Science.gov

Sample records for acoustically treated nacelle

  1. Annoyance judgements of aircraft with and without acoustically treated nacelles

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.; Leonard, S.

    1973-01-01

    A series of subjective response laboratory tests were conducted to determine the effectiveness of reducing aircraft noise by treating the aircraft engine nacelles with acoustically absorbent material. A total of 108 subjects participated in the magnitude estimation tests. The subjects were selected from persons who had previously been interviewed and classified according to selected psychological characteristics. The subjects lived in three general areas located at three specified distances from New York's Kennedy Airport. The aircraft signals used in the tests consisted of tape recordings of the landing approach noise of a B-727 aircraft under normal operating conditions. These recordings were electronically altered to simulate an aircraft with acoustically treated nacelles to achieve noise reductions of approximately 6 EPNdB and 12 EPNdB. The results from these tests indicate that significant reductions in annoyance resulted from the synthesized nacelle treatments.

  2. Arousal from sleep by noises from aircraft with and without acoustically treated nacelles

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Dobbs, M. E.

    1973-01-01

    The electroencephalographic and behavioral responses during sleep of four subjects, aged 46 to 58 years, to three types of noises were tested over 14 consecutive nights. The stimuli were two DC-8 jet landing noises (each 30 seconds in duration and coming from DC-8 aircraft with and without acoustical treatment on the engine nacelles) and a 4-second burst of pink noise. Each of the noises was tested at nominal intensities of 61 and 79 dBA. Other physical descriptors of the noises were measured or computed. The results indicate that for an equivalent degree of sleep disruption, noise form the jet aircraft with untreated nacelles must be about 6 dBA less intense than the jet with acoustically treated nacelles. Predictions of the effects of noise on sleep appear, tentatively, to attain the highest accuracy when the physical descriptor of noise intensity includes information about the impulsive characteristics of that noise as well as its long-term spectral content.

  3. Acoustic Panel Liner for an Engine Nacelle

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor); Ayle, Earl (Inventor); Ichihashi, Fumitaka (Inventor)

    2016-01-01

    An acoustic panel liner includes a face sheet, back plate, and liner core positioned there-between, which may be used in an engine nacelle. Elongated chambers contain variable amounts of septa at a calibrated depth or depths. The septa may have varying DC flow resistance. The chambers may have a hexagonal or other polygonal cross sections. The septa, such as mesh caps, may be bonded to an inner wall of a corresponding chamber. The insertion depths may be the same or different. If different, the pattern of distribution of the depths may be randomized.

  4. Conceptual design study of advanced acoustic-composite nacelles

    NASA Technical Reports Server (NTRS)

    Nordstrom, K. E.; Marsh, A. H.; Sargisson, D. F.

    1975-01-01

    Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits.

  5. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  6. Summary of recent design studies of advanced acoustic-composite nacelles

    NASA Technical Reports Server (NTRS)

    Norton, H. T., Jr.

    1975-01-01

    The results are summarized of recent NASA-sponsored studies of advanced acoustic-composite nacelles. Conceptual nacelle designs for current wide-bodied transports and for advanced technology transports, intended for operational use in the mid-1980's, were studied by Lockheed-California Company and the Douglas Aircraft Company. These studies were conducted with the objective of achieving significant reductions in community noise and/or fuel consumption with minimum penalties in airplane weights, cost, and operating expense. The results indicate that the use of advanced composite materials offer significant potential weight and cost savings and result in reduced fuel consumption and noise when applied to nacelles. The most promising concept for realizing all of these benefits was a long duct, mixed flow acoustic composite nacelle with advanced acoustic liners.

  7. Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Liu, Fei; Sheplak, Mark; Cattafesta, Louis N., III

    2007-01-01

    This report describes the development of a tunable electromechanical Helmholtz resonator (EMHR) for engine nacelles using smart materials technology. This effort addresses both near-term and long-term goals for tunable electromechanical acoustic liner technology for the Quiet Aircraft Technology (QAT) Program. Analytical models, i.e. lumped element model (LEM) and transfer matrix (TM) representation of the EMHR, have been developed to predict the acoustic behavior of the EMHR. The models have been implemented in a MATLAB program and used to compare with measurement results. Moreover, the prediction performance of models is further improved with the aid of parameter extraction of the piezoelectric backplate. The EMHR has been experimentally investigated using standard two-microphone method (TMM). The measurement results validated both the LEM and TM models of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom DOF) system and an enhanced tuning range of over 20% that is not restricted by the short- and open-circuit limits. Damping coefficient ' measurements for piezoelectric backplates in a vacuum chamber are also performed and indicate that the damping is dominated by the structural damping losses, such as compliant boundaries, and other intrinsic loss mechanisms. Based on models of the EMHR, a Pareto optimization design of the EMHR has been performed for the EMHR with non-inductive loads. The EMHR with non-inductive loads is a 2DOF system with two resonant fiequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously; a trade-off (i.e., a Pareto solution) must be reached. The Pareto solution

  8. Design and Integration of a Rotor Alone Nacelle for Acoustic Fan Testing

    NASA Technical Reports Server (NTRS)

    Shook, Tony D.; Hughes, Christoper E.; Thompson, William K.; Tavernelli, Paul F.; Cunningham, Cameron C.; Shah, Ashwin

    2001-01-01

    A brief summary of the design, integration and testing of a rotor alone nacelle (RAN) in NASA Glenn's 9'x 15' Low Speed Wind Tunnel (LSWT) is presented. The purpose of the RAN system was to provide an "acoustically clean" flow path within the nacelle to isolate that portion of the total engine system acoustic signature attributed to fan noise. The RAN design accomplished this by removing the stators that provided internal support to the nacelle. In its place, two external struts mounted to a two-axis positioning table located behind the tunnel wall provided the support. Nacelle-mounted lasers and a closed-loop control system provided the input to the table to maintain nacelle to fan concentricity as thermal and thrust loads displaced the strut-mounted fan. This unique design required extensive analysis and verification testing to ensure the safety of the fan model, propulsion simulator drive rig, and facility, along with experimental consistency of acoustic data obtained while using the RAN system. Initial testing was used to optimize the positioning system and resulted in concentricity errors of +/- 0.0031 in. in the horizontal direction and +0.0035/-0.0013 in, in the vertical direction. As a result of successful testing, the RAN system will be transitioned into other acoustic research programs at NASA Glenn Research Center.

  9. Performance Optimization of a Rotor Alone Nacelle for Acoustic Fan Testing

    NASA Technical Reports Server (NTRS)

    Cunningham, C. C.; Thompson, W. K.; Hughes, C. E.

    2000-01-01

    This paper describes the techniques, equipment, and results from the optimization of a two-axis traverse actuation system used to maintain concentricity between a sting-mounted fan and a wall-mounted nacelle in the 9 x 15 (9 Foot by 15 Foot Test Section) Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center (GRC). The Rotor Alone Nacelle (RAN) system, developed at GRC by the Engineering Design and Analysis Division (EDAD) and the Acoustics Branch, used nacelle-mounted lasers and an automated control system to maintain concentricity as thermal and thrust operating loads displace the fan relative to the nacelle. This effort was critical to ensuring rig/facility safety and experimental consistency of the acoustic data from a statorless, externally supported nacelle configuration. Although the tip clearances were originally predicted to be about 0.020 in. at maximum rotor (fan) operating speed, proximity probe measurements showed that the nominal clearance was less than 0.004 in. As a result, the system was optimized through control-loop modifications, active laser cooling, data filtering and averaging, and the development of strict operational procedures. The resultant concentricity error of RAN was reduced to +/- 0.0031 in. in the Y-direction (horizontal) and +0.0035 in./-0.001 3 in. in the Z-direction (vertical), as determined by error analysis and experimental results. Based on the success of this project, the RAN system will be transitioned to other wind tunnel research programs at NASA GRC.

  10. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  11. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  12. Bayesian identification of acoustic impedance in treated ducts.

    PubMed

    Buot de l'Épine, Y; Chazot, J-D; Ville, J-M

    2015-07-01

    The noise reduction of a liner placed in the nacelle of a turbofan engine is still difficult to predict due to the lack of knowledge of its acoustic impedance that depends on grazing flow profile, mode order, and sound pressure level. An eduction method, based on a Bayesian approach, is presented here to adjust an impedance model of the liner from sound pressures measured in a rectangular treated duct under multimodal propagation and flow. The cost function is regularized with prior information provided by Guess's [J. Sound Vib. 40, 119-137 (1975)] impedance of a perforated plate. The multi-parameter optimization is achieved with an Evolutionary-Markov-Chain-Monte-Carlo algorithm. PMID:26233052

  13. Program on ground test of modified quiet, clean, JT3D and JT8D turbofan engines in their respective nacelles. [modification of Boeing 707, 727, and 737 aircraft for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A program to reduce the community noise levels of commercial jet aircraft is summarized. The program objective is the development of three acoustically treated nacelle configurations for the 707, 727, and 737 series aircraft to provide maximum noise reduction with minimum performance loss, modification requirements, and economic impact. The preliminary design, model testing, data analyses, and economic studies of proposed nacelle configurations are discussed.

  14. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) boiler plate nacelle and core exhaust nozzle design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The mechanical design of the boiler plate nacelle and core exhaust nozzle for the QCSEE under the wing engine is presented. The nacelle, which features interchangeable hard-wall and acoustic panels, is to be utilized in the initial engine testing to establish acoustic requirements for the subsequent composite nacelle as well as in the QCSEE over the wing engine configuration.

  15. The acoustic effect of cryogenically treating trumpets

    NASA Astrophysics Data System (ADS)

    Jones, Jesse; Rogers, Chris

    2003-10-01

    The acoustic effect of cryogenically treating trumpets is investigated. Ten Vincent Bach Stradivarious B♭ trumpets are studied, half of which have been cryogenically treated. The trumpets were played by six players of varying proficiency, with sound samples being recorded directly to disk at a sampling rate of 44.1 kHz. Both the steady-state and initial transient portions of the audio samples are analyzed. When comparing the average power spectra of the treated trumpets to the untreated set, no repeatable, statistically independent differences are observed in the data. Differences observed in player-to-player and trumpet-to-trumpet comparisons overshadow any differences that may have been brought on due to the cryogenic treatment. Qualitatively, players established no clear preference between the treated and untreated trumpets regarding tone and playability, and could not differentiate between the two sets of instruments. All data was collected in a double blind fashion. The treatment itself is a three step process, involving an 8 hour linear cool down period, a 10 hour period of sustained exposure to -195°C (-300°F), and a 20-25 hour period of warming back to room temperature. [Work was completed with the support of Steinway & Sons Pianos and Selmer Musical Instruments.

  16. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite Nacelle test report. Volume 2: Acoustic performance

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1979-01-01

    High bypass geared turbofan engines with nacelles forming the propulsion system for short-haul passenger aircraft were tested for use in externally blown flap-type aircraft. System noise levels for a four-engine, UTW-powered aircraft operating in the powered lift mode were calculated to be 97.2 and 95.7 EPNdB at takeoff and approach, respectively, on a 152.4 m (500 ft) sideline compared to a goal of 95.0 EPNdB.

  17. AiResearch QCGAT engine, airplane, and nacelle design features

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.

    1980-01-01

    The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.

  18. Effects of long-chord acoustically treated stator vanes on fan noise. 2: Effect of acoustical treatment

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Scott, J. N.; Leonard, B. R.; Stakolich, E. G.

    1976-01-01

    A set of long chord stator vanes was designed to replace the vanes in an existing fan stage. The long chord stator vanes consisted of a turning section and axial extension pieces, all of which incorporated acoustic damping material. The long chord stator vanes were tested in two lengths, with the long version giving more noise reduction than the short, primarily because of the additional lining material. The noise reduction achieved with the acoustically treated long chord stator vanes was compared with the reduction achieved by an acoustically treated exhaust splitter. The long chord stator was at least as good as the splitter as a method for incorporating acoustic lining material. In addition, comparing an acoustic three ring inlet and an acoustic wall-only inlet discloses that the wall-only inlet could be used in an engine where the noise reduction requirements are not too stringent.

  19. Nacelle/pylon/wing integration on a transport model with a natural laminar flow nacelle

    NASA Technical Reports Server (NTRS)

    Lamb, M.; Aabeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    Tests were conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 deg to 4.0 deg to determine if nacelle/pylon/wing integration affects the achievement of natural laminar flow on a long-duct flow-through nacelle for a high-wing transonic transport configuration. In order to fully assess the integration effect on a nacelle designed to achieve laminar flow, the effects of fixed and free nacelle transitions as well as nacelle longitudinal position and pylon contouring were obtained. The results indicate that the ability to achieve laminar flow on the nacelle is not significantly altered by nacelle/pylon/wing integration. The increment in installed drag between free and fixed transition for the nacelles on symmetrical pylons is essentially the calculated differences between turbulent and laminar flow on the nacelles. The installed drag of the contoured pylon is less than that of the symmetrical pylon. The installed drag for the nacelles in a rearward position is greater than that for the nacelles in a forward position.

  20. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results.

  1. Simplified Finite Element Modelling of Acoustically Treated Structures

    NASA Astrophysics Data System (ADS)

    Carfagni, M.; Citti, P.; Pierini, M.

    1997-07-01

    The application of non-optimized damping and phono-absorbent materials to automotive systems has not proved fully satisfactory in abating noise and vibration. The objective of this work was to develop a simple finite element modelling procedure that would allow optimizing structures such as a car body-in-white in terms of vibroacoustic behavior from the design stage. A procedure was developed to determine the modifications to be made in the mass, stiffness and damping characteristics in the finite element (FE) modelling of a metal structure meshed with shell elements so that the model would describe the behavior of the acoustically treated structure. To validate the modifications, a numerical-experimental comparison of the velocities on the vibrating surface was carried out, followed by a numerical-experimental comparison of the sound pressures generated by the vibrating plate. In the comparison a simple monopole model was used, in which each area of vibrating surface could be likened to a point source. The simulation and experimental procedures, previously validated for the metal structure, were then applied to multi-layered panels. Good agreement between the experimental and simulated velocities and sound pressures resulted for all the multi-layered panel configurations examined.

  2. 76 FR 10328 - Grant of Authority for Subzone Status; Vestas Nacelles America, Inc. (Wind Turbine Nacelles, Hubs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... manufacturing and warehousing of wind turbine nacelles, hubs, blades and towers at the Vestas Nacelles America... Foreign-Trade Zones Board Grant of Authority for Subzone Status; Vestas Nacelles America, Inc. (Wind Turbine Nacelles, Hubs, Blades and Towers), Brighton, Denver, Pueblo, and Windsor, CO Pursuant to...

  3. Some Acoustic Results from the Pratt and Whitney Advanced Ducted Propulsor: Fan 1

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Elliott, David M.; Bock, Lawrence A.

    1999-01-01

    Noise measurements were obtained for the Advanced Ducted Propulsor (ADP) - Fan 1, with and without nacelle acoustic treatment. The fan was tested with no acoustic treatment (hard wall) and with acoustic treatment installed in three configurations in the nacelle (mid, mid plus aft, fully treated). The hard wall results showed that the radiated noise from the fan came primarily from the aft end of the nacelle. At takeoff and higher speeds, the noise measured at the inlet angles was also found to be dominated by noise from the aft end. Significant amounts of attenuation were observed with acoustic treatment installed and comparison with predictions showed the treatment gave more attenuation than predicted. Effective Perceived Noise Levels were determined for a large hypothetical 4 engine airplane. These levels showed that the installed acoustic treatment provided as much as 5 EPNdB of noise reduction. A traverse with a probe having three microphones, one above the other, showed azimuthal variations in the noise that need to be further investigated.

  4. The 727/JT8D refan side nacelle airloads

    NASA Technical Reports Server (NTRS)

    Bailey, R. W.; Vadset, H. J.

    1974-01-01

    Airloads on the 727/JT8D refan side engine nacelle are presented. These consist of surface static pressure distributions from two low speed wind tunnel tests. External nacelle surface pressures are from testing of a flow-through, body mounted nacelle model, and internal inlet surface pressures are from performance testing of a forced air inlet model. The method for obtaining critical airloads on nacelle components and a representative example are discussed.

  5. Effects of Bifurcations on Aft-Fan Engine Nacelle Noise

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Farassat, Fereidoun; Pope, D. Stuart; Vatsa, Veer N.

    2004-01-01

    Aft-fan engine nacelle noise is a significant factor in the increasingly important issue of aircraft community noise. The ability to predict such noise within complex duct geometries is a valuable tool in studying possible noise attenuation methods. A recent example of code development for such predictions is the ducted fan noise propagation and radiation code CDUCT-LaRC. This work focuses on predicting the effects of geometry changes (i.e. bifurcations, pylons) on aft fan noise propagation. Beginning with simplified geometries, calculations show that bifurcations lead to scattering of acoustic energy into higher order modes. In addition, when circumferential mode number and the number of bifurcations are properly commensurate, bifurcations increase the relative importance of the plane wave mode near the exhaust plane of the bypass duct. This is particularly evident when the bypass duct surfaces include acoustic treatment. Calculations involving more complex geometries further illustrate that bifurcations and pylons clearly affect modal content, in both propagation and radiation calculations. Additionally, results show that consideration of acoustic radiation results may provide further insight into acoustic treatment effectiveness for situations in which modal decomposition may not be straightforward. The ability of CDUCT-LaRC to handle complex (non-axisymmetric) multi-block geometries, as well as axially and circumferentially segmented liners, allows investigation into the effects of geometric elements (bifurcations, pylons).

  6. Energy efficient engine ICLS Nacelle detail design report

    NASA Technical Reports Server (NTRS)

    Eskridge, R. R.; Kuchar, A. P.; Stotler, C. L.

    1982-01-01

    The results of the detail design of the Nacelle for the General Electric Energy Efficient Engine (E3) Integrated Core Low Spool (ICLS) test vehicles are presented. A slave nacelle is designed for the ICLS test. Cost and reliability are the important factors considered. The slave nacelle simulates the internal flow lines of the actual Flight Propulsion System (FPS) but has no external fairing. The aerodynamic differences between the ICLS and FPS nacelles are presented, followed by the structural description and analysis of the various nacelle components.

  7. Long duct nacelle aerodynamic development for DC-10 derivatives

    NASA Technical Reports Server (NTRS)

    Patel, S. P.; Donelson, J. E.

    1980-01-01

    The results are presented of a wind tunnel test utilizing a 4.7-percent-scale semispan model of the DC-10 in the Calspan 8-foot transonic wind tunnel. The effect of a revised long-duct nacelle shape on the channel velocities, the incremental drag relative to the baseline long-duct nacelle, and channel velocities for the baseline long-duct nacelle were determined and compared with data obtained at Ames. The baseline and the revised long-duct nacelles are representative of a CF6-50 mixed-flow configuration and were evaluated on a model of a proposed DC-10 stretched-fuselage configuration. The results showed that the revised long-duct nacelle has an appreciable effect on the inboard channel velocities, resulting in an increased channel Mach number. However, the pressure recovery on the nacelle afterbody was about the same for both nacelles. The lift curves for both long-duct nacelle configurations were the same. The channel pressures measured at Calspan were in good agreement with those measured at Ames for the baseline long-duct nacelle. The incremental drag for the revised nacelle was measured as two to four counts (three counts is approximately equal to one percent of the airplane drag) higher than that of the baseline long-duct nacelle.

  8. Nacelle/Diverter Integration into the Design Optimization Process Using Pseudo, Warped, and Real Nacelles

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Reuther, James J.; Saunders, David A.; Rimlinger, Mark J.

    1999-01-01

    The computational results of the optimized complete configurations, including nacelles and diverters, are presented in terms of drag count improvement compared with the TCA baseline configuration at Mach 2.4, C(sub L)=0.1. The three candidate designs are designated by the organization from which they were derived. ARC represents the Ames Research Center 1-03 design, BCAG represents the Boeing Commercial Aircraft Group's design from Seattle, and BLB represents the design from Boeing Long Beach. All CFD methods are in unanimous agreement that the Ames 1-03 configuration has the largest performance improvement, followed closely by the BCAG configuration, with a much smaller improvement attained by Boeing Long Beach. The Ames design was obtained using the single-block wing/body code SYN87-SB with its "pseudo" nacelle option-an elaborate technique for incorporating nacelle/diverter effects into the design optimization process. This technique uses AIRPLANE surface pressure coefficient data with and without the nacelles/diverters. Further details of this method are described. It is reasonable to expect that further improvements could be achieved by including the "real" nacelles directly into the optimization process by use of the newly-developed multiblock optimization code, SYN107-MB, which can handle full configurations.

  9. Cruise aerodynamics of USB nacelle/wing geometric variations

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.

    1976-01-01

    Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model.

  10. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  11. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings VI : Wings and Nacelles with Pusher Propeller

    NASA Technical Reports Server (NTRS)

    Wood, Donald H; Bioletti, Carlton

    1935-01-01

    This report is the sixth of a series giving wind tunnel tests results on the interference drag and propulsive efficiency of nacelle-propeller-wing combinations. The present report gives the results of tests of a radial-engine nacelle with pusher propeller in 17 positions with reference to a Clark Y wing; tests of the same nacelle and propeller in three positions with reference to a thick wing; and tests of a body and pusher propeller with the thick wing, simulating the case of a propeller driven by an extension shaft from an engine within the wing. Some preliminary tests were made on pusher nacelles alone.

  12. 14 CFR 23.1182 - Nacelle areas behind firewalls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Nacelle areas behind firewalls. 23.1182... Powerplant Fire Protection § 23.1182 Nacelle areas behind firewalls. Components, lines, and fittings, except those subject to the provisions of § 23.1351(e), located behind the engine-compartment firewall must...

  13. 14 CFR 23.1182 - Nacelle areas behind firewalls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Nacelle areas behind firewalls. 23.1182... Powerplant Fire Protection § 23.1182 Nacelle areas behind firewalls. Components, lines, and fittings, except those subject to the provisions of § 23.1351(e), located behind the engine-compartment firewall must...

  14. B-1 AFT Nacelle Flow Visualization Study

    NASA Technical Reports Server (NTRS)

    Celniker, Robert

    1975-01-01

    A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.

  15. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  16. Optimum subsonic, high-angle-of-attack nacelles

    NASA Technical Reports Server (NTRS)

    Luidens, R. W.; Stockman, N. O.; Diedrich, J. H.

    1979-01-01

    The optimum design of nacelles that operate over a wide range of aerodynamic conditions and their inlets is described. For low speed operation the optimum internal surface velocity distributions and skin friction distributions are described for three categories of inlets: those with BLC, and those with blow in door slots and retractable slats. At cruise speed the effect of factors that reduce the nacelle external surface area and the local skin friction is illustrated. These factors are cruise Mach number, inlet throat size, fan-face Mach number, and nacelle contour. The interrelation of these cruise speed factors with the design requirements for good low speed performance is discussed.

  17. Status of Duct Liner Technology for Application to Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Watson, Willie R.

    2005-01-01

    Grazing flows and high acoustic intensities impose unusual design requirements on acoustic liner treatments used in aircraft engine nacelles. Increased sound absorption efficiency (requiring increased accuracy of liner impedance specification) is particularly critical in the face of ever decreasing nacelle wall area available for liner treatments in modern, high-bypass ratio engines. This paper reviews the strategy developed at Langley Research Center for achieving a robust measurement technology that is crucial for validating impedance models for aircraft liners. Specifically, the paper describes the current status of computational and data acquisition technologies for reducing impedance in a flow duct. Comparisons of reduced impedances for a "validation liner" using 1980's and 2000's measurement technology are consistent, but show significant deviations (up to 0.5 c exclusive of liner anti-resonance region) from a first principles impedance prediction model as grazing flow centerline Mach numbers increase up to 0.5. The deviations, in part, are believed related to uncertainty in the choice of grazing flow parameters (e.g. cross-section averaged, core-flow averaged, or centerline Mach number?). Also, there may be an issue with incorporating the impedance discontinuities corresponding to the hard wall to liner interface (i.e. leading and trailing edge of test liner) within the discretized finite element model.

  18. CFD Design for Bypass Ratio 15 Nacelle Integration

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II

    2001-01-01

    A computational study is being conducted to evaluate the installation effects of ultra-high bypass ratio (BPR) nacelles on conventional twin-engine transonic transport aircraft. An unstructured Navier-Stokes flow solver, USM3D, is being utilized for the study. The results have been compared to wind tunnel data obtained in the NASA LaRC 16-Foot Transonic Tunnel, for nacelle BPRs of nine and twelve. The USM3D flow solver was found to adequately predict the flows of interest, and has subsequently been used to analyze the installation effects of a theoretical BPR-15 nacelle. In addition, a design code is being used in conjunction with USM3D to redesign the wing in the presence of the BPR-15 nacelle. The preliminary design results will be presented.

  19. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  20. Three-Dimensional Nacelle Aeroacoustics Code With Application to Impedance Education

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.

    2000-01-01

    A three-dimensional nacelle acoustics code that accounts for uniform mean flow and variable surface impedance liners is developed. The code is linked to a commercial version of the NASA-developed General Purpose Solver (for solution of linear systems of equations) in order to obtain the capability to study high frequency waves that may require millions of grid points for resolution. Detailed, single-processor statistics for the performance of the solver in rigid and soft-wall ducts are presented. Over the range of frequencies of current interest in nacelle liner research, noise attenuation levels predicted from the code were in excellent agreement with those predicted from mode theory. The equation solver is memory efficient, requiring only a small fraction of the memory available on modern computers. As an application, the code is combined with an optimization algorithm and used to reduce the impedance spectrum of a ceramic liner. The primary problem with using the code to perform optimization studies at frequencies above I1kHz is the excessive CPU time (a major portion of which is matrix assembly). The research recommends that research be directed toward development of a rapid sparse assembler and exploitation of the multiprocessor capability of the solver to further reduce CPU time.

  1. Driving Torque Control for a Nacelle Test Bench

    NASA Astrophysics Data System (ADS)

    Jassmann, Uwe; Reiter, Matthias; Abel, Dirk

    2014-06-01

    Recently wind industry paid a lot of attention to ground testing facilities in order to improve reliability of wind turbines by undergoing overall system tests at an early stage of development. Some experience has been gained during the last years with drive train test benches, that allow for pure mechanical and electrical tests of the turbine's components. Since the loads occurring inside a wind turbine significantly depend on its control strategy, the natural extension of drive train test benches are so-called nacelle test benches, which also include the wind turbine's controller. The worldwide first nacelle test bench was installed and launched at RWTH Aachen University in 2013. This nacelle test bench was set up as a demonstrator and has a rated power of 1 MW. For the demonstrator test bench a gearbox-based drive train concept, which does not intrinsically meet the high dynamic requirements of the real-time aerodynamics simulation, was chosen. In this paper the mechanical concept is reviewed from a control engineering point of view and a detailed control model is presented and validated using measurement data. In order to minimize the impact this mechanical limitations have and to achieve the dynamics and accuracy required, a driving torque controller is proposed. Due to the communication layout at the nacelle test bench, time delay in data transfer cannot be omitted for controller design. Experiments confirm that the driving torque controller allows to operate a wind turbine at the nacelle test bench and suppresses unrealistic, test bench-related torque dynamics.

  2. Nacelle and forebody considerations in design for reduced sonic boom

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1992-01-01

    Several aspects of designing for reduced sonic boom were investigated to assess the adequacy of the conventional modified linear theory. For a simple test case of a nacelle with a small forecowl angle (2 degrees) mounted below a flat plate, the linear theory compared favorably for a case with simulated nacelle lift and for a computational fluid dynamics (CFD) analysis. In a second study, several methods of analyzing the area distribution due to volume were examined. And finally, in a preliminary study, the effect of forebody shape on the rise time of the bow shock was investigated, indicating a significant increase (several msec) can be obtained by proper forebody shaping.

  3. Installed Transonic 2D Nozzle Nacelle Boattail Drag Study

    NASA Technical Reports Server (NTRS)

    Malone, Michael B.; Peavey, Charles C.

    1999-01-01

    The Transonic Nozzle Boattail Drag Study was initiated in 1995 to develop an understanding of how external nozzle transonic aerodynamics effect airplane performance and how strongly those effects are dependent on nozzle configuration (2D vs. axisymmetric). MDC analyzed the axisymmetric nozzle. Boeing subcontracted Northrop-Grumman to analyze the 2D nozzle. AU participants analyzed the AGARD nozzle as a check-out and validation case. Once the codes were checked out and the gridding resolution necessary for modeling the separated flow in this region determined, the analysis moved to the installed wing/body/nacelle/diverter cases. The boat tail drag validation case was the AGARD B.4 rectangular nozzle. This test case offered both test data and previous CFD analyses for comparison. Results were obtained for test cases B.4.1 (M=0.6) and B.4.2 (M=0.938) and compared very well with the experimental data. Once the validation was complete a CFD grid was constructed for the full Ref. H configuration (wing/body/nacelle/diverter) using a combination of patched and overlapped (Chimera) grids. This was done to ensure that the grid topologies and density would be adequate for the full model. The use of overlapped grids allowed the same grids from the full configuration model to be used for the wing/body alone cases, thus eliminating the risk of grid differences affecting the determination of the installation effects. Once the full configuration model was run and deemed to be suitable the nacelle/diverter grids were removed and the wing/body analysis performed. Reference H wing/body results were completed for M=0.9 (a=0.0, 2.0, 4.0, 6.0 and 8.0), M=1.1 (a=4.0 and 6.0) and M=2.4 (a=0.0, 2.0, 4.4, 6.0 and 8.0). Comparisons of the M=0.9 and M=2.4 cases were made with available wind tunnel data and overall comparisons were good. The axi-inlet/2D nozzle nacelle was analyzed isolated. The isolated nacelle data coupled with the wing/body result enabled the interference effects of the

  4. Subsonic annular wing theory with application to flow about nacelles

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1974-01-01

    A method has recently been developed for calculating the flow over a subsonic nacelle at zero angle of attack. The method makes use of annular wing theory and boundary-layer theory and has shown good agreement with both experimental data and more complex theoretical solutions. The method permits variation of the mass flow by changing the size of a center body.

  5. Investigation of the interference effects of mixed flow long duct nacelles on a DC-10 wing

    NASA Technical Reports Server (NTRS)

    Patel, S. P.; Donelson, J. E.

    1982-01-01

    Wind tunnel test results utilizing a 4.7 percent scale semispan model in the 11 foot transonic wind tunnel are presented. A low drag long duct nacelle installation for the DC-10 jet transport was developed. A long duct nacelle representative of a CF6-50 mixed flow configuration was investigated on the DC-10-30. The results showed that the long duct nacelle installation located in the same position as the current short duct nacelle and with the current production symmetrical pylon is a relatively low risk installation for the DC-10 aircraft. Tuft observations and analytical boundary layer analysis confirmed that the flow on the nacelle afterbody was attached. A small pylon fairing was evaluated and found to reduce channel peak suction pressures, which resulted in a small drag improvement. The test also confirmed that the optimum nacelle incidence angle is the same as for the short duct nacelle, thus the same engine mount as for the production short duct nacelle can be used for the long duct nacelle installation. Comparison of the inboard wing pylon nacelle channel pressure distributions, with flow through and powered long duct nacelles showed that the power effects did not change the flow mechanism; hence, power effects can be considered negligible.

  6. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings V : Clark Y Biplane Cellule - NACA Cowled Nacelle - Tractor Propeller

    NASA Technical Reports Server (NTRS)

    Valentine, E Floyd

    1935-01-01

    This report is the fifth of a series giving the results obtained from wind tunnel tests on the interference drag and propulsive efficiency of nacelle-propeller-wing combinations. This report gives results of tests of an NACA cowled air-cooled engine nacelle with tractor propeller located in 12 positions with reference to a Clark Y biplane cellule.

  7. Predicting fire suppression in a simulated engine nacelle.

    SciTech Connect

    Keyser, David R.; Hewson, John C.

    2004-06-01

    The Vulcan fire-field model is employed to simulate the evolution of pool fires and the distribution of fire suppressants in a engine nacelle simulator. The objective is to identify conditions for which suppression will and will not be successful in order to (1) provide input on experimental design and (2) to test the model's predictive capabilities through comparison with future test results. Pool fires, where the fuel pool is on the bottom of the nacelle, have been selected for these tests because they have been identified as among the most challenging to suppress. Modeling of the production HFC-125 fire suppression system predicts that all pool fires are extinguished. Removing nozzles and reducing the rate of suppressant injection eventually lead to a predicted failure to suppress the fires. The stability of the fires, and therefore the difficulty in extinguishing them, depends on a variety of additional factors as discussed in the text.

  8. Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.

  9. The propagation and attenuation of complex acoustic waves in treated circular and annular ducts

    NASA Technical Reports Server (NTRS)

    Reethof, G.

    1976-01-01

    The propagation of plane waves and higher order acoustic modes in a circular multisectioned duct was studied. A unique source array consisting of two concentric rings of sources, providing phase and amplitude control in the radial, as well as circumferential direction, was developed to generate plane waves and both spinning and nonspinning higher order modes. Measurements of attenuation and radial mode shapes were taken with finite length liners between the hard wall sections of an anechoically terminated duct. Materials tested as liners included a glass fiber material and both sintered fiber metals and perforated sheet metals with a honeycomb backing. The fundamental acoustic properties of these materials were studied with emphasis on the attenuation of sound by the liners and the determination of local versus extended reaction behavior for the boundary condition. The experimental results were compared with a mathematical model for the multisectioned duct.

  10. Effects of Nacelle configuration/position on performance of subsonic transport

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Krivec, D. K.; Segall, R. N.

    1983-01-01

    An experimental study was conducted to explore possible reductions in installed propulsion system drag due to underwing aft nacelle locations. Both circular (C) and D inlet cross section nacelles were tested. The primary objectives were: to determine the relative installed drag of the C and D nacelle installations; and, to compare the drag of each aft nacelle installation with that of a conventional underwing forward, drag of each aft nacelle installation with that of a conventional underwing forward, pylon mounted (UTW) nacelle installation. The tests were performed in the NASA-Langley Research Center 16-Foot Transonic Wind Tunnel at Mach numbers from 0.70 to 0.85, airplane angles of attack from -2.5 to 4.1 degrees, and Reynolds numbers per foot from 3.4 to 4.0 million. The nacelles were installed on the NASA USB full span transonic transport model with horizontal tail on. The D nacelle installation had the smallest drag of those tested. The UTW nacelle installation had the largest drag, at 6.8 percent larger than the D at Mach number 0.80 and lift coefficient (C sub L) 0.45. Each tested configuration still had some interference drag, however. The effect of the aft nacelles on airplane lift was to increase C sub L at a fixed angle of attack relative to the wing body. There was higher lift on the inboard wing sections because of higher pressures on the wing lower surface. The effects of the UTW installation on lift were opposite to those of the aft nacelles.

  11. Investigation of powered nacelles on a high aspect ratio NASA supercritical wing, phase 2. [Langley 8 Foot Transonic Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Flechner, S. G.; Patterson, J. C., Jr.; Fournier, P. G.

    1981-01-01

    A modified wing with the long core separate flow nacelle and several E(3) nacelles was utilized. The effects of nacelle and pylon cant angles and nacelle longitudinal and vertical location were investigated over a Mach number range from 0.70 to 0.83. The results at the cruise condition 0.82 Mach number and 0.55 lift coefficient are presented.

  12. Advanced Computational and Experimental Techniques for Nacelle Liner Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.; Nark, Douglas

    2009-01-01

    The Curved Duct Test Rig (CDTR) has been developed to investigate sound propagation through a duct of size comparable to the aft bypass duct of typical aircraft engines. The axial dimension of the bypass duct is often curved and this geometric characteristic is captured in the CDTR. The semiannular bypass duct is simulated by a rectangular test section in which the height corresponds to the circumferential dimension and the width corresponds to the radial dimension. The liner samples are perforate over honeycomb core and are installed on the side walls of the test section. The top and bottom surfaces of the test section are acoustically rigid to simulate a hard wall bifurcation or pylon. A unique feature of the CDTR is the control system that generates sound incident on the liner test section in specific modes. Uniform air flow, at ambient temperature and flow speed Mach 0.275, is introduced through the duct. Experiments to investigate configuration effects such as curvature along the flow path on the acoustic performance of a sample liner are performed in the CDTR and reported in this paper. Combinations of treated and acoustically rigid side walls are investigated. The scattering of modes of the incident wave, both by the curvature and by the asymmetry of wall treatment, is demonstrated in the experimental results. The effect that mode scattering has on total acoustic effectiveness of the liner treatment is also shown. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation to the convected Helmholtz equation are reported. The spectra of attenuation produced by the analytic model are similar to experimental results for both walls treated, straight and curved flow path, with plane wave and higher order modes incident. The numerical model is used to define the optimized resistance and reactance of a liner that significantly improves liner attenuation in the frequency range 1900-2400 Hz. A

  13. Supersonic flow visualization of a nacelle in close proximity to a simulated wing

    NASA Technical Reports Server (NTRS)

    Biber, Kasim; Ellis, David R.

    1993-01-01

    A flow visualization study was made in the 9 x 9 inch supersonic wind tunnel at Wichita State University to examine shock and boundary layer flow interaction for a nacelle in close proximity to the lower surface of a simulated wing. The test matrix included variations of angle of attack from -2 degrees to +4 degrees, nacelle-wing gap from 0.5 to 3-nacelle inlet diameter (0.12 inch), and Reynolds number based on nacelle length (1.164 inch) from 1.16 x 10(exp 6) to 1.45 x 10(exp 6) at a nominal Mach number of 2. Schlieren pictures of wing and nacelle flowfield were recorded by a video camera during each tunnel run. Results show that the nacelle inlet shock wave remains attached to the inlet lip and its impingement does not significantly affect the wing boundary layer. At the nacelle trailing edge location, the wing boundary layer thickness is approximately one nacelle inlet diameter at alpha = 0 degrees and it decreases with increase of angle of attack.

  14. 78 FR 31517 - Notification of Proposed Production Activity; Vestas Nacelles America, Inc.; Subzone 123E (Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Notification of Proposed Production Activity; Vestas Nacelles America, Inc.; Subzone 123E (Wind Turbines); Brighton, Denver, Pueblo, and Windsor, Colorado Vestas Nacelles America, Inc. (Vestas), operator of Subzone...

  15. Simulated flight acoustic investigation of treated ejector effectiveness on advanced mechanical suppresors for high velocity jet noise reduction

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.; Motsinger, R. E.; Hoerst, D. J.

    1986-01-01

    Ten scale-model nozzles were tested in an anechoic free-jet facility to evaluate the acoustic characteristics of a mechanically suppressed inverted-velocity-profile coannular nozzle with an accoustically treated ejector system. The nozzle system used was developed from aerodynamic flow lines evolved in a previous contract, defined to incorporate the restraints imposed by the aerodynamic performance requirements of an Advanced Supersonic Technology/Variable Cycle Engine system through all its mission phases. Accoustic data of 188 test points were obtained, 87 under static and 101 under simulated flight conditions. The tests investigated variables of hardwall ejector application to a coannular nozzle with 20-chute outer annular suppressor, ejector axial positioning, treatment application to ejector and plug surfaces, and treatment design. Laser velocimeter, shadowgraph photograph, aerodynamic static pressure, and temperature measurement were acquired on select models to yield diagnositc information regarding the flow field and aerodynamic performance characteristics of the nozzles.

  16. Full-Scale Wind-Tunnel Study of the Effect of Nacelle Shape on Cooling Drag

    NASA Technical Reports Server (NTRS)

    Corsiglia, Victor R.; Katz, Joseph; Kroeger, Richard A.

    1981-01-01

    Tests were made in the Ames 40 by 80 ft Wind Tunnel of a semispan wing with a nacelle (no propeller) from a typical, general aviation twin-engine aircraft. Measurements were made of the effect on drag of the flow of cooling air through the nacelle. Internal and external nacelle pressures were measured. It was found that the cooling airflow accounts for about 13% of the total estimated airplane drag during both cruise and climb. The now of cooling air through the nacelle accounts for 30% of the airflow drag component during cruise and 42% during climb; the balance, in both cruise and climb, is attributed to [he external shape of the nacelle. It was suggested that improvements could possibly be made by relocating both the inlet and the outlet for the cooling air.

  17. Interference effects of very high bypass ratio nacelle installations on a low-wing transport

    NASA Technical Reports Server (NTRS)

    Ingraldi, Anthony M.; Re, Richard J.; Pendergraft, Odis C., Jr.; Kariya, Timmy T.

    1991-01-01

    A twin-engine, low-wing transport model, with a supercritical wing designed for a cruise Mach number of 0.77 and a lift coefficient of 0.55 was tested in the 16-Foot Transonic Tunnel at NASA Langley Research Center. The purpose of this test was to compare the wing/nacelle interference effects of superfans (BPR 18) with the interference effects of advanced turbofans (BPR 6). Flow-through nacelles were used. Forces and moments on the complete model were measured using a strain gage balance, and extensive surface static pressure measurements were made on the model's wing, nacelles, and pylons. Results of the investigation indicate that superfan nacelles can be installed with approximately the same drag penalty as conventional turbofan nacelles.

  18. Investigation of upper-surface-blowing nacelle integration at cruise speeds utilizing powered engine simulators

    NASA Technical Reports Server (NTRS)

    Meleason, E. T.; Wells, O. D.

    1976-01-01

    Various overwing nacelle designs were investigated on a representative four engine short haul aircraft configuration during a combined analytical and experimental program. Design conditions were M sub o = 0.7 and C sub L = 0.4. All nacelles had D shaped nozzle exits and included a streamline contoured design, a low boattail angle reference configuration, and a high boattail angle powered lift design. Testing was done with the design four engine airplane configuration as well as with only inboard nacelles installed. Turbopowered engine simulators were used to provide realistic representation of nacelle flows. Performance trends are compared for the various nacelle designs. In addition, comparisons are presented between analytical and experimental pressure distributions and between flow through and powered simulator results.

  19. Optimized bio-inspired stiffening design for an engine nacelle.

    PubMed

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-12-01

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint. PMID:26531222

  20. Noise suppression by an acoustically treated three-ring inlet on a TF-34 engine

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Goldman, R. G.; Heidelberg, L. J.

    1976-01-01

    Acoustic performance tests were conducted with a three-ring inlet noise suppressor designed for a TF-34 engine. For all tests the aft noise sources were highly suppressed. The measured inlet suppression was large, reaching levels greater than 30 db at the peak. Comparisons of the data and the performance predictions were in reasonably good agreement. The frequency of peak attenuation was well predicted; the magnitude and spectral shape were reasonably well predicted. Agreement was best when the distribution of sound energy across the inlet was taken into account in the performance predictions. Tests in which the length of treatment was varied showed an orderly progression of attenuation with length; performance predictions for the different lengths also showed an orderly progression with length. At the highest speed of the engine, multiple pure tones were present throughout the spectrum in the source noise signature. These tones were effectively suppressed by the inlet liner, even at low frequencies, although the liner was designed to work best at the blade-passing frequency.

  1. Drag measurements of an axisymmetric nacelle mounted on a flat plate at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Wilcox, Floyd J., Jr.

    1995-01-01

    An experimental investigation was conducted to determine the effect of diverter wedge half-angle and nacelle lip height on the drag characteristics of an assembly consisting of a nacelle fore cowl from a typical high-speed civil transport (HSCT) and a diverter mounted on a flat plate. Data were obtained for diverter wedge half-angles of 4.0 deg, 6.0 deg, and 8.0 deg and ratios of the nacelle lip height above a flat plate to the boundary-layer thickness (h(sub n)/delta) of approximately 0.87 to 2.45. Limited drag data were also obtained on a complete nacelle/diverter configuration that included fore and aft cowls. Although the nacelle/diverter drag data were not corrected for base pressures or internal flow drag, the data are useful for comparing the relative drag of the configuration tested. The tests were conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.50, 1.80, 2.10, and 2.40 and Reynolds numbers ranging from 2.00 x 10(exp 6) to 5.00 x 10(exp 6) per foot. The results of this investigation showed that the nacelle/diverter drag essentially increased linearly with increasing h(sub n)/delta except near 1.0 where the data showed a nonlinear behavior. This nonlinear behavior was probably caused by the interaction of the shock waves from the nacelle/diverter configuration with the flat-plate boundary layer. At the lowest h(sub n)/delta tested, the diverter wedge half-angle had virtually no effect on the nacelle/diverter drag. However, as h(sub n)/delta increased, the nacelle/diverter drag increased as diverter wedge half-angle increased.

  2. Experimental Results of the 2.7% Reference H Nacelle Airframe Interference High Speed Civil Transport Model

    NASA Technical Reports Server (NTRS)

    Cappuccio, Gelsomina

    1999-01-01

    Experiments were conducted in the NASA Ames 9-Ft by 7-Ft Supersonic and 11-Ft by 11-Ft Transonic Wind Tunnels of a 2.7% Reference H (Ref. H) Nacelle Airframe Interference (NAI) High Speed Civil Transport (HSCT) model. NASA Ames did the experiment with the cooperation and assistance of Boeing and McDonnell Douglas. The Ref. H geometry was designed by Boeing. The model was built and tested by NASA under a license agreement with Boeing. Detailed forces and pressures of individual components of the configuration were obtained to assess nacelle airframe interference through the transonic and supersonic flight regime. The test apparatus was capable of measuring forces and pressures of the Wing body (WB) and nacelles. Axisymmetric and 2-D inlet nacelles were tested with the WB in both the in-proximity and captive mode. The in-proximity nacelles were mounted to a nacelle support system apparatus and were individually positioned. The right hand nacelles were force instrumented with flow through strain-gauged balances and the left hand nacelles were pressure instrumented. Mass flow ratio was varied to get steady state inlet unstart data. In addition, supersonic spillage data was taken by testing the 2-D inlet nacelles with ramps and the axisymmetric inlet nacelles with an inlet centerbody for the Mach condition of interest. The captive nacelles, both axisymmetric and 2-D, were attached to the WB via diverters. The captive 2-D inlet nacelle was also tested with ramps to get supersonic spillage data. Boeing analyzed the data and showed a drag penalty of four drag counts for the 2-D compared with the axisymmetric inlet nacelle. Two of the four counts were attributable to the external bevel designed into the 2-D inlet contour. Boeing and McDonnell Douglas used these data for evaluating Computational Fluid Dynamic (CFD) codes and for evaluation of nacelle airframe integration problems and solutions.

  3. Acoustic emission studies on welded and thermally treated AISI 304 stainless steel during tensile deformation

    SciTech Connect

    Mukherjee, P.; Barat, P.; Jayakumar, T.; Kalyanasundaram, P.; Rajagopalan, C.; Raj, B.

    1997-10-15

    The present investigations are planned to study the influence of prior martensites formed due to cold treatment as 77K in AISI 304 SS welded specimens, on strain-induced martensites occurred during tensile deformation using AE technique. AE parameters like count rate and root mean square (r.m.s.) voltage have been used to characterize AE activities generated during tensile deformation process in as-welded and welded-treated samples. Frequency spectrum analysis of AE signals captured from the samples has been done to understand the dynamic behavior of the martensite phase formation. Tensile properties of these samples have also been reported. Volume fraction of the magnetic phase (martensite and delta ferrite) formed in these samples are measured before and after straining. X-ray diffraction (XRD) technique has been used to support the presence of delta ferrite (formed during welding) and martensite in the weld region.

  4. Evaluation of propeller/nacelle interactions in the PTA program

    NASA Technical Reports Server (NTRS)

    Aljabri, A. S.; Lyman, V.; Parker, R. J.

    1986-01-01

    Advanced highly-loaded propellers are proposed to power transport aircraft that cruise at high subsonic speeds giving significant fuel savings over the equivalent turbofan engine. In order to realize these savings, the propeller must be installed so that the aerodynamics of the propeller/nacelle combination do not lead to excessive cyclic blade stresses or installation losses. The on-going, NASA sponsored, Propfan Test Assessment Program (PTA) has provided the first high-speed wind-tunnel data on an installed propfan complete with an inlet. This paper presents computational techniques that allow: (1) optimization of inlet plane location, (2) contouring of lip and cowl, and (3) estimation of propeller cyclic loads due to a nonuniform flowfield. These computational methods, in spite of the complexity of the configuration and the slipstream effects, provide predictions of aerodynamic performance which are in excellent agreement with wind-tunnel data.

  5. Design of an air ejector for boundary-layer bleed of an acoustically treated turbofan engine inlet during ground testing

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.

    1978-01-01

    An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.

  6. Selected winglet and mixed flow long duct nacelle development for DC-10 derivative aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, A. B.

    1980-01-01

    The high speed cruise drag effects of the installation of winglets and a wing tip extension and a mixed flow long duct nacelle are investigated. The winglet program utilized a 4.7 percent semispan model in an eight foot transonic wind tunnel. Winglets provided approximately twice the cruise drag reduction of wing tip extensions for about the same increase in bending moment at the wing-fuselage juncture. The long duct nacelle interference drag program utilized the same model, without the winglets, in the 11 foot transonic wind tunnel. The long duct nacelle, installed in the same position as the current short duct nacelle and with the current production symmetric pylon, was a relatively low risk installation. A pylon with an addition small rearward fairing was also tested and showed some drag reduction potential over the current pylon.

  7. The effect of over-the-wing nacelles on wing-body aerodynamics

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.

    1978-01-01

    An investigation was conducted in the Langley 16-foot transonic tunnel to further study benefits in climb and cruise performance due to blowing the jet over the wing for a transport-type wing-body configuration. In this investigation a wing-body model/powered-nacelle test rig combination was tested at Mach numbers of 0.5 and 0.8 at angles of attack from -2 to 4 deg and jet total-pressure ratios from jet off to 3 or 4 (depending on Mach number) for a variety of nacelle locations relative to the wing. Results from this investigation show that positioning of the nacelles can have very large effects on the wing-body drag (nacelles were nonmetric). Some positions yielded much higher drag than the baseline wing-body while others yielded drag which was somewhat lower than the baseline.

  8. Analysis of Mach number 0.8 turboprop slipstream wing/nacelle interactions

    NASA Technical Reports Server (NTRS)

    Welge, H. R.; Neuhart, D. H.; Dahlin, J. A.

    1981-01-01

    Data from wind tunnel tests of a powered propeller and nacelle mounted on a supercritical wing are analyzed. Installation of the nacelle significantly affected the wing flow and the flow on the upper surface of the wing is separated near the leading edge under powered conditions. Comparisons of various theories with the data indicated that the Neumann surface panel solution and the Jameson transonic solution gave results adequate for design purposes. A modified wing design was developed (Mod 3) which reduces the wing upper surface pressure coefficients and section lift coefficients at powered conditions to levels below those of the original wing without nacelle or power. A contoured over the wing nacelle that can be installed on the original wing without any appreciable interference to the wing upper surface pressure is described.

  9. The Effect of Propellers and Nacelles on the Landing Speeds of Tractor Monoplanes

    NASA Technical Reports Server (NTRS)

    Windler, Ray

    1932-01-01

    This paper reports wind-tunnel tests giving the lift coefficients of large-scale wing-nacelle combinations both with and without the propeller. The tests were made to show the effect of nacelles, and idling and stopped propellers on the landing speeds of tractor monoplanes. Four types of nacelles with various cowlings were used in numerous positions with respect to both a Clark Y and a thick airfoil. The effect of both the idling and stopped propeller on lift, and consequently on landing speed, was negligible. A nacelle with exposed engine cylinders when placed directly in front of an airfoil caused a slight reduction in lift, consequently an increase in landing speed, over the condition with the wing alone. With this exception no appreciable effect on landing speed was indicated for any of the other combinations.

  10. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  11. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  12. Winglet and long duct nacelle aerodynamic development for DC-10 derivatives

    NASA Technical Reports Server (NTRS)

    Taylor, A. B.

    1978-01-01

    Advanced technology for application to the Douglas DC-10 transport is discussed. Results of wind tunnel tests indicate that the winglet offers substantial cruise drag reduction with less wing root bending moment penalty than a wing-tip extension of the same effectiveness and that the long duct nacelle offers substantial drag reduction potential as a result of aerodynamic and propulsion improvements. The aerodynamic design and test of the nacelle and pylon installation are described.

  13. A new class of actuator surface models incorporating wind turbine blade and nacelle geometry effects

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2015-11-01

    It was shown by Kang, Yang and Sotiropoulos that the nacelle has significant effects on the turbine wake even in the far wake region, which the standard actuator line model is not able to predict. We develop a new class of actuator surface models for the blades and nacelle, which is able to resolve the effects of both tip vortices and nacelle vortex. The new nacelle model, which is based on distributing forces from the actual nacelle geometry as in the diffused interface immersed boundary methods, is first tested by carrying out LES of the flow past a sphere and demonstrating good agreement with available in the literature DNS results. The proposed model is subsequently validated by simulating the flow past the hydrokinetic turbine used in the simulations of Kang et al. and good agreement with the measurements is demonstrated. Finally, the proposed model is applied to utility scale wind turbines to elucidate the role of nacelle vortex dynamics on turbine wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by SNL and MSI.

  14. An Experimental Investigation of Several Low-Drag Wing-Nacelle Combinations with Internal Air Flow

    NASA Technical Reports Server (NTRS)

    Allen, H. Julian; Frick, Charles W.; Erickson, Myles D.

    1945-01-01

    The results of an experimental investigation of several low-drag wing-nacelle combinations, incorporating internal air-flow systems, are presented. The external-drag increments due to these nacelles are between one-half and two-thirds of those of conventional nacelle forms. This improvement is accomplished with only minor effects on the lift and moment characteristics of the wing. The procedure employed to determine the external shape of such low-drag nacelles is considered in detail. The design of an efficient internal-flow system with or without a blower or throttle, presents no serious problems. The energy losses in the expansion before the engine and the contraction thereafter can be kept small. It is believed that these nacelles have a wide application in housing engine pusher-propeller units and, with some alteration, jet-propulsion devices. It is probable that the low external drags may not be realized if such nacelles are used with a tractor propeller because of the high level of turbulence in the propeller slipstream.

  15. A grid-embedding transonic flow analysis computer program for wing/nacelle configurations

    NASA Technical Reports Server (NTRS)

    Atta, E. H.; Vadyak, J.

    1983-01-01

    An efficient grid-interfacing zonal algorithm was developed for computing the three-dimensional transonic flow field about wing/nacelle configurations. the algorithm uses the full-potential formulation and the AF2 approximate factorization scheme. The flow field solution is computed using a component-adaptive grid approach in which separate grids are employed for the individual components in the multi-component configuration, where each component grid is optimized for a particular geometry such as the wing or nacelle. The wing and nacelle component grids are allowed to overlap, and flow field information is transmitted from one grid to another through the overlap region using trivariate interpolation. This report represents a discussion of the computational methods used to generate both the wing and nacelle component grids, the technique used to interface the component grids, and the method used to obtain the inviscid flow solution. Computed results and correlations with experiment are presented. also presented are discussions on the organization of the wing grid generation (GRGEN3) and nacelle grid generation (NGRIDA) computer programs, the grid interface (LK) computer program, and the wing/nacelle flow solution (TWN) computer program. Descriptions of the respective subroutines, definitions of the required input parameters, a discussion on interpretation of the output, and the sample cases illustrating application of the analysis are provided for each of the four computer programs.

  16. Tests of Nacelle-propeller Combinations in Various Positions with Reference to Wings. Part I : Thick Wing-N.A.C.A. Cowled Nacelle-Tractor Propeller

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1933-01-01

    This report gives the results in the 20-foot propeller research tunnel of the National Advisory Committee for Aeronautics on the interference drag and propulsive efficiency of a nacelle-propeller combination located in 21 positions with reference to a thick wing. The lift, drag, and propulsive efficiency were obtained at several angles of attack for each of the 21 locations. A net efficiency was derived for determining the over-all effectiveness of each nacelle location. Best results were obtained with the propeller about 25 per cent of the chord directly ahead of the leading edge. A location immediately above or below the wing near the leading edge was very poor.

  17. Effect of underwing aft-mounted nacelles on the longitudinal aerodynamic characteristics of a high-wing transport airplane

    NASA Technical Reports Server (NTRS)

    Abeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    As part of a propulsion/airframe integration program, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the longitudinal aerodynamic effects of installing flow through engine nacelles in the aft underwing position of a high wing transonic transfer airplane. Mixed flow nacelles with circular and D-shaped inlets were tested at free stream Mach numbers from 0.70 to 0.85 and angles of attack from -2.5 deg to 4.0 deg. The aerodynamic effects of installing antishock bodies on the wing and nacelle upper surfaces as a means of attaching and supporting nacelles in an extreme aft position were investigated.

  18. Upper surface blowing aerodynamic and acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Ryle, D. M., Jr.; Braden, J. A.; Gibson, J. S.

    1977-01-01

    Aerodynamic performance at cruise, and noise effects due to variations in nacelle and wing geometry and mode of operation are studied using small aircraft models that simulate upper surface blowing (USB). At cruise speeds ranging from Mach .50 to Mach .82, the key determinants of drag/thrust penalties are found to be nozzle aspect ratio, boattailing angle, and chordwise position; number of nacelles; and streamlined versus symmetric configuration. Recommendations are made for obtaining favorable cruise configurations. The acoustic studies, which concentrate on the noise created by the jet exhaust flow and its interaction with wing and flap surfaces, isolate several important sources of USB noise, including nozzle shape, exit velocity, and impingement angle; flow pathlength; and flap angle and radius of curvature. Suggestions for lessening noise due to trailing edge flow velocity, flow pathlength, and flow spreading are given, though compromises between some design options may be necessary.

  19. Test of P3M-1 nacelle in Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Test of P3M-1 nacelle in Full-Scale Tunnel (FST). The NACA conducted drag tests on P3M-1 nacelle in 1931 which were presented in a special report to the Navy. Smith DeFrance described this work in the report's introduction: 'Tests were conducted in the full-scale wind tunnel on a five to four geared Pratt and Whitney Wasp engine mounted in a P3M-1 nacelle. In order to simulate the flight conditions the nacelle was assembled on a 15-foot span of wing from the same airplane. The purpose of the tests was to improve the cooling of the engine and to reduce the drag of the nacelle combination. Thermocouples were installed at various points on the cylinders and temperature readings were obtained from these by the power plants division. These results will be reported in a memorandum by that division. The drag results, which are covered by this memorandum, were obtained with the original nacelle condition as received from the Navy with the tail of the nacelle modified, with the nose section of the nacelle modified, with a Curtiss anti-drag ring attached to the engine, with a Type G ring developed by the N.A.C.A., and with a Type D cowling which was also developed by the N.A.C.A.' (p. 1) This picture shows the engine with a Curtiss anti-drag ring attached. The NACA tested several different modifications and cowlings as noted above. The Navy did not want to make any major structural alterations to the original wing and nacelle installation. Thus, the NACA did not conduct a full investigation of the aerodynamics of this particular configuration. DeFrance concludes his report with this note: 'in view of the limitations of the test, the drag data for the combinations tested may be summarized, and considering the necessity of temperature control and accessibility to the engine it is apparent that the best combination tested was with the large nose piece, the Curtiss anti-drag ring, and the modified tail section.'

  20. Wind tunnel investigation of nacelle-airframe interference at Mach numbers of 0.9 to 1.4 - pressure data, volume 1

    NASA Technical Reports Server (NTRS)

    Bencze, D. P.

    1976-01-01

    Detailed interference force and pressure data were obtained on a representative wing-body nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The model was mounted on a six component force balance, and the left hand wing was pressure instrumented. Each of the two right hand nacelles was mounted on a six component force balance housed in the thickness of the nacelle, while each of the left hand nacelles was pressure instrumented. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass flow ratio. Nacelle axial location, relative to both the wing-body combination and to each other, was the most important variable in determining the net interference among the components.

  1. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle subsystem test report. [to verify strength of selected composite materials

    NASA Technical Reports Server (NTRS)

    Stotler, C. L., Jr.; Johnston, E. A.; Freeman, D. S.

    1977-01-01

    The element and subcomponent testing conducted to verify the under the wing composite nacelle design is reported. This composite nacelle consists of an inlet, outer cowl doors, inner cowl doors, and a variable fan nozzle. The element tests provided the mechanical properties used in the nacelle design. The subcomponent tests verified that the critical panel and joint areas of the nacelle had adequate structural integrity.

  2. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1182 Nacelle areas behind firewalls... immediately behind the firewall, and each portion of any engine pod attaching structure containing...

  3. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1182 Nacelle areas behind firewalls... immediately behind the firewall, and each portion of any engine pod attaching structure containing...

  4. 75 FR 5283 - Foreign-Trade Zone 123 - Denver, Colorado, Application for Subzone, Vestas Nacelles America, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 123 - Denver, Colorado, Application for Subzone, Vestas Nacelles America, Inc. (Wind Turbine Nacelles, Hubs, Blades and Towers), Brighton, Denver, Pueblo, and Windsor, Colorado An application has been...

  5. Designing and Testing a Blended Wing Body with Boundary Layer Ingestion Nacelles

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Campbell, Richard L.; Pendergraft, Odis C.; Underwood, Pamela J.; Friedman, Douglas M.; Serrano, Leonel

    2006-01-01

    A knowledge-based aerodynamic design method coupled with an unstructured grid Navier-Stokes flow solver was used to improve the propulsion/airframe integration for a Blended Wing Body with boundary-layer ingestion nacelles. A new zonal design capability was used that significantly reduced the time required to achieve a successful design for each nacelle and the elevon between them. A wind tunnel model was built with interchangeable parts reflecting the baseline and redesigned configurations and tested in the National Transonic Facility (NTF). Most of the testing was done at the cruise design conditions (Mach number = 0.85, Reynolds number = 75 million). In general, the predicted improvements in forces and moments as well as the changes in wing pressures between the baseline and redesign were confirmed by the wind tunnel results. The effectiveness of elevons between the nacelles was also predicted surprisingly well considering the crudeness in the modeling of the control surfaces in the flow code.

  6. A Computer Program for the Calculation of Three-Dimensional Transonic Nacelle/Inlet Flowfields

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Atta, E. H.

    1983-01-01

    A highly efficient computer analysis was developed for predicting transonic nacelle/inlet flowfields. This algorithm can compute the three dimensional transonic flowfield about axisymmetric (or asymmetric) nacelle/inlet configurations at zero or nonzero incidence. The flowfield is determined by solving the full-potential equation in conservative form on a body-fitted curvilinear computational mesh. The difference equations are solved using the AF2 approximate factorization scheme. This report presents a discussion of the computational methods used to both generate the body-fitted curvilinear mesh and to obtain the inviscid flow solution. Computed results and correlations with existing methods and experiment are presented. Also presented are discussions on the organization of the grid generation (NGRIDA) computer program and the flow solution (NACELLE) computer program, descriptions of the respective subroutines, definitions of the required input parameters for both algorithms, a brief discussion on interpretation of the output, and sample cases to illustrate application of the analysis.

  7. Additional testing of the inlets designed for a tandem fan V/STOL nacelle

    NASA Technical Reports Server (NTRS)

    Ybarra, A. H.

    1981-01-01

    The wind tunnel testing of a scale model of a tandem fan nacelle designed for a type (subsonic cruise) V/STOL aircraft configuration is discussed. The performance for the isolated front inlet and for the combined front and aft inlets is reported. Model variables include front and aft inlets with aft inlet variations of short and long aft inlet cowls, with a shaft simulator and diffuser vortex generators, cowl lip fillets, and nacelle strakes. Inlet pressure recovery, distortion, and inlet angle-to-attack separation limits were evaluated at tunnel velocity from 0 to 240 knots, angles-of-attack from -10 to +40 degrees and inlet flow rates corresponding to throat Mach number from 0.0 to 0.6. Combined nacelle pitch and yaw runs up to 30 deg. were also made.

  8. Yawing characteristics during slippage of the nacelle of a multi MW wind turbine

    NASA Astrophysics Data System (ADS)

    Kim, M.-G.; Dalhoff, P. H.; Gust, P.

    2016-09-01

    High aerodynamic yaw loads coupled with electrical failures in the wind turbine can result to a slippage of the nacelle, due to limited braking capabilities of the yaw system. A slippage on the other hand can lead to a mechanical malfunction of the yaw system. To analyse the yawing characteristics of a wind turbine during nacelle slippage situations, a detailed multibody system model of the yaw system has been developed and incorporated in a multibody system model of a wind turbine based on a 3.3 MW turbine. Extreme load cases which lead to a nacelle slippage have been simulated. The dynamics and loads on different wind turbine components are presented and discussed. First results show minimal load increases of the rotor torque and the bending moments of the blade root sections during slippage but unfavourable rotational speeds of the yaw drives.

  9. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Weir, Donald

    2003-01-01

    The Quiet High-Speed Fan program is a cooperative effort between Honeywell Engines & Systems (formerly AlliedSignal Engines & Systems) and the NASA Glenn Research Center. Engines & Systems has designed an advanced high-speed fan that will be tested on the Ultra High Bypass Propulsion Simulator in the NASA Glenn 9 x 15 foot wind tunnel, currently scheduled for the second quarter of 2000. An Engines & Systems modern fan design will be used as a baseline. A nacelle model is provided that is characteristic of a typical, modern regional aircraft nacelle and meets all of the program test objectives.

  10. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.

  11. Utilizing numerical techniques in turbofan inlet acoustic suppressor design

    NASA Astrophysics Data System (ADS)

    Baumeister, K. J.

    Numerical theories in conjunction with previously published analytical results are used to augment current analytical theories in the acoustic design of a turbofan inlet nacelle. In particular, a finite element-integral theory is used to study the effect of the inlet lip radius on the far field radiation pattern and to determine the optimum impedance in an actual engine environment. For some single mode JT15D data, the numerical theory and experiment are found to be in a good agreement.

  12. Morphing nacelle inlet lip with pneumatic actuators and a flexible nano composite sandwich panel

    NASA Astrophysics Data System (ADS)

    Gulsine Ozdemir, Nazli; Scarpa, Fabrizio; Craciun, Monica; Remillat, Chrystel; Lira, Cristian; Jagessur, Yogesh; Da Rocha-Schmidt, Luiz

    2015-12-01

    We present a hybrid pneumatic/flexible sandwich structure with thermoplastic (TP) nanocomposite skins to enable the morphing of a nacelle inlet lip. The design consists of pneumatic inflatables as actuators and a flexible sandwich panel that morphs under variable pressure combinations to adapt different flight conditions and save fuel. The sandwich panel forms the outer layer of the nacelle inlet lip. It is lightweight, compliant and impact resistant with no discontinuities, and consists of graphene-doped thermoplastic polyurethane (G/TPU) skins that are supported by an aluminium Flex-core honeycomb in the middle, with near zero in-plane Poisson’s ratio behaviour. A test rig for a reduced-scale demonstrator was designed and built to test the prototype of morphing nacelle with custom-made pneumatic actuators. The output force and the deflections of the experimental demonstrator are verified with the internal pressures of the actuators varying from 0 to 0.41 MPa. The results show the feasibility and promise of the hybrid inflatable/nanocomposite sandwich panel for morphing nacelle airframes.

  13. Effects of nacelle position and shape on performance of subsonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Krivec, D. K.; Segall, R. N.

    1983-01-01

    The reduction of installed-propulsion-system drag by installing circular and D-shaped-cross-section nacelles in an underwing-aft position is investigated experimentally in the NASA-Langley 16-foot transonic wind tunnel. Measurements were made at Mach 0.70 to 0.85, -2.5 to 4.1-deg angle of attack, and 3.4 to 4.0 million/ft Reynolds numbers using the NASA USB full-span transonic transport model; and results were compared with those for the wing-body and underwing-forward/pylon-mounted-nacelle (UTW) configurations. While all nacelle configurations are found to have interference drag, which can probably be reduced by eliminating supersonic flows, both aft configurations are shown to reduce drag relative to UTW and increase lift coefficients. The aft D-nacelle had the lowest drag, 6.8 percent of airplane drag lower than UTW at Mach 8.0 and lift coefficient 0.45. Wing pressure distributions and the effects of deflectors are discussed.

  14. Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.

  15. Redesign of a supercritical wing in the presence of an engine nacelle

    SciTech Connect

    Ross, D.S.

    1987-12-01

    A method for modelling an engine nacelle in a compressible flow using a source distribution is described. The incorporation of this technique into a free boundary supercritical wing design code is discussed. Results of calculations made with this code are presented. A method for calculating wave drag is also described. copyright 1987 Academic Press, Inc.

  16. Nacelle LiDAR online wind field reconstruction applied to feedforward pitch control

    NASA Astrophysics Data System (ADS)

    GUILLEMIN, F.; DOMENICO, D. DI; NGUYEN, N.; SABIRON, G.; BOQUET, M.; GIRARD, N.; COUPIAC, O.

    2016-09-01

    This paper presents innovative filtering and reconstruction techniques of nacelle LiDAR data, and exploitation of obtained wind anticipation capabilities for wind turbine control strategy. The implemented algorithms are applied under industrial constraints, on a MAIA EOLIS wind turbine, equipped with a LEOSPHERE 5-beams pulsed LiDAR, during experimental campaigns of SMARTEOLE collaborative project.

  17. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    NASA Astrophysics Data System (ADS)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  18. Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-force data

    NASA Technical Reports Server (NTRS)

    Bencze, D. P.

    1976-01-01

    Detailed interference force and pressure data were obtained on a representative wing-body-nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The model was mounted on a six-component force balance, and the left-hand wing was pressure-instrumented. Each of the two right-hand nacelles was mounted on a six-component force balance housed in the thickness of the nacelle, while each of the left-hand nacelles was pressure-instrumented. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass-flow ratio. Four different configurations were tested to identify various interference forces and pressures on each component; these included tests of the isolated nacelle, the isolated wing-body combination, the four nacelles as a unit, and the total wing-body-nacelle combination. Nacelle axial location, relative to both the wing-body combination and to each other, was the most important variable in determining the net interference among the components.

  19. Boom Softening and Nacelle Integration on an Arrow-Wing High-Speed Civil Transport Concept

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    During the last cycle of concept design and wind-tunnel testing, the goal of the low-boom- shaped HSCT concepts (the B-935, the LB-16, and the LB- 1 8) was to meet mission requirements and generate shaped, ground-level pressure signatures with nose shock strengths of 1.0 psf or less. The wind-tunnel tests of these concepts produced results that were partially successful and encouraging although not fully up to expectations. In spite of this, however, these conceptual designs were overly optimistic and not acceptable because: the wing planforms had excessive area; the wing structural aspect ratio was too high; one concept had aft-fuselage rather than under-the-wing engines; and the gross takeoff weights were unrealistically low because of engines that were early, high-tech versions of later, revised, more-realistic engines. The need for reducing the ground-level overpressure shock strengths still existed; a need to be met within more restrictive guidelines of mission performance and gross takeoff weight limitations. Therefore, it was decided that the next conceptual design cycle would focus on decreased nose shock strengths, "boom softening," in the signatures of the Boeing and the McDonnell Douglas baseline concepts rather than low-boom concepts with shaped-signature designs. Overly-optimistic results were not the only problem with these low-sonic-boom concepts. Papers given at the 1994 Sonic-Boom Workshop had demonstrated that the problem of successful nacelle integration on HSCT concepts had only been partially solved. Wind-tunnel pressure signature data, from the HSCT-11B (a.k.a. the LB-18) wind-tunnel model, showed that the Langley HSCT design and analysis method had been successful in reducing the nacelle-volume disturbances in the flow field. This was due.to the engine nacelles mounted behind the wing trailing-edge on the aft fuselage so that no nacelle-wing interference-lift flow-field disturbances were generated. While acceptable from a sonic-boom research

  20. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  1. Effects of varying podded nacelle-nozzle installations on transonic aeropropulsive characteristics of a supersonic fighter aircraft

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Reubush, D. E.

    1983-01-01

    The aeropropulsive characteristics of an advanced twin engine fighter designed for supersonic cruise was investigated in the 16 foot Transonic Tunnel. The performance characteristics of advanced nonaxisymmetric nozzles installed in various nacelle locations, the effects of thrust induced forces on overall aircraft aerodynamics, the trim characteristics, and the thrust reverser performance were evaluated. The major model variables included nozzle power setting; nozzle duct aspect ratio; forward, mid, and aft nacelle axial locations; inboard and outboard underwing nacelle locations; and underwing and overwing nacelle locations. Thrust vectoring exhaust nozzle configurations included a wedge nozzle, a two dimensional convergent divergent nozzle, and a single expansion ramp nozzle, each with deflection angles up to 30 deg. In addition to the nonaxisymmetric nozzles, an axisymmetric nozzle installation was also tested. The use of a canard for trim was also assessed.

  2. 78 FR 55057 - Authorization of Production Activity, Foreign-Trade Subzone 123E, Vestas Nacelles America, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... Nacelles America, Inc., (Wind Turbines), Brighton, Denver, Pueblo, and Windsor, Colorado On May 3, 2013...), including notice in the Federal Register inviting public comment (78 FR 31517, 5-24-2013). The FTZ Board...

  3. On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Compton, William Bernard

    1985-01-01

    The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.

  4. Development of analytical methods of predicting the pressure distribution about a nacelle at transonic speeds: Exact solution

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Moretti, G.

    1973-01-01

    A computer program to predict the inviscid, transonic flow field about isolated nacelles was developed. The problem was to be formulated to solve Euler's equations without any approximation (such as small disturbances) and hence the terminology exact solution. The flow field was complicated by the presence of imbedded shock waves, an engine-inlet interface, and exhaust plumes. Furthermore, the transonic nacelles of interest had a very slender but blunt cowl lip. This created two distinct length scales, the length of the nacelle and the cowl lip radius that can differ by several orders of magnitude. These aspects of the flow field presented many numerical difficulties. The approach to the problem was to calculate the nacelle flow field using the method of time-dependent computations (TDC). Although at the time of the issuance of this contract, other approaches to transonic flow calculations existed, it was felt that TDC offered the most effective means of meeting the goals of the contract.

  5. Acoustic Liner for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  6. Development of a Kevlar/PMR-15 reduced drag DC-9 nacelle fairing

    NASA Technical Reports Server (NTRS)

    Kawai, R. T.; Hrach, F. J.

    1980-01-01

    The paper describes an advanced composite fairing designed to reduce drag on DC-9 nacelles as a part of the NASA Engine Component Improvement Program. This fairing is the aft enclosure for the thrust reverser actuator system on JT8D engine nacelles and is subjected to a 500 F exhaust flow during the reverse thrust. A reduced-drag configuration was developed by using in-flight tuft surveys for flow visualization in order to identify areas with low-quality flow, and then modifying the aerodynamic lines to improve the flow. A fabrication method for molding the part in an autoclave was developed; this material system is suitable for 500 F. The resultant composite fairing reduces the overall aircraft drag 1% with a weight reduction of 40% when compared with a metal component.

  7. Application of laminar flow control to high-bypass-ratio turbofan engine nacelles

    NASA Technical Reports Server (NTRS)

    Wie, Y. S.; Collier, F. S., Jr.; Wagner, R. D.

    1991-01-01

    Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.

  8. Installed nacelle drag-improvement tests of an M = 0.8 turboprop transport configuration

    NASA Technical Reports Server (NTRS)

    Levin, A. D.; Smith, R. C.

    1983-01-01

    An unpowered semispan model of a representative turboprop configuration was tested to determine the effect of configuration modifications on the the nonmetric body and wing juncture. It is indicated that the jet off nacelle-installation drag can be approximately 25% of the cruise drag. However, the losses can be reduced to 17% by changes to the wing leading edge and nacelle intersection. Comparison of test results from a semispan nonmetric fuselage model with those from a full span metric fuselage show differences in angles of attack produced the same lift. It is found that the constant lift drag rise of the semispan model is higher because of the increased angle of attack to achieve the same lift.

  9. Optimal design and installation of ultra high bypass ratio turbofan nacelle

    NASA Astrophysics Data System (ADS)

    Savelyev, Andrey; Zlenko, Nikolay; Matyash, Evgeniy; Mikhaylov, Sergey; Shenkin, Andrey

    2016-10-01

    The paper is devoted to the problem of designing and optimizing the nacelle of turbojet bypass engine with high bypass ratio and high thrust. An optimization algorithm EGO based on development of surrogate models and the method for maximizing the probability of improving the objective function has been used. The designing methodology has been based on the numerical solution of the Reynolds equations system. Spalart-Allmaras turbulence model has been chosen for RANS closure. The effective thrust losses has been uses as an objective function in optimizing the engine nacelle. As a result of optimization, effective thrust has been increased by 1.5 %. The Blended wing body aircraft configuration has been studied as a possible application. Two variants of the engine layout arrangement have been considered. It has been shown that the power plant changes the pressure distribution on the aircraft surface. It results in essential diminishing the configuration lift-drag ratio.

  10. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle

    NASA Technical Reports Server (NTRS)

    Johnston, E. A.

    1978-01-01

    The detail design of the under the wing experimental composite nacelle components is summarized. Analysis of an inlet, fan bypass duct doors, core cowl doors, and variable fan nozzle are given. The required technology to meet propulsion system performance, weight, and operational characteristics is discussed. The materials, design, and fabrication technology for quiet propulsion systems which will yield installed thrust to weight ratios greater than 3.5 to 1 are described.

  11. An installed nacelle design code using a multiblock Euler solver. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.

    1992-01-01

    An efficient multiblock Euler design code was developed for designing a nacelle installed on geometrically complex airplane configurations. This approach employed a design driver based on a direct iterative surface curvature method developed at LaRC. A general multiblock Euler flow solver was used for computing flow around complex geometries. The flow solver used a finite-volume formulation with explicit time-stepping to solve the Euler Equations. It used a multiblock version of the multigrid method to accelerate the convergence of the calculations. The design driver successively updated the surface geometry to reduce the difference between the computed and target pressure distributions. In the flow solver, the change in surface geometry was simulated by applying surface transpiration boundary conditions to avoid repeated grid generation during design iterations. Smoothness of the designed surface was ensured by alternate application of streamwise and circumferential smoothings. The capability and efficiency of the code was demonstrated through the design of both an isolated nacelle and an installed nacelle at various flow conditions. Information on the execution of the computer program is provided in volume 2.

  12. An in-flight data system for chordwise turbulence measurements during acoustic disturbances

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Massie, Jeffery J.

    1987-01-01

    An in-flight data system for chordwise turbulence measurements has been developed by NASA to investigate laminar flow stability in the presence of acoustic disturbances. Flight tests were performed with an OV-1B turboprop with a JT-15D engine in order to establish the feasibility of utilizing natural laminar flow (NLF) nacelles to reduce drag and to determine the extent of NLF over a range of controlled acoustic frequencies. The data system consisted of PCM and FM data acquisition subsystems, dual wide-band magnetic flight recorders, and acoustic generating and measuring subsystems.

  13. Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2

    NASA Technical Reports Server (NTRS)

    Bencze, D. P.

    1976-01-01

    Detailed interference force and pressure data were obtained on a representative wing-body nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass flow ratio. Four different configurations were tested to identify various interference forces and pressures on each component; these included tests of the isolated nacelle, the isolated wing-body combination, the four nacelles as a unit, and the total wing-body-nacelle combination. Nacelle axial location, relative to both the wing-body combination and to each other, was the most important variable in determining the net interference among the components. The overall interference effects were found to be essentially constant over the operating angle-of-attack range of the configuration, and nearly independent of nacelle mass flow ratio.

  14. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  15. Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle

    SciTech Connect

    Lopez, A.R.; Gritzo, L.A.; Hassan, B.

    1997-06-01

    For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

  16. Configuration Effects on Acoustic Performance of a Duct Liner

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Nark, Douglas; Howerton, Brian M.

    2008-01-01

    Continued success in aircraft engine noise reduction necessitates ever more complete understanding of the effect that flow path geometry has on sound propagation in the engine. The Curved Duct Test Rig (CDTR) has been developed at NASA Langley Research Center to investigate sound propagation through a duct of comparable size (approximately the gap of GE90) and physical characteristics to the aft bypass duct of typical aircraft engines. The liner test section is designed to mimic the outer/inner walls of an engine exhaust bypass duct that has been unrolled circumferentially. Experiments to investigate the effect of curvature along the flow path on the acoustic performance of a test liner are performed in the CDTR and reported in this paper. Flow paths investigated include both straight and curved with offsets from the inlet to the discharge plane of and 1 duct width, respectively. The test liners are installed on the side walls of the liner test section. The liner samples are perforate over honeycomb core, which design is typical of liners installed in aircraft nacelles. In addition to fully treated side walls, combinations of treated and acoustically rigid walls are investigated. While curvature in the hard wall duct is found not to reduce the incident sound significantly, it does cause mode scattering. It is found that asymmetry of liner treatment causes scattering of the incident mode into less attenuated modes, which degrades the overall liner attenuation. It is also found that symmetry of liner treatment enhances liner performance by eliminating scattering into less attenuated modes. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation (CDUCT-LaRC) have also been made and are reported in this paper. The effect of curvature in the rigid wall configuration estimated by CDUCT-LaRC is similar to the observed results, and the mode scattering seen in the measurements also occurs in the

  17. Computational Fluid Dynamics (CFD) Design of a Blended Wing Body (BWB) with Boundary Layer Ingestion (BLI) Nacelles

    NASA Technical Reports Server (NTRS)

    Morehouse, Melissa B.

    2001-01-01

    A study is being conducted to improve the propulsion/airframe integration for the Blended Wing-Body (BWB) configuration with boundary layer ingestion nacelles. TWO unstructured grid flow solvers, USM3D and FUN3D, have been coupled with different design methods and are being used to redesign the aft wing region and the nacelles to reduce drag and flow separation. An initial study comparing analyses from these two flow solvers against data from a wind tunnel test as well as predictions from the OVERFLOW structured grid code for a BWB without nacelles has been completed. Results indicate that the unstructured grid codes are sufficiently accurate for use in design. Results from the BWB design study will be presented.

  18. Analysis of results from wind tunnel tests of inlets for an advanced turboprop nacelle installation

    NASA Technical Reports Server (NTRS)

    Hancock, J. P.; Lyman, V.; Pennock, A. P.

    1986-01-01

    Inlets for tractor installations of advanced turboprop propulsion systems were tested in three phases, covering a period from November, 1982 to January, 1984. Nacelle inlet configuration types included single scoop, twin scoop, and annular arrangements. Tests were performed with and without boundary layer diverters and several different diverter heights were tested for the single scoop inlet. This same inlet was also tested at two different axial positions. Test Mach numbers ranged from Mach 0.20 to 0.80. Types of data taken were: (1) internal and external pressures, including inlet throat recoveries; (2) balance forces, including thrust-minus-drag; and (3) propellar blade stresses.

  19. Subsonic wind tunnel investigation of a twin-engine attack airplane model having nonmetric powered nacelles

    NASA Technical Reports Server (NTRS)

    Lockwood, V. E.; Matarazzo, A.

    1974-01-01

    A 1/10-scale powered model of a twin-engine attack airplane was investigated in the Langley high-speed 7- by 10-foot tunnel. The study was made at several Mach numbers between 0.225 and 0.75 which correspond to Reynolds numbers, based on the mean aerodynamic chord, of 1.35 million and 3.34 million. Unheated compressed air was used for jet simulation in the nonmetric engine nacelles which were located ahead of and above the horizontal stabilizer.

  20. NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD

    NASA Technical Reports Server (NTRS)

    Schuh, Michael J.; Garcia, Joseph A.; Carter, Melissa B.; Deere, Karen A.; Tompkins, Daniel M.; Stremel, Paul M.

    2016-01-01

    Wind tunnel tests of a 5.75 scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14x22 and NASA Ames Research Center (ARC) 40x80 low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.

  1. NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD

    NASA Technical Reports Server (NTRS)

    Schuh, Michael J.; Garcia, Jospeh A.; Carter, Melissa B.; Deere, Karen A.; Stremel, Paul M.; Tompkins, Daniel M.

    2016-01-01

    Wind tunnel tests of a 5.75% scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14'x22' and NASA Ames Research Center (ARC) 40'x80' low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.

  2. Tiltrotor Acoustic Flight Test: Terminal Area Operations

    NASA Technical Reports Server (NTRS)

    SantaMaria, O. L.; Wellman, J. B.; Conner, D. A.; Rutledge, C. K.

    1991-01-01

    This paper provides a comprehensive description of an acoustic flight test of the XV- 15 Tiltrotor Aircraft with Advanced Technology Blades (ATB) conducted in August and September 1991 at Crows Landing, California. The purpose of this cooperative research effort of the NASA Langley and Ames Research Centers was to obtain a preliminary, high quality database of far-field acoustics for terminal area operations of the XV-15 at a takeoff gross weight of approximately 14,000 lbs for various glide slopes, airspeeds, rotor tip speeds, and nacelle tilt angles. The test also was used to assess the suitability of the Crows Landing complex for full scale far-field acoustic testing. This was the first acoustic flight test of the XV-15 aircraft equipped with ATB involving approach and level flyover operations. The test involved coordination of numerous personnel, facilities and equipment. Considerable effort was made to minimize potential extraneous noise sources unique to the region during the test. Acoustic data from the level flyovers were analyzed, then compared with data from a previous test of the XV-15 equipped with Standard Metal Blades

  3. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings III : Clark Y Wing - Various Radial-engine Cowlings - Tractor Propeller

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1933-01-01

    This report is the third of a series giving the results obtained in the 20-foot wind tunnel on the interference drag, and propulsive efficiency of nacelle-propeller-wing combinations. The first report gave the results of the tests of an NACA cowled air-cooled engine nacelle with tractor propeller located in 21 positions with reference to a thick wing. The second report gave the results for several engine cowlings and nacelles with tractor propeller located in four positions with reference to same wing. The present report gives results of tests of the same nacelles and cowlings in the same positions with reference to a smaller wing of Clark y section. The lift, drag, and propulsive efficiency were determined at several angles of attack for each cowling and in each nacelle location.

  4. Ducted fan acoustic radiation including the effects of nonuniform mean flow and acoustic treatment

    NASA Technical Reports Server (NTRS)

    Eversman, Walter; Roy, Indranil Danda

    1993-01-01

    Forward and aft acoustic propagation and radiation from a ducted fan is modeled using a finite element discretization of the acoustic field equations. The fan noise source is introduced as equivalent body forces representing distributed blade loading. The flow in and around the nacelle is assumed to be nonuniform, reflecting the effects of forward flight and flow into the inlet. Refraction due to the fan exit jet shear layer is not represented. Acoustic treatment on the inlet and exhaust duct surfaces provides a mechanism for attenuation. In a region enclosing the fan a pressure formulation is used with the assumption of locally uniform flow. Away from the fan a velocity potential formulation is used and the flow is assumed nonuniform but irrotational. A procedure is developed for matching the two regions by making use of local duct modal amplitudes as transition state variables and determining the amplitudes by enforcing natural boundary conditions at the interface between adjacent regions in which pressure and velocity potential are used. Simple models of rotor alone and rotor/exit guide vane generated noise are used to demonstrate the calculation of the radiated acoustic field and to show the effect of acoustic treatment. The model has been used to assess the success of four techniques for acoustic lining optimization in reducing far field noise.

  5. Suppressor nozzle and airframe noise measurements during flyover of a modified F106B aircraft with underwing nacelles

    NASA Technical Reports Server (NTRS)

    Burley, R. R.

    1974-01-01

    The effect of flight velocity on the jet noise and thrust of a 104-tube suppressor nozzle was investigated using an F-106B delta wing aircraft modified to carry two underwing nacelles each containing a turbojet engine. The nozzle was mounted behind one of the nacelles. Flight velocity had a large adverse effect on thrust and a small adverse effect on suppression when correlated with relative jet velocity. The clean airframe noise of the aircraft was measured at Mach 0.4 and was compared with that predicted from an empirical expression. The 83 db measured value was considerably below the predicted value.

  6. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area... fluid lines, must meet each requirement of §§ 25.1103(b), 25.1165 (d) and (e), 25.1183, 25.1185(c),...

  7. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area... fluid lines, must meet each requirement of §§ 25.1103(b), 25.1165 (d) and (e), 25.1183, 25.1185(c),...

  8. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area... fluid lines, must meet each requirement of §§ 25.1103(b), 25.1165 (d) and (e), 25.1183, 25.1185(c),...

  9. Tabulations of static pressure coefficients on the surfaces of 3 pylon-mounted axisymmetric flow-through nacelles at Mach numbers from 0.40 to 0.98

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Peddrew, K. H.

    1982-01-01

    Three flow through nacelles mounted on an 82 deg swept pylon (10 percent thickness-to-chord ratio) were tested in the Langley 16 foot Transonic Tunnel. The long uncambered pylon was supported from a small body of revolution so that pressure measurements on the nacelle and pylon represent a pylon nacelle flow field without a wing present. Two nacelles had NACA 1-85-100 inlets and different circular arc afterbodies. The third nacelle had an NACA 1-70-100 inlet with a circular arc afterbody having the same external shape as one of the other nacelles. Nacelle length to maximum diameter ratio was 3.5. Data were obtained at angles of attack from 2 deg to 8 deg at selected Mach numbers.

  10. An analysis of available data on effects of wing-fuselage-tail and wing-nacelle interference on the distribution of the air load among components of airplanes

    NASA Technical Reports Server (NTRS)

    Wollner, Bertram C

    1949-01-01

    Available information on the effects of wing-fuselage-tail and wing-nacelle interference on the distribution of the air load among components of airplanes is analyzed. The effects of wing and nacelle incidence, horizontal andvertical position of wing and nacelle, fuselage shape, wing section and filleting are considered. Where sufficient data were unavailable to determine the distribution of the air load, the change in lift caused by interference between wing and fuselage was found. This increment is affected to the greatest extent by vertical wing position.

  11. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings II : Thick Wing - Various Radial-Engine Cowlings - Tractor Propeller

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1932-01-01

    This report is the second of a series giving the results obtained in the 20-foot wind tunnel of the National Advisory Committee for Aeronautics on the interference drag and propulsive efficiency of nacelle-propeller-wing combinations. The first report gave the results of the test of a N.A.C.A. cowled air-cooled engine nacelle located in 21 positions with reference to a thick wing. The present report gives results of tests of a normal engine nacelle with several types of cowling and fairings in four of the positions with reference to the same wing. (author)

  12. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  13. Development and testing of dry chemicals in advanced extinguishing systems for jet engine nacelle fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Ling, A. C. (Editor); Mayer, L. A.; Myronik, D. J.

    1979-01-01

    The effectiveness of dry chemical in extinguishing and delaying reignition of fires resulting from hydrocarbon fuel leaking onto heated surfaces such as can occur in jet engine nacelles is studied. The commercial fire extinguishant dry chemical tried are sodium and potassium bicarbonate, carbonate, chloride, carbamate (Monnex), metal halogen, and metal hydroxycarbonate compounds. Synthetic and preparative procedures for new materials developed, a new concept of fire control by dry chemical agents, descriptions of experiment assemblages to test dry chemical fire extinguishant efficiencies in controlling fuel fires initiated by hot surfaces, comparative testing data for more than 25 chemical systems in a 'static' assemblage with no air flow across the heated surface, and similar comparative data for more than ten compounds in a dynamic system with air flows up to 350 ft/sec are presented.

  14. Effect of solidity and inclination on propeller-nacelle force coefficients

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Dunham, Dana Morris; Takallu, M. A.

    1991-01-01

    A series of wind tunnel experiments were conducted to study the effect of propeller solidity and thrust axis inclination on the propeller normal force coefficient. Experiments were conducted in the Langley 14 by 22 foot Subsonic Tunnel with a sting mounted, counterrotation, scale model propeller and nacelle. Configurations had two rows of blades with combinations of 4 and 8 blades per hub. The solidity was varied by changing the number of blades on both rows. Tests were conducted for blade pitch setting of 31.34 deg, 36.34 deg, and 41.34 deg over a range of angle of attack from -10 deg to 90 deg and range of advance ratio from 0.8 to 1.4. The increase in propeller normal force with angle of attack is greater for propellers with higher solidity.

  15. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  16. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  17. Installation effects of long-duct pylon-mounted nacelles on a twin-jet transport model with swept supercritical wing

    NASA Technical Reports Server (NTRS)

    Lee, E. E., Jr.; Pendergraft, O. C., Jr.

    1985-01-01

    The installation interference effects of an underwing-mounted, long duct, turbofan nacelle were evaluated in the Langley 16-Foot Transonic Tunnel with two different pylon shapes installed on a twin engine transport model having a supercritical wing swept 30 deg. Wing, pylon, and nacelle pressures and overall model force data were obtained at Mach numbers from 0.70 to 0.83 and nominal angles of attack from -2 deg to 4 deg at an average unit Reynolds number of 11.9 x 1,000,000 per meter. The results show that adding the long duct nacelles to the supercritical wing, in the near sonic flow field, changed the magnitude and direction of flow velocities over the entire span, significantly reduced cruise lift, and caused large interference drag on the nacelle afterbody.

  18. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  19. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  20. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings IV : Thick Wing - Various Radial-Engine Cowlings - Tandem Propellers

    NASA Technical Reports Server (NTRS)

    Mchugh, James G

    1935-01-01

    This report is the fourth of a series giving the results obtained from wind tunnel tests to determine the interference lift and drag and propulsive efficiency of wing-nacelle-propeller combinations. Previous reports give the results of tests with tractor propellers with various forms of nacelles and engine cowlings. This report gives the results of tests of tandem arrangements of engines and propellers in 11 positions with reference to a thick wing.

  1. Flight effects on noise generated by the JT8D-17 engine in a quiet nacelle and a conventional nacelle as measured in the NASA-Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1976-01-01

    A JT8D-17 turbofan engine was tested in the NASA-Ames 40- by 80-foot wind tunnel to determine flight effects on jet and fan noise. Baseline, quiet nacelle with 20-lobe ejector/suppressor, and internal mixer configurations were tested over a range of engine power settings and tunnel velocities. Flight effects derived from the 40- by 80-foot wind tunnel test are compared with 727/JT8D flight test data and with model data obtained in a smaller wind tunnel. Procedures are defined for measuring noise data in a wind tunnel relatively near the sources and analyzing the results to obtain far-field flight effects. Wind tunnel and 727 flight test noise results compare favorably for both the baseline and quiet nacelle configurations. Two reports are provided, including a comprehensive version with extensive test results and analysis and the subject summary version that emphasizes data analysis and program finding.

  2. Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design and testing of high bypass geared turbofan engines with nacelles forming the propulsion systems for short haul passenger aircraft are considered. The test results demonstrate the technology required for externally blown flap aircraft for introduction into passenger service in the 1980's. The equipment tested is described along with the test facility and instrumentation. A chronological history of the test and a summary of results are given.

  3. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    SciTech Connect

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  4. Design and Testing of a Blended Wing Body With Boundary Layer Ingestion Nacelles at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Friedman, Douglas M.; Serrano, Leonel

    2005-01-01

    A knowledge-based aerodynamic design method coupled with an unstructured grid Navier-Stokes flow solver was used to improve the propulsion/airframe integration for a Blended Wing Body with boundary-layer ingestion nacelles. A new zonal design capability was used that significantly reduced the time required to achieve a successful design for each nacelle and the elevon between them. A wind tunnel model was built with interchangeable parts reflecting the baseline and redesigned configurations and tested in the National Transonic Facility (NTF). Most of the testing was done at the cruise design conditions (Mach number = 0.85, Reynolds number = 75 million). In general, the predicted improvements in forces and moments as well as the changes in wing pressures between the baseline and redesign were confirmed by the wind tunnel results. The effectiveness of elevons between the nacelles was also predicted surprisingly well considering the crudeness in the modeling of the control surfaces in the flow code. A novel flow visualization technique involving pressure sensitive paint in the cryogenic nitrogen environment used in high-Reynolds number testing in the NTF was also investigated.

  5. Short Haul Civil Tiltrotor Study in MIDAS: Auto versus Manual Nacelle Procedures for Commanded Go-Around

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.; Banda, Carolyn

    1998-01-01

    Tiltrotor aircraft combine the speed and range of a turboprop performance with the ability to take off and land in a vertical mode like a helicopter. These aircraft will transport passengers from city center to city center and from satellite airports to major hub airports to make connections to long range travel. The Short Haul Civil Tiltrotor (SH(CT)) being studied by NASA is a concept 40 passenger civil tiltrotor (CTR) transport. The Man-machine Integration Design and Analysis System (MIDAS) was used to evaluate human performance in terms of crew procedures and pilot workload for a simulated 40 passenger Civil Tiltrotor Transport on a steep approach to a vertiport. The scenario for the simulation was a normal approach to the vertiport that is interrupted by a commanded go-around at the landing decision point. The simulation contrasted an automated discrete nacelle mode control with a fully manual nacelle control mode for the go-around. The MIDAS simulation showed that the pilot task loading during approach and for the commanded go-around is high and that pilot workload is near capacity throughout. The go-around in manual nacelle mode was most demanding, resulting in additional time requirements to complete necessary tasks.

  6. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  7. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  8. Suppression of pool fires with HRC-125 in a simulated engine nacelle.

    SciTech Connect

    Keyser, David R.; Hewson, John C.

    2007-06-01

    CFD simulations are conducted to predict the distribution of fire suppressant in an engine nacelle and to predict the suppression of pool fires by the application of this suppressant. In the baseline configuration, which is based on an installed system, suppressant is injected through four nozzles at a rate fast enough to suppress all simulated pool fires. Variations that reduce the mass of the suppression system (reducing the impact of the suppression system on meeting mission needs) are considered, including a reduction in the rate of suppressant injection, a reduction in the mass of suppressant and a reduction in the number of nozzles. In general, these variations should work to reduce the effectiveness of the suppression system, but the CFD results point out certain changes that have negligible impact, at least for the range of phenomena considered here. The results are compared with measurements where available. Comparisons with suppressant measurements are reasonable. A series of twenty-three fire suppression tests were conducted to check the predictions. The pre-test predictions were generally successful in identifying the range of successful suppression tests. In two separate cases, each where one nozzle of the suppression system was capped, the simulation results did indicate a failure to suppress for a condition where the tests indicated successful suppression. When the test-suppressant discharge rate was reduced by roughly 25%, the tests were in agreement with the predictions. That is, the simulations predict a failure to suppress slightly before observed in these cases.

  9. Aerodynamic analysis for aircraft with nacelles, pylons, and winglets at transonic speeds

    NASA Technical Reports Server (NTRS)

    Boppe, Charles W.

    1987-01-01

    A computational method has been developed to provide an analysis for complex realistic aircraft configurations at transonic speeds. Wing-fuselage configurations with various combinations of pods, pylons, nacelles, and winglets can be analyzed along with simpler shapes such as airfoils, isolated wings, and isolated bodies. The flexibility required for the treatment of such diverse geometries is obtained by using a multiple nested grid approach in the finite-difference relaxation scheme. Aircraft components (and their grid systems) can be added or removed as required. As a result, the computational method can be used in the same manner as a wind tunnel to study high-speed aerodynamic interference effects. The multiple grid approach also provides high boundary point density/cost ratio. High resolution pressure distributions can be obtained. Computed results are correlated with wind tunnel and flight data using four different transport configurations. Experimental/computational component interference effects are included for cases where data are available. The computer code used for these comparisons is described in the appendices.

  10. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  11. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  12. Analytical models for use in fan inflow control structure design. Inflow distortion and acoustic transmission models

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1979-01-01

    Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.

  13. Acoustic Imaging in Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Chang, Hsiang-Kuang; Sun, Ming-Tsung; LaBonte, Barry; Chen, Huei-Ru; Yeh, Sheng-Jen; Team, The TON

    1999-04-01

    The time-variant acoustic signal at a point in the solar interior can be constructed from observations at the surface, based on the knowledge of how acoustic waves travel in the Sun: the time-distance relation of the p-modes. The basic principle and properties of this imaging technique are discussed in detail. The helioseismic data used in this study were taken with the Taiwan Oscillation Network (TON). The time series of observed acoustic signals on the solar surface is treated as a phased array. The time-distance relation provides the phase information among the phased array elements. The signal at any location at any time can be reconstructed by summing the observed signal at array elements in phase and with a proper normalization. The time series of the constructed acoustic signal contains information on frequency, phase, and intensity. We use the constructed intensity to obtain three-dimensional acoustic absorption images. The features in the absorption images correlate with the magnetic field in the active region. The vertical extension of absorption features in the active region is smaller in images constructed with shorter wavelengths. This indicates that the vertical resolution of the three-dimensional images depends on the range of modes used in constructing the signal. The actual depths of the absorption features in the active region may be smaller than those shown in the three-dimensional images.

  14. Horizontal geometrical reaction time model for two-beam nacelle LiDARs

    NASA Astrophysics Data System (ADS)

    Beuth, Thorsten; Fox, Maik; Stork, Wilhelm

    2015-06-01

    Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.

  15. The effects on cruise drag of installing long-duct refan-engine nacelles on the McDonnell Douglas DC-8-50 and -61

    NASA Technical Reports Server (NTRS)

    Callaghan, J. T.; Donelson, J. E.; Morelli, J. P.

    1973-01-01

    A high-speed wind tunnel test was conducted to determine the effect on cruise performance of installing long-duct refan-engine nacelles on the DC-8-50 and -61 models. Drag data and wing/pylon/nacelle channel pressure data are presented. At a typical cruise condition there exists a very small interference drag penalty of less than one-percent of total cruise data for the Refan installation. Pressure data indicate that some supersonic flow is present in the inboard channel of the inboard refan nacelle installation, but it is not sufficient to cause any wave drag on boundary layer separation. One pylon modification, which takes the form of pylon bumps, was tested. It resulted in a drag penalty, because its design goal of eliminating shock-related interference drag was not required and the bump thus became a source of additional parasite drag.

  16. Theoretical and Experimental studies of aerodynamic interference effects. [aerodynamic forces on winglets and on wing nacelle configurations for the YC-14 and KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Rettie, I. H.

    1980-01-01

    Theoretical studies of aerodynamic forces on winglets shed considerable light on the mechanism by which these devices can reduce drag at constant total lift and on the necessity for proper alignment and cambering to achieve optimum favorable interference. Results of engineering studies, wind tunnel tests and performance predictions are reviewed for installations proposed for the AMST YC-14 and the KC-135 airplanes. The other major area of aerodynamic interference discussed is that of engine nacelle installations. Slipper and overwing nacelles have received much attention because of their potential for noise reduction, propulsive lift and improved ground clearance. A major challenge is the integration of such nacelles with the supercritical flow on the upper surface of a swept wing in cruise at high subsonic speeds.

  17. Altitude performance of a low-noise-technology fan in a turbofan engine with and without a sound suppressing nacelle

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Grey, R. E.; Abdelwahah, M.

    1976-01-01

    Test variables were inlet Reynolds number index (0.2 to 0.5), flight Mach number (0.2 to 0.8), and flow distortion (tip radial and combined circumferential - tip radial patterns). Results are limited to fan bypass and overall engine performance. There were no discernible effects of Reynolds number on fan performance. Increasing flight Mach number shifted the fan operating line such that pressure ratio decreased and airflow increased. Inlet flow distortion lowered stall margin. For a Reynolds number index of 0.2 and flight Mach number of 0.54, the sound suppressing nacelle lowered fan efficiency three points and increased specific fuel consumption about 10 percent.

  18. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  19. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  20. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  1. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  2. Cruise Drag Results from High Speed Wind Tunnel Tests of NASA Refan JT8D Engine Nacelles on the Boeing 727-200

    NASA Technical Reports Server (NTRS)

    Easterbrook, W. G.; Carlson, R. B.

    1973-01-01

    High speed wind tunnel test results are presented showing the cruise drag effect of installing JT8D-109 Refan engines on a Boeing 727-200. Incremental drags of a refan center inlet and side nacelles are presented for several configuration variations. Static pressure distributions were obtained on the side nacelle strut and on the fuselage (above and below the strut). Oil flow photographs of selected configurations are also presented. In general the drag level of the refan installation is slightly better than predicted prior to the test and the drag rise is favorable.

  3. Imaging feedback for histotripsy by characterizing dynamics of acoustic radiation force impulse (ARFI)-induced shear waves excited in a treated volume.

    PubMed

    Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A

    2014-07-01

    Our previous study indicated that shear waves decay and propagate at a lower speed as they propagate into a tissue volume mechanically fractionated by histotripsy. In this paper, we hypothesize that the change in the shear dynamics is related to the degree of tissue fractionation, and can be used to predict histotripsy treatment outcomes. To test this hypothesis, lesions with different degrees of tissue fractionation were created in agar-graphite tissue phantoms and ex vivo kidneys with increasing numbers of therapy pulses, from 0 to 2000 pulses per treatment location. The therapy pulses were 3-cycle 750-kHz focused ultrasound delivered at a peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. The shear waves were excited by acoustic radiation force impulse (ARFI) focused at the center of the lesion. The spatial and temporal behavior of the propagating shear waves was measured with ultrasound plane wave imaging. The temporal displacement profile at a lateral location 10 mm offset to the shear excitation region was detected with M-mode imaging. The decay and delay of the shear waves were quantitatively characterized on the temporal displacement profile. Results showed significant changes in two characteristics on the temporal displacement profile: the peak-to-peak displacement decayed exponentially with increasing numbers of therapy pulses; the relative time-to-peak displacement increased with increasing numbers of therapy pulses, and appeared to saturate at higher numbers of pulses. Correspondingly, the degree of tissues fractionation, as indicated by the percentage of structurally intact cell nuclei, decreased exponentially with increasing numbers of therapy pulses. Strong linear correlations were found between the two characteristics and the degree of tissue fractionation. These results suggest that the characteristics of the shear temporal displacement profile may provide useful feedback information regarding the treatment outcomes.

  4. Optimal Shape Design of Mail-Slot Nacelle on N3-X Hybrid Wing-Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2013-01-01

    System studies show that a N3-X hybrid wing-body aircraft with a turboelectric distributed propulsion system using a mail-slot inlet/nozzle nacelle can meet the environmental and performance goals for N+3 generation transports (three generations beyond the current air transport technology level) set by NASA's Subsonic Fixed Wing Project. In this study, a Navier-Stokes flow simulation of N3-X on hybrid unstructured meshes was conducted, including the mail-slot propulsor. The geometry of the mail-slot propulsor was generated by a CAD (Computer-Aided Design)-free shape parameterization. A novel body force model generation approach was suggested for a more realistic and efficient simulation of the flow turning, pressure rise and loss effects of the fan blades and the inlet-fan interactions. Flow simulation results of the N3-X demonstrates the validity of the present approach. An optimal Shape design of the mail-slot nacelle surface was conducted to reduce strength of shock waves and flow separations on the cowl surface.

  5. Determination of the acoustic source power levels of wind turbines

    NASA Astrophysics Data System (ADS)

    Debruijn, A.; Stam, W. J.; Dewolf, W. B.

    To facilitate Wind Energy Conversin System (WECS) licensing, it is recommended to obtain the immission-relevant sound power from the WECS, since this quantity fits into most recommendations for industrial installations. Measurements on small and medium-scale WECS show that rotor rotation speed is a more important parameter than the wind velocity with regard to the radiated noise. An acoustic telescope was used to identify noise sources on two medium-size wind turbines. The mechanical noise from the nacelle is mostly predominant but the trailing edge aerodynamic noise is not negligible. A prediction model for this type of noise, which leads to good agreement with experimental data was developed. A method to suppress turbulence signals around WECS is a set-up with twin microphones, using correlation techniques on both signals.

  6. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  7. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  8. Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report. Volume 3: Mechanical performance

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of initial tests of the under the wing experimental engine and boilerplate nacelle are presented. The mechanical performance of the engine is reported with emphasis on the advanced technology components. Technology elements of the propulsion system covered include: system dynamics, composite fan blades, reduction gear, lube and accessory drive system, fan frame, inlet, core cowl cooling, fan exhaust nozzle, and digital control system.

  9. Low speed test of a high-bypass-ratio propulsion system with an asymmetric inlet designed for a tilt-nacelle V/STOL airplane

    NASA Technical Reports Server (NTRS)

    Syberg, J.

    1978-01-01

    A large scale model of a lift/cruise fan inlet designed for a tilt nacelle V/STOL airplane was tested with a high bypass ratio turbofan. Testing was conducted at low freestream velocities with inlet angles of attack ranging from 0 deg to 120 deg. The operating limits for the nacelle were found to be related to inlet boundary layer separation. Small separations originating in the inlet diffuser cause little or no performance degradation. However, at sufficiently severe freestream conditions the separation changes abruptly to a lip separation. This change is associated with a significant reduction in nacelle net thrust as well as a sharp increase in fan blade vibratory stresses. Consequently, the onset of lip separation is regarded as the nacelle operating limit. The test verified that the asymmetric inlet design will provide high performance and stable operation at the design forward speed and angle of attack conditions. At some of these, however, operation near the lower end of the design inlet airflow range is not feasible due to the occurrence of lip separation.

  10. Theory of Acoustic Raman Modes in Proteins

    NASA Astrophysics Data System (ADS)

    DeWolf, Timothy; Gordon, Reuven

    2016-09-01

    We present a theoretical analysis that associates the resonances of extraordinary acoustic Raman (EAR) spectroscopy [Wheaton et al., Nat. Photonics 9, 68 (2015)] with the collective modes of proteins. The theory uses the anisotropic elastic network model to find the protein acoustic modes, and calculates Raman intensity by treating the protein as a polarizable ellipsoid. Reasonable agreement is found between EAR spectra and our theory. Protein acoustic modes have been extensively studied theoretically to assess the role they play in protein function; this result suggests EAR spectroscopy as a new experimental tool for studies of protein acoustic modes.

  11. Field testing of feedforward collective pitch control on the CART2 using a nacelle-based Lidar scanner

    SciTech Connect

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsass, Martin; Wright, Alan; Cheng, Po Wen

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Moreover, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.

  12. An experimental investigation of nacelle-pylon installation on an unswept wing at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Compton, W. B., III

    1984-01-01

    A wind tunnel investigation was conducted to determine the aerodynamic interference associated with the installation of a long duct, flow-through nacelle on a straight unswept untapered supercritical wing. Experimental data was obtained for the verification of computational prediction techniques. The model was tested in the 16-Foot Transonic Tunnel at Mach numbers from 0.20 to 0.875 and at angles of attack from about 0 deg to 5 deg. The results of the investigation show that strong viscous and compressibility effects are present at the transonic Mach numbers. Numerical comparisons show that linear theory is adequate for subsonic Mach number flow prediction, but is inadequate for prediction of the extreme flow conditions that exist at the transonic Mach numbers.

  13. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  14. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  15. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan Design

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Repp, Russ; Gentile, David; Hanson, David; Chunduru, Srinivas

    2003-01-01

    The primary objective of the Quiet High-Speed Fan (QHSF) program was to develop an advanced high-speed fan design that will achieve a 6 dB reduction in overall fan noise over a baseline configuration while maintaining similar performance. The program applies and validates acoustic, aerodynamic, aeroelastic, and mechanical design tools developed by NASA, US industry, and academia. The successful fan design will be used in an AlliedSignal Engines (AE) advanced regional engine to be marketed in the year 2000 and beyond. This technology is needed to maintain US industry leadership in the regional turbofan engine market.

  16. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  17. Communal Sensor Network for Adaptive Noise Reduction in Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Nark, Douglas M.; Jones, Michael G.

    2011-01-01

    Emergent behavior, a subject of much research in biology, sociology, and economics, is a foundational element of Complex Systems Science and is apropos in the design of sensor network systems. To demonstrate engineering for emergent behavior, a novel approach in the design of a sensor/actuator network is presented maintaining optimal noise attenuation as an adaptation to changing acoustic conditions. Rather than use the conventional approach where sensors are managed by a central controller, this new paradigm uses a biomimetic model where sensor/actuators cooperate as a community of autonomous organisms, sharing with neighbors to control impedance based on local information. From the combination of all individual actions, an optimal attenuation emerges for the global system.

  18. Acoustic emission linear pulse holography

    SciTech Connect

    Collins, H. D.; Busse, L. J.; Lemon, D. K.

    1985-07-30

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  19. Acoustic emission linear pulse holography

    SciTech Connect

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  20. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  1. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  2. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  3. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  4. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  5. Developpement et validation d'un outil base sur l'acoustique geometrique pour le diagnostic du bruit de nacelle

    NASA Astrophysics Data System (ADS)

    Minard, Benoit

    De nos jours, la problématique du bruit généré par les avions est devenue un point de développement important dans le domaine de l'aéronautique. C'est ainsi que de nombreuses études sont faites dans le domaine et une première approche consiste à modéliser de façon numérique ce bruit de manière à réduire de façon conséquente les coûts lors de la conception. C'est dans ce contexte qu'un motoriste a demandé à l'université de Sherbrooke, et plus particulièrement au groupe d'acoustique de l'Université de Sherbrooke (GAUS), de développer un outil de calcul de la propagation des ondes acoustiques dans les nacelles mais aussi pour l'étude des effets d'installation. Cet outil de prédiction leur permet de réaliser des études afin d'optimiser les traitements acoustiques (« liners »), la géométrie de ces nacelles pour des études portant sur l'intérieur de la nacelle et des études de positionnement des moteurs et de design pour les effets d'installation. L'objectif de ce projet de maîtrise était donc de poursuivre le travail réalisé par [gousset, 2011] sur l'utilisation d'une méthode de lancer de rayons pour l'étude des effets d'installation des moteurs d'avion. L'amélioration du code, sa rapidité, sa fiabilité et sa généralité étaient les objectifs principaux. Le code peut être utilisé avec des traitements acoustiques de surfaces («liners») et peut prendre en compte le phénomène de la diffraction par les arêtes et enfin peut être utilisé pour réaliser des études dans des environnements complexes tels que les nacelles d'avion. Le code développé fonctionne en 3D et procéde en 3 étapes : (1) Calcul des faisceaux initiaux (division d'une sphère, demi-sphère, maillage des surfaces de la géométrie) (2) Propagation des faisceaux dans l'environnement d'étude : calcul de toutes les caractéristiques des rayons convergents (amplitude, phase, nombre de réflexions, ...) (3) Reconstruction du champ de pression en un ou

  6. Field testing of feedforward collective pitch control on the CART2 using a nacelle-based Lidar scanner

    DOE PAGES

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsass, Martin; Wright, Alan; Cheng, Po Wen

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, whenmore » the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Moreover, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.« less

  7. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  8. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  9. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  10. Modelling of acoustic radiation problems associated with turbomachinery and rotating blades

    NASA Astrophysics Data System (ADS)

    Eversman, W.

    Finite element methods developed for computational predictions of turbofan and propeller acoustic radiation are presented. Account is taken of the disparate acoustic and geometric scales, the complex geometry, sound propagation in a nonuniformly flowing medium, the presence of a lining, and definition of bounds for calculations which are carried out in an unbounded domain. Density and pressure perturbations in the turbofan inlet are modeled with a linearized momentum equation. The sound radiation is represented by the Fourier components, i.e., angular modes. The same nacelle geometry is used for propeller noise, which requires inclusion of acoustic volume sources and forces. A forced convected wave equation for harmonic driving is obtained by combining continuity, momentum and state equations linearized for acoustic perturbations. The weak formulations for the two types of noise generation are solved by the Galerkin method modified with a frontal solver to reduce the required computer time. Model predictions show good agreement with experimental data for the directivity and amplitude of sound from the bellmouth inlet of the NASA-Langley Spinning Mode Synthesizer.

  11. Opto-acoustic thrombolysis

    DOEpatents

    Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Fitch, Pat

    2000-01-01

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  12. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  13. Acoustic Inversion in Optoacoustic Tomography: A Review

    PubMed Central

    Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel

    2013-01-01

    Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060

  14. What Is an Acoustic Neuroma

    MedlinePlus

    ... Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, is a rare benign tumor of the ... Acoustic Neuroma? An acoustic neuroma, known as a vestibular schwannoma, is a benign (non-cancerous) growth that ...

  15. The results of a high-speed wind tunnel test to investigate the effects of the NASA refan JT8D engine nacelles on the stability and control characteristics of the Boeing 727 airplane

    NASA Technical Reports Server (NTRS)

    Kupcis, E. A.

    1973-01-01

    A high speed wind tunnel test was conducted to investigate the effects of the NASA Refan JT8D engine nacelles on the stability and control characteristics of the Boeing 727 airplane. The test was performed at the Calspan Corporation 8x8 ft. (2.44x2.44 m.) transonic wind tunnel. Both the 727-200 and -100 models were tested. A small nose-down pitching moment increment and a slight increase in longitudinal stability were noted due to the Refan nacelles. The directional stability of the 727-200 airplane increased up to 10 percent. A smaller improvement was observed on the 727-100 model. In general, the high speed stability and control characteristics of the basic airplane are not significantly altered by the Refan nacelle installation.

  16. Effect of nacelles on aerodynamic characteristics of an executive-jet model with simulated, partial-chord, laminar-flow-control wing glove

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1982-01-01

    Tests were conducted in the Langley High-Speed 7- by 10-Foot Tunnel using a 1/10-scale model of an executive jet to examine the effects of the nacelles on the wing pressures and model longitudinal aerodynamic characteristics. For the present investigation, each wing panel was modified with a simulated, partial-chord, laminar-flow-control glove. Horizontal-tail effects were also briefly examined. The tests covered a range of Mach numbers from 0.40 to 0.82 and lift coefficients from 0.20 to 0.55. Oil-flow photographs of the wing at selected conditions are included.

  17. A NASTRAN model of a large flexible swing-wing bomber. Volume 2: NASTRAN model development-horizontal stabilzer, vertical stabilizer and nacelle structures

    NASA Technical Reports Server (NTRS)

    Mock, W. D.; Latham, R. A.; Tisher, E. D.

    1982-01-01

    The NASTRAN model plans for the horizontal stabilizer, vertical stabilizer, and nacelle structure were expanded in detail to generate the NASTRAN model for each of these substructures. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. Each substructure model was thoroughly checked out for continuity, connectivity, and constraints. These substructures were processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail models. Finally, a demonstration and validation processing of these substructures was accomplished using the NASTRAN finite element program installed at NASA/DFRC facility.

  18. Effect of Reynolds number and engine nacelles on the stalling characteristics of a model of a twin-engine light airplane

    NASA Technical Reports Server (NTRS)

    Lockwood, V. E.

    1972-01-01

    The investigation was made on a 1/18-scale model of a twin-engine light airplane. Static longitudinal, lateral, and directional characteristics were obtained at 0 deg and plus or minus 5 deg sideslip at a Mach number of about 0.2. The angle of attack varied from about 20 deg at a Reynolds number of 0.39 times one million to 13 deg at a Reynolds number of 3.7 times one million, based on the reference chord. The effect of fixed transition, vertical and horizontal tails, and nacelle fillets was studied.

  19. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  20. Acoustic Neuroma Educational Video

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  1. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  2. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  3. Image-guided acoustic therapy.

    PubMed

    Vaezy, S; Andrew, M; Kaczkowski, P; Crum, L

    2001-01-01

    The potential role of therapeutic ultrasound in medicine is promising. Currently, medical devices are being developed that utilize high-intensity focused ultrasound as a noninvasive method to treat tumors and to stop bleeding (hemostasis). The primary advantage of ultrasound that lends the technique so readily to use in noninvasive therapy is its ability to penetrate deep into the body and deliver to a specific site thermal or mechanical energy with submillimeter accuracy. Realizing the full potential of acoustic therapy, however, requires precise targeting and monitoring. Fortunately, several imaging modalities can be utilized for this purpose, thus leading to the concept of image-guided acoustic therapy. This article presents a review of high-intensity focused ultrasound therapy, including its mechanisms of action, the imaging modalities used for guidance and monitoring, some current applications, and the requirements and technology associated with this exciting and promising field.

  4. Acoustic contrast control in an arc-shaped area using a linear loudspeaker array.

    PubMed

    Zhao, Sipei; Qiu, Xiaojun; Burnett, Ian

    2015-02-01

    This paper proposes a method of creating acoustic contrast control in an arc-shaped area using a linear loudspeaker array. The boundary of the arc-shaped area is treated as the envelope of the tangent lines that can be formed by manipulating the phase profile of the loudspeakers in the array. When compared with the existing acoustic contrast control method, the proposed method is able to generate sound field inside an arc-shaped area and achieve a trade-off between acoustic uniformity and acoustic contrast. The acoustic contrast created by the proposed method increases while the acoustic uniformity decreases with frequency.

  5. ACOUSTICAL STANDARDS NEWS.

    PubMed

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  6. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  7. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  8. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  9. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  10. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  11. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  12. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  13. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  14. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  15. Wind tunnel tests of a zero length, slotted-lip engine air inlet for a fixed nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.; Beck, W. E., Jr.; Glasgow, E. R.

    1982-01-01

    Zero length, slotted lip inlet performance and associated fan blade stresses were determined during model tests using a 20 inch diameter fan simulator in the NASA-LeRC 9 by 15 foot low speed wind tunnel. The model configuration variables consisted of inlet contraction ratio, slot width, circumferential extent of slot fillers, and length of a constant area section between the inlet throat and fan face. The inlet performance was dependent on slot gap width and relatively independent of inlet throat/fan face spacer length and slot flow blockage created by 90 degree slot fillers. Optimum performance was obtained at a slot gap width of 0.36 inch. The zero length, slotted lip inlet satisfied all critical low speed inlet operating requirements for fixed horizontal nacelles subsonic V/STOL aircraft.

  16. Acoustics Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  17. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  18. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  19. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  20. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  1. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques.

  2. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  3. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  4. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  5. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  6. Inlet total pressure loss due to acoustic wall treatment

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1977-01-01

    The effect of diffuser wall acoustic treatment on inlet total pressure loss was experimentally determined. Data were obtained by testing an inlet model with 10 different acoustically treated diffusers differing only in the design of the Helmholtz resonator acoustic treatment. Tests were conducted in a wind tunnel at forward velocities to 41 meters per second for inlet throat Mach numbers of .5 to .8 and angles of attack as high as 50 degrees. Results indicate a pressure loss penalty due to acoustic treatment that increases linearly with the porosity of the acoustic facing sheet. For a surface porosity of 14 percent the total pressure loss was 21 percent greater than that for an untreated inlet.

  7. Acoustic sniper localization system

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  8. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  9. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  10. Calibration of acoustic transients.

    PubMed

    Burkard, Robert

    2006-05-26

    This article reviews the appropriate stimulus parameters (click duration, toneburst envelope) that should be used when eliciting auditory brainstem responses from mice. Equipment specifications required to calibrate these acoustic transients are discussed. Several methods of calibrating the level of acoustic transients are presented, including the measurement of peak equivalent sound pressure level (peSPL) and peak sound pressure level (pSPL). It is hoped that those who collect auditory brainstem response thresholds in mice will begin to use standardized methods of acoustic calibration, so that hearing thresholds across mouse strains obtained in different laboratories can more readily be compared.

  11. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  12. PRSEUS Acoustic Panel Fabrication

    NASA Technical Reports Server (NTRS)

    Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.

  13. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  14. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  15. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  16. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  17. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  18. Acoustics lecturing in Mexico

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  19. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  20. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  1. Acoustic Neuroma Association

    MedlinePlus

    ... Platinum Sponsors More from this sponsor... Platinum Sponsor Gold Sponsor University of Colorado Acoustic Neuroma Program Rocky Mountain Gamma Knife Center Gold Sponsor NYU Langone Medical Center Departments of Neurosurgery ...

  2. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  3. Multimode Acoustic Research

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1985-01-01

    There is a need for high temperature containerless processing facilities that can efficiently position and manipulate molten samples in the reduced gravity environment of space. The goal of the research is to develop sophisticated high temperature manipulation capabilities such as selection of arbitrary axes rotation and rapid sample cooling. This program will investigate new classes of acoustic levitation in rectangular, cylindrical and spherical geometries. The program tasks include calculating theoretical expressions of the acoustic forces in these geometries for the excitation of up to three acoustic modes (multimodes). These calculations are used to: (1) determine those acoustic modes that produce stable levitation, (2) isolate the levitation and rotation capabilities to produce more than one axis of rotation, and (3) develop methods to translate samples down long tube cylindrical chambers. Experimental levitators will then be constructed to verify the stable levitation and rotation predictions of the models.

  4. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  5. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  6. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  7. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  8. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  9. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  10. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  11. A compact acoustic recorder

    NASA Astrophysics Data System (ADS)

    Stein, Ronald

    1989-09-01

    The design and operation of a portable compact acoustic recorder is discussed. Designed to be used in arctic conditions for applications that require portable equipment, the device is configured to fit into a lightweight briefcase. It will operate for eight hours at -40 F with heat provided by a hot water bottle. It has proven to be an effective scientific tool in the measurement of underwater acoustic signals in arctic experiments. It has also been used successfully in warmer climates, e.g., in recording acoustic signals from small boats with no ac power. The acoustic recorder's cost is moderate since it is based on a Sony Walkman Professional (WM-D6C) tape recorder playback unit. A speaker and battery assembly and a hydrophone interface electronic assembly complete the system electronics. The interface assembly supplies a number of functions, including a calibration tone generator, an audio amplifier, and a hydrophone interface. Calibrated acoustic recordings can be made by comparing the calibration tone amplitude with the acoustic signal amplitude. The distortion of the recording is minimized by using a high quality, consumer tape recorder.

  12. Acoustic communication by ants

    NASA Astrophysics Data System (ADS)

    Hickling, Robert

    2002-05-01

    Many ant species communicate acoustically by stridulating, i.e., running a scraper over a washboard-like set of ridges. Ants appear to be insensitive to airborne sound. Consequently, myrmecologists have concluded that the stridulatory signals are transmitted through the substrate. This has tended to diminish the importance of acoustic communication, and it is currently believed that ant communication is based almost exclusively on pheromones, with acoustic communication assigned an almost nonexistent role. However, it can be shown that acoustic communication between ants is effective only if the medium is air and not the substrate. How, then, is it possible for ants to appear deaf to airborne sound and yet communicate through the air? An explanation is provided in a paper [R. Hickling and R. L. Brown, ``Analysis of acoustic communication by ants,'' J. Acoust. Soc. Am. 108, 1920-1929 (2000)]. Ants are small relative to the wavelengths they generate. Hence, they create a near field, which is characterized by a major increase in sound velocity (particle velocity of sound) in the vicinity of the source. Hair sensilla on the ants' antennae respond to sound velocity. Thus, ants are able to detect near-field sound from other ants and to exclude extraneous airborne sound.

  13. Acoustic mode in numerical calculations of subsonic combustion

    SciTech Connect

    O'Rourke, P.J.

    1984-01-01

    A review is given of the methods for treating the acoustic mode in numerical calculations of subsonic combustion. In numerical calculations of subsonic combustion, treatment of the acoustic mode has been a problem for many researchers. It is widely believed that Mach number and acoustic wave effects are negligible in many subsonic combustion problems. Yet, the equations that are often solved contain the acoustic mode, and many numerical techniques for solving these equations are inefficient when the Mach number is much smaller than one. This paper reviews two general approaches to ameliorating this problem. In the first approach, equations are solved that ignore acoustic waves and Mach number effects. Section II of this paper gives two such formulations which are called the Elliptic Primitive and the Stream and Potential Function formulations. We tell how these formulations are obtained and give some advantages and disadvantages of solving them numerically. In the second approach to the problem of calculating subsonic combustion, the fully compressible equations are solved by numerical methods that are efficient, but treat the acoustic mode inaccurately, in low Mach number calculations. Section III of this paper introduces two of these numerical methods in the context of an analysis of their stability properties when applied to the acoustic wave equations. These are called the ICE and acoustic subcycling methods. It is shown that even though these methods are more efficient than traditional methods for solving subsonic combustion problems, they still can be inefficient when the Mach number is very small. Finally, a method called Pressure Gradient Scaling is described that, when used in conjunction with either the ICE or acoustic subcycling methods, allows for very efficient numerical solution of subsonic combustion problems. 11 refs.

  14. Acoustic radiation from a shell with internal structures

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1989-01-01

    A method is developed to compute frequency response and acoustic radiation of a complex shell. The axisymmetric geometry of the shell includes cylindrical, conical, and spherical segments stiffened by discrete rings and bulkheads. The shell is coupled to internal masses and elastic frames. Shell segments are treated by transfer matrices. Rings, bulkheads, frames, and concentrated masses are treated by impedances at junctions of segments. The shell is coupled to an external acoustic fluid treated by Green's function and curved surface elements. A major issue facing the method's treatment of the fluid would be lack of existence or uniqueness encountered in the uncoupled, external acoustic problem at characteristic wavenumbers. By using a simple spherical shell, without internal structures, this potential hindrance is shown not to arise. A fuller application of the method awaits subsequent results.

  15. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  16. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 4: Airplane evaluation and analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The retrofit of JT8D-109 (refan) engines are evaluated on a 727-200 airplane in terms of airworthiness, performance, and noise. Design of certifiable hardware, manufacture, and ground testing of the essential nacelle components is included along with analysis of the certifiable airplane design to ensure airworthiness compliance and to predict the in-flight performance and noise characteristics of the modified airplane. The analyses confirm that the 727 refan airplane is certifiable. The refan airplane range would be 15% less that of the baseline airplane and block fuel would be increased by 1.5% to 3%. However, with this particular 727-200 model, with a brake release gross weight of 172,500 lb (78,245 kg), it is possible to operate the airplane (with minor structural modifications) at higher gross weights and increase the range up to 15% over the 727-200 (baseline) airplane. The refan airplane FAR Part 36 noise levels would be 6 to 8 EPNdB (effective perceived noise in decibels) below the baseline. Noise footprint studies showed that approach noise contour areas are small compared to takeoff areas. The 727 refan realizes a 68% to 83% reduction in annoyance-weighted area when compared to the 727-200 over a range of gross weights and operational procedures.

  17. [Acoustic characteristics of classrooms].

    PubMed

    Koszarny, Zbigniew; Chyla, Andrzej

    2003-01-01

    Quality and usefulness of school rooms for transmission of verbal information depends on the two basic parameters: form and quantity of the reverberation time, and profitable line measurements of school rooms from the acoustic point of view. An analysis of the above-mentioned parameters in 48 class rooms and two gymnasiums in schools, which were built in different periods, shows that the most important problem is connected with too long reverberation time and inappropriate acoustic proportions. In schools built in the 1970s, the length of reverberation time is mostly within a low frequency band, while in schools built contemporarily, the maximum length of disappearance time takes place in a quite wide band of 250-2000 Hz. This exceeds optimal values for that kind of rooms at least twice, and five times in the newly built school. A long reverberation time is connected with a low acoustic absorption of school rooms. Moreover, school rooms are characterised by inappropriate acoustic proportions. The classrooms, in their relation to the height, are too long and too wide. It is connected with deterioration of the transmission of verbal information. The data show that this transmission is unequal. Automatically, it leads to a speech disturbance and difficulties with understanding. There is the need for adaptation of school rooms through increase of an acoustic absorption.

  18. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  19. The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    1994-01-01

    The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.

  20. Dimensional analysis of acoustically propagated signals

    NASA Technical Reports Server (NTRS)

    Hansen, Scott D.; Thomson, Dennis W.

    1993-01-01

    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  1. Home studio acoustic treatments on a budget

    NASA Astrophysics Data System (ADS)

    Haverstick, Gavin A.

    2003-04-01

    Digital technology in the recording industry has evolved and expanded, allowing it to be widely available to the public at a significantly lower cost than in previous years. Due to this fact, numerous home studios are either being built inside or converted from bedrooms, dens, and basements. Hobbyists and part-time musicians that typically do not have the advantage of a large recording budget operate the majority of these home studios. Along with digital equipment, acoustic treatment has become more affordable over the years giving many musicians the ability to write, record, and produce an entire album in the comfort of their own home without having to sacrifice acoustical quality along the way. Three separate case studies were conducted on rooms with various sizes, applications, and budgets. Acoustical treatment such as absorption, diffusion, and bass trapping were implemented to reduce the effects of issues such as flutter echo, excessive reverberation, and bass build-up among others. Reactions and subjective comments from each individual studio owner were gathered and assessed to determine how effective home studios can be on a personal and professional level if accurately treated acoustically.

  2. An Investigation of Two Acoustic Propagation Codes for Three-Dimensional Geometries

    NASA Technical Reports Server (NTRS)

    Nark, D. M.; Watson, W. R.; Jones, M. G.

    2005-01-01

    The ability to predict fan noise within complex three-dimensional aircraft engine nacelle geometries is a valuable tool in studying low-noise designs. Recent years have seen the development of aeroacoustic propagation codes using various levels of approximation to obtain such a capability. In light of this, it is beneficial to pursue a design paradigm that incorporates the strengths of the various tools. The development of a quasi-3D methodology (Q3D-FEM) at NASA Langley has brought these ideas to mind in relation to the framework of the CDUCT-LaRC acoustic propagation and radiation tool. As more extensive three dimensional codes become available, it would seem appropriate to incorporate these tools into a framework similar to CDUCT-LaRC and use them in a complementary manner. This work focuses on such an approach in beginning the steps toward a systematic assessment of the errors, and hence the trade-offs, involved in the use of these codes. To illustrate this point, CDUCT-LaRC was used to study benchmark hardwall duct problems to quantify errors caused by wave propagation in directions far removed from that defined by the parabolic approximation. Configurations incorporating acoustic treatment were also studied with CDUCT-LaRC and Q3D-FEM. The cases presented show that acoustic treatment diminishes the effects of CDUCT-LaRC phase error as the solutions are attenuated. The results of the Q3D-FEM were very promising and matched the analytic solution very well. Overall, these tests were meant to serve as a step toward the systematic study of errors inherent in the propagation module of CDUCT-LaRC, as well as an initial test of the higher fidelity Q3D-FEM code.

  3. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  4. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  5. Acoustic particle separation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. (Inventor)

    1985-01-01

    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well.

  6. Acoustic Levitation Containerless Processing

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  7. Acoustic energy shaping

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1977-01-01

    A suspended mass is shaped by melting all or a selected portion of the mass and applying acoustic energy in varying amounts to different portions of the mass. In one technique for forming an optical waveguide slug, a mass of oval section is suspended and only a portion along the middle of the cross-section is heated to a largely fluid consistency. Acoustic energy is applied to opposite edges of the oval mass to press the unheated opposite edge portions together so as to form bulges at the middle of the mass. In another technique for forming a ribbon of silicon for constructing solar cells, a cylindrical thread of silicon is drawn from a molten mass of silicon, and acoustic energy is applied to opposite sides of the molten thread to flatten it into a ribbon.

  8. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  9. Latticed pentamode acoustic cloak.

    PubMed

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  10. Latticed pentamode acoustic cloak

    PubMed Central

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  11. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  12. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  13. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  14. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  15. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  16. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  17. Aero-acoustic tests of duct-burning turbofan exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1976-01-01

    The acoustic and aerodynamic characteristics of several exhaust systems suitable for duct burning turbofan engines are evaluated. Scale models representing unsuppressed coannular exhaust systems are examined statically under varying exhaust conditions. Ejectors with both hardwall and acoustically treated inserts are investigated.

  18. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  19. Interaction of acoustic waves generated by coupled plate

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    When two substructures are coupled, the acoustic field generated by the motion of each of the substructures will interact with the motion of the other substructure. This would be the case of a structure enclosing an acoustic cavity. A technique to model the interaction of the generated sound fields from the two components of a coupled structure, and the influence of this interaction on the vibration of the structural components is presented. Using a mobility power flow approach, each element of the substructure is treated independently both when developing the structural response and when determining the acoustic field generated by this component. The presence of the other substructural components is introduced by assuming these components to be rigid baffles. The excitation of one of the substructures is assumed to be by an incident acoustic wave which is dependent of the motion of the substructure. The sound field generated by the motion of the substructure is included in the solution of the response.

  20. Acoustic results of supersonic tip speed fan blade modification

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Kazin, S. B.

    1974-01-01

    A supersonic tip speed single stage fan was modified with the intent of reducing multiple pure tone (MPT) or buzz saw noise. There were three modifications to the blades from the original design. The modifications to the blade resulted in an increase in cascade throat area causing the shock to start at a lower corrected fan speed. The acoustic results without acoustically absorbing liners showed substantial reduction in multiple pure tone levels. However, an increase in the blade passing frequency noise at takeoff fan speed accompanied the MPT reduction. The net result however, was a reduction in the maximum 1000-foot (304.8 m) altitude level flyover PNL. For the case with acoustic treatment in the inlet outer wall, the takeoff noise increased relative to an acoustically treated baseline. This was largely due to the increased blade passing frequency noise which was not effectively reduced by the liner.

  1. Coupled resonator filter with single-layer acoustic coupler.

    PubMed

    Jamneala, Tiberiu; Small, Martha; Ruby, Rich; Larson, John D

    2008-10-01

    We discuss the operation of novel coupled-resonator filters with single-layer acoustic couplers. Our analysis employs the physical Mason model for acoustic resonators. Their simpler fabrication process is counterbalanced by the high acoustic attenuation of suitable coupler materials. At high levels of attenuation, both the phase and the acoustic impedance must be treated as complex quantities to accurately predict the filter insertion loss. We demonstrate that the typically poor near-band rejection of coupled resonator filters can be improved at the die level by connecting a small capacitance between the input and output of the filter to produce a pair of tunable transmission minima. We make use of these theoretical findings to fabricate coupled resonators filters operating at 2.45 GHz. PMID:18986880

  2. Post Treatment of Acoustic Neuroma

    MedlinePlus

    Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video Pre-Treatment Treatment Options Summary Treatment Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions ...

  3. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  4. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  5. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  6. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) engine composite nacelle test report. Volume 1: Summary, aerodynamic and mechanical performance

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The performance test results of the final under-the-wing engine configuration are presented. One hundred and six hours of engine operation were completed, including mechanical and performance checkout, baseline acoustic testing with a bellmouth inlet, reverse thrust testing, acoustic technology tests, and limited controls testing. The engine includes a variable pitch fan having advanced composite fan blades and using a ball-spline pitch actuation system.

  7. Acoustics in Schools.

    ERIC Educational Resources Information Center

    Singer, Miriam J.

    This paper explores the issues associated with poor acoustics within schools. Additionally, it suggests remedies for existing buildings and those under renovation, as well as concerns for new construction. The paper discusses the effects of unwanted noise on students in terms of physiological, motivational, and cognitive influences. Issues are…

  8. Improved acoustic levitation apparatus

    NASA Technical Reports Server (NTRS)

    Berge, L. H.; Johnson, J. L.; Oran, W. A.; Reiss, D. A.

    1980-01-01

    Concave driver and reflector enhance and shape levitation forces in acoustic resonance system. Single-mode standing-wave pattern is focused by ring element situated between driver and reflector. Concave surfaces increase levitating forces up to factor of 6 as opposed to conventional flat surfaces, making it possible to suspend heavier objects.

  9. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  10. Acoustic leak detection system

    SciTech Connect

    Peacock, M.J.

    1993-08-03

    An acoustic leak detection system is described for determining the location of leaks in storage tanks, comprising: (a) sensor means for detecting a leak signal; (b) data acquisition means for digitizing and storing leak signals meeting preset criterion; and (c) analysis means for analyzing the digitized signals and computing the location of the source of the leak signals.

  11. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  12. Teaching acoustics online

    NASA Astrophysics Data System (ADS)

    Morrison, Andrew; Rossing, Thomas D.

    2003-10-01

    We teach an introductory course in musical acoustics using a Blackboard. Students in this course can access audio and video materials as well as printed materials on our course website. All homework is submitted online, as are tests and examinations. The students also have the opportunity to use synchronous and asynchronous chat rooms to discuss the course with each other or with the instructors.

  13. Acoustics- Version 1.0

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, themore » sounds are removed, as a character forgets what it has heard.« less

  14. Acoustics- Version 1.0

    SciTech Connect

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, the sounds are removed, as a character forgets what it has heard.

  15. Radiosurgery for acoustic neurinomas: Early experience

    SciTech Connect

    Linskey, M.E.; Lunsford, L.D.; Flickinger, J.C. )

    1990-05-01

    We reviewed our early experience with the first 26 patients with acoustic neurinomas (21 unilateral, 5 bilateral) treated by stereotactic radiosurgery using the first North American 201-source cobalt-60 gamma knife. Follow-up ranged from 6 to 19 months (median, 13 months). Serial postoperative imaging showed either a decrease in tumor size (11 patients) or growth arrest (15 patients). Loss of central contrast enhancement was a characteristic change (18 patients). Seven patients had good or serviceable hearing preoperatively. In all 7 the preoperative hearing status was retained immediately after radiosurgery. At follow-up, 3 had preserved hearing, 1 had reduced hearing, and 3 had lost all hearing in the treated ear. Hearing in 1 patient that was nonserviceable preoperatively later improved to a serviceable hearing level. Delayed facial paresis developed in 6 patients, and delayed trigeminal sensory loss developed in 7 patients, none of whom had significant deficits before radiosurgery. Both facial and trigeminal deficits tended to improve within 3 to 6 months of onset with excellent recovery anticipated. Lower cranial nerve dysfunction was not observed. All 26 patients remain at their preoperative employment or functional status. At present, stereotactic radiosurgery is an alternative treatment for acoustic neurinomas in patients who are elderly, have significant concomitant medical problems, have a tumor in their only hearing ear, have bilateral acoustic neurinomas, refuse microsurgical excision, or have recurrent tumor despite surgical resection. Although longer and more extensive follow-up is required, the control of tumor growth and the acceptable rate of complications in this early experience testifies to the future expanding role of this technique in the management of selected acoustic neurinomas.

  16. Holograms for acoustics.

    PubMed

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-01-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound. PMID:27652563

  17. Holograms for acoustics

    NASA Astrophysics Data System (ADS)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  18. Treating Meningitis

    MedlinePlus

    ... ways to treat bacterial meningitis. 1 They compared steroids (dexamethasone) with pla- cebo. The doctors gave medication ( ... compared anti- biotics by themselves with antibiotics plus steroids. Dr. Fritz and colleagues compared the mortality (deaths) ...

  19. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  20. Acoustic build-up in on-chip stimulated Brillouin scattering

    PubMed Central

    Wolff, C.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.

    2015-01-01

    We investigate the role of the spatial evolution of the acoustic field in stimulated Brillouin scattering processes in short high-gain structures. When the gain is strong enough that the gain length becomes comparable to the acoustic wave decay length of order 100 microns, standard approximations treating the acoustic field as a local response no longer apply. Treating the acoustic evolution more accurately, we find that the backward SBS gain of sub-millimetre long waveguides is significantly reduced from the value obtained by the conventional treatment because the acoustic mode requires several decay lengths to build up to its nominal value. In addition, the corresponding resonance line is broadened with the development of side bands. In contrast, we argue that intra-mode forward SBS is not expected to show these effects. Our results have implications for several recent proposals and experiments on high-gain stimulated Brillouin scattering in short semiconductor waveguides. PMID:26338720

  1. Fimbria damage and removal of adherent bacteria after exposure to acoustic energy.

    PubMed

    McInnes, C; Engel, D; Martin, R W

    1993-10-01

    The physical effects of low-frequency acoustic energy on Actinomyces viscosus were studied with electron microscopy to explore both acoustically induced damage to fimbriae on the surface of these bacteria and acoustic removal of bacteria from saliva-treated hydroxyapatite disks. A bacterial suspension was exposed to acoustic energy from a laboratory acoustic generator (50 kPa, 200 Hz) and from a new electronic toothbrush, the Sonicare. The exposed bacteria were examined with electron microscopy after negative staining. A decrease in both the percentage of bacterial surface covered with fimbriae and the fimbria length was observed after acoustic exposure. To study the acoustic effects on adherent bacteria, A. viscosus bound to hydroxyapatite disks were exposed to acoustic energy and examined with scanning electron microscopy. Quantitative evaluation of the micrographs for the number of bacteria present after exposure revealed that acoustic energy removed both bacteria adherent to the hydroxyapatite surface and adherent to each other. The results support the concept that an electronic toothbrush employing low-frequency acoustic energy may help prevent and control periodontal diseases by altering bacterial adherence.

  2. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  3. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  4. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  5. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  6. Radiosurgery of acoustic neurinomas

    SciTech Connect

    Flickinger, J.C.; Lunsford, L.D.; Coffey, R.J.; Linskey, M.E.; Bissonette, D.J.; Maitz, A.H.; Kondziolka, D. )

    1991-01-15

    Eighty-five patients with acoustic neurinomas underwent stereotactic radiosurgery with the gamma unit at the University of Pittsburgh (Pittsburgh, PA) during its first 30 months of operation. Neuroimaging studies performed in 40 patients with more than 1 year follow-up showed that tumors were smaller in 22 (55%), unchanged in 17 (43%), and larger in one (2%). The 2-year actuarial rates for preservation of useful hearing and any hearing were 46% and 62%, respectively. Previously undetected neuropathies of the trigeminal (n = 12) and facial nerves (n = 14) occurred 1 week to 1 year after radiosurgery (median, 7 and 6 months, respectively), and improved at median intervals of 13 and 8 months, respectively, after onset. Hearing loss was significantly associated with increasing average tumor diameter (P = 0.04). No deterioration of any cranial nerve function has yet developed in seven patients with average tumor diameters less than 10 mm. Radiosurgery is an important treatment alternative for selected acoustic neurinoma patients.

  7. A Martian acoustic anemometer.

    PubMed

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions. PMID:27586767

  8. Acoustic tractor beam.

    PubMed

    Démoré, Christine E M; Dahl, Patrick M; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system. PMID:24836252

  9. Acoustic Tractor Beam

    NASA Astrophysics Data System (ADS)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  10. Acoustics Discipline Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  11. Acoustic methodology review

    NASA Technical Reports Server (NTRS)

    Schlegel, R. G.

    1982-01-01

    It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.

  12. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  13. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  14. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  15. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  16. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  17. Virtual acoustic prototyping

    NASA Astrophysics Data System (ADS)

    Johnson, Marty

    2003-10-01

    In this paper the re-creation of 3-D sound fields so the full psycho-acoustic impact of sound sources can be assessed before the manufacture of a product or environment is examined. Using head related transfer functions (HRTFs) coupled with a head tracked set of headphones the sound field at the left and right ears of a listener can be re-created for a set of sound sources. However, the HRTFs require that sources have a defined location and this is not the typical output from numerical codes which describe the sound field as a set of distributed modes. In this paper a method of creating a set of equivalent sources is described such that the standard set of HRTFs can be applied in real time. A structural-acoustic model of a cylinder driving an enclosed acoustic field will be used as an example. It will be shown that equivalent sources can be used to recreate all of the reverberation of the enclosed space. An efficient singular value decomposition technique allows the large number of sources required to be simulated in real time. An introduction to the requirements necessary for 3-D virtual prototyping using high frequency Statistical Energy Analysis models will be presented. [Work supported by AuSim and NASA.

  18. Acoustics, computers and measurements

    NASA Astrophysics Data System (ADS)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  19. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip. PMID:27661695

  20. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  1. The Fully Endoscopic Acoustic Neuroma Surgery.

    PubMed

    Marchioni, Daniele; Carner, Marco; Rubini, Alessia; Nogueira, João Flávio; Masotto, Barbara; Alicandri-Ciufelli, Matteo; Presutti, Livio

    2016-10-01

    Surgical approaches to vestibular schwannomas (VS) are widely known and extensively recorded. For the first time, an exclusive endoscopic approach to the internal acoustic canal (IAC) was described and used to safely remove a cochlear schwannoma involving IAC in March 2012. The aim of this article was to summarize indications and technique to treat intracanalicular VS by transcanal/transpromontorial endoscopic approach. Because management of intracanalicular VSs is complex and strongly debated, this kind of therapeutic option in the appropriate and selected cases could modify classic concepts of the management of this pathology.

  2. The Fully Endoscopic Acoustic Neuroma Surgery.

    PubMed

    Marchioni, Daniele; Carner, Marco; Rubini, Alessia; Nogueira, João Flávio; Masotto, Barbara; Alicandri-Ciufelli, Matteo; Presutti, Livio

    2016-10-01

    Surgical approaches to vestibular schwannomas (VS) are widely known and extensively recorded. For the first time, an exclusive endoscopic approach to the internal acoustic canal (IAC) was described and used to safely remove a cochlear schwannoma involving IAC in March 2012. The aim of this article was to summarize indications and technique to treat intracanalicular VS by transcanal/transpromontorial endoscopic approach. Because management of intracanalicular VSs is complex and strongly debated, this kind of therapeutic option in the appropriate and selected cases could modify classic concepts of the management of this pathology. PMID:27565388

  3. Lake bed classification using acoustic data

    USGS Publications Warehouse

    Yin, Karen K.; Li, Xing; Bonde, John; Richards, Carl; Cholwek, Gary

    1998-01-01

    As part of our effort to identify the lake bed surficial substrates using remote sensing data, this work designs pattern classifiers by multivariate statistical methods. Probability distribution of the preprocessed acoustic signal is analyzed first. A confidence region approach is then adopted to improve the design of the existing classifier. A technique for further isolation is proposed which minimizes the expected loss from misclassification. The devices constructed are applicable for real-time lake bed categorization. A mimimax approach is suggested to treat more general cases where the a priori probability distribution of the substrate types is unknown. Comparison of the suggested methods with the traditional likelihood ratio tests is discussed.

  4. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  5. Acoustic streaming in resonant viscous microfluidic systems

    NASA Astrophysics Data System (ADS)

    Skafte-Pedersen, Peder; Bruus, Henrik

    2007-11-01

    Within the field of lab-on-a-chip systems large efforts are devoted to the development of onchip tools for particle handling and mixing in viscosity-dominated microflows. One technology involves ultrasound with frequencies in the MHz range, which leads to wavelengths of the order of 10-4-10-3 m suitable for mm-sized microchambers. Due to the nonlinearity of the governing acoustofluidic equations, second-order effects will induce steady forces to fluids and suspended particles through the effects known as acoustic streaming and acoustic radiation pressure. We present the basic perturbation approach for treating these effects in systems at resonance, where the amplitudes are maximized. The first-order eigenmodes are used as source terms for the time-averaged viscous second-order equations. The theory is applied to explain experimental results on aqueous microbead solutions in silicon-glass microchips [1].[1] S. M. Hags"ater, T. Glasdam Jensen, H. Bruus and J. P. Kutter.Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations. Lab Chip, 2007, DOI: 10.1039/b704864e.

  6. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  7. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  8. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  9. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  10. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  11. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  12. Fault monitoring using acoustic emissions

    NASA Astrophysics Data System (ADS)

    Zhang, Danlu; Venkatesan, Gopal; Kaveh, Mostafa; Tewfik, Ahmed H.; Buckley, Kevin M.

    1999-05-01

    Automatic monitoring techniques are a means to safely relax and simplify preventive maintenance and inspection procedures that are expensive and necessitate substantial down time. Acoustic emissions (AEs), that are ultrasonic waves emanating from the formation or propagation of a crack in a material, provide a possible avenue for nondestructive evaluation. Though the characteristics of AEs have been extensively studied, most of the work has been done under controlled laboratory conditions at very low noise levels. In practice, however, the AEs are buried under a wide variety of strong interference and noise. These arise due to a number of factors that, other than vibration, may include fretting, hydraulic noise and electromagnetic interference. Most of these noise events are transient and not unlike AE signals. In consequence, the detection and isolation of AE events from the measured data is not a trivial problem. In this paper we present some signal processing techniques that we have proposed and evaluated for the above problem. We treat the AE problem as the detection of an unknown transient in additive noise followed by a robust classification of the detected transients. We address the problem of transient detection using the residual error in fitting a special linear model to the data. Our group is currently working on the transient classification using neural networks.

  13. QCSEE Over-the-Wing Engine Acoustic Data

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Loeffler, I. J.

    1982-01-01

    The over the wing (OTW) Quiet, Clean, Short Haul Experimental Engine (QCSEE) was tested at the NASA Lewis Engine Noise Test Facility. A boilerplate (nonflight weight), high throat Mach number, acoustically treated inlet and a D shaped OTW exhaust nozzle with variable position side doors were used in the tests along with wing and flap segments to simulate an installation on a short haul transport aircraft. All of the acoustic test data from 10 configurations are documented in tabular form. Some selected narrowband and 1/3 octave band plots of sound pressure level are presented.

  14. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  15. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  16. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  17. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  18. Comparison of Acoustic Impedance Eduction Techniques for Locally-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2003-01-01

    Typical acoustic liners used in current aircraft inlets and aft-fan ducts consist of some type of perforated facesheet bonded to a honeycomb core. A number of techniques for determining the acoustic impedance of these locallyreacting liners have been developed over the last five decades. In addition, a number of models have been developed to predict the acoustic impedance of locallyreacting liners in the presence of grazing flow, and to use that information together with aeroacoustic propagation codes to assess the noise absorption provided by these liners. These prediction models have incorporated the results from databases acquired with specific impedance eduction techniques. Thus, while these prediction models are acceptable for liners that are similar to those tested in these databases, their application to new liner configurations must be viewed with caution. The primary purpose of this paper is to provide a comparison of impedance eduction techniques that have been implemented at various aerospace research laboratories in the United States (NASA Langley Research Center, General Electric Aircraft Engines, B. F. Goodrich and Boeing). A secondary purpose is to provide data for liner configurations that extend the porosity range beyond that which has been previously used in common aircraft engine nacelles. Two sets of liners were designed to study the effects of three parameters: perforate hole diameter, facesheet thickness and porosity. These two sets of liners were constructed for testing in each of the laboratories listed above. The first set of liners was designed to fit into the NASA Langley and Boeing test facilities. The second set was designed to fit into the General Electric Aircraft Engines and B. F. Goodrich test facilities. By using the same parent material, both sets of liners were identical to within the limits of material and fabrication variability. Baseline data were obtained in the normal incidence impedance tubes at NASA Langley and B. F

  19. The acoustics of snoring.

    PubMed

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (<500 Hz) and corresponds to a fundamental frequency with associated harmonics. The pitch of snoring is determined by vibration of the soft palate, while nonpalatal snoring is more 'noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as

  20. Dynamic acoustic tractor beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  1. Coffee roasting acoustics.

    PubMed

    Wilson, Preston S

    2014-06-01

    Cracking sounds emitted by coffee beans during the roasting process were recorded and analyzed to investigate the potential of using the sounds as the basis for an automated roast monitoring technique. Three parameters were found that could be exploited. Near the end of the roasting process, sounds known as "first crack" exhibit a higher acoustic amplitude than sounds emitted later, known as "second crack." First crack emits more low frequency energy than second crack. Finally, the rate of cracks appearing in the second crack chorus is higher than the rate in the first crack chorus.

  2. Numerical predictions in acoustics

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1992-01-01

    Computational Aeroacoustics (CAA) involves the calculation of the sound produced by a flow as well as the underlying flowfield itself from first principles. This paper describes the numerical challenges of CAA and recent research efforts to overcome these challenges. In addition, it includes the benefits of CAA in removing restrictions of linearity, single frequency, constant parameters, low Mach numbers, etc. found in standard acoustic analyses as well as means for evaluating the validity of these numerical approaches. Finally, numerous applications of CAA to both classical as well as modern problems of concern to the aerospace industry are presented.

  3. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  4. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  5. Standoff photo acoustic spectroscopy

    SciTech Connect

    Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George

    2008-01-01

    Here, we demonstrate a variation of photoacoustic spectroscopy that can be used for obtaining spectroscopic information of surface adsorbed chemicals in a standoff fashion. Pulsed light scattered from a target excites an acoustic resonator and the variation of the resonance amplitude as a function of illumination wavelength yields a representation of the absorption spectrum of the target. We report sensitive and selective detection of surface adsorbed compounds such as tributyl phosphate and residues of explosives such as trinitrotoluene at standoff distances ranging from 0.5-20 m, with a detection limit on the order of 100 ng/cm{sup 2}.

  6. Dynamic acoustic tractor beams

    SciTech Connect

    Mitri, F. G.

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  7. Numerical predictions in acoustics

    NASA Astrophysics Data System (ADS)

    Hardin, Jay C.

    Computational Aeroacoustics (CAA) involves the calculation of the sound produced by a flow as well as the underlying flowfield itself from first principles. This paper describes the numerical challenges of CAA and recent research efforts to overcome these challenges. In addition, it includes the benefits of CAA in removing restrictions of linearity, single frequency, constant parameters, low Mach numbers, etc. found in standard acoustic analyses as well as means for evaluating the validity of these numerical approaches. Finally, numerous applications of CAA to both classical as well as modern problems of concern to the aerospace industry are presented.

  8. Acoustical Environment for Academic Buildings.

    ERIC Educational Resources Information Center

    Lortie, L.J.

    Discussion of the parameters governing noise control and room acoustics are followed by a demonstration on how to achieve a good acoustical environment. Topics emphasized include--(1) design and control objectives, (2) noise sources and propagation, (3) reverberation parameters, (4) noise control factors and parameters, and (5) sound systems. Also…

  9. Improving Acoustics in American Schools.

    ERIC Educational Resources Information Center

    Nelson, Peggy B.

    2000-01-01

    This introductory article to a clinical forum describes the following seven articles that discuss the problem of noisy classrooms and resulting reduction in learning, basic principles of noise and reverberation measurements in classrooms, solutions to the problem of poor classroom acoustics, and the development of a classroom acoustics standard.…

  10. Piano acoustics-A review

    NASA Astrophysics Data System (ADS)

    Askenfelt, Anders

    2003-10-01

    The design of the piano as we know it today dates back to the second half of the 19th century. The history of studies of the acoustics of the piano begins during the same period. In this talk, known facts and unanswered questions about the acoustics of the piano are reviewed.

  11. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  12. The electron geodesic acoustic mode

    SciTech Connect

    Chakrabarti, N.; Kaw, P. K.

    2012-09-15

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  13. Acoustic Emissions Reveal Combustion Conditions

    NASA Technical Reports Server (NTRS)

    Ramohalli, D. N. R.; Seshan, P. K.

    1983-01-01

    Turbulent-flame acoustic emissions change with air/fuel ratio variations. Acoustic emissions sensed and processed to detect inefficient operation; control system responds by adjusting fuel/air mixture for greater efficiency. Useful for diagnosis of combustion processes and fuel/air control.

  14. Acoustic Levitation With One Driver

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Rudnick, I.; Elleman, D. D.; Stoneburner, J. D.

    1985-01-01

    Report discusses acoustic levitation in rectangular chamber using one driver mounted at corner. Placement of driver at corner enables it to couple effectively to acoustic modes along all three axes. Use of single driver reduces cost, complexity and weight of levitation system below those of three driver system.

  15. Acoustic Levitation With One Transducer

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.

    1987-01-01

    Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.

  16. Acoustic Similarity and Dichotic Listening.

    ERIC Educational Resources Information Center

    Benson, Peter

    1978-01-01

    An experiment tests conjectures that right ear advantage (REA) has an auditory origin in competition or interference between acoustically similar stimuli and that feature-sharing effect (FSE) has its origin in assignment of features of phonetically similar stimuli. No effect on the REA for acoustic similarity, and a clear effect of acoustic…

  17. Electronic dummy for acoustical testing

    NASA Technical Reports Server (NTRS)

    Bauer, B. B.; Di Mattia, A. L.; Rosencheck, A. J.; Stern, M.; Torick, E. L.

    1967-01-01

    Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal.

  18. Sound Advice on Classroom Acoustics.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2003-01-01

    Discusses the importance of acoustic standards in classroom design, presenting an interview with the Acoustical Society of America's (ASA's) standards manager which focuses on reasons for the new ASA standards, the standards document (which was written for K-12 classroom but applies to college classrooms), the need to avoid echo and be able to…

  19. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  20. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  1. Acoustic controlled rotation and orientation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)

    1989-01-01

    Acoustic energy is applied to a pair of locations spaced about a chamber, to control rotation of an object levitated in the chamber. Two acoustic transducers applying energy of a single acoustic mode, one at each location, can (one or both) serve to levitate the object in three dimensions as well as control its rotation. Slow rotation is achieved by initially establishing a large phase difference and/or pressure ratio of the acoustic waves, which is sufficient to turn the object by more than 45 deg, which is immediately followed by reducing the phase difference and/or pressure ratio to maintain slow rotation. A small phase difference and/or pressure ratio enables control of the angular orientation of the object without rotating it. The sphericity of an object can be measured by its response to the acoustic energy.

  2. MEMS Based Acoustic Array

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  3. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  4. Multimaterial Acoustic Fibers

    NASA Astrophysics Data System (ADS)

    Chocat, Noemie

    The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications well beyond optical transmission. Fiber reflectors, thermal detectors, photodetectors, chemical sensors, surface-emitting fiber lasers, fiber diodes, and other functional fiber devices have been demonstrated with this approach. Yet, throughout this development and indeed the development of fibers in general, a key premise has remained unchanged : that fibers are essentially static devices incapable of controllably changing their properties at high frequencies. Unique opportunities would arise if a rapid, electrically-driven mechanism for changing fiber properties existed. A wide spectrum of hitherto passive fiber devices could at once become active with applications spanning electronics, mechanics, acoustics, and optics, with the benefits of large surface-area, structural robustness, and mechanical flexibility. This thesis addresses the challenges and opportunities associated with the realization of electromechanical transduction in fibers through the integration of internal piezoelectric and electrostrictive domains. The fundamental challenges related to the fabrication of piezoelectric devices in fiber form are analyzed from a materials perspective, and candidate materials and geometries are selected that are compatible with the thermal drawing process. The first realization of a thermally drawn piezoelectric fiber device is reported and its piezoelectric response is established over a wide range of frequencies. The acoustic properties of piezoelectric fiber devices are characterized and related to their mechanical and geometric properties. Collective effects in multi-fiber constructs are discussed and demonstrated by the realization of a linear phased array of piezoelectric fibers capable of acoustic beam steering. High strain actuation

  5. Acoustic characteristics of a large-scale wind tunnel model of an upper-surface blown flap transport having two engines

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aoyagi, K.; Koenig, D. G.

    1973-01-01

    The upper-surface blown (USB) flap as a powered-lift concept has evolved because of the potential acoustic shielding provided when turbofan engines are installed on a wing upper surface. The results from a wind tunnel investigation of a large-scale USB model powered by two JT15D-1 turbofan engines are-presented. The effects of coanda flap extent and deflection, forward speed, and exhaust nozzle configuration were investigated. To determine the wing shielding the acoustics of a single engine nacelle removed from the model were also measured. Effective shielding occurred in the aft underwing quadrant. In the forward quadrant the shielding of the high frequency noise was counteracted by an increase in the lower frequency wing-exhaust interaction noise. The fuselage provided shielding of the opposite engine noise such that the difference between single and double engine operation was 1.5 PNdB under the wing. The effects of coanda flap deflection and extent, angle of attack, and forward speed were small. Forward speed reduced the perceived noise level (PNL) by reducing the wing-exhaust interaction noise.

  6. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  7. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  8. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  9. Acoustic emission during tensile deformation of M250 grade maraging steel

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna

    2012-05-01

    Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).

  10. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  11. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  12. Acoustic fault injection tool (AFIT)

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1999-05-01

    On September 18, 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. The program was funded as part of the U.S. Navy's Air Vehicle Diagnostic Systems (AVDS) program. Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. The application of acoustic emission for the early detection of helicopter rotor head dynamic component faults has proven the feasibility of the technology. The flight-test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. During the RAMS flight test, 12 test flights were flown from which 25 Gbyte of digital acoustic data and about 15 hours of analog flight data recorder (FDR) data were collected from the eight on-rotor acoustic sensors. The focus of this paper is to describe the CH-46 flight-test configuration and present design details about a new innovative machinery diagnostic technology called acoustic fault injection. This technology involves the injection of acoustic sound into machinery to assess health and characterize operational status. The paper will also address the development of the Acoustic Fault Injection Tool (AFIT), which was successfully demonstrated during the CH-46 flight tests.

  13. Acoustic cavitation movies

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence A.

    2003-04-01

    Acoustic cavitation is a phenomenon that occurs on microsecond time scales and micron length scales, yet, it has many macroscopic manifestations. Accordingly, it is often difficult, at least for the author, to form realistic physical descriptions of the specific mechanisms through which it expresses itself in our macroscopic world. For example, there are still many who believe that cavitation erosion is due to the shock wave that is emitted by bubble implosion, rather than the liquid jet created on asymmetric collapse...and they may be right. Over the years, the author has accumulated a number of movies and high-speed photographs of cavitation activity, which he uses to form his own visual references. In the time allotted, he will show a number of these movies and photographs and discuss their relevance to existing technological problems. A limited number of CDs containing the presented materials will be available to interested individuals. [Work supported in part by the NIH, USAMRMC, and the ONR.

  14. Wind turbine acoustic standards

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Shepherd, K. P.; Grosveld, F.

    1981-01-01

    A program is being conducted to develop noise standards for wind turbines which minimize annoyance and which can be used to design specifications. The approach consists of presenting wind turbine noise stimuli to test subjects in a laboratory listening chamber. The responses of the subjects are recorded for a range of stimuli which encompass the designs, operating conditions, and ambient noise levels of current and future installations. Results to date have established the threshold of detectability for a range of impulsive stimuli of the type associated with blade/tower wake interactions. The status of the ongoing psychoacoustic tests, the subjective data, and the approach to the development of acoustic criteria/standards are described.

  15. Electromagnetic acoustic transducer

    DOEpatents

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  16. DETECTING BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Labatie, A.; Starck, J. L.

    2012-02-20

    Baryon acoustic oscillations (BAOs) are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift z Almost-Equal-To 1000 and the existence of dark energy. In addition, BAOs provide a standard ruler for studying cosmic expansion. In this paper, we focus on methods for BAO detection using the correlation function measurement {xi}-hat. For each method, we want to understand the tested hypothesis (the hypothesis H{sub 0} to be rejected) and the underlying assumptions. We first present wavelet methods which are mildly model-dependent and mostly sensitive to the BAO feature. Then we turn to fully model-dependent methods. We present the method used most often based on the {chi}{sup 2} statistic, but we find that it has limitations. In general the assumptions of the {chi}{sup 2} method are not verified, and it only gives a rough estimate of the significance. The estimate can become very wrong when considering more realistic hypotheses, where the covariance matrix of {xi}-hat depends on cosmological parameters. Instead, we propose to use the {Delta}l method based on two modifications: we modify the procedure for computing the significance and make it rigorous, and we modify the statistic to obtain better results in the case of varying covariance matrix. We verify with simulations that correct significances are different from the ones obtained using the classical {chi}{sup 2} procedure. We also test a simple example of varying covariance matrix. In this case we find that our modified statistic outperforms the classical {chi}{sup 2} statistic when both significances are correctly computed. Finally, we find that taking into account variations of the covariance matrix can change both BAO detection levels and cosmological parameter constraints.

  17. Weapons bay acoustic environment

    NASA Astrophysics Data System (ADS)

    Shaw, L. L.; Shimovetz, R. M.

    1994-09-01

    An aircraft weapons bay exposed to freestream flow experiences an intense aeroacoustic environment in and around the bay. Experience has taught that the intensity of this environment can be severe enough to result in damage to a store, its internal equipment, or the structure of the weapons bay itself. To ensure that stores and sensitive internal equipment can withstand this hazardous environment and successfully complete the mission, they must be qualified to the most severe sound pressure levels anticipated for the mission. If the qualification test levels are too high, the store and its internal equipment will be over designed, resulting in unnecessary costs and possible performance penalties. If the qualification levels are below those experienced in flight, the store or its internal equipment may catastrophically fail during performance of the mission. Thus, it is desirable that the expected levels in weapons bays be accurately predicted. A large number of research efforts have been directed toward understanding flow-induced cavity oscillations. However, the phenomena are still not adequately understood to allow one to predict the fluctuating pressure levels for various configurations and flow conditions. This is especially true at supersonic flow speeds, where only a small amount of data are available. This paper will give a background of flow induced cavity oscillations and discuss predictions, control and suppression, and the future of weapons bay acoustic environments. A large number of research efforts have been directed toward understanding flow-induced cavity oscillations. However, the phenomena are still not adequately understood to allow one to predict the fluctuating pressure levels for various configurations and flow conditions. This is especially true at supersonic flow speeds, where only a small amount of data are available. This paper will give a background of flow induced cavity oscillations and discuss predictions, control and suppression, and

  18. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  19. Recent Langley helicopter acoustics contributions

    NASA Technical Reports Server (NTRS)

    Morgan, Homer G.; Pao, S. P.; Powell, C. A.

    1988-01-01

    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

  20. An asymptotic model in acoustics: acoustic drift equations.

    PubMed

    Vladimirov, Vladimir A; Ilin, Konstantin

    2013-11-01

    A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.

  1. Probing Acoustic Nonlinearity by Mixing Surface Acoustic Waves

    SciTech Connect

    Hurley, David Howard; Telschow, Kenneth Louis

    2000-07-01

    Measurement methods aimed at determining material properties through nonlinear wave propagation are sensitive to artifacts caused by background nonlinearities inherent in the ultrasonic generation and detection methods. The focus of this paper is to describe our investigation of nonlinear mixing of surface acoustic waves (SAWs) as a means to decrease sensitivity to background nonlinearity and increase spatial sensitivity to acoustic nonlinearity induced by material microstructure.

  2. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  3. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species. PMID:26233026

  4. Hybrid optical and acoustic force based sorting

    NASA Astrophysics Data System (ADS)

    O'Mahoney, Paul; Brodie, Graham W.; Wang, Han; Demore, Christine E. M.; Cochran, Sandy; Spalding, Gabriel C.; MacDonald, Michael P.

    2014-09-01

    We report the combined use of optical sorting and acoustic levitation to give particle sorting. Differing sizes of microparticles are sorted optically both with and without the aid of acoustic levitation, and the results compared to show that the use of acoustic trapping can increase sorting efficiency. The use of a transparent ultrasonic transducer is also shown to streamline the integration of optics and acoustics. We also demonstrate the balance of optical radiation pressure and acoustic levitation to achieve vertical sorting.

  5. The effective acoustic environment of helicopter crewmen

    NASA Technical Reports Server (NTRS)

    Camp, R. T., Jr.; Mozo, B. T.

    1978-01-01

    Methods of measuring the composite acoustic environment of helicopters in order to quantify the effective acoustic environment of the crewmen and to assess the real acoustic hazards of the personnel are examined. It is indicated that the attenuation characteristics of the helmets and hearing protectors and the variables of the physiology of the human ear be accounted for in determining the effective acoustic environment of Army helicopter crewmen as well as the acoustic hazards of voice communications systems noise.

  6. Dust-acoustic Solitary Waves in Dusty Plasma with Non-thermal Ions

    SciTech Connect

    Saini, Nareshpal Singh; Gill, Tarsem Singh; Kaur, Harvinder

    2005-10-31

    In the present research paper, characteristics of dust-acoustic solitary waves in dusty plasma are studied. The dust charge is treated as variable. KdV equation has been derived using reductive perturbation method. The effect of relative number density, relative ion temperature, non-thermal parameter and variable charge has been numerically studied for possibility of both type of dust-acoustic solitary waves.

  7. Acoustic performance of a 50.8-cm (20-inch) diameter variable-pitch fan and inlet. Volume 2: Acoustic data

    NASA Technical Reports Server (NTRS)

    Bilwakesh, K. R.; Clemons, A.; Stimpert, D. L.

    1979-01-01

    Results from acoustic tests on a 50.8 cm (20 inch) QCSEE Under-the-Wing (UTW) engine, variable pitch fan and inlet simulator are tabulated. Tests were run in both forward and reverse thrust mdoes with a bellmouth inlet, five accelerating inlets (one hardwall and four treated), and four low Mach number inlets (one hardwall and three treated). The 1/3 octave-band acoustic data are presented for the model size on the measured 5.2 m (17.0 ft) arc and also data scaled to full QCSEE size 71:20 on a 152.4 m (500 ft) sideline.

  8. Fan Acoustic Issues in the NASA Space Flight Experience

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Goodman, Jerry

    2008-01-01

    Emphasis needs to be placed on choosing quiet fans compatible with systems design and specifications that control spec levels: a) Sound power; b) Choose quiet fan or plan to quiet it, early in program; c) Plan early verification that fan source allocations are met. Airborne noise: a) System design should function/play together with fans used (flow passages, restrictions, bends, expansions & contractions, and acoustics) vs. fan speed understood (nominal, worst case, & unplanned variances); b) Fan inlets treated, as required; c) Fan Outlets treated, as required; d) Ducted system inlets are outlets designed for acoustic compliance compatibility & designed so some late required modifications can be made without significant impacts. Structure Borne Noise: a) Structure borne noise dealt with as part of fan package or installation; b) Duct attachments and lines isolated. Case Radiated Noise: - Treatment added as much as possible to fan package (see example).

  9. PC and PVC Acoustics Demonstrations.

    ERIC Educational Resources Information Center

    Luzader, Stephen

    1990-01-01

    Described are four musical instruments constructed from polyvinyl chloride (PVC) pipe. The use of computerized synthesizers to play scales and chords is discussed. Suggestions for other illustrations of acoustics are included. (CW)

  10. Acoustics: Motion controlled by sound

    NASA Astrophysics Data System (ADS)

    Neild, Adrian

    2016-09-01

    A simple technique has been developed that produces holograms made of sound waves. These acoustic landscapes are used to manipulate microscale objects, and offer great potential in medical imaging and selective heating. See Letter p.518

  11. Acoustic Characterization of Mesoscale Objects

    SciTech Connect

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  12. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  13. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  14. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice D.

    2014-01-01

    The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  15. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  16. Simplified Rotation In Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  17. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  18. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  19. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  20. Creating and studying ion acoustic waves in ultracold neutral plasmas

    SciTech Connect

    Killian, T. C.; Castro, J.; McQuillen, P.; O'Neil, T. M.

    2012-05-15

    We excite ion acoustic waves in ultracold neutral plasmas by imprinting density modulations during plasma creation. Laser-induced fluorescence is used to observe the density and velocity perturbations created by the waves. The effect of expansion of the plasma on the evolution of the wave amplitude is described by treating the wave action as an adiabatic invariant. After accounting for this effect, we determine that the waves are weakly damped, but the damping is significantly faster than expected for Landau damping.

  1. Arctic acoustics ultrasonic modeling studies

    NASA Astrophysics Data System (ADS)

    Chamuel, Jacques R.

    1990-03-01

    A unique collection of laboratory ultrasonic modeling results are presented revealing and characterizing hidden pulsed seismoacoustic wave phenomena from 3-D range dependent liquid/solid boundaries. The research succeeded in isolating and identifying low frequency (10 to 500 Hz) transmission loss mechanisms and provided physical insight into Arctic acoustic problems generally beyond the state-of-the-art of theoretical and numerical analysis. The ultrasonic modeling studies dealt with controversial issues and existing discrepancies on seismo-acoustic waves at water/ice interface, sea ice thickness determination, low frequency transmission loss, and bottom leaky Rayleigh waves. The areas investigated include leaky Rayleigh waves at water/ice interface, leaky flexural waves in floating ice plates, effects of dry/wet cracks in sea ice on plate waves and near grazing acoustic waves, edge waves in floating plates, low frequency backscatter from ice keel width resonances, conversion of underwater acoustic waves into plate waves by keels, nondispersive flexural wave along apex of small angle solid wedge, Scholte and leaky Rayleigh waves along apex of immersed 90 ice wedge, backscatter from trailing edge of floes, floating plate resonances associated with near-grazing underwater acoustic waves, acoustic coupling between adjacent floes, and multiple bottom leaky Rayleigh wave components in water layer over solid bottom.

  2. Opto-acoustic cell permeation

    SciTech Connect

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  3. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  4. Acoustical evaluation of preschool classrooms

    NASA Astrophysics Data System (ADS)

    Yang, Wonyoung; Hodgson, Murray

    2003-10-01

    An investigation was made of the acoustical environments in the Berwick Preschool, Vancouver, in response to complaints by the teachers. Reverberation times (RT), background noise levels (BNL), and in-class sound levels (Leq) were measured for acoustical evaluation in the classrooms. With respect to the measured RT and BNL, none of the classrooms in the preschool were acceptable according to the criteria relevant to this study. A questionnaire was administered to the teachers to assess their subjective responses to the acoustical and nonacoustical environments of the classrooms. Teachers agreed that the nonacoustical environments in the classrooms were fair, but that the acoustical environments had problems. Eight different classroom configurations were simulated to improve the acoustical environments, using the CATT room acoustical simulation program. When the surface absorption was increased, both the RT and speech levels decreased. RASTI was dependent on the volumes of the classrooms when the background noise levels were high; however, it depended on the total absorption of the classrooms when the background noise levels were low. Ceiling heights are critical as well. It is recommended that decreasing the volume of the classrooms is effective. Sound absorptive materials should be added to the walls or ceiling.

  5. Acoustic Droplet Vaporization in Biology and Medicine

    PubMed Central

    Pitt, William G.

    2013-01-01

    This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV) in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU) sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles. PMID:24350267

  6. Forward velocity effects on fan noise and the suppression characteristics of advanced inlets as measured in the NASA Ames 40 by 80 foot wind tunnel: Acoustic data report

    NASA Astrophysics Data System (ADS)

    Moore, M. T.

    1981-01-01

    Forward velocity effects on the forward radiated fan noise and on the suppression characteristics of three advanced inlets relative to a baseline cylindrical inlet were measured in a wind tunnel. A modified JT15D turbofan engine in a quiet nacelle was the source of fan noise; the advanced inlets were a CTOL hybrid inlet, an STOL hybrid inlet, and a treated deflector inlet. Also measured were the static to flight effects on the baseline inlet noise and the effects on the fan noise of canting the baseline inlet 4 deg downward to simulate typical wing mounted turbofan engines. The 1/3 octave band noise data from these tests are given along with selected plots of 1/3 octave band spectra and directivity and full scale PNL directivities. The test facilities and data reduction techniques used are also described.

  7. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  8. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  9. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  10. Acoustic Signal Processing

    NASA Astrophysics Data System (ADS)

    Hartmann, William M.; Candy, James V.

    Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.

  11. Software for Acoustic Rendering

    NASA Technical Reports Server (NTRS)

    Miller, Joel D.

    2003-01-01

    SLAB is a software system that can be run on a personal computer to simulate an acoustic environment in real time. SLAB was developed to enable computational experimentation in which one can exert low-level control over a variety of signal-processing parameters, related to spatialization, for conducting psychoacoustic studies. Among the parameters that can be manipulated are the number and position of reflections, the fidelity (that is, the number of taps in finite-impulse-response filters), the system latency, and the update rate of the filters. Another goal in the development of SLAB was to provide an inexpensive means of dynamic synthesis of virtual audio over headphones, without need for special-purpose signal-processing hardware. SLAB has a modular, object-oriented design that affords the flexibility and extensibility needed to accommodate a variety of computational experiments and signal-flow structures. SLAB s spatial renderer has a fixed signal-flow architecture corresponding to a set of parallel signal paths from each source to a listener. This fixed architecture can be regarded as a compromise that optimizes efficiency at the expense of complete flexibility. Such a compromise is necessary, given the design goal of enabling computational psychoacoustic experimentation on inexpensive personal computers.

  12. Ion acoustic traveling waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Burrows, R. H.; Ao, X.; Zank, G. P.; Zank

    2014-04-01

    Models for traveling waves in multi-fluid plasmas give essential insight into fully nonlinear wave structures in plasmas, not readily available from either numerical simulations or from weakly nonlinear wave theories. We illustrate these ideas using one of the simplest models of an electron-proton multi-fluid plasma for the case where there is no magnetic field or a constant normal magnetic field present. We show that the traveling waves can be reduced to a single first-order differential equation governing the dynamics. We also show that the equations admit a multi-symplectic Hamiltonian formulation in which both the space and time variables can act as the evolution variable. An integral equation useful for calculating adiabatic, electrostatic solitary wave signatures for multi-fluid plasmas with arbitrary mass ratios is presented. The integral equation arises naturally from a fluid dynamics approach for a two fluid plasma, with a given mass ratio of the two species (e.g. the plasma could be an electron-proton or an electron-positron plasma). Besides its intrinsic interest, the integral equation solution provides a useful analytical test for numerical codes that include a proton-electron mass ratio as a fundamental constant, such as for particle in cell (PIC) codes. The integral equation is used to delineate the physical characteristics of ion acoustic traveling waves consisting of hot electron and cold proton fluids.

  13. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  14. Covert underwater acoustic communications.

    PubMed

    Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre

    2010-11-01

    Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data.

  15. Passive Acoustic Vessel Localization

    NASA Astrophysics Data System (ADS)

    Suwal, Pasang Sherpa

    This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.

  16. Surface acoustic wave microfluidics.

    PubMed

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  17. Acoustics of the Intonarumori

    NASA Astrophysics Data System (ADS)

    Serafin, Stefania

    2005-04-01

    The Intonarumori were a family of musical instruments invented by the Italian futurist composer and painter Luigi Russolo. Each Intonarumori was made of a wooden parallelepiped sound box, inside which a wheel of different sizes and materials was setting into vibration a catgut or metal string. The pitch of the string was varied by using a lever, while the speed of the wheel was controlled by the performer using a crank. At one end of the string there was a drumhead that transmitted vibrations to the speaker. Unfortunately, all the original Intonarumori were destroyed after a fire during World War II. Since then, researchers have tried to understand the sound production mechanism of such instruments, especially by consulting the patents compiled by Russolo or by reading his book ``The art of noise.'' In this paper we describe the acoustics of the Intonarumori. Based on such description, we propose physical models that simulate such instruments. The intonarumori's string is modeled using a one dimensional waveguide, which is excited either by an impact or a friction model. The body of the instrument is modeled using a 3-D rectangular mesh, while the horn is considered as an omnidirectional radiator.

  18. Aquatic Acoustic Metrics Interface

    SciTech Connect

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.

  19. Aquatic Acoustic Metrics Interface

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specificallymore » designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less

  20. Treating oilfield emulsions

    SciTech Connect

    Not Available

    1990-01-01

    This book is divided into the following sections: The Treating Problem of Oilfield Emulsion; The Theory of Emulsions; Emulsions and Production Practices; The Basic Principles of Treating; The Application of Heat in Treating; The Principles of Chemical Treating; Treating with Heater-Treaters; Automatic Central Oil-Treating Systems; Sampling Procedures; Testing for Sediment and Water; Treating Cost Records.

  1. On the physics of underwater acoustic communications

    NASA Astrophysics Data System (ADS)

    Yang, T. C.

    2012-11-01

    Digital communications have been traditionally treated using signal processing approaches. Algorithm and performance is system-model dependent. For underwater acoustic communications, the system model is very complex due to the different channel environmental conditions which can vary rapidly with time, and are location dependent. Performance modeling is difficult without a profound channel model. Work over the last decades have shown that robust performance can be achieved by exploiting the channel physics allowing at the same time an initial estimation of the communication performance. This paper will review the basic signal processing approaches using languages familiar to the physicists/acousticians, point out the communication related physics issues, and discuss how channel physics can be exploited to improve the performance.

  2. Methods for reconstructing acoustic quantities based on acoustic pressure measurements.

    PubMed

    Wu, Sean F

    2008-11-01

    This paper presents an overview of the acoustic imaging methods developed over the past three decades that enable one to reconstruct all acoustic quantities based on the acoustic pressure measurements taken around a target source at close distances. One such method that has received the most attention is known as near-field acoustical holography (NAH). The original NAH relies on Fourier transforms that are suitable for a surface containing a level of constant coordinate in a source-free region. Other methods are developed to reconstruct the acoustic quantities in three-dimensional space and on an arbitrary three-dimensional source surface. Note that there is a fine difference between Fourier transform based NAH and other methods that is largely overlooked. The former can offer a wave number spectrum, thus enabling visualization of various structural waves of different wavelengths that travel on the surface of a structure; the latter cannot provide such information, which is critical to acquire an in-depth understanding of the interrelationships between structural vibrations and sound radiation. All these methods are discussed in this paper, their advantages and limitations are compared, and the need for further development to analyze the root causes of noise and vibration problems is discussed.

  3. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  4. Acoustic communication in plant-animal interactions.

    PubMed

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. PMID:27423052

  5. Reflective echo tomographic imaging using acoustic beams

    DOEpatents

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  6. Acoustic communication in plant-animal interactions.

    PubMed

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals.

  7. Mars Acoustic Anemometer

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.

    2012-12-01

    We have developed a very high performance anemometer (wind gauge) for use at Mars. This instrument has great scientific as well as strategic reasons to be included on all future missions to the surface of Mars. We will discuss why we set out to develop this instrument, as well as why the previous wind sensors for Mars are insufficient to meet the scientific and strategic needs at Mars. We will also discuss how the instrument works, and how it differs from terrestrial counterparts. Additionally, we will discuss the current status of the instrument. Measuring winds at Mars is important to better understand the atmospheric circulation at Mars, as well as exchange between the surface and atmosphere. The main conduit of transport of water, and hence its current stability at any particular location on Mars is controlled by these atmospheric motions and the exchange between surface and atmosphere. Mars' large-scale winds are moderately well understood from orbital observations, but the interaction with the surface can only be addressed adequately in situ. Previous anemometers have been 2-D (with the exception of REMS on MSL) and slow response (typically <1Hz), and relatively low sensitivity/accuracy (>1 m/s). Our instrument is capable of fully 3-D measurements, with fast response (>20 Hz) and great sensitivity/accuracy (~3 cm/s). This significant step forward in performance is important for the surface-atmosphere exchanges of heat, momentum and volatiles. In particular, our instrument could directly measure the heat and momentum fluxes between surface and atmosphere using eddy-flux techniques proven terrestrially. When combined with a fast response volatile analysis instrument (e.g., a TLS) we can also measure eddy fluxes of volatile transport. Such a study would be nearly impossible to carry out with preceding anemometers sent to Mars with insufficient response time and sensitivity to adequately sample the turbulent eddies. Additionally, our instrument, using acoustics

  8. Acoustic constituents of prosodic typology

    NASA Astrophysics Data System (ADS)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  9. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  10. Virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1991-01-01

    A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate

  11. Acoustic positioning and orientation prediction

    NASA Astrophysics Data System (ADS)

    Barmatz, Martin B.; Aveni, Glenn; Putterman, Seth; Rudnick, Joseph

    1990-10-01

    A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.

  12. Acoustic positioning and orientation prediction

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)

    1990-01-01

    A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.

  13. My 65 years in acoustics

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.

    2001-05-01

    My entry into acoustics began as research assistant to Professor F. V. Hunt at Harvard University. I received my doctorate in 1940 and directed the Electro-Acoustic Laboratory at Harvard from October 1940 until September 1945. In 1947, I became a tenured associate professor at MIT, and, with Richard H. Bolt, formed the consulting firm Bolt and Beranek, that later included Robert B. Newman, becoming BBN. My most significant contributions before 1970 were design of wedge-lined anechoic chambers, systemization of noise reduction in ventilation systems, design of the world's largest muffler for the testing of supersonic jet engines at NASA's Lewis Laboratory in Cleveland, speech interference level, NC noise criterion curves, heading New York Port Authority's noise study that resulted in mufflers on jet aircraft, and steep aircraft climb procedures, and publishing books titled, Acoustical Measurements, Acoustics, Noise Reduction, Noise and Vibration Control, and Music, Acoustics and Architecture. As President of BBN, I supervised the formation of the group that built and operated the ARPANET (1969), which, when split in two (using TCP/IP protocol) became the INTERNET (1984). Since then, I have written two books on Concert Halls and Opera Houses and have consulted on four concert halls and an opera house.

  14. Combined acoustic and optical trapping

    PubMed Central

    Thalhammer, G.; Steiger, R.; Meinschad, M.; Hill, M.; Bernet, S.; Ritsch-Marte, M.

    2011-01-01

    Combining several methods for contact free micro-manipulation of small particles such as cells or micro-organisms provides the advantages of each method in a single setup. Optical tweezers, which employ focused laser beams, offer very precise and selective handling of single particles. On the other hand, acoustic trapping with wavelengths of about 1 mm allows the simultaneous trapping of many, comparatively large particles. With conventional approaches it is difficult to fully employ the strengths of each method due to the different experimental requirements. Here we present the combined optical and acoustic trapping of motile micro-organisms in a microfluidic environment, utilizing optical macro-tweezers, which offer a large field of view and working distance of several millimeters and therefore match the typical range of acoustic trapping. We characterize the acoustic trapping forces with the help of optically trapped particles and present several applications of the combined optical and acoustic trapping, such as manipulation of large (75 μm) particles and active particle sorting. PMID:22025990

  15. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  16. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  17. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  18. Classroom acoustics: Three pilot studies

    NASA Astrophysics Data System (ADS)

    Smaldino, Joseph J.

    2005-04-01

    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.

  19. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  20. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  1. Acoustics of a Nonhomogeneous Moving Medium.

    NASA Technical Reports Server (NTRS)

    Blokhintsev, D I

    1956-01-01

    Theoretical basis of the acoustics of a moving nonhomogeneous medium is considered in this report. Experiments that illustrate or confirm some of the theoretical explanation or derivation of these acoustics are also included.

  2. Acoustic Trauma - Hearing Loss in Teenagers

    MedlinePlus

    ... Issues Listen Español Text Size Email Print Share Acoustic Trauma - Hearing Loss in Teenagers Page Content Article ... temporary or permanent hearing loss. This is called acoustic trauma. How loud is 85 decibels? Surprisingly, not ...

  3. Pseudo-continuous-wave acoustic instrument

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Stone, F. D.

    1978-01-01

    Simple, inexpensive, and portable ultrasonic device accurately measures acoustic properties of liquids, gases, and solids, using pseudo-continuous wave responses from samples to measure change in resonant frequency or amplitude in acoustic signal.

  4. Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis

    MedlinePlus

    ... Home » Health Info » Hearing, Ear Infections, and Deafness Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis On this page: ... more information about vestibular schwannomas? What is a vestibular schwannoma (acoustic neuroma)? Inner ear with vestibular schwannoma ( ...

  5. Matching Impedances and Modes in Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.

    1985-01-01

    Temperature differences accommodated with tunable coupler. Report discusses schemes for coupling sound efficiently from cool outside atmosphere into hot acoustic-levitation chamber. Theoretical studies have practical implications for material-processing systems that employ acoustic levitation.

  6. Acoustic network event classification using swarm optimization

    NASA Astrophysics Data System (ADS)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  7. Acoustic behaviors of unsaturated soils

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2011-12-01

    Soils are unconsolidated granular materials, consisting of solid particles, water and air. Their mechanical and dynamic behaviors are determined by the discrete nature of the media as well as external and inter-particle forces. For unsaturated soils, two factors significantly affect soils acoustic/seismic responses: external pressure and internal water potential/matric suction. In triaxial cell tests, unsaturated soils were subjected to predefined stress paths to undergo stages of normal consolidation, unload-reload cycles, and failure. The stress deformation curve and stress-P-wave velocity were measured and compared. The study revealed that soil's dynamic response to external pressure are similar to those of the load-deformation behaviors and demonstrated that acoustic velocity can be used to monitor the state of stress of soils. In a long term field soil survey, the P-wave velocities were found to be correlated with water potential as expressed as a power-law relationship. The above phenomena can be understood by using the Terzaghi' s the principle of effective stress. The measured results were in good agreement with Brutsaert theory. The effective stress concept can also be applied to explain the observations in a soil pipe flow study in which soil internal erosion processes were monitored and interpreted by the temporal evolution of the P-wave velocity. In addition to above linear acoustic behaviors, soils, like other earth materials, exhibit astonishing non-classical nonlinear behaviors such as end-point memory, hysteresis, strain -dependent shear modulus, resonant frequency shift, and phase shift, harmonics generation, etc. A nonlinear acoustic study of a soil as a function of water content showed that the nonlinear acoustic parameter are much sensitive to the variations of soil water content than that of the acoustic velocity.

  8. Acoustically-Induced Electrical Signals

    NASA Astrophysics Data System (ADS)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  9. Particle analysis in an acoustic cytometer

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  10. Controlling Sample Rotation in Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.

    1985-01-01

    Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.

  11. Gas sensing with acoustic devices

    SciTech Connect

    Martin, S.J.; Frye, G.C.; Spates, J.J.; Butler, M.A.

    1996-12-31

    A survey is made of acoustic devices that are suitable as gas and vapor sensors. This survey focuses on attributes such as operating frequency, mass sensitivity, quality factor (Q), and their ability to be fabricated on a semiconductor substrate to allow integration with electronic circuitry. The treatment of the device surface with chemically-sensitive films to detect species of interest is discussed. Strategies for improving discrimination are described, including sensor arrays and species concentration and separation schemes. The advantages and disadvantages of integrating sensors with microelectronics are considered, along with the effect on sensitivity of scaling acoustic gas sensors to smaller size.

  12. Acoustical Imaging with Negative Refraction

    NASA Astrophysics Data System (ADS)

    Gan, W. S.

    It is well known that the resolution limit of acoustical images is limited by diffraction to λ/2 where λ is the sound wavelength. Negative refraction proposed by Veselago in 1968 shows possibility of defeating the diffraction limit. His work is for electromagnetic waves. Recently it has been shown experimentally that negative refraction can be achieved for both electromagnetic waves and sound waves by using photonic crystals and phononic crystals respectively. John Pendry proposed the concept of `perfect lens' using negative refraction for electromagnetic waves. In this paper, we propose a `perfect lens' for sound waves and an acoustical imaging system incorporating the `perfect lens' is also outlined

  13. Sonic crystal acoustic switch device.

    PubMed

    Alagoz, Serkan; Alagoz, Baris Baykant

    2013-06-01

    This study reports a wave-controlled sonic crystal switch device that exhibits a destructive interference-based wave to wave reverse switching effect. By applying control waves, this acoustic device, composed of a two-dimensional square lattice sonic crystal block, reduces acoustic wave transmission from input to output. The finite difference time domain simulation and experimental results confirm the wave-to-wave reverse switching effect at the peak frequencies of the second band. The proposed sonic crystal switch prototype provides a contrast rate of 86% at 11.3 kHz frequency. This wave-to-wave switching effect is useful for controlling wave propagation for smart structure applications.

  14. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  15. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  16. Basic Principles of Solar Acoustic Holography - (Invited Review)

    NASA Astrophysics Data System (ADS)

    Lindsey, C.; Braun, D. C.

    2000-03-01

    We summarize the basic principles of holographic seismic imaging of the solar interior, drawing on familiar principles in optics and parallels with standard optical holography. Computational seismic holography is accomplished by the phase-coherent wave-mechanical reconstruction of the p-mode acoustic field into the solar interior based on helioseismic observations at the solar surface. It treats the acoustic field at the solar surface in a way broadly analogous to how the eye treats electromagnetic radiation at the surface of the cornea, wave-mechanically refocusing radiation from submerged sources to render stigmatic images that can be sampled over focal surfaces at any desired depth. Holographic diagnostics offer a straight-forward assessment of the informational content of the observed p-mode spectrum independent of prospective physical models of the local interior anomalies that it represents. Computational holography was proposed as the optimum approach whereby to address the severe diffraction effects that confront standard tomography in the solar p-mode environment. It has given us a number of remarkable discoveries in the last two years and now promises a new insight into solar interior structure and dynamics in the local perspective. We compare the diagnostic roles of simple acoustic-power holography and phase-sensitive holography, and anticipate approaches to solar interior modeling based on holographic signatures. We identify simple computational principles that, applied to high-quality helioseismic observations, make it easy for prospective analysts to produce high-quality holographic images for practical applications in local helioseismology.

  17. The Acoustical Apparatus of Rudolph Koenig.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1992-01-01

    Discusses the history of Rudolph Koenig's contribution to the development of acoustical apparatus. Contributions include the clock fork to determine absolute acoustic frequencies, a forerunner of the oscilloscope called the manometric flame, and an acoustic interference apparatus used in the Fourier synthesis of musical sounds. (MDH)

  18. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  19. Classroom Acoustics: Understanding Barriers to Learning.

    ERIC Educational Resources Information Center

    Crandell, Carl C., Ed.; Smaldino, Joseph J., Ed.

    2001-01-01

    This booklet explores classroom acoustics and their importance on the learning potential of children with hearing loss and related disabilities. The booklet also reviews research on classroom acoustics and the need for the development of classroom acoustics standards. Chapters examine: 1) a speech-perception model demonstrating the linkage between…

  20. Laser generation of acoustic waves in liquids and gases

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus W.

    1986-10-01

    The laser generation of sound in liquids and gases is reviewed. The sound-generating mechanisms of laser interaction with matter are discussed with emphasis on the thermoelastic process. The studies on strongly absorbing liquids include detailed theoretical considerations of the thermoelastic sound generation with pulsed lasers. Acoustic waveforms for H2O and D2O are calculated analytically on the basis of a model laser-pulse shape. Both free and rigid boundaries on the surface of the liquid are considered. Good agreement between theory and experiments with respect to waveforms and amplitudes is obtained. The experiments are performed with a hybrid CO2 laser and piezoelectric or optical detection of the acoustic transients. In view of a present controversy, special emphasis is put on the temperature dependence of the acoustic amplitudes in H2O, D2O, and in aqueous MgSO4 solutions. Good agreement is found between experimental data and a new, pure thermal model which takes heat conduction into account. The distortion of the acoustic waveform during the propagation through the liquid is treated in terms of sound absorption, diffraction, and nonlinear acoustics. A simple experimental method for the determination of Beyer's nonlinearity parameter B/A is presented. In the last section some characteristics of photoacoustic spectroscopy (PAS) in gaseous media are reviewed. This method has been demonstrated to be highly sensitive. The measurement of absorption coefficients as low as 10-8 cm-1 is possible. PA studies on H2O vapor are discussed with new results on line and continuum absorption in the 9-11-μm wavelength range. Finally, the impact of PAS on trace gas analysis is demonstrated. With PAS the detection of gas concentrations in the ppb range is feasible. The operational characteristics of a stationary CO laser and a mobile CO2 laser-PAS system are presented, including first results on continuous in situ air pollution monitoring.

  1. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  2. Application Of Digital Image Processing To Acoustic Ambiguity Functions

    NASA Astrophysics Data System (ADS)

    Sharkey, J. Brian

    1983-03-01

    The passive acoustic ambiguity function is a measure of the cross-spectrum in a Doppler-shift and time-delay space that arises when two or more passive receivers are used to monitor a moving acoustic source. Detection of a signal source in the presence of noise has been treated in the past from a communications-theory point of view, with considerable effort devoted to establishing a threshold to which the maximum value of the function is compared. That approach disregards ambiguity function topography information which in practice is manually used to interpret source characteristics and source kinematics. Because of the two-dimensional representation of the ambiguity function, digital image processing techniques can be easily applied for the purposes of topography enhancement and characterization. This work presents an overview of techniques previously reported as well as more current research being conducted to improve detection performance and automate topography characterization.

  3. Acoustic counter-sniper system

    NASA Astrophysics Data System (ADS)

    Duckworth, Gregory L.; Gilbert, Douglas C.; Barger, James E.

    1997-02-01

    BBN has developed, tested, and fielded pre-production versions of a versatile acoustics-based counter-sniper system. This system was developed by BBN for the DARPA Tactical Technology Office to provide a low cost and accurate sniper detection and localization system. The system uses observations of the shock wave from supersonic bullets to estimate the bullet trajectory, Mach number, and caliber. If muzzle blast observations are also available from unsilenced weapons, the exact sniper location along the trajectory is also estimated. A newly developed and very accurate model of the bullet ballistics and acoustic radiation is used which includes bullet deceleration. This allows the use of very flexible acoustic sensor types and placements, since the system can model the bullet's flight, and hence the acoustic observations, over a wide area very accurately. System sensor configurations can be as simple as two small four element tetrahedral microphone arrays on either side of the area to be protected, or six omnidirectional microphones spread over the area to be monitored. Increased performance can be obtained by expanding the sensor field in size or density, and the system software is easily reconfigured to accommodate this at deployment time. Sensor nodes can be added using wireless network telemetry or hardwired cables to the command node processing and display computer. The system has been field tested in three government sponsored tests in both rural and simulated urban environments at the Camp Pendleton MOUT facility. Performance was characterized during these tests for various shot geometries and bullet speeds and calibers.

  4. LLNL`s acoustic spectrometer

    SciTech Connect

    Baker, J.

    1997-03-17

    This paper describes the development of a frequency sensitive acoustic transducer that operates in the 10 Hz to 10 kHz regime. This device uses modem silicon microfabrication techniques to form mechanical tines that resonate at specified frequencies. This high-sensitivity device is intended for low-power battery powered applications.

  5. MTCI acoustic agglomeration particulate control

    SciTech Connect

    Chandran, R.R.; Mansour, M.N.; Scaroni, A.W.; Koopmann, G.H.; Loth, J.L.

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  6. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  7. Poor Marks for Classroom Acoustics.

    ERIC Educational Resources Information Center

    Herbert, R. Kring

    1999-01-01

    Discusses the problem of low acoustical performance in many of today's K-12 classrooms and its impact on student learning. The following three primary types of classroom noise and their control are explored: reverberation; climate control system noise; and noise from outside the classroom. (GR)

  8. Acoustical Modifications for the Classroom.

    ERIC Educational Resources Information Center

    Crandell, Carl C.; Smaldino, Joseph J.

    1999-01-01

    This article reviews procedures for evaluating, measuring, and modifying noise and reverberation levels in the classroom environment. Recommendations include: relocating children away from high noise sources, such as fans, air conditioners, heating ducts, and faulty lighting fixtures, using sound-absorbing materials, using acoustical ceiling tile…

  9. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  10. Piezoelectric fibers for conformal acoustics.

    PubMed

    Chocat, Noémie; Lestoquoy, Guillaume; Wang, Zheng; Rodgers, Daniel M; Joannopoulos, John D; Fink, Yoel

    2012-10-01

    Ultrasound transducers have many important applications in medical, industrial, and environmental settings. Large-active-area piezoelectric fibers are presented here, which can be woven into extended and flexible ultrasound transducing fabrics. This work opens significant opportunities for large-area, flexible and adjustable acoustic emission and sensing for a variety of emerging applications.

  11. Acoustic optic hybrid (AOH) sensor

    PubMed

    Matthews; Arrieta

    2000-09-01

    The ability of laser vibrometers to receive and process acoustic echoes from the water surface above a submerged target is established and evaluated. Sonar echoes from a submerged target are collected from the water surface by a laser vibrometer. Feasibility of this approach to sensing underwater sound is demonstrated. If the acoustic excitation at an otherwise undisturbed water surface is 195 to 168 dB re: 1 microPa, signal-to-noise ratio (SNR), at the vibrometer output, is shown to range from about 46 to 6 dB. Capillary waves and gravity waves at the water surface are expected and shown to have some destructive effect on the process of echo retrieval. A series of experiments to quantify the surface wave effects is described. The wave experiment results are reported. A successful attempt to acquire echoes from a submerged target over a grid of points for further processing into a three-dimensional image is made and described. The data acquisition and beamforming techniques constitute a three-dimensional, acoustic optic, synthetic aperture sonar (SAS). Beamformed images are included. For an aircraft towing acoustic sensors through the water with a mechanical link, this technique holds the promise of increased safety and improved fuel efficiency. PMID:11008811

  12. Joint Acoustic Propagation Experiment (JAPE)

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Olsen, Robert O.; Kennedy, Bruce W.

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), performed under the auspices of NATO and the Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of 220 trials using various acoustic sources including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm howitzer, and static high explosives. Of primary importance to the performance of these tests was the intensive characterization of the atmosphere before and during the trials. Because of the wide range of interests on the part of the participants, JAPE was organized in such a manner to provide a broad cross section of test configurations. These included short and long range propagation from fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials were also performed by individual participating agencies using the assets available during JAPE. These tests, while not documented in this report, provided substantial and important data to those groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base which can be used by not only the participants but by others interested in acoustics. A follow-on test was performed by NASA LaRC during the period 19-29 Aug. 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in order to establish the relationship between atmospheric turbulence and the received sonic boom energy at the surface.

  13. Acoustically-tuned optical spectrometer

    NASA Technical Reports Server (NTRS)

    Sklar, E.

    1981-01-01

    Lens arrangement corrects for aberrations and gives resolution of 0.7 seconds of arc. In spectrometer, light from telescope is relayed by doublet lens to acoustically tuned optical filter. Selected wavelengths are relayed by triplet lens to charge coupled device camera. Intervening cylindrical lens, tilted at 12 degree angle, corrects for astigmatism and coma introduced by two element birefringent crystal in filter.

  14. Acoustic optic hybrid (AOH) sensor

    PubMed

    Matthews; Arrieta

    2000-09-01

    The ability of laser vibrometers to receive and process acoustic echoes from the water surface above a submerged target is established and evaluated. Sonar echoes from a submerged target are collected from the water surface by a laser vibrometer. Feasibility of this approach to sensing underwater sound is demonstrated. If the acoustic excitation at an otherwise undisturbed water surface is 195 to 168 dB re: 1 microPa, signal-to-noise ratio (SNR), at the vibrometer output, is shown to range from about 46 to 6 dB. Capillary waves and gravity waves at the water surface are expected and shown to have some destructive effect on the process of echo retrieval. A series of experiments to quantify the surface wave effects is described. The wave experiment results are reported. A successful attempt to acquire echoes from a submerged target over a grid of points for further processing into a three-dimensional image is made and described. The data acquisition and beamforming techniques constitute a three-dimensional, acoustic optic, synthetic aperture sonar (SAS). Beamformed images are included. For an aircraft towing acoustic sensors through the water with a mechanical link, this technique holds the promise of increased safety and improved fuel efficiency.

  15. An overview of Arctic Ocean acoustics

    NASA Astrophysics Data System (ADS)

    Hutt, Dan

    2012-11-01

    This paper presents a review of the underwater acoustics of the Arctic Ocean. It discusses the main features of the underwater acoustic environment and how they are so strongly affected by the presence of ice cover. The paper also discusses the history of Arctic Ocean acoustics research, how the motivation was originally military in character during the Cold War and how it changed to being driven by environmental considerations today. Originally, the physics of the Arctic Ocean was studied in order to predict its acoustic properties, and now acoustic techniques are used to help understand its physical environment.

  16. Parvulescu Revisited: Small Tank Acoustics for Bioacousticians.

    PubMed

    Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D

    2016-01-01

    Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others. PMID:26611052

  17. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  18. Parvulescu Revisited: Small Tank Acoustics for Bioacousticians.

    PubMed

    Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D

    2016-01-01

    Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others.

  19. Acoustic noise from volcanoes - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Woulff, G.; Mcgetchin, T. R.

    1976-01-01

    The paper discusses some theoretical aspects of acoustic investigation of volcanoes and describes a field experiment involving the recording, analysis, and interpretation of acoustic radiation from energetic fumaroles at Volcan Acatenango, Guatemala, during mid-January 1973. Particular attention is given to deriving information about the flow velocity of the erupting medium from acoustics as a means to study eruption dynamics. Theoretical considerations suggest that acoustic power radiated during gaseous volcanic eruptions may be related to gas exit velocity according to appropriate power laws. Eruption acoustics proves useful as a means of quantitative monitoring of volcanic activity.

  20. Empirical mode decomposition for analyzing acoustical signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  1. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 3: Ground tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The NASA Refan Program included full-scale performance and noise ground tests of both a current production (JT8D-15) and a refanned (JT8D-115) engine. A description of the two ground tests including detailed propulsion, noise, and structural test results is presented. The primary objectives of the total test program were comparison of JT8D-15 and JT8D-115 overall propulsion system performance and noise characteristics and determination of incremental component noise levels. Other objectives of the test program included: (1) determination of acoustic treatment effectiveness; (2) measurement of internal sound pressure levels; (3) measurement of inlet and exhaust hardware performance; (4) determination of center-engine surge margin; and (5) evaluation of certain structural characteristics associated with the 727 refan center-engine inlet duct and JT8D refan engine exhaust system. The JT8D-15 and -115 tests were conducted during September 1974 and January to March 1975, respectively. Analyses of the test data indicated that the JT8D-115, as compared to the JT8D-15, demonstrates a 12.5 percent to 13.2 percent reduction in static specific fuel consumption, and a reduction of 6 to 7 PNdB in a weighted average value of static tone corrected perceived noise level. Separated into noise components, a significant reduction was shown for the inlet fan, aft fan, exhaust duct flow, turbine, and jet noises. However, core noise was increased. Photographs of test stands and test equipment are shown.

  2. Elastic characterization of swine aorta by scanning acoustic microscopy at 30 MHz

    NASA Astrophysics Data System (ADS)

    Blase, Christopher; Shelke, Amit; Kundu, Tribikram; Bereiter-Hahn, Jürgen

    2011-04-01

    The mechanical properties of blood vessel walls are important determinants of physiology and pathology of the cardiovascular system. Acoustic imaging (B mode) is routinely used in a clinical setting to determine blood flow and wall distensibility. In this study scanning acoustic microscopy in vitro is used to determine spatially resolved tissue elastic properties. Broadband excitation of 30 MHz has been applied through scanning acoustic microscopy (SAM) for topographical imaging of swine thoracic aorta in reflection mode. Three differently treated tissue samples were investigated with SAM: a) treated with elastase to remove elastin, b) autoclaving for 5 hours to remove collagen and c) fresh controlled untreated sample as control. Experimental investigations are conducted for studying the contribution of individual protein components (elastin and collagen) to the material characteristics of the aortic wall. Conventional tensile testing has been conducted on the tissue samples to study the mechanical behavior. The mechanical properties measured by SAM and tensile testing show qualitative agreement.

  3. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  4. Granular acoustic switches and logic elements

    NASA Astrophysics Data System (ADS)

    Li, Feng; Anzel, Paul; Yang, Jinkyu; Kevrekidis, Panayotis G.; Daraio, Chiara

    2014-10-01

    Electrical flow control devices are fundamental components in electrical appliances and computers; similarly, optical switches are essential in a number of communication, computation and quantum information-processing applications. An acoustic counterpart would use an acoustic (mechanical) signal to control the mechanical energy flow through a solid material. Although earlier research has demonstrated acoustic diodes or circulators, no acoustic switches with wide operational frequency ranges and controllability have been realized. Here we propose and demonstrate an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force. We experimentally and numerically verify that this switching mechanism stems from a combination of nonlinearity and bandgap effects. We also realize the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain. We anticipate these results to enable the creation of novel acoustic devices for the control of mechanical energy flow in high-performance ultrasonic devices.

  5. Method and apparatus for generating acoustic energy

    DOEpatents

    Guerrero, Hector N.

    2002-01-01

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  6. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2004-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  7. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2006-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  8. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  9. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  10. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The propulsion performance, acoustic, structural, and systems changes to a 727-200 airplane retrofitted with a refan modification of the JT8D turbofan engine are evaluated. Model tests, design of certifiable airplane retrofit kit hardware, manufacture of test hardware, ground test of a current production JT8D engine, followed by test of the same engine modified to the refan configuration, detailed analyses of the retrofit impact on airplane airworthiness, performance, and noise, and a preliminary analysis of retrofit costs are included. Results indicate that the refan retrofit of the 727-200 would be certifiable and would result in a 6-to 8 EPNdb reduction in effective perceived noise level (EPNL) at the FAR 36 measuring points and an annoyance-weighted footprint area reduction of 68% to 83%. The installed refan engine is estimated to provide 14% greater takeoff thrust at zero velocity and 10% greater thrust at 100 kn (51.4 m/s). There would be an approximate 0.6% increase in cruise specific fuel consumption (SFC). The refan engine performance in conjunction with the increase in stalled weight results in a range reduction of approximately 15% over the unmodified airplane at the same brake release gross weight (BRGW), with a block fuel increase of 1.5% to 3%. With the particular model 727 that was studied, however, it is possible to operate the airplane (with minor structural modifications) at a higher BRGW and increase the range up to approximately 15% relative to the nonrefanned airplane (with equal or slightly increased noise levels). The JT8D refan engine also improves the limited-field range of the airplane.

  11. Nonlinear acoustics - History and outlook

    NASA Astrophysics Data System (ADS)

    Rott, N.

    1980-08-01

    A historical review of the development of nonlinear acoustics before the epoch beginning with Riemann is presented followed by a review of the more recent developments of the last 20 years, including a cinematical view of nonlinear acoustic waves. The review emphasizes the works of Poisson and his equations and solutions of particle and wave velocity as well as Stoke's theory of sound. Attention is given to the developments of the last two decades through an examination of Lagrange and Chester problems, such as the transition of Euler coordinates into Lagrange coordinates and equations. The nonlinear theory of resonance is discussed by describing a closed tube resonance problem where periodic excitation through a piston characterizes wave movements.

  12. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires, light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  13. Beamforming in an acoustic shadow

    NASA Technical Reports Server (NTRS)

    Havelock, David; Stinson, Michael; Daigle, Gilles

    1993-01-01

    The sound field deep within an acoustic shadow region is less well understood than that outside the shadow region. Signal levels are substantially lower within the shadow, but beamforming difficulties arise for other reasons such as loss of spatial coherence. Based on analysis of JAPE-91 data, and other data, three types of characteristic signals within acoustic shadow regions are identified. These signal types may correspond to different, intermittent signal propagation conditions. Detection and classification algorithms might take advantage of the signal characteristics. Frequency coherence is also discussed. The extent of coherence across frequencies is shown to be limited, causing difficulties for source classification based on harmonic amplitude relationships. Discussions emphasize short-term characteristics on the order of one second. A video presentation on frequency coherence shows the similarity, in the presence of atmospheric turbulence, between the received signal from a stable set of harmonics generated by a loudspeaker and that received from a helicopter hovering behind a hill.

  14. Acoustically driven arrayed waveguide grating.

    PubMed

    Crespo-Poveda, A; Hernández-Mínguez, A; Gargallo, B; Biermann, K; Tahraoui, A; Santos, P V; Muñoz, P; Cantarero, A; de Lima, M M

    2015-08-10

    We demonstrate compact tunable phased-array wavelength-division multiplexers driven by surface acoustic waves (SAWs) in the low GHz range. The devices comprise two couplers, which respectively split and combine the optical signal, linked by an array of single-mode waveguides (WGs). Two different layouts are presented, in which multi-mode interference couplers or free propagating regions were separately employed as couplers. The multiplexers operate on five equally distributed wavelength channels, with a spectral separation of 2 nm. A standing SAW modulates the refractive index of the arrayed WGs. Each wavelength component periodically switches paths between the output channel previously asigned by the design and the adjacent channels, at a fixed applied acoustic power. The devices were monolithically fabricated on (Al,Ga)As. A good agreement between theory and experiment is achieved.

  15. Cylindrical acoustic levitator/concentrator

    DOEpatents

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  16. Localization in virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1992-01-01

    This paper discusses the development of a particular spatial display medium, the virtual acoustic display. Although the technology can stand alone, it is envisioned ultimately to be a component of a larger multisensory environment and will no doubt find its greatest utility in that context. A general philosophy of the project has been that the development of advanced computer interfaces should be driven first by an understanding of human perceptual requirements, and secondarily by technological capabilities or constraints. In expanding on this view, the paper addresses why virtual acoustic displays are useful, characterizes the abilities of such displays, reviews some recent approaches to their implementation and application, describes the research project at NASA Ames in some detail, and finally outlines some critical research issues for the future.

  17. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  18. Localization in virtual acoustic displays

    NASA Astrophysics Data System (ADS)

    Wenzel, Elizabeth M.

    This paper discusses the development of a particular spatial display medium, the virtual acoustic display. Although the technology can stand alone, it is envisioned ultimately to be a component of a larger multisensory environment and will no doubt find its greatest utility in that context. A general philosophy of the project has been that the development of advanced computer interfaces should be driven first by an understanding of human perceptual requirements, and secondarily by technological capabilities or constraints. In expanding on this view, the paper addresses why virtual acoustic displays are useful, characterizes the abilities of such displays, reviews some recent approaches to their implementation and application, describes the research project at NASA Ames in some detail, and finally outlines some critical research issues for the future.

  19. Ambipolar acoustic transport in silicon

    NASA Astrophysics Data System (ADS)

    Barros, A. D.; Batista, P. D.; Tahraoui, A.; Diniz, J. A.; Santos, P. V.

    2012-07-01

    We have investigated the ambipolar transport of electrons and holes by electrically generated surface acoustic waves (SAWs) on silicon wafers coated with a piezoelectric ZnO film. The transport experiments were carried out by using a focused laser beam to optically excite carriers. The carriers are then captured by the moving SAW piezoelectric field and then transported towards a lateral p-i-n junction, where they are electrically detected. The piezoelectric modulation modifies the current vs. voltage characteristics of the lateral p-i-n junction. This behavior is accounted for by a simple model for the change of the junction potential by the SAW fields. We demonstrate that electrons and holes can be acoustically transported over distances approaching 100 μm, the transport efficiency being limited by the low mobility of holes in the material. These results open the way for silicon-based acousto-electric devices using ambipolar transport such as photo-detectors and solar cells.

  20. Acoustic metamaterial design and applications

    NASA Astrophysics Data System (ADS)

    Zhang, Shu

    The explosion of interest in metamaterials is due to the dramatically increased manipulation ability over light as well as sound waves. This material research was stimulated by the opportunity to develop an artificial media with negative refractive index and the application in superlens which allows super-resolution imaging. High-resolution acoustic imaging techniques are the essential tools for nondestructive testing and medical screening. However, the spatial resolution of the conventional acoustic imaging methods is restricted by the incident wavelength of ultrasound. This is due to the quickly fading evanescent fields which carry the subwavelength features of objects. By focusing the propagating wave and recovering the evanescent field, a flat lens with negative-index can potentially overcome the diffraction limit. We present the first experimental demonstration of focusing ultrasound waves through a flat acoustic metamaterial lens composed of a planar network of subwavelength Helmholtz resonators. We observed a tight focus of half-wavelength in width at 60.5 KHz by imaging a point source. This result is in excellent agreement with the numerical simulation by transmission line model in which we derived the effective mass density and compressibility. This metamaterial lens also displays variable focal length at different frequencies. Our experiment shows the promise of designing compact and light-weight ultrasound imaging elements. Moreover, the concept of metamaterial extends far beyond negative refraction, rather giving enormous choice of material parameters for different applications. One of the most interesting examples these years is the invisible cloak. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. However, the cloak designed by transformation optics usually calls for a highly anisotropic metamaterial, which