential risks of climate change and tropical storms, little empirical knowledge exists on how to develop effective strategies to reduce or mitigate the effects of cyclones. This paper summarizes the most recent data and outlines the strategy adopted in Bangladesh. It offers guidance on how similar strategies can be adopted by other countries vulnerable to tropical storms. Further research is needed to enable countries to limit the risks that cyclones present to public health. PMID:22423166

  17. Contributions of tropical waves to tropical cyclone genesis over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Takahashi, Masaaki

    2018-06-01

    The present study investigates the relationship between the tropical waves and the tropical cyclone (TC) genesis over the western North Pacific (WNP) for the period 1979-2011. Five wave types are considered in this study. It is shown that the TC genesis is strongly related to enhanced low-level vorticity and convection of tropical waves and significant difference are detected in the TC modulation by dynamic and thermodynamic components of the waves. More TCs tend to form in regions of waves with overlapping cyclonic vorticity and active convection. About 83.2% of TCs form within active phase of tropical waves, mainly in a single wave and two coexisting waves. Each wave type-related genesis accounts for about 30% of all TC geneses except for the Kelvin waves that account for only 25.2% of TC geneses. The number of each wave type-related TC genesis consistently varies seasonally with peak in the TC season (July-November), which is attributed to a combined effect of active wave probability and intensity change. The interannual variation in the TC genesis is well reproduced by the tropical wave-related TC genesis, especially in the region east of 150°E. An eastward extension of the enhanced monsoon trough coincides with increased tropical wave activity by accelerated wave-mean flow interaction.

  18. Extratropical Cyclone in the Southern Ocean

    NASA Image and Video Library

    2001-11-07

    These images acquired on October 11, 2001 by NASA Terra satellite portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

  19. Pattern-formation under acoustic driving forces

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  20. A Long-lived Cyclone In Saturn's Atmosphere: Observations And Models

    NASA Astrophysics Data System (ADS)

    Del Rio Gaztelurrutia, Teresa; Legarreta, J.; Hueso, R.; Pérez-Hoyos, S.; Sánchez-Lavega, A.

    2009-09-01

    The atmospheres of the Giant Planets Jupiter and Saturn possess large numbers of atmospheric vortices. On Jupiter, anticyclones are generally long-lived structures while cyclones survive a much shorter time. A long term survey of images of Saturn atmosphere obtained by the Cassini ISS camera has revealed the presence of a long-lived cyclone in Saturn's southern hemisphere during at least four years, making this vortex the longest lived cyclone on either Jupiter or Saturn. We find that the vortex drifts following the wind profile, with changes in velocity following changes of latitude. During the four years of our survey its size remained essentially constant, and there was no other structure of comparable size at its latitude. Internal circulation is cyclonic, with a maximum velocity of 20±5 m/s and an average vorticity of 4·10-5 s-1, an order of magnitude lower than planetary vorticity, but only slightly higher than the ambient vorticity. Photometric analysis shows that the vortex is located at a slightly lower altitude than its surroundings, at an average of 10-20 mbar below adjacent clouds. Finally, EPIC simulations of the vortex that reproduce its behavior imply a Rossby deformation radius of 2000 km in the weather layer (1 - 10 bar), consistent with the size of the cyclone. The long-lifetime of this cyclonic spot is surprising in view of its low tangential velocity and it suggests that low dissipation conditions prevail at mid-latitudes in Saturn's upper troposphere. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  1. Extreme cyclone events in the Arctic during wintertime: Variability and Trends

    NASA Astrophysics Data System (ADS)

    Rinke, Annette; Maturilli, Marion; Graham, Robert; Matthes, Heidrun; Handorf, Doerthe; Cohen, Lana; Hudson, Stephen; Moore, John

    2017-04-01

    Extreme cyclone events are of significant interest as they can transport much heat, moisture, and momentum poleward. Associated impacts are warming and sea-ice breakup. Recently, several examples of such extreme weather events occurred in winter (e.g. during the N-ICE2015 campaign north of Svalbard and the Frank North Atlantic storm during the end of December 2015). With Arctic amplification and associated reduced sea-ice cover and warmer sea surface temperatures, the occurrence of extreme cyclones events could be a plausible scenario. We calculate the spatial patterns, and changes and trends of the number of extreme cyclone events in the Arctic based on ERA-Interim six-hourly sea level pressure (SLP) data for winter (November-February) 1979-2015. Further, we analyze the SLP data from the Ny Alesund station for the same 37 year period. We define an extreme cyclone event by a extreme low central pressure (SLP below 985 hPa, which is the 5th percentile of the Ny Alesund/N-ICE2015 SLP data) and a deepening of at least 6 hPa/6 hours. Areas of highest frequency of occurrence of extreme cyclones are south/southeast of Greenland (corresponding to the Islandic low), between Norway and Svalbard and in the Barents/Kara Seas. The time series of the number of occurrence of extreme cyclone events for Ny Alesund/N-ICE show considerable interannual variability. The trend is not consistent through the winter, but we detect an increase in early winter and a slight decrease in late winter. The former is due to the increased occurrence of longer events at the expense of short events. Furthermore, the difference patterns of the frequency of events for months following the September with high and low Arctic sea-ice extent ("Low minus high sea ice") conforms with the change patterns of extreme cyclones numbers (frequency of events "2000-2015 minus 1979-1994") and with the trend patterns. This indicates that the changes in extreme cyclone occurrence in early winter are associated with

  2. Sandy retired from list of Atlantic Basin tropical cyclone names

    Science.gov Websites

    2012 Atlantic hurricane season Media Contact Dennis Feltgen 305-229-4404 305-433-1933 (cellular) Share tropical cyclone names April 11, 2013 GOES East image of Hurricane Sandy, Oct. 29, 2012. This NOAA GOES-13 cyclone names by the World Meteorological Organization's hurricane committee because of the extreme

  3. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences

    PubMed Central

    Dowdy, Andrew J.; Catto, Jennifer L.

    2017-01-01

    Phenomena such as cyclones, fronts and thunderstorms can cause extreme weather in various regions throughout the world. Although these phenomena have been examined in numerous studies, they have not all been systematically examined in combination with each other, including in relation to extreme precipitation and extreme winds throughout the world. Consequently, the combined influence of these phenomena represents a substantial gap in the current understanding of the causes of extreme weather events. Here we present a systematic analysis of cyclones, fronts and thunderstorms in combination with each other, as represented by seven different types of storm combinations. Our results highlight the storm combinations that most frequently cause extreme weather in various regions of the world. The highest risk of extreme precipitation and extreme wind speeds is found to be associated with a triple storm type characterized by concurrent cyclone, front and thunderstorm occurrences. Our findings reveal new insight on the relationships between cyclones, fronts and thunderstorms and clearly demonstrate the importance of concurrent phenomena in causing extreme weather. PMID:28074909

  4. A Conceptual Model for Tropical Cyclone Formation

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2014-12-01

    The role of cumulus congestus (shallow and congestus convection) in tropical cyclone (TC) formation is examined in a high-resolution simulation of Tropical Cyclone Fay (2008). It is found that cumulus congestus plays a dominant role in moistening the lower to middle troposphere and spinning up the near-surface circulation before genesis, while deep convection plays a key role in moistening the upper troposphere and intensifying the cyclonic circulation over a deep layer. The transition from the tropical wave stage to the TC stage is marked by a substantial increase in net condensation and potential vorticity generation by deep convection in the inner wave pouch region. This study suggests that TC formation can be regarded as a two-stage process. The first stage is a gradual process of moisture preconditioning and the low-level spinup, in which cumulus congestus plays a dominant role. The second stage commences with the rapid development of deep convection in the inner pouch region after the air column is moistened sufficiently, whereupon the concentrated convective heating near the pouch center strengthens the transverse circulation and leads to the amplification of the cyclonic circulation over a deep layer. The rapid development of deep convection can be explained by the power-law increase of precipitation rate with column water vapor (CWV) above a critical value. The high CWV near the pouch center thus plays an important role in convective organization. It is also shown that cumulus congestus can effectively drive the low-level convergence and provides a direct and simple pathway for the development of the TC proto-vortex near the surface.

  5. Objective classification of historical tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    2007-03-01

    Preinstrumental records of historical tropical cyclone activity require objective methods for accurately categorizing tropical cyclone intensity. Here wind force terms and damage reports from newspaper accounts in the Lesser Antilles and Jamaica for the period 1795-1879 are compared with wind speed estimates calculated from barometric pressure data. A total of 95 separate barometric pressure readings and colocated simultaneous wind force descriptors and wind-induced damage reports are compared. The wind speed estimates from barometric pressure data are taken as the most reliable and serve as a standard to compare against other data. Wind-induced damage reports are used to produce an estimated wind speed range using a modified Fujita scale. Wind force terms are compared with the barometric pressure data to determine if a gale, as used in the contemporary newspapers, is consistent with the modern definition of a gale. Results indicate that the modern definition of a gale (the threshold point separating the classification of a tropical depression from a tropical storm) is equivalent to that in contemporary newspaper accounts. Barometric pressure values are consistent with both reported wind force terms and wind damage on land when the location, speed and direction of movement of the tropical cyclone are determined. Damage reports and derived wind force estimates are consistent with other published results. Biases in ships' logbooks are confirmed and wind force terms of gale strength or greater are identified. These results offer a bridge between the earlier noninstrumental records of tropical cyclones and modern records thereby offering a method of consistently classifying storms in the Caribbean region into tropical depressions, tropical storms, nonmajor and major hurricanes.

  6. The Structural Changes of Tropical Cyclones Upon Interaction with Vertical Wind Shear

    NASA Technical Reports Server (NTRS)

    Ritchie, Elizabeth A.

    2003-01-01

    The Fourth Convection and Moisture Experiment (CAMEX-4) provided a unique opportunity to observe the distributions and document the roles of important atmospheric factors that impact the development of the core asymmetries and core structural changes of tropical cyclones embedded in vertical wind shear. The state-of-the-art instruments flown on the NASA DC-8 and ER-2, in addition to those on the NOAA aircraft, provided a unique set of observations that documented the core structure throughout the depth of the tropical cyclone. These data have been used to conduct a combined observational and modeling study using a state-of-the-art, high- resolution mesoscale model to examine the role of the environmental vertical wind shear in producing tropical cyclone core asymmetries, and the effects on the structure and intensity of tropical cyclones.The scientific objectives of this study were to obtain in situ measurements that would allow documentation of the physical mechanisms that influence the development of the asymmetric convection and its effect on the core structure of the tropical cyclone.

  7. Cyclone shelters and their locational suitability: an empirical analysis from coastal Bangladesh.

    PubMed

    Mallick, Bishawjit

    2014-07-01

    Bangladesh is one of the poorest and the most disaster-prone countries in Asia; it is important, therefore, to know how its disaster reduction strategies are organised and planned. Cyclone shelters comprise a widely acceptable form of infrastructural support for disaster management in Bangladesh. This paper attempts to analyse empirically their use during cyclones in a sample study area along the southwest coastal belt of the country. It shows how the location of a cyclone shelter can determine the social power structure in coastal Bangladesh. The results reveal that the establishment of cyclone shelters in the studied communities is determined by neither a right-based nor a demand-based planning approach; rather, their creation is dependent on the socio-political affluence of local-level decision-makers. The paper goes on to demonstrate that socially vulnerable households (defined, for example, by income or housing conditions) are afforded disproportionately less access to cyclone shelters as compared to less socially vulnerable households. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  8. Monitoring tropical cyclone intensity using wind fields derived from short-interval satellite images

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Gentry, R. C.

    1981-01-01

    Rapid scan visible images from the Visible Infrared Spin Scan Radiometer sensor on board SMS-2 and GOES-1 were used to derive high resolution upper and lower tropospheric environmental wind fields around three western Atlantic tropical cyclones (1975-78). These wind fields were used to derive upper and lower tropospheric areal mean relative vorticity and their differences, the net relative angular momentum balance and upper tropospheric mass outflow. These kinematic parameters were shown by studies using composite rawinsonde data to be strongly related to tropical cyclone formation and intensity changes. Also, the role of forced synoptic scale subsidence in tropical cyclone formation was examined. The studies showed that satellite-derived lower and upper tropospheric wind fields can be used to monitor and possibly predict tropical cyclone formation and intensity changes. These kinematic analyses showed that future changes in tropical cyclone intensity are mainly related to the "spin-up" of the storms by the net horizontal transport of relative angular momentum caused by convergence of cyclonic vorticity in the lower troposphere and to a lesser extent the divergence of anticyclone vorticity in the upper troposphere.

  9. Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pant, V.; Prakash, K. R.

    2016-02-01

    Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.

  10. Variability in tropical cyclone heat potential over the Southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Malan, N.; Reason, C. J. C.; Loveday, B. R.

    2013-12-01

    Tropical cyclone heat potential (TCHP) has been proposed as being important for hurricane and typhoon intensity. Here, a climatology of TCHP is developed for the Southwest Indian Ocean, a basin that experiences on average 11-12 tropical cyclones per year, many of which impact on Mauritius, Reunion and Madagascar, and Mozambique. SODA data and a regional ocean model forced with the GFDL-CORE v.2b reanalysis winds and heat fluxes are used to derive TCHP values during the 1948-2007 period. The results indicate that TCHP increases through the austral summer, peaking in March. Values of TCHP above 40 kJ cm-2, suggested as the minimum needed for tropical cyclone intensification, are still present in the northern Mozambique Channel in May. A time series of TCHP spatially averaged over the Seychelles-Chagos thermocline ridge (SCTR), an important area for tropical cyclones, is presented. The model time series, which agrees well with XBT-based observations (r = 0.82, p = 0.01), shows considerable interannual variability overlaying an upward tendency that matches with an observed increase in severe tropical cyclone days in the Southwest Indian Ocean. Although an increase in severe storms is seen during 1997-2007, the increasing TCHP tendency time series after 1997 coincides with a decrease in total cyclone numbers, a mismatch that is ascribed to increased atmospheric anticyclonicity over the basin. Seasons of increased (decreased) TCHP over the SCTR appear to be associated with dry (wet) conditions over certain areas of southern and East Africa and are linked with changes in zonal wind and vertical motion in the midtroposphere.

  11. Hierarchical Assembly of Tungsten Spheres and Epoxy Composites in Three-Dimensional Graphene Foam and Its Enhanced Acoustic Performance as a Backing Material.

    PubMed

    Qiu, Yunfeng; Liu, Jingjing; Lu, Yue; Zhang, Rui; Cao, Wenwu; Hu, PingAn

    2016-07-20

    Backing materials play important role in enhancing the acoustic performance of an ultrasonic transducer. Most backing materials prepared by conventional methods failed to show both high acoustic impedance and attenuation, which however determine the bandwidth and axial resolution of acoustic transducer, respectively. In the present work, taking advantage of the structural feature of 3D graphene foam as a confined space for dense packing of tungsten spheres with the assistance of centrifugal force, the desired structural requirement for high impedance is obtained. Meanwhile, superior thermal conductivity of graphene contributes to the acoustic attenuation via the conversion of acoustic waves to thermal energy. The tight contact between tungstate spheres, epoxy matrix, or graphene makes the acoustic wave depleted easily for the absence of air barrier. The as-prepared 3DG/W80 wt %/epoxy film in 1 mm, prepared using ∼41 μm W spheres in diameter, not only displays acoustic impedance of 13.05 ± 0.11 MRayl but also illustrates acoustic attenuation of 110.15 ± 1.23 dB/cm MHz. Additionally, the composite film exhibits a high acoustic absorption coefficient, which is 94.4% at 1 MHz and 100% at 3 MHz, respectively. Present composite film outperforms most of the reported backing materials consisting of metal fillers/polymer blending in terms of the acoustic impedance and attenuation.

  12. Robustness of serial clustering of extra-tropical cyclones to the choice of tracking method

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Ulbrich, Sven; Karremann, Melanie K.; Stephenson, David B.; Economou, Theodoros; Shaffrey, Len C.

    2016-04-01

    Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area in winter. Given appropriate large-scale conditions, the occurrence of such series (clusters) of storms may lead to large socio-economic impacts and cumulative losses. Recent studies analyzing Reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. This study explores the sensitivity of serial clustering to the choice of tracking method. With this aim, the IMILAST cyclone track database based on ERA-interim data is analysed. Clustering is estimated by the dispersion (ratio of variance to mean) of winter (DJF) cyclones passages near each grid point over the Euro-Atlantic area. Results indicate that while the general pattern of clustering is identified for all methods, there are considerable differences in detail. This can primarily be attributed to the differences in the variance of cyclone counts between the methods, which range up to one order of magnitude. Nevertheless, clustering over the Eastern North Atlantic and Western Europe can be identified for all methods and can thus be generally considered as a robust feature. The statistical links between large-scale patterns like the NAO and clustering are obtained for all methods, though with different magnitudes. We conclude that the occurrence of cyclone clustering over the Eastern North Atlantic and Western Europe is largely independent from the choice of tracking method and hence from the definition of a cyclone.

  13. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean

    PubMed Central

    Mei, Wei; Primeau, François; McWilliams, James C.; Pasquero, Claudia

    2013-01-01

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean–atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback. PMID:23922393

  14. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.

    PubMed

    Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2013-09-17

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.

  15. Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia, April 2014

    PubMed Central

    Munksgaard, Niels C.; Zwart, Costijn; Kurita, Naoyuki; Bass, Adrian; Nott, Jon; Bird, Michael I.

    2015-01-01

    The isotope signatures registered in speleothems during tropical cyclones (TC) provides information about the frequency and intensity of past TCs but the precise relationship between isotopic composition and the meteorology of TCs remain uncertain. Here we present continuous δ18O and δ2H data in rainfall and water vapour, as well as in discrete rainfall samples, during the passage of TC Ita and relate the evolution in isotopic compositions to local and synoptic scale meteorological observations. High-resolution data revealed a close relationship between isotopic compositions and cyclonic features such as spiral rainbands, periods of stratiform rainfall and the arrival of subtropical and tropical air masses with changing oceanic and continental moisture sources. The isotopic compositions in discrete rainfall samples were remarkably constant along the ~450 km overland path of the cyclone when taking into account the direction and distance to the eye of the cyclone at each sampling time. Near simultaneous variations in δ18O and δ2H values in rainfall and vapour and a near-equilibrium rainfall-vapour isotope fractionation indicates strong isotopic exchange between rainfall and surface inflow of vapour during the approach of the cyclone. In contrast, after the passage of spiral rainbands close to the eye of the cyclone, different moisture sources for rainfall and vapour are reflected in diverging d-excess values. High-resolution isotope studies of modern TCs refine the interpretation of stable isotope signatures found in speleothems and other paleo archives and should aim to further investigate the influence of cyclone intensity and longevity on the isotopic composition of associated rainfall. PMID:25742628

  16. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  17. Role of the Southwest Tropical Indian Ocean on the Modulation of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Burns, J. M.; Bulusu, S.

    2016-02-01

    The Seychelles-Chagos Thermocline Ridge (SCTR), located in the Indian Ocean and bound by 55°E-65°E and 5°S-12°S, is a key region for air-sea interaction. This feature inhabits one of the seven ocean basins where tropical cyclones regularly form and is unique in that the variability of the subsurface can influence cyclogenesis. Tropical cyclone days for this region span from November through April, with peaks in the months of January and February. The influence of thermocline variation is particularly strong during the months of December through May and it is known that a high correlation exists between the depth of the thermocline and sea surface temperature (key ingredient for cyclogenesis). Past research provides evidence that more tropical cyclone days are observed in Southwest Tropical Indian Ocean (SWTIO) during austral summers with a deep thermocline ridge than in austral summers when a shallow thermocline ridge exists. The formation and thickness of the Barrier layer (BL) have also been shown to impact tropical cyclones in this region. BL formation is an important parameter for surface heat exchange. The amount of salt in the boundary layer may also effect heat exchange and thus cyclones. Other ocean basins have verified that salt-stratified barrier layers influence the intensification of tropical cyclones, however, the role that salinity in SWTIO plays in the modulation of tropical cycles has still yet to be explored. This study further explores how the dynamic properties of the SCTR influence the modulation of cyclones. Primarily Argo observations of salinity and temperature along with Soil Moisture Ocean Salinity (SMOS) and Aquarius salinity, and Hybrid Coordinate Ocean Model (HYCOM) simulations are used to examine this influence of the BL and salinity on cyclone formation and intensity in this region. This study is progressed with a particular focus on the austral summer of 2012/2013 when seven tropical cyclones developed in the region.

  18. Tropical cyclone track Analysis over Indian Coast Using Spatio-Temporal data-mining

    NASA Astrophysics Data System (ADS)

    Mohapatra, Gyanendranath; Manjunath, Swetha; Behera, Sasmita; Mohanty, Pratap Kumar

    2015-04-01

    Tropical cyclones are a natural hazard which largely affects the lives and property with its destructive wind and heavy rainfall. Fluctuations in the frequency and intensity complicate the detection of long-term trends and play an important role in the global climate system; therefore understanding and predicting tropical cyclones track, intensity, and landfall location is of both societal and scientific significance. In this study a data-mining approach is being used to analyze the tropical cyclone track both in the temporal and spatial scale. Basically, the Indian coast line is divided into four zones viz. north east, south east in the eastern side adjoining Bay of Bengal and North west and south west in the western side adjoining Arabian sea as these coastal areas are very much vulnerable for disaster due to maximum number of landfall of Tropical Cyclones. The track and landfall associated with all the cyclones are clustered based on their intensity (Severe, moderate and low) and landfall location. The analyses are carried out for landfall location and the extent of track separately for the events happening in two seasons i.e. pre-monsoon and post-monsoon period. Along with categorization of intensity, trend analysis of track and the targeted zone of maximum damage also been studied. Algorithms are being developed for potential resilient and impact assessment of the parameters associated with cyclone disaster in the coastal region of India. One of the important objectives of this present work is also the identification of most disaster prone coastal area and becoming a part of the information support system during the cyclone period. Based on the statistics like mean, Standard Deviation, regression and correlation analysis, an index is developed which determines the level of damage and vulnerability along the coastal region. This index can be used for the early warning system of particular coastal areas for the preparedness and mitigation of future cyclone

  19. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    PubMed

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  20. A Conundrum of Tropical Cyclone Formation

    NASA Astrophysics Data System (ADS)

    Davis, C. A.

    2014-12-01

    This paper will address a conundrum that has emerged from recent research on tropical cyclone formation. Composite analyses and case studies suggest that prior to genesis, the atmosphere presents a mid-tropospheric vortex that is strong compared to the cyclonic circulation in the boundary layer. Accompanying this vortex is near saturation from the boundary layer through at least 5 km, sometimes more, and a nearly balanced weak negative temperature anomaly below the vortex and stronger positive temperature anomaly above. This thermodynamic state is one of high moisture but low buoyancy for lifted parcels (i.e. low convective available potential energy). However, observations also suggest that widespread deep convection accompanies genesis, with cloud top temperatures becoming colder near the time of genesis. This is seemingly at odds with in situ observations of thermodynamic characteristics prior to genesis. Progress toward understanding the apparent contradiction can be made by realizing that the existence of a moist, relatively stable vortex, and deep convective clouds are not necessarily coincident in space and time. This is demonstrated by a detailed analysis of the two days leading up to the formation of Atlantic tropical cyclone Karl on 14 September. Karl featured a relatively long gestation period characterized initially by a marked misalignment of mid-tropospheric and surface cyclonic circulations. The mid-tropospheric vortex strengthened due to a pulse of convection earlier on 13 September. Meanwhile, the near-surface vortex underwent a precession around the mid-tropospheric vortex as the separation between the two decreased. The eruption of convection around midnight on 14 September, 18 hours prior to declaration on a TC, occurred in the center of the nearly-aligned vortex, contained a mixture of shallow and deep convection and resulted in spin-up over a deep layer, but particularly at the surface. Prior to genesis, the most intense deep convection was

  1. Dry and Semi-Dry Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  2. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols.

    PubMed

    Evan, Amato T; Kossin, James P; Chung, Chul Eddy; Ramanathan, V

    2011-11-02

    Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.

  3. Impacts of different grades of tropical cyclones on infectious diarrhea in Guangdong, 2005-2011.

    PubMed

    Kang, Ruihua; Xun, Huanmiao; Zhang, Ying; Wang, Wei; Wang, Xin; Jiang, Baofa; Ma, Wei

    2015-01-01

    Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011. Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA) was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs) and the 95% confidence intervals (CI). There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12) and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI) of 2.16 (95%CI = 1.69, 2.76), 2.43 (95%CI = 1.65, 3.58) and 2.21 (95%CI = 1.65, 2.69), respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48), 2.49 (95%CI = 1.80, 3.44), 4.89 (95%CI = 2.37, 7.37) and 3.18 (95%CI = 2.10, 4.81), respectively. All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population.

  4. Impacts of Different Grades of Tropical Cyclones on Infectious Diarrhea in Guangdong, 2005-2011

    PubMed Central

    Zhang, Ying; Wang, Wei; Wang, Xin; Jiang, Baofa; Ma, Wei

    2015-01-01

    Objective Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011. Methods Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA) was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs) and the 95% confidence intervals (CI). Results There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12) and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI) of 2.16 (95%CI = 1.69, 2.76), 2.43 (95%CI = 1.65, 3.58) and 2.21 (95%CI = 1.65, 2.69), respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48), 2.49 (95%CI = 1.80, 3.44), 4.89 (95%CI = 2.37, 7.37) and 3.18 (95%CI = 2.10, 4.81), respectively. Conclusion All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population

  5. The Navy’s Next-Generation Tropical Cyclone Model

    DTIC Science & Technology

    2009-09-30

    when compared with the Doppler radar observations (Fig. 6c). An example of a real-time COAMPS-TC forecast during T- PARC /TCS-08 initialized on 26...prediction support for the THORPEX-Pacific Asian Campaign (T- PARC ) and the Tropical Cyclone Structure 2008 (TCS-08) (T- PARC /TCS-08) experiments...implemented from the CBLAST project. In support of the T- PARC /TCS-08 campaign, adaptive observing guidance for tropical cyclones has been provided

  6. Analysis of North Atlantic Tropical Cyclone Intensify Change Using Data Mining

    ERIC Educational Resources Information Center

    Tang, Jiang

    2010-01-01

    Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This…

  7. Dissipative soliton vortices and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Chefranov, S. G.; Chefranov, A. G.

    2017-10-01

    We have obtained a new exact steady-state solution to the hydrodynamic equation for a viscous incompressible liquid, which is a generalization of the well-known Sullivan solution (1959), taking into account additionally the external (Eckman) friction and rotation of the system as a single whole. In contrast to the radial structure of a Sullivan vortex, different circulation directions of velocity field tangential component are possible in the new solution in the inner and outer cells. We have considered the correspondence of this solution to the radial vortex structure observed in tropical cyclones, where the precisely anticyclonic circulation always exists in the inner core (typhoon, hurricane eye), which is associated with descending vertical currents for the cyclonic direction of rotation (as well as ascending currents) outside this core.

  8. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2017-10-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of

  9. Impact of tropical cyclones on aerosol properties over urban region of Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Badarinath, K. V. S.; Rani Sharma, Anu; Krishna Prasad, V.; Kaskaoutis, Dimitrios G.; Nastos, Panagiotis T.; Kambezidis, Harry D.

    2010-05-01

    Fierce tropical cyclones occur in India during the pre-monsoon (spring), early monsoon (early summer), or post-monsoon (fall) periods. Originating in both the Bay of Bengal and the Arabian Sea, tropical cyclones often attain velocities of more than 100 kmh-1 and are notorious for causing intense rain and tidal waves as they cross the Indian coast. Cyclones are associated with heavy rainfall, gusty winds, and sometimes, storm surges. In the present study, we have analyzed the changes in aerosol properties at Hyderabad, India, associated with very severe cyclonic storm "Mala" occurred during the last week of April, 2006 over the Central-Eastern part of the Bay of Bengal centered near Lat. 16.0 N and Long. 93.0 E, at 18:00 UTC on 28th April 2006, about 500 Km North of Portblair. This tropical cyclone, packing winds of 240 km/h, slammed into Myanmar on 28th April and 29th April destroying hundreds of houses, two beach resorts and at least five factories as per the reports of the Kyemon daily paper and the International Federation of the Red Cross. Cyclone "Mala" is described as the most severe cyclone in the Bay of Bengal after the 1999 Orissa Super Cyclone. The measurements for the case study were carried out in the premises of the National Remote Sensing Centre (NRSC) campus at Balanagar (17o.28' N and 78o.26' E) located within the Hyderabad urban center during cyclone period. Synchronous and continuous observations of columnar Aerosol Optical Depth (AOD) were carried out using a handheld multi-channel sun-photometer (Microtops-II, Solar Light Co., USA) at six wavelength bands centered around 380, 440, 500, 675, 870 and 1020 nm. Continuous measurements of particulate matter (PM) grain-size distribution were performed with the GRIMM aerosol spectrometer, model 1-108. The cyclone "Mala" over the Bay of Bengal occurred during 26-29 April, 2006, struck the coast of Myanmar with winds of 115 mph (185 kmh-1), causing severe damage and loss of human life on 29 April, 2006

  10. Statistical Aspects of the North Atlantic Basin Tropical Cyclones: Trends, Natural Variability, and Global Warming

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2007-01-01

    Statistical aspects of the North Atlantic basin tropical cyclones for the interval 1945- 2005 are examined, including the variation of the yearly frequency of occurrence for various subgroups of storms (all tropical cyclones, hurricanes, major hurricanes, U.S. landfalling hurricanes, and category 4/5 hurricanes); the yearly variation of the mean latitude and longitude (genesis location) of all tropical cyclones and hurricanes; and the yearly variation of the mean peak wind speeds, lowest pressures, and durations for all tropical cyclones, hurricanes, and major hurricanes. Also examined is the relationship between inferred trends found in the North Atlantic basin tropical cyclonic activity and natural variability and global warming, the latter described using surface air temperatures from the Armagh Observatory Armagh, Northern Ireland. Lastly, a simple statistical technique is employed to ascertain the expected level of North Atlantic basin tropical cyclonic activity for the upcoming 2007 season.

  11. A preliminary computer pattern analysis of satellite images of mature extratropical cyclones

    NASA Technical Reports Server (NTRS)

    Burfeind, Craig R.; Weinman, James A.; Barkstrom, Bruce R.

    1987-01-01

    This study has applied computerized pattern analysis techniques to the location and classification of features of several mature extratropical cyclones that were depicted in GOES satellite images. These features include the location of the center of the cyclone vortex core and the location of the associated occluded front. The cyclone type was classified in accord with the scheme of Troup and Streten. The present analysis was implemented on a personal computer; results were obtained within approximately one or two minutes without the intervention of an analyst.

  12. Mediterranean Cyclones in a changing climate. First statistical results

    NASA Astrophysics Data System (ADS)

    Tous, M.; Genoves, A.; Campins, J.; Picornell, M. A.; Jansa, A.; Mizuta, R.

    2009-09-01

    The Mediterranean storms play an important role in weather and climate. Their influence in determining the local weather is known; heavy precipitation systems and strong wind cases are often related to the presence of a cyclone in the Mediterranean. From a large-scale point of view, the Mediterranean storm track has importance in the vertical and horizontal transfers of heat and water vapour towards the Eastern regions. For all of these reasons, any future change related to the intensity, frequency or tracks of these storms can be important for both the local weather and local climate, at least, in the countries around the basin. The Mediterranean cyclones constitute a study subject of increasing interest. Some climatologies from long series of re-analyses, like ERA15, NCEP/NCAR and ERA40, or from operational and high resolution analysis systems, like HIRLAM_INM and ECMWF, have allowed to define the main characteristics of these storms. Generally speaking, the Mediterranean storms have the characteristics of extratropical storms, showing smaller sizes and shorter life cycles than those ones developed in other maritime areas of the world. Moreover, the influence of the land areas and high mountains around the basin and the large-scale heat releases have been revealed as key factors for understanding their genesis and rates of development. In spite of the fact that probably the existing automatic procedures include some large scale assumptions, which may not the best for the correct detection and tracking the Mediterranean storms, these procedures can provide a first and almost necessary step, from a statistical/climatological point of view, specially taking into account both the current resolution of the existent global re-analysis series and global climatic models and the state-of-the art about Mediterranean cyclones. A cyclone detection and tracking procedure, originally designed for the description of Mediterranean storms, has been applied to the low resolution

  13. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  14. Tropical Cyclone Information System

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  15. 16 CFR Figure 2 to Subpart A of... - Cyclone Receiver Weldment

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Cyclone Receiver Weldment 2 Figure 2 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... to Subpart A of Part 1209—Cyclone Receiver Weldment EC03OC91.032 ...

  16. 16 CFR Figure 2 to Subpart A of... - Cyclone Receiver Weldment

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Cyclone Receiver Weldment 2 Figure 2 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... to Subpart A of Part 1209—Cyclone Receiver Weldment EC03OC91.032 ...

  17. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  18. 1999 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1999-01-01

    over Gopalpur, India in the Ganjam district at 171730Z October. JTWC issued a Tropical Cyclone Formation Alert at 151730Z October based on a Special...collapsed buildings and up- rooted trees from the eastern Indian state of Orissa. The Ganjam district, specifically the port of Gopalpur, received

  19. The Use of Pre-Storm Boundary-Layer Baroclinicity in Determining and Operationally Implementing the Atlantic Surface Cyclone Intensification Index

    NASA Astrophysics Data System (ADS)

    Cione, Joseph; Pietrafes, Leonard J.

    The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24-48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982-April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by

  20. The Relationship Between Tropical Cyclone Frequency and 'Climate Change'

    NASA Astrophysics Data System (ADS)

    Bolton, M.; Mogil, M.

    2013-12-01

    Please note: there have been minor updates to this work since the main author, Matt Bolton, graduated high school, but the majority of the research was compiled by him while he was a high school junior in 2011. Abstract: In recent years, there has been a growing trend by many, in the meteorological community (media and scientist) to predict expected seasonal tropical cyclone frequency in the Atlantic and Pacific Basins. Typically, the numbers are related to seasonal averages. However, these predictions often show a large positive bias (i.e., there are more years in which the expected number of storms exceeds or far exceeds average). Further, observed numbers often come close to bearing out the forecasts (actually a good thing). From a public perspective (and based on extrapolations performed by media and some scientific groups), this peaking of Atlantic tropical cyclone activity is observed globally. In an attempt to determine if such a global trend exists, we set out to collect data from weather agencies around the world and present it in a way that was as unbiased as possible. While there were inconsistencies across the various datasets, especially in regard to wind data, we were still able to construct a realistic global cyclone database. We have concluded that high activity levels in one basin are often balanced by areas of low activity in others. The Atlantic - Eastern Pacific couplet is one such example. This paper will serve as an update to our previous 2011 paper, which introduced our efforts. At that time, we found, on average, 70 named tropical cyclones worldwide. In both this and our original study, we did not address the issue of naming short-lived tropical systems, which was found to be inconsistent across worldwide ocean basins. Our results suggest, that from a global climate change perspective, a growing NUMBER of tropical cyclones is NOT being observed. In the current iteration of our study, we are examining, at least preliminarily, global

  1. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing.

    PubMed

    Dufois, François; Hardman-Mountford, Nick J; Greenwood, Jim; Richardson, Anthony J; Feng, Ming; Matear, Richard J

    2016-05-01

    Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.

  2. Structures and Evolutions of Explosive Cyclones over the Northwestern and Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Shuqin; Fu, Gang

    2018-06-01

    In this study, the structures and evolutions of moderate (MO) explosive cyclones (ECs) over the Northwestern Pacific (NWP) and Northeastern Pacific (NEP) are investigated and compared using composite analysis with cyclone-relative coordinates. Final Operational Global Analysis data gathered during the cold seasons (October-April) of the 15 years from 2000 to 2015 are used. The results indicate that MO NWP ECs have strong baroclinicity and abundant latent heat release at low levels and strong upper-level forcing, which favors explosive cyclogenesis. The rapid development of MO NEP ECs results from their interaction with a northern cyclone and a large middle-level advection of cyclonic vorticity. The structural differences between MO NWP ECs and MO NEP ECs are significant. This results from their specific large-scale atmospheric and oceanic environments. MO NWP ECs usually develop rapidly in the east and southeast of the Japan Islands; the intrusion of cold dry air from the East Asian continent leads to strong baroclinicity, and the Kuroshio/Kuroshio Extension provides abundant latent heat release at low levels. The East Asian subtropical westerly jet stream supplies strong upper-level forcing. While MO NEP ECs mainly occur over the NEP, the low-level baroclinicity, upper-level jet stream, and warm ocean currents are relatively weaker. The merged cyclone associated with a strong middle-level trough transports large cyclonic vorticity to MO NEP ECs, which favors their rapid development.

  3. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

    NASA Astrophysics Data System (ADS)

    Yettella, Vineel; Kay, Jennifer E.

    2017-09-01

    The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

  4. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  5. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  6. Variability of cyclones over the North Atlantic and Europe since 1871

    NASA Astrophysics Data System (ADS)

    Welker, C.; Martius, O.

    2012-04-01

    The scarce availability of long-term atmospheric data series has so far limited the analysis of low-frequency activity and intensity changes of cyclones over the North Atlantic and Europe. A novel reanalysis product, the Twentieth Century Reanalysis (20CR; Compo et al., 2011), spanning 1871 to present, offers potentially a very valuable resource for the analysis of the decadal-scale variability of cyclones over the North Atlantic sector and Europe. In the 20CR, only observations of synoptic surface pressure were assimilated. Monthly sea surface temperature and sea ice distributions served as boundary conditions. An Ensemble Kalman Filter assimilation technique was applied. "First guess" fields were obtained from an ensemble (with 56 members) of short-range numerical weather prediction forecasts. We apply the cyclone identification algorithm of Wernli and Schwierz (2006) to this data set, i.e. to each individual ensemble member. This enables us to give an uncertainty estimation of our findings. We find that 20CR shows a temporally relatively homogeneous representation of cyclone activity over Europe and great parts of the North Atlantic. Pronounced decadal-scale variability is found both in the frequency and intensity of cyclones over the North Atlantic and Europe. The low-frequency variability is consistently represented in all ensemble members. Our analyses indicate that in the past approximately 140 years the variability of cyclone activity and intensity over the North Atlantic and Europe can principally be associated with the North Atlantic Oscillation and secondary with a pattern similar to the East Atlantic pattern. Regionally however, the correlation between cyclone activity and these dominant modes of variability changes over time. Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin, B. E. Gleason, R. S. Vose, G. Rutledge, P. Bessemoulin, S. Brönnimann, M. Brunet, R. I. Crouthamel, A. N. Grant, P. Y. Groisman, P. D. Jones, M. C

  7. Do Tropical Cyclones Shape Shorebird Habitat Patterns? Biogeoclimatology of Snowy Plovers in Florida

    DTIC Science & Technology

    2011-01-12

    THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 coastal birds in north-west Europe . Using historical data...cyclone season begins in June and ends in November. A cyclone is classified as a tropical depression, tropical storm or hurricane depending on its lifetime...fledge before the storms arrive and subsequently are able to seek inland protection with the adults during the storms [26,27]. However, tropical cyclones

  8. Analyzing the impact of severe tropical cyclone Yasi on public health infrastructure and the management of noncommunicable diseases.

    PubMed

    Ryan, Benjamin J; Franklin, Richard C; Burkle, Frederick M; Watt, Kerrianne; Aitken, Peter; Smith, Erin C; Leggat, Peter

    2015-02-01

    were linked closely. These relate to communication, equipment and services, evacuation, medication, planning, and water supplies. This research demonstrated that a negative trend pattern existed between the impact of STC Yasi and other similar world cyclone events on PHI and the management of NCDs. This research provides an insight for disaster planners to address concerns of people with NCDs. While further research is needed, this study provides an understanding of areas for improvement, specifically enhancing protective PHI and the development of strategies for maintaining treatment and alternative care options, such as maintaining safe water for dialysis patients.

  9. Observational study of upper ocean cooling due to Phet super cyclone in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Muni Krishna, K.

    2016-05-01

    Phet super cyclone (31 May-7 June 2010) was the most intense and also the rarest of the rare track in Arabian Sea as per the recorded history during 1877-2009. The present study focuses on the ocean physical responses to Phet cyclone using satellite and Argo observations. The sea surface temperature is decreased to 6 °C with an approximately 350 km long and 100 km width area in the Arabian Sea after the cyclone passage. The translation speed of cyclone is 3.86 m/s, the mixed layer is 79 m, and thermocline displacement is 13 m at the cooling area. With the relationship of wind stress curl and Ekman pumping velocity (EPV), the author found that the speed of EPV was increased after the passage of cyclone. So the extent of the SST drop was probably due to the moving speed of cyclone and the depth of the mixed layer.

  10. Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation

    DTIC Science & Technology

    2010-03-01

    thermal acoustic signals tend to be weak. However, when the tumor is excited into resonance via EM stimulation, the effective acoustic scattering...the effective acoustic scattering cross-section may increase by a factor in excess of 100 based on predic tions for microsphere-based ultrasound...not apply, the heat conduction effects should be taken into consideration in calculating the pre ssure wave generated by electrom agnetic illum

  11. Statistical Characteristic of Global Tropical Cyclone Looping Motion

    NASA Astrophysics Data System (ADS)

    Shen, W.; Song, J.; Wang, Y.

    2016-12-01

    Statistical characteristic of looping motion of tropical cyclones (TCs) in the Western North Pacific (WPAC), North Atlantic (NATL), Eastern North Pacific (EPAC), Northern Indian Ocean (NIO), Southern Indian Ocean (SIO) and South Pacific (SPAC) basins are investigated by using IBTrACS archive maintained by NOAA. From global perspective, about ten percent TCs experience a looping motion in the above six basins. The southern hemisphere (SH) including SIO and SPAC basins have higher looping percentage than the northern hemisphere (NH), while the EPAC basin has the least looping percentage. The interannual variation of the number of looping TCs are significantly correlated with that of total TCs in the NATL, SIO and SPAC basins, while there are no correlations between the EPAC and NIO basins. The numbers of looping TCs have a higher percentage in the early and late cyclone season in the NH rather than the peak period of cyclone season, while the SIO and SPAC basins have the higher looping percentage in the early and late cyclone season, respectively. The looping motion of TCs mainly concentrates on the scale of tropical depression to category 2 and has its peak value on the scale of tropical storm. The looping motion appears more frequently and has a higher percentage at the pre-mature stage than the post-mature stage of TCs in most basins except EPAC. Comparing the intensity and intensity variation caused by the looping motion, the weaker TCs tend to intensify after looping, while the more intense ones weaken.

  12. Stalled Pulsing Inertial Oscillation Model for a Tornadic Cyclone

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.

    2005-01-01

    A supercell storm is a tall, rotating thunderstorm that can generate hail and tornadoes. Two models exist for the development of the storm's rotation or mesocyclone - the conventional splitting-storm model, and the more recent pulsing inertial oscillation (PIO) model, in which a nonlinear pulse represents the supercell. Although data support both models and both could operate in the same supercell, neither model has satisfactorily explained the tornadic cyclone. A tornadic cyclone is an elevated vorticity concentration of Rossby number approximately 1000 that develops within the contracting mesocyclone shortly before a major tornado appears at the surface. We now show that if the internal temperature excess due to latent energy release is limited to the realistic range of -12 K to +12 K, the PIO model can stall part way through the pulse in a state of contraction and spin-up. Should this happen, the stalled-PIO model can evolve into a tornadic cyclone with a central pressure deficit that exceeds 40 mb, which is greater than the largest measured value. This simulation uses data from a major tornadic supercell that occurred over Oklahoma City, Oklahoma, USA, on May 3, 1999. The stalled-PIO mechanism also provides a strategy for human intervention to retard or reverse the development of a tornadic cyclone and its pendant tornado.

  13. Contrasting effects of tropical cyclones on the annual survival of a pelagic seabird in the Indian Ocean.

    PubMed

    Nicoll, Malcolm A C; Nevoux, Marie; Jones, Carl G; Ratcliffe, Norman; Ruhomaun, Kevin; Tatayah, Vikash; Norris, Ken

    2017-02-01

    Tropical cyclones are renowned for their destructive nature and are an important feature of marine and coastal tropical ecosystems. Over the last 40 years, their intensity, frequency and tracks have changed, partly in response to ocean warming, and future predictions indicate that these trends are likely to continue with potential consequences for human populations and coastal ecosystems. However, our understanding of how tropical cyclones currently affect marine biodiversity, and pelagic species in particular, is limited. For seabirds, the impacts of cyclones are known to be detrimental at breeding colonies, but impacts on the annual survival of pelagic adults and juveniles remain largely unexplored and no study has simultaneously explored the direct impacts of cyclones on different life-history stages across the annual life cycle. We used a 20-year data set on tropical cyclones in the Indian Ocean, tracking data from 122 Round Island petrels and long-term capture-mark-recapture data to explore the impacts of tropical cyclones on the survival of adult and juvenile (first year) petrels during both the breeding and migration periods. The tracking data showed that juvenile and adult Round Island petrels utilize the three cyclone regions of the Indian Ocean and were potentially exposed to cyclones for a substantial part of their annual cycle. However, only juvenile petrel survival was affected by cyclone activity; negatively by a strong cyclone in the vicinity of the breeding colony and positively by increasing cyclone activity in the Northern Indian Ocean where they spend the majority of their first year at sea. These contrasting effects raise the intriguing prospect that the projected changes in cyclones under current climate change scenarios may have positive as well as the more commonly perceived negative impacts on marine biodiversity. © 2016 John Wiley & Sons Ltd.

  14. Large‐scale heavy precipitation over central Europe and the role of atmospheric cyclone track types

    PubMed Central

    Lexer, Annemarie; Homann, Markus; Blöschl, Günter

    2017-01-01

    ABSTRACT Precipitation patterns over Europe are largely controlled by atmospheric cyclones embedded in the general circulation of the mid‐latitudes. This study evaluates the climatologic features of precipitation for selected regions in central Europe with respect to cyclone track types for 1959–2015, focusing on large‐scale heavy precipitation. The analysis suggests that each of the cyclone track types is connected to a specific pattern of the upper level atmospheric flow, usually characterized by a major trough located over Europe. A dominant upper level cut‐off low (COL) is found over Europe for strong continental (CON) and van Bebber's type (Vb) cyclones which move from the east and southeast into central Europe. Strong Vb cyclones revealed the longest residence times, mainly due to circular propagation paths. The central European cyclone precipitation climate can largely be explained by seasonal track‐type frequency and cyclone intensity; however, additional factors are needed to explain a secondary precipitation maximum in early autumn. The occurrence of large precipitation totals for track events is strongly related to the track type and the region, with the highest value of 45% of all Vb cyclones connected to heavy precipitation in summer over the Czech Republic and eastern Austria. In western Germany, Atlantic winter cyclones are most relevant for heavy precipitation. The analysis of the top 50 precipitation events revealed an outstanding heavy precipitation period from 2006 to 2011 in the Czech Republic, but no gradual long‐term change. The findings help better understand spatio‐temporal variability of heavy precipitation in the context of floods and may be used for evaluating climate models.

  15. An Energetic Perspective on United States Tropical Cyclone Landfall Droughts

    NASA Astrophysics Data System (ADS)

    Truchelut, Ryan E.; Staehling, Erica M.

    2017-12-01

    The extremely active 2017 Atlantic hurricane season concluded an extended period of quiescent continental United States tropical cyclone landfall activity that began in 2006, commonly referred to as the landfall drought. We introduce an extended climatology of U.S. tropical cyclone activity based on accumulated cyclone energy (ACE) and use this data set to investigate variability and trends in landfall activity. The drought years between 2006 and 2016 recorded an average value of total annual ACE over the U.S. that was less than 60% of the 1900-2017 average. Scaling this landfall activity metric by basin-wide activity reveals a statistically significant downward trend since 1950, with the percentage of total Atlantic ACE expended over the continental U.S. at a series minimum during the recent drought period.

  16. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape?

    PubMed

    Grimbacher, Peter S; Stork, Nigel E

    2009-09-01

    There are surprisingly few studies documenting effects of tropical cyclones (including hurricanes and typhoons) on rainforest animals, and especially insects, considering that many tropical forests are frequently affected by cyclonic disturbance. Consequently, we sampled a beetle assemblage inhabiting 18 upland rainforest sites in a fragmented landscape in north-eastern Queensland, Australia, using a standardised sampling protocol in 2002 and again 12 months after the passage of Severe Tropical Cyclone Larry (March 2006). The spatial configuration of sites allowed us to test if the effects of a cyclone and those from fragmentation interact. From all insect samples we extracted 12,568 beetles of 382 species from ten families. Beetle species composition was significantly different pre-and post-cyclone although the magnitude of faunal change was not large with 205 species, representing 96% of all individuals, present in both sampling events. Sites with the greatest changes to structure had the greatest changes in species composition. At the site level, increases in woody debris and wood-feeding beetle (Scolytinae) counts were significantly correlated but changes in the percent of ground vegetation were not mirrored by changes in the abundance of foliage-feeding beetles (Chrysomelidae). The overall direction of beetle assemblage change was consistent with increasing aridity, presumably caused by the loss of canopy cover. Sites with the greatest canopy loss had the strongest changes in the proportion of species previously identified in the pre-cyclone study as preferring arid or moist rainforest environments. The magnitude of fragmentation effects was virtually unaltered by the passage of Cyclone Larry. We postulate that in the short-term the effects of cyclonic disturbance and forest fragmentation both reduce the extent of moist, interior habitat.

  17. Cyclone Nargis survey in Myanmar's Ayeyarwady River delta

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Blount, C.; Thwin, S.; Thu, M. K.; Chan, N.

    2008-12-01

    Tropical cyclone Nargis (Cat. 4) made landfall on May 2, 2008, causing the worst natural disaster in Myanmar's recorded history. Official death toll estimates exceed 130,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. Nargis took a rare nearly eastern track over the Bay of Bengal while developing sustained winds over 210 km/h with gusts up to 260 km/h hours prior to landfall in Myanmar at untypically low latitude near 16°N. It then proceeded northeast and approximately 12 hours later weakened to a Category 1 storm with sustained wind speeds of 130 km/h as it passed over Yangon. The first independent storm surge reconnaissance team was deployed to Myanmar from 9 to 23 August 2008. Cyclone Nargis struck low-lying coastal plains particularly vulnerable to storm surge flooding due to the lack of effective barriers. The team surveyed coastal and inland villages from Pyapon to Purian Point, encompassing the Bogale and Ayeyarwady River mouths. The survey by boat spanned more than 150 km parallel to the cyclone track between Pyapon and Pyinkhayan encompassing 20 hardest hit settlements such as Pyinsalu. More than 1m vertical erosion and 150 m land loss were measured at various coastal locations such as Aya. Massive deforestation of mangroves and land use were documented. Maximum storm surge elevations and overland flow depths were measured based on water marks on buildings, scars on trees, and rafted debris. The storm surge peaked in the landfall area south of Pyinkhayan and eastwards in Pyinsalu exceeding 5m. Storm waves more than 2m high were superimposed on the storm surge level in most areas according to eyewitnesses. Inundation distances reached beyond 50 km inland. Catastrophic peak fatality rates exceeded 80% in hardest hit villages with the majority being children and women. The high water marks and fatality rates significantly exceeded corresponding 2004 Indian Ocean tsunami values at every location. Eyewitnesses were interviewed to

  18. Global view of the upper level outflow patterns associated with tropical cyclone intensity changes during FGGE

    NASA Technical Reports Server (NTRS)

    Chen, L.; Gray, W. M.

    1985-01-01

    The characteristics of the upper tropospheric outflow patterns which occur with tropical cyclone intensification and weakening over all of the global tropical cyclone basins during the year long period of the First GARP Global Experiment (FGGE) are discussed. By intensification is meant the change in the tropical cyclone's maximum wind or central pressure, not the change of the cyclone's outer 1 to 3 deg radius mean wind which we classify as cyclone strength. All the 80 tropical cyclones which existed during the FGGE year are studied. Two-hundred mb wind fields are derived from the analysis of the European Center for Medium Range Weather Forecasting (ECMWF) which makes extensive use of upper tropospheric satellite and aircraft winds. Corresponding satellite cloud pictures from the polar orbiting U.S. Defense Meteorological Satellite Program (DMSP) and other supplementary polar and geostationary satellite data are also used.

  19. A Comparison of Signal Enhancement Methods for Extracting Tonal Acoustic Signals

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.

    1998-01-01

    The measurement of pure tone acoustic pressure signals in the presence of masking noise, often generated by mean flow, is a continual problem in the field of passive liner duct acoustics research. In support of the Advanced Subsonic Technology Noise Reduction Program, methods were investigated for conducting measurements of advanced duct liner concepts in harsh, aeroacoustic environments. This report presents the results of a comparison study of three signal extraction methods for acquiring quality acoustic pressure measurements in the presence of broadband noise (used to simulate the effects of mean flow). The performance of each method was compared to a baseline measurement of a pure tone acoustic pressure 3 dB above a uniform, broadband noise background.

  20. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  1. Changes in Tropical Cyclone Intensity Over the Past 30 Years: A Global and Dynamic Perspective

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2006-01-01

    The hurricane season of 2005 was the busiest on record and Hurricane Katrina (2005) is believed to be the costliest hurricane in U. S. history. There are growing concerns regarding whether this increased tropical cyclone activity is a result of global warming, as suggested by Emanuel(2005) and Webster et al. (2005), or just a natural oscillation (Goldenberg et al. 2001). This study examines the changes in tropical cyclone intensity to see what were really responsible for the changes in tropical cyclone activity over the past 30 years. Since the tropical sea surface temperature (SST) warming also leads to the response of atmospheric circulation, which is not solely determined by the local SST warming, this study suggests that it is better to take the tropical cyclone activities in the North Atlantic (NA), western North Pacific (WNP) and eastern North Pacific (ENP) basins as a whole when searching for the influence of the global-scale SST warming on tropical cyclone intensity. Over the past 30 years, as the tropical SST increased by about 0.5 C, the linear trends indicate 6%, 16% and 15% increases in the overall average intensity and lifetime and the annual frequency. Our analysis shows that the increased annual destructiveness of tropical cyclones reported by Emanuel(2005) resulted mainly from the increases in the average lifetime and annual frequency in the NA basin and from the increases in the average intensity and lifetime in the WNP basin, while the annual destructiveness in the ENP basin generally decreased over the past 30 years. The changes in the proportion of intense tropical cyclones reported by Webster et a1 (2005) were due mainly to the fact that increasing tropical cyclones took the tracks that favor for the development of intense tropical cyclones in the NA and WNP basins over the past 30 years. The dynamic influence associated with the tropical SST warming can lead to the impact of global warming on tropical cyclone intensity that may be very

  2. An Estimate of North Atlantic Basin Tropical Cyclone Activity for 2008

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2008-01-01

    The statistics of North Atlantic basin tropical cyclones for the interval 1945-2007 are examined and estimates are given for the frequencies of occurrence of the number of tropical cyclones, number of hurricanes, number of major hurricanes, number of category 4/5 hurricanes, and number of U.S. land-falling hurricanes for the 2008 hurricane season. Also examined are the variations of peak wind speed, average peak wind speed per storm, lowest pressure, average lowest pressure per storm, recurrence rate and duration of extreme events (El Nino and La Nina), the variation of 10-yr moving averages of parametric first differences, and the association of decadal averages of frequencies of occurrence of North Atlantic basin tropical cyclones against decadal averages of Armagh Observatory, Northern Ireland, annual mean temperature (found to be extremely important for number of tropical cyclones and number of hurricanes). Because the 2008 hurricane season seems destined to be one that is non-El Nino-related and is a post-1995 season, estimates of the frequencies of occurrence for the various subsets of storms should be above long-term averages.

  3. Heavy rainfall in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Kotroni, Vassiliki; Lagouvardos, Konstantinos; Gray, Suzanne L.; Rysman, Jean-François; Claud, Chantal

    2018-04-01

    In this study, we provide an insight to the role of deep convection (DC) and the warm conveyor belt (WCB) as leading processes to Mediterranean cyclones' heavy rainfall. To this end, we use reanalysis data, lighting and satellite observations to quantify the relative contribution of DC and the WCB to cyclone rainfall, as well as to analyse the spatial and temporal variability of these processes with respect to the cyclone centre and life cycle. Results for the period 2005-2015 show that the relationship between cyclone rainfall and intensity has high variability and demonstrate that even intense cyclones may produce low rainfall amounts. However, when considering rainfall averages for cyclone intensity bins, a linear relationship was found. We focus on the 500 most intense tracked cyclones (responsible for about 40-50% of the total 11-year Mediterranean rainfall) and distinguish between the ones producing high and low rainfall amounts. DC and the WCB are found to be the main cause of rainfall for the former (producing up to 70% of cyclone rainfall), while, for the latter, DC and the WCB play a secondary role (producing up to 50% of rainfall). Further analysis showed that rainfall due to DC tends to occur close to the cyclones' centre and to their eastern sides, while the WCBs tend to produce rainfall towards the northeast. In fact, about 30% of rainfall produced by DC overlaps with rainfall produced by WCBs but this represents only about 8% of rainfall produced by WCBs. This suggests that a considerable percentage of DC is associated with embedded convection in WCBs. Finally, DC was found to be able to produce higher rain rates than WCBs, exceeding 50 mm in 3-h accumulated rainfall compared to a maximum of the order of 40 mm for WCBs. Our results demonstrate in a climatological framework the relationship between cyclone intensity and processes that lead to heavy rainfall, one of the most prominent environmental risks in the Mediterranean. Therefore, we set

  4. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    NASA Astrophysics Data System (ADS)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  5. Health impact assessment of cyclone Bejisa in Reunion Island (France) using syndromic surveillance.

    PubMed

    Vilain, Pascal; Pagès, Frédéric; Combes, Xavier; Marianne Dit Cassou, Pierre-Jean; Mougin-Damour, Katia; Jacques-Antoine, Yves; Filleul, Laurent

    2015-04-01

    On January 2, 2014, Cyclone Bejisa struck Reunion Island (France). This storm led to major material damages, such as power outages, disturbance of drinking water systems, road closures, and the evacuation of residents. In this context, the Regional Office of French Institute for Public Health Surveillance in Indian Ocean (Cire OI) set up an epidemiological surveillance in order to describe short-term health effects of the cyclone. The assessment of the health impact was based mainly on a syndromic surveillance system, including the activity of all emergency departments (EDs) and the Emergency Medical Service (EMS) of the island. From these data, several health indicators were collected and analyzed daily and weekly. To complete this assessment, all medical charts recorded in the EDs of Reunion Island from January 2, 2014 through January 5, 2014 were reviewed in order to identify visits directly and indirectly related to the cyclone, and to determine mechanisms of injuries. The number of calls to the EMS peaked the day of the cyclone, and the number of ED visits increased markedly over the next two days. At the same time, a significant increase in visits for trauma, burns, and carbon monoxide poisoning was detected in all EDs. Among 1,748 medical records reviewed, eight visits were directly related to the cyclone and 208 were indirectly related. For trauma, the main mechanisms of injury were falls and injuries by machinery or tools during the clean-up and repair works. Due to prolonged power outages, several patients were hospitalized: some to assure continuity of care, others to take care of an exacerbation of a chronic disease. An increase in leptospirosis cases linked to post-cyclone clean-up was observed two weeks after the cyclone. Information based on the syndromic surveillance system allowed the authors to assess rapidly the health impact of Cyclone Bejisa in Reunion Island; however, an underestimation of this impact was still possible. In the near future

  6. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  7. Impact Factors and Risk Analysis of Tropical Cyclones on a Highway Network.

    PubMed

    Yang, Saini; Hu, Fuyu; Jaeger, Carlo

    2016-02-01

    Coastal areas typically have high social and economic development and are likely to suffer huge losses due to tropical cyclones. These cyclones have a great impact on the transportation network, but there have been a limited number of studies about tropical-cyclone-induced transportation network functional damages, especially in Asia. This study develops an innovative measurement and analytical tool for highway network functional damage and risk in the context of a tropical cyclone, with which we explored the critical spatial characteristics of tropical cyclones with regard to functional damage to a highway network by developing linear regression models to quantify their relationship. Furthermore, we assessed the network's functional risk and calculated the return periods under different damage levels. In our analyses, we consider the real-world highway network of Hainan province, China. Our results illustrate that the most important spatial characteristics were location (in particular, the midlands), travel distance, landfalling status, and origin coordinates. However, the trajectory direction did not obviously affect the results. Our analyses indicate that the highway network of Hainan province may suffer from a 90% functional damage scenario every 4.28 years. These results have critical policy implications for the transport sector in reference to emergency planning and disaster reduction. © 2015 Society for Risk Analysis.

  8. Changes of Mediterranean cyclones in the future climate employing high resolution climate simulations

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Kouroutzoglou, J.; Keay, K.; Simmonds, I.; Giannakopoulos, C. A.; Brikolas, V.

    2011-12-01

    A number of studies suggest that cyclone activity over both hemispheres has changed over the second half of the 20th century. The assessment of the future changes of the cyclonic activity as imposed by global warming conditions is very important since these cyclones can be associated with extreme precipitation conditions, severe storms and floods. This is more important for the Mediterranean that has been found to be more vulnerable to climate change. The main objective of the current study is to better understand and assess future changes in the main characteristics of Mediterranean cyclones, including temporal and spatial variations of frequency of cyclonic tracks, and dynamic and kinematic parameters, such as intensity, size, propagation velocity, as well as trend analysis. For this purpose, the MPI-HH regional coupled climate model of the Max Planck Institute for Meteorology is employed consisting of the REgional atmosphere MOdel (REMO), the Max-Planck-Institute for Meteorology ocean model (MPI-OM) and the Hydrological Discharge Model (HD Model). A 25 km resolution domain is established on a rotated latitude-longitude coordinate system, while the physical parameterizations are taken from the global climate model ECHAM-4. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. The model results for the present climate are evaluated against ERA-40 Reanalysis (available through ECMWF), for the period 1962-2001. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. According to the results, a decrease of the storm number and a tendency towards deeper cyclones is expected in the future, in general agreement with

  9. Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers

    DTIC Science & Technology

    2015-09-30

    and far-field acoustic multiple scattering from two- and now three-dimensional aggregations of omnidirectional point scatterers to determine the...an aggregation of omnidirectional point scatterers [1]. If ψ(r) is the harmonic acoustic pressure field at frequency ω at the point r and ψ0(r) is... scattered field and is given by the sum in (1), N is the number of scatterers , gn is the scattering coefficient of the nth scatterer , ψn(rn) is the field

  10. Enhancement of acoustical performance of hollow tube sound absorber

    NASA Astrophysics Data System (ADS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-03-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  11. Accumulation in coastal West Antarctic ice core records and the role of cyclone activity

    NASA Astrophysics Data System (ADS)

    Hosking, J. Scott; Fogt, Ryan; Thomas, Elizabeth R.; Moosavi, Vahid; Phillips, Tony; Coggins, Jack; Reusch, David

    2017-09-01

    Cyclones are an important component of Antarctic climate variability, yet quantifying their impact on the polar environment is challenging. We assess how cyclones which pass through the Bellingshausen Sea affect accumulation over Ellsworth Land, West Antarctica, where we have two ice core records. We use self-organizing maps (SOMs), an unsupervised machine learning technique, to group cyclones into nine SOM nodes differing by their trajectories (1980-2015). The annual frequency of cyclones associated with the first SOM node (SOM1, which generally originate from lower latitudes over the South Pacific Ocean) is significantly (p < 0.001) correlated with annual accumulation, with the highest seasonal correlations (p < 0.001) found during autumn. While significant (p < 0.01) increases in vertically integrated water vapor over the South Pacific Ocean coincide with this same group of cyclones, we find no indication that this has led to an increase in moisture advection into, nor accumulation over, Ellsworth Land over this short time period.

  12. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  13. Comparison of Mid-latitude Cyclones in Sea Level Pressure, Gepotential Height and Vorticity Fields

    NASA Astrophysics Data System (ADS)

    Raible, Christoph C.; Blender, Richard; Fraedrich, Klaus

    2013-04-01

    The mid-latitudes are dominated by diurnal variability, which is related to traveling high- and low-pressure systems. The lows or cyclones are a major source of natural hazards. This has led to growing interest in the scientific community to develop Eulerian and Lagrangian measures and to analyze the atmospheric high-frequency variability. One important issue is that there is no straight forward definition of cyclones resulting in a large variety of so-called cyclone detection and tracking methods. Each of these methods relies on different input fields which are related to specific features of a cyclone, e.g., sea level pressure (SLP), which specifically focuses on the mass aspect of the velocity field. Recently, the available methods have been compared with respect to climatology and life cycles using the ERA interim data set (Neu et al. 2013). Based on this study we investigate different fields as input for one specific method. We focus on the three mostly used input data, sea level pressure (SLP), 1000-hPa gepotential height (Z1000) and 850-hPa vorticity (850VOR). The cyclone detection and tracking method developed by Blender et al. (1997) is used and we apply it to ERA interim data in the 1.5 x 1.5 resolution. The method was mainly applied for Z1000 and the Northern Hemisphere (e.g., Blender et al. 1997; Raible et al. 2008). To compare the tracks and cyclone characteristics obtained from the different input data we need to adapt critical parameters of the method in such a way that comparable numbers of cyclone centers are identified in either field. The target is set to the number of cyclone centers in northern hemispheric winter. This enables us to assess the seasonal and hemispheric dependence. Preliminary results show that the agreement between cyclones based on SLP and Z1000 varies between roughly 70 to 80% depending on the season and the hemisphere. Spatially, most of the differences are found around orographic features like Greenland. An interesting

  14. Towards a Statistical Model of Tropical Cyclone Genesis

    NASA Astrophysics Data System (ADS)

    Fernandez, A.; Kashinath, K.; McAuliffe, J.; Prabhat, M.; Stark, P. B.; Wehner, M. F.

    2017-12-01

    Tropical Cyclones (TCs) are important extreme weather phenomena that have a strong impact on humans. TC forecasts are largely based on global numerical models that produce TC-like features. Aspects of Tropical Cyclones such as their formation/genesis, evolution, intensification and dissipation over land are important and challenging problems in climate science. This study investigates the environmental conditions associated with Tropical Cyclone Genesis (TCG) by testing how accurately a statistical model can predict TCG in the CAM5.1 climate model. TCG events are defined using TECA software @inproceedings{Prabhat2015teca, title={TECA: Petascale Pattern Recognition for Climate Science}, author={Prabhat and Byna, Surendra and Vishwanath, Venkatram and Dart, Eli and Wehner, Michael and Collins, William D}, booktitle={Computer Analysis of Images and Patterns}, pages={426-436}, year={2015}, organization={Springer}} to extract TC trajectories from CAM5.1. L1-regularized logistic regression (L1LR) is applied to the CAM5.1 output. The predictions have nearly perfect accuracy for data not associated with TC tracks and high accuracy differentiating between high vorticity and low vorticity systems. The model's active variables largely correspond to current hypotheses about important factors for TCG, such as wind field patterns and local pressure minima, and suggests new routes for investigation. Furthermore, our model's predictions of TC activity are competitive with the output of an instantaneous version of Emanuel and Nolan's Genesis Potential Index (GPI) @inproceedings{eman04, title = "Tropical cyclone activity and the global climate system", author = "Kerry Emanuel and Nolan, {David S.}", year = "2004", pages = "240-241", booktitle = "26th Conference on Hurricanes and Tropical Meteorology"}.

  15. Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2012-01-01

    Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.

  16. “Out of our control”: Living through Cyclone Yasi

    PubMed Central

    Woods, Cindy; West, Caryn; Buettner, Petra; Usher, Kim

    2014-01-01

    The aim of this study was to explore the experiences of people who lived through Cyclone Yasi on 3 February 2011. Data from two open-ended questions (Q1: n=344; and Q2: n=339) within a survey completed by 433 residents of cyclone-affected areas between Cairns and Townsville, Australia, were analysed using a qualitative, thematic approach. Experiences were portrayed in three main themes: (1) living in the mode of existential threat describes survivors’ sense of panic and feeling at the mercy of nature as they feared for their life; (2) unforgettable memories describe feelings of emotional helplessness and the unimaginable chaos that the cyclone wrought; and (3) centrality of others shows how community support and closeness helped alleviate losses and uncertainty. A critical finding from this study was the negative role of the media in escalating fears for life prior to and during the cyclone, highlighting the need for government, community leaders, and health professionals to have a media plan in place to ensure that disaster warnings are taken seriously without inciting unnecessary panic. Although survivors experienced extreme vulnerability and a threat to life, the disaster also brought communities closer together and connected family, friends, and neighbours through the caring, support, and help they offered each other. This highlights the central role of others during the recovery process and underlines the importance of promoting and facilitating social support to aid recovery post disaster. PMID:24434053

  17. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    DTIC Science & Technology

    2014-05-15

    atmospheric fields, including sea level pressure ( SLP ), on daily and sub-daily time scales at 2° horizontal resolution. A higher-resolution and more...its 21st-century simulation. Extreme cyclones were defined as occurrences of daily mean SLP at least 40 hPa below the climatological annual-average... SLP at a grid point. As such, no cyclone-tracking algorithm was employed, because the purpose here is to identify instances of extremely strong

  18. 1998 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1998-01-01

    1998 ANNUAL TROPICAL CYCLONE REPORT Microwave imagery of Typhoon Rex (06W) as it passed through the Bonin Islands, taken at 0800Z on 28 August... DAVE ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.3 TESTING AND RESULTS...weighting the forecasts given by XTRP and CLIM. 5.2.5.2 DYNAMIC AVERAGE ( DAVE ) A simple average of all dynamic forecast aids: NOGAPS (NGPS), Bracknell

  19. Seasonal differences in the response of Arctic cyclones to climate change in CESM1

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Holland, Marika M.; Hodges, Kevin I.

    2017-06-01

    The dramatic warming of the Arctic over the last three decades has reduced both the thickness and extent of sea ice, opening opportunities for business in diverse sectors and increasing human exposure to meteorological hazards in the Arctic. It has been suggested that these changes in environmental conditions have led to an increase in extreme cyclones in the region, therefore increasing this hazard. In this study, we investigate the response of Arctic synoptic scale cyclones to climate change in a large initial value ensemble of future climate projections with the CESM1-CAM5 climate model (CESM-LE). We find that the response of Arctic cyclones in these simulations varies with season, with significant reductions in cyclone dynamic intensity across the Arctic basin in winter, but with contrasting increases in summer intensity within the region known as the Arctic Ocean cyclone maximum. There is also a significant reduction in winter cyclogenesis events within the Greenland-Iceland-Norwegian sea region. We conclude that these differences in the response of cyclone intensity and cyclogenesis, with season, appear to be closely linked to changes in surface temperature gradients in the high latitudes, with Arctic poleward temperature gradients increasing in summer, but decreasing in winter.

  20. Lessons learnt from tropical cyclone losses

    NASA Astrophysics Data System (ADS)

    Honegger, Caspar; Wüest, Marc; Zimmerli, Peter; Schoeck, Konrad

    2016-04-01

    Swiss Re has a long history in developing natural catastrophe loss models. The tropical cyclone USA and China model are examples for event-based models in their second generation. Both are based on basin-wide probabilistic track sets and calculate explicitly the losses from the sub-perils wind and storm surge in an insurance portfolio. Based on these models, we present two cases studies. China: a view on recent typhoon loss history Over the last 20 years only very few major tropical cyclones have caused severe insurance losses in the Pearl River Delta region and Shanghai, the two main exposure clusters along China's southeast coast. Several storms have made landfall in China every year but most struck areas with relatively low insured values. With this study, we make the point that typhoon landfalls in China have a strong hit-or-miss character and available insured loss experience is too short to form a representative view of risk. Historical storm tracks and a simple loss model applied to a market portfolio - all from publicly available data - are sufficient to illustrate this. An event-based probabilistic model is necessary for a reliable judgement of the typhoon risk in China. New York: current and future tropical cyclone risk In the aftermath of hurricane Sandy 2012, Swiss Re supported the City of New York in identifying ways to significantly improve the resilience to severe weather and climate change. Swiss Re provided a quantitative assessment of potential climate related risks facing the city as well as measures that could reduce those impacts.

  1. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    NASA Astrophysics Data System (ADS)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  2. On the dynamics of synoptic scale cyclones associated with flood events in Crete

    NASA Astrophysics Data System (ADS)

    Flocas, Helena; Katavoutas, George; Tsanis, Ioannis; Iordanidou, Vasiliki

    2015-04-01

    Flood events in the Mediterranean are frequently linked to synoptic scale cyclones, although topographical or anthropogenic factors can play important role. The knowledge of the vertical profile and dynamics of these cyclones can serve as a reliable early flood warning system that can further help in hazard mitigation and risk management planning. Crete is the second largest island in the eastern Mediterranean region, being characterized by high precipitation amounts during winter, frequently causing flood events. The objective of this study is to examine the dynamic and thermodynamic mechanisms at the upper and lower levels responsible for the generation of these events, according to their origin domain. The flooding events were recorded for a period of almost 20 years. The surface cyclones are identified with the aid of MS scheme that was appropriately modified and extensively employed in the Mediterranean region in previous studies. Then, the software VTS, specially developed for the Mediterranean cyclones, was employed to investigate the vertical extension, slope and dynamic/kinematic characteristics of the surface cyclones. Composite maps of dynamic/thermodynamic parameters, such as potential vorticity, temperature advection, divergence, surface fluxes were then constructed before and during the time of the flood. The dataset includes 6-hourly surface and isobaric analyses on a 0.5° x 0.5° regular latitude-longitude grid, as derived from the ERA-INTERIM Reanalysis of the ECMWF. It was found that cyclones associated with flood events in Crete mainly generate over northern Africa or southern eastern Mediterranean region and experience their minimum pressure over Crete or southwestern Greece. About 84% of the cyclones extend up to 500hPa, demonstrating that they are well vertically well-organized systems. The vast majority (almost 84%) of the surface cyclones attains their minimum pressure when their 500 hpa counterparts are located in the NW or SW, confirming

  3. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  4. Model-Simulated Northern Winter Cyclone and Anticyclone Activity under a Greenhouse Warming Scenario.

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Wei-Chyung

    1997-07-01

    Two 100-yr equilibrium simulations from the NCAR Community Climate Model coupled to a nondynamic slab ocean are used to investigate the activity of northern winter extratropical cyclones and anticyclones under a greenhouse warming scenario. The first simulation uses the 1990 observed CO2, CH4, N2O, CFC-11, and CFC-12 concentrations, and the second adopts the year 2050 concentrations according to the Intergovernmental Panel on Climate Change business-as-usual scenario. Variables that describe the characteristic properties of the cyclone-scale eddies, such as surface cyclone and anticyclone frequency and the bandpassed root-mean-square of 500-hPa geopotential height, along with the Eady growth rate maximum, form a framework for the analysis of the cyclone and anticyclone activity.Objective criteria are developed for identifying cyclone and anticyclone occurrences based on the 1000-hPa geopotential height and vorticity fields and tested using ECMWF analyses. The potential changes of the eddy activity under the greenhouse warming climate are then examined. Results indicate that the activity of cyclone-scale eddies decreases under the greenhouse warming scenario. This is not only reflected in the surface cyclone and anticyclone frequency and in the bandpassed rms of 500-hPa geopotential height, but is also discerned from the Eady growth rate maximum. Based on the analysis, three different physical mechanisms responsible for the decreased eddy activity are discussed: 1) a decrease of the extratropical meridional temperature gradient from the surface to the midtroposphere, 2) a reduction in the land-sea thermal contrast in the east coastal regions of the Asian and North American continents, and 3) an increase in the eddy meridional latent heat fluxes. Uncertainties in the results related to the limitations of the model and the model equilibrium simulations are discussed.

  5. On the Environment of Supercells That Produce Anticyclonic-Cyclonic Tornado Pairs

    NASA Astrophysics Data System (ADS)

    Bluestein, H. B.; Snyder, J.; Houser, J.

    2015-12-01

    Anticyclonic tornadoes in supercells are very rare events, which have been documented in anticyclonically rotating, left-moving supercells in the Northern Hemisphere. It is well known that anticyclonic supercells, which can spawn anticyclonic tornadoes, form in an environment in which the vertical shear vector turns in a counterclockwise manner with height. Less rare, however, are anticyclonic tornadoes that appear in cyclonically rotating, right-moving supercells. When these anticyclonic tornadoes have been documented, they have occurred in tandem with a cyclonic tornado or intense mesocyclone. In this talk we will present Doppler radar documentation and photographs and videos of anticyclonic-cyclonic tornado pairs. We will then describe the environmental conditions under which they occur, with emphasis on any special conditions that observationally seem to favor their development.

  6. High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.

    NASA Technical Reports Server (NTRS)

    Putnam, WilliamM.

    2011-01-01

    In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.

  7. Enhancement of acoustical performance of hollow tube sound absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For testmore » sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.« less

  8. On the relationship between atmospheric water vapour transport and extra-tropical cyclones development

    NASA Astrophysics Data System (ADS)

    Ferreira, Juan A.; Liberato, Margarida L. R.; Ramos, Alexandre M.

    2016-08-01

    In this study we seek to investigate the role of atmospheric water vapour on the intensification of extra-tropical cyclones over the North Atlantic Ocean and more specifically to investigate the linkage between atmospheric rivers' conditions leading to the explosive development of extra-tropical cyclones. Several WRF-ARW simulations for three recent extra-tropical storms that had major negative socio-economic impacts in the Iberian Peninsula and south-western Europe (Klaus, 2009; Gong, 2013 and Stephanie, 2014) are performed in which the water vapour content of the initial and boundary conditions are tuned. Analyses of the vertically integrated vapour transport show the dependence of the storms' development on atmospheric water vapour. In addition, results also show changes in the shape of the jet stream resulting in a reduction of the upper wind divergence, which in turn affects the intensification of the extra-tropical cyclones studied. This study suggests that atmospheric rivers tend to favour the conditions for explosive extra-tropical storms' development in the three case studies, as simulations performed without the existence of atmospheric rivers produce shallow mid-latitude cyclones, that is, cyclones that are not so intense as those on the reference simulations.

  9. Using Proxy Records to Document Gulf of Mexico Tropical Cyclones from 1820-1915

    PubMed Central

    Rohli, Robert V.; DeLong, Kristine L.; Harley, Grant L.; Trepanier, Jill C.

    2016-01-01

    Observations of pre-1950 tropical cyclones are sparse due to observational limitations; therefore, the hurricane database HURDAT2 (1851–present) maintained by the National Oceanic and Atmospheric Administration may be incomplete. Here we provide additional documentation for HURDAT2 from historical United States Army fort records (1820–1915) and other archived documents for 28 landfalling tropical cyclones, 20 of which are included in HURDAT2, along the northern Gulf of Mexico coast. One event that occurred in May 1863 is not currently documented in the HURDAT2 database but has been noted in other studies. We identify seven tropical cyclones that occurred before 1851, three of which are potential tropical cyclones. We corroborate the pre-HURDAT2 storms with a tree-ring reconstruction of hurricane impacts from the Florida Keys (1707–2009). Using this information, we suggest landfall locations for the July 1822 hurricane just west of Mobile, Alabama and 1831 hurricane near Last Island, Louisiana on 18 August. Furthermore, we model the probable track of the August 1831 hurricane using the weighted average distance grid method that incorporates historical tropical cyclone tracks to supplement report locations. PMID:27898726

  10. Tropical cyclones in a stabilized 1.5 and 2 degree warmer world.

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.; Stone, D. A.; Loring, B.; Krishnan, H.

    2017-12-01

    We present an ensemble of very high resolution global climate model simulations of a stabilized 1.5oC and 2oC warmer climate as envisioned by the Paris COP21 agreement. The resolution of this global climate model (25km) permits simulated tropical cyclones up to Category Five on the Saffir-Simpson scale Projected changes in tropical cyclones are significant. Tropical cyclones in the two stabilization scenarios are less frequent but more intense than in simulations of the present. Output data from these simulations is freely available to all interested parties and should prove a useful resource to those interested in studying the impacts of stabilized global warming.

  11. The Human Impact of Tropical Cyclones: a Historical Review of Events 1980-2009 and Systematic Literature Review

    PubMed Central

    Doocy, Shannon; Dick, Anna; Daniels, Amy; Kirsch, Thomas D.

    2013-01-01

    Background. Cyclones have significantly affected populations in Southeast Asia, the Western Pacific, and the Americas over the past quarter of a century. Future vulnerability to cyclones will increase due to factors including population growth, urbanization, increasing coastal settlement, and global warming. The objectives of this review were to describe the impact of cyclones on human populations in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of cyclones were compiled using two methods, a historical review from 1980 to 2009 of cyclone events from multiple databases and a systematic literature review of publications ending in October 2012. Analysis included descriptive statistics and bivariate tests for associations between cyclone characteristics and mortality using Stata 11.0. Findings. There were 412,644 deaths, 290,654 injured, and 466.1 million people affected by cyclones between 1980 and 2009, and the mortality and injury burden was concentrated in less developed nations of Southeast Asia and the Western Pacific. Inconsistent reporting suggests this is an underestimate, particularly in terms of the injured and affected populations. The primary cause of cyclone-related mortality is drowning; in developed countries male gender was associated with increased mortality risk, whereas females experienced higher mortality in less developed countries. Conclusions. Additional attention to preparedness and early warning, particularly in Asia, can lessen the impact of future cyclones. PMID:23857074

  12. Acoustic assessment of sound scattering zooplankton in warm- and cold-core eddies in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zimmerman, Robert Allen

    Zooplankton and micronekton which cause a density discontinuity with the surrounding seawater reflect acoustic energy. This acoustic backscatter intensity (ABI) was measured using a vessel mounted 153 kHz acoustic Doppler current profiler. The ABI was used to describe vertical migration and distribution of sound scatterers in several mesoscale hydrographic features commonly found in the Gulf of Mexico: cold-core rings (CCRs), warm-core Loop Current eddies (LCEs) and the Loop Current (LC). The present paradigm contends that cold- core (cyclonic) features are mesoscale areas of enhanced production due to an influx of new nitrogen to surface waters as a result of divergent flow. The null hypothesis which was tested in this study was that the acoustic signatures of these features were not significantly different from one another. Clear diel differences in all of the features and a robust, positive correlation between ABI and plankton and micronekton wet displacement volume collected in MOCNESS tows in the upper 100 m of the water column were observed. During the day, ABI in CCRs was significantly greater than in LCEs and in the LC with regards to the upper 200 m. However, ABI in the LCEs and LC were not significantly different from each other. During the night, the ABI in the upper 50 m of the CCRs was significantly greater than that in the LCEs and the LC. However, there were no differences between features when ABI at night was summed for the entire upper 200 m, due to substantial vertical migrations of organisms into the upper 200 m of the water column at night. Two LCEs were revisited at an age of 8-9 months after their initial acoustic transects. The null hypothesis that there would be no significant difference in integrated ABI when the LCEs were resampled was rejected: both LCEs showed a reduction in integrated ABI over the upper 200 m. Further investigations into the faunal changes of these features are warranted, but the ADCP should continue to be a useful

  13. An experimental investigation of concentrated slop combustion characteristics in cyclone furnace

    NASA Astrophysics Data System (ADS)

    Panpokha, Suphaopich; Wongwuttanasatian, Tanakorn; Tangchaichit, Kiatfa

    2018-02-01

    Slop is a by-product in alcoholic industries requiring costly waste management. An idea of using slop as a fuel in a boiler for the industries was proposed. Due to high content of ash, a cyclone furnace was designed to combust the slop. This study aims to examine the concentrated slop combustion in a designed cyclone furnace, consisting of combustion temperature and exhaust gases. The tests were carried out under 4 different air-fuel ratios. Fuels injected into the furnace were 3 g/s of concentrated slop and 1 g/s of diesel. The air-fuel ratios were corresponding to 100, 120, 140 and 160 percent theoretical air. The results demonstrated that combustion of concentrated slop can gave temperature of 800-1000°C and a suitable theoretical air was 100%-120%, because the combustion temperature was higher than that of other cases. In cyclone combustion, excess air is not recommended because it affects a reduction in overall temperature inside the cyclone furnace. It is expected that utilization of the concentrated slop (by-product) will be beneficial in the development of green and zero waste factory.

  14. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  15. Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period.

    PubMed

    Pausata, Francesco S R; Emanuel, Kerry A; Chiacchio, Marc; Diro, Gulilat T; Zhang, Qiong; Sushama, Laxmi; Stager, J Curt; Donnelly, Jeffrey P

    2017-06-13

    Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.

  16. Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Emanuel, Kerry A.; Chiacchio, Marc; Diro, Gulilat T.; Zhang, Qiong; Sushama, Laxmi; Stager, J. Curt; Donnelly, Jeffrey P.

    2017-06-01

    Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.

  17. Improvement of the AeroClipper system for cyclones monitoring

    NASA Astrophysics Data System (ADS)

    Vargas, André; Philippe, Duvel Jean

    2016-07-01

    The AeroClipper developed by the French space agency (Centre National d'Études Spatiales, CNES) is a quasi-lagrangian device drifting with surface wind at about 20-30m above the ocean surface. It is a new and original device for real-time and continuous observation of air-sea surface parameters in open ocean remote regions. This device enables the sampling of the variability of surface parameters in particular under convective systems toward which it is attracted. The AeroClipper is therefore an ideal instrument to monitor Tropical Cyclones (TCs) in which they are likely to converge and provide original observations to evaluate and improve our current understanding and diagnostics of TCs as well as their representation in numerical models. In 2008, the AeroClipper demonstrates its capability to be captured by an Ocean Indian cyclone, as two models have converged, without damages, in the eye of Dora cyclone during the 2008 VASCO campaign. This paper will present the improvements of this balloon system for the international project 'the Year of Maritime Continent'.

  18. Evolution of environmental factors affecting tropical cyclones from the LGM through the Holocene

    NASA Astrophysics Data System (ADS)

    Korty, R.

    2010-12-01

    The debate about whether and how tropical cyclones respond to warming climates has raised several interesting questions, but it has also revealed there is much we do not understand about controls on frequency and cumulative metrics of intensity and activity. In this work, I examine how the models used for anthropogenic climate predictions handle large-scale factors influencing tropical cyclone development in a different regime: the paleoclimate simulations of the LGM and Holocene. The models were forced under guidelines set forth by the second paleoclimate model intercomparison project (PMIP2), and produce equilibrium solutions for forcings far removed from small perturbations to the present-day world. (LGM has substantially lower CO2 and CH4 levels, while mid-Holocene cases have similar levels to today but different seasonal amplitudes from orbital variations.) The large-scale environmental factors that support tropical cyclones in today’s climate undergo complex and at times counter-intuitive changes in the colder simulations. The maximum potential intensity of tropical cyclones (MPI) is lower throughout the tropics in the mid-Holocene simulations, despite having SSTs very similar to today. MPI changes at LGM are more complex: lower in some regions but higher in much of the subtropics, while SSTs are uniformly lower than today. The water vapor deficits in the tropical midtroposphere change in such a way as to make tropical cyclone formation easier in the colder states; this is a counterintuitive result, but one consistent with the predictions of fewer storms in model simulations of a warmer climate by the end of the 21st century. I analyze the thermodynamic reasons behind the evolution in the large-scale environmental factors as well as relevant dynamic factors such as low-level vorticity and tropospheric wind shear. This analysis is the first part of a long-term project to analyze model prediction of tropical cyclone activity in the recent geologic past; the

  19. Acoustic Droplet Vaporization for Enhancement of Thermal Ablation by High Intensity Focused Ultrasound

    PubMed Central

    Zhang, Man; Fabiilli, Mario L.; Haworth, Kevin J.; Padilla, Frederic; Swanson, Scott D.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian

    2011-01-01

    Rationale and Objectives Acoustic droplet vaporization (ADV) shows promise for spatial control and acceleration of thermal lesion production. Our hypothesis was that microbubbles generated by ADV could enhance high intensity focused ultrasound (HIFU) thermal ablation by controlling and increasing local energy absorption. Materials and Methods Thermal lesions were produced in tissue-mimicking phantoms using focused ultrasound (1.44 MHz) with a focal intensity of 4000 W·cm-2 in degassed water at 37°C. The average lesion volume was measured by visible change in optical opacity and by T2-weighted MRI. In addition, in vivo HIFU lesions were generated in a canine liver before and after an intravenous injection of droplets with a similar acoustic setup. Results Thermal lesions were seven-fold larger in phantoms containing droplets (3×105 droplets/mL) compared to phantoms without droplets. The mean lesion volume with a 2 s HIFU exposure in droplet-containing phantoms was comparable to that made by a 5 s exposure in phantoms without droplets. In the in vivo study, the average lesion volumes without and with droplets were 0.017 ± 0.006 cm3 (n = 4, 5 s exposure) and 0.265 ± 0.005 cm3 (n = 3, 5 s exposure), respectively – a factor of 15 difference. The shape of ADV bubbles imaged with B-mode ultrasound was very similar to the actual lesion shape as measured optically and by MRI. Conclusion ADV bubbles may facilitate clinical HIFU ablation by reducing treatment time or requisite in situ total acoustic power, and provide ultrasonic imaging feedback of the thermal therapy. PMID:21703883

  20. Tropical cyclones over the North Indian Ocean: experiments with the high-resolution global icosahedral grid point model GME

    NASA Astrophysics Data System (ADS)

    Kumkar, Yogesh V.; Sen, P. N.; Chaudhari, Hemankumar S.; Oh, Jai-Ho

    2018-02-01

    In this paper, an attempt has been made to conduct a numerical experiment with the high-resolution global model GME to predict the tropical storms in the North Indian Ocean during the year 2007. Numerical integrations using the icosahedral hexagonal grid point global model GME were performed to study the evolution of tropical cyclones, viz., Akash, Gonu, Yemyin and Sidr over North Indian Ocean during 2007. It has been seen that the GME model forecast underestimates cyclone's intensity, but the model can capture the evolution of cyclone's intensity especially its weakening during landfall, which is primarily due to the cutoff of the water vapor supply in the boundary layer as cyclones approach the coastal region. A series of numerical simulation of tropical cyclones have been performed with GME to examine model capability in prediction of intensity and track of the cyclones. The model performance is evaluated by calculating the root mean square errors as cyclone track errors.

  1. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  2. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  3. Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vela, O.A.; Huggard, J.C.

    Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsitemore » Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.« less

  4. Rate of prescription of antidepressant and anxiolytic drugs after Cyclone Yasi in North Queensland.

    PubMed

    Usher, Kim; Brown, Lawrence H; Buettner, Petra; Glass, Beverley; Boon, Helen; West, Caryn; Grasso, Joseph; Chamberlain-Salaun, Jennifer; Woods, Cindy

    2012-12-01

    The need to manage psychological symptoms after disasters can result in an increase in the prescription of psychotropic drugs, including antidepressants and anxiolytics. Therefore, an increase in the prescription of antidepressants and anxiolytics could be an indicator of general psychological distress in the community. The purpose of this study was to determine if there was a change in the rate of prescription of antidepressant and anxiolytic drugs following Cyclone Yasi. A quantitative evaluation of new prescriptions of antidepressants and anxiolytics was conducted. The total number of new prescriptions for these drugs was calculated for the period six months after the cyclone and compared with the same six month period in the preceding year. Two control drugs were also included to rule out changes in the general rate of drug prescription in the affected communities. After Cyclone Yasi, there was an increase in the prescription of antidepressant drugs across all age and gender groups in the affected communities except for males 14-54 years of age. The prescription of anxiolytic drugs decreased immediately after the cyclone, but increased by the end of the six-month post-cyclone period. Control drug prescription did not change. There was a quantifiable increase in the prescription of antidepressant drugs following Cyclone Yasi that may indicate an increase in psychosocial distress in the community.

  5. Statistical Aspects of Tropical Cyclone Activity in the North Atlantic Basin, 1945-2010

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2012-01-01

    Examined are statistical aspects of the 715 tropical cyclones that formed in the North Atlantic basin during the interval 1945-2010. These 715 tropical cyclones include 306 storms that attained only tropical storm strength, 409 hurricanes, 179 major or intense hurricanes, and 108 storms that struck the US coastline as hurricanes. Comparisons made using 10-year moving average (10-yma) values between tropical cyclone parametric values and surface air and ENSO-related parametric values indicate strong correlations to exist, in particular, against the Armagh Observatory (Northern Ireland) surface air temperature, the Atlantic Multi-decadal Oscillation (AMO) index, the Atlantic Meridional Mode (AMM) index, and the North Atlantic Oscillation (NAO) index, in addition to the Oceanic Ni o index (ONI) and Quasi-Biennial Oscillation (QBO) indices. Also examined are the decadal variations of the tropical cyclone parametric values and a look ahead towards the 2012 hurricane season and beyond.

  6. Upper-level eddy angular momentum fluxes and tropical cyclone intensity change

    NASA Technical Reports Server (NTRS)

    Demaria, Mark; Baik, Jong-Jin; Kaplan, John

    1993-01-01

    The eddy flux convergence of relative angular momentum (EFC) at 200 mb was calculated for the named tropical cyclones during the 1989-1991 Atlantic hurricane seasons. A period of enhanced EFC within 1500 km of the storm center occurred about every five days due to the interaction with upper-level troughs in the midlatitude westerlies or upper-level, cold lows in low latitudes. Twenty-six of the 32 storms had at least one period of enhanced EFC. In about one-third of the cases, the storm intensified just after the period of enhanced EFC. In most of the cases in which the storm did not intensify the vertical shear increased, the storm moved over cold water, or the storm became extratropical just after the period of enhanced EFC. A statistically significant relationship was found between the EFC within 600 km of the storm center and the intensity change during the next 48 h. The EFC was also examined for the ten storms from the 1989-1991 sample that had the largest intensification rates. Six of the ten periods of rapid intensification were associated with enhanced EFC. In the remaining four cases the storms were intensifying rapidly in a low shear environment without any obvious interaction with upper-level troughs.

  7. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2011 Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2011-01-01

    Estimates are presented for the expected level of tropical cyclone activity for the 2011 North Atlantic Basin hurricane season. It is anticipated that the frequency of tropical cyclones for the North Atlantic Basin during the 2011 hurricane season will be near to above the post-1995 means. Based on the Poisson distribution of tropical cyclone frequencies for the current more active interval 1995-2010, one computes P(r) = 63.7% for the expected frequency of the number of tropical cyclones during the 2011 hurricane season to be 14 plus or minus 3; P(r) = 62.4% for the expected frequency of the number of hurricanes to be 8 plus or minus 2; P(r) = 79.3% for the expected frequency of the number of major hurricanes to be 3 plus or minus 2; and P(r) = 72.5% for the expected frequency of the number of strikes by a hurricane along the coastline of the United States to be 1 plus or minus 1. Because El Nino is not expected to recur during the 2011 hurricane season, clearly, the possibility exists that these seasonal frequencies could easily be exceeded. Also examined are the effects of the El Nino-Southern Oscillation phase and climatic change (global warming) on tropical cyclone seasonal frequencies, the variation of the seasonal centroid (latitude and longitude) location of tropical cyclone onsets, and the variation of the seasonal peak wind speed and lowest pressure for tropical cyclones.

  8. The role of mid-level vortex in the intensification and weakening of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Gohil, Kanishk

    2017-10-01

    The present study examines the dynamics of mid-tropospheric vortex during cyclogenesis and quantifies the importance of such vortex developments in the intensification of tropical cyclone. The genesis of tropical cyclones are investigated based on two most widely accepted theories that explain the mechanism of cyclone formation namely `top-down' and `bottom-up' dynamics. The Weather Research and Forecast model is employed to generate high resolution dataset required for analysis. The development of the mid-level vortex was analyzed with regard to the evolution of potential vorticity (PV), relative vorticity (RV) and vertical wind shear. Two tropical cyclones which include the developing cyclone, Hudhud and the non-developing cyclone, Helen are considered. Further, Hudhud and Helen, is compared to a deep depression formed over Bay of Bengal to highlight the significance of the mid-level vortex in the genesis of a tropical cyclone. Major results obtained are as follows: stronger positive PV anomalies are noticed over upper and lower levels of troposphere near the storm center for Hudhud as compared to Helen and the depression; Constructive interference in upper and lower level positive PV anomaly maxima resulted in the intensification of Hudhud. For Hudhud, the evolution of RV follows `top-down' dynamics, in which the growth starts from the middle troposphere and then progresses downwards. As for Helen, RV growth seems to follow `bottom-up' mechanism initiating growth from the lower troposphere. Though, the growth of RV for the depression initiates from mid-troposphere, rapid dissipation of mid-level vortex destabilizes the system. It is found that the formation mid-level vortex in the genesis phase is significantly important for the intensification of the storm.

  9. Disaster, Deprivation and Death: Large but delayed infant mortality in the wake of Filipino tropical cyclones

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.; Hsiang, S. M.

    2011-12-01

    Tropical cyclones are some of the most disastrous and damaging of climate events, and estimates of their destructive potential abound in the natural and social sciences. Nonetheless, there have been few systematic estimates of cyclones' impact on children's health. This is concerning because cyclones leave in their wake a swath of asset losses and economic deprivation, both known to be strong drivers of poor health outcomes among children. In this paper we provide a household-level estimate of the effect of tropical cyclones on infant mortality in the Philippines, a country with one of the most active cyclone climatologies in the world. We reconstruct historical cyclones with detailed spatial and temporal resolution, allowing us to estimate the multi-year effects of cyclones on individuals living in specific locations. We combine the cyclone reconstruction with woman-level fertility and mortality data from four waves of the Filipino Demographic and Health Survey, providing birth histories for over 55,000 women. In multiple regressions that control for year and region fixed effects as well as intra-annual climate variation, we find that there is a pronounced and robust increase in female infant mortality among poor families in the 12-24 months after storms hit. The estimated mortality rate among this demographic subgroup is much larger than official mortality rates reported by the Filipino government immediately after storms, implying that much of a cyclone's human cost arrives well after the storm has passed. We find that high infant mortality rates are associated with declines in poor families' income and expenditures, including consumption of food and medical services, suggesting that the mechanism by which these deaths are effected may be economic deprivation. These results indicate that a major health and welfare impact of storms has been thus far overlooked, but may be easily prevented through appropriately targeted income support policies.

  10. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  11. Epidemiology of injuries due to tropical cyclones in Hong Kong: a retrospective observational study.

    PubMed

    Rotheray, K R; Aitken, P; Goggins, W B; Rainer, T H; Graham, C A

    2012-12-01

    Tropical cyclones are huge circulating masses of wind which form over tropical and sub-tropical waters. They affect an average of 78 million people each year. Hong Kong is a large urban centre with a population of just over 7 million which is frequently affected by tropical cyclones. We aimed to describe the numbers and types of injuries due to tropical cyclones in Hong Kong, as well as their relation to tropical cyclone characteristics. The records of all patients presenting to Hong Kong's public hospital emergency departments from 1st January 2004 to 31st December 2009 with tropical cyclone related injuries were reviewed and information regarding patient and injury characteristics was collected. Meteorological records for the relevant periods were examined and data on wind speed, rainfall and timing of landfall and warning signals was recorded and compared with the timing of tropical cyclone related injuries. A total of 460 tropical cyclone related injuries and one fatality across 15 emergency departments were identified during the study period. The mean age of those injured was 48 years and 48% were female. 25.4% of injuries were work related. The head (33.5%) and upper limb (32.5%) were the most commonly injured regions, with contusions (48.6%) and lacerations (30.2%) being the most common injury types. Falls (42.6%) were the most common mechanism of injury, followed by being hit by a falling or flying object (22.0%). In univariable analysis the relative risk of injury increased with mean hourly wind speed and hourly maximum gust. Multivariable analysis, however, showed that relative risk of injury increased with maximum gust but not average wind speed, with relative risk of injury rising sharply above maximum gusts of greater than 20 m/s. Moderate wind speed with high gust (rather than high average and high gust) appears to be the most risky situation for injuries. Relative risk of injury was not associated with rainfall. The majority of injuries (56

  12. Design of A Cyclone Separator Using Approximation Method

    NASA Astrophysics Data System (ADS)

    Sin, Bong-Su; Choi, Ji-Won; Lee, Kwon-Hee

    2017-12-01

    A Separator is a device installed in industrial applications to separate mixed objects. The separator of interest in this research is a cyclone type, which is used to separate a steam-brine mixture in a geothermal plant. The most important performance of the cyclone separator is the collection efficiency. The collection efficiency in this study is predicted by performing the CFD (Computational Fluid Dynamics) analysis. This research defines six shape design variables to maximize the collection efficiency. Thus, the collection efficiency is set up as the objective function in optimization process. Since the CFD analysis requires a lot of calculation time, it is impossible to obtain the optimal solution by linking the gradient-based optimization algorithm. Thus, two approximation methods are introduced to obtain an optimum design. In this process, an L18 orthogonal array is adopted as a DOE method, and kriging interpolation method is adopted to generate the metamodel for the collection efficiency. Based on the 18 analysis results, the relative importance of each variable to the collection efficiency is obtained through the ANOVA (analysis of variance). The final design is suggested considering the results obtained from two optimization methods. The fluid flow analysis of the cyclone separator is conducted by using the commercial CFD software, ANSYS-CFX.

  13. Cyclone as a precleaner to ESP--a need for Indian coal based thermal power plants.

    PubMed

    George, K V; Manjunath, S; Rao, C V Chalapati; Bopche, A M

    2003-11-01

    Almost all coal based thermal power plants (CTPP) in India use electrostatic precipitator (ESP) for reduction of particulate matter (PM) in flue gas generated due to the combustion of Indian coal. This coal is characterized by high ash content, low calorific value and low sulfur content resulting in the generation of a very large amount of highly electrically-resistive fly-ash; thereby requiring a very large size ESP to minimize the fly-ash emissions. However, the flue-gas particle size distribution analysis showed that 60% of the particles are above 15 microm size, which can be conveniently removed using a low-cost inertial separator such as a cyclone separator. It is proposed that a cyclone be used, as a pre-cleaner to ESP so that the large size fraction of fly-ash can be removed in the pre-cleaning and the remaining flue-gas entering the ESP will then contain only small size particles with low dust loading, thereby requiring a small ESP, and improving overall efficiency of dust removal. A low efficiency (65%), high throughput cyclone is considered for pre-cleaning flue gas and the ESP is designed for removal of the remaining 35% fly-ash from the flue gas. It is observed that with 100% dust load, the ESP requires six fields per pass, whereas with cyclone as a pre-cleaner, it requires only five fields per pass. Introducing cyclone into the flue gas path results in additional head loss, which needs to be overcome by providing additional power to induced draft (ID) fan. The permissible head loss due to the cyclone is estimated by comparing the power requirement in the bag filter control unit and cyclone-ESP combined unit. It is estimated that a head loss of 10 cm of water can be permitted across the cyclone so as to design the same for 65% efficiency.

  14. Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model

    NASA Astrophysics Data System (ADS)

    Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.

    2015-12-01

    An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).

  15. Extreme waves from tropical cyclones and climate change in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José

    2017-04-01

    Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  16. Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep

    PubMed Central

    Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.

    2016-01-01

    Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321

  17. NASA Sees Large Tropical Cyclone Yasi Headed Toward Queensland, Australia

    NASA Image and Video Library

    2017-12-08

    NASA image acquired January 30, 2011 at 23:20 UTC. Satellite: Terra Click here to see the most recent image captured Feb. 1: www.flickr.com/photos/gsfc/5407540724/ Tropical Storm Anthony made landfall in Queensland, Australia this past weekend, and now the residents are watching a larger, more powerful cyclone headed their way. NASA's Terra satellite captured a visible image of the large Tropical Cyclone Yasi late yesterday as it makes its way west through the Coral Sea toward Queensland. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies aboard NASA's Terra satellite captured an image of Cyclone Yasi on Jan. 30 at 23:20 UTC (6:20 p.m. EST/09:20 a.m., Monday, January 31 in Australia/Brisbane local time). Although the image did not reveal a visible eye, the storm appears to be well-formed and also appears to be strengthening. Warnings and watches are already in effect throughout the Coral Sea. The Solomon Islands currently have a Tropical Cyclone warning for the provinces of Temotu, Rennell & Bellona, Makira and Guadalcanal. The Australian Bureau of Meteorology has already posted a Tropical Cyclone Watch from Cooktown to Yeppoon and inland to between Georgetown and Moranbah in Queensland, Australia. The Australian Bureau of Meteorology expects damaging winds to develop in coastal and island communities between Cooktown and Yeppoon Wednesday morning, and inland areas on Wednesday afternoon. Updates from the Australian Bureau of Meteorology can be monitored at the Bureau's website at www.bom.gov.au. On January 31 at 1500 UTC (10 a.m. EST/ 1:00 a.m. Tuesday February 1, 2011 in Australia/Brisbane local time), Tropical Cyclone Yasi had maximum sustained winds near 90 knots (103 mph/166 kmh). Yasi is a Category Two Cyclone on the Saffir-Simpson Scale. It was centered about 875 miles E of Cairns, Australia, near 13.4 South latitude and 160.4 East longitude. It was moving west near 19 knots (22 mph/35 kmh). Cyclone-force winds extend out to 30

  18. Storm Surge Hazard in Oman Based on Cyclone Gonu and Historic Events

    NASA Astrophysics Data System (ADS)

    Blount, C.; Fritz, H. M.; Albusaidi, F. B.; Al-Harthy, A. H.

    2008-12-01

    Super Cyclone Gonu was the strongest tropical cyclone on record in the Arabian Sea. Gonu developed sustained winds reaching 240 km/h with gusts up to 315 km/h and an estimated central pressure of 920 mbar by late 4 June 2007 while centered east-southeast of Masirah Island on the coast of Oman. Gonu weakened after encountering dry air and cooler waters prior to the June 5 landfall on the eastern-most tip of Oman, becoming the strongest tropical cyclone to hit the Arabian Peninsula. Gonu dropped heavy rainfall near the eastern coastline, reaching up to 610 mm which caused wadi flooding and heavy damage. The shore parallel cyclone track resulted in coastal damage due to storm surge and storm wave impact along a 300km stretch of Omani coastline. Maximum high water marks, overland flow depths, and inundation distances were measured along the Gulf of Oman during the 1-4 August 2007 reconnaissance. The high water marks peaked at Ras al Hadd at the eastern tip of Oman exceeding 5 meters, surpassing 2004 Indian Ocean tsunami runup at every corresponding point. The cyclone caused $4 billion in damage and at least 49 deaths in the Sultanate of Oman. Prior to Gonu, only two similar cyclones struck the coast of Oman in the last 1200 years (in 865 and 1890). The 1890 storm, which remains the worst natural disaster in Oman's history, drenched the coast from Soor to Suwayq causing inland wadi flooding. Matrah and Muscat were the hardest hit areas with many ships being washed ashore and wrecked. The storm is known to have killed about 727 people and caused huge agricultural and shipping losses. Similarly, the 865 storm affected areas between Gobrah and Sohar. A high-resolution finite element ADCIRC mesh of the Arabian Sea is created to model storm surge and is coupled with STWAVE. Modeling results from Gonu are compared to measurements and used to determine the contribution from storm surge and waves. The 1890 and 865 storms are modeled with standard cyclone parameters and results

  19. Numerical model-based diagnostic study of the rapid development phase of the Presidents' Day cyclone

    NASA Technical Reports Server (NTRS)

    Whitaker, Jeffrey S.; Uccellini, Louis W.; Brill, Keith F.

    1988-01-01

    A mesoscale model simulation of the Presidents' Day cyclone at 1200 GMT 18 February 1979 is presented which captures the upper-tropospheric intrusion of stratospheric air upstream of the East Coast and subsequent development of the surface cyclone. The model simulation is then used to examine the descent of the stratospheric air mass and the interaction of this air mass with a lower-tropospheric potential vorticity maximum associated with an inverted trough and coastal front along the East Coast. The model is also used to examine the processes that contribute to the rapid decrease of sea-level pressure and increase in lower-tropospheric cyclonic vorticity during the explosive development phase of the cyclone.

  20. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis(2008)

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Tao, W.-K.; Lau, W. K.; Atlas, R.

    2010-01-01

    Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence.

  1. Stirring by deep cyclones and the evolution of Denmark strait overflow water observed at line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M.; Joyce, T. M.; Curry, R. G.

    2016-03-01

    Shipboard velocity and water property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40 °N are examined to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and mixing between DSOW and the interior. The examined transects along Line W - which stretches from the continental shelf south of New England to Bermuda - were made between 1994 and 2014. The shipboard data comprise measurements at regular stations of velocity from lowered acoustic Doppler current profilers, CTD profiles and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths. Comparison of the Line W velocity sections with concurrent sea surface height maps from satellite altimetry indicates that large cyclones in the deep ocean accompany intermittent quasi-stationary meander troughs in the Gulf Stream path at Line W. A composite of 5 velocity sections along Line W suggests that a typical cyclone reaches swirl speeds of greater than 30 cm s-1 at 3400-m depth and has a radius (distance between the center and the maximum velocity) of 75 km. Tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC's DSOW and the interior. Vigorous exchange is corroborated by a mismatch in the CFC-11:CFC-12 and CFC-113:CFC-12 ratio ages calculated for DSOW at Line W. During the most recent 5-year period (2010-2014), a decrease in DSOW density has been driven by warming (increasing by almost 0.1 °C) as salinity has increased only slightly (by 0.003, which is close to the 0.002 uncertainty of the measurements). The abyssal ocean offshore of the DWBC and Gulf Stream and deeper than 3000-m depth has freshened at a rate of 6×10-4 yr-1 since at least 2003. Density here remains nearly unchanged over this period, due to temperature compensation, though a linear cooling trend in the abyssal ocean (to compensate the

  2. Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Wu, Xue; Alexander, M. Joan

    2018-02-01

    Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.

  3. Passive metamaterial-based acoustic holograms in ultrasound energy transfer systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari-Nejad, Marjan; Elnahhas, Ahmed; Hajj, Muhammad R.; Shahab, Shima

    2018-03-01

    Contactless energy transfer (CET) is a technology that is particularly relevant in applications where wired electrical contact is dangerous or impractical. Furthermore, it would enhance the development, use, and reliability of low-power sensors in applications where changing batteries is not practical or may not be a viable option. One CET method that has recently attracted interest is the ultrasonic acoustic energy transfer, which is based on the reception of acoustic waves at ultrasonic frequencies by a piezoelectric receiver. Patterning and focusing the transmitted acoustic energy in space is one of the challenges for enhancing the power transmission and locally charging sensors or devices. We use a mathematically designed passive metamaterial-based acoustic hologram to selectively power an array of piezoelectric receivers using an unfocused transmitter. The acoustic hologram is employed to create a multifocal pressure pattern in the target plane where the receivers are located inside focal regions. We conduct multiphysics simulations in which a single transmitter is used to power multiple receivers with an arbitrary two-dimensional spatial pattern via wave controlling and manipulation, using the hologram. We show that the multi-focal pressure pattern created by the passive acoustic hologram will enhance the power transmission for most receivers.

  4. Drop evaporation in a single-axis acoustic levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Croonquist, A. P.

    1990-01-01

    A 20 kHz single-axis acoustic positioner is used to levitate aqueous-solution drops (volumes less than or approximately equal to 100 micro-liters). Drop evaporation rates are measured under ambient, isothermal conditions for different relative humidities. Acoustic convection around the levitated sample enhances the mass loss over that due to natural convection and diffusion. A theoretical treatment of the mass flow is developed in analogy to previous studies of the heat transfer from a sphere in an acoustic field. Predictions of the enhanced mass loss, in the form of Nusselt (Sherwood) numbers, are compared with observed rages of drop shrinking. The work is part of an ESA crystal growth from levitated solution drops.

  5. A Field Guide to Extra-Tropical Cyclones: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Bauer, M.

    2008-12-01

    Climate it is said is the accumulation of weather. And weather is not the concern of climate models. Justification for this latter sentiment has long hidden behind coarse model resolutions and blunt validation tools based on climatological maps and the like. The spatial-temporal resolutions of today's models and observations are converging onto meteorological scales however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough, or at least lacks perverting biases, such that its accumulation does in fact result in a robust climate prediction. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from climate model output. These include the usual cyclone distribution statistics (maps, histograms), but also adaptive cyclone- centric composites. We have also created a complementary dataset, The MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid- latitude cyclones based on Reanalysis products. Using this we then extract complimentary composites from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools will be shown. dime.giss.nasa.gov/mcms/mcms.html

  6. Acoustic Streaming and Heat and Mass Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Gopinath, A.

    1996-01-01

    A second order effect associated with high intensity sound field, acoustic streaming has been historically investigated to gain a fundamental understanding of its controlling mechanisms and to apply it to practical aspects of heat and mass transfer enhancement. The objectives of this new research project are to utilize a unique experimental technique implementing ultrasonic standing waves in closed cavities to study the details of the generation of the steady-state convective streaming flows and of their interaction with the boundary of ultrasonically levitated near-spherical solid objects. The goals are to further extend the existing theoretical studies of streaming flows and sample interactions to higher streaming Reynolds number values, for larger sample size relative to the wavelength, and for a Prandtl and Nusselt numbers parameter range characteristic of both gaseous and liquid host media. Experimental studies will be conducted in support to the theoretical developments, and the crucial impact of microgravity will be to allow the neglect of natural thermal buoyancy. The direct application to heat and mass transfer in the absence of gravity will be emphasized in order to investigate a space-based experiment, but both existing and novel ground-based scientific and technological relevance will also be pursued.

  7. An Investigation of Bomb Cyclone Climatology: Reanalysis vs. NCEP's CFS Model

    NASA Astrophysics Data System (ADS)

    Alvarez, F. M.; Eichler, T.; Gottschalck, J.

    2009-12-01

    Given the concerns and potential impacts of climate change, the need for climate models to simulate weather phenomena is as important as ever. An example of such phenomena is rapidly intensifying cyclones, also known as "bombs." These intense cyclones have devastating effects on residential and marine commercial interests as well as the transportation industry. In this study, we generate a climatology of rapid cyclogenesis using the National Centers for Environmental Prediction’s (NCEP) Climate Forecast System (CFS) model. Results are compared to NCEP’s global reanalysis data to determine if the CFS model is capable of producing a realistic extreme storm climatology. This represents the first step in quantifying rapidly intensifying cyclones in the CFS model, which will be useful in contributing towards future model improvements, as well as gauging its ability in determining the role of synoptic-scale storms in climate change.

  8. Tropical cyclone cooling combats region-wide coral bleaching.

    PubMed

    Carrigan, Adam D; Puotinen, Marji

    2014-05-01

    Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induce temperature drops at spatial scales comparable to that of the SST anomaly itself. Such cyclone cooling can mitigate bleaching across broad areas when well-timed and appropriately located, yet the spatial and temporal prevalence of this phenomenon has not been quantified. Here, satellite SST and historical TC data are used to reconstruct cool wakes (n=46) across the Caribbean during two active TC seasons (2005 and 2010) where high thermal stress was widespread. Upon comparison of these datasets with thermal stress data from Coral Reef Watch and published accounts of bleaching, it is evident that TC cooling reduced thermal stress at a region-wide scale. The results show that during a mass bleaching event, TC cooling reduced thermal stress below critical levels to potentially mitigate bleaching at some reefs, and interrupted natural warming cycles to slow the build-up of thermal stress at others. Furthermore, reconstructed TC wave damage zones suggest that it was rare for more reef area to be damaged by waves than was cooled (only 12% of TCs). Extending the time series back to 1985 (n = 314), we estimate that for the recent period of enhanced TC activity (1995-2010), the annual probability that cooling and thermal stress co-occur is as high as 31% at some reefs. Quantifying such probabilities across the other tropical regions where both coral reefs and TCs exist is vital for improving our understanding of how reef exposure to rising SSTs may vary, and contributes to a basis for targeting reef conservation. © 2014 John Wiley & Sons Ltd.

  9. Environmental Composites for Bomb Cyclones of the Western North Atlantic in Reanalysis, 1948-2016.

    NASA Astrophysics Data System (ADS)

    Adams, R.; Sheridan, S. C.

    2017-12-01

    "Bomb" cyclones represent a small subset of mid-latitude cyclones characterized by rapid intensification and frequently are associated with extreme weather conditions along the eastern coast of North America. Like other extreme phenomena, bomb cyclone predictions are prone to error leading to inadequate or untimely hazard warnings. The rare nature of bomb cyclones and the uniqueness of their evolutions has made it difficult for researchers to make meaningful generalizations on bomb cyclone events. This paper describes bomb cyclone climatology for the western North Atlantic, using data from the NCEP-NCAR Reanalysis for 1948-2016, and uses a synoptic climatological analysis to relate these bombs to their associated atmospheric environments. A self-organizing map (SOM) of 300-hPa geopotential height tendency is created to partition the regional atmospheric environment. Thermodynamic fields are contrasted by each 300-hPa geopotential height tendency pattern for both bomb and non-bomb events in composite difference maps. The SOM patterns most significantly associated with western North Atlantic bomb cyclogenesis are characterized by both strongly and weakly negative height tendencies along the eastern United States. In both cases, these patterns exhibit strong meridional flow, a distinction marked by the weakening and breaking down of the polar vortex in the boreal Winter. The composite maps for each pattern show the mean differences in low-mid level ascent and near surface thermodynamics for bomb environments contrasted with non-bomb environments, resulting in diverse spatiotemporal distributions of bombs in the western North Atlantic.

  10. Sensitivity of cyclone tracks to the initial moisture distribution: A moist potential vorticity perspective

    NASA Astrophysics Data System (ADS)

    Cao, Zuohao; Zhang, Da-Lin

    2005-11-01

    In this study, the characteristics of moist potential vorticity (MPV) in the vicinity of a surface cyclone center and their physical processes are investigated. A prognostic equation of surface absolute vorticity is then used to examine the relationship between the cyclone tracks and negative MPV (NMPV) using numerical simulations of the life cycle of an extratropical cyclone. It is shown that the MPV approach developed herein, i.e., by tracing the peak NMPV, can be used to help trace surface cyclones during their development and mature stages. Sensitivity experiments are conducted to investigate the impact of different initial moisture fields on the effectiveness of the MPV approach. It is found that the lifetime of NMPV depends mainly on the initial moisture field, the magnitude of condensational heating, and the advection of NMPV. When NMPV moves into a saturated environment at or near a cyclone center, it can trace better the evolution of the surface cyclone due to the conservative property of MPV. It is also shown that the NMPV generation is closely associated with the coupling of large potential temperature and moisture gradients as a result of frontogenesis processes. Analyses indicate that condensation, confluence and tilting play important but different roles in determining the NMPV generation. NMPV is generated mainly through the changes in the strength of baroclinicity and in the direction of the moisture gradient due to moist and/or dry air mass intrusion into the baroclinic zone.

  11. Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period

    PubMed Central

    Pausata, Francesco S. R.; Emanuel, Kerry A.; Chiacchio, Marc; Diro, Gulilat T.; Zhang, Qiong; Sushama, Laxmi; Stager, J. Curt; Donnelly, Jeffrey P.

    2017-01-01

    Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate. PMID:28559352

  12. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  13. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone.

    PubMed

    Jarosz, Ewa; Mitchell, Douglas A; Wang, David W; Teague, William J

    2007-03-23

    As a result of increasing frequency and intensity of tropical cyclones, an accurate forecasting of cyclone evolution and ocean response is becoming even more important to reduce threats to lives and property in coastal regions. To improve predictions, accurate evaluation of the air-sea momentum exchange is required. Using current observations recorded during a major tropical cyclone, we have estimated this momentum transfer from the ocean side of the air-sea interface, and we discuss it in terms of the drag coefficient. For winds between 20 and 48 meters per second, this coefficient initially increases and peaks at winds of about 32 meters per second before decreasing.

  14. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to

  15. Tropical Cyclone Paka's Initial Explosive Development (10-12 December, 1997)

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Halverson, Jeff; Simpson, Joanne; Olson, William; Pierce, Harold

    1999-01-01

    Convection associated with an equatorial westerly wind burst was first observed late November during the strong El Nino of 1997 at approximately 2000 km southwest of the Hawaiian Islands. This region of convection lead to the formation of twin tropical cyclones, one in the southern hemisphere named Pam and the other in the northern hemisphere named Paka. During the first week in December, tropical cyclone Paka, the system of concern, reached tropical storm stage as it moved rapidly westward at relatively low latitudes. During the 10-12 of December, Paka rapidly developed into a typhoon.

  16. Potential of a cyclone prototype spacer to improve in vitro dry powder delivery.

    PubMed

    Parisini, Irene; Cheng, Sean J; Symons, Digby D; Murnane, Darragh

    2014-05-01

    Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrier-based DPIs was investigated. Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30 and 60 Lmin−1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51% at 30 Lmin−1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.

  17. Acoustic Characterization and Enhanced Ultrasound Imaging of Long-Circulating Lipid-Coated Microbubbles.

    PubMed

    Li, Hongbo; Yang, Yanye; Zhang, Meimei; Yin, Liping; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2018-05-01

    A long-circulating lipid-coated ultrasound (US) contrast agent was fabricated to achieve a longer wash-out time and gain more resistance against higher-mechanical index sonication. Systemic physical, acoustic, and in vivo imaging experiments were performed to better understand the underlying mechanism enabling the improvement of contrast agent performance by adjusting the physical and acoustic properties of contrast agent microbubbles. By simply altering the gas core, a kind of US contrast agent microbubble was synthesized with a similar lipid-coating shell as SonoVue microbubbles (Bracco SpA, Milan, Italy) to achieve a longer wash-out time and higher inertial cavitation threshold. To bridge the structure-performance relationship of the synthesized microbubbles, the imaging performance of the microbubbles was assessed in vivo with SonoVue as a control group. The size distribution and inertial cavitation threshold of the synthesized microbubbles were characterized, and the shell parameters of the microbubbles were determined by acoustic attenuation measurements. All of the measurements were compared with SonoVue microbubbles. The synthesized microbubbles had a spherical shape, a smooth, consistent membrane, and a uniform distribution, with an average diameter of 1.484 μm. According to the measured attenuation curve, the synthesized microbubbles resonated at around 2.8 MHz. Although the bubble's shell elasticity (0.2 ± 0.09 N/m) was comparable with SonoVue, it had relatively greater viscosity and inertial cavitation because of the different gas core. Imaging studies showed that the synthesized microbubbles had a longer circulation time and a better chance of fighting against rapid collapse than SonoVue. Nano/micrometer long-circulating lipid-coated microbubbles could be fabricated by simply altering the core composition of SonoVue microbubbles with a higher-molecular weight gas. The smaller diameter and higher inertial cavitation threshold of the

  18. Paradigms for Tropical-Cyclone Intensification

    DTIC Science & Technology

    2011-01-01

    Hurricane Opal (1995) using the Geo- physical Fluid Dynamics Laboratory hurricane prediction model, Möller and Shapiro (2002) found unbalanced flow...al. (2008) calculations on an f -plane, described in section 6.1. A specific aim was to deter- mine the separate contributions of diabatic heating and... Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866-1881. Marks FD Shay LK. 1998: Landfalling tropical cyclones: Forecast

  19. Kelvin-Helmholtz waves in extratropical cyclones passing over mountain ranges: KH Waves in Extratropical Cyclones over Mountain Ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Socorro; Houze, Robert A.

    2016-02-19

    Kelvin–Helmholtz billows with horizontal scales of 3–4 km have been observed in midlatitude cyclones moving over the Italian Alps and the Oregon Cascades when the atmosphere was mostly statically stable with high amounts of shear and Ri < 0.25. In one case, data from a mobile radar located within a windward facing valley documented a layer in which the shear between down-valley flow below 1.2 km and strong upslope cross-barrier flow above was large. Several episodes of Kelvin–Helmholtz waves were observed within the shear layer. The occurrence of the waves appears to be related to the strength of the shear:more » when the shear attained large values, an episode of billows occurred, followed by a sharp decrease in the shear. The occurrence of large values of shear and Kelvin–Helmholtz billows over two different mountain ranges suggests that they may be important features occurring when extratropical cyclones with statically stable flow pass over mountain ranges.« less

  20. A-Train Based Observational Metrics for Model Evaluation in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.; van den Heever, Susan C.; Posselt, Derek J.

    2015-01-01

    Extratropical cyclones contribute most of the precipitation in the midlatitudes, i.e. up to 70 during winter in the northern hemisphere, and can generate flooding, extreme winds, blizzards and have large socio-economic impacts. As such, it is important that general circulation models (GCMs) accurately represent these systems so their evolution in a warming climate can be understood. However, there are still uncertainties on whether warming will increase their frequency of occurrence, their intensity and how much rain or snow they bring. Part of the issue is that models have trouble representing their strength, but models also have biases in the amount of clouds and precipitation they produce. This is caused by potential issues in various aspects of the models: convection, boundary layer, and cloud scheme to only mention a few. In order to pinpoint which aspects of the models need improvement for a better representation of extratropical cyclone precipitation and cloudiness, we will present A-train based observational metrics: cyclone-centered, warm and cold frontal composites of cloud amount and type, precipitation rate and frequency of occurrence. Using the same method to extract similar fields from the model, we will present an evaluation of the GISS-ModelE2 and the IPSL-LMDZ-5B models, based on their AR5 and more recent versions. The AR5 version of the GISS model underestimates cloud cover in extratropical cyclones while the IPSL AR5 version overestimates it. In addition, we will show how the observed CloudSat-CALIPSO cloud vertical distribution across cold fronts changes with moisture amount and cyclone strength, and test if the two models successfully represent these changes. We will also show how CloudSat-CALIPSO derived cloud type (i.e. convective vs. stratiform) evolves across warm fronts as cyclones age, and again how this is represented in the models. Our third process-based analysis concerns cumulus clouds in the post-cold frontal region and how their

  1. Australian tropical cyclone activity lower than at any time over the past 550-1,500 years.

    PubMed

    Haig, Jordahna; Nott, Jonathan; Reichart, Gert-Jan

    2014-01-30

    The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record (less than 50 years). Furthermore, controversy exists regarding the robustness of the observational record, especially before 1990. Here we show, on the basis of a new tropical cyclone activity index (CAI), that the present low levels of storm activity on the mid west and northeast coasts of Australia are unprecedented over the past 550 to 1,500 years. The CAI allows for a direct comparison between the modern instrumental record and long-term palaeotempest (prehistoric tropical cyclone) records derived from the (18)O/(16)O ratio of seasonally accreting carbonate layers of actively growing stalagmites. Our results reveal a repeated multicentennial cycle of tropical cyclone activity, the most recent of which commenced around AD 1700. The present cycle includes a sharp decrease in activity after 1960 in Western Australia. This is in contrast to the increasing frequency and destructiveness of Northern Hemisphere tropical cyclones since 1970 in the Atlantic Ocean and the western North Pacific Ocean. Other studies project a decrease in the frequency of tropical cyclones towards the end of the twenty-first century in the southwest Pacific, southern Indian and Australian regions. Our results, although based on a limited record, suggest that this may be occurring much earlier than expected.

  2. SSM/I Rainfall Volume Correlated with Deepening Rate in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Miller, Douglas K.

    1994-01-01

    With the emergence of reasonably robust, physically based rain rate algorithms designed for the Special Sensor Microwave/Imager (SSM/I), a unique opportunity exists to directly observe a physical component which can contribute to or be a signature of cyclone deepening (latent heat release). The emphasis of the research in this paper is to seek systematic differences in rain rate observed by the SSM/I, using the algorithm of Petty in cases of explosive and nonexplosive cyclone deepening.

  3. Tonga Cyclone Damage Mapped by NASA's ARIA Team

    NASA Image and Video Library

    2018-02-21

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory created this Damage Proxy Map (DPM) of Tongatapu, the main island of Tonga, following the landfall of Cyclone Gita, a Category 4 storm that hit Tonga on Feb. 12-13, 2018. The map depicts areas that are likely damaged from the storm, shown by red and yellow pixels. The map was produced by comparing two pairs of interferometric synthetic aperture radar (InSAR) images from the COSMO-SkyMed satellites, operated by the Italian Space Agency (ASI). The pre- and post-cyclone images were acquired on Jan. 19 and Feb. 13, 2018, respectively. The later image was acquired just 4-1/2 hours after the peak damage by the cyclone. The map covers the entire island of Tongatapu (the 25-by-25-mile, or 40-by-40 kilometer SAR image footprint indicated with the large red polygon). Each pixel measures about 98 feet (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation of the SAR data was done by comparing them with high-resolution optical imagery acquired by DigitalGlobe. This Damage Proxy Map should be used as guidance to identify damaged areas and may be less reliable over vegetated and flooded areas. https://photojournal.jpl.nasa.gov/catalog/PIA22257

  4. The Vorticity Budgets of North Atlantic Winter Marine Extratropical Cyclones Development

    NASA Astrophysics Data System (ADS)

    Azad, R.; Sorteberg, A.

    2012-12-01

    A partitioned form of the Zwack-Okossi (Z-O) tendency equation is employed to examine the composite role of dynamic and thermodynamic forcing mechanisms to the development of North Atlantic winter marine extratropical cyclones. The results provide a further insight into the budgets of near surface cyclonic geostrophic vorticity (CGV) and their evolution during the life cycle of mid-latitude low pressure systems. Of interest are the direct, indirect and net effects of the Z-O forcing mechanisms. The direct effect shows the contribution of each process to the near surface geostrophic vorticity tendency, while the indirect effect implies the contribution from the associated vertical motion and resulting adiabatic cooling or warming. The net effect is the sum of the direct and indirect effects.We found that the vorticity advection term is the largest net contributor to the development of the marine cyclones. The net positive effect of both the temperature advection and latent heating terms is smaller owing to the induced adiabatic cooling which reduces the positive direct contributions. The direct and indirect parts of ageostrophic tendency and friction terms support each other, resulting in significant net contributions at the low center.Comparisons of the composite contributions by the Z-O forcing terms at different pressure levels over the low center indicate that, in agreement with previous studies, the commencement of significant development is accompanied with the upper level cyclonic absolute vorticity advection, upper level warm advection and mid-to low level latent heating. However, during the end of the development, mid-tropospheric net contribution by vorticity advection term and low level warm advection controls the production of CGV. The former is due to both the presence of mid-level cyclonic vorticity advection and induced adiabatic warming over the composite low center.

  5. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    DTIC Science & Technology

    2011-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds... storm begins the process of extratropical transition have revealed the role of vertical wind shear in defining structural variations related to the...horizontal wind radii as the storm starts the process of extratropical transition. Elsberry et al. (2011) have extended the analysis of the

  6. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS08

    DTIC Science & Technology

    2013-09-30

    transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds, there is a need to...improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution of the transition from...a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that potentially impact maritime

  7. Extratropical Cyclones over Southwestern Atlantic Ocean: Present and Future Climates projected by RegCM4

    NASA Astrophysics Data System (ADS)

    Reboita, Michelle; Rodrigues, Marcelo; da Rocha, Rosmeri

    2017-04-01

    This study shows some of the climatological features of the extratropical cyclones in present and future climate over Southwestern Atlantic Ocean (SAO). The projections were carried out with Regional Climate Model (RegCM4) nested in HadGEM2-ES global model outputs and using representative concentration pathway 8.5 (RCP8.5) from the CMIP5. The simulations considered the South America domain suggested by CORDEX, horizontal grid spacing of 50 km, 18 sigma-pressure levels in the vertical. An objective tracking scheme based on cyclonic relative vorticity calculated using the wind at 925 hPa was used to identify the cyclones. All cyclones with relative vorticity lower than the -1.5 x 10-5 s-1 and with lifetime higher or equal 24 hours were included in the climatology. Considering the period from 1979 to 2098, RegCM4 and HadGEM2-ES project a negative trend in the frequency of the extratropical cyclones over SAO, with the biggest negative trend occuring in the latitudinal band between 40°S and 57.5°S. This result can be associated with the southward displacement of the baroclinic zone which contributes to the cyclones move to south leaving the region analyzed. The three subregions with largest cyclogenetic activity discussed in the literature (southeast coast of Brazil - RG1, coast of Uruguay and southern Brazil - RG2; east coast of Argentina - RG3) were better reproduced in RegCM4 than in HadGEM2-ES. Therefore, RegCM4 downscaling ads value in the HadGEM2-ES projections. The frequency of cyclones in present (1979-2005) and future climate (2070-2098) is higher in winter and lower in summer. Regarding the mean characteristics of the cyclones (life time, travel distance, velocity, initial relative vorticity and total average vorticity), both models successfully reproduced those obtained in the reanalysis (NCEP1, NCEP2, CFSR, ERA40 and ERA-Interim) and there are no significant differences in the future climate compared with the present.

  8. Analysis of ionospheric disturbances associated with powerful cyclones in East Asia and North America

    NASA Astrophysics Data System (ADS)

    Li, Wang; Yue, Jianping; Yang, Yang; Li, Zhen; Guo, Jinyun; Pan, Yi; Zhang, Kefei

    2017-08-01

    East Asia and North America are the regions most heavily affected by powerful cyclones. In this paper we investigate the morphological characteristics of ionospheric disturbances induced by cyclones in different continents. The global ionosphere map supplied by the Center for Orbit Determination in Europe (CODE), International Reference Ionosphere Model (IRI) 2012, and Wallops Island ionosonde station data are used to analyse the ionospheric variations during powerful typhoons/hurricanes in East Asia and North America, respectively. After eliminating the ionospheric anomalies due to the solar-terrestrial environment, the total electron content (TEC) time series over the point with maximum wind speed is detected by the sliding interquartile range method. The results indicate that significant ionospheric disturbances are observed during powerful tropical cyclones in East Asia and North America, respectively, and that all the ionospheric anomalies are positive. In addition, the extent and magnitude of travelling ionospheric disturbances are associated with the category of tropical cyclone, and the extent of TEC anomalies in longitude is more pronounced than that in latitude. Furthermore, the maximum ionospheric anomaly does not coincide with the eye of the storm, but appears in the region adjacent to the centre. This implies that ionospheric disturbances at the edges of cyclones are larger than those in the eye of the winds. The phenomenon may be associated with the gravity waves which are generated by strong convective cells that occur in the spiral arms of tropical cyclones. This comprehensive analysis suggests that the presence of powerful typhoons/hurricanes may be a possible source mechanism for ionospheric anomalies.

  9. Variability of upper-ocean characteristics and tropical cyclones in the South West Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mawren, D.; Reason, C. J. C.

    2017-03-01

    Track and intensity are key aspects of tropical cyclone behavior. Intensity may be impacted by the upper-ocean heat content relevant for TC intensification (known as Tdy) and barrier layer thickness (BLT). Here the variability of Tdy and BLT in the South West Indian Ocean and their relationships with tropical cyclones are investigated. It is shown that rapid cyclone intensification is influenced by large Tdy values, thick barrier layers and the presence of anticyclonic eddies. For TC generation in the South West Indian Ocean, the parameter Tdy was found to be important. Large BLT values overlay with large Tdy values during summer. Both fields are modulated by the westward propagation of Rossby waves, which are often associated with ENSO. For example, the 1997-1998 El Niño shows a strong signal in Tdy, SST, and BLT over the South West Indian Ocean. After this event, an increasing trend in Tdy occurred over most of the basin which may be associated with changes in atmospheric circulation. Increasing SST, Power Dissipation Index and frequency of Category 5 tropical cyclones also occurred from 1980 to 2010. To further examine the links between tropical cyclones, Tdy, and BLT, the ocean response to Category 5 Tropical Cyclone Bansi that developed near Madagascar during January 2015 was analyzed. Its unusual track was found to be linked with the strengthening of the monsoonal north westerlies while its rapid intensification from Category 2 to Category 4 was linked to a high-Tdy region, associated with a warm core eddy and large BLT.

  10. Teleconnections, Midlatitude Cyclones and Aegean Sea Turbulent Heat Flux Variability on Daily Through Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Romanou, Anastasia; Bauer, Michael; Tselioudis, George

    2013-01-01

    We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958-2001, and identify four distinct cyclone states, corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc), and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deep water formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern (NCP), showing that the area of influence of large scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.

  11. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    PubMed

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  12. The poleward migration of the location of tropical cyclone maximum intensity.

    PubMed

    Kossin, James P; Emanuel, Kerry A; Vecchi, Gabriel A

    2014-05-15

    Temporally inconsistent and potentially unreliable global historical data hinder the detection of trends in tropical cyclone activity. This limits our confidence in evaluating proposed linkages between observed trends in tropical cyclones and in the environment. Here we mitigate this difficulty by focusing on a metric that is comparatively insensitive to past data uncertainty, and identify a pronounced poleward migration in the average latitude at which tropical cyclones have achieved their lifetime-maximum intensity over the past 30 years. The poleward trends are evident in the global historical data in both the Northern and the Southern hemispheres, with rates of 53 and 62 kilometres per decade, respectively, and are statistically significant. When considered together, the trends in each hemisphere depict a global-average migration of tropical cyclone activity away from the tropics at a rate of about one degree of latitude per decade, which lies within the range of estimates of the observed expansion of the tropics over the same period. The global migration remains evident and statistically significant under a formal data homogenization procedure, and is unlikely to be a data artefact. The migration away from the tropics is apparently linked to marked changes in the mean meridional structure of environmental vertical wind shear and potential intensity, and can plausibly be linked to tropical expansion, which is thought to have anthropogenic contributions.

  13. Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles.

    PubMed

    Qu, Min; Mehrmohammadi, Mohammad; Truby, Ryan; Graf, Iulia; Homan, Kimberly; Emelianov, Stanislav

    2014-06-01

    By mapping the distribution of targeted plasmonic nanoparticles (NPs), photoacoustic (PA) imaging offers the potential to detect the pathologies in the early stages. However, optical absorption of the endogenous chromophores in the background tissue significantly reduces the contrast resolution of photoacoustic imaging. Previously, we introduced MPA imaging - a synergistic combination of magneto-motive ultrasound (MMUS) and PA imaging, and demonstrated MPA contrast enhancement using cell culture studies. In the current study, contrast enhancement was investigated in vivo using the magneto-photo-acoustic (MPA) imaging augmented with dual-contrast nanoparticles. Liposomal nanoparticles (LNPs) possessing both optical absorption and magnetic properties were injected into a murine tumor model. First, photoacoustic signals were generated from both the endogenous absorbers in the tissue and the liposomal nanoparticles in the tumor. Then, given significant differences in magnetic properties of tissue and LNPs, the magnetic response of LNPs (i.e. MMUS signal) was utilized to suppress the unwanted PA signals from the background tissue and thus improves the PA imaging contrast. In this study, we demonstrated the 3D MPA image of LNP-labeled xenografted tumor in a live animal. Compared to conventional PA imaging, the MPA images show significantly enhanced contrast between the nanoparticle-labeled tumor and the background tissue. Our results suggest the feasibility of MPA for high contrast in vivo mapping of dual-contrast nanoparticles.

  14. Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles☆

    PubMed Central

    Qu, Min; Mehrmohammadi, Mohammad; Truby, Ryan; Graf, Iulia; Homan, Kimberly; Emelianov, Stanislav

    2014-01-01

    By mapping the distribution of targeted plasmonic nanoparticles (NPs), photoacoustic (PA) imaging offers the potential to detect the pathologies in the early stages. However, optical absorption of the endogenous chromophores in the background tissue significantly reduces the contrast resolution of photoacoustic imaging. Previously, we introduced MPA imaging – a synergistic combination of magneto-motive ultrasound (MMUS) and PA imaging, and demonstrated MPA contrast enhancement using cell culture studies. In the current study, contrast enhancement was investigated in vivo using the magneto-photo-acoustic (MPA) imaging augmented with dual-contrast nanoparticles. Liposomal nanoparticles (LNPs) possessing both optical absorption and magnetic properties were injected into a murine tumor model. First, photoacoustic signals were generated from both the endogenous absorbers in the tissue and the liposomal nanoparticles in the tumor. Then, given significant differences in magnetic properties of tissue and LNPs, the magnetic response of LNPs (i.e. MMUS signal) was utilized to suppress the unwanted PA signals from the background tissue thus improving the PA imaging contrast. In this study, we demonstrated the 3D MPA imaging of LNP-labeled xenografted tumor in a live animal. Compared to conventional PA imaging, the MPA imaging show significantly enhanced contrast between the nanoparticle-labeled tumor and the background tissue. Our results suggest the feasibility of MPA imaging for high contrast in vivo mapping of dual-contrast nanoparticles. PMID:24653976

  15. Impact of tropical cyclone Matmo on mixed zone of the Yellow and Bohai seas

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Ji, Diansheng; Hou, Chawei; Guo, Kai; Ji, Ling

    2017-12-01

    The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits (mixed zone). Its off shore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacifi c tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, signifi cant wave height, and salinity (SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass (NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct infl uence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the infl uence of tropical cyclones on the NYSCWM.

  16. NASA Satellite Captures Tropical Cyclones Tomas and Ului

    NASA Image and Video Library

    2010-03-17

    NASA Image acquired March 14 - 15, 2010 Two fierce tropical cyclones raged over the South Pacific Ocean in mid-March 2010, the U.S. Navy’s Joint Typhoon Warning Center (JTWC) reported. Over the Solomon Islands, Tropical Cyclone Ului had maximum sustained winds of 130 knots (240 kilometers per hour, 150 miles per hour) and gusts up to 160 knots (300 km/hr, 180 mph). Over Fiji, Tropical Cyclone Tomas had maximum sustained winds of 115 knots (215 km/hr, 132 mph) and gusts up to 140 knots (260 km/hr, 160 mph). The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites captured both storms in multiple passes over the South Pacific on March 15, 2010, local time. The majority of the image is from the morning of March 15 (late March 14, UTC time) as seen by MODIS on the Terra satellite, with the right portion of the image having been acquired earliest. The wedge-shaped area right of center is from Aqua MODIS, and it was taken in the early afternoon of March 15 (local time). Although it packs less powerful winds, according to the JTWC, Tomas stretches across a larger area. It was moving over the northern Fiji islands when Terra MODIS captured the right portion of the image. According to early reports, Tomas forced more than 5,000 people from their homes while the islands sustained damage to crops and buildings. The JTWC reported that Tomas had traveled slowly toward the south and was passing over an area of high sea surface temperatures. (Warm seas provide energy for cyclones.) This storm was expected to intensify before transitioning to an extratropical storm. Ului is more compact and more powerful. A few hours before this image was taken, the storm had been an extremely dangerous Category 5 cyclone with sustained winds of 140 knots (260 km/hr, 160 mph). Ului degraded slightly before dealing the southern Solomon Islands a glancing blow. Initial news reports say that homes were damaged on the islands, but no one was injured. Like Tomas

  17. Frequency changes of tropical cyclones during the last century recorded in a canyon of the northern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kudrass, Hermann; Machalett, Björn; Palamenghi, Luisa; Meyer, Inka

    2017-04-01

    Frequent cyclones originating in the Bay of Bengal and landfall to the southern delta of the Ganges and Brahmaputra are well recorded in sediment cores from a canyon which deeply incises into the shelf and ends at the foreset beds of the submarine Ganges Brahmaputra delta. The large sediment supply by the two rivers during the monsoonal floods forms temporary deposits on the inner shelf, which are mobilized by waves and currents during the passage of cyclones. The resulting sand-silt-clay suspension forms high-density water masses, which plunge from the inner shelf into the shelf canyon, where they deposit graded beds evenly draping the broad canyon floor. A simple model was used to rank the historical known cyclones according to their capacity to transfer sediment from the submarine delta into the canyon. In a 362 cm-long sediment core ranging from the year 1985 to 2006, 48 graded beds can be correlated with the observed 41 cyclones. The cyclonic impact on the sediment transport has decreased by a factor of three during the last decade. The highest cyclonic impact occurred during the seventies. Compared to the sediment transfer by cyclones, the input by tidal currents and monsoonal floods is negligible. Thus cyclones are the dominating process for mobilizing and distributing sediment on the Bangladesh shelf and probably also on all shelf areas, which lie in the track of tropical cyclones.

  18. Enhanced viscous flow drag reduction using acoustic excitation

    NASA Technical Reports Server (NTRS)

    Nagel, Robert T.

    1987-01-01

    Proper acoustic excitation of a single large-eddy break-up device can increase the resulting drag reduction and, after approximately 40 to 50 delta downstream, provide net drag reduction. Precise optimization of the input time delay, amplitude and response threshold is difficult but possible to achieve. Drag reduction is improved with optimized conditions. The possibility of optimized processing strongly suggests a mechanism which involves interaction of the acoustic waves and large eddies at the trailing edge of the large eddy break-up device. Although the mechanism for spreading of this phenomenon is unknown, it is apparent that the drag reduction effect does tend to spread spanwise as the flow convects downstream. The phenomenon is not unique to a particular blade configuration or flow velocity, although all data have been obtained at relatively low Reynolds numbers. The general repeatibility of the results for small configuration changes serves as verification of the phenomenon.

  19. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  20. Design, characterization and modeling of biobased acoustic foams

    NASA Astrophysics Data System (ADS)

    Ghaffari Mosanenzadeh, Shahrzad

    Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube

  1. The relationships between precipitation, convective cloud and tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Ruan, Z.; Wu, Q.

    2017-12-01

    Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K

  2. Annual Tropical Cyclone Report, 1983.

    DTIC Science & Technology

    1983-01-01

    impact on Ellen. In addition to were based primarily on the presence of interferring with Ellen’s outflow at upper- upper-level banding features...upper-level flow impacting Thelma is reflected in the rapidity with which the The first warning on Thelma, as a system sheared while moving...8217 %,d 4 "." ,"." .".-*. .*’,.--" * . . ." .’% .. .J *. " . . . . . . .. . . . . .• . ’ .".• -* ". FOREWORD The Annual Tropical Cyclone Report

  3. Tropical Cyclone Spin-Up Revisited

    DTIC Science & Technology

    2009-05-01

    Rev. Earth Planet. Sci. 31: 75–104. Emanuel KA, Neelin JD, Bretherton CS. 1994. On large-scale circulations in convecting atmospheres . Q. J. R...cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans 40: 189–208. Smith RK, Montgomery MT, Vogl S. 2008. A critique of Emanuel’s...surface heat exchange, was first coined by Yano and Emanuel (1991) to denote the source of fluctuations in subcloud-layer entropy aris- ing from

  4. Acoustic assessment of speech privacy curtains in two nursing units

    PubMed Central

    Pope, Diana S.; Miller-Klein, Erik T.

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s’ standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered. PMID:26780959

  5. Acoustic assessment of speech privacy curtains in two nursing units.

    PubMed

    Pope, Diana S; Miller-Klein, Erik T

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.

  6. Cyclone '78 in Sri Lanka--the mental health trail.

    PubMed

    Patrick, V; Patrick, W K

    1981-03-01

    A longitudinal study of psychological disturbance in the affected population in Sri Lanka after the cyclone disaster of 1978 was carried out. The post-cyclonic stress identified among the rural communities after their return to the same destroyed environment was studied. Symptoms tended to be early or delayed in appearance. The degree of unpreparedness is postulated as the causes of the former. Group cohesiveness and feelings of community tended to delay the manifestation of symptoms. Realization of losses, family needs, and continued habitation in damaged homes acted as reminders and reinforcers. Morbidity continued to affect over half the population one year later. Early intervention within community settings after such disasters is recommended.

  7. A 320-year AMM+SOI Index Reconstruction from Historical Atlantic Tropical Cyclone Records

    NASA Astrophysics Data System (ADS)

    Chenoweth, M.; Divine, D.

    2010-12-01

    Trends in the frequency of North Atlantic tropical cyclones, including major hurricanes, are dominated by those originating in the deep tropics. In addition, these tropical cyclones are stronger when making landfall and their total power dissipation is higher than storms forming elsewhere in the Atlantic basin. Both the Atlantic Meridional Mode (AMM) and El Nino-Southern Oscillation (ENSO) are the leading modes of coupled air-sea interaction in the Atlantic and Pacific, respectively, and have well-established relationships with Atlantic hurricane variability. Here we use a 320-year record of tropical cyclone activity in the Lesser Antilles region of the North Atlantic from historical manuscript and newspaper records to reconstruct a normalized seasonal (July-October) index combining the Southern Oscillation Index (SOI) and AMM employing both the modern analog technique and back-propagation artificial neural networks. Our results indicate that the AMM+SOI index since 1690 shows no long-term trend but is dominated by both short-term (<10 years) and long-term (quasi-decadal to bi-decadal) variations. The decadal-scale variation is consistent with both instrumental and proxy records elsewhere from the global tropics. Distinct periods of high and low index values, corresponding to high and low tropical cyclone frequency, are regularly-appearing features in the record and provides further evidence that natural decadal -scale variability in Atlantic tropical cyclone frequency must be accounted for when determining trends in records and attribution of climate change.

  8. OSSE Assessment of Ocean Observing System Enhancements to Improve Coupled Tropical Cyclone Intensity Prediction

    NASA Astrophysics Data System (ADS)

    Halliwell, G. R., Jr.; Mehari, M. F.; Dong, J.; Kourafalou, V.; Atlas, R. M.; Kang, H.; Le Henaff, M.

    2016-02-01

    A new ocean OSSE system validated in the tropical/subtropical Atlantic Ocean is used to evaluate ocean observing strategies during the 2014 hurricane season with the goal of improving coupled tropical cyclone forecasts. Enhancements to the existing operational ocean observing system are evaluated prior to two storms, Edouard and Gonzalo, where ocean measurements were obtained during field experiments supported by the 2013 Disaster Relief Appropriation Act. For Gonzalo, a reference OSSE is performed to evaluate the impact of two ocean gliders deployed north and south of Puerto Rico and two Alamo profiling floats deployed in the same general region during most of the hurricane season. For Edouard, a reference OSSE is performed to evaluate impacts of the pre-storm ocean profile survey conducted by NOAA WP-3D aircraft. For both storms, additional OSSEs are then conducted to evaluate more extensive seasonal and pre-storm ocean observing strategies. These include (1) deploying a larger number of synthetic ocean gliders during the hurricane season, (2) deploying pre-storm synthetic thermistor chains or synthetic profiling floats along one or more "picket fence" lines that cross projected storm tracks, and (3) designing pre-storm airborne profiling surveys to have larger impacts than the actual pre-storm survey conducted for Edouard. Impacts are evaluated based on error reduction in ocean parameters important to SST cooling and hurricane intensity such as ocean heat content and the structure of the ocean eddy field. In all cases, ocean profiles that sample both temperature and salinity down to 1000m provide greater overall error reduction than shallower temperature profiles obtained from AXBTs and thermistor chains. Large spatial coverage with multiple instruments spanning a few degrees of longitude and latitude is necessary to sufficiently reduce ocean initialization errors over a region broad enough to significantly impact predicted surface enthalpy flux into the storm

  9. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  10. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century

    PubMed Central

    Emanuel, Kerry A.

    2013-01-01

    A recently developed technique for simulating large [O(104)] numbers of tropical cyclones in climate states described by global gridded data is applied to simulations of historical and future climate states simulated by six Coupled Model Intercomparison Project 5 (CMIP5) global climate models. Tropical cyclones downscaled from the climate of the period 1950–2005 are compared with those of the 21st century in simulations that stipulate that the radiative forcing from greenhouse gases increases by over preindustrial values. In contrast to storms that appear explicitly in most global models, the frequency of downscaled tropical cyclones increases during the 21st century in most locations. The intensity of such storms, as measured by their maximum wind speeds, also increases, in agreement with previous results. Increases in tropical cyclone activity are most prominent in the western North Pacific, but are evident in other regions except for the southwestern Pacific. The increased frequency of events is consistent with increases in a genesis potential index based on monthly mean global model output. These results are compared and contrasted with other inferences concerning the effect of global warming on tropical cyclones. PMID:23836646

  11. Strong Extratropical Cyclone Over the US Midwest

    NASA Image and Video Library

    2010-10-29

    NASA image acquired October 26, 2010 The storm that swept across the center of the United States on October 26 and October 27, 2010, was memorable to those who experienced it because of its strong winds, rain, hail, and widespread tornadoes. Meteorologists get excited about the storm because it set a record for the lowest pressure (not associated with a hurricane) measured over land in the continental United States. At 5:13 p.m. CDT, the weather station in Bigfork, Minnesota recorded 955.2 millibars (28.21 inches of pressure). Pressure is one indicator of a storm’s strength, and this measurement corresponds to the pressure seen in a Category 3 hurricane. This image, taken by the GOES satellite on October 26, shows the storm system circling around the area of extreme low pressure. Such extratropical cyclones form over the United States in the spring and fall, when the temperature difference from north to south is large. Warm, high-pressure air rushes toward the cooler, low-pressure air in the north. Because the Earth is rotating, the air moving in ends up circling the area of low pressure, creating the cyclone shown in the image. The intensity of the storm is determined by the pressure difference between the center and the outer edges. Extreme low pressure in the center of the storm, therefore, is an indicator that the storm was very intense. The animation shows the storm developing starting late on October 25 and running through October 27. The cyclone formed very quickly on October 26, taking a distinctive comma shape as the day went on. The storm developed so quickly, in fact, that it is classified as a bomb, an extremely fast developing storm (dropping at least one millibar of pressure per hour for 24 hours), more common over water than land. The storm was also huge. Though the area of low pressure is centered over the Upper Midwest, the storm reached from the Gulf of Mexico into Canada, and from the Rocky Mountains to the Atlantic Ocean. Extratropical

  12. Satellite-observed latent heat release in a tropical cyclone

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Rodgers, E. B.

    1976-01-01

    Data from the Nimbus 5 electrically scanning microwave radiometer (ESMR) are used to make calculations of the latent heat release (L.H.R.) and the distribution of rainfall rate in a tropical cyclone as it grows from a tropical disturbance to a typhoon. The L.H.R. (calculated over a circular area of 4 deg latitude radius) increases during the development and intensification of the storm from a magnitude of 2.7 X 10 to the 21st power ergs/s (in the disturbance stage) to 8.8 X 10 to the 21st power ergs (typhoon stage). The latter value corresponds to a mean rainfall rate of 2.0 mm hr/s. The more intense the cyclone and the greater the L.H.R., the greater the percentage contribution of the larger rainfall rates to the L.H.R. In the disturbance stage the percentage contribution of rainfall rates less than or minus 6 mm hr/s is typically 8%; for the typhoon stage, the value is 38%. The distribution of rainfall rate as a function of radial distance from the center indicates that as the cyclone intensifies, the higher rainfall rates tend to concentrate toward the center of the circulation.

  13. Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks

    DOE PAGES

    Daloz, Anne S.; Camargo, S. J.; Kossin, J. P.; ...

    2015-02-11

    A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. Here, for both configurations, tracksmore » are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors’ results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Lastly, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.« less

  14. Building of tropical beach ridges, northeastern Queensland, Australia: Cyclone inundation and aeolian decoration

    NASA Astrophysics Data System (ADS)

    Tamura, Toru; Nicholas, William; Brooke, Brendan; Oliver, Thomas

    2016-04-01

    Processes associated with tropical cyclones are thought responsible for building coarse sand beach ridges along the northeastern Queensland coast, Australia. While these ridges are expected to be geological records of the past cyclone, they question the general consensus of the aeolian genesis of sandy beach ridges. To explore the ridge-forming process, we carried out the GPR survey, auger drilling, pit excavation, grain-size analysis, and OSL dating for coarse sand beach ridges at the Cowley Beach, northeastern Queensland. The Cowley Beach is a mesotidal beach characterized by a low-tide terrace and steep beach face. Ten beach ridges are recognized along the survey transect that extends 700 m inland from the shore. 37 OSL ages are younger seawards, indicating the seaward accretion of the ridge sequence over the last 2700 years. The highest ridge is +5.1 m high above AHD (Australian Height Datum). Two GPR units are bounded by a groundwater surface at c. +1.5 m AHD. The upper unit is characterized by horizontal to hummocky reflectors punctuated by seaward dipping truncation surfaces. These reflectors in places form dome-like structure that appears to be the nucleus of a beach ridge. The shape and level (+2.5 m AHD) of the dome are similar to those of the present swash berm. The lower unit shows a sequence of reflectors that dip at an angle of present beach face. The sequence is dissected by truncation surfaces, some of which are continuous to those in the upper unit. Coarse sand mainly forms beach ridge deposits below +4.0 m AHD, while a few higher ridges have an upward fining layer composed of medium sand above +4.0 m, which is finer than aeolian ripples found on the backshore during the survey. In addition, pumice gravel horizons underlie the examined ridge crests. The sequence of seaward dipping reflectors indicates that the Cowley Beach, like other many sandy beaches, has prograded during onshore sand accretion by fairweather waves and has been eroded by storms

  15. Ultrasound-modulated optical tomography with intense acoustic bursts.

    PubMed

    Zemp, Roger J; Kim, Chulhong; Wang, Lihong V

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  16. Cyclone Hudah As Seen By MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Tropical Cyclone Hudah was one of most powerful storms ever seen in the Indian Ocean. This image from the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra was taken on March 29, 2000. The structure of the eye of the storm is brought out by MODIS' 250-meter resolution. Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  17. Serial Clustering of North Atlantic Cyclones and Wind Storms: A New Identification Base and Sensitivity to Intensity and Intra-Seasonal Variability

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Kirchner-Bossi, N. O.; Befort, D. J.; Ulbrich, U.

    2015-12-01

    Time-clustered mid-latitude winter storms are responsible for a large portion of the overall windstorm-related damage in Europe. Thus, its study entails a high meteorological interest, while its outcome can result in a crucial utility for the (re)insurance industry. In addition to existing cyclone-based studies, here we use an event identification approach based on surface near wind speeds only, to investigate windstorm clustering and compare it to cyclone clustering. Specifically, cyclone and windstorm tracks are identified for winter 1979-2013 (Oct-Mar), to perform two sensitivity analyses on event-clustering in the North Atlantic using ERA-Interim Reanalysis. First, the link between clustering and cyclone intensity is analysed and compared to windstorms. Secondly, the sensitivity of clustering on intra-seasonal time scales is investigated, for both cyclones and windstorms. The wind-based approach reveals additional regions of clustering over Western Europe, which could be related to extreme damages, showing the added value of investigating wind field derived tracks in addition to that of cyclone tracks. Previous studies indicate a higher degree of clustering for stronger cyclones. However, our results show that this assumption is not always met. Although a positive relationship is confirmed for the clustering centre located over Iceland, clustering off the coast of the Iberian Peninsula behaves opposite. Even though this region shows the highest clustering, most of its signal is due to cyclones with intensities below the 70th percentile of the Laplacian of MSLP. Results on the sensitivity of clustering to the time of the winter season (Oct-Mar) show a temporal evolution of the clustering patterns, for both windstorms and cyclones. Compared to all cyclones, clustering of windstorms and strongest cyclones culminate around February, while all cyclone clustering peak in December to January.

  18. RegCM4-HadGEM2-ES simulated cyclone climatology (1979-2005) over the Southwestern South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Porfírio da Rocha, Rosmeri; Simões Reboita, Michelle

    2015-04-01

    Cyclones over the Southwestern South Atlantic Ocean (SAO) are a subject of great interest once they modify the weather and control the climate near east coast of South America (SA). In this study we compare the cyclones climatology in the period 1979-2005 simulated by Regional Climate Model version 4 (RegCM4) with that from ERA-Interim reanalysis (ECMWF). RegCM4 was nested in HadGEM2-ES output and the simulation used the SA domain of CORDEX project, with a horizontal grid of 50 km and 18 sigma-pressure levels in the vertical. The RegCM4 simulation used the land surface Biosphere-Atmosphere Transfer Scheme (BATS) and the mixed convection Emanuel-Grell scheme configurations. This simulation is part of the CREMA (CORDEX REgCM4 hyper-MAtrix) experiment. The cyclones were identified using an automated tracking scheme based on minima (cyclonic in Southern Hemisphere) of relative vorticity from the wind at 925 hPa. The threshold of -1.5 x 10-5s-1 was used in the algorithm. All cyclones in RegCM4 and ERA-Interim with relative vorticity lower than this threshold and with lifetime higher or equal 24 hours were included in the climatology. ERA-Interim shows three main cyclogenetic regions near east coast of SA. In general, RegCM4 simulated these same regions but with an underestimation of the number of cyclones. In each of these regions, there is a different season of higher cyclones frequency. Over extreme south of southern Brazil and Uruguay the higher frequency of cyclones occurs in winter, while southeastern Brazil and southeastern Argentina cyclones are most frequent during summer. RegCM4 is able to simulate this observed seasonality.

  19. Response of primary and secondary rainforest flowers and fruits to a cyclone, and implications for plant-servicing bats.

    PubMed

    Scanlon, Annette T; Petit, Sophie; Tuiwawa, Marika; Naikatini, Alivereti

    2018-02-24

    The response of primary (PF) and secondary (SF) rainforests to cyclones has broad implications for servicing fauna and the resilience of forest functions. We collected fine-scale data on the reproductive phenology of plant communities in Fijian PF and SF in 12 monthly surveys before and after Cyclone Tomas (2010). We generated a resource index from the reproductive loads of 2218 trees and 1150 non-trees (>190 species) and trunk and stem diameter to assess patterns in resource abundance for nectarivores and frugivores (hereafter NF resources). We aimed to determine (i) whether species richness of NF resources differed between forests; (ii) the patterns of resilience of NF resources at community level in both forests after a cyclone; and (iii) the effect of response on NF resources for plant-servicing bats (Pteropodidae). In 12 months preceding the cyclone, NF resources were greater in PF trees; non-tree resources fluctuated and were greater in SF. Lower species richness of NF resources in SF indicated that fewer opportunities exist there for exploitation by a diverse fauna. More resources were available for bats in PF. In 12 months following the cyclone, PF flowers and fruits, and SF fruits specifically used by pteropodid bats decreased for trees. Non-tree resources were especially susceptible to the cyclone. No universal pattern of decline was associated with the cyclone; instead, some NF resources declined and others were resilient or responded rapidly to a post-cyclone environment. Both PF and SF demonstrated resilience at the community level via increased flower survival (PF) and rapid flower production (SF). Reduced species richness of NF resources in SF will compromise future resilience and response to disturbance, including for threatened pteropodid bat species. These findings are critical for long-term management of forests, given predicted increases in cyclone frequency and intensity associated with anthropogenic climate change. © 2018 John Wiley & Sons

  20. An Interactive Parallel Coordinates Technique Applied to a Tropical Cyclone Climate Analysis

    DTIC Science & Technology

    2008-06-06

    12). 3.4 Quasi-Biennial Oscillation Variable Research has also shown that the Quasi-Biennial Oscillation ( QBO ) is corre- lated to tropical cyclone...activity. The QBO is a stratospheric (16 to 35 km altitude) oscillation of equatorial east-west winds which vary with a period of about 26 to 30 months...again. The west phase of the QBO has been shown to provide favorable conditions for development of tropical cyclones, possibly because it reduces

  1. The View from the Top: CALIOP Ice Water Content in the Uppermost Layer of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Avery, Melody A.; Deng, Min; Garnier, Anne; Heymsfield, Andrew; Pelon, Jacques; Powell, Kathleen A.; Trepte, Charles R.; Vaughan, Mark A.; Winker, David M.; Young, Stuart

    2012-01-01

    NASA's CALIPSO satellite carries both the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Imaging Infrared Radiometer (IIR). The lidar is ideally suited to viewing the very top of tropical cyclones, and the IIR provides critical optical and microphysical information. The lidar and the IIR data work together to understand storm clouds since they are perfectly co-located, and big tropical cyclones provide an excellent complex target for comparing the observations. There is a lot of information from these case studies for understanding both the observations and the tropical cyclones, and we are just beginning to scratch the surface of what can be learned. Many tropical cyclone cloud particle measurements are focused on the middle and lower regions of storms, but characterization of cyclone interaction with the lowermost stratosphere at the upper storm boundary may be important for determining the total momentum and moisture transport budget, and perhaps for predicting storm intensity as well. A surprising amount of cloud ice is to be found at the very top of these big storms.

  2. African aerosols and Atlantic tropical cyclone activities

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Sun, D.; Sahoo, A.

    2006-12-01

    Previous studies have shown that the Atlantic basin major hurricane (MH) activity is associated with western Sahelian monsoon rainfall, while rainfall in the Sahel is found to be highly anti-correlated with the African dust storms. So if the Atlantic basin MH activity may be anti-correlated with the African dust aerosols? In order to investigate the relationship between the African dust and the tropical cyclone (including both tropical storms and hurricanes) activities in the Atlantic basin, we explore how the African dust may link to Atlantic TC activity by using the long-term (1982-2005) NCEP Reynolds sea surface temperature (SST) product, and tropical cyclone (TC) data from the National Hurricane Center Best Track Files, and the TOMS aerosol index (AI) data, because the TOMS AI positive values are associated with UV-absorbing aerosols, like dust and smoke. Although no significant negative correlation between the TOMS AI and the Atlantic TC or MH frequency and duration is found, the initial locations of the Atlantic tropical cyclones did occur over the ocean where the aerosol loading was low. Our analysis shows that SST over the north tropical Atlantic ocean is anti-correlated with the TOMS aerosol index. This may be due to the radiative forcing of the aerosols. The effects of the dust aerosols carried across the West African region led to a lowering of SST and therefore inhibited tropical cyclogenesis. During 2005, the aerosol loading along the western African coast was unusually low, while the SST over the main development region (MDR) was abnormally high, and the Atlantic TC/hurricane activities became record strong. We propose future observations to test these results.

  3. Parameter Uncertainty on AGCM-simulated Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    He, F.

    2015-12-01

    This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.

  4. An Evaluation of QuikSCAT data over Tropical Cyclones as Determined in an Operational Environment

    NASA Astrophysics Data System (ADS)

    Hawkins, J. D.; Edson, R. T.

    2001-12-01

    QuikSCAT data over all global tropical cyclones were examined during the past 3 1/2 years in conjunction with the development of a user¡_s guide to the forecasters at the Joint Typhoon Warning Center, Pearl Harbor, Hawaii. The active microwave scatterometer has greatly enhanced the forecaster's ability to evaluate surface winds over the data poor regions of the tropical oceans. The QuikSCAT scatterometer¡_s unique ability to provide both wind speed and direction on a nearly bi-daily basis has greatly increased the forecaster¡_s near real-time knowledge of tropical cyclone genesis, intensification potential, outer wind structure, and a ¡rminimum estimate¡_ for a tropical cyclone¡_s maximum sustained winds. Scatterometer data were compared with data available to the forecasters in a near real-time environment including ship, land and buoy reports. In addition, comparisons were also made with aircraft measurements (for Atlantic and East Pacific systems), numerical weather model wind fields, and various remote sensing techniques. Wind speeds were found to be extremely useful, especially for the radius of gale force winds. However, in rain-contaminated areas, light winds were often greatly overestimated while in heavy winds, wind speeds were often quite reasonable if not slightly underestimated. The largest issues are still focused on the correct wind direction selection. In these cases, rain-flagged wind vector cells greatly affected the results from the direction ambiguity selection procedure. The ambiguity selection algorithm often had difficulties resolving a circulation center when large areas of the tropical cyclone¡_s center were flagged. Often a block of winds would occur perpendicular to the swath irregardless of the circulation¡_s position. These winds caused considerable confusion for the operational forecasters. However, it was determined that in many cases, an accurate center position could still be obtained by using methods to incorporate the more

  5. Reconfigurable origami-inspired acoustic waveguides

    PubMed Central

    Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia

    2016-01-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527

  6. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    NASA Astrophysics Data System (ADS)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  7. A simple method for simulating wind profiles in the boundary layer of tropical cyclones

    DOE PAGES

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; ...

    2016-11-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method alsomore » requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Lastly, temporal spectra from LES produce an inertial subrange for frequencies ≳0.1 Hz, but only when the horizontal grid spacing ≲20 m.« less

  8. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2017-03-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.

  9. Wave ensemble forecast system for tropical cyclones in the Australian region

    NASA Astrophysics Data System (ADS)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  10. DMS cyclone separation processes for optimization of plastic wastes recycling and their implications.

    PubMed

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana

    2011-06-01

    It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.

  11. Role of upper-ocean on the intensity of Bay of Bengal cyclone `Phailin' as revealed by coupled simulation using Mesoscale Coupled Modeling System (WRF-ROMS)

    NASA Astrophysics Data System (ADS)

    Mani, B.; Mandal, M.

    2016-12-01

    Numerical prediction of tropical cyclone (TC) track has improved significantly in recent years, but not the intensity. It is well accepted that TC induced sea surface temperature (SST) cooling in conjunction with pre-existing upper-ocean features have major influences on tropical cyclone intensity. Absence of two-way atmosphere-ocean feedback in the stand-alone atmosphere models has major consequences on their prediction of TC intensity. The present study investigates the role of upper-ocean on prediction of TC intensity and track based on coupled and uncoupled simulation of the Bay of Bengal (BoB) cyclone `Phailin'. The coupled simulation is conducted with the Mesoscale Coupled Modeling System (MCMS) which is a fully coupled atmosphere-ocean modeling system that includes the non-hydrostatic atmospheric model (WRF-ARW) and the three-dimensional hydrostatic ocean model (ROMS). The uncoupled simulation is performed using the atmosphere component of MCMS i.e., the customized version of WRF-ARW for BoB cyclones with prescribed (RTG) SST. The track and intensity of the storm is significantly better simulated by the MCMS and closely followed the observation. The peak intensity, landfall position and time are accurately predicted by MCMS, whereas the uncoupled simulation over predicted the storm intensity. Validation of storm induced SST cooling with the merged microwave-infrared satellite SST indicates that the MCMS simulation shows better correlation both in terms of spatial spread of cold wake and its magnitude. The analysis also suggests that the Pre-existing Cyclonic Eddy (PCE) observed adjacent to the storm enhanced the TC induced SST cooling. It is observed that the response of SST (i.e., cooling) to storm intensity is 12hr with 95% statistical significance. The air-sea enthalpy flux shows a clear asymmetry between Front Left (FL) and Rear Right (RR) regime to the storm center where TC induced cooling is more than 0.5K/24hr. The analysis of atmospheric boundary

  12. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography.

    PubMed

    Lindsey, Brooks D; Shelton, Sarah E; Martin, K Heath; Ozgun, Kathryn A; Rojas, Juan D; Foster, F Stuart; Dayton, Paul A

    2017-04-01

    Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.

  13. A study on raindrop size distribution variability in before and after landfall precipitations of tropical cyclones observed over southern India

    NASA Astrophysics Data System (ADS)

    Janapati, Jayalakshmi; seela, Balaji Kumar; Reddy M., Venkatrami; Reddy K., Krishna; Lin, Pay-Liam; Rao T., Narayana; Liu, Chian-Yi

    2017-06-01

    Raindrop size distribution (RSD) characteristics in before landfall (BLF) and after landfall (ALF) of three tropical cyclones (JAL, THANE, and NILAM) induced precipitations are investigated by using a laser-based (PARticleSIze and VELocity - PARSIVEL) disdrometer at two different locations [Kadapa (14.47°N, 78.82°E) and Gadanki (13.5°N, 79.2°E)] in semi-arid region of southern India. In both BLF and ALF precipitations of these three cyclones, convective precipitations have higher mass weighted mean diameter (Dm) and lower normalized intercept parameter (log10Nw) values than stratiform precipitations. The radar reflectivity (Z) and rain rate (R) relations (Z=A*Rb) showed distinct variations in BLF and ALF precipitations of three cyclones. BLF precipitation of JAL cyclone has a higher Dm than ALF precipitation. Whereas, for THANE and NILAM cyclones ALF precipitations have higher Dm than BLF. The Dm values of three cyclones (both in BLF and ALF) are smaller than the Dm values of the other (Atlantic and Pacific) oceanic cyclones. Interaction of different regions (eyewall, inner rainbands, and outer rainbands) of cyclones with the environment and underlying surface led to RSD variations between BLF and ALF precipitations through different microphysical (collision-coalescence, breakup, evaporation, and riming) processes. The immediate significance of the present work is that (i) it contributes to our understanding of cyclone RSD in BLF and ALF precipitations, and (ii) it provides the useful information for quantitative estimation of rainfall from Doppler weather radar observations.

  14. Acoustic and Aerothermal Performance Test of the Axisymmetric Coannular Ejector Nozzle. Volume 2; Acoustic Performance

    NASA Technical Reports Server (NTRS)

    Herkes, William

    2000-01-01

    Acoustic and propulsion performance testing of a model-scale Axisymmetric Coannular Ejector nozzle was conducted in the Boeing Low-speed Aeroacoustic Facility. This nozzle is a plug nozzle with an ejector design to provide aspiration of about 20% of the engine flow. A variety of mixing enhancers were designed to promote mixing of the engine and the aspirated flows. These included delta tabs, tone-injection rods, and wheeler ramps. This report addresses the acoustic aspects of the testing. The spectral characteristics of the various configurations of the nozzle are examined on a model-scale basis. This includes indentifying particular noise sources contributing to the spectra and the data are projected to full-scale flyover conditions to evaluate the effectiveness of the nozzle, and of the various mixing enhancers, on reducing the Effective Perceived Noise Levels.

  15. Tropical Cyclone Formation in 30-day Simulation Using Cloud-System-Resolving Global Nonhydrostatic Model (NICAM)

    NASA Astrophysics Data System (ADS)

    Yanase, W.; Satoh, M.; Iga, S.; Tomita, H.

    2007-12-01

    We are developing an icosahedral-grid non-hydrostatic AGCM, which can explicitly represent cumulus or meso-scale convection over the entire globe. We named the model NICAM (Nonhydrostatic ICosahedral Atmospheric Model). On 2005, we have performed a simulations with horizontal grid intervals of 14, 7 and 3.5 km using realistic topography and sea surface temperature in April 2004 (Miura et al., 2007; GRL). It simulated a typhoon Sudal that actually developed over the Northwestern Pacific in 2004. In the present study, the NICAM model with the horizontal grid interval of 14 km was used for perpetual July experiment with 30 forecasting days. In this simulation, several tropical cyclones formed over the wesetern and eastern North Pacific, althought the formation over the western North Pacific occured a little further north to the actually observed region. The mature tropical cyclones with intense wind speed had a structure of a cloud-free eye and eye wall. We have found that the enviromental parameters associated with the tropical cyclone genesis explain well the simulated region of tropical cyclone generation. Over the North Atlantic and eastern North Pacific, westward-moving disturbances like African wave are simulated, which seems to be related to the cyclone formation over the eastern North Pacific. On the other hand, the simulated tropical cyclones over the western North Pacifis seem to form by different factors as has been suggested by the previous studies based on observation. Although the model still has some problems and is under continuous improvement, we can discuss what dynamics is to be represented using a global high-resolution model.

  16. Stimulated phase-shift acoustic nanodroplets enhance vancomycin efficacy against methicillin-resistant Staphylococcus aureus biofilms.

    PubMed

    Guo, Hao; Wang, Ziming; Du, Quanyin; Li, Pan; Wang, Zhigang; Wang, Aimin

    2017-01-01

    Bacterial biofilms on the surface of prostheses are becoming a rising concern in managing prosthetic joint infections. The inherent resistant features of biofilms render traditional antimicrobial therapy unproductive and revision surgery outcomes uncertain. This situation has prompted the exploration of novel antimicrobial strategies. The synergy of ultrasound microbubbles and vancomycin has been proposed as an efficient alternative for biofilm eradication. The purpose of this study was to evaluate the anti-biofilm effect of stimulated phase-shift acoustic nanodroplets (NDs) combined with vancomycin. We fabricated lipid phase-shift NDs with a core of liquid perfluoropentane. A new phase change mode for NDs incorporating an initial unfocused low-intensity pulsed ultrasound for 5 minutes and a subsequent incubation at 37°C into a 24-hour duration was developed. Methicillin-resistant Staphylococcus aureus (MRSA) biofilms were incubated with vancomycin and NDs under the hybrid stimulation. Biofilm morphology following treatment was determined using confocal laser scanning microscopy and scanning electron microscopy. Resazurin assay was used to quantify bactericidal efficacy against MRSA biofilm bacteria. NDs treated sequentially with ultrasound and heating at 37°C achieved gradual and substantial ND vaporization and cavitation in a successive process. NDs after stimulation were capable of generating stronger destruction on biofilm structure which was best characterized by residual circular arc margins and more dead bacteria. Furthermore, NDs combined with vancomycin contributed to significantly decreasing the metabolic activity of bacteria in MRSA biofilms ( P <0.05). Phase-shift acoustic NDs could exert a significant bactericidal effect against MRSA biofilms through a new stimulation mode. Acoustic NDs present advantages over microbubbles for biofilm damage. This anti-biofilm strategy could be used either alone or as an enhancer of traditional antibiotics in the

  17. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a

  18. APPLICATIONS ANALYSIS REPORT: BABCOCK AND WILCOX CYCLONE FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Babcock & Wilcox (B&W) Cyclone Furnace Vitrification Technology and its applicability as a treatment technique for soils contaminated with heavy metals, radionuclides, and organics. oth the technical and economic aspects of...

  19. Dust cyclone research in the 21st century

    USDA-ARS?s Scientific Manuscript database

    Research to meet the demand for ever more efficient dust cyclones continues after some eighty years. Recent trends emphasize design optimization through computational fluid dynamics (CFD) and testing design subtleties not modeled by semi-empirical equations. Improvements to current best available ...

  20. Experiments with Tropical Cyclone Wave and Intensity Forecasts

    DTIC Science & Technology

    2008-09-30

    algorithm In collaboration with Paul Wittmann (Fleet Numerical Metorology and Oceanography Center) and Hendrik Tolman (National Centers for...Wittmann, P.A., C Sampson and H. Tolman: 2006: Wave Analysis Guidance for Tropical Cyclone Forecast Advisories. 9th International Workshop on Wave

  1. The Role of the Stratosphere in Explosive Deepening of Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter; Wilbraham, Robert; Trzeciak, Tomek; Owen, Jenny; Odell, Luke; Fink, Andreas H.; Pinto, Joaquim G.

    2014-05-01

    Using a combination of an automatic cyclone tracking method and a special version of the classical pressure tendency equation (PTE), changes in surface core pressure of extra-tropical cyclones can be related to contributions from horizontal temperature advection, vertical motion and diabatic processes, i.e. mainly latent heat release in clouds. Here, the PTE is evaluated in 3°x3° boxes located over the cyclone positions at 6-hourly basis, thus following the movement of a given storm at each time step. PTE calculations are performed from the surface to 100 hPa. Previous work has shown that this approach can be used to quantify the contribution of diabatic processes to cyclone deepening in an automated way, and can easily be applied to large gridded datasets, in this case ERA-Interim reanalyses. In order to close the mass budget in the PTE, geopotential height tendencies at the upper integration boundary (usually 100 hPa) need to be taken into account. Older studies have assumed this term to be negligible, and this has been confirmed with modern re-analysis data for many explosively deepening storms. However, some historical storms show a remarkable contribution from this term, indicating a substantial warming of the levels above 100hPa. An outstanding example is the Braer Storm of January 1993, which reached a record minimum core pressure of 914 hPa near Iceland. A stepwise increase of the upper integration boundary reveals that substantial geopotential height tendencies reach above 1 hPa. This unusual behaviour appears to be related to the propagation of a deep planetary wave trough from North America towards the North Atlantic basin. A similar but somewhat less dramatic behaviour was found for cyclone Wiebke. Another interesting example is storm Emma, which managed to sustain substantial deepening rates despite adverse positive geopotential height tendencies at 100 hPa. Future work will include a more robust statistical analysis of this problem and a better

  2. North Atlantic cyclones; trends, impacts and links to large-scale variability

    NASA Astrophysics Data System (ADS)

    Trigo, R. M.; Trigo, I. F.; Ramos, A. M.; Paredes, D.; Garcia-Herrera, R.; Liberato, M. L. R.; Valente, M. A.

    2009-04-01

    Based on the cyclone detection and tracking algorithm previously developed (Trigo, 2006) we have assessed the inter-annual variability and cyclone frequency trends between 1960 and 2000 for the Euro-Atlantic sector using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 Surface Level Pressure. Additionally, trends for the u and v wind speed components are also computed at the monthly and seasonal scales, using the same dataset. All cyclone and wind speed trend maps were computed with the corresponding statistical significance field. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February and March. Seasonal and monthly analysis of wind speed trends shows similar spatial patterns. We show that these changes in the frequency of low pressure centers and the associated wind patterns are partially responsible for trends of the significant height of waves. Throughout the extended winter months (ONDJFM), regions with positive (negative) wind magnitude trends, of up to 5 cm/s per year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for the JFM months are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of 50°N up to -3 cm/year, and positive up to 5cm/year just north of Scotland). Using precipitation data from ECMWF reanalyses and a CRU high resolution dataset we show the impact of these trends in cyclone frequencies upon the corresponding precipitation trends in the influenced areas. It is also shown that these changes are partially linked to major shifts on the indices of large-scale patterns modes, namely the North Atlantic Oscillation (NAO), the Eastern Atlantic (EA) and the Scandinavian Patterns (SCAN). Trigo, I. F. 2006: Climatology and Interannual Variability of Storm-Tracks in

  3. Investigation of the Ionsopheric Response to Tropical Cyclones Using Ground and Satellite Based Observations Over Indian Region

    NASA Astrophysics Data System (ADS)

    G J, B.; Lal, M.

    2015-12-01

    The present work investigates the equatorial ionospheric response to tropical cyclones which were observed over the Arabian and Bay of Bengal Ocean during the year 2009-2013. The present study utilizes various datasets in order to strengthen the mechanism of troposphere-ionosphere coupling. The tropical cyclone track and data can be obtained from the Indian Meteorological Department, New Delhi. Ionsopheric variations can be monitored from the ground based digisonde located at equatorial station, Trivandrum (8.48oN, 76.95oE), Tirunelveli (8.7oN, 77.8oE) and off equatorial station Allahabad (25.45oN, 81.85oE) and CDAAC COSMIC satellite data. It is believed that tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. The convective regions are identified with the help of Outgoing Long wave radiation from NOAA. Gravity wave propagation is mainly depends on the background wind condition, can be examined by using NASA MERRA reanalyses. These Upward propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). It is found that the enhancement of this wave activity is increased by orders of 10 at ionospheric level. The Ionospheric variability is measured by examining the variation in the parameters such as, Total Electron Content (TEC), foF2, hmF2, foE, MUF, h'E and h'F. The extensive analysis will be carried out in order to understand the coupling mechanism between troposphere and ionosphere region. The detailed results will be discussed in the meeting.

  4. Assessing the Importance of Atlantic Basin Tropical Cyclone Steering Currents in Anticipating Landfall Risk

    NASA Astrophysics Data System (ADS)

    Truchelut, R.; Hart, R. E.

    2013-12-01

    While a number of research groups offer quantitative pre-seasonal assessments of aggregate annual Atlantic Basin tropical cyclone activity, the literature is comparatively thin concerning methods to meaningfully quantify seasonal U.S. landfall risks. As the example of Hurricane Andrew impacting Southeast Florida in the otherwise quiet 1992 season demonstrates, an accurate probabilistic assessment of seasonal tropical cyclone threat levels would be of immense public utility and economic value; however, the methods used to predict annual activity demonstrate little skill for predicting annual count of landfalling systems of any intensity bin. Therefore, while current models are optimized to predict cumulative seasonal tropical cyclone activity, they are not ideal tools for assessing the potential for sensible impacts of storms on populated areas. This research aims to bridge the utility gap in seasonal tropical cyclone forecasting by shifting the focus of seasonal modelling to the parameters that are most closely linked to creating conditions favorable for U.S. landfalls, particularly those of destructive and costly intense hurricanes. As it is clear from the initial findings of this study that overall activity has a limited influence on sensible outcomes, this project concentrates on detecting predictability and trends in cyclogenesis location and upper-level wind steering patterns. These metrics are demonstrated to have a relationship with landfall activity in the Atlantic Basin climatological record. By aggregating historic seasonally-averaged steering patterns using newly-available reanalysis model datasets, some atmospheric and oceanic precursors to an elevated risk of North American tropical cyclone landfall have been identified. Work is ongoing to quantify the variance, persistence, and predictability of such patterns over seasonal timescales, with the aim of yielding tools that could be incorporated into tropical cyclone risk mitigation strategies.

  5. North Atlantic Basin Tropical Cyclone Activity in Relation to Temperature and Decadal- Length Oscillation Patterns

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    Yearly frequencies of North Atlantic basin tropical cyclones, their locations of origin, peak wind speeds, average peak wind speeds, lowest pressures, and average lowest pressures for the interval 1950-2008 are examined. The effects of El Nino and La Nina on the tropical cyclone parametric values are investigated. Yearly and 10-year moving average (10-yma) values of tropical cyclone parameters are compared against those of temperature and decadal-length oscillation, employing both linear and bi-variate analysis, and first differences in the 10-yma are determined. Discussion of the 2009 North Atlantic basin hurricane season, updating earlier results, is given.

  6. Enhancing the sensitivity of three-axis detectable surface acoustic wave gyroscope by using a floating thin piezoelectric membrane

    NASA Astrophysics Data System (ADS)

    Lee, Munhwan; Lee, Keekeun

    2017-06-01

    A new type of surface acoustic wave (SAW) gyroscope was developed on a floating thin piezoelectric membrane to enhance sensitivity and reliability by removing a bulk noise effect and by importing a higher amplitude of SAW. The developed device constitutes a two-port SAW resonator with a metallic dot array between two interdigital transducers (IDTs), and a one-port SAW delay line. The bulk silicon was completely etched away, leaving only a thin piezoelectric membrane with a thickness of one wavelength. A voltage controlled oscillator (VCO) was connected to a SAW resonator to activate the SAW resonator, while the SAW delay line was connected to the oscilloscope to monitor any variations caused by the Coriolis force. When the device was rotated, a secondary wave was generated, changing the amplitude of the SAW delay line. The highest sensitivity was observed in a device with a full acoustic wavelength thickness of the membrane because most of the acoustic field is confined within an acoustic wavelength thickness from the top surface; moreover, the thin-membrane-based gyroscope eliminates the bulk noise effect flowing along the bulk substrate. The obtained sensitivity and linearity of the SAW gyroscope were ˜27.5 µV deg-1 s-1 and ˜4.3%, respectively. Superior directivity was observed. The device surface was vacuum-sealed using poly(dimethylsiloxane) (PDMS) bonding to eliminate environmental interference. A three-axis detectable gyroscope was also implemented by placing three gyrosensors with the same configuration at right angles to each other on a printed circuit board.

  7. An Extended Forecast of the Frequencies of North Atlantic Basin Tropical Cyclone Activity for 2009

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    An extended forecast of the frequencies for the 2009 North Atlantic basin hurricane season is presented. Continued increased activity during the 2009 season with numbers of tropical cyclones, hurricanes, and major hurricanes exceeding long-term averages are indicated. Poisson statistics for the combined high-activity intervals (1950-1965 and 1995-2008) give the central 50% intervals to be 9-14, 5-8, and 2-4, respectively, for the number of tropical cyclones, hurricanes, and major hurricanes, with a 23.4% chance of exceeding 14 tropical cyclones, a 28% chance of exceeding 8 hurricanes, and a 31.9% chance of exceeding 4 major hurricanes. Based strictly on the statistics of the current high-activity interval (1995-2008), the central 50% intervals for the numbers of tropical cyclones, hurricanes, and major hurricanes are 12-18, 6-10, and 3-5, respectively, with only a 5% chance of exceeding 23, 13, or 7 storms, respectively. Also examined are the first differences in 10-yr moving averages and the effects of global warming and decadal-length oscillations on the frequencies of occurrence for North Atlantic basin tropical cyclones. In particular, temperature now appears to be the principal driver of increased activity and storm strength during the current high-activity interval, with near-record values possible during the 2009 season.

  8. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    DOE PAGES

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...

    2016-02-25

    This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less

  9. Tropical Cyclone Monty Strikes Western Australia

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) acquired these natural color images and cloud top height measurements for Monty before and after the storm made landfall over the remote Pilbara region of Western Australia, on February 29 and March 2, 2004 (shown as the left and right-hand image sets, respectively). On February 29, Monty was upgraded to category 4 cyclone status. After traveling inland about 300 kilometers to the south, the cyclonic circulation had decayed considerably, although category 3 force winds were reported on the ground. Some parts of the drought-affected Pilbara region received more than 300 millimeters of rainfall, and serious and extensive flooding has occurred.

    The natural color images cover much of the same area, although the right-hand panels are offset slightly to the east. Automated stereoscopic processing of data from multiple MISR cameras was utilized to produce the cloud-top height fields. The distinctive spatial patterns of the clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. The height retrievals are at this stage uncorrected for the effects of the high winds associated with cyclone rotation. Areas where heights could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 22335 and 22364. The panels cover an area of about 380 kilometers x 985 kilometers, and utilize data from blocks 105 to 111 within World Reference System-2 paths 115 and 113.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the

  10. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)

    2001-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  11. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    2000-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  12. An atlas of 1976 GEOS-3 radar altimeter data for tropical cyclone studies

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Chan, B.; Givens, C.; Taylor, R.

    1979-01-01

    The means for locating and extracting GEOS-3 altimeter data acquired for the analysis of specific hurricanes, typhoons, and other tropical cyclones are presented. These data are also expected to be extremely useful in the analysis of the behavior of the altimeter instrument in the presence of severe meteorological disturbances as well as provide a data base which can be useful in the resolution of apparently anomalous geoid or sea surface characteristics. Geographic locations of 1976 tropical cyclones were correlated with the closest approaching orbits of the GEOS-3 satellite and its radar altimeter. The cyclone locations and altimeter data were correlated for the 1976 season. The area of coverage includes the northern hemisphere. This document is a sequel to NASA TM-X-69364 which covered the majority of the 1975 season.

  13. Acoustical imaging of high-frequency elastic responses of targets

    NASA Astrophysics Data System (ADS)

    Morse, Scot F.; Hefner, Brian T.; Marston, Philip L.

    2002-05-01

    Acoustical imaging was used to investigate high-frequency elastic responses to sound of two targets in water. The backscattering of broadband bipolar acoustic pulses by a truncated cylindrical shell was recorded over a wide range of tilt angles [S. F. Morse and P. L. Marston, ``Backscattering of transients by tilted truncated cylindrical shells: time-frequency identification of ray contributions from measurements,'' J. Acoust. Soc. Am. (in press)]. This data set was used to form synthetic aperture images of the target based on the data within different angular apertures. Over a range of viewing angles, the visibility of the cylinder's closest rear corner was significantly enhanced by the meridional flexural wave contribution to the backscattering. In another experiment, the time evolution of acoustic holographic images was used to explore the response of tilted elastic circular disks to tone bursts having frequencies of 250 and 300 kHz. For different tilt angles, specific responses that enhance the backscattering were identified from the time evolution of the images [B. T. Hefner and P. L. Marston, Acoust. Res. Lett. Online 2, 55-60 (2001)]. [Work supported by ONR.

  14. Utilization of satellite cloud information to diagnose the energy state and transformations in extratropical cyclones

    NASA Technical Reports Server (NTRS)

    Smith, P. J.

    1984-01-01

    A study of the contribution of latent heat release to the synoptic scale vertical motions in the Jan. 9-11, 1975 extratropical cyclone case study was completed. Results indicate that early cyclone development was dominated by dry dynamical forcing. However, as the cyclone matured, the influence of latent heating became more significant. This influence appeared to be of two types, (1) the direct impact of heating causing a lowering of surface pressures, and (2) an indirect role in which the heating altered thermal and vorticity gradients and lead to subsequent increases in dry dynamical forcing. The kinetic energy budget was completed and extended to include an available potential energy budget. Focusing on the eddy component of the budgets, results indicate that kinetic energy increased throughout the cyclone's development, with the increase being most pronounced after the onset of significant latent heat release. Latent heating played a strong role not only in generating available potential energy, but also in forcing baroclinic release of potential energy.

  15. Computational Investigation of the NASA Cascade Cyclonic Separation Device

    NASA Technical Reports Server (NTRS)

    Hoyt, Nathaniel C.; Kamotani, Yasuhiro; Kadambi, Jaikrishnan; McQuillen, John B.; Sankovic, John M.

    2008-01-01

    Devices designed to replace the absent buoyancy separation mechanism within a microgravity environment are of considerable interest to NASA as the functionality of many spacecraft systems are dependent on the proper sequestration of interpenetrating gas and liquid phases. Inasmuch, a full multifluid Euler-Euler computational fluid dynamics investigation has been undertaken to evaluate the performance characteristics of one such device, the Cascade Cyclonic Separator, across a full range of inlet volumetric quality with combined volumetric injection rates varying from 1 L/min to 20 L/min. These simulations have delimited the general modes of operation of this class of devices and have proven able to describe the complicated vortex structure and induced pressure gradients that arise. The computational work has furthermore been utilized to analyze design modifications that enhance the overall performance of these devices. The promising results indicate that proper CFD modeling may be successfully used as a tool for microgravity separator design.

  16. NASA/NOAA's Suomi NPP Satellite's Night-time View of Cyclone Evan

    NASA Image and Video Library

    2012-12-20

    This night-time view of Cyclone Evan was taken from the Visible Infrared Imaging Radiometer Suite (VIIRS) on NASA/NOAA's Suomi National Polar-orbiting Partnership on Dec. 16, 2012. The rectangular bright object in the image is a lightning flash. "Because of the scan time as compared to how quickly lightning flashes, you get a nice streak in the data," said William Straka, of the University of Wisconsin-Madison, who provided this image. On Dec. 17 at 0900 UTC (4 a.m. EST), Cyclone Evan had maximum sustained winds near 115 knots (132 mph/213 kph). Evan was a Category 4 cyclone on the Saffir-Simpson Scale and was battering Fiji. Image Credit: NASA/NOAA/UWM/William Straka Text Credit: NASA Goddard/Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Twin Cyclones Result From Shift in the Trade Winds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    QuikSCAT, a NASA satellite instrument that measures winds, observed a strong typhoon threatening the Philippines on March 4, 2002, (top) unusual in the winter season, and a similar tropical cyclone passing along the Australian coast towards Nuomea. These unusual phenomena are results of the westerly winds (blowing from Indonesia towards the American coast) along the equator which started back in February 25, (lower) as QuikSCAT revealed. Color in these images relates to wind speed, arrows indicate direction. The reversal of the usual Trade Winds (which blow from the American coast towards Asia) generally triggers Kelvin waves (warm surface water that moves along the equator from Indonesia to the coast of Peru) and twin cyclones, which are early indicators of El Nino. The equatorial westerly winds generate a counter-clockwise vortex in the Northern Hemisphere and a clockwise vortex in the Southern Hemisphere. The Trade Winds push warm water from east to west across the Pacific, reaching the American coast in one to two months. The increase in frequency and strength of the Kelvin Waves may lead to El Nino. Strong westerly winds and twin cyclones were also observed by QuikSCAT during last Christmas season (2001) and the Kelvin wave triggered at that time reached South America in Early March 2002. Images courtesy Liu, Xie, and Tang, QuikSCAT Science Team

  18. Quality of cyclone early warning services: a case study in remote off-shore island in Bangladesh

    NASA Astrophysics Data System (ADS)

    Ashrafi, Z. M.; Mahmud, S.; Mahbub, A. Q. M.

    2015-12-01

    Geographic location, the unique natural setting of the country and its tropical monsoon climate modify and regulate the climatic condition, makes Bangladesh more vulnerable to cyclones and storm surges. Previous studies have showed that 80-90 % of global losses and 53 % of total cyclone-related deaths worldwide, occur in Bangladesh and out of which, 42% of cyclone-caused deaths were recorded in the last two centuries. The Cyclone Preparedness Program (CPP) is a unique joint program under the initiative of Government of Bangladesh and Bangladesh Red Crescent Society that provides a robust cyclone early warning (CEW) system for the 13 coastal districts in Bangladesh. CPP ensures rapid dissemination of official Bangladesh Meteorological Department's CEW signals to these communities. However, inconsistent CEW services are reported in several of these coastal communities. This study offered the quality assessment of CPP CEW services in Nijhum Island, a highly populated remotely located off-shore island in Bangladesh. Primary rural appraisal (household survey, focus group discussion and expert interview) were used for field data collection and Likert scale, for data analysis. Study revealed that cyclone early warning signal dissemination were restricted to small area covering only 35 percent of the total population. Moreover, local inhabitants had very poor understanding about disseminated CEW signals (flag signaling system, signal number & severity) although CPP initiated several training program to build and raise awareness. Consequently, people remained inactive during cyclone and reluctant to seek shelter which resulted in lack of proper post-disaster management. Moreover, local people had concern regarding accuracy of CEW signals disseminated by CPP. To ensure last mile connectivity of CEW services, it is highly recommended that local people should be given more training and awareness on CEW signals and how to respond to the same.

  19. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  20. Stalling Tropical Cyclones over the Atlantic Basin

    NASA Astrophysics Data System (ADS)

    Nielsen-Gammon, J. W.; Emanuel, K.

    2017-12-01

    Hurricane Harvey produced massive amounts of rain over southeast Texas and southwest Louisiana. Average storm total rainfall amounts over a 10,000 square mile (26,000 square km) area exceeded 30 inches (750 mm). An important aspect of the storm that contributed to the large rainfall totals was its unusual motion. The storm stalled shortly after making landfall, then moved back offshore before once again making landfall five days later. This storm motion permitted heavy rainfall to occur in the same general area for an extended period of time. The unusual nature of this event motivates an investigation into the characteristics and potential climate change influences on stalled tropical cyclones in the Atlantic basin using the HURDAT 2 storm track database for 1866-2016 and downscaled tropical cyclones driven by simulations of present and future climate. The motion of cyclones is quantified as the size of a circle circumscribing all storm locations during a given length of time. For a three-day period, Harvey remained inside a circle with a radius of 123 km. This ranks within the top 0.6% of slowest-moving historical storm instances. Among the 2% of slowest-moving storm instances prior to Harvey, only 13 involved storms that stalled near the continental United States coast, where they may have produced substantial rainfall onshore while tapping into marine moisture. Only two such storms stalled in the month of September, in contrast to 20 September stalls out of the 36 storms that stalled over the nearby open Atlantic. Just four of the stalled coastal storms were hurricanes, implying a return frequency for such storms of much less than once per decade. The synoptic setting of these storms is examined for common features, and historical and projected trends in occurrences of stalled storms near the coast and farther offshore are investigated.

  1. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 6, July--September, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  2. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.

    2012-01-01

    This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave

  3. Diabatic modification of potential vorticity in extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Chagnon, J.

    2012-12-01

    Representation of diabatic processes and their impact on extratropical cyclones is a likely source of skill degradation in operational numerical weather prediction systems. This investigation examines the source, structure, and magnitude of diabatic potential vorticity (PV) anomalies generated by small-scale and parameterized processes in both mesoscale and global model simulations of extratropical cyclones in the North Atlantic. Simulations of several cold season extratropical storms have been performed using the Met Office Unified Model. Several cases simulated were drawn from the DIAbatic influences on Mesoscale structures in ExTratropical cyclones (DIAMET) observational campaign during which the National Environmental Research Council (NERC) Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft was deployed. The influence of specific modelled processes was quantified using a set of tracers, each of which represents a history of the PV contributed by a specific segment of the model (e.g., boundary-layer scheme, cloud microphysics, convection scheme , radiation, etc.). This presentation will highlight several differences and similarities in high and low resolution simulations. For example, in high resolution simulations, tropopause folds are sharpened by a tripolar PV anomaly arising from the convection, boundary-layer, and microphysics schemes; this structure is not present in coarser global model simulations. However, a dipole of PV straddling the tropopause is diagnosed in both coarse- and fine-resolution simulations. The PV dipole, which is strongly influenced by long-wave radiative cooling, increases the gradient of PV near the tropopause and therefore modifies the characteristics Rossby wave propagation and moist baroclinic wave growth.

  4. Stratified coastal ocean interactions with tropical cyclones

    PubMed Central

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  5. Analysis of sensitivity to different parameterization schemes for a subtropical cyclone

    NASA Astrophysics Data System (ADS)

    Quitián-Hernández, L.; Fernández-González, S.; González-Alemán, J. J.; Valero, F.; Martín, M. L.

    2018-05-01

    A sensitivity analysis to diverse WRF model physical parameterization schemes is carried out during the lifecycle of a Subtropical cyclone (STC). STCs are low-pressure systems that share tropical and extratropical characteristics, with hybrid thermal structures. In October 2014, a STC made landfall in the Canary Islands, causing widespread damage from strong winds and precipitation there. The system began to develop on October 18 and its effects lasted until October 21. Accurate simulation of this type of cyclone continues to be a major challenge because of its rapid intensification and unique characteristics. In the present study, several numerical simulations were performed using the WRF model to do a sensitivity analysis of its various parameterization schemes for the development and intensification of the STC. The combination of parameterization schemes that best simulated this type of phenomenon was thereby determined. In particular, the parameterization combinations that included the Tiedtke cumulus schemes had the most positive effects on model results. Moreover, concerning STC track validation, optimal results were attained when the STC was fully formed and all convective processes stabilized. Furthermore, to obtain the parameterization schemes that optimally categorize STC structure, a verification using Cyclone Phase Space is assessed. Consequently, the combination of parameterizations including the Tiedtke cumulus schemes were again the best in categorizing the cyclone's subtropical structure. For strength validation, related atmospheric variables such as wind speed and precipitable water were analyzed. Finally, the effects of using a deterministic or probabilistic approach in simulating intense convective phenomena were evaluated.

  6. Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement

    NASA Astrophysics Data System (ADS)

    Makarieva, Anastassia M.; Gorshkov, Victor G.; Nefiodov, Andrei V.; Chikunov, Alexander V.; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian

    2017-09-01

    Despite the dangers associated with tropical cyclones and their rainfall, the origin of the moisture in these storms, which include destructive hurricanes and typhoons, remains surprisingly uncertain. Existing studies have focused on the region 40-400 km from a cyclone's center. It is known that the rainfall within this area cannot be explained by local processes alone but requires imported moisture. Nonetheless, the dynamics of this imported moisture appears unknown. Here, considering a region up to three thousand kilometers from cyclone center, we analyze precipitation, atmospheric moisture and movement velocities for severe tropical cyclones - North Atlantic hurricanes. Our findings indicate that even over such large areas a hurricane's rainfall cannot be accounted for by concurrent evaporation. We propose instead that a hurricane consumes pre-existing atmospheric water vapor as it moves. The propagation velocity of the cyclone, i.e. the difference between its movement velocity and the mean velocity of the surrounding air (steering flow), determines the water vapor budget. Water vapor available to the hurricane through its movement makes the hurricane self-sufficient at about 700 km from the hurricane center obviating the need to concentrate moisture from greater distances. Such hurricanes leave a dry wake, whereby rainfall is suppressed by up to 40% compared to the local long-term mean. The inner radius of this dry footprint approximately coincides with the hurricane's radius of water self-sufficiency. We discuss how Carnot efficiency considerations do not constrain the power of such open systems. Our findings emphasize the incompletely understood role and importance of atmospheric moisture stocks and dynamics in the behavior of severe tropical cyclones.

  7. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  8. Moist Thermodynamics of Tropical Cyclone Formation and Intensification in High-Resolution Climate Models

    NASA Astrophysics Data System (ADS)

    Wing, A. A.; Camargo, S. J.; Sobel, A. H.; Kim, D.; Moon, Y.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.

    2017-12-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However, biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore tropical cyclogenesis and intensification processes in six high-resolution climate models from NOAA/GFDL, NCAR, and NASA, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis, including surface flux feedbacks and cloud-radiative feedbacks. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis along the individual tracks and composited over many tropical cyclones. We use two methods of compositing: a composite over all TC track points in a given intensity range, and a composite relative to the time of lifetime maximum intensity for each storm (at the same stage in the TC life cycle).

  9. Air-coupled acoustic thermography for in-situ evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)

    2010-01-01

    Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.

  10. Tropical Cyclone Madi Approaching India

    NASA Image and Video Library

    2013-12-09

    Tropical Cyclone Madi approaching India. Acquired by Aqua/MODIS on 12/07/2013 at 07:55 UTC. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Sound reduction by metamaterial-based acoustic enclosure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of themore » source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.« less

  12. The life cycles of intense cyclonic and anticyclonic circulation systems observed over oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1994-01-01

    The work over the past six months has focused on the October/November 1985 blocking case study noted in the last progress report. A summary of the results of this effort is contained in the attached preprint papers for the Symposium on the Life Cycles of Extratropical Cyclones. Using this case study as a model, Ph.D. student Anthony Lupo is now initiating the multiple-case diagnosis by first examining two more fall 1985 blocking episodes. In addition, two secondary efforts have been completed, as summarized in the attached M.S. thesis abstracts. Both studies, which were primarily funded by a fellowship and a teaching assistantship, complement the objectives of this study by providing diagnoses of additional cyclone cases to serve as a comparative base for the pre-blocking cyclones to be studied in the multiple-case blocking diagnosis.

  13. Numerical study of particle deposition and scaling in dust exhaust of cyclone separator

    NASA Astrophysics Data System (ADS)

    Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.

    2016-05-01

    The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.

  14. A study of formation and development of one kind of cyclone on the mei-yu (Baiu) front

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Zhao, Sixiong

    2004-10-01

    The paper presents one diagnosis of baroclinity and the coupling of jets during the developing process of a cyclone that occurred on the mei-yu (Baiu) front around the end of the second stage of the mei-yu (Baiu) in 1998. Results have shown that: (1) The advantageous changes of upper-level large-scale circulation caused the appearance and maintenance of the coupling between the upper-level jet (ULJ) and lower-level jet (LLJ) over the cyclone’s area. The coupling of jets in this case possesses some different characteristics from previous cases. Moreover, the coupling between the ULJ and LLJ caused the intensification of both lower-level convergence and upper-level divergence, which was favorable for the development of this cyclone. (2) From the analysis of the voricity budget, the role of lower-level convergence in the development of the cyclone was emphasized. Divergent wind in the lower troposphere was a direct contributor to the development of the cyclone. (3) During the development of the cyclone, cold air and warm air were active over the cyclone’s domain. Although this cyclone occurred at the mei-yu (Baiu) front, its development assumed baroclinity to a certain extent, which was just the main difference between this kind of cyclone and the first kind of low which is usually barotropic (or quasi-barotropic). (4) In recent years, studies on mei-yu front lows have paid more attention to the lower troposphere. In this paper, the analysis of the energy budget further supports this point: the certain effect of baroclinity forcing in the upper troposphere on mei-yu front lows cannot be ignored.

  15. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones - A GIS based approach for the Odisha coast.

    PubMed

    Sahoo, Bishnupriya; Bhaskaran, Prasad K

    2018-01-15

    The coastal region bordering the East coast of India is a thickly populated belt exposed to high risk and vulnerability from natural hazards such as tropical cyclones. Tropical cyclone frequencies that develop over the Bay of Bengal (average of 5-6 per year) region are much higher as compared to the Arabian Sea thereby posing a high risk factor associated with storm surge, inland inundation, wind gust, intense rainfall, etc. The Odisha State in the East coast of India experiences the highest number of cyclone strikes as compared to West Bengal, Andhra Pradesh, and Tamil Nadu. To express the destructive potential resulting from tropical cyclones the Power Dissipation Index (PDI) is a widely used metric globally. A recent study indicates that PDI for cyclones in the present decade have increased about six times as compared to the past. Hence there is a need to precisely ascertain the coastal vulnerability and risk factors associated with high intense cyclones expected in a changing climate. As such there are no comprehensive studies attempted so far on the determination of Coastal Vulnerability Index (CVI) for Odisha coast that is highly prone to cyclone strikes. With this motivation, the present study makes an attempt to investigate the physical, environmental, social, and economic impacts on coastal vulnerability associated with tropical cyclones for the Odisha coast. The study also investigates the futuristic projection of coastal vulnerability over this region expected in a changing climate scenario. Eight fair weather parameters along with storm surge height and onshore inundation were used to estimate the Physical Vulnerability Index (PVI). Thereafter, the PVI along with social, economic, and environmental vulnerability was used to determine the overall CVI using the GIS based approach. The authors believe that the comprehensive nature of this study is expected to benefit coastal zone management authorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. On predicting future economic losses from tropical cyclones: Comparing damage functions for the Eastern USA

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias; Levermann, Anders; Frieler, Katja

    2015-04-01

    Recent years have seen an intense scientific debate of what to expect from future tropical cyclone activity under climate change [1,2]. Besides the projection of cyclones' genesis points and trajectories it is the cyclone's impact on future societies that needs to be quantified. In our present work, where we focus on the Eastern USA, we start out with a comprehensive comparison of a variety of presently available and novel functional relationships that are used to link cyclones' physical properties with their damage caused on the ground. These so-called damage functions make use of high quality data sets consisting of gridded population data, exposed capital at risk, and information on the cyclone's extension and its translational and locally resolved maximum wind speed. Based on a cross-validation ansatz we train a multitude of damage functions on a large variety of data sets in order to evaluate their performance on an equally sized test sample. Although different damage analyses have been conducted in the literature [3,4,5,6], the efforts have so far primarily been focused on determining fit parameters for individual data sets. As our analysis consists of a wide range of damage functions implemented on identical data sets, we can rigorously evaluate which (type of) damage function (for which set of parameters) does best in reproducing damages and should therefore be used for future loss analysis with highest certainty. We find that the benefits of using locally resolved data input tend to be outweighed by the large uncertainties that accompany the data. More coarse and generalized data input therefore captures the diversity of cyclonic features better. Furthermore, our analysis shows that a non-linear relation between wind speed and damage outperforms the linear as well as the exponential relationship discussed in the literature. In a second step, the damage function with the highest predictive quality is implemented to predict potential future cyclone losses

  17. Statistical Aspects of North Atlantic Basin Tropical Cyclones During the Weather Satellite Era, 1960-2013: Part 1

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    A tropical cyclone is described as a warm-core, nonfrontal, synoptic-scale system that originates over tropical or subtropical waters, having organized deep convection and closed surface wind circulation (counterclockwise in the Northern Hemisphere) about a well defined center. When its sustained wind speed equals 34-63 kt, it is called a tropical (or subtropical) storm and is given a name (i.e., alternating male and female names, beginning in 1979); when its sustained wind speed equals 64-95 kt, it is called a hurricane (at least in the Eastern Pacific and North Atlantic basin); and when its sustained wind speed equals 96 kt or higher, it is called an intense or major hurricane (i.e., categories 3-5 on the Saffir-Simpson Hurricane Wind Scale). Although tropical cyclones have been reported and described since the voyages of Columbus, a detailed record of their occurrences extends only from 1851 to the present, with the most reliable portion extending only from about 1945 to the present, owing to the use of near-continuous routine reconnaissance aircraft monitoring flights and the use of satellite imagery (beginning in 1960; see Davis). Even so, the record may still be incomplete, possibly missing at least one tropical cyclone per yearly hurricane season, especially prior to the use of continuous satellite monitoring. In fact, often an unnamed tropical cyclone is included in the year-end listing of events at the conclusion of the season, following post-season analysis (e.g., as happened in 2011 and 2013, each having one unnamed event). In this two-part Technical Publication (TP), statistical aspects of the North Atlantic basin tropical cyclones are examined for the interval 1960-2013, the weather satellite era. Part 1 examines some 25 parameters of tropical cyclones (e.g., frequencies, peak wind speed (PWS), accumulated cyclone energy (ACE), etc.), while part 2 examines the relationship of these parameters against specific climate-related factors. These studies are

  18. A meridional dipole in premonsoon Bay of Bengal tropical cyclone activity induced by ENSO: TROPICAL CYCLONES, MONSOON AND ENSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Leung, L. Ruby; Lu, Jian

    2016-06-27

    Analysis of Bay of Bengal tropical cyclone (TC) track data for the month of May during 1980-2013 reveals a meridional dipole in TC intensification: TC intensification rates increased in the northern Bay and decreased in the southern Bay. The dipole was driven by an increase in low-level vorticity and atmospheric humidity in the northern Bay, making the environment more favorable for TC intensification, and enhanced vertical wind shear in the southern Bay, tending to reduce TC development. These environmental changes were associated with a strengthening of the monsoon circulation for the month of May, driven by a La Nin˜a-like shiftmore » in tropical Pacific SSTs andassociated tropical wave dynamics. Analysis of a suite of climate models fromthe CMIP5 archive for the 150-year historical period shows that most models correctly reproduce the link between ENSO and Bay of Bengal TC activity through the monsoon at interannual timescales. Under the RCP 8.5 scenario the same CMIP5 models produce an El Nin˜o like warming trend in the equatorial Pacific, tending to weaken the monsoon circulation. These results suggest« less

  19. Equatorial Mesosphere and Lower Thermosphere/Ionosphere (MLTI) Response to Severe Cyclonic Storm `Aila' and `Ward' observed over North Indian Ocean

    NASA Astrophysics Data System (ADS)

    G J, B.

    2016-12-01

    The present work investigates the Equatorial Mesosphere Lower Thermosphere/Ionosphere (MLTI) response to severe cyclonic storm `Aila (23-26 May 2009)' and `Ward (10-16 December 2009)' which were observed over north Indian Ocean during the extended solar minimum of the year 2009. This report reveals the coupling between Tropical Cyclone and MLTI region. Tropical cyclone track and data can be obtained from Indian Meteorological Department (IMD), New Delhi. Mesospheric and Ionospheric variation can be examined with the help of ground based Mesosphere Lower Thermosphere (MLT) radar and Digisonde located at equatorial low latitude station, Tirunelveli (8.7oN, 77.8oE). The Outgoing Long wave Radiation (OLR) data is used as a proxy for identifying the convective activity, which are retrieved from NOAA Climate Data Centre. It is observed that the tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. These upward propagating gravity waves deposit their energy and momentum into the upper region of atmosphere as `Travelling Ionospheric Disturbances (TIDs). During the cyclonic storm periods, we found increased gravity wave amplitude with upward propagation in the MLT region. Ionospheric response to severe cyclonic storm is examined with the dynamical parameters, foF2, hmF2, h'F2 and Total Election Content (TEC). Significant increase of foF2 frequency is observed during `Ward' cyclonic storm. Drastic variation in foF2 and h'F2 is observed during Aila cyclonic storm than ward event. More statistical analysis has been done for finding the correlation between cyclonic storm and Ionospheric parameters. Detailed results will be presented in the meeting.

  20. Response of the South China Sea to Forcing by Tropical Cyclone Ernie (1996)

    DTIC Science & Technology

    1998-03-01

    complicated. Wide continental shelves appear in the northwest and southwest of the basin and steep slopes in the central portion, framing a deep, bowl...bottom topography of the SCS basin provides a favorable condition for the formation of anticyclonic eddies in the central SCS during the spring. From...cyclone is produced. This cyclonic wind stress then generates Ekman upwelling in the central basin and the formation of a cold pool. Again, through