Science.gov

Sample records for acoustically levitated drops

  1. Equilibrium shapes of acoustically levitated drops

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Hsu, C.-J.

    1986-05-01

    The quantitative determination of the shape of liquid drops levitated in an ultrasonic standing wave has provided experimental data on the radiation pressure-induced deformations of freely suspended liquids. Within the limits of small deviations from the spherical shape and small drop diameter relative to the acoustic wavelength, an existing approximate theory yields a good agreement with experimental evidence. The data were obtained for millimeter and submillimeter drops levitated in air under 1 g, where g is the sea level gravitational acceleration.

  2. Electrochemistry in an acoustically levitated drop.

    PubMed

    Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander

    2013-02-19

    Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%. PMID:23351154

  3. Undercooling of acoustically levitated molten drops

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.; Trinh, E. H.; Glicksman, M. E.

    1990-11-01

    The effect of ultrasound on the undercooling of an acoustically levitated molten drop is investigated by measuring the onset temperature of solidification. The measurement indicates that ultrasound occasionally terminates undercooling by initiating the nucleation of a solid at an undercooling level which is lower than that determined for nucleation catalyzed by the impurities in the drop. The results are interpreted by thermodynamic considerations which indicate a significant increase in effective undercooling of the liquid, beyond the level set by the impurities upon the collapse of acoustically driven pre-existing gas microbubbles.

  4. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension. PMID:19418043

  5. Drop evaporation in a single-axis acoustic levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Croonquist, A. P.

    1990-01-01

    A 20 kHz single-axis acoustic positioner is used to levitate aqueous-solution drops (volumes less than or approximately equal to 100 micro-liters). Drop evaporation rates are measured under ambient, isothermal conditions for different relative humidities. Acoustic convection around the levitated sample enhances the mass loss over that due to natural convection and diffusion. A theoretical treatment of the mass flow is developed in analogy to previous studies of the heat transfer from a sphere in an acoustic field. Predictions of the enhanced mass loss, in the form of Nusselt (Sherwood) numbers, are compared with observed rages of drop shrinking. The work is part of an ESA crystal growth from levitated solution drops.

  6. Acoustic measurement of the surface tension of levitated drops

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Marston, P. L.; Robey, J. L.

    1988-01-01

    The measurement of the frequency of the fundamental mode of shape oscillation of acoustically levitated drops has been carried out to determine the surface tension of the drop material. Sound fields of about 20 kHz in frequency allow the suspension of drops a few millimeters in size, as well as the necessary drive for oscillations. The surface tension of water, hexadecane, silicone oil, and aqueous solutions of glycerin levitated in air has been measured, and the results have been compared with those obtained with standard ring tensiometry. The two sets of data are in good agreement, the largest discrepancy being about 10 percent. Uncertainties in the effects of the nonspherical static shape of drops levitated in the earth's gravitational field and the rotation state of the sample are the major contributors to the experimental error. A decrease of the resonance frequency of the fundamental mode indicates a soft nonlinearity as the oscillation amplitude increases.

  7. Acoustic measurement of the surface tension of levitated drops

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Marston, P. L.; Robey, J. L.

    1988-07-01

    The measurement of the frequency of the fundamental mode of shape oscillation of acoustically levitated drops has been carried out to determine the surface tension of the drop material. Sound fields of about 20 kHz in frequency allow the suspension of drops a few millimeters in size, as well as the necessary drive for oscillations. The surface tension of water, hexadecane, silicone oil, and aqueous solutions of glycerin levitated in air has been measured, and the results have been compared with those obtained with standard ring tensiometry. The two sets of data are in good agreement, the largest discrepancy being about 10 percent. Uncertainties in the effects of the nonspherical static shape of drops levitated in the earth's gravitational field and the rotation state of the sample are the major contributors to the experimental error. A decrease of the resonance frequency of the fundamental mode indicates a soft nonlinearity as the oscillation amplitude increases.

  8. Observation of ice nucleation in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Xie, W. J.; Wei, B.

    2005-10-01

    The supercooling and nucleation of acoustically levitated water drops were investigated at two different sound pressure levels (SPL). These water drops were supercooled by 13to16K at the low SPL of 160.6dB, whereas their supercoolings varied from 5to11K at the high SPL of 164.4dB. The maximum supercooling obtained in the experiments is 32K. Statistical analyses based on the classical nucleation theory reveal that the occurrence of ice nucleation in water drops is mainly confined to the surface region under acoustic levitation conditions and the enlargement of drop surface area caused by the acoustic radiation pressure reduces water supercoolability remarkably. A comparison of the nucleation rates at the two SPLs indicates that the sound pressure can strengthen the surface-dominated nucleation of water drops. The acoustic stream around levitated water drops and the cavitation effect associated with ultrasonic field are the main factors that induce surface-dominated nucleation.

  9. Vertical vibration and shape oscillation of acoustically levitated water drops

    SciTech Connect

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  10. Vertical vibration and shape oscillation of acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-09-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  11. Generation and characterization of surface layers on acoustically levitated drops.

    PubMed

    Tuckermann, Rudolf; Bauerecker, Sigurd; Cammenga, Heiko K

    2007-06-15

    Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops. In contrast to Langmuir troughs, traditionally used in the research of surface layers at the air-water interface, acoustic levitation offers the advantages of a minimized and contact-less technique. Although the film pressure cannot be directly adjusted on acoustically levitated drops, it runs through a wide pressure range due to the shrinking surface of an evaporating drop. During this process, different states of the generated surface layer have been identified, in particular the phase transition from the gaseous or liquid-expanded to the liquid-condensed state of surface layers of octadecanol and other related amphiphiles. Characteristic parameters, such as the relative permeation resistance and the area per molecule in a condensed surface layer, have been quantified and were found comparable to results obtained from surface layers generated on Langmuir troughs. PMID:17376468

  12. Static and oscillatory response measurements of acoustically levitated foam drops

    NASA Astrophysics Data System (ADS)

    Liu, Li; McDaniel, J. Gregory; Holt, R. Glynn

    2002-11-01

    Small samples of aqueous foam of varying gas volume fraction are acoustically levitated in an ultrasonic field. The drops are subjected to both static and time-varying pressures. Normal mode frequencies and inferred rheological properties (yield stress, shear modulus) for foams as a function of gas volume fraction will be presented. We compare the experimental results to recent theoretical descriptions of such modal oscillations [McDaniel and Holt, Phys. Rev. E 61, 2204 (2000); McDaniel, Akhatov, and Holt, Phys Fluids 14, 1886 (2002)]. [Work supported by NASA.

  13. Design and implementation of an efficient acoustically levitated drop reactor for in stillo measurements.

    PubMed

    Field, Christopher R; Scheeline, Alexander

    2007-12-01

    We present the details necessary for building an efficient acoustic drop levitator with reduced electrical power consumption and greater drop stability compared to previous designs. The system is optimized so that the levitated drop may be used as a chemical reactor. By introducing a temperature, pressure, and relative humidity sensor for feedback control of a linear actuator for adjusting resonator length, we have built a completely automated system capable of continuous levitation for extended periods of time. The result is a system capable of portable operation and interfacing with a variety of detection instrumentation for in stillo (in drop) measurements. PMID:18163744

  14. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  15. Static shape and instability of an acoustically levitated liquid drop

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1991-11-01

    There have been observations that an intense sound field can break up a liquid drop in levitation by flattening it drastically through radiation pressure. Using high-speed photography, it is observed that, for a low-viscosity liquid, at a high sound intensity, ripples appear on the central membrane of the drop. At a higher intensity, the membrane may atomize by emitting satellite drops from its unstable ripples. For a general viscosity, it might also buckle upward like an umbrella and shatter, or might simply expand horizontally like a sheet and shatter. Using a disklike model for the flattened drop, the phenomenon was studied and good qualitative agreement with the observations was found. It is believed that at low viscosity, the ripples are capillary waves generated by the parametric instability excited by the membrane vibration, which is driven by the sound pressure. Atomization occurs whenever the membrane becomes so thin that the vibration is sufficiently intense. For any viscosity, the vibration leads to a Bernoulli correction in the static pressure, which is destabilizing. Buckling occurs when an existent equilibrium is unstable to a radial oscillation of the membrane because of the Bernoulli effect. Besides, the radiation stress at the rim of the flattened drop, being a suction stress, is also destabilizing, leading to the horizontal expansion and the subsequent breakup.

  16. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding.

    PubMed

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow. PMID:26986279

  17. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  18. Noncontact technique for determining the thermal diffusivity coefficient on acoustically levitated liquid drops

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.; Rednikov, A.; Sadhal, S. S.

    2003-02-01

    We present a technique that can be used to determine the thermal diffusivity coefficient of undercooled liquids, which exist at temperatures below their freezing points. The technique involves levitation of a small amount of liquid in a flattened drop shape using an acoustic levitator and heating it with a laser beam. The heated drop is then subjected to natural cooling by heat loss from the surface. Due to acoustic streaming, the heat loss mainly occurs through the equator section of the drop. The measured cooling rate in combination with a radial heat conduction model allows us to calculate the thermal diffusivity coefficient of the drop. We demonstrate the feasibility of the technique using glycerin drops as a model liquid. The technique is well suited if the thermal diffusivity coefficient of the liquid in the normal state (i.e., above the freezing point) is known or can be measured by conventional techniques.

  19. Thermal diffusivity coefficient of glycerin determined on an acoustically levitated drop.

    PubMed

    Ohsaka, K; Rednikov, A; Sadhal, S S

    2002-10-01

    We present a technique that can be used to determine the thermal diffusivity coefficient of undercooled liquids that exist at temperatures below their freezing points. The technique involves levitation of a small amount of liquid in the shape of a flattened drop using an acoustic levitator and heating it with a CO2 laser. The heated drop is then allowed to cool naturally by heat loss from the surface. Due to acoustic streaming, heat loss is highly non-uniform and appears to mainly occur at the drop circumference (equatorial region). This fact allows us to relate the heat loss rate with a heat transfer model to determine the thermal diffusion coefficient. We demonstrate the feasibility of the technique using glycerin drops as a model liquid. PMID:12446319

  20. Static shape and instability of an acoustically levitated liquid drop

    NASA Technical Reports Server (NTRS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1991-01-01

    Dynamical aspects of a drop drastically flattened by acoustic radiation stress are considered. Its static equilibrium has been studied, starting with a dislike shape and modeling the sound field and the associated radiation stress according to this geometry. It is suggested that, at low viscosity, the ripples are capillary waves generated by the parametric instability excited by the membrane vibration, which is driven by the sound pressure. Atomization occurs whenever the membrane becomes so thin that the vibration is sufficiently intense. Buckling occurs when an existent equilibrium is unstable to a radial oscillation of the membrane because of the Bernoulli effect. The radiation stress at the rim of the flattened drop is also destabilizing and leads to horizontal expansion and subsequent breakup.

  1. Sample Handling and Chemical Kinetics in an Acoustically Levitated Drop Microreactor

    PubMed Central

    2009-01-01

    Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These methods may prove to be problematic if reactants or products adsorb to or react with the container’s surface. As an alternative approach, we have developed an acoustically-levitated drop reactor eventually intended to study enzyme-catalyzed reaction kinetics related to free radical and oxidative stress chemistry. Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. A three capillary bundle system has been developed to address these needs. We report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase, to demonstrate the feasibility of using a levitated drop in conjunction with the developed capillary sample handling system as a microreactor. PMID:19769373

  2. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation. PMID:17580951

  3. Acoustic levitation

    NASA Astrophysics Data System (ADS)

    Hansen, Uwe J.

    2005-09-01

    A speaker, driven by an amplified audio signal is used to set up a standing wave in a 3b-ft-long, 4-in.-diam transparent tube. Initially the tube is oriented horizontally, and Styrofoam packing peanuts accumulate near the pressure nodes. When the tube is turned to a position with the axis oriented vertically, the peanuts drop slightly, until the gravitational force on the peanuts is balanced by the force due to the sound pressure, at which point levitation is observed. Sound-pressure level measurements are used to map the air column normal mode pattern. Similarly, standing waves are established between an ultrasonic horn and a metal reflector and millimeter size Styrofoam balls are levitated.

  4. Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement

    NASA Astrophysics Data System (ADS)

    Shen, Changle; Xie, Wenjun; Wei, Bingbo

    2010-12-01

    A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb's prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.

  5. Ground based studies of the vibrational and rotational dynamics of acoustically levitated drops and shells

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Leung, E.

    1990-01-01

    A substantial amount of experimental data can be gathered on the dynamics of acoustically positioned liquids in a ground-based laboratory and during short duration low-gravity parabolic flights of the KC-135. The preliminary results of a set of measurements of the static shape, of the vibrational spectrum, and the rotation equilibrium shapes of simple drops and liquid shells carried out using ultrasonic levitators working between 19 and 40 kHz is presented. The droplet diameter ranges between 1 and 5 mm, the surface tension of the liquid used varies between 25 and 70 dynes/cm, and the viscosity is changed between 1 to 1,000 cP. Of particular interest is the variation of the frequency of the fundamental mode of shape oscillation with various factors, and the effects of static drop shape deformation on the limit of stability of the axisymmetric shape of a drop in solid-body rotation.

  6. Acoustic levitation

    SciTech Connect

    2012-09-12

    Scientists at Argonne National Laboratory have discovered a way to use sound waves to levitate individual droplets of solutions containing different pharmaceuticals. While the connection between levitation and drug development may not be immediately apparent, a special relationship emerges at the molecular level. Read more: http://www.anl.gov/articles/no-magic-show-real-world-levitation-inspire-better-pharmaceuticals

  7. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2001-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  8. Mixing in colliding, ultrasonically levitated drops.

    PubMed

    Chainani, Edward T; Choi, Woo-Hyuck; Ngo, Khanh T; Scheeline, Alexander

    2014-02-18

    Lab-in-a-drop, using ultrasonic levitation, has been actively investigated for the last two decades. Benefits include lack of contact between solutions and an apparatus and a lack of sample cross-contamination. Understanding and controlling mixing in the levitated drop is necessary for using an acoustically levitated drop as a microreactor, particularly for studying kinetics. A pulsed electrostatic delivery system enables addition and mixing of a desired-volume droplet with the levitated drop. Measurement of mixing kinetics is obtained by high-speed video monitoring of a titration reaction. Drop heterogeneity is visualized as 370 nl of 0.25 M KOH (pH: 13.4) was added to 3.7 μL of 0.058 M HCl (pH: 1.24). Spontaneous mixing time is about 2 s. Following droplet impact, the mixed drop orbits the levitator axis at about 5 Hz during homogenization. The video's green channel (maximum response near 540 nm) shows the color change due to phenolphthalein absorption. While mixing is at least an order of magnitude faster in the levitated drop compared with three-dimensional diffusion, modulation of the acoustic waveform near the surface acoustic wave resonance frequency of the levitated drop does not substantially reduce mixing time. PMID:24460103

  9. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  10. Electrostatic Liquid-Drop-Levitation System

    NASA Technical Reports Server (NTRS)

    Rhim, Won Kyu; Chung, San Kun; Hyson, Michael T.; Elleman, Daniel D.

    1988-01-01

    Electrostatic levitator has levitated drops of liquid up to 4 mm in diameter while maintaining spherical drop shapes. Stable levitation of spherical drops valuable in experiments involving super-cooling, solidification, and crystal growth.

  11. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640

  12. Particle-area dependence of mineral dust in the immersion mode: investigations with freely suspended drops in an acoustic levitator

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Debertshäuser, M.; Eppers, O.; Schmithüsen, H.; Mitra, S. K.; Borrmann, S.

    2014-05-01

    The heterogeneous freezing temperatures of supercooled drops were measured by using an acoustic levitator. This technique allows to freely suspending single drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. Heterogeneous nucleation caused by several mineral dust particles (montmorillonite, two types of illite) was investigated in the immersion mode. Drops of 1 \\unit{mm} in radius were monitored by a video camera during cooling down to -28 °C to simulate the tropospheric temperature range. The surface temperature of the drops was remotely determined with an infra-red thermometer so that the onset of freezing was indicated. For comparisons, measurements with one particle type were additionally performed in the Mainz vertical wind tunnel with drops of 340 \\unit{{μ}m} radius freely suspended. The data were interpreted regarding the particle surfaces immersed in the drops. Immersion freezing was observed in a temperature range between -13 and -26 °C in dependence of particle type and surface area per drop. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model.

  13. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  14. Rotation of ultrasonically levitated glycerol drops

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Leung, E. W.; Trinh, E. H.

    1991-01-01

    Ultrasonic levitation is used to suspend single millimeter-size glycerol drops in a rectangular chamber. Audio-frequency laterally standing waves set up in the chamber are used to torque the suspended drops. The shape evolution of the drop under the combined effect of centrifugal forces and the acoustic radiation stress, along with its angular velocity are monitored, using video imaging and light scattering techniques. The results show good qualitative agreement with the theoretically predicted shape evolution as a function of angular velocity.

  15. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  16. Studies of the Stability and Dynamics of Levitated Drops

    NASA Technical Reports Server (NTRS)

    Anikumar, A.; Lee, Chun Ping; Wang, T. G.

    1996-01-01

    This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.

  17. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  18. Ground Based Studies of Thermocapillary Flows in Levitated Drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1996-01-01

    Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.

  19. Simplified Rotation In Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  20. Dynamics of acoustically levitated disk samples.

    PubMed

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammaacoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis. PMID:15600551

  1. Eutectic growth under acoustic levitation conditions

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Cao, C. D.; Lü, Y. J.; Wei, B.

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5×103 kg/m3 are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of ``lamellas-broken lamellas-dendrites.'' This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface.

  2. Eutectic growth under acoustic levitation conditions.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface. PMID:12513291

  3. Blowing Polymer Bubbles in an Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    In new manufacturing process, small gas-filled polymer shells made by injecting gas directly into acoustically levitated prepolymer drops. New process allows sufficient time for precise control of shell geometry. Applications foreseen in fabrication of deuterium/tritium-filled fusion targets and in pharmaceutical coatings. New process also useful in glass blowing and blow molding.

  4. Particle surface area dependence of mineral dust in immersion freezing mode: investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Debertshäuser, M.; Eppers, O.; Schmithüsen, H.; Mitra, S. K.; Borrmann, S.

    2014-11-01

    The heterogeneous freezing temperatures of supercooled drops were measured using an acoustic levitator. This technique allows one to freely suspend single drops in the air without any wall contact. Heterogeneous nucleation by two types of illite (illite IMt1 and illite NX) and a montmorillonite sample was investigated in the immersion mode. Drops of 1 mm in radius were monitored by a video camera while cooled down to -28 °C to simulate freezing within the tropospheric temperature range. The surface temperature of the drops was contact-free, determined with an infrared thermometer; the onset of freezing was indicated by a sudden increase of the drop surface temperature. For comparison, measurements with one particle type (illite NX) were additionally performed in the Mainz vertical wind tunnel with drops of 340 μm radius freely suspended. Immersion freezing was observed in a temperature range between -13 and -26 °C as a function of particle type and particle surface area immersed in the drops. Isothermal experiments in the wind tunnel indicated that after the cooling stage freezing still proceeds, at least during the investigated time period of 30 s. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model. Although the wind tunnel results do not support the time-independence of the freezing process both models are applicable for comparing the results from the two experimental techniques.

  5. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  6. Cylindrical acoustic levitator/concentrator

    DOEpatents

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  7. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  8. Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates

    ERIC Educational Resources Information Center

    Field, Christopher Ryan

    2009-01-01

    Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…

  9. Ground based studies of thermocapillary flows in levitated drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1994-01-01

    Analytical studies along with ground-based experiments are presently being carried out in connection with thermocapillary phenomena associated with drops and bubbles in a containerless environment. The effort here focuses on the thermal and the fluid phenomena associated with the local heating of acoustically levitated drops, both at 1-g and at low-g. In particular, the Marangoni effect on drops under conditions of local spot-heating and other types of heating are being studied. With the experiments conducted to date, fairly stable acoustic levitation of drops has been achieved and successful flow visualization by light scattering from smoke particles has been carried out. The results include situations with and without heating. As a preliminary qualitative interpretation of these experimental results, we consider the external flow pattern as a superposition of three discrete circulation cells operating on different spatial scales. The observations of the flow fields also indicate the existence of a steady state torque induced by the streaming flows. The theoretical studies have been concentrated on the analysis of streaming flows in a gaseous medium with the presence of a spherical particle undergoing periodic heating. A matched asymptotic analysis was carried out for small parameters derived from approximations in the high frequency range. The heating frequency being 'in tune' with the acoustic frequency results in a nonzero time-averaged thermal field. This leads to a steady heat flow across the equatorial plane of the sphere.

  10. Acoustic wave levitation: Handling of components

    NASA Astrophysics Data System (ADS)

    Vandaele, Vincent; Delchambre, Alain; Lambert, Pierre

    2011-06-01

    Apart from contact micromanipulation, there exists a large variety of levitation techniques among which standing wave levitation will be proposed as a way to handle (sub)millimetric components. This paper will compare analytical formulas to calculate the order of magnitude of the levitation force. It will then describe digital simulation and experimental levitation setup. Stable levitation of various components (cardboard, steel washer, ball, ceramic capacity, water droplet) was shown along 5 degrees of freedom: The only degree of freedom that could not be mastered was the rotation about the symmetry axis of the acoustic field. More importantly, the present work will show the modification of the orientation of the radial force component in the presence of an object disturbing the acoustic field. This property can be used as a new feeding strategy as it means that levitating components are spontaneously pushed toward grippers in an acoustic plane standing wave.

  11. Containerless processing of materials by acoustic levitation

    NASA Astrophysics Data System (ADS)

    Gao, J. R.; Cao, C. D.; Wei, B.

    1999-01-01

    A single-axis ultrasonic levitator which can be applied to containerless processing of materials was described. Analytical expressions of acoustic pressure, acoustic radiation potential and force were derived from the velocity potential function of the applied acoustic field. The levitation region and the levitation stability were then discussed. A sphere of liquid crystal, 4-pentylphenyl-4‧-methylbenzoate, was also selected for containerless melting and solidification using the levitator. The results showed that rapid heating of the sample is necessary so as to avoid its escape from the levitation region. However, the measured bulk undercooling of the melt is smaller than that obtained using a container. It was supposed that ultrasonic cavitation produce a local undercooling large enough to initiate solidification of the melt, thus leading to a limited bulk undercooling.

  12. Acoustical-Levitation Chamber for Metallurgy

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.

    1983-01-01

    Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.

  13. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  14. Acoustic levitator for containerless measurements on low temperature liquids

    SciTech Connect

    Benmore, Chris J; Weber, Richard; Neuefeind, Joerg C; Rey, Charles A A

    2009-01-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops at temperatures from -40 to +40 C. The levitator consisted of: (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) a acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ~ 22 kHz and could produce sound pressure levels up to 160 dB. The force applied by the acoustic field could be modulated using a frequency generator to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  15. Acoustic levitator for structure measurements on low temperature liquid droplets.

    PubMed

    Weber, J K R; Rey, C A; Neuefeind, J; Benmore, C J

    2009-08-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 degrees C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of approximately 22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids. PMID:19725664

  16. Flowfield characteristics of an aerodynamic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Brenn, G.; Keller, J.; Pfaffenlehner, M.; Ryssel, E.; Tropea, C.

    1997-11-01

    A droplet held in a single-axis ultrasonic levitator will principally sustain a certain external blowing along the levitation axis, which introduces the possibility of investigating heat and/or mass transfer from the droplet under conditions which are not too remote from those in spray systems. The focus of the present work is on the influence of the acoustic field on the external flow. More specifically, an axisymmetric submerged gas jet in an axial standing acoustic wave is examined, both in the absence and presence of a liquid droplet. Flow visualization is first presented to illustrate the global flow effects and the operating windows of jet velocities and acoustic powers which are suitable for further study. An analytic and numeric solution, based on the parabolic boundary layer equations are then given for the case of no levitated droplet, providing quantitative estimates of the acoustic field/flow interaction. Detailed velocity measurements using a laser Doppler anemometer verify the analytic results and extend these to the case of a levitated droplet. Some unresolved discrepancy remains in predicting the maximum velocity attainable before the droplet is blown out of the levitator. Two methods are developed to estimate the sound pressure level in the levitator by comparing flowfield patterns with analytic results. These results and observations are used to estimate to what extent acoustic aerodynamic levitators can be used in the future for investigating transport properties of individual droplets.

  17. Acoustic levitation in the presence of gravity

    NASA Technical Reports Server (NTRS)

    Collas, P.; Barmatz, M.; Shipley, C.

    1989-01-01

    The method of Gor'kov (1961) has been applied to derive general expressions for the total potential and force on a small spherical object in a resonant chamber in the presence of both acoustic and gravitational force fields. The levitation position is also determined in rectangular resonators for the simultaneous excitation of up to three acoustic modes, and the results are applied to the triple-axis acoustic levitator. The analysis is applied to rectangular, spherical, and cylindrical single-mode levitators that are arbitrarily oriented relative to the gravitational force field. Criteria are determined for isotropic force fields in rectangular and cylindrical resonators. It is demonstrated that an object will be situated within a volume of possible levitation positions at a point determined by the relative strength of the acoustic and gravitational fields and the orientation of the chamber relative to gravity.

  18. Acoustic levitation of a large solid sphere

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  19. Acoustic levitation methods for density measurements

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Hsu, C. J.

    1986-12-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  20. Acoustic levitation methods for density measurements

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Hsu, C. J.

    1986-01-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  1. Containerless protein crystal growth in rotating levitated drops

    NASA Astrophysics Data System (ADS)

    Chung, Sang K.; Trinh, Eugene H.

    1998-01-01

    A method for growing protein crystals in a containerless environment using an ultrasonic-electrostatic hybrid levitator is evaluated. In this approach, a single protein solution droplet bearing a surface charge is electrostatically levitated and acoustically rotated along a horizontal axis during the crystal nucleation and growth phases. Sample rotation is induced by ultrasonic streaming and radiation pressure applied in addition to the electrostatic levitation force. This unique approach is developed in order to create controlled crystal growth conditions which would reproduce some of the aspects of the low-gravity environment. We present the outcome of a development effort and feasibility study showing the successful growth of lysozyme and thaumatin crystals suspended within the bulk of quiescent liquid protein solutions inside rotating droplets also containing a very small concentration of agarose. Even though the crystals are not growing in a completely gelled medium and rotation is required for their long-term suspension, there are indications that a convectionless crystal growth environment has been obtained within the rotating drop, and that artificial flow can be introduced in a controlled manner by imposing drop shape oscillations.

  2. Matrix method for acoustic levitation simulation.

    PubMed

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort. PMID:21859587

  3. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen.

    PubMed

    Adda-Bedia, M; Kumar, S; Lechenault, F; Moulinet, S; Schillaci, M; Vella, D

    2016-05-01

    We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: a nitrogen vapor layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density ρd of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(ρd), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R,ρd) parameter space that separates them. PMID:27054550

  4. Measurement of Aqueous Foam Rheology by Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)

    2000-01-01

    An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.

  5. Reducing Thermal Conduction In Acoustic Levitators

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G.; Leung, Emily W.; Bhat, Balakrishna T.

    1991-01-01

    Acoustic transducers containing piezoelectric driving elements made more resistant to heat by reduction of effective thermal-conductance cross sections of metal vibration-transmitting rods in them, according to proposal. Used to levitate small objects acoustically for noncontact processing in furnaces. Reductions in cross sections increase amplitudes of transmitted vibrations and reduce loss of heat from furnaces.

  6. Controlled sample orientation and rotation in an acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Gaspar, Mark S. (Inventor); Trinh, Eugene H. (Inventor)

    1988-01-01

    A system is described for use with acoustic levitators, which can prevent rotation of a levitated object or control its orientation and/or rotation. The acoustic field is made nonsymmetrical about the axis of the levitator, to produce an orienting torque that resists sample rotation. In one system, a perturbating reflector is located on one side of the axis of the levitator, at a location near the levitated object. In another system, the main reflector surface towards which incoming acoustic waves are directed is nonsymmetrically curved about the axis of the levitator. The levitated object can be reoriented or rotated in a controlled manner by repositioning the reflector producing the nonsymmetry.

  7. Ground Based Studies of Thermocapillary Flows in Levitated Drops: Analytical Part

    NASA Technical Reports Server (NTRS)

    Sadhal, S. S.; Trinh, Eugene H.

    1997-01-01

    The main objectives of the analytical part of this investigation are to study the fluid flow phenomena together with the thermal effects on drops levitated in an acoustic field. To a large extent, experimentation on ground requires a strong acoustic field that has a significant interference with other thermal-fluid effects. While most of the work has been directed towards particles in strong acoustic fields to overcome gravity, some results for microgravity have been obtained. One of the objectives was to obtain the thermocapillary flow in a spot-heated drop, and set up a model for the prediction of thermophysical properties. In addition, for acoustically levitated particles, a clear understanding of the underlying fluid mechanics was required. Also, the interaction of acoustics with steady and pulsating thermal stimuli was required to be analyzed. The experimental part of the work was funded through JPL, and has been reported separately.

  8. Rapid crystallization from acoustically levitated droplets.

    PubMed

    Cao, Hui-Ling; Yin, Da-Chuan; Guo, Yun-Zhu; Ma, Xiao-Liang; He, Jin; Guo, Wei-Hong; Xie, Xu-Zhuo; Zhou, Bo-Ru

    2012-04-01

    This paper reports on an ultrasonic levitation system developed for crystallization from solution in a containerless condition. The system has been proven to be able to levitate droplets stably and grow crystals rapidly and freely from a levitated droplet. Crystals of four samples, including NaCl, NH(4)Cl, lysozyme, and proteinase K, were obtained successfully utilizing the system. The studies showed that the crystals obtained from the acoustically levitated droplets all exhibited higher growth rates, larger sizes, better shapes, fewer crystals, as well as fewer twins and shards, compared with the control on a vessel wall. The results indicated that containerless ultrasonic levitation could play a key role in improving the crystallization of both inorganic salts and proteins. The ultrasonic levitation system could be used as a ground-based microgravity simulation platform, which could swiftly perform crystallization and screening of crystallization conditions for space crystallization and other ground-based containerless techniques. Moreover, the approach could also be conveniently applied to researching the dynamics and mechanism of crystallization. In addition, the device could be used for the preparation of high-purity materials, analysis of minute or poisonous samples, study of living cells, environmental monitoring, and so on. PMID:22501088

  9. Oscillational instabilities in single mode acoustics levitators

    NASA Technical Reports Server (NTRS)

    Rudnick, J.; Barmatz, Martin

    1990-01-01

    An extention of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The authors' results are consistent with those of experimental investigators. The present approach accounts for the effects of time delays in the response of a cavity to the motion of an object inside of it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of ability to levitate are discussed.

  10. Ground-Based Studies of Thermocapillary Flows in Levitated Laser-Heated Drops

    NASA Technical Reports Server (NTRS)

    Sadhai, S. S.; Zhao, H.; Trinh, Eugene H.

    1999-01-01

    The fluid flow phenomena are studied together with the thermal effects on drops levitated in acoustic and/or electrostatic fields. While the study is concerned primarily with particles in strong acoustic fields to overcome gravity, some results for microgravity have also been obtained. The study also includes an analysis and an experimental investigation of the thermocapillary flow in a spot-heated drop. Results of a Glovebox experiment on the MSL-1 mission, one of whose objectives was to evaluate the acoustic stability criteria in microgravity, are also discussed.

  11. Velocity and rotation measurements in acoustically levitated droplets

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters.

  12. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  13. Particle manipulation by a non-resonant acoustic levitator

    SciTech Connect

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2015-01-05

    We present the analysis of a non-resonant acoustic levitator, formed by an ultrasonic transducer and a concave reflector. In contrast to traditional levitators, the geometry presented herein does not require the separation distance between the transducer and the reflector to be a multiple of half wavelength. The levitator behavior is numerically predicted by applying a numerical model to calculate the acoustic pressure distribution and the Gor'kov theory to obtain the potential of the acoustic radiation force that acts on a levitated particle. We also demonstrate that levitating particles can be manipulated by controlling the reflector position while maintaining the transducer in a fixed position.

  14. Particle manipulation by a non-resonant acoustic levitator

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2015-01-01

    We present the analysis of a non-resonant acoustic levitator, formed by an ultrasonic transducer and a concave reflector. In contrast to traditional levitators, the geometry presented herein does not require the separation distance between the transducer and the reflector to be a multiple of half wavelength. The levitator behavior is numerically predicted by applying a numerical model to calculate the acoustic pressure distribution and the Gor'kov theory to obtain the potential of the acoustic radiation force that acts on a levitated particle. We also demonstrate that levitating particles can be manipulated by controlling the reflector position while maintaining the transducer in a fixed position.

  15. Fluid dynamics and solidification of levitated drops and shells

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1990-01-01

    The fluid dynamic investigaton of simple free liquid drops is described based on ground-based and low-gravity experimental results. The behavior of compound drops and liquid shells as described in recent theoretical and experimental studies is discussed. Experimental investigations using both levitation devices and drop tubes are considered in the case of 1-g laboratory investigations, highlighting the advantages and drawbacks of both techniques.

  16. On the horizontal wobbling of an object levitated by near-field acoustic levitation.

    PubMed

    Kim, Cheol-Ho; Ih, Jeong-Guon

    2007-11-01

    A circular planar object can be levitated with several hundreds of microns by ultrasonic near-field acoustic levitation (NFAL). However, when both the sound source and the levitated object are circularly shaped and the center of the levitated object does not coincide with the source center, instability problem often occurs. When this happens, it becomes difficult to pick up or transport the object for the next process. In this study, when the center of the levitated object was offset from the source center, the moving direction of the levitated object was predicted by using the time averaged potential around the levitated object. The wobbling frequency of the levitated object was calculated by analyzing the nonlinear wobbling motion of the object. It was shown that the predicted wobbling frequencies agreed with measured ones well. Finally, a safe zone was suggested to avoid the unstable movement of an object. PMID:17590402

  17. Non-contact transportation using near-field acoustic levitation

    PubMed

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described. PMID:10829622

  18. Levitation of a drop over a moving surface

    NASA Astrophysics Data System (ADS)

    Lhuissier, Henri; Tagawa, Yoshiyuki; Tran, Tuan; Sun, Chao; POF Team

    2013-11-01

    We investigate the levitation of a drop gently deposited onto the inner wall of a rotating hollow cylinder. For a sufficient velocity of the wall, the drop steadily levitates over a thin air film and reaches a stable angular position in the cylinder, where the drag and lift balance the weight of the drop. Interferometric measurements yield the three-dimensional air film thickness under the drop and reveal the asymmetry of the profile along the direction of the wall motion. A two-dimensional model is presented which explains the levitation mechanism, captures the main characteristics of the air film shape and predicts two asymptotic regimes for the film thickness h0: For large drops h0 ~Ca 2 / 3κb- 1 , as in the Bretherton problem, where Ca is the capillary number based on the air viscosity and κb is the curvature at the bottom of the drop. For small drops h0 ~Ca 4 / 5(aκb) 4 / 5κb- 1 , where a is the capillary length. We thank Detlef Lohse for the opportunity to carry this work.

  19. Experimental studies in fluid mechanics and materials science using acoustic levitation

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Robey, J.; Arce, A.; Gaspar, M.

    1987-01-01

    Ground-based and short-duration low gravity experiments have been carried out with the use of ultrasonic levitators to study the dynamics of freely suspended liquid drops under the influence of predominantly capillary and acoustic radiation forces. Some of the effects of the levitating field on the shape as well as the fluid flow fields within the drop have been determined. The development and refinement of measurement techniques using levitated drops with size on the order of 2 mm in diameter have yielded methods having direct application to experiments in microgravity. In addition, containerless melting, undercooling, and freezing of organic materials as well as low melting metals have provided experimental data and observations on the application of acoustic positioning techniques to materials studies.

  20. Theoretical and experimental examination of near-field acoustic levitation.

    PubMed

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense. PMID:12002842

  1. Holographic acoustic elements for manipulation of levitated objects

    NASA Astrophysics Data System (ADS)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  2. Holographic acoustic elements for manipulation of levitated objects.

    PubMed

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-01-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging. PMID:26505138

  3. Holographic acoustic elements for manipulation of levitated objects

    PubMed Central

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-01-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging. PMID:26505138

  4. Multiple-lobed bifurcation of rotating liquid drops levitated by ultrasound

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Xie, W. J.; Wei, B.

    2010-01-01

    It is previously predicted that the equilibrium shape of a rotating liquid drop evolves from the axisymmetric to the two-, three-, and four-lobed morphologies as the angular velocity increases. Although the two- and three-lobed shape bifurcations have been observed in experiments, the four-lobed equilibrium shape is scarcely reported. Here, we investigate the multiple-lobed shape bifurcations of rotating drops by using acoustic levitation, and in particular, follow the evolution of the four-lobed equilibrium shape. A new shape family of rotating drops characterized by five-lobed bifurcation is also observed, which is unexpected in the theoretical predictions. A numerical method is employed to simulate the shape evolution of acoustically levitated and rotating drops. And the results validate the existence of bifurcation point shifts among all the lobed-shape families due to the initial drop flattening induced by the acoustic radiation pressure, which plays a decisive role in the emergence of the five-lobed shape.

  5. Acoustic levitation for high temperature containerless processing in space

    NASA Technical Reports Server (NTRS)

    Rey, C. A.; Sisler, R.; Merkley, D. R.; Danley, T. J.

    1990-01-01

    New facilities for high-temperature containerless processing in space are described, including the acoustic levitation furnace (ALF), the high-temperature acoustic levitator (HAL), and the high-pressure acoustic levitator (HPAL). In the current ALF development, the maximum temperature capabilities of the levitation furnaces are 1750 C, and in the HAL development with a cold wall furnace they will exceed 2000-2500 C. The HPAL demonstrated feasibility of precursor space flight experiments on the ground in a 1 g pressurized-gas environment. Testing of lower density materials up to 1300 C has also been accomplished. It is suggested that advances in acoustic levitation techniques will result in the production of new materials such as ceramics, alloys, and optical and electronic materials.

  6. Mass Spectrometry of Acoustically Levitated Droplets

    PubMed Central

    Westphall, Michael S.; Jorabchi, Kaveh; Smith, Lloyd M.

    2008-01-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air–droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-μL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing chargere combination after ion desorption. PMID:18582090

  7. Mass spectrometry of acoustically levitated droplets.

    PubMed

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption. PMID:18582090

  8. High undercooling of bulk water during acoustic levitation

    NASA Astrophysics Data System (ADS)

    Lü, Yongjun; Cao, Chongde; Wei, Bingbo

    2003-06-01

    The experiments on undercooling of acoustically levitated water drops with the radius of 5-8 mm are carried out, and the maximum undercooling of 24 K is obtained in such a containerless state. Various factors influencing the undercoolability of water under acoustic levitation are synthetically analyzed. The experimental results indicate that impurities tend to decrease the undercooling level, whereas the dominant factor is the effect of ultrasound. The stirring and cavitation effects of ultrasound tend to stimulate the nucleation of water and prevent further bulk undercooling in experiments. The stirring effect provides some extra energy fluctuation to overcome the thermodynamic barrier for nucleation. The local high pressure caused by cavitation effect increases the local undercooling in water and stimulates nucleation before the achievement of a large bulk undercooling. According to the cooling curves, the dendrite growth velocity of ice is estimated, which is in good agreement with the theoretical prediction at the lower undercooling. The theoretical calculation predicts a dendrite growth velocity of 0.23 m/s corresponding to the maximum undercooling of 24 K, at which the rapid solidification of ice occurs.

  9. Agglomeration of proteins in acoustically levitated droplets.

    PubMed

    Delissen, Friedmar; Leiterer, Jork; Bienert, Ralf; Emmerling, Franziska; Thünemann, Andreas F

    2008-09-01

    An ultrasonic trap (acoustic levitator) was used as an analytical tool to allow container-free handling of proteins in small sample volumes. This trap was combined for the first time with synchrotron small-angle X-ray scattering (SAXS) for structure analysis of biological macromolecules in a solution. The microfocus beamline at BESSY was used as a source of intense X-ray radiation. Apoferritin (APO) was used as a model protein, and its aggregation behavior in a levitator was followed from a diluted solution to the solid state. Different stages of APO agglomeration were observed without solid container walls, which may influence aggregation behavior and produce a parasitic scattering background. Starting with a volume of 5 microL we analyzed the concentration dependence of APO structure factors in the range from 5 to 1,200 mg/mL (solid protein). The solution was stirred automatically due to convection inside the droplet caused by the ultrasonic field. SAXS data recording of APO was performed in time intervals of 60 s during an aggregation experiment of 30 to 60 min. PMID:18607573

  10. Perspectives of an acoustic electrostatic/electrodynamic hybrid levitator for small fluid and solid samples

    NASA Astrophysics Data System (ADS)

    Lierke, E. G.; Holitzner, L.

    2008-11-01

    The feasibility of an acoustic-electrostatic hybrid levitator for small fluid and solid samples is evaluated. A proposed design and its theoretical assessment are based on the optional implementation of simple hardware components (ring electrodes) and standard laboratory equipment into typical commercial ultrasonic standing wave levitators. These levitators allow precise electrical charging of drops during syringe- or ink-jet-type deployment. The homogeneous electric 'Millikan field' between the grounded ultrasonic transducer and the electrically charged reflector provide an axial compensation of the sample weight in an indifferent equilibrium, which can be balanced by using commercial optical position sensors in combination with standard electronic PID position control. Radial electrostatic repulsion forces between the charged sample and concentric ring electrodes of the same polarity provide stable positioning at the centre of the levitator. The levitator can be used in a pure acoustic or electrostatic mode or in a hybrid combination of both subsystems. Analytical evaluations of the radial-axial force profiles are verified with detailed numerical finite element calculations under consideration of alternative boundary conditions. The simple hardware modification with implemented double-ring electrodes in ac/dc operation is also feasible for an electrodynamic/acoustic hybrid levitator.

  11. A Novel Acousto-Electric Levitator for Studies of Drop and Particle Clusters and Arrays

    NASA Technical Reports Server (NTRS)

    Tian, Yuren; Apfel, Robert E.; Zheng, Yibing

    1999-01-01

    A novel and compact instrumentation for studying the behavior of drop sprays and of clusters of drops now permits fundamental research into the behavior of reacting and non-reacting fluid and solid species. The new capability is made possible by simultaneous acousto-electric levitation and charging of "seed" droplets (10-30 microns in diameter) which come together in 2-D clusters (with up to 300 droplets). These clusters are interesting in their own right because of their crystalline and quasi-crystalline forms, which depend on the acoustic and electric field parameters. By varying the electric and acoustic field intensities, one can cause a cluster of droplets to condense into larger drops (e.g. 50-300 microns) which, because of their charge, form uniformly spaced 2-D arrays of monodispersed drops (e.g. 30-40 array drops in preliminary experiments). One or more layers of these 2-D arrays can form in the acoustic standing wave. Such a configuration permits a wide range of fundamental studies of drop evaporation, combustion, and nucleation. The drops can be single or multicomponent. Therefore, fundamental materials studies can also be performed. Using this same Cluster and Array Generation (CAG) instrumentation, it has been also possible in preliminary experiments to demonstrate the clustering and arraying of solid particles, both coated with an electrically conducting layer and uncoated, and both charged and uncharged.

  12. Dependence of acoustic levitation capabilities on geometric parameters.

    PubMed

    Xie, W J; Wei, B

    2002-08-01

    A two-cylinder model incorporating boundary element method simulations is developed, which builds up the relationship between the levitation capabilities and the geometric parameters of a single-axis acoustic levitator with reference to wavelength. This model proves to be successful in predicting resonant modes of the acoustic field and explaining axial symmetry deviation of the levitated samples near the reflector and emitter. Concave reflecting surfaces of a spherical cap, a paraboloid, and a hyperboloid of revolution are investigated systematically with regard to the dependence of the levitation force on the section radius R(b) and curvature radius R (or depth D) of the reflector. It is found that the levitation force can be remarkably enhanced by choosing an optimum value of R or D, and the possible degree of this enhancement for spherically curved reflectors is the largest. The degree of levitation force enhancement by this means can also be facilitated by enlarging R(b) and employing a lower resonant mode. The deviation of the sample near the reflector is found likely to occur in case of smaller R(b), larger D, and a higher resonant mode. The calculated dependence of levitation force on R, R(b), and the resonant mode is also verified by experiment and finally demonstrated to be in good agreement with experimental results, in which considerably a strong levitation force is achieved to levitate an iridium sphere which has the largest density of 22.6 g/cm(3). PMID:12241309

  13. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    NASA Astrophysics Data System (ADS)

    Geng, D. L.; Xie, W. J.; Wei, B.

    2012-10-01

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition.

  14. Oscillating and star-shaped drops levitated by an airflow.

    PubMed

    Bouwhuis, Wilco; Winkels, Koen G; Peters, Ivo R; Brunet, Philippe; van der Meer, Devaraj; Snoeijer, Jacco H

    2013-08-01

    We investigate the spontaneous oscillations of drops levitated above an air cushion, eventually inducing a breaking of axisymmetry and the appearance of "star drops". This is strongly reminiscent of the Leidenfrost stars that are observed for drops floating above a hot substrate. The key advantage of this work is that we inject the airflow at a constant rate below the drop, thus eliminating thermal effects and allowing for a better control of the flow rate. We perform experiments with drops of different viscosities and observe stable states, oscillations, and chimney instabilities. We find that for a given drop size the instability appears above a critical flow rate, where the latter is largest for small drops. All these observations are reproduced by numerical simulations, where we treat the drop using potential flow and the gas as a viscous lubrication layer. Qualitatively, the onset of instability agrees with the experimental results, although the typical flow rates are too large by a factor 10. Our results demonstrate that thermal effects are not important for the formation of star drops and strongly suggest a purely hydrodynamic mechanism for the formation of Leidenfrost stars. PMID:24032934

  15. Acoustic levitation: recent developments and emerging opportunities in biomaterials research.

    PubMed

    Weber, Richard J K; Benmore, Chris J; Tumber, Sonia K; Tailor, Amit N; Rey, Charles A; Taylor, Lynne S; Byrn, Stephen R

    2012-04-01

    Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described. PMID:22038123

  16. (abstract) Production and Levitation of Free Drops of Liquid Helium

    NASA Technical Reports Server (NTRS)

    Paine, C. G.; Petrac, D.; Rhim, W. K.

    1995-01-01

    We are interested in the nucleation and behavior of quantized vorticies and surface excitations in free drops of superfluid helium. We have constructed an apparatus to maintain liquid helium drops isolated from any material container in the Earth's gravitational field, and have investigated two techniques for generating and introducing liquid drops into the region of confinement. The levitation apparatus utilizes the electrostatic force acting upon a charged liquid drop to counteract the gravitational force, with drop position stability provided by a static magnetic field acting upon the helium diamagnetic moment. Electrically neutral superfluid drops have been produced with a miniature thermomechanical pump; for a given configuration the liquid initial velocity has been varied up to several centimeters per second. Liquid drops carrying either net positive or negative charge are produced by an electrode which generates a flow of ionized liquid from the bulk liquid surface. Potentials of less than one thousand volts to several thousand volts are required. The mass flow is controlled by varying duration of the ionizing voltage pulse; drops as small as 30 micrometers diameter, charged to near the Rayleigh limit, have been observed.

  17. Motion measurement of acoustically levitated object

    NASA Technical Reports Server (NTRS)

    Watkins, John L. (Inventor); Barmatz, Martin B. (Inventor)

    1993-01-01

    A system is described for determining motion of an object that is acoustically positioned in a standing wave field in a chamber. Sonic energy in the chamber is sensed, and variation in the amplitude of the sonic energy is detected, which is caused by linear motion, rotational motion, or drop shape oscillation of the object. Apparatus for detecting object motion can include a microphone coupled to the chamber and a low pass filter connected to the output of the microphone, which passes only frequencies below the frequency of sound produced by a transducer that maintains the acoustic standing wave field. Knowledge about object motion can be useful by itself, can be useful to determine surface tension, viscosity, and other information about the object, and can be useful to determine the pressure and other characteristics of the acoustic field.

  18. Green chemistry and nanofabrication in a levitated Leidenfrost drop.

    PubMed

    Abdelaziz, Ramzy; Disci-Zayed, Duygu; Hedayati, Mehdi Keshavarz; Pöhls, Jan-Hendrik; Zillohu, Ahnaf Usman; Erkartal, Burak; Chakravadhanula, Venkata Sai Kiran; Duppel, Viola; Kienle, Lorenz; Elbahri, Mady

    2013-01-01

    Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal-polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials. PMID:24169567

  19. Green chemistry and nanofabrication in a levitated Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ramzy; Disci-Zayed, Duygu; Hedayati, Mehdi Keshavarz; Pöhls, Jan-Hendrik; Zillohu, Ahnaf Usman; Erkartal, Burak; Chakravadhanula, Venkata Sai Kiran; Duppel, Viola; Kienle, Lorenz; Elbahri, Mady

    2013-10-01

    Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal-polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials.

  20. Green chemistry and nanofabrication in a levitated Leidenfrost drop

    PubMed Central

    Abdelaziz, Ramzy; Disci-Zayed, Duygu; Hedayati, Mehdi Keshavarz; Pöhls, Jan-Hendrik; Zillohu, Ahnaf Usman; Erkartal, Burak; Chakravadhanula, Venkata Sai Kiran; Duppel, Viola; Kienle, Lorenz; Elbahri, Mady

    2013-01-01

    Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal–polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials. PMID:24169567

  1. Scattering of white light from levitated oblate water drops near rainbows and other diffraction catastrophes.

    PubMed

    Simpson, H J; Marston, P L

    1991-08-20

    Oblate drops of water illuminated perpendicular to their symmetry axis generate a hyperbolic-umbilic diffraction catastrophe near the primary rainbow [P. L. Marston and E. H. Trinh, Nature London 312, 529-531 (1984)]. Observations were made of this diffraction catastrophe generated by white-light illumination of acoustically levitated drops of water in air. The observations suggest what generalized rainbows would look like if they were produced in nature when sunlight illuminates large raindrops. Unlike the usual rainbow arc, the transverse cusp of the unfolded catastrophe is not distinctly colored. The hyperbolic-umbilic focal section is distinctly colored as is another diffraction catastrophe generated in the rainbow region when the drop is highly oblate. PMID:20706412

  2. Acoustic method for levitation of small living animals

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Cao, C. D.; Lü, Y. J.; Hong, Z. Y.; Wei, B.

    2006-11-01

    Ultrasonic levitation of some small living animals such as ant, ladybug, and young fish has been achieved with a single-axis acoustic levitator. The vitality of ant and ladybug is not evidently influenced during the acoustic levitation, whereas that of the young fish is reduced because of the inadequacy of water supply. Numerical analysis shows that the sound pressures on the ladybug's surface almost reach the incident pressure amplitude p0 due to sound scattering. It is estimated that 99.98% of the acoustic energy is reflected away from the ladybug. The acoustic radiation pressure pa on the ladybug's surface is only 1%-3% of p0, which plays a compression role on the central region and a suction role on the peripheral region.

  3. Structure analysis using acoustically levitated droplets.

    PubMed

    Leiterer, J; Delissen, F; Emmerling, F; Thünemann, A F; Panne, U

    2008-06-01

    Synchrotron diffraction with a micrometer-sized X-ray beam permits the efficient characterization of micrometer-sized samples, even in time-resolved experiments, which is important because often the amount of sample available is small and/or the sample is expensive. In this context, we will present acoustic levitation as a useful sample handling method for small solid and liquid samples, which are suspended in a gaseous environment (air) by means of a stationary ultrasonic field. A study of agglomeration and crystallization processes in situ was performed by continuously increasing the concentration of the samples by evaporating the solvent. Absorption and contamination processes on the sample container walls were suppressed strongly by this procedure, and parasitic scattering such as that observed when using glass capillaries was also absent. The samples investigated were either dissolved or dispersed in water droplets with diameters in the range of 1 micrometer to 2 millimeters. Initial results from time-resolved synchrotron small- and wide-angle X-ray scattering measurements of ascorbic acid, acetylsalicylic acid, apoferritin, and colloidal gold are presented. PMID:18373085

  4. Amorphization of Molecular Liquids of Pharmaceutical Drugs by Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Benmore, C. J.; Weber, J. K. R.

    2011-08-01

    It is demonstrated that acoustic levitation is able to produce amorphous forms from a variety of organic molecular compounds with different glass forming abilities. This can lead to enhanced solubility for pharmaceutical applications. High-energy x-ray experiments show that several viscous gels form from saturated pharmaceutical drug solutions after 10-20 min of levitation at room temperature, most of which can be frozen in solid form. Laser heating of ultrasonically levitated drugs can also result in the vitrification of molecular liquids, which is not attainable using conventional amorphization methods.

  5. A simulation of streaming flows associated with acoustic levitators

    NASA Astrophysics Data System (ADS)

    Rednikov, A.; Riley, N.

    2002-04-01

    Steady-state acoustic streaming flow patterns have been observed by Trinh and Robey [Phys. Fluids 6, 3567 (1994)], during the operation of a variety of single axis ultrasonic levitators in a gaseous environment. Microstreaming around levitated samples is superimposed on the streaming flow which is observed in the levitator even in the absence of any particle therein. In this paper, by physical arguments, numerical and analytical simulations we provide entirely satisfactory interpretations of the observed flow patterns in both isothermal and nonisothermal situations.

  6. Experimental determination of the dynamics of an acoustically levitated sphere

    SciTech Connect

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  7. Experimental determination of the dynamics of an acoustically levitated sphere

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-01

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  8. A new, simple electrostatic-acoustic hybrid levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Loeb, H.; Gross, D.

    1990-01-01

    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.

  9. Study on Transient Properties of Levitated Object in Near-Field Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Chen, Chao; Zhao, Chun-Sheng

    2011-12-01

    A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to several velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange—Euler (ALE) form are numerically solved by using streamline upwind petrov galerkin (SUPG) finite elements method. Second, the formed algebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.

  10. Structural morphology of acoustically levitated and heated nanosilica droplet

    SciTech Connect

    Kumar, Ranganathan; Tijerino, Erick; Saha, Abhishek; Basu, Saptarshi

    2010-09-20

    We study the vaporization and precipitation dynamics of a nanosilica encapsulated water droplet by levitating it acoustically and heating it with a CO{sub 2} laser. For all concentrations, we observe three phases: solvent evaporation, surface agglomeration, and precipitation leading to bowl or ring shaped structures. At higher concentrations, ring reorientation and rotation are seen consistently. The surface temperature from an infrared camera is seen to be dependent on the final geometrical shape of the droplet and its rotation induced by the acoustic field of the levitator. With nonuniform particle distribution, these structures can experience rupture which modifies the droplet rotational speed.

  11. Anomalous water drop bouncing on a nanotextured surface by the Leidenfrost levitation

    NASA Astrophysics Data System (ADS)

    Lee, Doo Jin; Song, Young Seok

    2016-05-01

    We report an anomalous liquid drop bouncing phenomenon that is generated by the Leidenfrost levitation due to a vapor layer reducing energy dissipation during the collision. The Leidenfrost levitation of water drops on both a hydrophobic surface and nanotextured Cassie surface is investigated. When the water drop is positioned onto the hydrophobic surface, a superhydrophobic feature is observed by the levitation effect due to the vapor film, which results in a slow evaporation of the drop due to the low thermal conductivity of the vapor layer that inhibits heat transfer between the heated surface and the water drop. In contrast, for the nanotextured surface, the water drop can bounce off after impact on the surface when it overcomes gravitational and adhesion forces. The spontaneous water drop bouncing on the nanotextured surface is powered by the combination effect of the Leidenfrost levitation and the non-wetting Cassie state.

  12. Acoustic levitation with self-adaptive flexible reflectors.

    PubMed

    Hong, Z Y; Xie, W J; Wei, B

    2011-07-01

    Two kinds of flexible reflectors are proposed and examined in this paper to improve the stability of single-axis acoustic levitator, especially in the case of levitating high-density and high-temperature samples. One kind is those with a deformable reflecting surface, and the other kind is those with an elastic support, both of which are self-adaptive to the change of acoustic radiation pressure. High-density materials such as iridium (density 22.6 gcm(-3)) are stably levitated at room temperature with a soft reflector made of colloid as well as a rigid reflector supported by a spring. In addition, the containerless melting and solidification of binary In-Bi eutectic alloy (melting point 345.8 K) and ternary Ag-Cu-Ge eutectic alloy (melting point 812 K) are successfully achieved by applying the elastically supported reflector with the assistance of a laser beam. PMID:21806218

  13. Acoustically levitated droplets: a contactless sampling method for fluorescence studies.

    PubMed

    Leiterer, Jork; Grabolle, Markus; Rurack, Knut; Resch-Genger, Ute; Ziegler, Jan; Nann, Thomas; Panne, Ulrich

    2008-01-01

    Acoustic levitation is used as a new tool to study concentration-dependent processes in fluorescence spectroscopy. With this technique, small amounts of liquid and solid samples can be measured without the need for sample supports or containers, which often limits signal acquisition and can even alter sample properties due to interactions with the support material. We demonstrate that, because of the small sample volume, fluorescence measurements at high concentrations of an organic dye are possible without the limitation of inner-filter effects, which hamper such experiments in conventional, cuvette-based measurements. Furthermore, we show that acoustic levitation of liquid samples provides an experimentally simple way to study distance-dependent fluorescence modulations in semiconductor nanocrystals. The evaporation of the solvent during levitation leads to a continuous increase of solute concentration and can easily be monitored by laser-induced fluorescence. PMID:18596335

  14. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  15. Nonlinear characterization of a single-axis acoustic levitator

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  16. Nonlinear characterization of a single-axis acoustic levitator.

    PubMed

    Andrade, Marco A B; Ramos, Tiago S; Okina, Fábio T A; Adamowski, Julio C

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed. PMID:24784677

  17. Surface wave patterns on acoustically levitated viscous liquid alloys

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Yan, N.; Geng, D. L.; Wei, B.

    2014-04-01

    We demonstrate two different kinds of surface wave patterns on viscous liquid alloys, which are melted and solidified under acoustic levitation condition. These patterns are consistent with the morphologies of standing capillary waves and ensembles of oscillons, respectively. The rapid solidification of two-dimensional liquid alloy surfaces may hold them down.

  18. Acoustic levitating apparatus for submillimeter samples

    NASA Astrophysics Data System (ADS)

    Lee, M. C.; Feng, I.-A.

    1982-06-01

    A hemispherical focusing radiator has been employed to generate ultrahigh intensity sound waves in a gaseous medium at the center of curvature of the radiator (focal point) at 75, 107, and 163 kHz. A volumetric force is produced by optimally placing a reflector in the vicinity of the focal point to levitate samples of submillimeter sizes. It has been demonstrated that a sample with a specific gravity of 19.3 can be levitated with this apparatus. The lateral positional wandering of the sample in the force well is estimated at less than 5% of the dimension of the sample size used.

  19. Acoustic levitating apparatus for submillimeter samples

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I.-A.

    1982-01-01

    A hemispherical focusing radiator has been employed to generate ultrahigh intensity sound waves in a gaseous medium at the center of curvature of the radiator (focal point) at 75, 107, and 163 kHz. A volumetric force is produced by optimally placing a reflector in the vicinity of the focal point to levitate samples of submillimeter sizes. It has been demonstrated that a sample with a specific gravity of 19.3 can be levitated with this apparatus. The lateral positional wandering of the sample in the force well is estimated at less than 5% of the dimension of the sample size used.

  20. Rapid Growth of Ice Dendrite in Acoustically Levitated and Highly Undercooled Water

    NASA Astrophysics Data System (ADS)

    Lü, Yong-Jun; Xie, Wen-Jun; Wei, Bing-Bo

    2002-10-01

    Water drops with diameters ranging from 2.5 to 4 mm are highly undercooled by up to 24 K with the acoustic levitation technique. Compared to the case of water contained in a tube, acoustic levitation has efficiently avoided the heterogeneous nucleation from container walls and consequently increased the undercooling level. However, the cavitation effect induced by ultrasound may prematurely catalyse nucleation, which hinders the further achievement of bulk undercooling. The growth velocity of ice dendrite determined experimentally in highly undercooled water is characteristic of rapid dendritic growth, which reaches 0.17 m/s at the undercooling of 24 K. The Lipton-Kurz-Trivedi dendritic growth model is used to predict the kinetic characteristics of rapid growth of ice dendrite under high undercooling conditions, which shows good agreement with the experimental results.

  1. Acoustic levitation as an IR spectroscopy sampling technique

    SciTech Connect

    Cronin, J. T.; Brill, T. B.

    1989-02-01

    Acoustic levitation of liquid droplets (/lt/4 mm diameter), bubbles,and solid particles is described as an unusual sampling techniquefor obtaining the infrared spectrum of samples that might be incompatiblewith conventional sample support methods, and for studies of materialsunder extreme conditions. Excellent FT-IR spectra were recorded ofbubbles of a concentrated aqueous nitrate solution, of mineral oil,and of an aqueous surfactant solution. Polymethacrylic acidpacking foam also produced a high-quality spectrum. Large aqueousdroplets and dense solids gave unsatisfactory spectra. The designof the levitator and various spectroscopic considerations are discussed.

  2. Oscillational instabilities in single-mode acoustic levitators

    NASA Technical Reports Server (NTRS)

    Rudnick, Joseph; Barmatz, M.

    1990-01-01

    An extension of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The results are consistent with experimental investigations. The present approach accounts for the effect of time delays on the response of a cavity to the motion of an object inside it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of the ability to levitate are discussed.

  3. Drop dynamics in space and interference with acoustic field (M-15)

    NASA Technical Reports Server (NTRS)

    Yamanaka, Tatsuo

    1993-01-01

    The objective of the experiment is to study contactless positioning of liquid drops, excitation of capillary waves on the surface of acoustically levitated liquid drops, and deformation of liquid drops by means of acoustic radiation pressure. Contactless positioning technologies are very important in space materials processing because the melt is processed without contacting the wall of a crucible which can easily contaminate the melt specifically for high melting temperatures and chemically reactive materials. Among the contactless positioning technologies, an acoustic technology is especially important for materials unsusceptible to electromagnetic fields such as glasses and ceramics. The shape of a levitated liquid drop in the weightless condition is determined by its surface tension and the internal and external pressure distribution. If the surface temperature is constant and there exist neither internal nor external pressure perturbations, the levitated liquid drop forms a shape of perfect sphere. If temperature gradients on the surface and internal or external pressure perturbations exist, the liquid drop forms various modes of shapes with proper vibrations. A rotating liquid drop was specifically studied not only as a classical problem of theoretical mechanics to describe the shapes of the planets of the solar system, as well as their arrangement, but it is also more a contemporary problem of modern non-linear mechanics. In the experiment, we are expecting to observe various shapes of a liquid drop such as cocoon, tri-lobed, tetropod, multi-lobed, and doughnut.

  4. The Effect of Shape Mode Oscillations on the Particle Scavenging Efficiency of Water Droplets Using Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Kizzee, J.; Saylor, J. R.

    2010-11-01

    The effect of drop oscillations on the scavenging of solid particles is studied using an ultrasonic transducer to levitate a water droplet in an airflow of particles. Shape mode oscillations are induced in the drop by modulating the acoustic field used for levitation. The effect of oscillation frequency, the oscillation amplitude, and the drop diameter on the scavenging of particles is presented. The particle diameters are on the order of 1μm and the drop diameters are on the order of 1mm. Although single droplets are studied here, the application of interest is improved scavenging of particles by spray drops. Specifically, improving the elimination of coal dust particles from mines using waters sprays excited ultrasonically is of interest.

  5. A wall-free climate unit for acoustic levitators

    NASA Astrophysics Data System (ADS)

    Schlegel, M. C.; Wenzel, K.-J.; Sarfraz, A.; Panne, U.; Emmerling, F.

    2012-05-01

    Acoustic levitation represents the physical background of trapping a sample in a standing acoustic wave with no contact to the wave generating device. For the last three decades, sample holders based on this effect have been commonly used for contact free handling of samples coupled with a number of analytical techniques. In this study, a wall-free climate unit is presented, which allows the control of the environmental conditions of suspended samples. The insulation is based on a continuous cold/hot gas flow around the sample and thus does not require any additional isolation material. This provides a direct access to the levitated sample and circumvents any influence of the climate unit material to the running analyses.

  6. A wall-free climate unit for acoustic levitators.

    PubMed

    Schlegel, M C; Wenzel, K-J; Sarfraz, A; Panne, U; Emmerling, F

    2012-05-01

    Acoustic levitation represents the physical background of trapping a sample in a standing acoustic wave with no contact to the wave generating device. For the last three decades, sample holders based on this effect have been commonly used for contact free handling of samples coupled with a number of analytical techniques. In this study, a wall-free climate unit is presented, which allows the control of the environmental conditions of suspended samples. The insulation is based on a continuous cold/hot gas flow around the sample and thus does not require any additional isolation material. This provides a direct access to the levitated sample and circumvents any influence of the climate unit material to the running analyses. PMID:22667651

  7. Acoustic levitation and the Boltzmann-Ehrenfest principle

    NASA Technical Reports Server (NTRS)

    Putterman, S.; Rudnick, Joseph; Barmatz, M.

    1989-01-01

    The Boltzmann-Ehrenfest principle of adiabatic invariance relates the acoustic potential acting on a sample positioned in a single-mode cavity to the shift in resonant frequency caused by the presence of this sample. This general and simple relation applies to samples and cavities of arbitrary shape, dimension, and compressibility. Positioning forces and torques can, therefore, be determined from straightforward measurements of frequency shifts. Applications to the Rayleigh disk phenomenon and levitated cylinders are presented.

  8. Acoustic levitator for contactless motion and merging of large droplets in air

    NASA Astrophysics Data System (ADS)

    Bjelobrk, Nada; Nabavi, Majid; Poulikakos, Dimos

    2012-09-01

    Large droplet transport in a line-focussed acoustic manipulator in terms of maximum droplet size is achieved by employing a driving voltage control mechanism. The maximum volume of the transported droplets in the order of few microliters is thereby increased by three orders of magnitude compared to the constant voltage case, widening the application field of this method significantly. A drop-on-demand droplet generator is used to supply the liquid droplets into the system. The ejected sequence of picoliter-size droplets is guided along trajectories by the acoustic field and accumulates at the selected pressure node, merging into a single large droplet. Droplet movement is achieved by varying the reflector height. This also changes the intensity of the radiation pressure during droplet movement, which in turn could atomise the droplet. The acoustic force is adjusted by regulating the driving voltage of the actuator to keep the liquid droplet suspended in air and to prevent atomisation. In the herein presented levitation concept, liquids with a wide range of surface tension (water and tetradecane were tested) can be transported over distances of several mm. The aspect ratio of the droplet in the acoustic field is shown to be a good indicator for radiation pressure intensity and is kept between 1.1 and 1.4 during droplet transport. Despite certain limitations with volatile liquids, the presented acoustic levitator concept has the potential to expand the range of analytical characterisation and manipulation methods in applications ranging from chemistry and biology.

  9. Vibration Characteristics of Acoustically Levitated Object with Rigid and Elastic Reflectors

    NASA Astrophysics Data System (ADS)

    Hong, Zhen-Yu; Xie, Wen-Jun; Wei, Bing-Bo

    2010-01-01

    Levitation stability is a crucial factor that influences acoustic levitation capability. We present two sample-including models for a single-axis acoustic levitator with either a rigid or elastic reflector. Numerical analysis shows that, with the rigid reflector, both the decay time from initial disturbance and the vibration amplitude increase with sample density, which is unfavorable for levitation stability. However, with the elastic reflector, the decay time and the vibration amplitude are greatly reduced by choosing appropriate parameters of the reflector. Experimental results agree well with theoretical predictions, indicating that levitation stability can be remarkably enhanced by replacing the rigid reflector with an elastic reflector.

  10. Mechanism of the lift force acting on a levitating drop over a moving surface

    NASA Astrophysics Data System (ADS)

    Saito, Masafumi; Tagawa, Yoshiyuki; Kameda, Masaharu

    2014-11-01

    The purpose of this study is to understand the levitation mechanism of a drop over a moving surface. In our experiment we softly deposit a silicon-oil drop onto the inner wall of a rotating hollow cylinder. With sufficiently large velocity of the wall, the drop steadily levitates. The drop reaches a stable angular position in the cylinder, where the drag and lift balance the weight of the drop. The lift force, which is vital for the levitation, is generated inside a thin air film existing between the drop and the wall. Here three-dimensional shape of the air film plays a crucial role for the magnitude of the lift force. Note that, although the shapes of some levitating drops had been reported, the lift estimated from the shape had not been validated. Using interferometric technique, we measure the three-dimensional shape of the air film under the drop. We then calculate the lift by applying the lubrication theory. This lift is compared with that estimated from the angular position. Both lifts show a fair agreement. In addition, we investigate the shapes of the air film under drops with various sizes, viscosities and wall velocities. We discuss effects of these parameters on the shape and the lift. JSPS KAKENHI Grant Number 26709007.

  11. Preliminary characterization of a one-axis acoustic system. [acoustic levitation for space processing

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Reiss, D. A.; Berge, L. H.; Parker, H. W.

    1979-01-01

    The acoustic fields and levitation forces produced along the axis of a single-axis resonance system were measured. The system consisted of a St. Clair generator and a planar reflector. The levitation force was measured for bodies of various sizes and geometries (i.e., spheres, cylinders, and discs). The force was found to be roughly proportional to the volume of the body until the characteristic body radius reaches approximately 2/k (k = wave number). The acoustic pressures along the axis were modeled using Huygens principle and a method of imaging to approximate multiple reflections. The modeled pressures were found to be in reasonable agreement with those measured with a calibrated microphone.

  12. Development of an acoustic levitation technique to obtain foam material properties

    NASA Astrophysics Data System (ADS)

    Liu, Li

    2003-10-01

    Aqueous foam is an impermanent form of matter in which a kind of gas, often air, is dispersed as an agglomeration of bubbles that are separated from each other by films of liquid. Foams are of tremendous economical importance in industry. Foam material properties are sensitive functions of the void fraction. A ``wet foam'' is a bubbly liquid that cannot support shearing motion; inside the wet foam the individual bubbles are free to move around. A ``transitional'' or ``critical foam'' is composed of bubbles whose dynamics are strongly interacting and whose surfaces may be in mechanical contact with each other. Finally, a ``dry foam'' is composed of bubbles who have a fixed position in a lattice for low to moderate straining rates. An acoustic levitation technique is developed which provides a noncontact means of estimating the properties of the foam by acoustically levitating aqueous foam drops and exciting their spheroidal modes oscillation. Assuming linear oscillation of foam drops, experimental data for frequency and damping show good agreement with a bubble dynamics-based theoretical model. Thesis advisor: R. Glynn Holt Copies of this thesis may be obtained by contacting the advisor, Glynn Holt, Dept. of Aerospace and Mechanical Engineering, Boston University, 110 Cummington St., Boston, MA 02215. E-mail address: rgholt@bu.edu

  13. Sectorial oscillation of acoustically levitated nanoparticle-coated droplet

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Chen, Zhen; Geng, Xingguo

    2016-01-01

    We have investigated the dynamics of a third mode sectorial oscillation of nanoparticle-coated droplets using acoustic levitation in combination with active modulation. The presence of nanoparticles at the droplet surface changes its oscillation amplitude and frequency. A model linking the interfacial rheology and oscillation dynamics has been proposed in which the compression modulus ɛ of the particle layer is introduced into the analysis. The ɛ obtained with the model is in good agreement with that obtained by the Wilhelmy plate approach, highlighting the important role of interfacial rheological properties in the sectorial oscillation of droplets.

  14. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  15. Holding characteristics of planar objects suspended by near-field acoustic levitation

    PubMed

    Matsuo; Koike; Nakamura; Ueha; Hashimoto

    2000-03-01

    The authors have found the acoustic levitation phenomenon where planar objects of 10 kg weight can be levitated near a vibration surface. This phenomenon has been studied for non-contact transportation. A circular planar object can be suspended without contacting a circular vibration plate. We have studied the holding force which acts horizontally on the levitated objects. The horizontal position of the object is stabilized by this force. In this paper, we discuss the effect of the radius of a levitated object, levitation distance, displacement amplitude of the vibration plate and the vibration mode on the suspending force. PMID:10829629

  16. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories.

    PubMed

    Schiffter, Heiko; Lee, Geoffrey

    2007-09-01

    The suitability of a single droplet drying acoustic levitator as a model for the spray drying of aqueous, pharmaceutically-relevant solutes used to produce protein-loaded particles has been examined. The acoustic levitator was initially evaluated by measuring the drying rates of droplets of pure water in dependence of drying-air temperature and flow rate. The measured drying rates were higher than those predicted by boundary layer theory because of the effects of primary acoustic streaming. Sherwood numbers of 2.6, 3.6, and 4.4 at drying-air temperatures of 25 degrees C, 40 degrees C, and 60 degrees C were determined, respectively. Acoustic levitation theory could predict the measured drying rates and Sherwood numbers only when a forced-convection drying-air stream was used to neuralize the retarding effect of secondary acoustic streaming on evaporation rate. At still higher drying-air flow rates, the Ranz-Marshall correlation accurately predicts Sherwood number, provided a stable droplet position in the standing acoustic wave is maintained. The measured Sherwood numbers and droplet Reynolds numbers show that experiments performed in the levitator in still air are taking place effectively under conditions of substantial forced convection. The similitude of these values to those occurring in spray dryers is fortuitous for the suitability of the acoustic levitator as a droplet evaporation model for spray drying. PMID:17582811

  17. Enzyme kinetics in acoustically levitated droplets of supercooled water: a novel approach to cryoenzymology.

    PubMed

    Weis, David D; Nardozzi, Jonathan D

    2005-04-15

    The rate of the alkaline phosphatase-catalyzed hydrolysis of 4-methylumbelliferone phosphate was measured in acoustically levitated droplets of aqueous tris (50 mM) at pH 8.5 at 22 +/- 2 degrees C and in supercooled solution at -6 +/- 2 degrees C. At 22 degrees C, the rate of product formation was in excellent agreement with the rate observed in bulk solution in a cuvette, indicating that the acoustic levitation process does not alter the enzyme activity. The rate of the reaction decreased 6-fold in supercooled solution at -6 +/- 2 degrees C. The acoustic levitator apparatus is described in detail. PMID:15828793

  18. Finite element analysis and optimization of a single-axis acoustic levitator.

    PubMed

    Andrade, Marco A B; Buiochi, Flávio; Adamowski, Julio C

    2010-01-01

    A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance, the transducer face displacement, and the acoustic radiation potential that acts on small spheres are determined by the finite element method. The numerical electrical impedance is compared with that acquired experimentally by an impedance analyzer, and the predicted displacement is compared with that obtained by a fiber-optic vibration sensor. The numerical acoustic radiation potential is verified experimentally by placing small spheres in the levitator. The same procedure is used to optimize a levitator consisting of a curved reflector and a concave-faced transducer. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. The optimized levitator is able to levitate 3, 2.5-mm diameter steel spheres with a power consumption of only 0.9 W. PMID:20178913

  19. CO2 laser ionization of acoustically levitated droplets.

    PubMed

    Stindt, Arne; Albrecht, Merwe; Panne, Ulrich; Riedel, Jens

    2013-09-01

    For many analytical purposes, direct laser ionization of liquids is desirable. Several studies on supported droplets, free liquid jets, and ballistically dispensed microdroplets have been conducted, yet detailed knowledge of the underlying mechanistics in ion formation is still missing. This contribution introduces a simple combination of IR-MALDI mass spectrometry and an acoustical levitation device for contactless confinement of the liquid sample. The homebuilt ultrasonic levitator supports droplets of several millimeters in diameter. These droplets are vaporized by a carbon dioxide laser in the vicinity of the atmospheric pressure interface of a time of flight mass spectrometer. The evaporation process is studied by high repetition rate shadowgraphy experiments elucidating the ballistic evaporation of the sample and revealing strong confinement of the vapor by the ultrasonic field of the trap. Finally, typical mass spectra for pure glycerol/water matrix and lysine as an analyte are presented with and without the addition of trifluoracetic acid, and the ionization mechanism is briefly discussed. The technique is a promising candidate for a reproducible mass spectrometric detection scheme for the field of microfluidics. PMID:23132542

  20. Containerless processing at high temperatures using acoustic levitation

    NASA Technical Reports Server (NTRS)

    Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.

    1991-01-01

    Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.

  1. An acoustic levitation technique for the study of nonlinear oscillations of gas bubbles in liquids

    NASA Astrophysics Data System (ADS)

    Young, D. A.; Crum, L. A.

    1983-08-01

    A technique of acoustic levitation was developed for the study of individual gas bubbles in a liquid. Isopropyl alcohol and a mixture of glycerine and water (33-1/3% glycerine by volume) were the two liquids used in this research. Bubbles were levitated near the acoustic pressure antinode of an acoustic wave in the range of 20-22 kHz. Measurements were made of the levitation number as a function of the normalized radius of the bubbles. The levitation number is the ratio of the hydrostatic pressure gradient to the acoustic pressure gradient. These values were then compared to a nonlinear theory. Results were very much in agreement except for the region near the n=2 harmonic. An explanation for the discrepancy between theory and experiment appears to lie in the polytropic exponent associated with the gas in the interior of the bubble.

  2. Polymer coating of glass microballoons levitated in a focused acoustic field

    NASA Technical Reports Server (NTRS)

    Young, A. T.; Lee, M. C.; Feng, I.-A.; Elleman, D. D.; Wang, T. G.

    1982-01-01

    Inertial confinement fusion (ICF) glass microballoons (GMBs) levitated in a focusing radiator acoustic device can be coated with liquid materials by deploying the liquid into the levitation field with a stepped-horn atomizer. The GMB can be forced to the center of the coating liquid with a strong acoustically generated centering force. Water solutions of organic polymers, UV-curable liquid organic monomers, and paraffin waxes have been used to prepare solid coatings on the surface of GMBs using this technique.

  3. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos

    PubMed Central

    Sundvik, Maria; Nieminen, Heikki J.; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-01-01

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2–14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development. PMID:26337364

  4. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos.

    PubMed

    Sundvik, Maria; Nieminen, Heikki J; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-01-01

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2-14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development. PMID:26337364

  5. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-01

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information. PMID:27505037

  6. Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation

    NASA Technical Reports Server (NTRS)

    Robert E. Apfel; Zheng, Yibing

    2000-01-01

    An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.

  7. Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1981-01-01

    An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.

  8. The near-field acoustic levitation of high-mass rotors

    SciTech Connect

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  9. The near-field acoustic levitation of high-mass rotors

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  10. The near-field acoustic levitation of high-mass rotors.

    PubMed

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope. PMID:25362441

  11. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    PubMed

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force. PMID:20040404

  12. Sound Waves Levitate Substrates

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  13. Axisymmetric analysis of a tube-type acoustic levitator by a finite element method.

    PubMed

    Hatano, H

    1994-01-01

    A finite element approach was taken for the study of the sound field and positioning force in a tube-type acoustic levitator. An axisymmetric model, where a rigid sphere is suspended on the tube axis, was introduced to model a cylindrical chamber of a levitation tube furnace. Distributions of velocity potential, magnitudes of positioning force, and resonance frequency shifts of the chamber due to the presence of the sphere were numerically estimated in relation to the sphere's position and diameter. Experiments were additionally made to compare with the simulation. The finite element method proved to be a useful tool for analyzing and designing the tube-type levitator. PMID:18263265

  14. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  15. Development of ultrasonically levitated drops as microreactors for study of enzyme kinetics and potential as a universal portable analysis system

    NASA Astrophysics Data System (ADS)

    Scheeline, A.; Pierre, Z.; Field, C. R.; Ginsberg, M. D.

    2009-05-01

    Development of microfluidics has focused on carrying out chemical synthesis and analysis in ever-smaller volumes of solution. In most cases, flow systems are made of either quartz, glass, or an easily moldable polymer such as polydimethylsiloxane (Whitesides 2006). As the system shrinks, the ratio of surface area to volume increases. For studies of either free radical chemistry or protein chemistry, this is undesirable. Proteins stick to surfaces, biofilms grow on surfaces, and radicals annihilate on walls (Lewis et al. 2006). Thus, under those circumstances where small amounts of reactants must be employed, typical microfluidic systems are incompatible with the chemistry one wishes to study. We have developed an alternative approach. We use ultrasonically levitated microliter drops as well mixed microreactors. Depending on whether capillaries (to form the drop) and electrochemical sensors are in contact with the drop or whether there are no contacting solids, the ratio of solid surface area to volume is low or zero. The only interface seen by reactants is a liquid/air interface (or, more generally, liquid/gas, as any gas may be used to support the drop). While drop levitation has been reported since at least the 1940's, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fabricated the lowest power levitator in the literature (Field; Scheeline 2007). The low consumption aspects of ordinary microfluidics combine with a contact-free determination cell (the levitated drop) that ensures against cross-contamination, minimizes the likelihood of biofilm formation, and is robust to changes in temperature and humidity (Lide 1992). We report kinetics measurements in levitated drops and explain how outgrowths of these accomplishments will lead to portable chemistry/biology laboratories well suited to detection of a wide range of chemical and biological agents in the asymmetric battlefield environment.

  16. Program for the feasibility of developing a high pressure acoustic levitator

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.

    1988-01-01

    This is the final report for the program for the feasibility of developing a high-pressure acoustic levitator (HPAL). It includes work performed during the period from February 15, 1987 to October 26, 1987. The program was conducted for NASA under contract number NAS3-25115. The HPAL would be used for containerless processing of materials in the 1-g Earth environment. Results show that the use of increased gas pressure produces higher sound pressure levels. The harmonics produced by the acoustic source are also reduced. This provides an improvement in the capabilities of acoustic levitation in 1-g. The reported processing capabilities are directly limited by the design of the Medium Pressure Acoustic Levitator used for this study. Data show that sufficient acoustic intensities can be obtained to levitate and process a specimen of density 5 g/cu cm at 1500 C. However, it is recommended that a working engineering model of the HPAL be developed. The model would be used to establish the maximum operating parameters of furnace temperature and sample density.

  17. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  18. Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites.

    PubMed

    Puskar, Ljiljana; Tuckermann, Rudolf; Frosch, Torsten; Popp, Jürgen; Ly, Vanalysa; McNaughton, Don; Wood, Bayden R

    2007-09-01

    Methods to probe the molecular structure of living cells are of paramount importance in understanding drug interactions and environmental influences in these complex dynamical systems. The coupling of an acoustic levitation device with a micro-Raman spectrometer provides a direct molecular probe of cellular chemistry in a containerless environment minimizing signal attenuation and eliminating the affects of adhesion to walls and interfaces. We show that the Raman acoustic levitation spectroscopic (RALS) approach can be used to monitor the heme dynamics of a levitated 5 microL suspension of red blood cells and to detect hemozoin in malaria infected cells. The spectra obtained have an excellent signal-to-noise ratio and demonstrate for the first time the utility of the technique as a diagnostic and monitoring tool for minute sample volumes of living animal cells. PMID:17713610

  19. The behavior of a liquid drop levitated and drastically flattened by an intense sound field

    NASA Technical Reports Server (NTRS)

    Lee, C. P.; Anilkumar, A. V.; Wang, Taylor G.

    1992-01-01

    The deformation and break-up are studied of a liquid drop in levitation through the radiation pressure. Using high-speed photography ripples are observed on the central membrane of the drop, atomization of the membrane by emission of satellite drops from its unstable ripples, and shattering of the drop after upward buckling like an umbrella, or after horizontal expansion like a sheet. These effects are captured on video. The ripples are theorized to be capillary waves generated by the Faraday instability excited by the sound vibration. Atomization occurs whenever the membrane becomes so thin that the vibration is sufficiently intense. The vibration leads to a destabilizing Bernoulli correction in the static pressure. Buckling occurs when an existent equilibrium is unstable to a radial (i.e., tangential) motion of the membrane because of the Bernoulli effect. Besides, the radiation stress at the rim of the drop is a suction stress which can make equilibrium impossible, leading to the horizontal expansion and the subsequent break-up.

  20. Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Barmatz, M.; Shipley, C.

    1988-01-01

    The effect of a standing wave field in a rectangular chamber on the shape and location of an acoustically positioned drop or bubble is calculated. The sample deformation and equilibrium position are obtained from an analysis of the spherical harmonic projections of the total surface stress tensor. The method of calculation relies on the assumed condition that the sample is only slightly distorted from a spherical form. The equilibrium location of a levitated drop is combined with a formula introduced by Hasegawa (1979) to calcualte the ka dependence of the radiation force function. The present theory is valid for large as well as small ka values. Calculations in the small ka limit agree with previous theories and experimental results. Examples are presented for nonplane-wave modes as well as plane-wave rectangular modes.

  1. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    NASA Astrophysics Data System (ADS)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  2. Novel Transfer Method Using Near-Field Acoustic Levitation and Its Application

    NASA Astrophysics Data System (ADS)

    Yano, Ryuto; Aoyagi, Manabu; Tamura, Hideki; Takano, Takehiro

    2011-07-01

    The holding of a levitated object above stator vibrators by utilizing the holding force, which is generated by near-field acoustic levitation, is possible. The holding force yields at the edge of a vibration plate and nodes of a bending vibration mode, and it is in proportion to the vibration amplitude of the vibration plate. In this paper, we describe methods of transfer and positioning of a levitated object above many aligned stator vibrators, some experimental results, and the proposition of the application as a noncontact-stepping ultrasonic motor (NCS-USM). Linear-type and rotary-type NCS-USMs can be flexibly constructed. The NCS-USM has a possibility of high torque performance compared with an ordinary noncontact USM using a traveling wave.

  3. Stabilized Acoustic Levitation of Dense Materials Using a High-Powered Siren

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croonquist, A.; Wang, T. G.

    1982-01-01

    Stabilized acoustic levitation and manipulation of dense (e.g., steel) objects of 1 cm diameter, using a high powered siren, was demonstrated in trials that investigated the harmonic content and spatial distribution of the acoustic field, as well as the effect of sample position and reflector geometries on the acoustic field. Although further optimization is possible, the most stable operation achieved is expected to be adequate for most containerless processing applications. Best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper one. Operation slightly below resonance enhances stability as this minimizes the second harmonic, which is suspected of being a particularly destabilizing influence.

  4. A novel ultrasonic clutch using near-field acoustic levitation.

    PubMed

    Chang, Kuo-Tsi

    2004-10-01

    This paper investigates design, fabrication and drive of an ultrasonic clutch with two transducers. For the two transducers, one serving as a driving element of the clutch is connected to a driving shaft via a coupling, and the other serving as a slave element of the clutch is connected to a slave shaft via another coupling. The principle of ultrasonic levitation is first expressed. Then, a series-resonant inverter is used to generate AC voltages at input terminals of each transducer, and a speed measuring system with optic sensors is used to find the relationship between rotational speed of the slave shaft and applied voltage of each transducer. Moreover, contact surfaces of the two transducers are coupled by the frictional force when both the two transducers are not energized, and separated using the ultrasonic levitation when at least one of the two transducers is energized at high voltages at resonance. PMID:15358528

  5. Levitation, aggregation and separation of micro-sized particles in a Hydrodynamic Acoustic Sorter, HAS

    NASA Astrophysics Data System (ADS)

    Hoyos, Mauricio; Castro, Angelica; Bazou, Despina; Separation Collaboration

    2011-11-01

    Levitation, aggregation and separation of micron-sized particulate materials can be generated in a fluidic resonator by an ultrasonic standing wave field force. A piezoelectric transducer generates standing waves between the two walls of a parallel plate channel composing the resonator. The number of pressure nodes n is given by the relationship: w = nλ / 2 with λ the wavelength. The primary radiation force generated by the standing wave generates levitation of micron-sized particles driving them toward the nodal planes. An equilibrium position is reached in the channel thickness where the acoustic force balances the gravity force. The equilibrium position is independent on particle size but it depends on the acoustic properties. Once particles reach the equilibrium position, transversal secondary forces generate aggregation. We shall present the levitation and aggregation process of latex particles and cancer cells in a 2MHz resonator. We demonstrate the possibility of separating particles under flow in a Hydrodynamic Acoustic Sorter HAS, in function of their acoustic impedance and in function of their size using a programming field force.

  6. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells.

    PubMed

    Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don

    2005-08-01

    We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments. PMID:16053309

  7. Acoustic levitation technique for containerless processing at high temperatures in space

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.; Danley, Thomas J.

    1988-01-01

    High temperature processing of a small specimen without a container has been demonstrated in a set of experiments using an acoustic levitation furnace in the microgravity of space. This processing technique includes the positioning, heating, melting, cooling, and solidification of a material supported without physical contact with container or other surface. The specimen is supported in a potential energy well, created by an acoustic field, which is sufficiently strong to position the specimen in the microgravity environment of space. This containerless processing apparatus has been successfully tested on the Space Shuttle during the STS-61A mission. In that experiment, three samples wer successfully levitated and processed at temperatures from 600 to 1500 C. Experiment data and results are presented.

  8. A high-powered siren for stable acoustic levitation of dense materials in the earth's gravity

    NASA Technical Reports Server (NTRS)

    Gammel, Paul M.; Croonquist, Arvid P.; Wang, Taylor G.

    1988-01-01

    Levitation of large dense samples (e.g., 1-cm diameter steel balls) has been performed in a 1-g environment. A siren was used to study the effects of reflector geometry and variable-frequency operation in order to attain stable acoustic positioning. The harmonic content and spatial distribution of the acoustic field have been investigated. The best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper reflector while operating at a frequency slightly below resonance.

  9. Experimental and numerical characterization of the sound pressure in standing wave acoustic levitators

    NASA Astrophysics Data System (ADS)

    Stindt, A.; Andrade, M. A. B.; Albrecht, M.; Adamowski, J. C.; Panne, U.; Riedel, J.

    2014-01-01

    A novel method for predictions of the sound pressure distribution in acoustic levitators is based on a matrix representation of the Rayleigh integral. This method allows for a fast calculation of the acoustic field within the resonator. To make sure that the underlying assumptions and simplifications are justified, this approach was tested by a direct comparison to experimental data. The experimental sound pressure distributions were recorded by high spatially resolved frequency selective microphone scanning. To emphasize the general applicability of the two approaches, the comparative studies were conducted for four different resonator geometries. In all cases, the results show an excellent agreement, demonstrating the accuracy of the matrix method.

  10. Cavitation-induced fragmentation of an acoustically-levitated droplet

    NASA Astrophysics Data System (ADS)

    Gonzalez Avila, Silvestre Roberto; Ohl, Claus-Dieter

    2015-12-01

    In this paper we investigate the initial sequence of events that lead to the fragmentation of a millimetre sized water droplets when interacting with a focused ns-laser pulse. The experimental results show complex processes that result from the reflection of an initial shock wave from plasma generation with the soft boundary of the levitating droplet; furthermore, when the reflected waves from the walls of the droplet refocus they leave behind a trail of microbubbles that later act as cavitation inception regions. Numerical simulations of a shock wave impacting and reflecting from a soft boundary are also reported; the simulated results show that the lowest pressure inside the droplet occurs at the equatorial plane. The results of the numerical model display good agreement with the experimental results both in time and in space.

  11. Experimental study of the oscillation of spheres in an acoustic levitator.

    PubMed

    Andrade, Marco A B; Pérez, Nicolás; Adamowski, Julio C

    2014-10-01

    The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system. PMID:25324056

  12. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  13. Time-averaged acoustic forces acting on a rigid sphere within a wide range of radii in an axisymmetric levitator

    NASA Astrophysics Data System (ADS)

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-05-01

    Acoustic levitation is a physical phenomenon that arises when the acoustic radiation pressure is strong enough to overcome gravitational force. It is a nonlinear phenomenon which can be predicted only if higher order terms are included in the acoustic field calculation. The study of acoustic levitation is usually conducted by solving the linear acoustic equation and bridging the gap with an analytical solution. Only recently, the scientific community has shown interest in the full solution of the Navier-Stokes' equation with the aim of deeply investigating the acoustic radiation pressure. We present herein a numerical model based on Finite Volume Method (FVM) and Dynamic Mesh (DM) for the calculation of the acoustic radiation pressure acting on a rigid sphere inside an axisymmetric levitator which is the most widely used and investigated type of levitators. In this work, we focus on the third resonance mode. The use of DM is new in the field of acoustic levitation, allowing a more realistic simulation of the phenomenon, since no standing wave has to be necessarily imposed as boundary condition. The radiating plate is modeled as a rigid cylinder moving sinusoidally along the central axis. The time-averaged acoustic force exerting on the sphere is calculated for different radii Rs of the sphere (0.025 to 0.5 wavelengths). It is shown that the acoustic force increases proportional to Rs3 for small radii, then decreases when the standing wave condition is violated and finally rises again in the travelling wave radiation pressure configuration. The numerical model is validated for the inviscid case with a Finite Element Method model of the linear acoustic model based on King's approximation.

  14. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    PubMed Central

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography. PMID:27150272

  15. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature.

    PubMed

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography. PMID:27150272

  16. Acoustic response of a rectangular levitator with orifices

    NASA Technical Reports Server (NTRS)

    El-Raheb, Michael; Wagner, Paul

    1990-01-01

    The acoustic response of a rectangular cavity to speaker-generated excitation through waveguides terminating at orifices in the cavity walls is analyzed. To find the effects of orifices, acoustic pressure is expressed by eigenfunctions satisfying Neumann boundary conditions as well as by those satisfying Dirichlet ones. Some of the excess unknowns can be eliminated by point constraints set over the boundary, by appeal to Lagrange undetermined multipliers. The resulting transfer matrix must be further reduced by partial condensation to the order of a matrix describing unmixed boundary conditions. If the cavity is subjected to an axial temperature dependence, the transfer matrix is determined numerically.

  17. A Multi-Transducer Near Field Acoustic Levitation System for Noncontact Transportation of Large-Sized Planar Objects

    NASA Astrophysics Data System (ADS)

    Amano, Takafumi; Koike, Yoshikazu; Nakamura, Kentaro; Ueha, Sadayuki; Hashimoto, Yoshiki

    2000-05-01

    A new noncontact transportation system, which consists of multiple ultrasonic transducers and operates based on near-field acoustic levitation, is proposed to transport a large-sized planar object such as a glass substrate for liquid crystal devices. Using the proposed systems consisting of two and three transducers, the suspension characteristics of the levitated objects are studied as functions of both size difference and angles between the vibration systems and the levitated object. As a result, the holding force is proved to increase as the angle increases and is maximum when the horizontal dimensions of the system and the object coincide.

  18. Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops

    NASA Astrophysics Data System (ADS)

    Merrell, Tyler; Saylor, J. R.

    2015-11-01

    A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.

  19. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  20. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    PubMed

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions. PMID:17042605

  1. Anomalous redispersibility behavior of glycerophosphate deyhydrogenase microparticles dried in an acoustic levitator or bench-top spray dryer.

    PubMed

    Lorenzen, Elke; Lee, Geoffrey

    2016-02-10

    The enzyme glycerophosphate dehydrogenase (GPDH) behaves differently when dried either as single droplets in an acoustic levitator or spray dried on a bench-top machine. The GPDH in particles dried in the levitator at a drying gas temperature of 60°C could not be redispersed in water, whereas spray drying at an outlet temperature of 92°C produced denaturation but the particles were redissolvable. One difference between the two processes is that the larger levitated droplets take longer to dry than the small spray dried droplets. The slow drying process of the levitated droplet/particle apparently causes denaturation that is sufficient to make the particles non-redispersible. This does not happen on spray drying. PMID:26707244

  2. Nanoparticle agglomeration in an evaporating levitated droplet for different acoustic amplitudes

    NASA Astrophysics Data System (ADS)

    Tijerino, Erick; Basu, Saptarshi; Kumar, Ranganathan

    2013-01-01

    Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef

  3. Cylindrical acoustic levitator/concentrator having non-circular cross-section

    DOEpatents

    Kaduchak, Gregory; Sinha, Dipen N.

    2003-11-11

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow piezoelectric crystal which has been formed with a cylindrical cross-section to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. By deforming the circular cross-section of the transducer, the acoustic force is concentrated along axial regions parallel to the axis of the transducer. The cylinder does not require accurate alignment of a resonant cavity. The concentrated regions of acoustic force cause particles in the fluid to concentrate within the regions of acoustic force for separation from the fluid.

  4. An acoustical bubble counter for superheated drop detectors.

    PubMed

    Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons. PMID:16891351

  5. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70 % by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  6. Raman Spectroscopic Study Of The Dehydration Of Sulfates Using An Acoustic Levitator

    NASA Astrophysics Data System (ADS)

    Brotton, Stephen; Kaiser, R.

    2012-10-01

    The martian orbiters, landers, and rovers identified water-bearing sulfates on the martian surface. Furthermore, the Galileo mission suggests that hydrated salts such as magnesium sulfate are present on the surface of Europa and Ganymede. To understand the hydrologic history of Mars and some of Jupiter’s and Saturn’s moons, future missions need to identify in situ the hydration states of sulfates including magnesium sulfate (MgSO4 • nH2O n = 7, 6, . . ., 0), gypsum (CaSO4 • 2H2O), bassanite (CaSO4 • 0.5H2O) and anhydrite (CaSO4). Raman spectroscopy is ideally suited for this purpose, since the Raman spectrum for each different degree of hydration is unique. To obtain laboratory Raman spectra for comparison with the in situ measurements, we have developed a novel apparatus combining an acoustic levitator and a pressure-compatible process chamber. Particles with diameters between 10 µm and a few mm can be levitated at the pressure nodes of the ultrasonic standing wave. The chamber is interfaced to complimentary FTIR and Raman spectroscopic probes to characterize any chemical and physical modifications of the levitated particles. The particles can be heated to well-defined temperatures between 300 K and 1000 K using a carbon dioxide laser; the temperature of the particle will be probed via its black-body spectrum. The present apparatus enables (i) the production of high particle temperatures, (ii) precise measurement of the temperature, and (iii) accurate control of the environmental conditions (gas pressure and composition) within the chamber. Using this apparatus, we have studied the dehydration of sulfates including gypsum and epsomite (MgSO4 • 7H2O) in an anhydrous nitrogen atmosphere. We will present spectra showing the variation of the Raman spectra as gypsum, for example, is dehydrated to form anhydrite.

  7. Heterogeneous freezing of single sulphuric acid solution droplets: laboratory experiments utilising an acoustic levitator

    NASA Astrophysics Data System (ADS)

    Ettner, M.; Mitra, S. K.; Borrmann, S.

    2004-03-01

    The heterogeneous freezing temperatures of single binary sulphuric acid solution droplets were measured in dependency of acid concentration down to temperatures as low as -70°C. In order to avoid influence of supporting substrates on the freezing characteristics, the droplets were suspended by means of an acoustic levitator. The droplets contained immersed particles of graphite, kaolin or montmorillonite in order to study the influence of the presence of such contamination on the freezing temperature. The radii of the suspended droplets spanned the range between 0,4 and 1,1 mm and the concentration of the sulphuric acid solution varied between 5 and 25 weight percent. The presence of the particles in the solution raises the freezing temperature with respect to homogeneous freezing of these solution droplets. The pure solution droplets can be supercooled up to 40° below the ice-acid solution thermodynamic equilibrium curve. Depending on the concentration of sulphuric acid and the nature of the impurity the polluted droplets froze between -11°C and -35°C. The experimental set-up, combining a deep freezer with a movable ultrasonic levitator and suitable optics, proved to be a useful approach for such investigations on individual droplets.

  8. Heterogeneous freezing of single sulfuric acid solution droplets: laboratory experiments utilizing an acoustic levitator

    NASA Astrophysics Data System (ADS)

    Ettner, M.; Mitra, S. K.; Borrmann, S.

    2004-09-01

    The heterogeneous freezing temperatures of single binary sulfuric acid solution droplets were measured in dependency of acid concentration down to temperatures as low as -50°C. In order to avoid influence of supporting substrates on the freezing characteristics, a new technique has been developed to suspend the droplet by means of an acoustic levitator. The droplets contained immersed particles of graphite, kaolin or montmorillonite in order to study the influence of the presence of such contamination on the freezing temperature. The radii of the suspended droplets spanned the range between 0.4 and 1.1mm and the concentration of the sulfuric acid solution varied between 5 and 14 weight percent. The presence of the particles in the solution raises the freezing temperature with respect to homogeneous freezing of these solution droplets. The pure solution droplets can be supercooled up to 40 degrees below the ice-acid solution thermodynamic equilibrium curve. Depending on the concentration of sulfuric acid and the nature of the impurity the polluted droplets froze between -11°C and -35°C. The new experimental set-up, combining a deep freezer with a movable ultrasonic levitator and suitable optics, proved to be a useful approach for such investigations on individual droplets.

  9. Visualized measurement of the acoustic levitation field based on digital holography with phase multiplication

    NASA Astrophysics Data System (ADS)

    Zheng, Puchao; Li, Enpu; Zhao, Jianlin; Di, Jianglei; Zhou, Wangmin; Wang, Hao; Zhang, Ruifeng

    2009-11-01

    By using digital holographic interferometory with phase multiplication, the visualized measurement of the acoustic levitation field (ALF) with single axis is carried out. The digital holograms of the ALF under different conditions are recorded by use of CCD. The corresponding digital holographic interferograms reflecting the sound pressure distribution and the interference phase distribution are obtained by numerical reconstruction and phase subtraction, which are consistent with the theoretical results. It indicates that the proposed digital holographic interferometory with phase multiplication can successfully double the fringe number of the interference phase patterns of the ALF and improve the measurement precision. Compared with the conventional optical holographic interferometory, digital holographic interferometory has the merits of quasi real-time, more exactitude and convenient operation, and it provides an effective way for studying the sound pressure distribution of the ALF.

  10. Phase transfer and freezing processes investigated on acoustically levitated aqueous droplets.

    PubMed

    Jacob, P; Stockhaus, A; Hergenröder, R; Klockow, D

    2001-11-01

    An acoustic trap was designed and constructed to investigate, on a microscale, physicochemical processes relevant to the troposphere, mainly focusing on the temperature range below 0 degrees C. Droplets ranging from 0.5 nL to 4 microliter (0.1 to 2 mm in diameter) were introduced into the cooled reaction chamber by means of a piezo-driven micro pump with a reproducibility better than 5%. Up-take of H2O2 from the gas phase by the levitated droplet was measured and calibrated by in-situ chemiluminescence. Freezing of stably positioned droplets was observed and documented by means of a microscope and a video camera; this demonstrated the usefulness of the technique for simulation and investigation of cloud processes. Ex-situ microanalysis of sub-microliter droplets by use of a fiber optic luminometer was also shown to be a suitable means of investigating relevant physicochemical processes on a micro scale. PMID:11768458

  11. A comparison of acoustic levitation with microgravity processing for containerless solidification of ternary Al-Cu-Sn alloy

    NASA Astrophysics Data System (ADS)

    Yan, N.; Hong, Z. Y.; Geng, D. L.; Wei, B.

    2015-07-01

    The containerless rapid solidification of liquid ternary Al-5 %Cu-65 %Sn immiscible alloy was accomplished at both ultrasonic levitation and free fall conditions. A maximum undercooling of 185 K (0.22 T L) was obtained for the ultrasonically levitated alloy melt at a cooling rate of about 122 K s-1. Meanwhile, the cooling rate of alloy droplets in drop tube varied from 102 to 104 K s-1. The macrosegregation was effectively suppressed through the complex melt flow under ultrasonic levitation condition. In contrast, macrosegregation became conspicuous and core-shell structures with different layers were formed during free fall. The microstructure formation mechanisms during rapid solidification at containerless states were investigated in comparison with the conventional static solidification process. It was found that the liquid phase separation and structural growth kinetics may be modulated by controlling both alloy undercooling and cooling rate.

  12. Surface tension of liquid ternary Fe-Cu-Mo alloys measured by electromagnetic levitation oscillating drop method

    NASA Astrophysics Data System (ADS)

    Wang, H. P.; Luo, B. C.; Qin, T.; Chang, J.; Wei, B.

    2008-09-01

    For the liquid Fe-Cu-Mo ternary system, the surface tensions of three selected alloys, i.e., three typical monotectic alloys, were measured by the electromagnetic levitation oscillating drop method over a broad temperature range, including both superheated and undercooled states. The maximum undercooling attained is up to 173 K. The experimental results show a good linear correlation between the surface tension and the temperature. By applying on the Butler equation, the surface tensions were also calculated and they are in good agreement with the measured ones, except that in the undercooled state, the calculated value is slightly larger than the measured results. Interestingly, both the measured and calculated results indicate that the enriched element on the droplet surface is much more conspicuous than other elements in influencing the surface tension. Besides, the viscosity and the density of the liquid Fe-Cu-Mo ternary alloys are also derived on the grounds of the experimentally measured surface tensions.

  13. Surface tension of liquid ternary Fe-Cu-Mo alloys measured by electromagnetic levitation oscillating drop method.

    PubMed

    Wang, H P; Luo, B C; Qin, T; Chang, J; Wei, B

    2008-09-28

    For the liquid Fe-Cu-Mo ternary system, the surface tensions of three selected alloys, i.e., three typical monotectic alloys, were measured by the electromagnetic levitation oscillating drop method over a broad temperature range, including both superheated and undercooled states. The maximum undercooling attained is up to 173 K. The experimental results show a good linear correlation between the surface tension and the temperature. By applying on the Butler equation, the surface tensions were also calculated and they are in good agreement with the measured ones, except that in the undercooled state, the calculated value is slightly larger than the measured results. Interestingly, both the measured and calculated results indicate that the enriched element on the droplet surface is much more conspicuous than other elements in influencing the surface tension. Besides, the viscosity and the density of the liquid Fe-Cu-Mo ternary alloys are also derived on the grounds of the experimentally measured surface tensions. PMID:19045047

  14. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.

    PubMed

    Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R

    2013-04-01

    Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013. PMID:23381910

  15. Primary acoustic signal structure during free falling drop collision with a water surface

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2016-04-01

    Consistent optical and acoustic techniques have been used to study the structure of hydrodynamic disturbances and acoustic signals generated as a free falling drop penetrates water. The relationship between the structures of hydrodynamic and acoustic perturbations arising as a result of a falling drop contacting with the water surface and subsequent immersion into water is traced. The primary acoustic signal is characterized, in addition to stably reproduced features (steep leading edge followed by long decay with local pressure maxima), by irregular high-frequency packets, which are studied for the first time. Reproducible experimental data are used to recognize constant and variable components of the primary acoustic signal.

  16. Shape relaxation of liquid drops in a microgravity environment.

    PubMed

    Sadhal, S S; Rednikov, A; Ohsaka, K

    2004-11-01

    We investigated shape relaxation of liquid drops in a microgravity environment that was created by letting the drops fall freely. The drops were initially levitated in air by an acoustic/electrostatic hybrid levitator. The levitated drops were deformed due to the force balance among the levitating force, surface tension, and gravity. During the free fall, the deformed drops underwent shape relaxation driven by the surface tension to restore a spherical shape. The progress of the shape relaxation was characterized by measuring the aspect ratio as a function of time, and was compared to a simple linear relaxation model (in which only the fundamental mode was considered) for perfectly conductive drops. The results show that the model quite adequately describes the shape relaxation of uncharged/charged drops released from an acoustically levitated state. However, the model is less successful in describing the relaxation of drops that were levitated electrostatically before the free fall. This may be due to finite electrical conductivities of liquids, which somehow affects the initial stage of the shape relaxation process. PMID:15644374

  17. Experimental study of streaming flows associated with ultrasonic levitators

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Robey, J. L.

    1994-11-01

    Steady-state acoustic streaming flow patterns have been observed during the operation of a variety of resonant single-axis ultrasonic levitators in a gaseous environment and in the 20-37 kHz frequency range. Light sheet illumination and scattering from smoke particles have revealed primary streaming flows which display different characteristics at low and high sound pressure levels. Secondary macroscopic streaming cells around levitated samples are superimposed on the primary streaming flow pattern generated by the standing wave. These recorded flows are quite reproducible, and are qualitatively the same for a variety of levitator physical geometries. An onset of flow instability can also be recorded in nonisothermal systems, such as levitated spot-heated samples when the resonance conditions are not exactly satisfied. A preliminary qualitative interpretation of these experimental results is presented in terms of the superposition of three discrete sets of circulation cells operating on different spatial scales. These relevant length scales are the acoustic wavelength, the levitated sample size, and finally the acoustic boundary layer thickness. This approach fails, however, to explain the streaming flow-field morphology around liquid drops levitated on Earth. Observation of the interaction between the flows cells and the levitated samples also suggests the existence of a steady-state torque induced by the streaming flows.

  18. A new method for the estimation of high temperature radiant heat emittance by means of aero-acoustic levitation

    NASA Astrophysics Data System (ADS)

    Greffrath, Fabian; Prieler, Robert; Telle, Rainer

    2014-11-01

    A new method for the experimental estimation of radiant heat emittance at high temperatures has been developed which involves aero-acoustic levitation of samples, laser heating and contactless temperature measurement. Radiant heat emittance values are determined from the time dependent development of the sample temperature which requires analysis of both the radiant and convective heat transfer towards the surroundings by means of fluid dynamics calculations. First results for the emittance of a corundum sample obtained with this method are presented in this article and found in good agreement with literature values.

  19. Single mode levitation and translation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)

    1988-01-01

    A single frequency resonance mode is applied by a transducer to acoustically levitate an object within a chamber. This process allows smooth movement of the object and suppression of unwanted levitation modes that would urge the object to a different levitation position. A plunger forms one end of the chamber, and the frequency changes as the plunger moves. Acoustic energy is applied to opposite sides of the chamber, with the acoustic energy on opposite sides being substantially 180 degrees out of phase.

  20. Three-axis acoustic device for levitation of droplets in an open gas stream and its application to examine sulfur dioxide absorption by water droplets.

    PubMed

    Stephens, Terrance L; Budwig, Ralph S

    2007-01-01

    Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64 mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO(2) from the gas stream to the droplet. Droplets ranging in diameters from 2 to 5 mm were levitated in gas streams with velocities up to 9 ms. Droplet wandering was on the order of a half droplet diameter for a 3 mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments. PMID:17503939

  1. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  2. Optical scattering methods applicable to drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.

    1990-01-01

    An overview of optical scattering properties of drops and bubbles is presented. The properties lead to unconventional methods for optically monitoring the size or shape of a scatterer and are applicable to acoustically levitated objects. Several of the methods are applicable to the detection and measurement of small amplitude oscillations. Relevant optical phenomena include: (1) rainbows; (2) diffraction catastrophes from spheroids; (3) critical angle scattering; (4) effects of coatings; (5) glory scattering; and (6) optical levitation.

  3. Producing Metallic Glasses With Acoustic Leviation

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I. A.

    1983-01-01

    Acoustic fields support and cool liquid particles. Levitated by sound energy, liquid drop in acoustic standing-wave field surrounded by acousticically-induced jet streams. Streaming gas cools drow below its freezing point in small fraction of second. Allows new amorphous alloys including "metallic glass" to be formed.

  4. Solidification of acoustically levitated o-terphenyl crystals: a Raman study

    NASA Astrophysics Data System (ADS)

    Biswas, A.

    1995-01-01

    Ultrasonic levitation of millimeter size o-terphenyl (OTP) crystals was carried out in a variable temperature enclosure. Levitated crystals were melted (MP = 331 K), undercooled and then seeded in order to initiate solidification. The incidence of an oargon laser beam on the sample, during containerless processing, allowed elastic and low frequency (< 200 cm -1) shifted inelastic Raman scattering to be monitored. The Raman spectra undergo remarkable changes during thermal processing, enabling the tracking of inter-molecular structural reconfigurations occurring in the solid and liquid states. Furthermore, the Raman scattered light proved to be a reliable tool for monitoring the kinetics of phase transformation. Thus tracking the peak intensity of a Raman feature allowed a measure of volume fraction transformation rates, during solidification initiated at different undercooling levels. Growth rates as a function of undercooling were inferred from these measurements and are compared to existing models.

  5. Acoustic microfluidics: Capillary waves and vortex currents in a spherical fluid drop

    NASA Astrophysics Data System (ADS)

    Lebedev-Stepanov, P. V.; Rudenko, O. V.

    2016-07-01

    We calculate the radiation forces in a spherical drop lying on a solid substrate. The forces form as a result of the action of a capillary wave on a fluid as it propagates along the free spherical surface. We study the structure of acoustic currents excited by the radiation forces.

  6. The Use of Ultrasonic Waves to Study and Stimulate the Coalescence of Oil Drops in Water.

    NASA Astrophysics Data System (ADS)

    Gardner, Edward Arthur

    The coalescence of oil drops in water are studied using acoustic levitation and stimulated with acoustic cavitation. The time required for two drops to coalesce, once they have been brought into proximity of one another, is one factor that affects emulsion stability. Unlike most earlier studies, which investigate the coalescence of a single drop with an initially planar interface, the use of acoustic radiation forces allows two drops to be brought into contact and allowed to coalesce. This acoustic technique has the advantage over other drop-drop coalescence systems in that the drops remain in contact until they coalesce without the use of solid supports to control them. Additionally, acoustic cavitation is observed to deposit sufficient energy in the oil-water interface to trigger the coalescence of a pair of 2 mm diameter drops. Some of the factors that affect spontaneous and stimulated coalescence are investigated.

  7. A case study of real-time monitoring of solid-state phase transformations in acoustically levitated particles using near infrared and Raman spectroscopy.

    PubMed

    Rehder, Sönke; Wu, Jian X; Laackmann, Julian; Moritz, Hans-Ulrich; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S

    2013-01-23

    The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman spectroscopy measurements. The recrystallisation kinetic parameters (overall recrystallisation rate constant β and the time needed to reach 50% of the equilibrated level t(50)), were determined using a multivariate curve resolution approach. The acoustic levitation device coupled with non-invasive spectroscopy enabled monitoring of the recrystallisation process of the difficult-to-handle (adhesive) amorphous sample. The application of multivariate curve resolution enabled isolation of the underlying pure spectra, which corresponded well with the reference spectra of amorphous and crystalline ibuprofen. The recrystallisation kinetic parameters were estimated from the recrystallisation profiles. While the empirical recrystallisation rate constant determined by NIR and Raman spectroscopy were comparable, the lag time for recrystallisation was significantly lower with Raman spectroscopy as compared to NIRS. This observation was explained by the high energy density of the Raman laser beam, which might have led to local heating effects of the sample and thus reduced the recrystallisation onset time. It was concluded that acoustic levitation with NIR and Raman spectroscopy combined with multivariate curve resolution allowed direct determination of the recrystallisation kinetics of amorphous drugs and thus is a promising technique for monitoring solid-state phase transformations of adhesive small-sized samples during the early phase of drug development. PMID:23069619

  8. Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography.

    PubMed

    Roessler, Christian G; Agarwal, Rakhi; Allaire, Marc; Alonso-Mori, Roberto; Andi, Babak; Bachega, José F R; Bommer, Martin; Brewster, Aaron S; Browne, Michael C; Chatterjee, Ruchira; Cho, Eunsun; Cohen, Aina E; Cowan, Matthew; Datwani, Sammy; Davidson, Victor L; Defever, Jim; Eaton, Brent; Ellson, Richard; Feng, Yiping; Ghislain, Lucien P; Glownia, James M; Han, Guangye; Hattne, Johan; Hellmich, Julia; Héroux, Annie; Ibrahim, Mohamed; Kern, Jan; Kuczewski, Anthony; Lemke, Henrik T; Liu, Pinghua; Majlof, Lars; McClintock, William M; Myers, Stuart; Nelsen, Silke; Olechno, Joe; Orville, Allen M; Sauter, Nicholas K; Soares, Alexei S; Soltis, S Michael; Song, Heng; Stearns, Richard G; Tran, Rosalie; Tsai, Yingssu; Uervirojnangkoorn, Monarin; Wilmot, Carrie M; Yachandra, Vittal; Yano, Junko; Yukl, Erik T; Zhu, Diling; Zouni, Athina

    2016-04-01

    X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples. PMID:26996959

  9. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  10. Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation.

    PubMed

    Feng, Kai; Liu, Yuanyuan; Cheng, Miaomiao

    2015-12-01

    Owing to its distinct non-contact and oil-free characteristics, a self-running sliding stage based on near-field acoustic levitation can be used in an environment, which demands clean rooms and zero noise. This paper presents a numerical analysis on the lifting and transportation capacity of a non-contact transportation system. Two simplified structure models, namely, free vibration and force vibration models, are proposed for the study of the displacement amplitude distribution of two cases using the finite element method. After coupling the stage displacement into the film thickness, the Reynolds equation is solved by the finite difference method to obtain the lifting and thrusting forces. Parametric analyses of the effects of amplitude, frequency, and standing wave ratio (SWR) on the sliding stage dynamic performance are investigated. Numerical results show good agreement with published experimental values. The predictions also reveal that greater transportation capacity of the self-running sliding stage is generally achieved at less SWR and at higher amplitude. PMID:26723328

  11. Acoustic streaming flows and sample rotation control

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene

    1998-11-01

    Levitated drops in a gas can be driven into rotation by altering their surrounding convective environment. When these drops are placed in an acoustic resonant chamber, the symmetry characteristics of the steady streaming flows in the vicinity of the drops determine the rotational motion of the freely suspended fluid particles. Using ultrasonic standing waves around 22 kHz and millimeter-size electrostatically levitated drops, we have investigated the correlation between the convective flow characteristics and their rotational behavior. The results show that accurate control of the drop rotation axis and rate can be obtained by carefully modifying the symmetry characteristics of the chamber, and that the dominant mechanism for rotation drive is the drag exerted by the air flow over the drop surface. In addition, we found that the rotational acceleration depends on the drop viscosity, suggesting that this torque is initially strongly influenced by differential flows within the drop itself. [Work sponsored by NASA].

  12. Magnetic Levitation.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  13. Levitation of Iridium and Liquid Mercury by Ultrasound

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Cao, C. D.; Lü, Y. J.; Wei, B.

    2002-08-01

    Single-axis acoustic levitation of the heaviest solid (iridium, ρ=22.6 g cm-3) and liquid (mercury, ρ=13.6 g cm-3 on the Earth is achieved by greatly enhancing both the levitation force and stability through optimizing the geometric parameters of the levitator. The acoustically levitated Pb-Sn eutectic alloy melt (ρ=8.5 g cm-3) is highly undercooled by up to 38K, which results in a microstructural transition of ``lamellae-broken lamellae-dendrites.'' The drastic enhancement of levitation capability indicates a broader application range of single-axis acoustic levitation.

  14. Levitation of iridium and liquid mercury by ultrasound.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-09-01

    Single-axis acoustic levitation of the heaviest solid (iridium, rho=22.6 g cm(-3)) and liquid (mercury, rho=13.6 g cm(-3) on the Earth is achieved by greatly enhancing both the levitation force and stability through optimizing the geometric parameters of the levitator. The acoustically levitated Pb-Sn eutectic alloy melt (rho=8.5 g cm(-3)) is highly undercooled by up to 38 K, which results in a microstructural transition of "lamellae-broken lamellae-dendrites." The drastic enhancement of levitation capability indicates a broader application range of single-axis acoustic levitation. PMID:12225198

  15. Acoustic Streaming in Microgravity: Flow Stability and Heat Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1999-01-01

    Experimental results are presented for drops and bubbles levitated in a liquid host, with particular attention given to the effect of shape oscillations and capillary waves on the local flow fields. Some preliminary results are also presented on the use of streaming flows for the control of evaporation rate and rotation of electrostatically levitated droplets in 1 g. The results demonstrate the potential for the technological application of acoustic methods to active control of forced convection in microgravity.

  16. Acoustic Levitation Transportation of Small Objects Using a Ring-type Vibrator

    NASA Astrophysics Data System (ADS)

    Thomas, Gilles P. L.; Andrade, Marco A. B.; Adamowski, Julio C.; Silva, Eḿílio C. N.

    A new device for noncontact transportation of small solid objects is presented here. Ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.

  17. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1985-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have derived a theory, and tested it on tissues, for predicting the composition of composite materials using mixture rules, such as the one we derived for the nonlinear parameter two years ago; (2) We have published one article and another is in review on our use of modulated acoustic radiation pressure on levitated drops to characterize interfaces with and without surfactants. We have begun to study in a systematic way the nonlinear dynamics of drops, including drop fission: (3) we have improved apparatus for 30 MHz ultrasonic scattering from microparticles (approx. micron size), which should allow us to discriminate between different microparticles in a liquid; (4) We have begun to study the nonlinear mechanics of hydrodynamic solitons in cylindrical (2-d) geometry; and (5) We have been studying the use of acoustic levitation for transducer calibration.

  18. Isolation of crystallizing droplets by electrostatic levitation

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1990-01-01

    The principles of electrostatic levitation where the positioning and stabilization of a sample are accomplished by applying appropriate electrostatic forces to a charged sample are outlined, and attention is focused on a feedback control algorithm, drop-launching method, and four-drop levitator. Drop levitation in 1-g is discussed, and crystal-growth experiments are presented. An experiment in which the protein concentration of a levitated drop is controlled by a feedback system is described. During levitation, the drop evaporation rate is controlled in a programmed way in order to acquire proper protein concentration levels for both nucleation and growth. The containerless approach of protein crystal growth when applied in the space environment is assessed.

  19. Acoustic add-drop filters based on phononic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Rostami-Dogolsara, Babak; Moravvej-Farshi, Mohammad Kazem; Nazari, Fakhroddin

    2016-01-01

    We report the design procedure for an acoustic add-drop filter (ADF) composed of two line-defect waveguides coupled through a ring resonator cavity (RRC) all based on a phononic crystal (PnC) platform. Using finite difference time domain and plane wave expansion methods, we study the propagation of acoustic waves through the PnC based ADF structures. Numerical results show that the quality factor for the ADF with a quasisquare ring resonator with a frequency band of 95 Hz centered about 75.21 kHz is Q ˜ 800. We show that the addition of an appropriate scatterer at each RRC corner can reduce the scattering loss, enhancing the quality factor and the transmission efficiency. Moreover, it is also shown that by increasing the coupling gaps between the RRC and waveguides the quality factor can be increased by ˜25 times, at the expense of a significant reduction in the transmission efficiency this is attributed to the enhanced selectivity in expense of weakened coupling. Finally, by varying the effective path length of the acoustic wave in the RRC, via selectively varying the inclusions physical and geometrical properties, we show how one can ultra-fine and fine-tune the resonant frequency of the ADF.

  20. Dynamics of sessile and pendant drops excited by surface acoustic waves: Gravity effects and correlation between oscillatory and translational motions

    NASA Astrophysics Data System (ADS)

    Bussonnière, A.; Baudoin, M.; Brunet, P.; Matar, O. Bou

    2016-05-01

    When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed, the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or, more generally, by an initial or dynamically induced stretching of the drop. In turn, we elucidate the origin of the resonance frequency shift, as well as the origin of the strong correlation between oscillatory and translational motion. We show that for sessile drops, the velocity is mainly determined by the amplitude of oscillation and that the saturation observed is due to the nonlinear dependence of the drop response frequency on the dynamically induced stretching.

  1. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 2: drying kinetics and particle formation from microdroplets of aqueous mannitol, trehalose, or catalase.

    PubMed

    Schiffter, Heiko; Lee, Geoffrey

    2007-09-01

    A single droplet drying acoustic levitator has been used to examine the drying behavior of droplets of pharmaceutically relevant solutes used to produce protein-loaded particles via spray-drying. The drying behavior of solution droplets of mannitol, trehalose, or catalase was determined. Evidence of super-saturation of the solute in the droplet surface up to the critical point of drying was obtained. The trehalose achieves a lower degree of super-saturation than does the mannitol before precipitating at the droplet surface. This results in a shorter duration of the constant-rate period, but protracted further drying of this amorphous material. Mannitol achieved a higher degree of super-saturation, and a later critical point with shorter falling-rate period. Measurements of dried particle radius showed that both solutes form hollow particles. The catalase formed holed, hollow particles with characteristic drying rate profiles that correlated well with developing particle morphology. A strong similarity between the morphologies of dried particles of mannitol, trehalose, or catalase produced either in the levitator or in a spray-dryer was found. PMID:17523166

  2. Flow Visualization and Acoustic Signal Detection in the Process of Drop Impact on the Surface of a Liquid

    NASA Astrophysics Data System (ADS)

    Prohorov, V. E.

    2012-04-01

    An experimental study of hydrophysical and acoustic phenomena produced by drop falling on the free water surface is of great practical importance with regard to rain intensity measurement and preparation of oceanic acoustic noises model. Key features of underwater flow associated with an acoustic emission can be revealed in the laboratory experiments under controllable reproducible conditions. The current paper describes the experiments in which the drops detach from a nozzle of 0.4 cm in diameter. The flows impact area is visualized by high speed video camera CR3000×2 whose frame rate varies from 4000 to 20000 fps. Acoustic signals are measured by calibrated hydrophone (bandpass from 2 Hz to 125 kHz) which is synchronized with the video camera by means of special PC interface supplied with multichannel 12-bit AD-convertor. The accuracy of synchronization is supported on the levels 1 µS. The total acoustic signal produced by drop consists of the initial (impact) pulse followed by one or more resonant sound packets emitted by air bubbles separating from the underwater cavity. Maximal number of packets fixed in the experiments is 4. Comparison of the video- and acoustic data show that resonant packets radiation is strongly timed to the moments of detachment of the air cavity from the underwater cavern formed in the process of absorption of the drop by intaking liquid. The detachment is followed by extremely high accelerations of the underwater cavity tip when it tears off the basic cavern. Acceleration is estimated at level 1000 m/S that matches pressure gradient jump initiated by accelerations is of an order of 10 Pa/m. Detached cavity is initially of irregular form but then turns to regular (elliptic or spherical) shape within some period during which the sound packet is emitted. The work is supported by Ministry of Education and Science RF (Goscontract No. 16.518.11.7059).

  3. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  4. Analysis of the particle stability in a new designed ultrasonic levitation device

    NASA Astrophysics Data System (ADS)

    Baer, Sebastian; Andrade, Marco A. B.; Esen, Cemal; Adamowski, Julio Cezar; Schweiger, Gustav; Ostendorf, Andreas

    2011-10-01

    The use of acoustic levitation in the fields of analytical chemistry and in the containerless processing of materials requires a good stability of the levitated particle. However, spontaneous oscillations and rotation of the levitated particle have been reported in literature, which can reduce the applicability of the acoustic levitation technique. Aiming to reduce the particle oscillations, this paper presents the analysis of the particle stability in a new acoustic levitator device. The new acoustic levitator consists of a piezoelectric transducer with a concave radiating surface and a concave reflector. The analysis is conducted by determining numerically the axial and lateral forces that act on the levitated object and by measuring the oscillations of a sphere particle by a laser Doppler vibrometer. It is shown that the new levitator design allows to increase the lateral forces and reduce significantly the lateral oscillations of the levitated object.

  5. Analysis of the particle stability in a new designed ultrasonic levitation device.

    PubMed

    Baer, Sebastian; Andrade, Marco A B; Esen, Cemal; Adamowski, Julio Cezar; Schweiger, Gustav; Ostendorf, Andreas

    2011-10-01

    The use of acoustic levitation in the fields of analytical chemistry and in the containerless processing of materials requires a good stability of the levitated particle. However, spontaneous oscillations and rotation of the levitated particle have been reported in literature, which can reduce the applicability of the acoustic levitation technique. Aiming to reduce the particle oscillations, this paper presents the analysis of the particle stability in a new acoustic levitator device. The new acoustic levitator consists of a piezoelectric transducer with a concave radiating surface and a concave reflector. The analysis is conducted by determining numerically the axial and lateral forces that act on the levitated object and by measuring the oscillations of a sphere particle by a laser Doppler vibrometer. It is shown that the new levitator design allows to increase the lateral forces and reduce significantly the lateral oscillations of the levitated object. PMID:22047333

  6. Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1985-01-01

    An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.

  7. Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.

    1985-11-01

    An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.

  8. Slow motion picture of protein inactivation during single-droplet drying: a study of inactivation kinetics of L-glutamate dehydrogenase dried in an acoustic levitator.

    PubMed

    Lorenzen, Elke; Lee, Geoffrey

    2012-06-01

    A novel technique is presented to allow measurement of the kinetics of protein inactivation during drying of an acoustically levitated single droplet. Droplets/particles are removed from the acoustic field after various times during drying, and the state of the protein within them is analyzed. The influence of drying air temperature, relative humidity, buffer concentration, and the presence of a substrate on the inactivation of glutamate dehydrogenase is described. The kinetics of inactivation showed three distinct phases. The first phase of constant drying rate demonstrated little protein inactivation in the solution droplet. After the critical point of drying, a second phase was distinguishable when the surface temperature has risen sharply, but there is still only little inactivation of the protein in the solid particle. An onset point of rapid inactivation of the protein marked the start of the third phase that proceeded with approximately first-order rate kinetics. In the case of L-glutamate dehydrogenase, the evidence suggests that the residual moisture content of the solid and not the temperature alone determines the point of onset of protein inactivation. PMID:22447570

  9. Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids.

    PubMed

    Langstaff, D; Gunn, M; Greaves, G N; Marsing, A; Kargl, F

    2013-12-01

    The development of novel contactless aerodynamic laser heated levitation techniques is reported that enable thermophysical properties of refractory liquids to be measured in situ in the solid, liquid, and supercooled liquid state and demonstrated here for alumina. Starting with polished crystalline ruby spheres, we show how, by accurately measuring the changing radius, the known density in the solid state can be reproduced from room temperature to the melting point at 2323 K. Once molten, by coupling the floating liquid drop to acoustic oscillations via the levitating gas, the mechanical resonance and damping of the liquid can be measured precisely with high-speed high-resolution shadow cast imaging. The resonance frequency relates to the surface tension, the decay constant to the viscosity, and the ellipsoidal size and shape of the levitating drop to the density. This unique instrumentation enables these related thermophysical properties to be recorded in situ over the entire liquid and supercooled range of alumina, from the boiling point at 3240 K, until spontaneous crystallization occurs around 1860 K, almost 500 below the melting point. We believe that the utility that this unique instrumentation provides will be applicable to studying these important properties in many other high temperature liquids. PMID:24387452

  10. Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids

    NASA Astrophysics Data System (ADS)

    Langstaff, D.; Gunn, M.; Greaves, G. N.; Marsing, A.; Kargl, F.

    2013-12-01

    The development of novel contactless aerodynamic laser heated levitation techniques is reported that enable thermophysical properties of refractory liquids to be measured in situ in the solid, liquid, and supercooled liquid state and demonstrated here for alumina. Starting with polished crystalline ruby spheres, we show how, by accurately measuring the changing radius, the known density in the solid state can be reproduced from room temperature to the melting point at 2323 K. Once molten, by coupling the floating liquid drop to acoustic oscillations via the levitating gas, the mechanical resonance and damping of the liquid can be measured precisely with high-speed high-resolution shadow cast imaging. The resonance frequency relates to the surface tension, the decay constant to the viscosity, and the ellipsoidal size and shape of the levitating drop to the density. This unique instrumentation enables these related thermophysical properties to be recorded in situ over the entire liquid and supercooled range of alumina, from the boiling point at 3240 K, until spontaneous crystallization occurs around 1860 K, almost 500 below the melting point. We believe that the utility that this unique instrumentation provides will be applicable to studying these important properties in many other high temperature liquids.

  11. Rheological properties, shape oscillations, and coalescence of liquid drops with surfactants

    NASA Technical Reports Server (NTRS)

    Apfel, R. E.; Holt, R. G.

    1990-01-01

    A method was developed to deduce dynamic interfacial properties of liquid drops. The method involves measuring the frequency and damping of free quadrupole oscillations of an acoustically levitated drop. Experimental results from pure liquid-liquid systems agree well with theoretical predictions. Additionally, the effects of surfactants is considered. Extension of these results to a proposed microgravity experiment on the drop physics module (DPM) in USML-1 are discussed. Efforts are also underway to model the time history of the thickness of the fluid layer between two pre-coalescence drops, and to measure the film thickness experimentally. Preliminary results will be reported, along with plans for coalescence experiments proposed for USML-1.

  12. Thermophysical property measurements in electromagnetic levitators

    NASA Technical Reports Server (NTRS)

    Hauge, Robert H.; Lee, P.; Norem, Nathan; Baykara, Tarik; Margrave, John L.

    1990-01-01

    Proper measurements of thermophysical properties of hot levitated liquid drops require the following: accurate temperature measurement (brightness measurement, emissivity measurement); precise drop shape measurements with submillisecond time resolution (density determination, rotational and vibrational shape information); precise control of drop shape (high symmetry variable gap levitators); accurate energy transfer measurements (direct measurements of energy transfer rates for defined gas flows over samples with quantitative measurements of energy transfer rates for defined flows over samples with known shapes); and precise measurements of repetitive sample motions (rapid repetitive shape measurements, frequency measurements with reflected laser light, measurements in the levitator and as a freely falling drop). Recent advances in coil design and control of sample rotation in an electromagnetic levitator are discussed with respect to the above requirements.

  13. Parametrically excited sectorial oscillation of liquid drops floating in ultrasound

    NASA Astrophysics Data System (ADS)

    Shen, C. L.; Xie, W. J.; Wei, B.

    2010-04-01

    We report experiments in which the nonaxisymmetric sectorial oscillations of water drops have been excited using acoustic levitation and an active modulation method. The observed stable sectorial oscillations are up to the seventh mode. These oscillations are excited by parametric resonance. The oblate initial shape of the water drops is essential to this kind of excitations. The oscillation frequency increases with mode number but decreases with equatorial radius for each mode number. The data can be well described by a modified Rayleigh equation, without the use of additional parameters.

  14. Parametrically excited sectorial oscillation of liquid drops floating in ultrasound.

    PubMed

    Shen, C L; Xie, W J; Wei, B

    2010-04-01

    We report experiments in which the nonaxisymmetric sectorial oscillations of water drops have been excited using acoustic levitation and an active modulation method. The observed stable sectorial oscillations are up to the seventh mode. These oscillations are excited by parametric resonance. The oblate initial shape of the water drops is essential to this kind of excitations. The oscillation frequency increases with mode number but decreases with equatorial radius for each mode number. The data can be well described by a modified Rayleigh equation, without the use of additional parameters. PMID:20481825

  15. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  16. Hybrid optical and acoustic force based sorting

    NASA Astrophysics Data System (ADS)

    O'Mahoney, Paul; Brodie, Graham W.; Wang, Han; Demore, Christine E. M.; Cochran, Sandy; Spalding, Gabriel C.; MacDonald, Michael P.

    2014-09-01

    We report the combined use of optical sorting and acoustic levitation to give particle sorting. Differing sizes of microparticles are sorted optically both with and without the aid of acoustic levitation, and the results compared to show that the use of acoustic trapping can increase sorting efficiency. The use of a transparent ultrasonic transducer is also shown to streamline the integration of optics and acoustics. We also demonstrate the balance of optical radiation pressure and acoustic levitation to achieve vertical sorting.

  17. Containerless Processing Studies in the MSFC Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rogers, J. R.; SanSoucie, M. P.

    2012-01-01

    Levitation or containerless processing represents an important tool in materials research. Levitated specimens are free from contact with a container, which permits studies of deeply undercooled melts, and high-temperature, highly reactive materials. Containerless processing provides data for studies of thermophysical properties, phase equilibria, metastable state formation, microstructure formation, undercooling, and nucleation. Levitation techniques include: acoustic, aero-acoustic, electromagnetic, and electrostatic. In microgravity, levitation can be achieved with greatly reduced positioning forces. Microgravity also reduces the effects of buoyancy and sedimentation in melts. The European Space Agency (ESA) and the German Aerospace Center (DLR) jointly developed an electromagnetic levitator facility (MSL-EML) for containerless materials processing in space. The MSL-EML will be accommodated in the European Columbus Facility on the International Space Station (ISS). The electrostatic levitator (ESL) facility at the Marshall Space Flight Center provides support for the development of containerless processing studies for the ISS. The capabilities of the facility and recent results will be discussed.

  18. Improved Position Sensor for Feedback Control of Levitation

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Savage, Larry; Rogers, Jan

    2004-01-01

    An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless-processing system. As explained, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object. In containerless processing, a small object to be processed is levitated (e.g., by use of a microwave, low-frequency electromagnetic, electrostatic, or acoustic field) so that it is not in contact with the wall of the processing chamber or with any other solid object during processing. In the case of electrostatic or low-frequency electromagnetic levitation, real-time measurement of the displacement of the levitated object from its nominal levitation position along the vertical axis (and, in some cases, along one or two horizontal axes) is needed for feedback control of the levitating field.

  19. Leidenfrost levitated liquid tori

    NASA Astrophysics Data System (ADS)

    Perrard, Stéphane; Labousse, Matthieu; Fort, Emmanuel; Bush, John; Couder, Yves; Limat, Laurent

    2012-11-01

    A drop of water deposited on a surface hotter than 150°C can levitate without any contact with a solid container. Indeed the evaporation of the fluid generates a thin vapour film, which supports the drop's weight by lubrication forces (Leidenfrost effect). This effect was until now limited to droplets. We propose here an original substrate geometry, a circular brass through, that allows us to maintain in levitation any quantity of fluid. It could be a good tool to study wave propagation without solid boundary condition and thus very low friction. We report here one possible application, and our most striking observation : when the substrate temperature is high enough, convective motion appears in the liquid torus and its inner side becomes polygonal. This periodic deformation of large amplitude propagates along the azimuthal direction. The geometry, the flow and the shape appear very similar to the polygonal destabilization of an hydraulic jump. We propose here an experimental and theorical characterization of these rotating polygons having from three to twelve sides. Moreover, we have found a model describing the shape for any number of sides. It appears closely related to the Korteweg de Vries equation describing the propagation of solitonic waves in shallow water.

  20. Combustion Instability Analysis and the Effects of Drop Size on Acoustic Driving Rocket Flow

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Ellison, L. Renea; Moser, Marlow D.

    2004-01-01

    High frequency combustion instability, the most destructive kind, is generally solved on a per engine basis. The instability often is the result of compounding acoustic oscillations, usually from the propellant combustion itself. To counteract the instability the chamber geometry can be changed and/or the method of propellant injection can be altered. This experiment will alter the chamber dimensions slightly; using a cylindrical shape of constant diameter and the length will be varied from six to twelve inches in three-inch increments. The main flowfield will be the products of a high OF hydrogen/oxygen flow. The liquid fuel will be injected into this flowfield using a modulated injector. It will allow for varied droplet size, feed rate, spray pattern, and location for the mixture within the chamber. The response will be deduced from the chamber pressure oscillations.

  1. Analysis of a Non-resonant Ultrasonic Levitation Device

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    In this study, a non-resonant configuration of ultrasonic levitation device is presented, which is formed by a small diameter ultrasonic transducer and a concave reflector. The influence of different levitator parameters on the levitation performance is investigated by using a numerical model that combines the Gor'kov theory with a matrix method based on the Rayleigh integral. In contrast with traditional acoustic levitators, the non-resonant ultrasonic levitation device allows the separation distance between the transducer and the reflector to be adjusted continually, without requiring the separation distance to be set to a multiple of half-wavelength. It is also demonstrated, both numerically and experimentally, that the levitating particle can be manipulated by maintaining the transducer in a fixed position in space and moving the reflector in respect to the transducer.

  2. A levitation instrument for containerless study of molten materials

    NASA Astrophysics Data System (ADS)

    Nordine, Paul C.; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert

    2012-12-01

    A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al2O3 at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y3Al5O12 far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al2O3 as a function of temperature. Levitation of dense liquid HfO2 at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.

  3. A levitation instrument for containerless study of molten materials.

    PubMed

    Nordine, Paul C; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert

    2012-12-01

    A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al(2)O(3) at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y(3)Al(5)O(12) far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al(2)O(3) as a function of temperature. Levitation of dense liquid HfO(2) at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations. PMID:23278026

  4. Assessment of evaporation equilibrium and stability concerning an acoustically excited drop in combustion products

    NASA Astrophysics Data System (ADS)

    Mauriot, Yves; Prud'homme, Roger

    2014-04-01

    The evaporation of drops in a sound field has been the subject of numerous studies aimed at determining its role in combustion instability. The models generally assume local equilibrium evaporation at the interface. We determine here the conditions of validity of this assumption, without calling into question other a priori assumptions of the classical model, in particular spherically symmetric quasi-steady evolution in the gas phase and liquid phase thermal unsteadiness with pure heat conduction. Another possible phenomenon concerns the differential recoil of the vapor. In the case of rapid evaporation, a pressure difference appears between both sides of the interface, even if the latter is plane. This pressure difference, usually neglected, is proportional to the square of speed and the resulting force is oriented toward the denser fluid, i.e. the liquid. A very fast evaporation may even cause local deformation, i.e. Hickman instability. The stability condition concerning this phenomenon has also been determined. This study was co-funded by CNES (French Space Agency) and ONERA and was performed in the framework of CNES-ONERA French Research &  Technology activities on the high-frequency combustion stability of liquid-propellant rocket engines.

  5. Formation of Y(x)Nd(1-x) Ba2Cu3O(7-delta) (0 = or < x < or = 0.7) Superconductors from an Undercooled Melt Via Aero-Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Gustafson, D. E.; Hofmeister, W. H.; Bayuzick, R. J.

    2001-01-01

    Melt processing of RE123 superconductors has gained importance in recent years. While the first high temperature superconductors (HTSCs) were made using traditional ceramic press and sinter technology, recent fabrication efforts have employed alternate processing techniques including laser ablation and ion beam assisted deposition for thin film fabrication of tapes and wires and melt growth for bulk materials. To optimize these techniques and identify other potential processing strategies, phase relation studies on HTSCs have been conducted on a wide variety of superconducting compounds using numerous processing strategies. This data has enhanced the understanding of these complex systems and allowed more accurate modeling of phase interactions. All of this research has proved useful in identifying processing capabilities for HTSCs but has failed to achieve a breakthrough for wide spread application of these materials. This study examines the role of full to partial substitution of Nd in the Y123 structure under rapid solidification conditions. Aero-acoustic levitation (AAL) was used to levitate and undercool RE123 in pure oxygen binary alloys with RE = Nd an Y along a range of compositions corresponding to Y(x)Nd(1-x) Ba2Cu3O(7-delta) (0 = or < x < or = 0.7) which were melted by a CO2 laser. Higher Y content spheres could not be melted in the AAL and were excluded from this report. Solidification structures were examined using scanning electron microscopy, electron dispersive spectroscopy, and powder x-ray diffraction to characterize microstructures and identify phases.

  6. High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Sherrit, Stewart; Badescu, Mircea; Lih, Shyh-shiuh

    2012-01-01

    A compact sampling tool mechanism that can operate at various temperatures, and transport and sieve particle sizes of powdered cuttings and soil grains with no moving parts, has been created using traveling surface acoustic waves (SAWs) that are emitted by an inter-digital transducer (IDT). The generated waves are driven at about 10 MHz, and it causes powder to move towards the IDT at high speed with different speeds for different sizes of particles, which enables these particles to be sieved. This design is based on the use of SAWs and their propelling effect on powder particles and fluids along the path of the waves. Generally, SAWs are elastic waves propagating in a shallow layer of about one wavelength beneath the surface of a solid substrate. To generate SAWs, a piezoelectric plate is used that is made of LiNbO3 crystal cut along the x-axis with rotation of 127.8 along the y-axis. On this plate are printed pairs of fingerlike electrodes in the form of a grating that are activated by subjecting the gap between the electrodes to electric field. This configuration of a surface wave transmitter is called IDT. The IDT that was used consists of 20 pairs of fingers with 0.4-mm spacing, a total length of 12.5 mm. The surface wave is produced by the nature of piezoelectric material to contract or expand when subjected to an electric field. Driving the IDT to generate wave at high amplitudes provides an actuation mechanism where the surface particles move elliptically, pulling powder particles on the surface toward the wavesource and pushing liquids in the opposite direction. This behavior allows the innovation to separate large particles and fluids that are mixed. Fluids are removed at speed (7.5 to 15 cm/s), enabling this innovation of acting as a bladeless wiper for raindrops. For the windshield design, the electrodes could be made transparent so that they do not disturb the driver or pilot. Multiple IDTs can be synchronized to transport water or powder over larger

  7. The Wonders of Levitation

    ERIC Educational Resources Information Center

    French, M. M. J.

    2010-01-01

    I discuss some interesting classroom demonstrations of diamagnetism and how this effect can produce levitation. The possibilities for hands-on demonstrations of diamagnetic and superconducting levitation are discussed. To conclude I discuss some practical uses for levitation in daily life. (Contains 6 figures.)

  8. Apparatus and method for aerodynamic levitation

    NASA Technical Reports Server (NTRS)

    Williamson, John W. (Inventor); al-Darwish, Mohamad M. (Inventor); Cashen, Grant E. (Inventor)

    1993-01-01

    An apparatus for the levitation of a liquid drop by a fluid flow comprising a profile generator, a fluid flow supply means operatively connected to the profile generator. The profile generator includes an elongate cylindrical shell in which is contained a profiling means for configuring the velocity profile of the fluid flow exiting the profile generator.

  9. Development of a single-axis ultrasonic levitator and the study of the radial particle oscillations

    NASA Astrophysics Data System (ADS)

    Baer, Sebastian; Andrade, Marco A. B.; Esen, Cemal; Adamowski, Julio Cezar; Ostendorf, Andreas

    2012-05-01

    This work describes the development and analysis of a new single-axis acoustic levitator, which consists of a 38 kHz Langevin-type piezoelectric transducer with a concave radiating surface and a concave reflector. The new levitator design allows to significantly reducing the electric power necessary to levitate particles and to stabilize the levitated sample in both radial and axial directions. In this investigation the lateral oscillations of a levitated particle were measured with a single point Laser Doppler Vibrometer (LDV) and an image evaluation technique. The lateral oscillations were measured for different values of particle diameter, particle density and applied electrical power.

  10. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    NASA Technical Reports Server (NTRS)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  11. Electrostatic Levitator (ESL) Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.

  12. Photopolymerization Of Levitated Droplets

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Rhim, Won-Kyu; Hyson, Michael T.; Chang, Manchium

    1989-01-01

    Experimental containerless process combines two established techniques to make variety of polymeric microspheres. In single step, electrostatically-levitated monomer droplets polymerized by ultraviolet light. Faster than multiple-step emulsion polymerization process used to make microspheres. Droplets suspended in cylindrical quadrupole electrostatic levitator. Alternating electrostatic field produces dynamic potential along axis. Process enables tailoring of microspheres for medical, scientific, and industrial applications.

  13. Core-centering of compound drops in capillary oscillations: Observations on USML-1 experiments in space

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G.; Anikumar, A. V.; Lee, C. P.; Lin, K. C.

    1994-01-01

    AA Using the existing inviscid theories, an attempt is made to explain the centering of the oscillating liquid shell. Experiments on liquid shells and liquid-core compound drops were conducted using acoustic levitation, in a low-gravity environment during a Space Shuttle flight. It was observed that their inner and outer interfaces became concentric when excited into capillary oscillations. Using the existing inviscid theories, and attempt is made to explain the centering of the oscillating liquid shell. It is concluded that viscosity needs to be considered in order to provide a realistic description of the centering process.

  14. Leidenfrost levitation: beyond droplets

    PubMed Central

    Hashmi, Ali; Xu, Yuhao; Coder, Benjamin; Osborne, Paul A.; Spafford, Jonathon; Michael, Grant E.; Yu, Gan; Xu, Jie

    2012-01-01

    Friction is a major inhibitor in almost every mechanical system. Enlightened by the Leidenfrost effect – a droplet can be levitated by its own vapor layer on a sufficiently hot surface – we demonstrate for the first time that a small cart can also be levitated by Leidenfrost vapor. The levitated cart can carry certain amount of load and move frictionlessly over the hot surface. The maximum load that the cart can carry is experimentally tested over a range of surface temperatures. We show that the levitated cart can be propelled not only by gravitational force over a slanted flat surface, but also self-propelled over a ratchet shaped horizontal surface. In the end, we experimentally tested water consumption rate for sustaining the levitated cart, and compared the results to theoretical calculations. If perfected, this frictionless Leidenfrost cart could be used in numerous engineering applications where relative motion exists between surfaces. PMID:23150770

  15. Magnetic levitation experiments in Sendai

    NASA Astrophysics Data System (ADS)

    Mogi, I.; Takahashi, K.; Awaji, S.; Watanabe, K.; Motokawa, M.

    2006-11-01

    A levitating apple in a hybrid magnet implies the presence of microgravity conditions under gradient magnetic fields. However, several unique behaviors were found, the orientation of levitating rice grains, the alignment of levitating bismuth particles, and the thermal convection in water under the levitation conditions. These are unlikely under the microgravity conditions in the space and are characteristic of the magnetic levitation. On the basis of the understanding of such behaviors, the magnetic levitation was applied to containerless materials processing, and such an attempt resulted in the development of a magnetic levitation furnace.

  16. Magnetic Levitators With Superconductive Components

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1995-01-01

    Magnetic noncontact levitators that include superconductive components provide vibration-damping suspension for cryogenic instruments, according to proposal. Because superconductive components attached to levitated cryogenic instruments, no additional coolant liquid or refrigeration power needed. Also because vibration-damping components of levitators located outside cold chambers, in ambient environment, not necessary to waste coolant liquid or refrigeration power on dissipation of vibrational energy. At least three levitating magnets and three superconductors necessary for stable levitation.

  17. Maximum in the damping of shape oscillations of foam drops near the critical void fraction

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Liu, Li; McDaniel, Gregory J.; Holt, Glynn R.

    2001-05-01

    Small spheroidal samples of aqueous foam (``foam drops'') of varying gas volume fraction are acoustically levitated in an ultrasonic field. The normalized natural frequency and damping ratio are determined by treating a foam drop as a damped linear oscillator and measuring shape mode frequency response. The observed natural frequencies are compared to a wet foam model without any fitting parameters. Good agreement is found for gas volume fractions ranging from 0.01 to 0.87. The observed damping ratio of a foam drop exhibits a maximum for gas volume fractions 0.5 to 0.7. The data are inverted to infer the shear elastic modulus and its dependence on gas volume fraction for dry foams. [Work supported by NASA.

  18. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  19. Studying Electrostatic Levitator Specimen

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Kevin Croat of Washington University in St. Louis, MO, examines samples processed in NASA/Marshall Space Flight Center's (MSFC)Electrostatic Levitator Facility. Croat is working with Prof. Kerneth Kelton in investigating undercooling of polytetrahedral phase-forming liquids.

  20. Levitation in physics.

    PubMed

    Brandt, E H

    1989-01-20

    Several physical effects allow free floatation of solid and even liquid matter. Materials may be levitated by a jet of gas, by intense sound waves, or by beams of laser light. In addition, conductors levitate in strong radio-frequency fields, charged particles in alternating electric fields, and magnets above superconductors or vice versa. Although levitation by means of ferromagnets is unstable, supper-conductors may be suspended both above and below a magnet as a result of flux pinning. Levitation is used for containerless processing and investigation of materials, for frictionless bearings and high-speed ground transportation, for spectroscopy of single atoms and microparticles, and for demonstrating superconductivity in the new oxide superconductors. PMID:17787252

  1. Electrostatic Levitator Electrode Layout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  2. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  3. Dexterous ultrasonic levitation of millimeter-sized objects in air.

    PubMed

    Seah, Sue Ann; Drinkwater, Bruce W; Carter, Tom; Malkin, Rob; Subramanian, Sriram

    2014-07-01

    Acoustic levitation in air has applications in contactless handling and processing. Here a first-order Bessel function-shaped acoustic field, generated using an 8-element circular array operating at 40 kHz, traps millimeter-sized objects against gravity. The device can manipulate objects in a vertical plane over a few millimeters with an accuracy of ± 0.09 mm. PMID:24960712

  4. Internal Flows in Free Drops (IFFD)

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Sadhal, Satwindar S.; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Within the framework of an Earth-based research task investigating the internal flows within freely levitated drops, a low-gravity technology development experiment has been designed and carried out within the NASA Glovebox facility during the STS-83 and STS-94 Shuttle flights (MSL-1 mission). The goal was narrowly defined as the assessment of the capabilities of a resonant single-axis ultrasonic levitator to stably position free drops in the Shuttle environment with a precision required for the detailed measurement of internal flows. The results of this entirely crew-operated investigation indicate that the approach is fundamentally sound, but also that the ultimate stability of the positioning is highly dependent on the residual acceleration characteristic of the Spacecraft, and to a certain extent, on the initial drop deployment of the drop. The principal results are: the measured dependence of the residual drop rotation and equilibrium drop shape on the ultrasonic power level, the experimental evaluation of the typical drop translational stability in a realistic low-gravity environment, and the semi-quantitative evaluation of background internal flows within quasi-isothermal drops. Based on these results, we conclude that the successful design of a full-scale Microgravity experiment is possible, and would allow accurate the measurement of thermocapillary flows within transparent drops. The need has been demonstrated, however, for the capability for accurately deploying the drop, for a quiescent environment, and for precise mechanical adjustments of the levitator.

  5. High-Temperature Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1994-01-01

    High-temperature electrostatic levitator provides independent control of levitation and heating of sample in vacuum. Does not cause electromagnetic stirring in molten sample (such stirring causes early nucleation in undercooling). Maintenance of levitating force entails control of electrostatic field and electrical charge on sample.

  6. Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.

    PubMed

    Abe, Yutaka; Hyuga, Daisuke; Yamada, Shogo; Aoki, Kazuyoshi

    2006-09-01

    It is expected that new materials will be manufactured with containerless processing under the microgravity environment in space. Under the microgravity environment, handling technology of molten metal is important for such processes. There are a lot of previous studies about droplet levitation technologies, including the use of acoustic waves, as the holding technology. However, experimental and analytical information about the relationship between surface deformation and internal flow of a large levitated droplet is still unknown. The purpose of this study is to experimentally investigate the large droplet behavior levitated by the acoustic wave field and its internal flow. To achieve this, first, numerical simulation is conducted to clarify the characteristics of acoustic wave field. Second, the levitation characteristic and the internal flow of the levitated droplet are investigated by the ultrasonic standing wave under normal gravity environment. Finally, the levitation characteristic and internal flow of levitated droplet are observed under microgravity in an aircraft to compare results with the experiment performed under the normal gravity environment. PMID:17124114

  7. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  8. Low power acoustic harvesting of aerosols

    SciTech Connect

    Kaduchak, G.; Sinha, D. N.

    2001-01-01

    A new acoustic device for levitation and/or concentration of aerosols and sniall liquid/solid samples (up to several millimeters in diameter) in air has been developed. The device is inexpensive, low-power, and, in its simplest embodiment, does not require accurate alignmen1 of a resonant cavity. It is constructed from a cylindrical PZT tube of outside diameter D = 19.0 mm and thickness-to-radius ratio h/a - 0.03. The lowest-order breathing mode of the tube is tuned to match a resonant mode of the interior air-filled cylindrical cavity. A high Q cavity results that can be driven efficiently. An acoustic standing wave is created in the inteirior cavity of the cylindrical shell where particle concrmtration takes place at the nodal planes of the field. It is shown that drops of water in excess of 1 mm in diameter may be levitated against the force of gravity for approxirnately 100 mW of input electrical power. The main objective of the research is to implement this lowpower device to concentrate and harvest aerosols in a flowing system. Several different cavity geonietries iwe presented for efficient collection of 1 he conaartratetl aerosols. Concentraiion factors greater than 40 iue demonstrated for particles of size 0.7 1.1 in a flow volume of 50 L/minute.

  9. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  10. Levitation of superconducting composites

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Turchinskaya, M.; Swartzendruber, L. J.; Shull, R. D.; Bennett, L. H.

    1991-01-01

    The inverse levitation of a high temperature superconductor polymer composite consisting of powdered quench melt growth Ba2YCu3O(7-delta) and cyanoacrylate is reported. Magnetic hysteresis loop measurements for the composite are compared to those measured for the bulk material prior to powdering. Differences in the flux pining capability between the two material forms are small but significant.

  11. Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Rulison of Space System LORAl working with the Electrostatic Levitation (ESL) prior to the donation. Space System/LORAL donated the electrostatic containerless processing system to NASA's Marshall Space Flight Center (MSFC). The official hand over took place in July 1998.

  12. Studying Electrostatic Levitator Specimen

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Prof. Kerneth Kelton of Washington University in St. Lous, MO, (L) and Dr. Michael Robinson of NASA's Marshall Space Flight Center (MSFC) examine a titanium-iron silicate (TiFeSiO)sample processed in MSFC's Electrostatic Levitator (ESL) Facility (background). Kelton is investigating undercooling of polytetrahedral phase-forming liquids.

  13. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  14. Particle-size dependence of immersion freezing: Investigation of INUIT test aerosol particles with freely suspended water drops.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.

    2014-05-01

    One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate

  15. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    NASA Technical Reports Server (NTRS)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  16. Study on interfacial stability and internal flow of a droplet levitated by ultrasonic wave.

    PubMed

    Abe, Yutaka; Yamamoto, Yuji; Hyuga, Daisuke; Awazu, Shigeru; Aoki, Kazuyoshi

    2009-04-01

    For a microgravity environment, new and high-quality material is expected to be manufactured. However, the effect of surface instability and the internal flow become significant when the droplet becomes large. Elucidation of internal flow and surface instability on a levitated droplet is required for the quality improvement of new material manufacturing in a microgravity environment. The objectives of this study are to clarify the interfacial stability and internal flow of a levitated droplet. Surface instability and internal flow are investigated with a large droplet levitated by the ultrasonic acoustic standing wave. The experiment with a large droplet is conducted both under normal gravity and microgravity environments. In the experiment, at first, the characteristics of the levitated droplet are investigated; that is, the relationships among the levitated droplet diameter, the droplet aspect ratio, the displacement of the antinode of the standing wave, and the sound pressure are experimentally measured. As a result, it is clarified that the levitated droplet tends to be located at an optimal position with an optimal shape and diameter. Second, the border condition between the stable and the unstable levitation of the droplet is evaluated by using the existing stability theory. The experimental results qualitatively agree with the theory. It is suggested that the stability of the droplet can be evaluated with the stability theory. Finally, multidimensional visual measurement is conducted to investigate the internal flow structure in a levitated droplet. It is suggested that complex flow with the vortex is generated in the levitated droplet. Moreover, the effect of physical properties of the test fluid on the internal flow structure of the levitated droplet is investigated. As a result, the internal flow structure of the levitated droplet is affected by the surface tension and viscosity. PMID:19426319

  17. Differential force balances during levitation

    NASA Astrophysics Data System (ADS)

    Todd, Paul

    The simplest arithmetic of inertial, buoyant, magnetic and electrokinetic levitation is explored in the context of a model living system with “acceleration-sensitive structures” in which motion, if allowed, produces a biological effect. The simple model is a finite-sized object enclosed within another finite-sized object suspended in an outer fluid (liquid or vapor) medium. The inner object has density and electrical and magnetic properties quantitatively different from those of the outer object and the medium. In inertial levitation (“weightlessness”) inertial accelerations are balanced, and the forces due to them are canceled in accordance with Newton’s third law. In the presence of inertial acceleration (gravity, centrifugal) motionlessness depends on a balance between the levitating force and the inertial force. If the inner and outer objects differ in density one or the other will be subjected to an unbalanced force when one object is levitated by any other force (buoyant, magnetic, electrokinetic). The requirements for motionlessness of the internal object in the presence of a levitating force are equality of density in the case of buoyant levitation, equality of magnetic susceptibility in the case of magnetic levitation, and equality of zeta potential and dielectric constant in the case of electrokinetic levitation. Examples of internal “acceleration-sensitive structures” are cellular organelles and the organs of advanced plants and animals. For these structures fundamental physical data are important in the interpretation of the effects of forces used for levitation.

  18. Magnetically levitated superconducting bearing

    SciTech Connect

    Weinberger, B.R.; Lynds, L. Jr.

    1993-10-26

    A magnetically levitated superconducting bearing includes a magnet mounted on a shaft that is rotatable around an axis of rotation and a Type II superconductor supported on a stator in proximity to the magnet. The superconductor is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet to produce an attractive force that levitates the magnet and supports a load on the shaft. The interaction between the superconductor and magnet also produces surface screening currents that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature. The bearing could also be constructed so the magnet is supported on the stator and the superconductor is mounted on the shaft. The bearing can be operated by cooling the superconductor to its superconducting state in the presence of a magnetic field. 6 figures.

  19. Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2014-11-01

    The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.

  20. Analysis of SPAR 8 single-axis levitation experiment

    NASA Technical Reports Server (NTRS)

    Rush, J. E.; Schafer, C. F.; Holland, R. L.

    1981-01-01

    The melting and resolidification of SPAR 8 payload melting and resolidification of a glass specimen from the in a containerless condition and the retrieval and examination of the specimen from the. The absence of container contact was assured by use of a single-axis acoustic levitation system. However, the sample contacted a wire cage after being held without container contact by the acoustic field for only approximately 87 seconds. At this time, the sample was still molten and, therefore, flowed aroung the wire and continued to adhere to it. An analysis of why the sample did not remain levitated free of container contact is presented. The experiment is described, and experimental observations are discussed and analyzed.

  1. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    PubMed

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles. PMID:12942960

  2. Electromagnetic Levitation of a Disc

    ERIC Educational Resources Information Center

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  3. Foot Drop

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Foot Drop Information Page Table of Contents (click to ... research is being done? Clinical Trials What is Foot Drop? Foot drop describes the inability to raise ...

  4. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  5. Non-Contact Temperature Requirements (NCTM) for drop and bubble physics

    NASA Technical Reports Server (NTRS)

    Hmelo, Anthony B.; Wang, Taylor G.

    1989-01-01

    Many of the materials research experiments to be conducted in the Space Processing program require a non-contaminating method of manipulating and controlling weightless molten materials. In these experiments, the melt is positioned and formed within a container without physically contacting the container's wall. An acoustic method, which was developed by Professor Taylor G. Wang before coming to Vanderbilt University from the Jet Propulsion Laboratory, has demonstrated the capability of positioning and manipulating room temperature samples. This was accomplished in an earth-based laboratory with a zero-gravity environment of short duration. However, many important facets of high temperature containerless processing technology have not been established yet, nor can they be established from the room temperature studies, because the details of the interaction between an acoustic field an a molten sample are largely unknown. Drop dynamics, bubble dynamics, coalescence behavior of drops and bubbles, electromagnetic and acoustic levitation methods applied to molten metals, and thermal streaming are among the topics discussed.

  6. Magnetic levitation of single cells.

    PubMed

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131

  7. Magnetic levitation of single cells

    PubMed Central

    Durmus, Naside Gozde; Tekin, H. Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Davis, Ronald W.; Steinmetz, Lars M.; Demirci, Utkan

    2015-01-01

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10−4 g⋅mL−1. We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131

  8. Levitated micro-accelerometer.

    SciTech Connect

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  9. Bubble and Drop Nonlinear Dynamics (BDND)

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  10. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  11. Microwave Dielectrophoretic Levitation In Microgravity

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Jackson, Henry W.; Barmatz, Martin B.

    1993-01-01

    Two reports propose use of dielectrophoresis in microwave resonant cavities to levitate samples of materials for containerless processing in microgravity in vacuum or in any suitable atmosphere. Also describe experiments undertaken to verify feasibility of proposal.

  12. 2013 Problem 5: Levitation

    NASA Astrophysics Data System (ADS)

    Ruan, Qiyuan; Zeng, Pei; Zhou, Huijun; Wang, Sihui

    2015-10-01

    In this work, we reproduce the phenomenon through a preliminary experiment. The main factors to optimize the system are identified as the mass of the ball, the flow velocity and distribution of the airstream. We propose a Gaussian velocity distribution model to describe the flow velocity field model quantitatively which is supported by COMSOL simulation and experimental data. Through force analysis, the supporting forces that balance the gravity of the ball are identified. Equation for the tilt angle has been found, from which the optimal tilt angle can be calculated and compared to experimental data. Our research also shows that levitation is more stable without rotation. So the method we used to adjust the mass of the ball by injecting water is also effective in preventing rotation and enhance stability. The theoretical result for the optimal tilt angle is consistent with experimental data.

  13. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Michael M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory’s main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, iron-chromium-nickel, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. The system is described and some initial results are presented.

  14. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  15. Pool impacts of Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  16. A self-running standing wave-type bidirectional slider for the ultrasonically levitated thin linear stage.

    PubMed

    Koyama, Daisuke; Takei, Hiroyuki; Nakamura, Kentaro; Ueha, Sadayuki

    2008-08-01

    A slider for a self-running standing wave-type, ultrasonically levitated, thin linear stage is discussed. The slider can be levitated and moved using acoustic radiation force and acoustic streaming. The slider has a simple configuration and consists of an aluminum vibrating plate and a piezoelectric zirconate titanate (PZT) element. The large asymmetric vibration distribution for the high thrust and levitation performance was obtained by adjusting the configuration determined by finite elemental analysis (FEA). As a preliminary step, the computed results of the sound pressure distribution in the 1-mm air gap by FEA was com pared with experimental results obtained using a fiber optic probe. The direction of the total driving force for the acoustic streaming in the small air gap was estimated by the sound pressure distribution calculated by FEA, and it was found that the direction of the acoustic streaming could be altered by controlling the vibration mode of the slider. The flexural standing wave could be generated along the vibrating plate near the frequencies predicted based on the FEA results. The slider could be levitated by the acoustic radiation force radiated from its own vibrating plate at several frequencies. The slider could be moved in the negative and positive directions at 68 kHz and 69 kHz, which correspond to the results computed by FEA, with the asymmetric vibration distribution of the slider's vibrating plate. Larger thrust could be obtained with the smaller levitation distance, and the maximum thrust was 19 mN. PMID:18986924

  17. Compact rf heating and levitation systems for the NASA modular electromagnetic levitator

    NASA Technical Reports Server (NTRS)

    Fox, R. J.

    1990-01-01

    The levitator demonstrates levitation of a 5 mm diam aluminum sphere at 1 G using a small, compact rf levitator operating from a small 12-V battery. This system is designed to levitate and melt niobium in space; however, the small battery unit limits the power for melting operations.

  18. Control of Nanomaterial Self-Assembly in Ultrasonically Levitated Droplets.

    PubMed

    Seddon, Annela M; Richardson, Sam J; Rastogi, Kunal; Plivelic, Tomás S; Squires, Adam M; Pfrang, Christian

    2016-04-01

    We demonstrate that acoustic trapping can be used to levitate and manipulate droplets of soft matter, in particular, lyotropic mesophases formed from self-assembly of different surfactants and lipids, which can be analyzed in a contact-less manner by X-ray scattering in a controlled gas-phase environment. On the macroscopic length scale, the dimensions and the orientation of the particle are shaped by the ultrasonic field, while on the microscopic length scale the nanostructure can be controlled by varying the humidity of the atmosphere around the droplet. We demonstrate levitation and in situ phase transitions of micellar, hexagonal, bicontinuous cubic, and lamellar phases. The technique opens up a wide range of new experimental approaches of fundamental importance for environmental, biological, and chemical research. PMID:26979408

  19. Magnetic levitation technology and transportation strategies

    SciTech Connect

    Not Available

    1990-01-01

    This book contains the following topics: Benefits of magnetically levitated high speed transportation for the United States. Monorail MagLev, HSST magnetic levitation trains, past, present and future, a national vision for MagLev transit in America.

  20. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  1. An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails.

    PubMed

    Koyama, Daisuke; Ide, Takeshi; Friend, James R; Nakamura, Kentaro; Ueha, Sadayuki

    2007-03-01

    This paper presents a noncontact sliding table design and measurements of its performance via ultrasonic levitation. A slider placed atop two vibrating guide rails is levitated by an acoustic radiation force emitted from the rails. A flexural traveling wave propagating along the guide rails allows noncontact transportation of the slider. Permitting a transport mechanism that reduces abrasion and dust generation with an inexpensive and simple structure. The profile of the sliding table was designed using the finite-element analysis (FEA) for high levitation and transportation efficiency. The prototype sliding table was made of alumina ceramic (Al2O3) to increase machining accuracy and rigidity using a structure composed of a pair of guide rails with a triangular cross section and piezoelectric transducers. Two types of transducers were used: bolt-clamped Langevin transducers and bimorph transducers. A 40-mm long slider was designed to fit atop the two rail guides. Flexural standing waves and torsional standing waves were observed along the guide rails at resonance, and the levitation of the slider was obtained using the flexural mode even while the levitation distance was less than 10 microm. The levitation distance of the slider was measured while increasing the slider's weight. The levitation pressure, rigidity, and vertical displacement amplitude of the levitating slider thus were measured to be 6.7 kN/m2, 3.0 kN/microm/m2, and less than 1 microm, respectively. Noncontact transport of the slider was achieved using phased drive of the two transducers at either end of the vibrating guide rail. By controlling the phase difference, the slider transportation direction could be switched, and a maximum thrust of 13 mN was obtained. PMID:17375828

  2. Containerless processing using electromagnetic levitation

    NASA Technical Reports Server (NTRS)

    Gokhale, A. B.; Abbaschian, R.

    1990-01-01

    The theory and practice of containerless processing via electromagnetic (EM) levitation is reviewed briefly. The use of EM levitation for the processing of alloys is described with particular emphasis on the bulk melt supercooling phenomenon in a containerless environment. The various effects associated with rapid solidification via bulk melt supercooling are discussed with examples of Nb-Si alloys. It is suggested that a detailed analysis of such effects can be utilized to select the potentially most promising alloys for future space-based processing.

  3. Switchable Opening and Closing of a Liquid Marble via Ultrasonic Levitation.

    PubMed

    Zang, Duyang; Li, Jun; Chen, Zhen; Zhai, Zhicong; Geng, Xingguo; Binks, Bernard P

    2015-10-27

    Liquid marbles have promising applications in the field of microreactors, where the opening and closing of their surfaces plays a central role. We have levitated liquid water marbles using an acoustic levitator and, thereby, achieved the manipulation of the particle shell in a controlled manner. Upon increasing the sound intensity, the stable levitated liquid marble changes from a quasi-sphere to a flattened ellipsoid. Interestingly, a cavity on the particle shell can be produced on the polar areas, which can be completely healed when decreasing the sound intensity, allowing it to serve as a microreactor. The integral of the acoustic radiation pressure on the part of the particle surface protruding into air is responsible for particle migration from the center of the liquid marble to the edge. Our results demonstrate that the opening and closing of the liquid marble particle shell can be conveniently achieved via acoustic levitation, opening up a new possibility to manipulate liquid marbles coated with non-ferromagnetic particles. PMID:26439701

  4. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    PubMed Central

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  5. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. PMID:21208732

  6. Magnetic levitation of condensed hydrogen

    NASA Technical Reports Server (NTRS)

    Paine, C. G.; Seidel, G. M.

    1991-01-01

    Liquid and solid molecular hydrogen has been levitated using a pair of small superconducting solenoids. The hydrogen samples, up to 3 mm in dimension, were trapped in a magnetic potential having either a discrete minimum or a minimum in the form of a ring 1 cm in diameter. The hydrogen could be moved about in the magnetic trap by applying an electric field.

  7. Microwave Levitation Of Small Objects

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Jackson, Henry W.

    1991-01-01

    Microwave radiation in resonant cavities used to levitate small objects, according to proposal. Feedback control and atmosphere not needed. Technique conceived for use in experiments on processing of materials in low gravitation of outer space, also used in normal Earth gravitation, albeit under some limitations.

  8. Levitation of liquid sodium droplets

    SciTech Connect

    Roy, S.S.; Cramb, A.W.; Hoburg, J.F.; Lally, B.

    1995-12-01

    Droplets of liquid sodium ranging from 1.2 to 2.1 g, immersed in mineral oil, were levitated in an electromagnetic field. The experimental setup was designed and constructed to levitate small metal droplets at audio frequencies. The levitated droplet was found to be very stable inside the inductor, and the equilibrium shape attained by the droplet in the electromagnetic field was measured during the experiment. A surface coupled mathematical model was used to calculate the self-consistent equilibrium droplet shape of liquid sodium under the influence of an electromagnetic field. The predicted shapes of the metal droplet and the position of the droplet inside the inductor compare well with the experimental data. The idea of casting metals and alloys without any physical contact has generated a lot of interest in the metals industry, especially in the production of metals/alloys that are highly reactive and have a very high melting point. Containerless casting can be achieved by levitating or pushing the liquid metal from the surface of the container.

  9. A Low-Profile Design for the Noncontact Ultrasonically Levitated Stage

    NASA Astrophysics Data System (ADS)

    Ide, Takeshi; Friend, James Robert; Nakamura, Kentaro; Ueha, Sadayuki

    2005-06-01

    In this paper, we propose a new low-profile design for a linear bearing based on Near-Field Acoustic Levitation (NFAL). Two flat beams at a 45° angle are used as a guide rail, and a slider is levitated by ultrasonic bending vibrations excited along the beams. The beams are excited by a pair of Langevin transducers with “+”-shaped vibration direction converters (L-L converters) to install the transducers in the same plane of the beam and to lower the total height of the setup. First, the design of the vibration converter is described. Then, a two-phase driving system to excite a traveling wave is investigated theoretically and experimentally. The levitation characteristics and the sliding performance of the prototype stage are measured and discussed.

  10. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  11. Dust levitation about Itokawa's equator

    NASA Astrophysics Data System (ADS)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    Introduction: Electrostatic dust motion has been hypothesized to occur on the asteroids, due to the observations of the Eros dust ponds [1] and the potential presence of such a phenomenon on the Moon [2]. There are two phases of electrostatic dust motion: lofting and the subsequent trajectories. The feasibility of electrostatic dust lofting can be assessed by comparing the strength of the electrostatic force to the gravity and cohesion which hold the grain on to the surface [3--5]. The motion of the dust grains after they detach from the surface can be described as either ballistic, escaping, or levitating. We are interested in dust levitation because it could potentially redistribute grains on the surface of an asteroid (for instance, producing the Eros dust ponds) and it could also be hazardous to spacecraft. Specifically, levitating dust could obscure the observations of surface-based spacecraft or possibly trigger obstacle avoidance routines during landing. Dust Levitation: Dust levitation is defined as the altitude oscillation of grains prior to their redeposition on the surface of an asteroid. Levitation occurs about equilibria where the electrostatic and gravity forces on the grain are equal and opposite. An equilibrium state is defined as a position and charge for a specific grain size. We have previously identified equilibria using a 1D plasma model and a simple gravity model for Itokawa [6]. In this simple model, the largest grain that was capable of stable levitation above Itokawa was 3 microns (in radius) [6]. Additionally, we have shown that levitating dust grains follow the variation in the equilibria for a rotating asteroid (i.e., the grain continues to oscillate about an equilibrium state that approaches the surface) [7]. Due to the nonspherical shape of Itokawa, both the gravity and plasma environments are much more complicated than the 1D approximations made in our previous work. Thus, in order to accurately assess the feasibility of dust

  12. Theory and applications of electromagnetic levitation

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Chang, C. W.

    1982-01-01

    A simple treatment of the electromagnetic levitation problem is presented, with emphasis placed on approximate formulas useful in planning and interpreting laboratory measurements. Consideration is also given to numerical solutions for fields, eddy currents, and Lorentz forces for rapidly varying applied fields, with particular reference made to traveling wave levitation experiments. Applications of levitation processing are briefly reviewed, including thermophysical property measurements, undercooling studies, containerless crystal growth, and continuous casting of cylinders.

  13. Velocity damper for electromagnetically levitated materials

    SciTech Connect

    Fox, R.J.

    1992-12-31

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  14. Velocity damper for electromagnetically levitated materials

    DOEpatents

    Fox, Richard J.

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  15. Velocity damper for electromagnetically levitated materials

    DOEpatents

    Fox, R.J.

    1994-06-07

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  16. Dynamics of rotating and oscillating drops

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Trinh, E. H.; Croonquist, A. P.; Elleman, D. D.

    1987-01-01

    The dynamics of rotation and oscillation is investigated of a freely suspended liquid drop under the influence of surface tension and positioned inside an experimental apparatus by acoustic forces in the low acceleration environment of Spacelab 3. After a drop was observed to be spherical and stably located at the center of the chamber, it was set into rotation or oscillation by acoustic torque or modulated radiation pressure force.

  17. Development of the sonic pump levitator

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1985-01-01

    The process and mechanism involved in producing glass microballoons (GMBs) of acceptable quality for laser triggered inertial fusion through use of glass jet levitation and manipulation are considered. The gas jet levitation device, called sonic pumps, provides positioning by timely and appropriate application of gas mementum from one or more of six sonic pumps which are arranged orthogonally in opposed pairs about the levitation region and are activated by an electrooptical, computer controlled, feedback system. The levitation device was fabricated and its associated control systems were assembled into a package and tested in reduced gravity flight regime of the NASA KC-135 aircraft.

  18. A self-running ultrasonically levitated 2D stage using flexural vibrating plates

    NASA Astrophysics Data System (ADS)

    Koyama, Daisuke; Nakamura, Kentaro

    2010-01-01

    A non-contact self-running ultrasonically levitated 2D stage is discussed. In our previous work, the ultrasonically levitated linear slider for a self-running sliding stage was investigated. When the flexural vibration mode is excited along the slider, the slider on the flat substrate can be levitated due to the acoustic radiation force from the own vibrating plate. The slider can move the same direction as the acoustic streaming induced along the air gap. The proposed 2D stage was fabricated from a rectangular aluminum plate and the four vibrating plates were integrated. The vibrating plates are cantilever-type and the PZT elements are attached on the fixed-end of the vibrating plates. The 2D stage has four our previous linear sliders, two pairs both in x and y directions. To isolate the performances of each vibrating plate, the four vibrating plates with different lengths were designed. The 2D stage could be levitated at the several frequencies from 60 to 70 kHz. By changing the driving frequency, the moving direction of the stage could be controlled. The maximum thrust of 5.3 mN could be obtained at 71 kHz with 70 Vpp.

  19. Final Report: Levitated Dipole Experiment

    SciTech Connect

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  20. Progress in acoustic holography

    NASA Astrophysics Data System (ADS)

    Hildebrand, B. P.

    1985-01-01

    The theory underlying the methods used in acoustic holography (the real-time liquid surface levitation and the scanning holography methods) and in electromagnetic holography, which uses electromagnetic impulses (radar) or electromagnetic waves (eddy current) is developed. These holographic techniques are illustrated with experimental results, including the use of the liquid surface levitation method for inspecting fiberglass laminate tubes, and examples of the time-of-flight holographic images, the coherent ultrasonic images, multifrequency ultrasonic images, and the synthetic aperture holography images obtained by the use of the scanning holography methodology. Other examples illustrate applications of radar holography and eddy current holography. These examples are used to refute some traditional negative comments on nonoptical holography.

  1. Noncontact thermophysical property measurement by levitation of a thin liquid disk.

    PubMed

    Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh

    2006-09-01

    The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical

  2. Final Report: Levitated Dipole Experiment

    SciTech Connect

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross

  3. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  4. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  5. Superconducting, Magnetically Levitated Merry-Go-Round

    ERIC Educational Resources Information Center

    Byer, R. L.; And Others

    1974-01-01

    Reviews the basic theory underlying the lift and drag forces of a magnetically levitated vehicle riding over a continuous sheet guideway. Included are descriptions of the future vehicle characteristics and the students' construction of a superconducting magnetically levitated merry-go-round demonstration apparatus in a laboratory experiment. (CC)

  6. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  7. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    SciTech Connect

    Coffey, H.T.

    1992-12-31

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  8. Dielectrophoretic levitation of droplets and bubbles

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1982-01-01

    Uncharged droplets and bubbles can be levitated dielectrophoretically in liquids using strong, nonuniform electric fields. The general equations of motion for a droplet or bubble in an axisymmetric, divergence-free electrostatic field allow determination of the conditions necessary and sufficient for stable levitation. The design of dielectrophoretic (DEP) levitation electrode structures is simplified by a Taylor-series expansion of cusped axisymmetric electrostatic fields. Extensive experimental measurements on bubbles in insulating liquids verify the simple dielectrophoretic model. Other have extended dielectrophoretic levitation to very small particles in aqueous media. Applications of DEP levitation to the study of gas bubbles, liquid droplets, and solid particles are discussed. Some of these applications are of special interest in the reduced gravitational field of a spacecraft.

  9. Contactless Calorimetry for Levitated Samples

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Dokko, W.

    1986-01-01

    Temperature and specific heat of hot sample measured with pyrometer in proposed experimental technique. Technique intended expecially for contactless calorimetry of such materials as undercooled molten alloys, samples of which must be levitated to prevent contamination and premature crystallization. Contactless calorimetry technique enables data to be taken over entire undercooling temperature range with only one sample. Technique proves valuable in study of undercooling because difference in specific heat between undercooled-liquid and crystalline phases at same temperature provides driving force to convert metastable undercooled phase to stable crystalline phase.

  10. Magnetic levitation for hard superconductors

    SciTech Connect

    Kordyuk, A.A.

    1998-01-01

    An approach for calculating the interaction between a hard superconductor and a permanent magnet in the field-cooled case is proposed. The exact solutions were obtained for the point magnetic dipole over a flat ideally hard superconductor. We have shown that such an approach is adaptable to a wide practical range of melt-textured high-temperature superconductors{close_quote} systems with magnetic levitation. In this case, the energy losses can be calculated from the alternating magnetic field distribution on the superconducting sample surface. {copyright} {ital 1998 American Institute of Physics.}

  11. Formation and Levitation of Unconfined Droplet Clusters

    NASA Technical Reports Server (NTRS)

    Liu, S.; Ruff, G. A.

    1999-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. The overall objective of this research is to study the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. This paper describes current work on the design and performance of an apparatus to generate and stabilize droplet clusters using acoustic and electrostatic forces.

  12. NMR velocity imaging of single liquid drops

    NASA Astrophysics Data System (ADS)

    Amar, A.; Stapf, S.; Bluemich, B.

    2007-03-01

    Liquid-liquid extraction processes are often found in industrial applications when a bulk phase needs to be purified from dissolved components. The extraction strategy consists of dissolving the impurities into a second, carrier phase, with optimal performance being guaranteed by maximizing both contact interface area and mass transfer rate, in the shape of a swarm of dispersed droplets. Their buoyancy-driven flow within the continuous medium induces internal fluid motion driven by momentum transfer at the drop surface. This convective transport enhances mass transfer and the efficiency of an extraction column. However, understanding mass transfer depends on a proper description of the flow field inside and outside the drops. For that purpose, a cell was built that enables the levitation of a single drop within a counterstream of water. NMR velocity imaging was then applied to drops of different fluids to monitor the internal dynamics as a function of drop size, age, and interface tension. Vortex-type patterns in at least part of the drop were observed where their size and velocity magnitude depended on the system impurity concentration.

  13. Leidenfrost drops on liquid baths: theory

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Rednikov, Alexei; Maquet, Laurent; Darbois-Texier, Baptiste; Duchesne, Alexis; Brandenbourger, Martin; Dorbolo, Stéphane; Colinet, Pierre

    2015-11-01

    It is well known that a liquid drop released over a very hot surface generally does not contact the surface nor boils but rather levitates over a thin vapor film generated by its own evaporation (Leidenfrost effect). In particular, the case of a hot (and flat) solid substrate has been extensively studied in recent years. In contrast, we here focus on Leidenfrost drops over a superheated liquid bath, addressing the problem theoretically and comparing our predictions with experimental results, detailed in a separate talk. We predict the geometry of the drop and of the liquid bath, based on the hydrostatic Young-Laplace and lubrication equations. A good agreement is observed with the available experimental data concerning the deformation of the liquid bath. The modeling also yields a rather complete insight into the shape of the drop. As in the case of a solid substrate, the vapor layer generally appears to be composed of a vapor pocket surrounded by a circular neck. The influences of the superheat and of the drop size are parametrically investigated. A number of scaling laws are established. Unlike the case of a solid substrate, no chimney instability was found in the range of drop size studied.

  14. Experiments in materials science on the ground and in reduced gravity using electrostatic levitators

    NASA Astrophysics Data System (ADS)

    Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi

    To counter residual accelerations, dedicated levitators or positioners are necessary to support a host of materials science experiments on the ground and in microgravity. All levitators (e.g., aerodynamic, acoustic, electromagnetic, electrostatic, optical) have their own merits and limitations but the electrostatic scheme offers the combined advantages of processing millimeter-size objects, independent heating, quasi-spherical shape of molten materials, handling of materials under extreme temperatures for hours, virtually convection-free samples, and wide view around the samples for diagnostic. These attributes provide unique research opportunities in materials science on the ground as well as under reduced gravity. In particular, electrostatic levitators are very attractive to measure the physical and structural properties of equilibrium and non-equilibrium liquids, to synthesize multi-function materials, and to understand metastable phase formation, vitrification, and diffusion. In this paper, research and development carried out by the Japan Aerospace Exploration Agency over the years in the field of electrostatic levitation are summarized and the main results obtained in materials science are presented.

  15. Experiments in materials science on the ground and in reduced gravity using electrostatic levitators

    NASA Astrophysics Data System (ADS)

    Paradis, P.-F.; Ishikawa, T.; Yoda, S.

    To counter residual accelerations and to support a host of materials science experiments in microgravity the Japan Aerospace Exploration Agency JAXA developed levitation facilities dedicated to the processing of glass and ceramics under pressurized atmospheres as well as metals and semiconductors in vacuum All levitators e g aerodynamic acoustic electromagnetic electrostatic optical have their own merits and limitations but the electrostatic scheme offers the combined advantages of processing millimeter-size objects independent heating quasi-spherical shape of molten materials handling of materials under extreme temperatures for hours virtually convection-free samples and wide view around the samples for diagnostic These attributes provide unique research opportunities in materials science on the ground as well as under reduced gravity In particular electrostatic levitators are very attractive to measure the physical e g viscosity and structural properties of equilibrium and supercooled liquids to synthesize multi-function materials and to understand metastable phase formation vitrification and diffusion In this paper JAXA s research and development over the years in the field of electrostatic levitation are summarized and the main results obtained in materials science on the ground and in reduced gravity are presented

  16. Viscosity measurements of metallic melts using the oscillating drop technique

    NASA Astrophysics Data System (ADS)

    Heintzmann, P.; Yang, F.; Schneider, S.; Lohöfer, G.; Meyer, A.

    2016-06-01

    By means of benchmarking reduced gravity experiments, we have verified the measured viscosity of binary Zr-Ni glass forming liquids utilizing the oscillating drop technique combined with ground-based electrostatic levitation (ESL). Reliable viscosity data can be obtained as long as internal viscous damping of a single oscillation mode of a levitated drop dominates external perturbations. This can be verified by the absence of a sample mass dependence of the results. Hence, ESL is an excellent tool for studying the viscosity of metallic glass forming melts in the range of about 10-250 mPa s, with sample masses below 100 mg. To this end, we show that, for binary Zr-Ni melts, the viscosity is qualitatively controlled by the packing density.

  17. Containerless electromagnetic levitation melting of Cu-Fe and Ag-Ni alloys

    NASA Technical Reports Server (NTRS)

    Abbaschian, G. J.; Ethridge, E. C.

    1983-01-01

    The feasibility of producing silver or copper alloys containing finely dispersed nickel or iron particles, respectively, by utilizing containerless electromagnetic levitation casting techniques was investigated. A levitation coil was designed to successfully levitate and melt a variety of alloys including Nb-Ge, Cu-Fe, Fe-C, and Ag-Ni. Samples of 70 Cu-30 Fe and 80 Ag-20 Ni (atomic %), prepared by mechanical pressing of the constituent powders, were levitated and heated either to the solid plus liquid range of the alloys or to the fully liquid region. The samples were then solidified by passing helium gas into the bell jar or they were dropped into a quenching oil. The structure of the samples which were heated to the solid plus liquid range consists of uniform distribution of Fe or Ni particle in their respective matrices. A considerable amount of entrapped gas bubbles were contained. Upon heating for longer periods or to higher temperatures, the bubbles coalesced and burst, causing the samples to become fragmented and usually fall out of the coil.

  18. Oscillation damping means for magnetically levitated systems

    DOEpatents

    Post, Richard F.

    2009-01-20

    The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.

  19. Solidification Dynamics of Spherical Drops in a Free Fall Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.

    2006-01-01

    Silver drops (99.9%, 4, 5, 7, and 9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105 meter drop tube in helium - 6% hydrogen and pure argon atmospheres. By varying a drop s initial superheat the extent of solidification prior to impact ranged from complete to none during the approx. 4.6s of free fall time. Comparison of the experimental observations is made with numerical solutions to a model of the heat transfer and solidification kinetics associated with cooling of the drop during free fall, particularly with regard to the fraction of liquid transformed. Analysis reveals the relative importance ,of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.

  20. Vibration converter with magnetic levitation

    NASA Astrophysics Data System (ADS)

    Gladilin, A. V.; Pirogov, V. A.; Golyamina, I. P.; Kulaev, U. V.; Kurbatov, P. A.; Kurbatova, E. P.

    2015-05-01

    The paper presents a mathematical model, the results of computational and theoretical research, and the feasibility of creating a vibration converter with full magnetic levitation in the suspension of a high-temperature superconductor (HTSC). The axial and radial stability of the active part of the converter is provided by the interaction of the magnetic field of ring-shaped permanent magnets and a hollow cylinder made of the ceramic HTSC material. The force is created by a system of current-carrying coils whose magnetic field is polarized by permanent magnets and interacts with induced currents in the superconducting cylinder. The case of transition to the superconducting state of HTSC material in the field of the permanent magnets (FC mode) is considered. The data confirm the outlook for the proposed technical solutions.

  1. Prominence condensation and magnetic levitation in a coronal loop

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.; Mok, Y.; Drake, J. F.

    1992-01-01

    The results of a model dynamic simulation of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade are described. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The antibuoyancy effect as the prominence forms causes a bending of the confining magnetic field, which propagates toward the semirigid ends of the magnetic loop. Thus, a wide magnetic 'hammock' or well (of the normal-polarity Kippenhahn-Schlueter-type) is formed, which supports the prominence at or near the field apex. The simplicity of this 1.5-dimensional model, with its accompanying diagnostics, elucidates the various contributions to the nonlinear dynamics of prominence condensation and levitation.

  2. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of a sample of titanium-zirconium-nickel alloy inside the Electrostatic Levitator (ESL) vacuum chamber at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  3. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This Photo, which appeared on the July cover of `Physics Today', is of the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. In this particular shot, the ESL contains a solid metal sample of titanium-zirconium-nickel alloy. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  4. Thermophysical Property Measurement and Materials Research in the NASA/MSFC Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rogers, J. R.; Robinson, M. B.; Hyers, R. W.; Savage, L.; Rathz, T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Containerless processing is an important tool for materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the decoupling of positioning force from sample heating, the ability to operate in ultra-high vacuum or at moderate gas pressure (approx. 3 atm), and the ability to process non-conducting materials. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. Microgravity allows electrostatic levitation to work even more effectively. In microgravity, ESL can position larger samples than is possible on the ground, or it can position samples which maintain their charge poorly. Microgravity also reduces the effects of buoyant convection and sedimentation. The ESL facility at NASA's Marshall Space Flight Center (MSFC) is in use for thermophysical property measurements and materials research by a number of different internal and external investigators. The methods for obtaining access to the facility, as well as a summary of current capabilities and some future directions will be discussed.

  5. Novel high-temperature and pressure-compatible ultrasonic levitator apparatus coupled to Raman and Fourier transform infrared spectrometers.

    PubMed

    Brotton, Stephen J; Kaiser, Ralf I

    2013-05-01

    We describe an original apparatus comprising of an acoustic levitator enclosed within a pressure-compatible process chamber. To characterize any chemical and physical modifications of the levitated particle, the chamber is interfaced to complimentary, high-sensitivity Raman (4390-170 cm(-1)), and Fourier transform infrared (FTIR) (10,000-500 cm(-1)) spectroscopic probes. The temperature of the levitated particle can be accurately controlled by heating using a carbon dioxide laser emitting at 10.6 μm. The advantages of levitating a small particle combined with the two spectroscopic probes, process chamber, and infrared laser heating makes novel experiments possible relevant to the fields of, for example, planetary science, astrobiology, and combustion chemistry. We demonstrate that this apparatus is well suited to study the dehydration of a variety of particles including minerals and biological samples; and offers the possibility of investigating combustion processes involving micrometer-sized particles such as graphite. Furthermore, we show that the FTIR spectrometer enables the study of chemical reactions on the surfaces of porous samples and scientifically and technologically relevant, micrometer-thick levitated sheets. The FTIR spectrometer can also be used to investigate non-resonant and resonant scattering from small, irregularly-shaped particles across the mid-infrared range from 2.5 μm to 25 μm, which is relevant to scattering from interplanetary dust and biological, micrometer-sized samples but cannot be accurately modelled using Mie theory. PMID:23742596

  6. Novel high-temperature and pressure-compatible ultrasonic levitator apparatus coupled to Raman and Fourier transform infrared spectrometers

    NASA Astrophysics Data System (ADS)

    Brotton, Stephen J.; Kaiser, Ralf I.

    2013-05-01

    We describe an original apparatus comprising of an acoustic levitator enclosed within a pressure-compatible process chamber. To characterize any chemical and physical modifications of the levitated particle, the chamber is interfaced to complimentary, high-sensitivity Raman (4390-170 cm-1), and Fourier transform infrared (FTIR) (10 000-500 cm-1) spectroscopic probes. The temperature of the levitated particle can be accurately controlled by heating using a carbon dioxide laser emitting at 10.6 μm. The advantages of levitating a small particle combined with the two spectroscopic probes, process chamber, and infrared laser heating makes novel experiments possible relevant to the fields of, for example, planetary science, astrobiology, and combustion chemistry. We demonstrate that this apparatus is well suited to study the dehydration of a variety of particles including minerals and biological samples; and offers the possibility of investigating combustion processes involving micrometer-sized particles such as graphite. Furthermore, we show that the FTIR spectrometer enables the study of chemical reactions on the surfaces of porous samples and scientifically and technologically relevant, micrometer-thick levitated sheets. The FTIR spectrometer can also be used to investigate non-resonant and resonant scattering from small, irregularly-shaped particles across the mid-infrared range from 2.5 μm to 25 μm, which is relevant to scattering from interplanetary dust and biological, micrometer-sized samples but cannot be accurately modelled using Mie theory.

  7. Thermophysical Property Measurement and Materials Research in the NASA/MSFC Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rogers, Jan (Technical Monitor); Hyers, Robert (Technical Monitor); Rathz, Tom (Technical Monitor); Savage, Larry (Technical Monitor); Robinson, Michael (Technical Monitor)

    2000-01-01

    Containerless processing is an important tool for thermophysical property measurements and materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the decoupling of positioning force from sample heating, the ability to operate in ultra-high vacuum or at moderate gas pressure (approximately 3 atm), and the ability to process non-conducting materials. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. The ESL facility at NASA's Marshall Space Flight Center (MSFC) is in use for thermophysical property measurements and materials research by a number of different internal and external investigators. The methods for obtaining access to the facility, as well as a summary of current capabilities and some future directions will be discussed. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. This positioning method is applicable to any material which can be electrically charged, whether solid or liquid, conducting, or insulating. Because the position of the sample is unstable, a 3-dimensional active control loop rapidly adjusts the applied field to maintain levitation and minimize motion of the sample. Heating lasers melt the sample, and may be adjusted to maintain specified thermal profiles. Microgravity allows electrostatic levitation to work even more effectively. With the need to cancel less than 1 milli-g, the applied field required is reduced from approximately 10 MV/m to approximately 10 kV/m. Alternatively, a microgravity ESL can position larger samples than is possible on the ground, or it can

  8. Understanding 1D Electrostatic Dust Levitation

    NASA Astrophysics Data System (ADS)

    Hartzell, C. M.; Scheeres, D. J.

    2011-12-01

    Electrostatically-dominated dust motion has been hypothesized since the Lunar Horizon Glow was observed by the Surveyor spacecraft. The hypothesized occurence of this phenomenon was naturally extended to asteroids due to their small gravities. Additionally, it has been suggested that the dust ponds observed on Eros by the NEAR mission may be created by electrostatically-dominated dust transport. Previous attempts to numerically model dust motion on the Moon and Eros have been stymied by poorly understood dust launching mechanisms. As a result, the initial velocity and charge of dust particles used in numerical simulations may or may not have any relevance to the actual conditions occurring in situ. It has been seen that properly tuned initial states (velocity and charge) result in dust particles levitating above the surface in both 1D and 2D simulations. Levitation is of interest to planetary scientists since it provides a way to quickly redistribute the surface dust particles over a body. However, there is currently no method to predict whether or not a certain initial state will result in levitation. We have developed a method to provide constraints on the initial states that result in levitation as a function of dust particle size and central body gravity. Additionally, our method can be applied to several models of the plasma sheath. Thus, we limit the guesswork involved in determining which initial conditions result in levitation. We provide a more detailed understanding of levitation phenomena couched in terms of the commonly recognized spring-mass system. This method of understanding dust motion removes the dependency on the launching mechanism, which remains fraught with controversy. Once a feasible dust launching mechanism is identified (be it micrometeoroid bombardment or electrostatic lofting), our method will allow the community to quickly ascertain if dust levitation will occur in situ or if it is simply a numerical artifact. In addition to

  9. A stator for a self-running, ultrasonically-levitated sliding stage.

    PubMed

    Koyama, Daisuke; Nakamura, Kentaro; Ueha, Sadayuki

    2007-11-01

    Here we propose a self-running, ultrasonically-levitated sliding stage and investigate the levitation and propulsion characteristics of its stator. The stator consists of two aluminum beams and four PZT plates, which have two-paired bimorph configurations. A flexural standing wave was generated along the beam by applying an input voltage to the PZTs, and the stator could be levitated from a flat substrate by the acoustic radiation force generated by its own vibrating beam. The size of the stator was optimized using finite-element analysis (FEA) to maximize the vibration displacement amplitude of the beam. The flexural vibration modes at 24.3 and 102 kHz were the most prominent vibration modes having large displacement amplitudes. The stator was levitated at 23.2 and 96.1 kHz, which are close to the frequencies predicted by the FEA results. A standing wave was observed along the beam. The experimental and the simulated results showed good agreement. The levitation distance h was measured by varying the vibration displacement amplitude of the beam u, and was found to be proportional to u. When a traveling wave was excited along the beam by controlling the temporal phase difference of the two transducers, the stator could be made to hover and to move in the opposite direction to the traveling wave. The stator moved in the positive direction when the phase difference was in the ranges 0 degrees to 200 degrees and 310 degrees to 360 degrees, and in the negative direction when the phase difference was between 220 degrees and 260 degrees. PMID:18051168

  10. How to Simply Demonstrate Diamagnetic Levitation with Pencil Lead

    ERIC Educational Resources Information Center

    Koudelkova, Vera

    2016-01-01

    A new simple arrangement how to demonstrate diamagnetic levitation is presented. It uses pencil lead levitating in a track built from neodymium magnets. This arrangement can also be used as a classroom experiment.

  11. How to simply demonstrate diamagnetic levitation with pencil lead

    NASA Astrophysics Data System (ADS)

    Koudelkova, Vera

    2016-01-01

    A new simple arrangement how to demonstrate diamagnetic levitation is presented. It uses pencil lead levitating in a track built from neodymium magnets. This arrangement can also be used as a classroom experiment.

  12. Characteristics of an electromagnetic levitation system using a bulk superconductor

    SciTech Connect

    Senba, A.; Kitahara, H.; Ohsaki, H.; Masada, E.

    1996-09-01

    It is beneficial to apply a high-Tc bulk superconductor as a large flux source to an electromagnetic levitation system, which needs large amounts of levitation force. The authors made an attractive-type electromagnetic levitation system using a hybrid magnet that mainly consisted of bulk superconductor and control coils to confirm the principle of the levitation, and obtained characteristics of its system by both experiment and numerical analysis with magnetic circuit calculation. This is applicable to maglev transportation systems.

  13. Laser Induced Rotation of a Levitated Sample in Vacuum

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Paradis, P. F.

    1999-01-01

    A method of systematically controlling the rotational state of a sample levitated in a high vacuum using the photon pressure is described. A zirconium sphere was levitated in the high-temperature electrostatic levitator and it was rotated by irradiating it with a narrow beam of a high power laser on a spot off the center of mass.

  14. Controlled levitation of a large magnet above superconductors

    SciTech Connect

    Takamori, T.; Boland, J.J.; Dove, D.B. )

    1990-07-01

    The levitation of a permanent magnet over a type-II superconductor may be modified and controlled by the addition of a variable magnetic field to the magnet-superconductor system. Using this scheme, levitation of a magnet of significantly larger mass was established by the direct interaction of the additonal field with the levitating magnet.

  15. Levitation Technology in International Space Station Research

    NASA Technical Reports Server (NTRS)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    The International Space Station (ISS) is a unique multidisciplinary orbiting laboratory for science and technology research, enabling discoveries that benefit life on Earth and exploration of the universe. ISS facilities for containerless sample processing in Materials Science experiments include levitation devices with specimen positioning control while reducing containment vessel contamination. For example, ESA's EML (ElectroMagnetic Levitator), is used for melting and solidification of conductive metals, alloys, or semiconductors in ultra-high vacuum, or in high-purity gaseous atmospheres. Sample heating and positioning are accomplished through electromagnetic fields generated by a coil system. EML applications cover investigation of solidification and microstructural formation, evaluation of thermophysical properties of highly reactive metals (whose properties can be very sensitive to contamination), and examination of undercooled liquid metals to understand metastable phase convection and influence convection on structural changes. MSL utilization includes development of novel light-weight, high-performance materials. Another facility, JAXA's ELF (Electrostatic Levitation Furnace), is used to perform high temperature melting while avoiding chemical reactions with crucibles by levitating a sample through Coulomb force. ELF is capable of measuring density, surface tension, and viscosity of samples at high temperatures. One of the initial ELF investigations, Interfacial Energy-1, is aimed at clarification of interfacial phenomena between molten steels and oxide melts with industrial applications in control processes for liquid mixing. In addition to these Materials Science facilities, other ISS investigations that involve levitation employ it for biological research. For example, NASA's "Magnetic 3D Culturing and Bioprinting" investigation uses magnetic levitation for three-dimensional culturing and positioning of magnetized cells to generate spheroid assemblies

  16. Self-arraying of charged levitating droplets.

    PubMed

    Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent

    2011-06-01

    Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation. PMID:21500859

  17. Magnetic levitation self-regulating systems

    SciTech Connect

    Tozoni, O.

    1993-06-08

    A magnet levitation self-regulating system is described comprising monotypic magnetic devices combined together by rigid nonmagnetic couplers; said magnetic device comprising two cylindrical parts extended along a cylinder generatrix: a. an iron core having a symmetrical C-shaped cross section and an air gap between its core shoes; and b. a permanent magnet having a rectangular cross-section disposed in said air gap; wherein all the iron cores of said magnetic devices are fixed on a common foundation by a first plurality of rigid nonmagnetic couplers and formed a stator assembly; all the permanent magnets of said magnetic devices are connected together by a second plurality of rigid non-magnetic couplers and form a levitator assembly; said permanent magnets of said levitator generate an original magnetic field and magnetize the stator cores; said stator cores create a secondary magnetic field; both said original and secondary magnetic fields create a magnetic levitation force that provides a stable hovering of said levitator in a resulting magnetic field of said system.

  18. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  19. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel. PMID:17280160

  20. Development of the sonic pump levitation

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1984-01-01

    A prototype levitating/positioning device termed the Sonic Pump Levitator was designed, built and successfully tested in full gravity and in the reduced gravity of the parabolic flight regime of the KC-135. Positioning is achieved by timely and appropriate application of gas momentum from one or more of six sonic pumps. The sonic pumps, which are arranged orthogonally in opposed pairs about the levitation region, are activated by an electro-optical, computer controlled, feedback system. The sonic pump is a transducer which is capable of converting sound energy into a directed flow of gas. It consists of a loudspeaker whose face is sealed by a closure perforated by one or more orifices. The diaphragm of the loudspeaker is the only moving part of the sonic pump, no valves being needed. This very low inertia electromechanical device was developed to provide the short response time necessary to keep pace with the demands of computerized position keeping.

  1. Overview of the Levitated Dipole Experiment

    NASA Astrophysics Data System (ADS)

    Mauel, M. E.; Garnier, D. T.; Hansen, A.; Pedersen, T. Sunn; Kesner, J.; Jones, C. M.; Karim, I.; Liptac, J.; Minervini, J.; Michael, P.; Radovinsky, A.; Schultz, J. H.; Smith, B. A.; Zhukovsky, A.

    2001-10-01

    The Levitated Dipole Experiment (LDX) [http://www.psfc.mit.edu/ldx/] will be the first experiment able to study high-beta plasma confined by a magnetic dipole with near classical energy confinement. LDX consists of three superconducting magnets and illustrates the role of innovative magnetic technology that makes possible explorations of entirely new confinement concepts. We describe the LDX machine design and detail the fabrication status of the superconducting floating-coil, charging-coil, and levitation-coil. In addition, we summarize (1) our procedure to cool, to inductively charge, and to levitate the 1.3 MA floating coil, (2) our initial diagnostic set, and (3) our experimental and physics plans that answer the key questions of high-beta stability and confinement in the dipole fusion concept.

  2. Electrostatic Levitation of Plant Seeds and Flower Buds

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Wang, Hai-Peng; Li, Liu-Hui; Wei, Bing-Bo

    2012-06-01

    We report the electrostatic levitation of various kinds of seeds and flower buds. Coral berry and pepper near a spherical shape show a stable levitation state. The prolate ellipsoid soybean and flower buds are always “standing" in the free space with satisfactory levitation stability. For the irregular mushroom and wheat grain, the levitation state is characterized as a “top-heavy" posture. These special stable equilibrium states are proved by the analysis of surface charge distribution. The obtained saturation polarization charge of samples presents a good accordance with experimental data. The levitation ability is weighed by the factor m(inr+2)/(inrD2).

  3. Dilating Eye Drops

    MedlinePlus

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Dilating Eye Drops En Español Read in Chinese What are dilating eye drops? Dilating eye drops contain medication to enlarge ( ...

  4. Levitated Duct Fan (LDF) Aircraft Auxiliary Generator

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.

    2011-01-01

    This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.

  5. Particle image velocimetry and infrared thermography in a levitated droplet with nanosilica suspensions

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-03-01

    Preferential accumulation and agglomeration kinetics of nanoparticles suspended in an acoustically levitated water droplet under radiative heating has been studied. Particle image velocimetry performed to map the internal flow field shows a single cell recirculation with increasing strength for decreasing viscosities. Infrared thermography and high speed imaging show details of the heating process for various concentrations of nanosilica droplets. Initial stage of heating is marked by fast vaporization of liquid and sharp temperature rise. Following this stage, aggregation of nanoparticles is seen resulting in various structure formations. At low concentrations, a bowl structure of the droplet is dominant, maintained at a constant temperature. At high concentrations, viscosity of the solution increases, leading to rotation about the levitator axis due to the dominance of centrifugal motion. Such complex fluid motion inside the droplet due to acoustic streaming eventually results in the formation of a ring structure. This horizontal ring eventually reorients itself due to an imbalance of acoustic forces on the ring, exposing larger area for laser absorption and subsequent sharp temperature rise.

  6. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  7. Effective method to control the levitation force and levitation height in a superconducting maglev system

    NASA Astrophysics Data System (ADS)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  8. Levitating a Magnet Using a Superconductive Material.

    ERIC Educational Resources Information Center

    Juergens, Frederick H.; And Others

    1987-01-01

    Presented are the materials and a procedure for demonstrating the levitation of a magnet above a superconducting material. The demonstration can be projected with an overhead projector for a large group of students. Kits to simplify the demonstration can be purchased from the Institute for Chemical Education of the University of Wisconsin-Madison.…

  9. Precise Fabrication of Electromagnetic-Levitation Coils

    NASA Technical Reports Server (NTRS)

    Ethridge, E.; Curreri, P.; Theiss, J.; Abbaschian, G.

    1985-01-01

    Winding copper tubing on jig ensures reproducible performance. Sequence of steps insures consistent fabrication of levitation-and-melting coils. New method enables technician to produce eight coils per day, 95 percent of them acceptable. Method employs precise step-by-step procedure on specially designed wrapping and winding jig.

  10. Magnetic Levitational Assembly for Living Material Fabrication.

    PubMed

    Tasoglu, Savas; Yu, Chu Hsiang; Liaudanskaya, Volha; Guven, Sinan; Migliaresi, Claudio; Demirci, Utkan

    2015-07-15

    Functional living materials with microscale compositional topographies are prevalent in nature. However, the creation of biomaterials composed of living micro building blocks, each programmed by composition, functionality, and shape, is still a challenge. A powerful yet simple approach to create living materials using a levitation-based magnetic method is presented. PMID:25872008

  11. Levitated crystals and quasicrystals of metamaterials

    SciTech Connect

    Wang, Zhehui; Morris, Christopher; Goree, John A

    2012-07-25

    New scientific and technological opportunities exist by marrying dusty plasma research with metamaterials. Specifically, by balancing control and self-assembly, certain laboratory plasmas can become a generic levitation platform for novel structure formation and nanomaterial synthesis. We propose to experimentally investigate two dimensional (2D) and three dimensional (3D) levitated structures of metamaterials and their properties. Such structures can self assemble in laboratory plasmas, similar to levitated dust crystals which were discovered in the mid 1990's. Laboratory plasma platform for metamaterial formation eliminates substrates upon which most metamaterials have to be supported. Three types of experiments, with similar setups, are discussed here. Levitated crystal structures of metamaterials using anisotropic microparticles are the most basic of the three. The second experiment examines whether quasicrystals of metamaterials are possible. Quasicrystals, discovered in the 1980's, possess so-called forbidden symmetries according to the conventional crystallography. The proposed experiment could answer many fundamental questions about structural, thermal and dynamical properties of quasicrystals. And finally, how to use nanoparticle coated microparticles to synthesize very long carbon nanotubes is also described. All of the experiments can fit inside a standard International Space Station locker with dimensions of 8-inch x 17-inch X 18-inch. Microgravity environment is deemed essential in particular for large 3D structures and very long carbon nanotube synthesis.

  12. The Japanese containerless experiments

    NASA Technical Reports Server (NTRS)

    Azuma, Hisao

    1990-01-01

    There are three sets of Japanese containerless experiments. The first is Drop dynamics research. It consists of acoustic levitation and large amplitude drop oscillation. The second is Optical materials processing in an acoustic levitation furnace. And the third is Electrostatic levitator development by two different Japanese companies.

  13. The origin of star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Burton, Justin C.

    We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop

  14. Relation between self-diffusion and viscosity in dense liquids: new experimental results from electrostatic levitation.

    PubMed

    Brillo, J; Pommrich, A I; Meyer, A

    2011-10-14

    By using the technique of electrostatic levitation, the Ni self-diffusion, density, and viscosity of liquid Zr(64)Ni(36) have been measured in situ with high precision and accuracy. The inverse of the viscosity, η, measured via the oscillating drop technique, and the self-diffusion coefficient D, obtained from quasielastic neutron scattering experiments, exhibit the same temperature dependence over 1.5 orders of magnitude and in a broad temperature range spanning more than 800 K. It was found that Dη=const for the entire temperature range, contradicting the Stokes-Einstein relation. PMID:22107404

  15. Dust Levitation and Transport Near Surfaces

    NASA Astrophysics Data System (ADS)

    Sickafoose, A. A.; Colwell, J. E.; Horanyi, M.; Robertson, S.

    2002-12-01

    There are many examples of active dust transport near surfaces in the solar system: dust grains suspended above the lunar surface, spokes observed in Saturn's rings, and recent images of infilled craters from the NEAR spacecraft at Eros. Electrostatic dust levitation and transport have also been theorized to occur on Mercury, asteroids, and comets. Dusty regoliths are produced by the interplanetary micrometeoroid flux on nearly all airless bodies in the solar system. Therefore, understanding dust charging, levitation, and dynamics above surfaces is important for interpreting remote sensing data and analyzing the evolution of most planetary surfaces. Objects in a plasma, such as planetary bodies in the solar wind, charge to a floating potential determined by the balance between charging currents in the local plasma environment. The primary charging currents are due to collection of electrons and ions from the plasma, photoemission, and secondary electron emission. When photoemission is the dominant charging process, a photoelectron sheath forms near the surface of the object. Positively charged particles released from the surface can levitate above the surface at a height where the gravitational force is balanced by the electric force. In cases where secondary electron emission and photoemission are weak, objects will become negatively charged due to electron collection and will be surrounded by a plasma sheath. Negatively charged dust grains from these surfaces can levitate in the electric field created by the plasma sheath. Dust levitation and transport near surfaces in the solar system is thought to be primarily due to the interaction between charged dust particles and a photoelectron or plasma sheath on the surface. We report the results of experiments on the levitation and transport of dust particles in an argon plasma sheath above a flat, conducting surface. Levitation experiments are performed using monodisperse polystyrene DVB microbeads. Transport

  16. Radiative Levitation in Hot White Dwarfs

    NASA Astrophysics Data System (ADS)

    Chayer, P.; Fontaine, G.; Wesemael, F.

    1994-12-01

    We present the results of detailed calculations of radiative levitation in hot white dwarfs using the extensive and homogeneous atomic data given in TOPBASE. Radiative accelerations and equilibrium abundances have been computed for C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, and Fe on grids of pure hydrogen and pure helium stellar envelope models. The DA model grid has log g = 7.0, 7.5, 8.0, and 8.5, and spans the range of effective temperature 100,000 >= Teff >= 20,000 K in steps of 2,500 K. The DO/DB grid is similar but extends to Teff = 130,000 K. We discuss at some length the input physics used in order to provide a good physical understanding of radiative levitation under white dwarf conditions. We also discuss the depth dependence and the morphology of the reservoirs of levitating elements created by an equilibrium between the radiative acceleration and the local effective gravity in various stellar envelopes. The important role played in the morphology of the reservoirs by dominant ionization states in closed-shell electronic configurations is emphasized. Our central results are presented in the form of figures showing the behavior of the expected photospheric abundance of each element as a function of effective temperature and surface gravity. While only a handful of abundances are available from the few analyses of observations that have been carried out, we are nevertheless able to infer through a detailed comparison that equilibrium radiative levitation theory fails to explain the observed abundance patterns of heavy elements in hot white dwarfs. At least one other mechanism must be competing with radiative levitation and gravitational settling in the atmospheres/envelopes of hot white dwarfs. Finally, we indicate promising avenues for further progress in spectral evolution theory for white dwarfs. This work has been supported by NASA contract NAS5-30180.

  17. The Inductrack Approach to Magnetic Levitation

    SciTech Connect

    Post, R.F.; Ryutov, D.D.

    2000-04-19

    Concepts developed during research on passive magnetic bearing systems at the Lawrence Livermore National Laboratory gave rise to a new approach to magnetic levitation, the Inductrack. A passive induced-current system employing permanent magnets on the moving vehicle, the Inductrack maximizes levitation forces by a combination of two elements. First, the permanent magnets on the vehicle are arranged in a ''Halbach array,'' a magnet configuration that optimally produces a periodic magnetic field below the array, while canceling the field above the array. Second, the track is made up of close-packed shorted electrical circuits. These circuits couple optimally to the magnetic field of the Halbach array. As a result, levitating forces of order 40 metric tonnes per square meter of Halbach array can be generated, using NdFeB magnets whose weight is a few percent of the levitated weight. Being an induced-current system, the levitation requires motion of the vehicle above a low transition speed. For maglev applications this speed is a few kilometers per hour, walking speed. At rest or in the station auxiliary wheels are needed. The Inductrack is thus fail-safe, that is, drive system failure would only result in the vehicle slowing down and finally settling on its auxiliary wheels. On the basis of theoretical analyses a small model vehicle and a 20-meter-long track was built and tested at speeds of order 12 meters per second. A second model, designed to achieve 10-g acceleration levels and much higher speeds, is under construction under NASA sponsorship, en route to the design of maglev-based launchers for rockets. Some of the presently perceived practical problems of implementing full-scale maglev systems based on the Inductrack concept will be discussed.

  18. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  19. Thermal levitation of 10 um size particles in low vacuum

    NASA Astrophysics Data System (ADS)

    Fung, Long Fung Frankie; Kowalski, Nicholas; Parker, Colin; Chin, Cheng

    2016-05-01

    We report on experimental methods for trapping 10 micron-sized ice, glass, ceramic and polyethylene particles with thermophoresis in medium vacuum, at pressures between 5 Torr and 25 Torr. Under appropriate conditions particles can launch and levitate robustly for up to an hour. We describe the experimental setup used to produce the temperature gradient necessary for the levitation, as well as our procedure for generating and introducing ice into the experimental setup. In addition to analyzing the conditions necessary for levitation, and the dependence of levitation on the experimental parameters, we report on the behavior of particles during levitation and ejection, including position and stability, under different pressures and temperatures. We also note a significant discrepancy between theory and data, suggesting the presence of other levitating forces.

  20. An Overview of the Materials Science Research at the Marshall Space Flight Center Electrostatic Levitator Facility and Recent CDDF Efforts

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Containerless processing is an important tool for materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the ability to process non-conducting materials, the ability to operate in ultra-high vacuum or at moderate gas pressure (approx. = 5 atm), and the decoupling of positioning force from sample heating. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. Microgravity allows electrostatic levitation to work even more effectively. The ESL facility at NASA s Marshall Space Flight Center is in use for materials research and thermophysical property measurement by a number of different internal and external investigators. Results from the recent CDDF studies on the high energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory will be presented. The Microgravity Research Program supports the facility.

  1. Optical levitation of a microdroplet containing a single quantum dot.

    PubMed

    Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki

    2015-03-15

    We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter. PMID:25768143

  2. Electromagnetic levitation coil fabrication technique for MSFC containerless processing facilities

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Theiss, J.; Curreri, P. A.; Abbaschian, G. J.

    1983-01-01

    A technique is described for more reproducible fabrication of electromagnetic levitation coils. A split mandrel was developed upon which the coil is wound. After fabrication the mandrel can be disassembled to remove it from the coil. Previously, a full day was required to fabricate a levitation coil and the success rate for a functional coil was only 50 percent. About eight coils may be completed in one day using the technique developed and 95 percent of them are good levitation coils.

  3. Levitation of a magnet by an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Gough, W.; Hunt, M. O.; Summerskill, W. S. H.

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism.

  4. Levitation properties of maglev systems using soft ferromagnets

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Zhou, You-He

    2015-03-01

    Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.

  5. The Inductrack concept: A new approach to magnetic levitation

    SciTech Connect

    Post, R.F.; Ryutov, D.

    1996-05-01

    This report describes theoretical and experimental investigations of a new approach to the problem of the magnetic levitation of a moving object. By contrast with previously studied levitation approaches, the Inductrack concept concept represents a simpler, potentially less expensive, and totally passive means of levitating a high-speed train. It may also be applicable to other areas where simpler magnetic levitation systems are needed, for example, high-speed test sleds for crash testing applications, or low-friction conveyer systems for industrial use.

  6. Ultrasonic levitation for the examination of gas/solid reactions

    NASA Astrophysics Data System (ADS)

    Kavouras, A.; Krammer, G.

    2003-10-01

    An experimental setup based on acoustic levitation for the examination of gas/solid reactions is presented. In this setup single particles in the diameter range 1 mm-30 μm can be held against gravity for any wanted time in a defined gas atmosphere at elevated temperatures. The change of particle size, shape, and position can be measured and recorded using an optical device, consisting of a camera and a long range microscope. Basic experiments with inert particles of different shape and solid density have shown that the axial position of a reacting particle can be employed to derive its weight change. A method to evaluate this change of the recorded position for the according weight change is proposed. Exemplary results in the context of dry flue gas cleaning using Ca(OH)2 powder are presented. Single Ca(OH)2 particles are exposed to a well defined gas atmosphere and after some time these particles are retrieved from the ultrasonic field for further analyses. Only an in situ measurement of the particle weight change (i.e., without removing the particle from the well defined reactive atmosphere) brings information regarding the uptake of water by the sorbent, which accompanies SO2 and HCl absorption.

  7. Attracting Water Drops

    NASA Video Gallery

    Astronauts Cady Coleman and Ron Garan perform the Attracting Water Drops experiment from Chabad Hebrew Academy in San Diego, Calif. This research determines if a free-floating water drop can be att...

  8. Dilating Eye Drops

    MedlinePlus

    ... Conditions Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ... Loading... Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ...

  9. Ternary drop collisions

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Hannes; Planchette, Carole; Brenn, Günter

    2015-10-01

    It has been recently proposed to use drop collisions for producing advanced particles or well-defined capsules, or to perform chemical reactions where the merged drops constitute a micro-reactor. For all these promising applications, it is essential to determine whether the merged drops remain stable after the collision, forming a single entity, or if they break up. This topic, widely investigated for binary drop collisions of miscible and immiscible liquid, is quite unexplored for ternary drop collisions. The current study aims to close this gap by experimentally investigating collisions between three equal-sized drops of the same liquid arranged centri-symmetrically. Three drop generators are simultaneously operated to obtain controlled ternary drop collisions. The collision outcomes are observed via photographs and compared to those of binary collisions. Similar to binary collisions, a regime map is built, showing coalescence and bouncing as well as reflexive and stretching separation. Significant differences are observed in the transitions between these regimes.

  10. Cavity cooling a single charged levitated nanosphere.

    PubMed

    Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F

    2015-03-27

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres. PMID:25860743

  11. Aerodynamics of magnetic levitation (MAGLEV) trains

    NASA Technical Reports Server (NTRS)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  12. Levitation forces in bearingless permanent magnet motors

    SciTech Connect

    Amrhein, W.; Silber, S.; Nenninger, K.

    1999-09-01

    Bearingless motors combine brushless AC-motors with active magnetic bearings by the integration of two separate winding systems (torque and radial levitation force windings with different pole pairs) in one housing. This paper gives an insight into the influences of the motor design on the levitation force and torque generation. It is shown that especially for machines with small air gaps it can be very important to choose the right design parameters. Increasing the permanent magnet height in order to increase the motor torque can result in a remarkable reduction of radial forces. The interrelationships are discussed on the basis of Maxwell and Lorentz forces acting upon the stator surface. The investigations are presented for a bearingless low cost motor, suited for pump, fan or blower applications. The presented motor needs only four coils for operation.

  13. Magnetic Levitation Experiments with the Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian

    Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  14. Aerodynamic levitation : an approach to microgravity.

    SciTech Connect

    Glorieux, B.; Saboungi, M.-L.; Millot, F.; Enderby, J.; Rifflet, J.-C.

    2000-12-05

    Measurements of the thermophysical and structural properties of liquid materials at high temperature have undergone considerable development in the past few years. Following improvements in electromagnetic levitation, aerodynamic levitation associated with laser heating has shown promise for assessing properties of different molten materials (metals, oxides, and semiconductors), preserving sample purity over a wide range of temperatures and under different gas environments. The density, surface tension and viscosity are measured with a high-speed video camera and an image analysis system. Results on nickel and alumina show that small droplets can be considered in the first approximation to be under microgravity conditions. Using a non-invasive contactless technique recently developed to measure electrical conductivity, results have been extended to variety of materials ranging from liquid metals and liquid semiconductors to ionically conducting materials. The advantage of this technique is the feasibility of monitoring changes in transport occurring during phase transitions and in deeply undercooled states.

  15. Magnetic levitation system for moving objects

    DOEpatents

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  16. Magnetic levitation system for moving objects

    DOEpatents

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  17. Nucleation of Quantized Vortices from Rotating Superfluid Drops

    NASA Technical Reports Server (NTRS)

    Donnelly, Russell J.

    2001-01-01

    The long-term goal of this project is to study the nucleation of quantized vortices in helium II by investigating the behavior of rotating droplets of helium II in a reduced gravity environment. The objective of this ground-based research grant was to develop new experimental techniques to aid in accomplishing that goal. The development of an electrostatic levitator for superfluid helium, described below, and the successful suspension of charged superfluid drops in modest electric fields was the primary focus of this work. Other key technologies of general low temperature use were developed and are also discussed.

  18. Sputter coating of microspherical substrates by levitation

    DOEpatents

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  19. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  20. Experimenting with a Superconducting Levitation Train

    ERIC Educational Resources Information Center

    Miryala, Santosh; Koblischka, M. R.

    2014-01-01

    The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…

  1. Spin stabilized magnetic levitation of horizontal rotors.

    SciTech Connect

    Romero, Louis Anthony

    2004-10-01

    In this paper we present an analysis of a new configuration for achieving spin stabilized magnetic levitation. In the classical configuration, the rotor spins about a vertical axis; and the spin stabilizes the lateral instability of the top in the magnetic field. In this new configuration the rotor spins about a horizontal axis; and the spin stabilizes the axial instability of the top in the magnetic field.

  2. Knolle Magnetrans: A magnetically levitated train system

    NASA Technical Reports Server (NTRS)

    Knolle, Ernst G.

    1992-01-01

    The Knolle Magnetrans is a continuous transportation system featuring small cars traveling in rapid succession, levitated by permanent magnets in repulsion, and propelled by stationary linear induction motors. The vehicles' headway, speed, acceleration, and deceleration are designed into the system and mechanically enforced. Passengers board dynamically and controls consist of a simple on-off relay. This paper summarizes the system design goals, describes the system components and discusses related environmental issues.

  3. Sputter coating of microspherical substrates by levitation

    DOEpatents

    Lowe, Arthur T.; Hosford, Charles D.

    1981-01-01

    Microspheres are substantially uniformly coated with metals or nonmetals by simultaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure 12 comprising a parallel array of upwardly projecting individual gas outlets 16 is machined out to form a dimple 11. Glass microballoons, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  4. Levitational Image Cytometry with Temporal Resolution.

    PubMed

    Tasoglu, Savas; Khoory, Joseph A; Tekin, Huseyin C; Thomas, Clemence; Karnoub, Antoine E; Ghiran, Ionita C; Demirci, Utkan

    2015-07-01

    A simple, yet powerful magnetic-levitation-based device is reported for real-time, label-free separation, as well as high-resolution monitoring of cell populations based on their unique magnetic and density signatures. This method allows a wide variety of cellular processes to be studied, accompanied by transient or permanent changes in cells' fundamental characteristics as a biological material. PMID:26058598

  5. Dynamic analysis of ultrasonically levitated droplet with moving particle semi-implicit and distributed point source method

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro

    2015-07-01

    Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.

  6. Experiments for electromagnetic levitation in microgravity

    NASA Technical Reports Server (NTRS)

    Willnecker, R.; Egry, I.

    1990-01-01

    Containerless processing is a promising research tool for investigating the properties of undercooled melts and their solidification. For conducting samples RF-electromagnetic levitation offers the possibility to obtain large undercoolings by avoiding heterogeneous nucleation at container walls. On earth, however, strong magnetic fields are needed to compensate the gravitational force which imposes a lower limit on the available temperatures and on the accessible undercooling range. Under microgravity conditions the magnetic positioning fields can be minimized and hence, undercooling becomes feasible under ultra-high vacuum conditions and lower temperatures become accessible. In contrast to other undercooling and solidification techniques, electromagnetic levitation allows for diagnostic measurements during the early steps of nucleation and phase selection. Experiments cover a wide field of research topics: nucleation, directional solidification at high velocities, generation of metastable phases, evolution of microstructures, properties of undercooled liquids. Examples from these classes including experiments selected for the IML-2 mission are discussed with emphasis on technical requirements. An overview is given on the German TEMPUS (electromagnetic levitation facility) program.

  7. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids

    SciTech Connect

    Gangopadhyay, A.K.; Lee, G.W.; Kelto, K.F.; Rogers, J.R.; Goldman, A.I.; Robinson, D.S.; Rathz, T.J.; Hyers, R.W.

    2010-07-19

    Determinations of the phase formation sequence, crystal structures and the thermo-physical properties of materials at high temperatures are hampered by contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic, aerodynamic, and acoustic levitation, are most suitable for these studies. An adaptation of ESL for in situ structural studies of a wide range of materials using high energy (30-130 keV) x rays at a synchrotron source is described here. This beamline ESL (BESL) allows the in situ determination of the atomic structures of equilibrium solid and liquid phases, undercooled liquids and time-resolved studies of solid-solid and liquid-solid phase transformations. The use of area detectors enables the rapid acquisition of complete diffraction patterns over a wide range (0.5-14 {angstrom}{sup -1}) of reciprocal space. The wide temperature range (300-2500 K), containerless processing environment under high vacuum (10{sup -7}-10{sup -8} Torr), and fast data acquisition capability, make BESL particularly well suited for phase stability studies of high temperature solids and liquids. An additional, but important, feature of BESL is the capability for simultaneous measurements of a host of thermo-physical properties including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension, all on the same sample during the structural measurements.

  8. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. PMID:22352478

  9. Vapor layer evolution during drop impact on a heated surface

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyeon; Lee, Sangjun; Lee, Jisan; Fezzaa, Kamel; Je, Jung Ho

    2015-11-01

    When a liquid drop impacts on a sufficiently hot surface above the boiling point, a vapor layer is formed between the drop and the surface, preventing direct contact between them and as a result levitating the drop, known as the Leidenfrost effect. Understanding the evolution of the vapor layer is largely unexplored despite its importance in estimating heat transfer in cooling systems of thermal or nuclear power plants. The side-profile visualization of the vapor layer, as absolutely required for investigating its evolution, has been however unavailable by conventional optical microscopy. In this study, by employing ultrafast X-ray phase contrast imaging, we directly visualize the profiles of the vapor layers during liquid drop impact on a hot surface and elucidate the evolution of the vapor layers during spreading and retraction of the drop as functions of impact height and surface temperature. We reveal that the evolution is governed by the propagation of capillary waves generated in retraction and the wavelength of capillary waves λ is inversely proportional to the impact height h with a relation ~σ/ρh ~We-1 where We is weber number. Capillary waves that converge at the center of the vapor layers are linked to the bouncing behavior of the drop.

  10. Planar microfluidic drop splitting and merging.

    PubMed

    Collignon, Sean; Friend, James; Yeo, Leslie

    2015-04-21

    Open droplet microfluidic platforms offer attractive alternatives to closed microchannel devices, including lower fabrication cost and complexity, significantly smaller sample and reagent volumes, reduced surface contact and adsorption, as well as drop scalability, reconfigurability, and individual addressability. For these platforms to be effective, however, they require efficient schemes for planar drop transport and manipulation. While there are many methods that have been reported for drop transport, it is far more difficult to carry out other drop operations such as dispensing, merging and splitting. In this work, we introduce a novel alternative to merge and, more crucially, split drops using laterally-offset modulated surface acoustic waves (SAWs). The energy delivery into the drop is divided into two components: a small modulation amplitude excitation to initiate weak rotational flow within the drop followed by a short burst in energy to induce it to stretch. Upon removal of the SAW energy, capillary forces at the center of the elongated drop cause the liquid in this capillary bridge region to drain towards both ends of the drop, resulting in its collapse and therefore the splitting of the drop. This however occurs only below a critical Ohnesorge number, which is a balance between the viscous forces that retard the drainage and the sufficiently large capillary forces that cause the liquid bridge to pinch. We show the possibility of reliably splitting drops into two equal sized droplets with an average deviation in their volumes of only around 4% and no greater than 10%, which is comparable to the 7% and below splitting deviation obtained with electrowetting drop splitting techniques. In addition, we also show that it is possible to split the drop asymmetrically to controllably and reliably produce droplets of different volumes. Such potential as well as the flexibility in tuning the device to operate on drops of different sizes without requiring electrode

  11. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  12. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1997-08-05

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  13. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  14. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  15. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1996-10-08

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  16. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  17. Spin-stabilized magnetic levitation without vertical axis of rotation

    DOEpatents

    Romero, Louis; Christenson, Todd; Aaronson, Gene

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  18. Two-dimensional, high flow, precisely controlled monodisperse drop source

    NASA Astrophysics Data System (ADS)

    Dressler, John L.

    1993-03-01

    A versatile acoustically-driven fluid atomizer was designed and operated that creates precise monodisperse sprays by Rayleigh breakup or polydisperse sprays by the acoustic driving of amplitude dependent instabilities. The atomizer forms a cylindrical, conical, or flat (sheet) liquid jet by means of a photofabricated nozzle. The spray pattern and spray volume are altered by changing the nozzle. A piezoelectric driver, constructed to efficiently couple energy to the liquid, modulates the fluid velocity. When operated at low power, the drop generator can produce arrays of monodisperse drops as small as 15 microns in diameter. Operating the piezoelectric driver at high power produces perturbations with sufficient energy to break the liquid jets into drops, with a net increase in surface energy. The resulting drop sizes are influenced by the frequency and amplitude of the driving signal and nozzle size. The spatial distribution of the spray is controlled by the spacing and geometry of the holes in the nozzle plate, the amplitude of the acoustic signal, and the swirl in the fluid manifold. This device is more robust than the typical acoustic drop generator because small drops can be made from large holes, reducing the plugging problem. No air flow is used.

  19. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence

  20. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  1. Secondary lift for magnetically levitated vehicles

    DOEpatents

    Cooper, Richard K.

    1976-01-01

    A high-speed terrestrial vehicle that is magnetically levitated by means of magnets which are used to induce eddy currents in a continuous electrically conductive nonferromagnetic track to produce magnetic images that repel the inducing magnet to provide primary lift for the vehicle. The magnets are arranged so that adjacent ones have their fields in opposite directions and the magnets are spaced apart a distance that provides a secondary lift between each magnet and the adjacent magnet's image, the secondary lift being maximized by optimal spacing of the magnets.

  2. Superconducting bearings with levitation control configurations

    SciTech Connect

    Flom, Y.; Royston, J.D.

    1992-05-26

    This patent describes a superconducting rotating assembly. It comprises first and second bearing means comprising a material exhibiting superconducting properties; a rotatable member having two extremities aligned along a common axis; magnet means at each extremity; means for maintaining each the bearing means at a temperature where the superconducting properties are manifest; means for rotating the rotatable member; means for sensing the position of the rotatable member relative to each the bearing means; and means for controlling the levitation forces exerted on the rotatable member by each the bearing means.

  3. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  4. Youth Crime Drop. Report.

    ERIC Educational Resources Information Center

    Butts, Jeffrey A.

    This report examines the recent drop in violent crime in the United States, discussing how much of the decrease seen between 1995-99 is attributable to juveniles (under age 18 years) and older youth (18-24 years). Analysis of current FBI arrest data indicates that not only did America's violent crime drop continue through 1999, but falling youth…

  5. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  6. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  7. Smart-Phone Based Magnetic Levitation for Measuring Densities.

    PubMed

    Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur; Ghiran, Ionita Calin; Tasoglu, Savas

    2015-01-01

    Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform. PMID:26308615

  8. Magnetically levitated space elevator to low-earth orbit.

    SciTech Connect

    Hull, J. R.; Mulcahy, T. M.

    2001-07-02

    The properties of currently available NbTi superconductor and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of {approx} 200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The magnetic self-field from the loop increases the levitational force and for some geometries assists levitational stability. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. Mechanically suspended from the basic loop is an elevator structure, upon which mass can be moved between the earth's surface and the top of the loop by a linear electric motor or other mechanical or electrical means. At the top of the loop, vehicles may be accelerated to orbital velocity or higher by rocket motors, electromagnetic propulsion, or hybrid methods.

  9. Smart-Phone Based Magnetic Levitation for Measuring Densities

    PubMed Central

    Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur

    2015-01-01

    Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform. PMID:26308615

  10. Acoustic Resonator Optimisation for Airborne Particle Manipulation

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Billson, Duncan R.; Hutchins, David A.; Alan, Tuncay; Neild, Adrian

    Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.

  11. Trehalose and sorbitol alter the kinetic pattern of inactivation of glutamate dehydrogenase during drying in levitated microdroplets.

    PubMed

    Lorenzen, Elke; Lee, Geoffrey

    2013-12-01

    A single-droplet acoustic levitator was used to determine the drying rate and the kinetics of inactivation of glutamate dehydrogenase in the presence of added trehalose or sorbitol. The solution was also spray dried under the same process condition of drying gas temperature on a bench-top machine. Both trehalose and sorbitol delay the point of onset of enzyme inactivation which lies after the critical point of drying. Both carbohydrates also reduce the apparent rate constant of inactivation calculated during the subsequent inactivation phase. The carbohydrates stabilise, therefore, the enzyme during droplet drying and particle formation mainly during the falling rate drying period. There is no difference between the stabilising effects of the two carbohydrates when examined as levitated single droplets. This suggests the importance of water replacement as a stabilising mechanism in the levitated droplets/particles. On spray drying, the trehalose stabilises the enzyme better than does the sorbitol at a drying gas (outlet) temperature of 60°C. This suggests glass formation with the trehalose but not the sorbitol during the very rapid drying process of small-atomised droplets in the spray dryer. PMID:24122651

  12. Rotational dynamics of levitated graphite flakes

    NASA Astrophysics Data System (ADS)

    Nagornykh, Pavel; Coppock, Joyce; Kane, Bruce

    Trapping of charged graphene multilayer flakes in a quadrupole ion trap provides a unique method of characterization of 2D materials via complete separation of the flake and the environment. As the ability to cool the center-of-mass temperature of the flakes levitated in high vacuum was shown in the previous work, in this talk we concentrate on probing the internal dynamics of the spinning flake. A 671 nm circularly polarized laser was used to provide a spinning torque to the levitated micron-sized flakes, while a linear 532 nm laser, oriented orthogonal to the first one, acted as a light source. We have studied the effects of 671 nm laser power on measured frequency spectra at pressures of 10-7 -10-9 Torr, where spinning frequencies of greater than 6 MHz have been achieved. Frequency decay data was collected by turning the laser on and off, which allowed us to estimate damping ratios from the flake deceleration. The spectra measured during the spinning acceleration showed multiple harmonics and other non-commensurate frequencies. We compare the observed frequencies to the behavior expected from a rigid body and from a membrane under the centrifugal tension.

  13. Linear synchronous motor having enhanced levitational forces

    SciTech Connect

    Tozoni, O.

    1993-07-06

    A linear synchronous motor for a high speed vehicle is described comprising: (a) a linear stator assembly divided into sections and having an air gap, the stator assembly generating a magnetic field traveling wave in the air gap from an alternating current source, the traveling wave having variable speeds and accelerations along different sections of the stator assembly; (b) a rotor assembly having at least one propulsion magnet forming at least one pole-pitch of a selected length that is selectively variable while the vehicle is in motion, the magnet including an upper portion, a lower portion spaced apart from the upper portion, and a nonmagnetic coupler rigidly coupling the upper portion to the lower portion, the rotor assembly coupled to the vehicle and disposed in the air gap of the stator and movable laterally with respect to the stator, the rotor assembly generating a magnetic flux that produces an attractive force between a magnetic field of the rotor assembly and the traveling wave of the stator assembly, the magnetic field of the rotor assembly propelling the vehicle and generating a levitation force levitating the vehicle; and (c) a synchronizing unit operatively associated with the rotor assembly to vary the length of the pole-pitch such that the pole-pitch length is substantially equal to one-half the length of the traveling wave at any given position along the linear stator assembly.

  14. Microstructures of niobium-germanium alloys processed in inert gas in the 100 meter drop tube

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.; Robinson, M. B.; Hofmeister, W. H.; Evans, N. D.

    1986-01-01

    The 100 meter drop tube at NASA's Marshall Space Flight Center has been used for a series of experiments with niobium-germanium alloys. These experiments were conducted with electromagnetic levitation melting in a 200 torr helium environment. Liquid alloys experienced large degrees of undercooling prior to solidification in the drop tube. Several interesting metastable structures were observed. However, the recalescence event prevented extended solid solubility of germanium in the A-15 beta phase. Liquids of eutectic composition were found to undercool in the presence of solid alpha and solid Nb5Ge3.

  15. Acoustic processing method for MS/MS experiments

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.

    1973-01-01

    Acoustical methods in which intense sound beams can be used to control the position of objects are considered. The position control arises from the radiation force experienced when a body is placed in a sound field. A description of the special properties of intense sound fields useful for position control is followed by a discussion of the more obvious methods of position, namely the use of multiple sound beams. A new type of acoustic position control device is reported that has advantages of simplicity and reliability and utilizes only a single sound beam. Finally a description is given of an experimental single beam levitator, and the results obtained in a number of key levitation experiments.

  16. Numerical derivation of forces on particles and agglomerates in a resonant acoustic field

    NASA Astrophysics Data System (ADS)

    Knoop, Claas; Fritsching, Udo

    2013-10-01

    Particles and agglomerates are investigated in gaseous acoustic flow fields. Acoustic fields exert forces on solid objects, which can influence the shape of the exposed bodies, even to the point of breakage of the structures. Motivated by experimentally observed breakage of agglomerates in an acoustic levitator (f = 20 kHz), a numerical study is presented that derives the acoustic forces on a complex model agglomerate from the pressure and velocity fields of a resonant standing ultrasound wave, calculated by computational fluid dynamics (CFD). It is distinguished between the drag and lift/lateral forces on the overall agglomerate and on the different primary particles of the model.

  17. Tunable Stable Levitation Based on Casimir Interaction between Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Zhang, Zhuomin M.

    2016-03-01

    Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.

  18. Electron spin control of optically levitated nanodiamonds in vacuum

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-05-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect.

  19. Rotating Molten Metallic Drops and Related Phenomena: A New Approach to the Surface Tension Measurement

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Ishikawa, Takehiko

    2000-01-01

    Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.

  20. Drop Tower Physics

    NASA Astrophysics Data System (ADS)

    Dittrich, William A. Toby

    2014-10-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in The Physics Teacher1 in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at the drop tower in Bremen, Germany. Using these drop towers, one can briefly investigate various physical systems operating in this near zero-g environment. The resulting "Drop Tower Physics" is a new and exciting way to challenge students with a physical example that requires solid knowledge of many basic physics principles, and it forces them to practice the scientific method. The question is, "How would a simple toy, like a pendulum, behave when it is suddenly exposed to a zero-g environment?" The student must then postulate a particular behavior, test the hypothesis against physical principles, and if the hypothesis conforms to these chosen physical laws, the student can formulate a final conclusion. At that point having access to a drop tower is very convenient, in that the student can then experimentally test his or her conclusion. The purpose of this discussion is to explain the response of these physical systems ("toys") when the transition is made to a zero-g environment and to provide video demonstrations of this behavior to support in-class discussions of Drop Tower Physics.

  1. Effect of acoustic streaming on the mass transfer from a sublimating sphere

    NASA Astrophysics Data System (ADS)

    Kawahara, N.; Yarin, A. L.; Brenn, G.; Kastner, O.; Durst, F.

    2000-04-01

    The effect of the acoustic streaming on the mass transfer from the surface of a sphere positioned in an ultrasonic acoustic levitator is studied both experimentally and theoretically. Acoustic levitation using standing ultrasonic waves is an experimental tool for studying the heat and mass transfer from small solid or liquid samples, because it allows an almost steady positioning of a sample at a fixed location in space. However, the levitator introduces some difficulties. One of the main problems with acoustic levitation is that an acoustic streaming is induced near the sample surface, which affects the heat and mass transfer rates, as characterized by increased Nusselt and Sherwood numbers. The transfer rates are not uniform along the sample surface, and the aim of the present study is to quantify the spatial Sherwood number distribution over the surface of a sphere. The experiments are based on the measurement of the surface shape of a sphere layered with a solid substance as a function of time using a charge-coupled device (CCD) camera with backlighting. The sphere used in this research is a glass sphere layered with a volatile solid substance (naphthalene or camphor). The local mass transfer from the surface both with and without an ultrasonic acoustic field is investigated in order to evaluate the effect of the acoustic streaming. The experimental results are compared with predictions following from the theory outlined [A. L. Yarin, M. Pfaffenlehner, and C. Tropea, J. Fluid Mech. 356, 65 (1998); A. L. Yarin, G. Brenn, O. Kastner, D. Rensink, and C. Tropea, ibid. 399, 151 (1999)] which describes the acoustic field and the resulting acoustic streaming, and the mass transfer at the surface of particles and droplets located in an acoustic levitator. The results are also compared with the experimental data and with the theoretical predictions of Burdukov and Nakoryakov [J. Appl. Mech. Tech. Phys. 6, 51 (1965)], which are valid only in the case of spherical

  2. Drop impact of suspensions

    NASA Astrophysics Data System (ADS)

    Thoraval, M.-J.; Boyer, F.; Sandoval Nava, E.; Dijksman, J. F.; Lohse, D.; Snoeijer, J. H.

    2014-11-01

    Drop impact studies have a wide range of applications, many of which involve complex fluids. We study here the liquid drop impact of a silver nano-particles dispersion on a solid glass surface. This dispersion is used for inkjet printing of functional electronic materials. When the impact velocity increases, the drop classically splashes into smaller droplets. However, it surprisingly stops splashing above a critical impact velocity. We combine high-speed imaging experiments with different characterizations of the dispersion to understand this transition to non-splashing.

  3. In Situ Raman Spectroscopic Study of Gypsum (CaSO4·2H2O) and Epsomite (MgSO4·7H2O) Dehydration Utilizing an Ultrasonic Levitator.

    PubMed

    Brotton, Stephen J; Kaiser, Ralf I

    2013-02-21

    We present an original apparatus combining an acoustic levitator and a pressure-compatible process chamber. To characterize in situ the chemical and physical modifications of a levitated, single particle while heated to well-defined temperatures using a carbon dioxide laser, the chamber is interfaced to a Raman spectroscopic probe. As a proof-of-concept study, by gradually increasing the heating temperature, we observed the variations in the Raman spectra as 150 μg of crystals of gypsum and epsomite were dehydrated in anhydrous nitrogen gas. We display spectra showing the decreasing intensities of the ν1 symmetric and ν3 asymmetric stretching modes of water with time and the simultaneous shift of the ν1(SO4(2-)) symmetric stretch mode to higher wavenumbers. Our results demonstrate that the new apparatus is well suited to study the dehydration of levitated species such as minerals and offers potential advantages compared with previous experiments on bulk samples. PMID:26281883

  4. Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Guner, S. B.; Celik, S.

    2016-02-01

    We present a detailed investigation of the effects of Bi2Sr2Ca1Cu2O8+κ (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB2. Moreover, we present MgB2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J c was calculated from the M-H loops for Bi-2212 added MgB2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature ( T c ) has slightly dropped from 37.8 K for the pure MgB2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased.

  5. Dimensionless Analysis and Numerical Modeling of Rebalancing Phenomena During Levitation

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Li, Donghui; McLean, Alexander; Chattopadhyay, Kinnor

    2016-06-01

    Electromagnetic levitation (EML) has proved to be a powerful tool for research activities in areas pertaining to materials physics and engineering. The customized EML setups in various fields, ranging from solidification to nanomaterial manufacturing, require the designing of stable levitation systems. Since the elevated droplet is opaque, the most effective way to research on EML is mathematical modeling. In the present study, a 3D model was built to investigate the rebalancing phenomenon causing instabilities during droplet melting. A mathematical model modified based on Hooke's law (spring) was proposed to describe the levitation system. This was combined with dimensionless analysis to investigate the generation of levitation forces as it will significantly affect the behavior of the spring model.

  6. Electron spin control of optically levitated nanodiamonds in vacuum.

    PubMed

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  7. Coarse-fine residual gravity cancellation system with magnetic levitation

    NASA Technical Reports Server (NTRS)

    Salcudean, S. E.; Davis, H.; Chen, C. T.; Goertz, D. E.; Tryggvason, B. V.

    1992-01-01

    Aircraft flight along parabolic trajectories have been proposed and executed in order to achieve low cost, near free fall conditions of moderate duration. This paper describes a six degree of freedom experiment isolation system designed to cancel out residual accelerations due to mechanical vibrations and errors in aircraft trajectory. The isolation system consists of a fine motion magnetic levitator whose stator is transported by a conventional coarse motion stage. The levitator uses wide gap voice coil actuators and has the dual purpose of isolating the experiment platform from aircraft vibrations and actively cancelling residual accelerations through feedback control. The course motion stage tracks the levitated platform in order to keep the levitator's coils centered within their matching magnetic gaps. Aspects of system design, an analysis of the proposed control strategy and simulation results are presented. Feasibility experiments are also discussed.

  8. Burning and graphitization of optically levitated nanodiamonds in vacuum

    NASA Astrophysics Data System (ADS)

    Rahman, A. T. M. A.; Frangeskou, A. C.; Kim, M. S.; Bose, S.; Morley, G. W.; Barker, P. F.

    2016-02-01

    A nitrogen-vacancy (NV-) centre in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic centre-of-mass superpositions and for testing quantum gravity. Here, we study the behaviour of optically levitated nanodiamonds containing NV- centres at sub-atmospheric pressures and show that while they burn in air, this can be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below ≈10 mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its internal temperature (Ti) and find that it would be detrimental to the NV- centre’s spin coherence time. These values of Ti make it clear that the diamond is not melting, contradicting a recent suggestion. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size.

  9. Burning and graphitization of optically levitated nanodiamonds in vacuum

    PubMed Central

    Rahman, A. T. M. A.; Frangeskou, A. C.; Kim, M. S.; Bose, S.; Morley, G. W.; Barker, P. F.

    2016-01-01

    A nitrogen-vacancy (NV−) centre in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic centre-of-mass superpositions and for testing quantum gravity. Here, we study the behaviour of optically levitated nanodiamonds containing NV− centres at sub-atmospheric pressures and show that while they burn in air, this can be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below ≈10 mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its internal temperature (Ti) and find that it would be detrimental to the NV− centre’s spin coherence time. These values of Ti make it clear that the diamond is not melting, contradicting a recent suggestion. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size. PMID:26898172

  10. Aerodynamic levitator for large-sized glassy material production.

    PubMed

    Yoda, Shinichi; Cho, Won-Seung; Imai, Ryoji

    2015-09-01

    Containerless aerodynamic levitation processing is a unique technology for the fabrication of bulk non-crystalline materials. Using conventional aerodynamic levitation, a high reflective index (RI) material (BaTi2O5 and LaO3/2-TiO2-ZrO2 system) was developed with a RI greater than approximately 2.2, which is similar to that of diamond. However, the glass size was small, approximately 3 mm in diameter. Therefore, it is essential to produce large sized materials for future optical materials applications, such as camera lenses. In this study, a new aerodynamic levitator was designed to produce non-crystalline materials with diameters larger than 6 mm. The concept of this new levitator was to set up a reduced pressure at the top of the molten samples without generating turbulent flow. A numerical simulation was also performed to verify the concept. PMID:26429456

  11. Electron spin control of optically levitated nanodiamonds in vacuum

    PubMed Central

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin–optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  12. Burning and graphitization of optically levitated nanodiamonds in vacuum.

    PubMed

    Rahman, A T M A; Frangeskou, A C; Kim, M S; Bose, S; Morley, G W; Barker, P F

    2016-01-01

    A nitrogen-vacancy (NV(-)) centre in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic centre-of-mass superpositions and for testing quantum gravity. Here, we study the behaviour of optically levitated nanodiamonds containing NV(-) centres at sub-atmospheric pressures and show that while they burn in air, this can be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below ≈10 mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its internal temperature (T(i)) and find that it would be detrimental to the NV(-) centre's spin coherence time. These values of T(i) make it clear that the diamond is not melting, contradicting a recent suggestion. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size. PMID:26898172

  13. Batch Production of YBCO Disks for Levitation Applications

    NASA Astrophysics Data System (ADS)

    Plechacek, V.; Jirsa, M.; Rames, M.; Muralidhar, M.

    Batch melt-growth processing of YBa2Cu3Oy levitation disks cold seeded by Sm-123 single crystals doped by MgO is described. The process capable of a simultaneous fabrication of up to 64 pieces has been developed and successfully tested as a necessary step towards a planned production capacity of several thousand pieces a year. Diameters of the levitation disks varied from 14 mm to 56 mm. Main attention was paid to levitation disks of 28 mm in diameter. This dimension occurs to be the best compromise from various points of view: the material homogeneity, pellet quality, production loss, processing time etc. Properties of the disks, such as levitation force, critical current density at different temperatures, trapped magnetic field, etc. are shown and discussed.

  14. The NASA MSFC Electrostatic Levitation (ESL) Laboratory: Summary of Capabilities, Recent Upgrades, and Future Work

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Vermilion, David J.; Rogers, Jan R.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. A summary of the labs capabilities, recent upgrades, and ongoing and future work will be provided. The laboratory has recently added two new capabilities to its main levitation chamber: a rapid quench system and an oxygen control system. The rapid quench system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. The oxygen control system consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity between two gas compartments separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The ESL laboratory also has an emissometer, called the High-Temperature Emissivity Measurement System (HiTEMS). This system measures the spectral emissivity of materials from 600degC to 3,000degC. The system consists of a vacuum chamber, a black body source, and a Fourier Transform Infrared Spectrometer (FTIR). The system utilizes optics to swap the signal between the sample and the black body. The system was originally designed to measure the hemispherical spectral emissivity of levitated samples, which are typically 2.5mm spheres. Levitation allows emissivity measurements of molten samples, but more work is required to develop this capability. The system is currently setup measure the near-normal spectral emissivity of stationary samples, which has been used

  15. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  16. Control and dynamics of an anti-friction levitation system

    NASA Technical Reports Server (NTRS)

    Ih, C.-H. C.; Vivian, H.; Ahmed, A.; Wang, S. J.

    1992-01-01

    A novel anti-friction levitator concept has been devised and analytically evaluated to overcome support bearing friction and thereby minimize the structural damping of the Large Spacecraft Control Laboratory (LSCL) experiment structure at JPL. A dynamic model and controller design have been developed for the new levitation system. Simulation results show excellent system performance even when the system is subjected to significant measurement noise and hardware saturation effects.

  17. Corridor guided transport system utilizing permanent magnet levitation

    SciTech Connect

    Geraghty, J.J.; Poland, A.P.; Lombardi, J.A.

    1995-07-01

    The invention relates to a corridor guided transport system including a guided goods conveyance container utilizing permanent magnet levitation. The transport system of the invention eliminates the need for the wheel and track arrangement presently required by known and utilized conventional train systems and also required by some conventional magnetic levitation transport systems and, as a result, is safer to operate and maintain than either of these known transportation systems.

  18. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.

    PubMed

    Kosaka, Ryo; Yoshida, Fumihiko; Nishida, Masahiro; Maruyama, Osamu; Kawaguchi, Yasuo; Yamane, Takashi

    2015-01-01

    The purpose of the present study is to investigate a bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump to realize a blood pump with a low hemolysis level. The impeller levitates axially by balancing a gravitational force, buoyancy, a magnetic force, and hydrodynamic forces on the top and bottom sides of the impeller. To adjust the levitation position of the impeller, the balance of acting forces on the impeller was adjusted by changing the shroud area on the bottom impeller. Three pumps having various shroud area were prepared as tested models: 817 mm(2) (HH-S), 875 mm(2) (HH-M) and 931 mm(2) (HH-L). First, for evaluating the bearing gap adjustment, the bearing gap was estimated by calculating a balancing position of the acting forces on the impeller. We actually measured the gravitational force, buoyancy and the magnetic force, and numerically analyzed hydrodynamic forces on the top and bottom sides of the impeller. Second, to verify accuracy of the estimated bearing gap, the measurement test of the bearing gap was performed. Finally, an in-vitro hemolysis test was performed to evaluate a hemolysis level of the pump. As a result, bottom bearing gaps were estimated as 40 μm (HH-S), 60 μm (HH-M) and 238 μm (HH-L). In the measurement test, bottom bearing gaps were measured as 63 μm (HH-S), 219 μm (HH-M), and 231 μm (HH-L). The estimated bearing gaps had positively correlated with the measured bearing gaps in relation to the shroud area on the impeller. In the hemolysis test, hemolysis level in every model was almost equivalent to that of BPX-80, when the bearing gap was adjusted greater than 60 μm. We could adjust the bearing gap by changing the shroud area on the impeller for improvement of levitation performance to realize a blood pump with a low hemolysis level. PMID:26736996

  19. Numerical analyses of levitation force and flux creep on high [Tc] superconductor

    SciTech Connect

    Tsuchimoto, M.; Kojima, T.; Takeuchi, H.; Honma, T. . Dept. of Electrical Engineering)

    1993-11-01

    Large levitation force and a stable equilibrium are obtained with a permanent magnet and a bulk high [Tc] superconductor (HTSC). Evaluation of the levitation force is important for many applications, such as magnetically levitated vehicles, magnetic bearing, flywheel and linear drive. Levitation force between a permanent magnet and a high [Tc] superconductor is examined by using two numerical methods. The levitation force to vertical direction is calculated by using the critical state model. Stiffness of restoring force to horizontal direction is calculated by using a frozen-in field model. Numerical solutions agree well with experimental results. Dynamic properties of the levitation force are also analyzed by combining the two methods.

  20. Photophoretic levitation of engineered aerosols for geoengineering.

    PubMed

    Keith, David W

    2010-09-21

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates. PMID:20823254

  1. Active Control of Magnetically Levitated Bearings

    SciTech Connect

    BARNEY, PATRICK S.; LAUFFER, JAMES P.; REDMOND, JAMES M.; SULLIVAN, WILLIAM N.

    2001-03-01

    This report summarizes experimental and test results from a two year LDRD project entitled Real Time Error Correction Using Electromagnetic Bearing Spindles. This project was designed to explore various control schemes for levitating magnetic bearings with the goal of obtaining high precision location of the spindle and exceptionally high rotational speeds. As part of this work, several adaptive control schemes were devised, analyzed, and implemented on an experimental magnetic bearing system. Measured results, which indicated precision positional control of the spindle was possible, agreed reasonably well with simulations. Testing also indicated that the magnetic bearing systems were capable of very high rotational speeds but were still not immune to traditional structural dynamic limitations caused by spindle flexibility effects.

  2. Capillary solitons on a levitated medium.

    PubMed

    Perrard, S; Deike, L; Duchêne, C; Pham, C-T

    2015-07-01

    A water cylinder deposited on a heated channel levitates on its own generated vapor film owing to the Leidenfrost effect. This experimental setup permits the study of the one-dimensional propagation of surface waves in a free-to-move liquid system. We report the observation of gravity-capillary waves under a dramatic reduction of gravity (up to a factor 30), leading to capillary waves at the centimeter scale. The generated nonlinear structures propagate without deformation and undergo mutual collisions and reflections at the boundaries of the domain. They are identified as Korteweg-de Vries solitons with negative amplitude and subsonic velocity. The typical width and amplitude-dependent velocities are in excellent agreement with theoretical predictions based on a generalized Korteweg-de Vries equation adapted to any substrate geometry. When multiple solitons are present, they interact and form a soliton turbulencelike spectrum. PMID:26274114

  3. Photophoretic levitation of engineered aerosols for geoengineering

    PubMed Central

    Keith, David W.

    2010-01-01

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates. PMID:20823254

  4. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  5. Dynamics and Morphology of Superfluid Helium Drops in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Seidel, George M.; Maris, Humphrey J.

    2001-01-01

    We developed an apparatus that makes it possible to observe and study magnetically levitated drops of superfluid helium. The force on a diamagnetic substance in a magnetic field is proportional to the gradient of the square of the magnetic field B. For the magnetic force on helium to be equal to the gravitational force on Earth, it is necessary for the product of B with the field gradient dB/d z to be 21.5 T(exp 2)/cm. In addition, in order for the magnetic field to provide a stable trap, the value of B(exp 2) must increase in all directions in the horizontal plane that passes through the point where the field/field gradient product in the vertical direction has the critical value of 21.5 T(exp 2)/cm. A specially designed superconducting magnet that meets these specifications has been installed in a large helium dewar with optical access. Helium drops levitated by the magnet can be viewed along the axis of the solenoid. The sample chamber within the bore of the magnet is thermally isolated from the magnet and helium reservoir. Its temperature can be varied between 4 and 0.5 K, the lower part of the range being reached using a He-3 refrigerator. Liquid helium can be injected into the magnetic trap using a small capillary. Once a drop is contained in the trap it can be held there indefinitely. With this apparatus we have conducted a number of different types of experiments on helium drops so as to gain information necessary for performing experiments in space. With magnetically levitated drops we are limited to working with drops of 1 cm. or less in diameter. The shape of the drops larger than a few mm diameter can be distorted by the profile of the magnetic field. The study of phenomena such as the initial motion of the surfaces of two drops as they just make contact, requires the use large drops to resolve the behavior of interest. We have performed a detailed investigation of the shape oscillations of superfluid drops.

  6. Experience on a cryogenic linear mechanism based on superconducting levitation

    NASA Astrophysics Data System (ADS)

    Serrano-Tellez, Javier; Romera-Juarez, Fernando; González-de-María, David; Lamensans, Mikel; Argelaguet-Vilaseca, Heribert; Pérez-Díaz, José-Luis; Sánchez-Casarrubios, Juan; Díez-Jiménez, Efrén.; Valiente-Blanco, Ignacio

    2012-09-01

    The instrumentation of many space missions requires operation in cryogenic temperatures. In all the cases, the use of mechanisms in this environment is a matter of concern, especially when long lifetime is required. With the aim of removing lifetime concerns and to benefit from the cryogenic environment, a cryogenic contactless linear mechanism has been developed. It is based on the levitation of a permanent magnet over superconductor disks. The mechanism has been designed, built, and tested to assess the performances of such technology. The levitation system solves the mechanical contact problems due to cold-welding effects, material degradation by fatigue, wearing, backlash, lubrication...etc, at cryogenic temperatures. In fact, the lower is the temperature the better the superconductor levitation systems work. The mechanism provides a wide stroke (18mm) and high resolution motion (1μm), where position is controlled by changing the magnetic field of its environment using electric-magnets. During the motion, the moving part of the mechanism levitates supported by the magnetic interaction with the high temperature type II superconductors after reaching the superconductor state down to 90K. This paper describes the results of the complete levitation system development, including extensive cryogenic testing to measure optically the motion range, resolution, run-outs and rotations in order to characterize the levitation mechanism and to verify its performance in a cryogenic environment.

  7. Eddy damping effect of additional conductors in superconducting levitation systems

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Fei; Gou, Xiao-Fan

    2015-12-01

    Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  8. Ashkenazi levites' "Y modal haplotype" (LMH)-- an artificially created phenomenon?

    PubMed

    Zoossmann-Diskin, A

    2006-01-01

    The article on the Y chromosomes of Ashkenazi Levites (Behar et al., 2003. Am. J. Hum. Genet. 73, 768-779) is the fourth in a series on the Y chromosomes of the three Jewish male castes: Cohanim (priests), Levites (priests' helpers) and Israelites (lay people). It became apparent that there is a problem with omission of samples when the second article "Origins of Old Testament priests" (Thomas et al., 1998. Nature 394, 138-140) was published. In the fourth article a remarkable 55% of the Ashkenazi Levite samples from the earlier 1998 study are not included. This causes the "Levite modal haplotype" to double its frequency from 21% of the Ashkenazi Levite sample in 1998 to 42% of the Ashkenazi Levite sample in 2003. The authors offer three main explanations: (1) The studies are independent using different sample sets.(2) Typing errors and poor quality exclude samples from future studies.(3) Correction of typing errors means that some samples are classified under different haplotypes. The explanations offered to the problem of omitting samples from subsequent studies after their haplotypes or partial haplotypes are known, are not convincing. Consequently their sample sets cannot be considered random and non-biased. At the least, these laboratories have bad practices of sample handling and many typing errors, which are enough to invalidate their studies. PMID:16427053

  9. Optical Levitation of Micro-Scale Particles in Air

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Weiland, Kenneth E.

    2004-01-01

    Success has been achieved using a radiation pressure gradient to levitate microscale particles in air for as long as four hours. This work is performed as a precursor to the development of a vacuum based optical tweezers interrogation tool for nanotechnology research. It was decided to first proceed with solving the problem of achieving optical levitation of a micro-scale particle in air before trying the same in a vacuum environment. This successful optical levitation in air confirms the work of Ashkin and Dziedzic. Levitation of 10 and 13.8 microns diameter polystyrene spheres was achieved, as well as the levitation of 10 and 100 microns diameter glass spheres. Particles were raised and lowered. A modicum of success was achieved translating particles horizontally. Trapping of multiple particles in one laser beam has been photographed. Also, it has been observed that particles, that may be conglomerates or irregular in shape, can also be trapped by a focused laser beam. Levitated glass beads were photographed using laser light scattered from the beads. The fact that there is evidence of optical traps in air containing irregular and conglomerate particles provides hope that future tool particles need not be perfect spheres.

  10. Modeling and vector control of planar magnetic levitator

    SciTech Connect

    Kim, W.; Trumper, D.L.; Lang, J.H.

    1998-11-01

    The authors designed and implemented a magnetically levitated stage with large planar motion capability. This planar magnetic levitator employs four novel permanent-magnet linear motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive. These linear levitation motors can be used as building blocks in the general class of multi-degree-of-freedom motion stages. In this paper, the authors discuss electromechanical modeling and real-time vector control of such a permanent-magnet levitator. They describe the dynamics in a dq frame introduced to decouple the forces acting on the magnetically levitated moving part, namely, the platen. A transformation similar to the Blondel-Park transformation is derived for commutation of the stator phase currents. The authors provide test results on step responses of the magnetically levitated stage. It shows 5-nm rms positioning noise in x and y, which demonstrates the applicability of such stages in the next-generation photolithography in semiconductor manufacturing.

  11. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  12. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  13. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  14. Pattern-formation under acoustic driving forces

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  15. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  16. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  17. The NASA, Marshall Space Flight Center drop tube user's manual

    NASA Technical Reports Server (NTRS)

    Rathz, Thomas J.; Robinson, Michael B.

    1990-01-01

    A comprehensive description of the structural and instrumentation hardware and the experimental capabilities of the 105-meter Marshall Space Flight Center Drop Tube Facility is given. This document is to serve as a guide to the investigator who wishes to perform materials processing experiments in the Drop Tube. Particular attention is given to the Tube's hardware to which an investigator must interface to perform experiments. This hardware consists of the permanent structural hardware (with such items as vacuum flanges), and the experimental hardware (with the furnaces and the sample insertion devices). Two furnaces, an electron-beam and an electromagnetic levitator, are currently used to melt metallic samples in a process environment that can range from 10(exp -6) Torr to 1 atmosphere. Details of these furnaces, the processing environment gases/vacuum, the electrical power, and data acquisition capabilities are specified to allow an investigator to design his/her experiment to maximize successful results and to reduce experimental setup time on the Tube. Various devices used to catch samples while inflicting minimum damage and to enhance turnaround time between experiments are described. Enough information is provided to allow an investigator who wishes to build his/her own furnace or sample catch devices to easily interface it to the Tube. The experimental instrumentation and data acquisition systems used to perform pre-drop and in-flight measurements of the melting and solidification process are also detailed. Typical experimental results are presented as an indicator of the type of data that is provided by the Drop Tube Facility. A summary bibliography of past Drop Tube experiments is provided, and an appendix explaining the noncontact temperature determination of free-falling drops is provided. This document is to be revised occasionally as improvements to the Facility are made and as the summary bibliography grows.

  18. Acoustic propagation in rigid ducts with blockage

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.

  19. Acoustic transducer apparatus with reduced thermal conduction

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G. (Inventor); Leung, Emily W. (Inventor); Bhat, Balakrishna T. (Inventor)

    1990-01-01

    A horn is described for transmitting sound from a transducer to a heated chamber containing an object which is levitated by acoustic energy while it is heated to a molten state, which minimizes heat transfer to thereby minimize heating of the transducer, minimize temperature variation in the chamber, and minimize loss of heat from the chamber. The forward portion of the horn, which is the portion closest to the chamber, has holes that reduce its cross-sectional area to minimize the conduction of heat along the length of the horn, with the entire front portion of the horn being rigid and having an even front face to efficiently transfer high frequency acoustic energy to fluid in the chamber. In one arrangement, the horn has numerous rows of holes extending perpendicular to the length of horn, with alternate rows extending perpendicular to one another to form a sinuous path for the conduction of heat along the length of the horn.

  20. Acoustic field positioning for containerless processing

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.

    1975-01-01

    The noncontact positioning of materials in a space processing chamber is accomplished using a new type of acoustic levitator. Liquid and solid materials are positioned using a single source of sound. Fine control of position may be obtained by motion of an acoustical reflector. The electrical power required is usually less than 100 watts. The system operates satisfactorily at high and low temperatures and is adaptable as an 'add-on' feature to existing space experiments. Containerless melting and solidification can be performed and a freely suspended liquid can be shaped to the contour of the sound field. Experiments are described in which aluminum, glass and plastic materials are melted and solidified in the containerless state. The system has applications to containerless crystal growth, melting and related processes.

  1. Predictions for Electrostatic Dust Levitation about Bennu's Equator

    NASA Astrophysics Data System (ADS)

    Hartzell, C. M.; Zimmerman, M. I.

    2015-12-01

    Electrostatic dust levitation was first hypothesized to occur on the Moon due to observations of Lunar Horizon Glow and results from the Apollo 17 LEAM instrument. Due to their weaker gravitational acceleration and similar plasma environment, electrostatic dust motion was also hypothesized to occur on asteroids. There is still no conclusive evidence, however, that electrostatic levitation occurs on either asteroids or the Moon. The OSIRIS-REx mission will visit the asteroid Bennu in 2018-2019. We have numerically modeled the plasma environment around the equator of Bennu, with the asteroid assumed to have a circular equatorial cross section. Our plasma model presents a significant improvement over previous semi-analytical models as it can seamlessly capture the transition from day-side plasma sheath to night-side plasma wake. Using the plasma model and assuming a uniform density for gravity calculations, we identify the altitudes, longitudinal locations, and the associated grain sizes at which electrostatic levitation is expected to occur. Our predictions of dust levitation at Bennu will enable assessments of the observability of levitating dust during the OSIRIS-REx mission and guide any observations.

  2. Nanomagnetic Levitation 3-D Cultures of Breast and Colorectal Cancers

    PubMed Central

    Bumpers, Harvey L.; Janagama, Dasharatham G.; Manne, Upender; Basson, Marc D.; Katkoori, Venkat

    2014-01-01

    Background Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. Materials and Methods We developed for the first time nanomagnetically levitated three dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and Epidermal growth factor receptor (EGFR) expressions. These phenotypes were compared with 2-D cultures and 3-D cultures grown in a gel matrix. Results The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and EGFR activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Conclusions Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and may be more feasible for a range of applications in drug discovery or regenerative medicine. PMID:25617973

  3. Coil optimization for electromagnetic levitation using a genetic like algorithm

    NASA Astrophysics Data System (ADS)

    Royer, Z. L.; Tackes, C.; LeSar, R.; Napolitano, R. E.

    2013-06-01

    The technique of electromagnetic levitation (EML) provides a means for thermally processing an electrically conductive specimen in a containerless manner. For the investigation of metallic liquids and related melting or freezing transformations, the elimination of substrate-induced nucleation affords access to much higher undercooling than otherwise attainable. With heating and levitation both arising from the currents induced by the coil, the performance of any EML system depends on controlling the balance between lifting forces and heating effects, as influenced by the levitation coil geometry. In this work, a genetic algorithm is developed and utilized to optimize the design of electromagnetic levitation coils. The optimization is targeted specifically to reduce the steady-state temperature of the stably levitated metallic specimen. Reductions in temperature of nominally 70 K relative to that obtained with the initial design are achieved through coil optimization, and the results are compared with experiments for aluminum. Additionally, the optimization method is shown to be robust, generating a small range of converged results from a variety of initial starting conditions. While our optimization criterion was set to achieve the lowest possible sample temperature, the method is general and can be used to optimize for other criteria as well.

  4. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  5. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  6. Materials science investigations using electromagnetic levitation

    NASA Astrophysics Data System (ADS)

    Seidel, A.; Soellner, W.; Stenzel, C.

    2011-12-01

    EML on ISS allows levitating liquid samples both above and below their melting points for extended periods under ultra-high vacuum or ultra clean noble gas atmosphere. Various stimuli can be applied to the samples for dedicated experiment objectives. The heat input into the sample can be modulated to induce a thermal response of the sample, short heater pulses can be used to induce surface shape oscillations of the liquid sample, a custom made trigger needle can be driven into the undercooled sample to induce heterogeneous nucleation at a predefined temperature, touching of the sample by a dedicated chill cool plate or application of a forced gas flow can be used to increase the cooling rate of the sample or to simulate convection for reference experiments. Dedicated diagnostics elements are available to measure the physical properties of the sample. Sample temperature is measured by a pyrometer; two video units in orthogonal views provide both high spatial (up to 1 Megapixel and relative size resolution 2 * 10-4) and temporal (up to 30 kHz) resolution. Additional capabilities are under discussion which would allow to measure the electrical conductivity of the sample from electrical data of the rf coil system, and to determine the residual oxygen content of the process atmosphere.

  7. Partial squeeze film levitation modulates fingertip friction.

    PubMed

    Wiertlewski, Michaël; Fenton Friesen, Rebecca; Colgate, J Edward

    2016-08-16

    When touched, a glass plate excited with ultrasonic transverse waves feels notably more slippery than it does at rest. To study this phenomenon, we use frustrated total internal reflection to image the asperities of the skin that are in intimate contact with a glass plate. We observed that the load at the interface is shared between the elastic compression of the asperities of the skin and a squeeze film of air. Stroboscopic investigation reveals that the time evolution of the interfacial gap is partially out of phase with the plate vibration. Taken together, these results suggest that the skin bounces against the vibrating plate but that the bounces are cushioned by a squeeze film of air that does not have time to escape the interfacial separation. This behavior results in dynamic levitation, in which the average number of asperities in intimate contact is reduced, thereby reducing friction. This improved understanding of the physics of friction reduction provides key guidelines for designing interfaces that can dynamically modulate friction with soft materials and biological tissues, such as human fingertips. PMID:27482117

  8. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1984-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have refined our modulated radiation pressure technique for characterizing the interfaces between liquids so that we can automatically track changes in interfacial tension over time due to contaminants, surfactants, etc. (2) We have improved and simplified our acoustic scattering apparatus for measuring distributions of the properties of microparticle samples, which will allow us to distinguish particulates in liquids by size, compressibility, and density. (3) We are continuing work on theoretical approaches to nonlinear acoustics which should permit us to cast problems with geometric and other complexities into a manageable form. (4) Our studies of cavitation have enabled us to derive an analytic expression which predicts the acoustic pressure threshold for cavitation at the micrometer scale - where surface tension effects are important. This work has relevance to the consideration of possible bioeffects from diagnostic ultrasound. (5) Other projects include the calibration of hydrophones using acoustically levitated samples, and the investigation of solitary waves of the sort discovered by Wu, Keolian and Rudnick.

  9. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...

  10. Drops in Space: Super Oscillations and Surfactant Studies

    NASA Technical Reports Server (NTRS)

    Apfel, Robert E.; Tian, Yuren; Jankovsky, Joseph; Shi, Tao; Chen, X.; Holt, R. Glynn; Trinh, Eugene; Croonquist, Arvid; Thornton, Kathyrn C.; Sacco, Albert, Jr.; Coleman, Catherine; Leslie, Fred W.; Matthiesen, David H.

    1996-01-01

    An unprecedented microgravity observation of maximal shape oscillations of a surfactant-bearing water drop the size of a ping pong ball was observed during a mission of Space Shuttle Columbia as part of the second United States Microgravity Laboratory-USML-2 (STS-73, October 20-November 5, 1995). The observation was precipitated by the action of an intense sound field which produced a deforming force on the drop. When this deforming force was suddenly reduced, the drop executed nearly free and axisymmetric oscillations for several cycles, demonstrating a remarkable amplitude of nonlinear motion. Whether arising from the discussion of modes of oscillation of the atomic nucleus, or the explosion of stars, or how rain forms, the complex processes influencing the motion, fission, and coalescence of drops have fascinated scientists for centuries. Therefore, the axisymmetric oscillations of a maximally deformed liquid drop are noteworthy, not only for their scientific value but also for their aesthetic character. Scientists from Yale University, the Jet Propulsion Laboratory (JPL) and Vanderbilt University conducted liquid drop experiments in microgravity using the acoustic positioning/manipulation environment of the Drop Physics Module (DPM). The Yale/JPL group's objectives were to study the rheological properties of liquid drop surfaces on which are adsorbed surfactant molecules, and to infer surface properties such as surface tension, Gibb's elasticity, and surface dilatational viscosity by using a theory which relies on spherical symmetry to solve the momentum and mass transport equations.

  11. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  12. Optically Levitated Microspheres as a Probe for New Interactions

    NASA Astrophysics Data System (ADS)

    Rider, Alexander; Moore, David; Blakemore, Charles; Lu, Marie; Gratta, Giorgio

    2016-03-01

    We are developing novel techniques to probe new interactions at micron distances using optically levitated dielectric microspheres. Levitated microspheres are an ideal probe for short-range interactions because they are suspended using the radiation pressure at the focus of a laser beam, which means that the microspheres can be precisely manipulated and isolated from the surrounding environment at high vacuum. We have performed a search for unknown charged particles bound within the bulk of the microspheres. Currently, we are searching for the presence of a Chameleon field postulated to explain the presence of dark energy in the universe. In the future we plan to use optically levitated microspheres to search for micron length-scale gravity like interactions that could couple between a microsphere and another mass. We will present resent results from these experiments and plans for future searches for new interactions.

  13. Electrostatic Levitation: A Tool to Support Materials Research in Microgravity

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; SanSoucie, Mike

    2012-01-01

    Containerless processing represents an important topic for materials research in microgravity. Levitated specimens are free from contact with a container, which permits studies of deeply undercooled melts, and high-temperature, highly reactive materials. Containerless processing provides data for studies of thermophysical properties, phase equilibria, metastable state formation, microstructure formation, undercooling, and nucleation. The European Space Agency (ESA) and the German Aerospace Center (DLR) jointly developed an electromagnetic levitator facility (MSL-EML) for containerless materials processing in space. The electrostatic levitator (ESL) facility at the Marshall Space Flight Center provides support for the development of containerless processing studies for the ISS. Apparatus and techniques have been developed to use the ESL to provide data for phase diagram determination, creep resistance, emissivity, specific heat, density/thermal expansion, viscosity, surface tension and triggered nucleation of melts. The capabilities and results from selected ESL-based characterization studies performed at NASA's Marshall Space Flight Center will be presented.

  14. Three-dimensional tissue culture based on magnetic cell levitation

    NASA Astrophysics Data System (ADS)

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.; Killian, T. C.; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies.

  15. EML - an electromagnetic levitator for the International Space Station

    NASA Astrophysics Data System (ADS)

    Seidel, A.; Soellner, W.; Stenzel, C.

    2011-12-01

    Based on a long and successful evolution of electromagnetic levitators for microgravity applications, including facilities for parabolic flights, sounding rocket missions and Spacelab missions, the Electromagnetic Levitator EML provides unique experiment opportunities onboard ISS. With the application of the electromagnetic levitation principle under microgravity conditions the undercooled regime of electrically conductive materials becomes accessible for an extended time which allows the performance of unique studies of nucleation phenomena or phase formation as well as the measurement of a range of thermophysical properties both above the melting temperature and in the undercooled regime. The EML payload is presently being developed by Astrium Space Transportation under contracts to ESA and DLR. The design of the payload allows flexible experiment scenarios individually targeted towards specific experimental needs and samples including live video control of the running experiments and automatic or interactive process control.

  16. Magnetic levitation transport of mining products. Report of investigations/1995

    SciTech Connect

    Geraghty, J.J.; Wright, W.E.; Lombardi, J.A.

    1995-07-01

    U.S. Bureau of Mines researchers have developed innovative magnetic levitation (mag-lev) technology that allows for noncontact, frictionless conveyance of materials within a dedicated transit corridor. A transport system incorporating this technology could improve the safety and reduce the cost of underground mining and materials handling. The mag-lev transport technology uses two types of permanent magnets. An array of neodymium-iron-boron magnets is contained in the base of each levitated materials container, and an array of ceramic-5 magnets lines the bottom of the transit corridor. The orientation of the magnets is such that the two arrays repel each other. An electronic position control system, located on the levitated materials containers, overcomes the inherent lateral instability of the repelling magnet arrays.

  17. Digitizing of drop table output

    SciTech Connect

    Muncy, K.

    1984-01-01

    The method for monitoring and analyzing the drop pulses from the MTS1212 drop table system has been upgraded from a labor intensive manual system to an automatic digital system. The pulse from each drop is recorded, analyzed and printed out. The data printed out includes all product information, the drop parameters calculated and a plot of the drop pulse. Some of the advantages of this system, besides the replacement of old and obsolete equipment, include the dropping of the repeatability check requirement, ease of operation, complete automatic documentation of each drop, no need to take Polaroid pictures of a drop nor is it necessary to have a drop film read by the film analysis group. Data comparisons between the old method and the new digital method have been very favorable.

  18. Drop tube technical tasks

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1986-01-01

    Criteria, using fundamental thermochemical dynamics, were developed to assist a scientist using the Drop Tube Facility in designing a good experiment. The types of parameters involved in designing the experiments include the type of furnace, the type of atmosphere, and in general which materials are better behaved than others as determined by past experience in the facility. One of the major advantages of the facility lies in its ability to provide large undercoolings in the cooling curve during the drops. A beginning was to consider the effect of oxygen and other gases upon the amount of undercooling observed. The starting point of the thermochemistry was given by Ellingham and later transformed into what is known as the Richardson Chart. The effect of surface oxidations upon the nucleation phenomena can be observed in each specimen.

  19. Poloidal flow and toroidal particle ring formation in a sessile drop driven by megahertz order vibration.

    PubMed

    Rezk, Amgad R; Yeo, Leslie Y; Friend, James R

    2014-09-23

    Poloidal flow is curiously formed in a microliter sessile water drop over 157-225 MHz because of acoustic streaming from three-dimensional standing Lamb waves in a lithium niobate substrate. The flow possesses radial symmetry with downwelling at the center and upwelling around the periphery of the drop. Outside this frequency range, the attenuation occurs over a length scale incompatible with the drop size and the poloidal flow vanishes. Remarkably, shear-induced migration was found to drive toroidal particle ring formation with diameters inversely proportional to the frequency of the acoustic irradiation. PMID:25186138

  20. Exploding Water Drops

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly stoppered. The flask is then cooled, either by leaving it outdoors in winter or by immersing it in a cryogenic fluid, until the water freezes. As the water freezes and expands, the pressure inside the flask increases dramatically, eventually becoming sufficient to fracture the metal walls of the enclosure. A related, but much less familiar, phenomenon is the explosive fracturing of small water drops upon freezing. That water drops can fracture in this way has been known for many years, and the phenomenon has been described in detail in the atmospheric sciences literature, where it is seen as relevant to the freezing of raindrops as they fall through cold air. Carefully controlled experiments have been done documenting how the character and frequency of fracture is affected by such variables as drop size, rate of cooling, chemistry of dissolved gases, etc. Here I describe instead a simple demonstration of fracture suitable for video analysis and appropriate for study at the introductory physics level. Readers may also be interested in other characteristics of freezing and fragmenting water drops, for example, charge separation upon fracture and the appearance of spikes and bulges on the surface.