Science.gov

Sample records for acousto-optic ao sensor

  1. Passive long range acousto-optic sensor

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  2. Acousto-optic imaging with a smart-pixels sensor

    NASA Astrophysics Data System (ADS)

    Barjean, K.; Contreras, K.; Laudereau, J.-B.; Tinet, E.; Ettori, D.; Ramaz, F.; Tualle, J.-M.

    2015-03-01

    Acousto-optic imaging (AOI) is an emerging technique in the field of biomedical optics which combines the optical contrast allowed by diffuse optical tomography with the resolution of ultrasound (US) imaging. In this work we report the implementation, for that purpose, of a CMOS smart-pixels sensor dedicated to the real-time analysis of speckle patterns. We implemented a highly sensitive lock-in detection in each pixel in order to extract the tagged photons after an appropriate in-pixel post-processing. With this system we can acquire images in scattering samples with a spatial resolution in the 2mm range, with an integration time compatible with the dynamic of living biological tissue.

  3. Acousto-Optic Measurements in CFRP Laminates Using Fiber Bragg Grating Sensors

    DTIC Science & Technology

    2011-09-01

    level. The main objective of this paper is to describe the results of an acousto - optic experiment using FBG sensors and present FR as a potential way of determining accumulated damage in a carbon composite structure.

  4. Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System

    DTIC Science & Technology

    1994-05-01

    Acousto - Optic Tunable Filter--Fiber Bragg Grating (AOTF-FBG) system. This analysis was targeted to investigate the measurement error in the AOTF-FBG system...Fiber bragg grating, Wavelength division multiplexing, Acousto - optic tunable filter.

  5. Acousto-Optic Adaptive Processing (AOAP).

    DTIC Science & Technology

    1983-12-01

    I ~.sls Phe Report December 1963 •- ACOUSTO - OPTIC ADAPTIVE <PROCESSING (AOAP) General Electric Company W. A. Penn, D. R. Morgan, A. Aridgides and M. L...numnber) Optical signal processing Acousto - optical modulators Adaptive signal processing - Adaptive sidelobe cancellation 20. ABSTRACT (Contnue an...required operations of multiplication and time delay are provided by acousto - optical (AO) delay lines. The required time integraticO is provided by

  6. Experimental Investigation of Acousto-Optic Communications

    DTIC Science & Technology

    2003-09-01

    acousto - optic sensor shows promise as a means for detecting acoustic data projected towards the water surface from a submerged platform. The laser...simulation studies were conducted to demonstrate acousto - optic sensor feasibility for obtaining robust recordings of acoustic communication signals across

  7. Acousto-Optic Interactions.

    DTIC Science & Technology

    The document reports the results of the experimental and theoretical investigation of acousto - optic interactions in guided wave structure for optical...waves and acoustic surface waves and experimental results of isotropic and anisotropic diffraction in LiNbO3 and quartz. A simple acousto - optic plate...CVD ZnO films on sapphire, which may be needed for the acousto - optic devices in thin films are also included. (Author)

  8. Wavelength-Scanning SPR Imaging Sensors Based on an Acousto-Optic Tunable Filter and a White Light Laser.

    PubMed

    Zeng, Youjun; Wang, Lei; Wu, Shu-Yuen; He, Jianan; Qu, Junle; Li, Xuejin; Ho, Ho-Pui; Gu, Dayong; Gao, Bruce Zhi; Shao, Yonghong

    2017-01-05

    A fast surface plasmon resonance (SPR) imaging biosensor system based on wavelength interrogation using an acousto-optic tunable filter (AOTF) and a white light laser is presented. The system combines the merits of a wide-dynamic detection range and high sensitivity offered by the spectral approach with multiplexed high-throughput data collection and a two-dimensional (2D) biosensor array. The key feature is the use of AOTF to realize wavelength scan from a white laser source and thus to achieve fast tracking of the SPR dip movement caused by target molecules binding to the sensor surface. Experimental results show that the system is capable of completing a SPR dip measurement within 0.35 s. To the best of our knowledge, this is the fastest time ever reported in the literature for imaging spectral interrogation. Based on a spectral window with a width of approximately 100 nm, a dynamic detection range and resolution of 4.63 × 10(-2) refractive index unit (RIU) and 1.27 × 10(-6) RIU achieved in a 2D-array sensor is reported here. The spectral SPR imaging sensor scheme has the capability of performing fast high-throughput detection of biomolecular interactions from 2D sensor arrays. The design has no mechanical moving parts, thus making the scheme completely solid-state.

  9. Wavelength-Scanning SPR Imaging Sensors Based on an Acousto-Optic Tunable Filter and a White Light Laser

    PubMed Central

    Zeng, Youjun; Wang, Lei; Wu, Shu-Yuen; He, Jianan; Qu, Junle; Li, Xuejin; Ho, Ho-Pui; Gu, Dayong; Gao, Bruce Zhi; Shao, Yonghong

    2017-01-01

    A fast surface plasmon resonance (SPR) imaging biosensor system based on wavelength interrogation using an acousto-optic tunable filter (AOTF) and a white light laser is presented. The system combines the merits of a wide-dynamic detection range and high sensitivity offered by the spectral approach with multiplexed high-throughput data collection and a two-dimensional (2D) biosensor array. The key feature is the use of AOTF to realize wavelength scan from a white laser source and thus to achieve fast tracking of the SPR dip movement caused by target molecules binding to the sensor surface. Experimental results show that the system is capable of completing a SPR dip measurement within 0.35 s. To the best of our knowledge, this is the fastest time ever reported in the literature for imaging spectral interrogation. Based on a spectral window with a width of approximately 100 nm, a dynamic detection range and resolution of 4.63 × 10−2 refractive index unit (RIU) and 1.27 × 10−6 RIU achieved in a 2D-array sensor is reported here. The spectral SPR imaging sensor scheme has the capability of performing fast high-throughput detection of biomolecular interactions from 2D sensor arrays. The design has no mechanical moving parts, thus making the scheme completely solid-state. PMID:28067766

  10. Signal Coherence Recovery Using Acousto-Optic Fourier Transform Architectures

    DTIC Science & Technology

    1990-06-14

    processing of data in ground- and space-based applications. We have implemented a prototype one-dimensional time-integrating acousto - optic (AO) Fourier...theory of optimum coherence recovery (CR) applicable in computation-limited environments. We have demonstrated direct acousto - optic implementation of CR

  11. Frequency Resolution of an Acousto-Optical Spectrometer

    DTIC Science & Technology

    1993-08-03

    AD-A267 822 FOREIGN AEROSPACE SCIENCE AND TECHNOLOGY CENTER DTIC S ELECTE AUG 111993 D FREQUENCY RESOLUTION OF AN ACOUSTO - OPTICAL SPECTROMETER by... D ~t• i,5"t~o’• A i +’- 1 Av.:+l +,O ,J Dist Avi! .. DTIC QUALITY I1V’PEMTED 3 FREQUENCY RESOLUTION OF AN ACOUSTO - OPTICAL SPECTROMETER... optical spectrometer (AOS) system as affected by the acousto - optical deflector and the coherent light beam truncation ratio, and examines the response

  12. Compact interrogator for fiber optic Bragg sensors based on an acousto-optic filter formed by photonic crystal rows of air holes.

    PubMed

    Tsarev, Andrei V; De Leonardis, Francesco; Passaro, Vittorio M N

    2011-10-01

    Fiber optic sensors are typically used with expensive tunable lasers or optical spectrum analyzers for wavelength interrogation. We propose to replace the tunable laser by a broadband optical source incorporated with a novel thin linewidth acousto-optic tunable filter. It utilizes optical beam expanders constituted by photonic crystal rows of air holes in LiNbO(3) waveguide. A new design is numerically studied for a short structure (with 32 photonic crystal rows) by a two-dimensional finite-difference time-domain method. Extrapolation of these results to larger structure sizes (about 1 cm) demonstrates the possibility to develop compact interrogators with 0.4 pm wavelength resolution and 40 nm tunable range around 1550 nm.

  13. Acousto-Optic Technology for Topographic Feature Extraction and Image Analysis.

    DTIC Science & Technology

    1981-03-01

    This report contains all findings of the acousto - optic technology study for feature extraction conducted by Deft Laboratories Inc. for the U.S. Army...topographic feature extraction and image analysis using acousto - optic (A-O) technology. A conclusion of this study was that A-O devices are potentially

  14. Acousto-Optical Imaging Spectropolarimeter

    NASA Technical Reports Server (NTRS)

    Saif, Babak; Glenar, David; Zimmerman, Robert; Seery, Bernard

    1992-01-01

    Imaging spectropolarimeter designed around acousto-optical tunable filter (AOTF) takes polarization-specific spectral images of solid surfaces, aerosols, and absorption and emission phenomena in gas phase, at wavelengths from 500 to 1,000 nm. Produces side-by-side spectral images in two mutually perpendicular polarizations, one corresponding to ordinary, other corresponding to extraordinary waves in acousto-optical material. Offers large aperture, high resolving power, and rapid tunability, with no moving parts.

  15. Growth of Acousto-Optic Crystals for Applications in Infrared Region of Spectrum

    DTIC Science & Technology

    2005-04-30

    Acousto - optic (AO) modulators, deflectors, filters offer convenience, reliability, compact size and fast speed in regulation of optical beams. So far...extremely low acousto - optic figure of merit, which automatically results in high requirements on driving electric power and poor diffraction efficiency. It

  16. Wideband Waveguide Acousto-Optic Bragg Cell.

    DTIC Science & Technology

    The results of an effort to improve the performance specifications of acousto - optic Bragg cells are reported. Various configurations of multiple...would provide a 700 MHz acousto - optic bandwidth. Investigated were Bragg cells fabricated on Ti diffused LiNb03 waveguides as well as Ti diffused LiNb03

  17. Acousto-optic effect in random media

    NASA Astrophysics Data System (ADS)

    Hoskins, Jeremy G.; Schotland, John C.

    2017-03-01

    We consider the acousto-optic effect in a random medium. We derive the radiative transport equations that describe the propagation of multiply scattered light in a medium whose dielectric permittivity is modulated by an acoustic wave. Using this result, we present an analysis of the sensitivity of an acousto-optic measurement to the presence of a small absorbing inhomogeneity.

  18. Acousto-Optic Beam Steering Study

    DTIC Science & Technology

    1994-08-01

    8217111 INK $ 1 1 illl iII Ill i, R L-TR-94-121 !1!1Il t 11I1!I!11! ilI, / Final Technical Report August 1994 ACOUSTO - OPTIC BEAM STEERING STUDY Harris...contractual obligations or notices on a specific document require that it be returned. For i ..........I ,, ACOUSTO - OPTIC BEAM STEERING STUDY H. W...4. TITLE AND SUBTITLE 5. FUNDING NUMBERS ACOUSTO - OPTIC BEAM STEERING STUDY C - F30602-91-C-0131 PE - 63215C 6. AUTHOR(S) PR - 1405 TA - 02 H. W

  19. Highly efficient acousto-optic diffraction in Sn2P2S6 crystals.

    PubMed

    Martynyuk-Lototska, I Yu; Mys, O G; Grabar, A A; Stoika, I M; Vysochanskii, Yu M; Vlokh, R O

    2008-01-01

    We have studied the acousto-optic (AO) diffraction in Sn2P2S6 crystals and found that they manifest high values of an AO figure of merit. The above crystals may therefore be used as highly efficient materials in different AO applications.

  20. Acousto-Optically Addressed Fourier Transform Matched Filters.

    DTIC Science & Technology

    1984-08-01

    ACOUSTO - OPTIC DEFLECTOR .............................. II. THE EXPERIMENT............................................. 2 FV XPERIMENTAl. RESULTS...tcohniqtie1 arc addressed using an acousto - optic beam deflector with good correlation signals resulting. Th is method may be used to address arrays of matched...essentially the standard Vander Lugt method for making matched filters, except for the addition of the acousto - optic deflector between the Fourier

  1. Acousto-optic spectrometer for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

  2. Acousto-optical modulation of light at a doubled sound frequency

    SciTech Connect

    Kotov, V M; Averin, S V; Shkerdin, G N

    2016-02-28

    A method of acousto-optical (AO) Bragg diffraction is proposed that provides the amplitude modulation of optical radiation at a doubled acoustic frequency. The method is based on the double transmission of the light through the AO modulator made of a gyrotropic crystal and is experimentally tested by the example of the modulation of light with a wavelength of 0.63 μm, controlled by the paratellurite AO cell. (acoustooptics)

  3. Feedback and Acousto Optic Isolation Effects on Laser Stability.

    DTIC Science & Technology

    1977-03-01

    This paper analyzes the effect of optical feedback on laser frequency stability and the acousto optic isolator concept, which was demonstrated...nonlinearity such as saturation in the laser medium. The analysis mathematically corroborates the initial acousto optic isolator concept and the...limited experimental data available. In the study of the acousto optic isolator, it was determined that an acceptable analytic expression for the

  4. Acousto-optic tunable filter multispectral imaging system

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    This paper discusses recent activities of Jet Propulsion Laboratory in the development of a new type of remote sensing multispectral imaging instruments using acousto-optic tunable filter (AOTF) as programmable bandpass filter. This remote sensor provides real-time operation; observational flexibility; measurements of spectral, spatial, and polarization information using a single instrument; and compact, solid state structure without moving parts. Two microcomputer-controlled AOTF imaging spectrometer breadboard systems were designed and built. One operates in the wavelength range of 0.48-0.76 micron and the other in the range of 1.2-2.5 micron. Experiments were performed using these two systems to observe geological and botanical objects in laboratory and outdoor environment. Results have demonstrated the feasibility of using the AOTF multispectral imaging system as a real-time versatile remote sensor with operational flexibility for future Army tactical applications.

  5. Acousto-optic/CCD real-time SAR data processor

    NASA Technical Reports Server (NTRS)

    Psaltis, D.

    1983-01-01

    The SAR processor which uses an acousto-optic device as the input electronic-to-optical transducer and a 2-D CCD image sensor, which is operated in the time-delay-and-integrate (TDI) mode is presented. The CCD serves as the optical detector, and it simultaneously operates as an array of optically addressed correlators. The lines of the focused SAR image form continuously (at the radar PRF) at the final row of the CCD. The principles of operation of this processor, its performance characteristics, the state-of-the-art of the devices used and experimental results are outlined. The methods by which this processor can be made flexible so that it can be dynamically adapted to changing SAR geometries is discussed.

  6. Scheme for Terminal Guidance Utilizing Acousto-Optic Correlator.

    DTIC Science & Technology

    longitudinally extending acousto - optic device as index of refraction variation pattern signals. Real time signals corresponding to the scene actually being viewed...by the vehicle are propagated across the stored signals, and the results of an acousto - optic correlation are utilized to determine X and Y error

  7. Acousto-Optic Beam Sampler, Part 2. Green’s Function Solution to Acousto-Optic Interaction Problem.

    DTIC Science & Technology

    This part of the ’ Acousto - Optic Beam Sampler,’ series lays down the formalism behind the Green’s function integral approach to solving the acousto ... optic scattering problem. The advantage of this formulation which is applicable to gases is shown through developing the solution to the scattering

  8. Exploring Novel Crystals and Designs for Acousto-Optic Devices

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Jonathan B.

    Acousto-optic devices are a versatile technology that are driven electronically to precisely and rapidly control the intensity, frequency, and propagation direction of a laser beam. Applications include acousto-optic scanners, filters, mode lockers, and modulators. Despite the popularity of acousto-optic devices, there currently is no UV transparent device that can satisfy the requirements of the atomic clock and quantum computing communities. In this thesis, I describe my experimental efforts for discovering a new UV transparent, acousto-optic crystal that can meet the experimental requirements. I also present my graphical representations for locating practical and efficient acousto-optic designs in a given medium. The first part of this thesis describes how to measure the elastic-stiffness and photoelastic coefficients of a given crystal. The elastic-stiffness coefficients are essential for designing acousto-optic devices because they determine the velocity, diffraction, and polarization of acoustic waves in a given medium. I used both resonant ultrasound spectroscopy and a modified version of Schaefer-Bergman diffraction to measure elastic coefficients. I discuss in detail the strengths, differences, and similarities of the two experiments. The photoelastic coefficients are necessary for determining the diffraction efficiency of a given acousto-optic geometry. Similar to the elastic coefficients, I employ a modified version of the Schaefer-Bergmann experiment to measure the photoelastic coefficients. I corroborate the measured results with the well established Dixon experiment. The second part of this thesis describes four different graphical representations that help locate practical and efficient acousto-optic designs. I describe in detail each algorithm and how to interpret the calculated results. Several examples are provided for commonly used acosuto-optic materials. The thesis concludes by describing the design and performance of an acousto-optic frequency

  9. Physical basis of Acousto-Optical Imaging

    NASA Astrophysics Data System (ADS)

    Jarrett, Christopher W.

    Acousto-Optical Imaging (AOI) is an emerging hybrid multi-modal imaging technique that combines the high spatial resolution of ultrasound with the versatile molecular sensitivity of optical detection to improve upon the limited spatial resolution of purely optical techniques. However, the precise mechanisms that contribute to the contrast in AOI have been relatively little explored, and the influence of several physical factors are not well understood. Kobayashi et al. previously reported observations of modulated fluorescence capable of locating fluorescent regions of interest within turbid media, suggesting the ability to use incoherent light for AOI. This research aimed to develop and extend such an approach for applications in biomedical imaging. We aimed to demonstrate the modulation of incoherent light by ultrasound and investigate what factors affect the magnitude of such effects. We proposed the following specific aims: (1) To design and develop instrumentation to detect and quantify Acousto-Optical interactions; (2) To evaluate the contributions of different mechanisms of ultrasonic modulation of fluorescence and the factors that influence these effects in turbid media like tissues; (3) To test a variety of fluorescent contrast agents to determine if their light output may be directly affected by ultrasonic modulation, which would suggest a novel approach to AOI. This work achieved these aim. We were successful in designing and developing an experimental apparatus capable of detecting and quantifying Acousto-Optical Interactions. We determined this signal scales linearly with squared ultrasound pressure but unlike the interpretation of Kobayashi et al., we found the apparent modulated fluorescence is dominated by acoustic modulation of the excitation light. In addition, we report a novel finding that ultrasound can modulate incoherent light via modulation of tissue absorption and density, incidentally providing a new way to image sound fields. Lastly, we

  10. A Compact Bulk Acousto-Optic Time Integrating Correlator.

    DTIC Science & Technology

    1984-11-01

    AD-A156 668 A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING 1/1 CORRELATOR(U) ELECTRONICS RESEARCH LAB ADELAIDE (AUSTRALIA) D A FOGG NOV 84 ERL-9323-TR...DEFENCE RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA TECHNICAL REPORT ER L-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. FOGG...LABORATORY TECHNICAL REPORT ERL-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. Fogg SUMMARY This report describes the design and

  11. Modeling the noise figure of an acousto-optic receiver

    NASA Astrophysics Data System (ADS)

    Ristic, V. M.; Lee, J. P. Y.

    1996-02-01

    By defining the processing gain of an acousto-optic receiver as the ratio of the signal-to-noise ratio at the output of the detector to the signal-to-noise ratio of the intermediate-frequency input, one can model a noise figure for the acousto-optic receiver. The noise figure has a minimum of 0 dB and depends on the ratio of the noise power (internal to the acousto-optic cell) to the intermediate-frequency input noise power multiplied by the frequency and the spatially dependent exponential factor.

  12. Acousto-optic filtering of lidar signals

    NASA Astrophysics Data System (ADS)

    Kolarov, G.; Deleva, A.; Mitsev, Ts.

    1992-07-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  13. Acousto-optic filtering of lidar signals

    NASA Technical Reports Server (NTRS)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  14. Acousto-Optics as an Efficient Method for Physical Measurements

    NASA Astrophysics Data System (ADS)

    Kulakov, Sergei V.; Balysheva, Olga L.; Zhdanov, Arcenii Yu.; Kludzin, Victor V.; Shakin, Oleg V.

    In addition to acousto-optic information processing and manufacturing of such devices, the interaction between optical and acoustic waves are an efficient method for physical measurements. The paper analyses the potential of the acousto-optic method for measurement and investigation of crystal properties. It also presents some examples of this method applied to such measurements and investigations. The acousto-optic implementation of the pulse-phase method is used for acoustic velocity measurements. Velocities in an arbitrary directions can be measured using the Shaefer-Bergman method (the visualization of the angular distribution of the inverse phase velocities) together with the pulse-phase method. The matrices of crystal elastic coefficients can be evaluated using the Shaefer-Bergman patterns, using the minimum number of tested samples. The Schlieren (shadow) image method can give information both on the characteristics of acoustic and optical fields. The acousto-optic interaction is Efficient Method for determination of elastic material nonlinearity parameters.

  15. Submillimeter Wave Astronomy Satellite (SWAS) acousto-optical spectrometer

    NASA Astrophysics Data System (ADS)

    Klumb, Markus; Frerick, J.; Tolls, Volker; Schieder, Rudolf; Winnewisser, Gisbert F.

    1994-09-01

    The first fully space qualified acousto-optical spectrometer (AOS) is described. It is built for the Submillimeter Wave Astronomy Satellite (SWAS) to be launched in July 1995. It has a very large bandwidth from 1400 to 2800 MHz covered by 1365 channels. This corresponds to a nearly 1 MHz channel spacing. The design is optimized for very high stability, which is demonstrated by means of Allan variance stability test. The Allan plot minimum time was found well above 800 seconds. The AOS can operate within a temperature range from -5 to +30 degree(s)C (+5 to +25 degree(s)C nominal) and with temperature variations of up to 2 degree(s)C/h. The performance was verified also after environmental testing such as random vibration (10.2 G rms) and thermal cycling of -30 to +50 degree(s)C. The lightweight mechanical design resulted in a total weight of 7.2 kg including electronics. A detailed optical design study was performed in order to achieve diffraction limited channel resolution, high efficiency and low sensitivity to mechanical distortion. The RF input power needed for full scale is 11 mW. The power consumption is 5.4 Watts (including data pre-averaging and DC-DC converter losses). The development has shown that AOSs are well suited for spaceborne applications.

  16. Two-dimensional refractive index modulation by phased array transducers in acousto-optic deflectors.

    PubMed

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-01-20

    Acousto-optic deflectors are photonic devices that are used for scanning high-power laser beams in advanced microprocessing applications such as marking and direct writing. The operation of conventional deflectors mostly relies on one-dimensional sinusoidal variation of the refractive index in an acousto-optic medium. Sometimes static phased array transducers, such as step configuration or planar configuration transducer architecture, are used to tilt the index modulation planes for achieving higher performance and higher resolution than a single transducer AO device. However, the index can be modulated in two dimensions, and the modulation plane can be tilted arbitrarily by creating dynamic phase gratings in the medium using phased array transducers. This type of dynamic two-dimensional acousto-optic deflector can provide better performance using, for example, a large deflection angle and high diffraction efficiency. This paper utilizes an ultrasonic beam steering approach to study the two-dimensional strain-induced index modulation due to the photoelastic effect. The modulation is numerically simulated, and the effects of various parameters, such as the operating radiofrequency of the transducers, the ultrasonic beam steering angle, and different combinations of pressure on each element of the transducer array, are demonstrated.

  17. Laser-Based Acousto-Optic Uplink Communications Technique

    DTIC Science & Technology

    2003-08-18

    An apparatus for enabling acousto - optic communication comprising an in-water platform comprising means for emitting an acoustic signal to an acousto ...portion of the first interrogation beam and a second laser beam formed from the reflection of the first interrogation beam off of the acousto - optic interaction... optic interaction zone, an in-air platform comprising the ability for transmitting a first optical interrogation beam, the ability for receiving a

  18. Investigation of a mercurous chloride acousto-optic cell based on longitudinal acoustic mode.

    PubMed

    Gupta, Neelam

    2009-03-01

    A number of spectral imagers using acousto-optic tunable filters (AOTFs) operating from the UV to the longwave infrared (LWIR) using KDP, MgF(2), TeO(2), and Tl(3)AsSe(3) crystals to cover different spectral regions have been developed. In the LWIR there is a lack of high quality acousto-optic (AO) materials. Mercurous halide (Hg(2)Cl(2) and Hg(2)Br(2)) crystals are highly anisotropic with a high AO figure of merit due to slow acoustic velocities and high photoelastic constants and are transparent over a wide spectral region from 0.35 to 20 mum for Hg(2)Cl(2) and from 0.4 to 30 mum for Hg(2)Br(2). AO modulators, deflectors, and AOTFs based on these crystals can operate over a wide spectral range. Single crystals of these materials are being grown and some prototype devices have been fabricated. Results are presented from device characterization for an AO cell fabricated in Hg(2)Cl(2) based on longitudinal acoustic mode propagation. This device was very useful in demonstrating the AO interaction as well as soundness of the transducer bonding technique. Acoustic phase velocity is calculated and measured, diffraction efficiency is obtained from experiments, and the AO figure of merit of the sample is evaluated.

  19. Acousto-optical properties of metamaterials

    SciTech Connect

    Pustovoit, V I

    2016-02-28

    The possibility of the effective use of metamaterials in acousto-optics is demonstrated. It is shown that photoelastic constants that determine a change in the dielectric constant of a heterogeneous medium under the action of a sound wave can significantly exceed the corresponding constants for conventional crystals. We have analysed the mechanisms of the dielectric constant variation in a heterogeneous medium consisting of nanoparticles in the form of ellipsoids and have found explicitly the values of the photoelastic constants. It is shown that the mechanism of the dielectric constant variation in a longitudinal sound wave is reduced to a change in the local concentration of nanoparticles in the bulk and in a transverse acoustic wave – to a local rotation of space-oriented nanoellipsoids. It is also shown that the use of metamedia with a nonuniform distribution of nanoparticles provides a unique opportunity for designing qualitatively new instruments and devices that cannot be produced on the basis of conventional crystals. It is noted that metamaterials open ample opportunities for creating devices of the IR region of the spectrum due to the absence of restrictions on the size of such media. (metamaterials)

  20. Materials for imaging acousto-optic tunable filters

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2014-05-01

    Research and development of robust compact hyperspectral imagers that can acquire both spectral and spatial features from a scene of interest is of utmost importance for standoff detection of targets as well as chemical and biological agents and backgrounds. Hyperspectral imagers can acquire images with a large number of narrow spectral bands and take advantage of the characteristic spectral signatures of different materials making up the scene. At the Army Research Laboratory (ARL), we are developing hyperspectral imagers based on acousto-optic tunable filters (AOTFs) that can provide adaptive no-moving-parts imagers from the ultraviolet (UV) to the long wave infrared (LWIR) to acquire a two-dimensional spectral image and build up a two-dimensional image cube as a function of time instead of using traditional grating or prism based approach that requires relative motion between sensor and scene. Here, we will review the development of different imaging AOTFs operating from the UV to the LWIR based on a variety of birefringent materials and include the spectral imaging carried out with these filters including both with single and double piezoelectric transducers. We will also include the theoretical background needed to carry out the filter design and discuss development of mercurous halide crystals that can be used to develop AOTFs operating over a wide spectral region from the visible to the LWIR.

  1. Projecting multichannel acousto-optic cells with low crosstalk

    NASA Astrophysics Data System (ADS)

    Kludzin, Victor V.; Kulakov, Sergei V.; Molotok, Victor V.

    1997-09-01

    An acousto-optic method for spectral processing of rf signals is proposed. This method is based on a multichannel cell with frequency separated channels within a given band. The optimum structure of such a system is a multichannel cell with the slow shear mode in the (110) direction in TeO2 and far- axis anisotropic diffraction. A system with 12 channels covering the frequency band of 84 - 96 MHz with the bandwidth of each channel of approximately 0.5 MHz and frequency separation of approximately 1 MHz is experimentally studied. An optical beam which spreads in the plane orthogonal to that of the acousto-optic interaction must be used in this system. The influence of the transducer electrode shape on the acoustic crosstalk in the adjacent channels is studied. The experimental results are in good agreement with the calculated data. The expansion of acousto-optic processing requires that multichannel acousto-cells be used. Narrow-band acousto-optic interaction regimes can be used for frequency-domain filtering of rf signals in multichannel cells. This scheme can be used for the parallel analysis of an rf signal spectrum. This paper describes the process of the design and manufacturing of a multichannel acousto-optic filter for an rf signal with a narrow bandwidth of each channel and estimates its possible parameters. Each channel of the filter is tuned to its own frequency different from those of the adjacent channels within a given overall bandwidth of the whole device.

  2. The Role of Adaptive Photorefractive Power Limiting on Acousto-Optic Radio Frequency (RF) Signal Excision

    DTIC Science & Technology

    2001-12-01

    Adaptive RF interference reduction for broadband communication systems continues to be problematic. The acousto - optic RF signal excision system...novel photorefractive optical power limiting device to achieve adaptive notch filtering, and multi- channel acousto - optic deflection to achieve angle...of-arrival signal discrimination at the notch filter. This dissertation describes basic principles of acousto - optic RF signal excision, including

  3. Theory and Experiment Analysis of Two-Dimensional Acousto-Optic Interaction.

    DTIC Science & Technology

    1995-01-03

    The universal coupled wave equation of two dimensional acousto optic effect has been deduced and the solution of normal Raman-Hath acousto optic diffraction...was derived from it. The theory was compared with the experimental results of a two dimensional acousto optic device consisting of two one dimensional modulators. The experiment results agree with the theory. (AN)

  4. Acousto-optic collinear filter with optoelectronic feedback

    NASA Astrophysics Data System (ADS)

    Mantsevich, S. N.; Balakshy, V. I.; Kuznetsov, Yu. I.

    2017-04-01

    A spectral optoelectronic system combining a collinear acousto-optic cell fabricated of calcium molybdate single crystal and a positive electronic feedback is proposed first and examined theoretically and experimentally. The feedback signal is formed at the cell output due to the optical heterodyning effect with the use of an unconventional regime of cell operation. It is shown that the feedback enables controlling spectral characteristics of the acousto-optic cell, resulting in enhancing the spectral resolution and the accuracy of optical wavelength determination. In the experiment, maximal filter passband narrowing was as great as 37 times.

  5. Acousto-optics of liquid crystals: Yesterday, today, and tomorrow

    NASA Astrophysics Data System (ADS)

    Kapustina, O. A.

    2014-09-01

    The most important results of the recent theoretical and experimental studies in the field of acousto-optics of liquid crystals (LCs) in research lines initiated by the pioneering studies of Professor A.P. Kapustin at the Institute of Crystallography of the Russian Academy of Sciences and carried out at the Acoustic Institute of the Russian Academy of Sciences are generalized and analyzed. These lines include the study of the nature of acoustically induced supramolecular structures in nematic liquid crystals (NLCs) and cholesteric liquid crystals (CLCs) and the development of physical bases of practical LC acousto-optics, related to the detection of acoustic signals.

  6. Application of acousto-optic actuator applied in holographic system

    NASA Astrophysics Data System (ADS)

    Ling, FuRi; Wang, Biao

    2002-09-01

    In this paper, we discuss acousto-optical scanning and deflection, and design an acousto-optical actuator for steering the laser beam in the direction of vertical and horizon. In this system a laser whose wavelength is 532 nm is used and is expanded by a cylindrical lens. This horizontal actuator produces the horizontal deflection and the spherical lens following the horizontal actuator rotates the beam to match the aperture of the vertical actuator. The cylindrical lens restores the beam to its original circular cross-section, after which the microscope optics brings it to a focus in the lithium niobate crystal in which we store information.

  7. Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions.

    PubMed

    Pieper, Ron; Koslover, Deborah; Poon, Ting-Chung

    2009-03-01

    An exact solution to the four-order acousto-optic (AO) Bragg diffraction problem with arbitrary initial conditions compatible with exact Bragg angle incident light is developed. The solution, obtained by solving a 4th-order differential equation, is formalized into a transition matrix operator predicting diffracted light orders at the exit of the AO cell in terms of the same diffracted light orders at the entrance. It is shown that the transition matrix is unitary and that this unitary matrix condition is sufficient to guarantee energy conservation. A comparison of analytical solutions with numerical predictions validates the formalism. Although not directly related to the approach used to obtain the solution, it was discovered that all four generated eigenvalues from the four-order AO differential matrix operator are expressed simply in terms of Euclid's Divine Proportion.

  8. Performance of an acousto-optic Bragg cell under ion microbeam irradiation

    SciTech Connect

    Paxton, A.H.; Schone, H.; Taylor, E.W.; McKinney, S.; Doyle, B.L.

    1997-08-01

    An acousto optic (AO) deflector composed of PbMoO{sub 4} was exposed to 4 MeV protons while operating under Bragg angle conditions. An ion beam in air of 1 mm width was directed normal to the crystal face and laser beam. Between exposures, the approximately 13 mm x 8.5 mm AO deflector was mechanically translated in two dimensions in front of the fixed ion beam. The AO diffraction efficiency was mapped and was observed to change as a function of ion beam location and dose rate. These effects are attributed to the induced change in the temperature distribution of the crystal, which changed the sonic velocity and refractive index. Similar effects were observed when the ion beam was directed at the acoustic transducer.

  9. Acousto-optic gyrotropic-crystal-based modulator with a rotating polarisation vector

    NASA Astrophysics Data System (ADS)

    Kotov, V. M.; Averin, S. V.; Kotov, E. V.; Voronko, A. I.; Tikhomirov, S. A.

    2017-02-01

    We study the influence of ellipticity of gyrotropic-crystal eigenwaves on the output characteristics of an acousto-optic (AO) modulator based on the interferometer scheme. The schemes of AO modulators are considered, which provide the polarisation vector rotation frequency fn/2, where f is the frequency of the acoustic wave, and n is the integer. Preference is given to the scheme combining cascade and polarisation-independent diffraction. An experimental layout of the AO modulator operating at f = 44.5 MHz is described, the modulation frequency of the output laser light intensity being 89 MHz. The frequency of the electrical signal from the photodetector is equal to 179.5 MHz.

  10. Dependence of integrated acousto-optical devices with one and two modulated arms on the static phase difference.

    PubMed

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Zhao, Dong; Li, Hongyu; Zhen, Zhen

    2014-10-01

    In this paper, we develop an analytical model of an integrated acousto-optical (AO) device with arms modulated by a single surface acoustic wave beam. A comparison between one-arm and two-arm modulation is presented, which shows that two-arm modulation can significantly enhance modulation efficiency by an optimized design. A detailed analysis of the influence of static phase difference on the behavior of the AO devices has been provided, and some interesting results have been obtained. These will be helpful for an optimized design of AO devices for different functionalities.

  11. Experimental study of the use of multiband acousto-optic filters for spectral encoding / decoding the optical signals

    NASA Astrophysics Data System (ADS)

    Proklov, V. V.; Byshevski-Konopko, O. A.; Filatov, A. L.; Lugovskoi, A. V.; Pisarevsky, Yu V.

    2016-08-01

    A prototype of the acousto-optic (AO) decoder of optical signals is created on the base of the multiband AO filter. The joint work of the decoder with the developed previously AO coder has been verified experimentally. The main qualitative and quantitate characteristics of the spectral coding and decoding by Walsh sequences of the industrial LED radiation in the near infrared range are investigated. It is shown, that in the proposed data transmission system realization Signal-to-Interference Ratio (SIR) is not less than 13 dB.

  12. Research of acousto-optic correlator for new telecommunication receiver system

    NASA Astrophysics Data System (ADS)

    Shao, Dingrong; Li, Shujian; Zhou, Bin

    1994-01-01

    A promising receive system model working in high frequency and wideband, with large processing gain, is researched. As the crux, an acousto-optic correlator is discussed especially. Analyzing the principle of a bulk wave space integrating A-O correlator/convolver, an experimental signal processor with large Gp using a high frequency wideband A-O device is configured. By this system, operation of correlation/convolution with BPSK modulated by Barker code is completed. The result is in accordance with the theoretic calculation. This model works in 175 MHz center frequency, 120 MHz bandwidth, and 29.4 dB processing gain. The method of detecting the first order diffracted light beam is proved theoretically and experimentally to expend dynamic range.

  13. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  14. Acousto-optic laser projection systems for displaying TV information

    SciTech Connect

    Gulyaev, Yu V; Kazaryan, M A; Mokrushin, Yu M; Shakin, O V

    2015-04-30

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)

  15. Electro-optic and Acousto-optic Laser Beam Scanners

    NASA Astrophysics Data System (ADS)

    Römer, G. R. B. E.; Bechtold, P.

    Optical solid state deflectors rely on the electro-optical or acousto-optic effect. These Electro-Optical Deflectors (EODs) and Acousto-Optical Deflectors (AODs) do not contain moving parts and therefore exhibit high deflection velocities and are free of drawbacks associated with mechanical scanners. A description of the principles of operation of EODs and AODs is presented. In addition, characteristics, properties and the (dis)advantages of EODs and AODs, when compared to mirror based mechanical deflectors, is discussed. Deflection angles, speed and accuracy are discussed in terms of resolvable spots and related quantities. Also, response time, damage threshold, efficiency and the type and magnitude of beam distortions is addressed. Optical deflectors are characterized by high angular deflection velocities, but small deflection angles. Whereas mechanical mechanical scanners are characterized by relatively small deflection velocities, but large deflection angles. Arranging an optical deflector and a mechanical scanner in series allows to take advantage of the best of both worlds.

  16. Secure transmission of static and dynamic images via chaotic encryption in acousto-optic hybrid feedback with profiled light beams

    NASA Astrophysics Data System (ADS)

    Chatterjee, Monish R.; Almehmadi, Fares S.

    2015-01-01

    Secure information encryption via acousto-optic (AO) chaos with profiled optical beams indicates substantially better performance in terms of system robustness. This paper examines encryption of static and time-varying (video) images onto AO chaotic carriers using Gaussian-profile beams with diffracted data numerically generated using transfer functions. The use of profiled beams leads to considerable improvement in the encrypted signal. While static image encryption exhibits parameter tolerances within about +/-10% for uniform optical beams, profiled beams reduce the tolerance to less than 1%, thereby vastly improving both the overall security of the transmitted information as well as the quality of the image retrieval.

  17. Optimization of the input losses in fiber-optic communications with an acousto-optic all-optical switch.

    PubMed

    Danilyan, A V; Shulgin, V A; Chernov, V E

    2006-06-20

    We study optical losses in the single-mode fiber system with an all-optical switch based on the anisotropic acousto-optic (AO) TeO(2) 2D deflector. It is shown, theoretically and experimentally, that the mismatch of the output-fiber mode profile and the switched optical beam shape depends significantly on the monochromaticity of the light beam and is determined by the frequency dispersion of the laser beam diffracted on a Bragg AO cell. A quantitative analysis of the dependence of the input optical losses on the spectral width of the light beam is presented.

  18. Fiber-Coupled Acousto-Optical-Filter Spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, Kenneth H.; Li, Frank Yanan

    1993-01-01

    Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.

  19. Bending effect on fiber acousto-optic mode coupling.

    PubMed

    Zhao, Jianhui; Liu, Xiaoming; Wang, Yan; Luo, Ye

    2005-08-20

    The acousto-optic effect in a bent fiber is studied experimentally and numerically by using the scalar finite-element method. The resulting transmission spectra show that new mode-coupling peaks appear due to the breaking of the mode spatial symmetry. The strength of new peaks increases as the fiber-bending curvature increases with a redshift or blueshift in wavelength, strongly depending on the orientation of fiber bending with respect to the acoustic-wave vibration direction.

  20. High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity.

    PubMed

    Chiu, Chien-Chang; Chen, Wei-Min; Sung, Kuen-Wei; Hsiao, Fu-Li

    2017-03-20

    We investigate the acousto-optic coupling rates between different acoustic resonance modes and a specified optical resonance mode in a one-dimensional phoxonic crystal fishbone nanobeam formed by periodically arranging semi-cylinders of air on both sides of a suspended silicon waveguide. The gradually tapered unit cells form optical and acoustic resonators. In acousto-optic coupling rate calculation, the acoustic fields and optical fields are obtained by steady state monochromatic analysis and eigen-mode computation, respectively. Results showed that the acoustic polarizations and symmetries of the acoustic resonance modes are dominant factors in the acousto-optic coupling efficiency, and appropriate selection of these parameters can prevent cancellation of acousto-optic interactions, thereby enhancing acousto-optic coupling rates. This study provides important insights that can be applied to acousto-optic device designs.

  1. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  2. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    PubMed Central

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-01-01

    The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493

  3. Acousto-Optic Spectrum Analyzer: Temporal Response and Detection of Pulsed Signals.

    DTIC Science & Technology

    1986-12-01

    ACOUSTO - OPTIC SPECTRUM ANALYZER: TEMPORAL RESPONSE AND I/i DETECTION OF PULSED SIGUALS(U) DEFENCE RESEARCH ESTABLISHMENT OTTANA (ONTARIO) J...8217:. -.....:.-...............--.. - ---:-..--.-..,. ,: i’,.. IJT~c FILE C P National Defe’ se + Deence nationale 0 0 ACOUSTO - OPTIC SPECTRUM ANALYZER: TEMPORAL RESPONSE AND DETECTION 0 OF PULSED...Ottawa |S, .±~ |-----------------------..,---.-- -- - - - rNatiorna! Defen~se Deterice r dornale ACOUSTO - OPTIC SPECTRUM ANALYZER: TEMPORAL RESPONSE

  4. Acousto-Optic Processing of 2-D Signals Using Temporal and Spatial Integration.

    DTIC Science & Technology

    1986-04-29

    AD-AI?3 411 ACOUSTO - OPTIC PROCESSING OF 2-D SIGNALS USING TEMPORAL 1/ AND SPATIAL INTEGR..(U) CRLIFORNIA INST OF TECH PASADENA DEPT OF ELECTRICAL...LECTE 3 FINAL REORT4 Submitted to: Al FORCE OFFICE OF SCIENTIFIC RESEARCH Grant Number AFOSR-82-0128 :A of % ACOUSTO - OPTIC PROCISSING OF 2-D SIGNALS...Psaltis, Applied Optics, Vol. 21, No. 3, 1 February 1982. (3) " Acousto - Optic /CCD Image Processor, Demetri Psaltis, Eung Gi Paek and Santosh Venkatesh

  5. The Study of the Phase Characteristics of Bragg Cells for Acousto-Optic Signal Processing

    DTIC Science & Technology

    1998-01-01

    THE FINAL REPORT ON THE SPECIAL CONTRACT SPC-97-4025 The Study of the Phase Characteristics of Bragg Cells for Acousto - Optic Signal Processing...for Acousto - Optic Signal Processing Unclassified 5a. CONTRACT NUMBER F6170897W0095 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yurchenko...Characteristics of Bragg Cells for Acousto - Optic Signal Processing 5. FUNDING NUMBERS F6170897W0095 6. AUTHOR(S) Dr. Alexander Yurchenko 7. PERFORMING

  6. Acousto-Optic and Linear Electro-Optic Properties of Organic Polymeric Materials

    DTIC Science & Technology

    1989-04-27

    Naval Research Laboratory Washington, DC 20375-5000 NRL Memorandum Report 6454 od I3 Acousto - Optic and Linear Electro-Optic Properties of Organic...PROGRAM P1RC;EC7 ASK Arlington, VA 22217-5000 ELEMENT NO NO1 I1I TITLE (Include Security Classification) Acousto - Optic and Linear Electro-Optic...briefly discussing the important molecular properties for enhanced acousto ~ optic and electro-Ooptic ef fects and then relating these to "current

  7. 2-D Acousto-Optic Signal Processors for Simultaneous Spectrum Analysis and Direction Finding

    DTIC Science & Technology

    1990-11-01

    National Dfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS 00 AND DIRECTION FINDING (U) by NM Jim P.Y...Wr pdft .1w I0~1111191 3 05089 National DIfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS AND DIRECTION...Processing, J.T. Tippet et al., Eds., Chapter 38, pp. 715-748, MIT Press, Cambridge 1965. [6] A.E. Spezio," Acousto - optics for Electronic Warfare

  8. Guided-Wave TeO2 Acousto-Optic Devices

    DTIC Science & Technology

    1991-01-12

    In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared

  9. Classification of Acousto-Optic Correlation Signatures of Spread Spectrum Signals Using Artificial Neural Networks

    DTIC Science & Technology

    1989-12-01

    Ohio ’aPw iorlipuab muo i 0I2, AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL...ENG/89D- 10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL NEURAL NETWORKS THESIS John W. DeBerry...Captain, USAF AFIT/GE/ENG/89D- 10 Approved for public release; distribution unlimited. AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION

  10. Discussion on the Modelling and Processing of Signals fom an Acousto-Optic Spectrum Analyzer.

    DTIC Science & Technology

    1987-06-01

    AD-AIBS 639 DISCUSSION ON THE MODELLING AND PROCESSIN OF SIGNALS 1/1 FOR RN ACOUSTO - OPTIC SPECTRUM ANALYZER(U)G DFENCE RESERCH ESTABGLISHMENT OTTANA...8217’~ AV - I National DefenseI Defence nationale DISCUSSION ON THE MODELLING AND PROCESSING OF SIGNALS FROM AN ACOUSTO - OPTIC SPECTRUM ANALYZER by Guy...signals generated by an Acousto - Optic Spectrum Analyzer (AOSA). It also shows how this calculation can be related to pulse modu- lated signals. In its

  11. Three & Four Product Surface-Wave Acousto-Optic Time Integrating Correlators.

    DTIC Science & Technology

    four product correlated signals. A laser beam is split and shaped into first and second sheet beams. The first beam is directed to a first acousto - optic medium...where it is doubly diffracted by first and second signals. The second beam is directed to a second acousto - optic medium which is spatially...rotated 90 degs relative to the first acousto - optic medium where the second sheet beam is either singly diffracted by a third signal or doubly diffracted

  12. Design of acousto-optic chaos based secure free-space optical communication links

    NASA Astrophysics Data System (ADS)

    Ghosh, A. K.; Verma, P.; Cheng, S.; Huck, R. C.; Chatterjee, M. R.; Al-Saedi, M.

    2009-08-01

    We discuss the design of an acousto-optic cell based free space optical communication link where the data beam is made secure through chaos encryption. Using external signal modulation of the diffracted light from a hybrid acousto-optic cell chaos (or directly via incorporation in the sound-cell driver's bias voltage) encryption of data is possible. We have shown numerically that decryption of the encoded data is possible by using an identical acousto-optic system in the receiver.

  13. Matrix operations utilizing multichannel two-dimensional acousto-optic deflector

    NASA Astrophysics Data System (ADS)

    Barocsi, Attila; Jakab, Laszlo; Richter, Peter I.

    1994-01-01

    A linear scanning light deflector, or Bragg-cell, is a widely utilized acousto-optic (AO) signal processing device. Its application is, however, limited due to its line scanning property. To overcome this deficiency an area (or matrix) scanning deflector can be built by consecutively placing two, orthogonally positioned, linear deflectors. A more sophisticated method, however, is the realization of a `monolithic' area scanning device, or 2-D (XY-) deflector, that contains a single Bragg cell. If each dimension of the cell has several input channels the element can serve as a special optical processor in various applications. In this work a multichannel XY-deflector is examined with special regard to its utilization as a fast optical crossbar switch and matrix processor. An experimental set-up with a 2 * 2 channel cell is also demonstrated.

  14. Modelling Time-of-Arrival Ambiguities in a Combined Acousto-Optic and Crystal Video Receiver

    DTIC Science & Technology

    1995-11-01

    The probability of pulses overlapping in time being received by a combined acousto - optic /crystal video receiver is investigated. Theoretical analysis...number of pulses in that bandwidth. The number of frequency subbands with crystal detectors required to cover the acousto - optic receiver bandwidth is therefore a compromise between cost and complexity of implementation.

  15. Acousto-Optic Tunable Filter for Time-Domain Processing of Ultra-Short Optical Pulses,

    DTIC Science & Technology

    The application of acousto - optic tunable filters for shaping of ultra-fast pulses in the time domain is analyzed and demonstrated. With the rapid...advance of acousto - optic tunable filter (AOTF) technology, the opportunity for sophisticated signal processing capabilities arises. AOTFs offer unique

  16. Real-Time and Memory Correlation via Acousto-Optic Processing,

    DTIC Science & Technology

    1978-06-01

    acousto - optic technology as an answer to these requirements appears very attractive. Three fundamental signal-processing schemes using the acousto ... optic interaction have been investigated: (i) real-time correlation and convolution, (ii) Fourier and discrete Fourier transformation, and (iii

  17. A Comparative Study of Acousto-Optic Time-Integrating Correlators for Adaptive Jamming Cancellation

    DTIC Science & Technology

    1997-10-01

    This final report presents a comparative study of the space-integrating and time-integrating configurations of an acousto - optic correlator...systematically evaluate all existing acousto - optic correlator architectures and to determine which would be most suitable for adaptive jamming

  18. Ferroic Crystals for Electro-Optic and Acousto-Optic Applications.

    DTIC Science & Technology

    properties for potential application in acousto - optic devices; and, (2) A systematic examination of the role of domain structures in modifying the...macroscopic properties of all types of ferroic crystals and the manner in which these property modifications could be exploited in acousto - optic , electro

  19. Acousto-Optic Beam Sampler, Part III: Diffraction Experiments at 10.6 micrometers.

    DTIC Science & Technology

    This report deals with the results of acousto - optic diffraction experiments in air at 10.6 micron. The laser used for the experiments was operated...fields. Detailed experiments were performed to investigate the dependence of the acousto - optic diffraction on incident laser power, acoustic drive voltage and angle of incidence.

  20. Development of New Electro-Optic and Acousto-Optic Materials.

    DTIC Science & Technology

    1983-11-01

    Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.

  1. Effect of optoelectronic feedback on the characteristics of acousto-optical collinear filtering

    SciTech Connect

    Balakshy, V I; Kuznetsov, Yu I; Mantsevich, S N

    2016-02-28

    The first results of the theoretical and experimental studies of an acousto-optical system with feedback based on a collinear cell made of a calcium molybdate crystal are presented. It is shown that the positive electronic feedback allows essential sharpening of the instrument function of the acousto-optical collinear filter, thus increasing the precision of measuring the optical radiation wavelength. (acoustooptics)

  2. Compensation of temporal and spatial dispersion for multiphoton acousto-optic laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Saggau, Peter

    2003-10-01

    In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).

  3. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  4. The Acousto-Optic Interaction in an Infinite Slab of Isotropic Material,

    DTIC Science & Technology

    1980-04-01

    AD-A097 202 HARRY DIAMOND LABS ADELPHI MD F/S 17/1 THE ACOUSTO - OPTIC INTERACTION IN AN INFINITE SLAB OF ISOTROPIC -- ETC(U) APR 80 S D SCHARF...611101.91A0011 .A1.A1 HOL Project: A10935 1S. KEY WONS (Cf ft "W reweee eld. It neceseeM md Io.t.Itl by block nm er) Acousto - optics Diffraction Mathieu... Acousto - Optic Interaction for Bragg Angles ...................... 13 FIGURES 1. Incident wave is split by acoustic wave into discrete diffracted orders

  5. Acousto-Optic Interaction in Surface Acoustic Waves and Its Application to Real Time Signal Processing.

    DTIC Science & Technology

    1977-12-30

    ACOUSTO - OPTIC INTERACTION IN SURFACE ACOUSTIC WAVES AND ITS APP--ETC(U) DEC 77 0 SCHUMER, P DAS NOOOIJ -75-C-0772 NCLASSIFIED MA-ONR-30 Nt.EE E’h...CHART NAT*NAL BUREAU OF STANDARDS 1-63- ACOUSTO - OPTIC INTERACTION IN SURFACE ACOUSTIC WAVES AND ITS APPLICATION TO REAL TIME SIGNAL PROCESSING By 00 D... Acousto - optics , Integrated optics, Optical Signal Processing. 20. AbSKTRACT (Continue an reverse side it neceary and idewnt& by block mum ber) The

  6. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1993-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  7. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1995-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  8. Bioimaging system using acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Kasili, Paul M.; Mobley, Joel; Cullum, Brian M.; Vo-Dinh, Tuan

    2000-05-01

    The interaction of light with tissue has ben used to recognize disease since the mid-1800s. The recent developments of light sources, detectors, and fiber optic probes provide opportunities to measure these interactions, which yield information for tissue diagnosis at the biochemical, structural, or physiological level. In this paper, we describe a bioimaging system designed for biomedical applications and show laser-indued fluorescence (LIF) images mammalian brain tissue. The LIF imaging of tissue was carried out in vitro using two laser excitations: 488 nm and 514 nm. Images were recorded through an acousto- optic tunable filter over the range 500 nm-650 nm with a charged coupled device camera. Background subtracted images were generated across the fluorescent wavelength. Subtraction allowed a safe comparison to be made with well- contrasted images. Of the two tested excitation wavelengths, 488 nm excitation gave the more distinctive contrast.

  9. Acousto-Optic Processing of 2-D Signals Using Temporal and Spatial Integration.

    DTIC Science & Technology

    1983-05-31

    Documents includes data on: Architectures; Coherence Properties of Pulsed Laser Diodes; Acousto - optic device data; Dynamic Range Issues; Image correlation; Synthetic aperture radar; 2-D Fourier transform; and Moments.

  10. Acoustic field structure simulation in quasi-collinear acousto-optic cells with ultrasound beam reflection.

    PubMed

    Mantsevich, S N; Molchanov, V Ya; Yushkov, K B; Khorkin, V S; Kupreychik, M I

    2017-04-02

    Ultrasound wave reflection from one of the crystal faces is the convenient way to arouse the acoustic beam with a desired propagation direction in acousto-optic cells with collinear and quasi-collinear interaction geometries. The reflection process effects on the ultrasound field amplitude and phase structure. The method to simulate the reflected finite ultrasound beam structure in the case of acoustically anisotropic media is presented in this paper. The investigation is carried on the example of two quasi-collinear acousto-optic cells fabricated on the base of tellurium dioxide crystal. The cells have special geometry that allows to obtain extremely long acousto-optic interaction length and to achieve unprecedented spectral resolution. The influence of reflection process in the acousto-optic diffraction characteristics was also examined.

  11. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere A.; Li, Huan; Liu, Qiyu; Li, Mo

    2015-11-01

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  12. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    SciTech Connect

    Tadesse, Semere A.; Li, Huan; Liu, Qiyu; Li, Mo

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  13. LD-pumped acousto-optical Q-switched burst-mode Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Li, Xudong; Ma, Yufei; Yu, Xin; Chen, Deying

    2016-04-01

    A high-repetition-rate, high-peak-power burst-mode laser for laser-based measurement applications is presented by using a master oscillator power amplifier structure. An laser diode arrays (LDA) side-pumped Nd:YAG acousto-optical (A-O) Q-switched laser serves as the master oscillator. Under pulsed pumping, pulse trains with 2-25 pulses are obtained when the repetition rate changes from 10 kHz to 100 kHz. The maximum pulse burst energy of 31.2 mJ is achieved in the A-O Q-switched pulse burst laser oscillator at 10 kHz. Two LDA side pumped Nd:YAG modules are employed in the amplification stage. After the amplification, the pulse burst energy at 10 kHz reaches ~170 mJ with a single pulse energy of 85.2 mJ and a pulse width of 14.5 ns, generating a peak power of 6.1 MW. At 100 kHz, the total burst energy reaches 220 mJ with a single pulse energy of 8.8 mJ in the pulse burst laser system.

  14. State-of-the art of acousto-optic sensing and imaging of turbid media.

    PubMed

    Resink, Steffen G; Boccara, Albert C; Steenbergen, Wiendelt

    2012-04-01

    Acousto-optic (AO) is an emerging hybrid technique for measuring optical contrast in turbid media using coherent light and ultrasound (US). A turbid object is illuminated with a coherent light source leading to speckle formation in the remitted light. With the use of US, a small volume is selected,which is commonly referred to as the "tagging" volume. This volume acts as a source of modulated light, where modulation might involve phase and intensity change. The tagging volume is created by focusing ultrasound for good lateral resolution; the axial resolution is accomplished by making either the US frequency, amplitude, or phase time-dependent. Typical resolutions are in the order of 1 mm. We will concentrate on the progress in the field since 2003. Different schemes will be discussed to detect the modulated photons based on speckle detection, heterodyne detection, photorefractive crystal (PRC) assisted detection, and spectral hole burning (SHB) as well as Fabry-Perot interferometers. The SHB and Fabry-Perot interferometer techniques are insensitive to speckle decorrelation and therefore suitable for in vivo imaging. However, heterodyne and PRC methods also have potential for in vivo measurements. Besides measuring optical properties such as scattering and absorption, AO can be applied in fluorescence and elastography applications.

  15. Numerical simulation of dual-loss-modulated Q-switched and mode-locked laser with an acousto-optic and Cr4+:YAG saturable absorber.

    PubMed

    Zhao, Shengzhi; Li, Guiqiu; Li, Dechun; Yang, Kejian; Li, Yufei; Li, Ming; Li, Tao; Zhang, Gang; Cheng, Kang

    2010-04-01

    By considering the influence of the turn-off time and the modulation frequency of the acousto-optic (AO) modulator as well as the Gaussian spatial distribution of the photon density, we give a developed rate equation model for a diode-pumped dual-loss-modulated Q-switched and mode-locked (QML) Nd:GdVO(4) laser with AO modulator and Cr(4+):YAG saturable absorber. With this developed model, the dual-loss-modulated QML laser characteristics, such as pulse width and pulse energy, can be numerically simulated, and the theoretical evaluations are in good agreement with the experimental results.

  16. Acousto-Optic Imaging Spectrometers for Mars Surface Science

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Blaney, D. L.

    2000-01-01

    NASA's long term plan for Mars sample collection and return requires a highly streamlined approach for spectrally characterizing a landing site, documenting the mineralogical make-up of the site and guiding the collections of samples which represent the diversity of the site. Ideally, image data should be acquired at hundreds of VIS and IR wavelengths, in order to separately distinguish numerous anticipated species, using principal component analysis and linear unmixing. Cameras with bore-sighted point spectrometers can acquire spectra of isolated scene elements, but it requires 10(exp 2) to 10(exp 2) successive motions and precise relative pointing knowledge in order to create a single data cube which qualifies as a spectral map. These and other competing science objectives have to be accomplished within very short lander/rover operational lifetime (a few sols). True, 2-D imaging spectroscopy greatly speeds up the data acquisition process, since the spectra of all pixels in the scene are collected at once. This task can be accomplished with cameras that use electronically tunable acousto-optic tunable filters (AOTFs) as the optical tuning element. AOTFs made from TeO2 are now a mature technology, and operate at wavelengths from near-UV to about 5 microns. Because of incremental improvements in the last few years, present generation devices are rugged, radiation-hard and operate at temperatures down to at least 150K so they can be safely integrated into the ambient temperature optics of in-situ instruments such as planetary or small-body landers. They have been used for ground-based astronomy, and were also baselined for the ST-4 Champollion IR comet lander experiment (CIRCLE), prior to cancellation of the ST-4 mission last year. AIMS (for Acousto-optic Imaging spectrometer), is a prototype lander instrument which is being built at GSFC with support by the NASA OSS Advanced Technologies and Mission Studies, Mars Instrument Definition and Development Program (MIDP

  17. Analysis of the dispersion compensation of acousto-optic deflectors used for multiphoton imaging.

    PubMed

    Zeng, Shaoqun; Lv, Xiaohua; Bi, Kun; Zhan, Cheng; Li, Derong; Chen, Wei R; Xiong, Wenhui; Jacques, Steven L; Luo, Qingming

    2007-01-01

    The acousto-optic deflector (AOD) is highly preferred in laser scanning microscopy for its fast scanning ability and random-addressing capability. However, its application in two-photon microscopy is frustrated by the dispersion of the AOD, which results in beam distortion and pulse lengthening. We report the analysis of simultaneous compensation for the angular dispersion and temporal dispersion of the AOD by merely introducing a single dispersive element such as a prism or a grating. Besides serving as a scanner, the AOD is also a part of the compressor pair by integrating the dispersive nature of the AO interaction. This compensation principle is effective for both one-dimensional (1-D) AOD and two-dimensional (2-D) AOD scanning. Switching from a 1-D to a 2-D system requires proper optical alignment with the compensation element, but does not involve any new components. Analytical expressions are given to illustrate the working principle and to help with understanding the design of the system. Fluorescence images of beads and cells are shown to demonstrate the performance of two-photon microscopy when applying this compensated 2-D AOD as scanner.

  18. CONTROL OF LASER RADIATION PARAMETERS: Tunable acousto-optic filters with the multiple interaction of light and sound

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. B.; Magdich, L. N.; Knyazev, G. A.

    2005-11-01

    Optical multipass schemes of the interaction of light and sound, which are promising for filtration of optical beams based on tunable acousto-optic filters, are studied. The features of operation of acousto-optic filters in the rejection and transmission regimes are considered. It is proved theoretically and confirmed experimentally that the use of multiple interaction improves the spectral and energy parameters of acousto-optic devices. The collinear and transverse geometry of acousto-optic interaction in cells based on a paratellurite crystal is studied in the double-pass, three-pass, and multipass diffraction regimes.

  19. A new multifunction acousto-optic signal processor

    NASA Technical Reports Server (NTRS)

    Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.

    1984-01-01

    An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.

  20. Swept laser source based on acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Chen, Minghui; Li, Hao; Chen, Rong

    2014-12-01

    The design and development of the swept laser for optical coherence tomography is presented. It is manifested by a semiconductor optical amplifier, a fiber coupler, two fiber isolators, a semiconductor optical amplifier (SOA) and an acousto-optic tunable filter (AOTF) for frequency tuning within a unidirectional all-fiber ring cavity. Light output from the coupler is further amplified and spectral shaped by a booster SOA terminated at both ends with two isolators. The total loss in ring cavity is 8.2 dB. The gain SOA provides fiber-to-fiber small signal gain of 22.2 dB with saturation output power of 9.0 dBm. The developed laser source provides up to 100 kHz over a full-width wavelength tuning range of 140 nm at center wavelength of 1308 nm with an average power of 8 mW, yielding an axial resolution of 5.4 μm in air for OCT imaging. Theoretically, the measurement principle and the feasibility of the system are analyzed. Implementing the laser source in swept source based OCT (SS-OCT) system, real-time structural imaging of biological tissue is realized.

  1. Acousto-optics studied in polaritonic photonic crystals

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Racknor, C.

    2010-10-01

    We have studied the acousto-optic effect on the photon transmission and the spontaneous emission in polaritonic photonic crystal. We have considered that photonic crystals are fabricated from polaritonic materials such as GaP, MgO, LiNbO3 , and LiTaO3 . A two-level quantum dot is doped in a polaritonic crystal to study the decay rate of the spontaneous emission. The decay rate of quantum dots, band structure, and photon transmission coefficient have been calculated. It is found that band-gap width and the decay rate of quantum dots depends strongly on the high-frequency dielectric constant of the polaritonic crystals while the photonic band edges vary inversely by the ratio of longitudinal- to transverse-optical phonon energies. The spontaneous decay rate of the quantum dot can be controlled by the external strain field. This finding is significant because it is well known that the spontaneous emission is source of undesirable noise in different types of electronic and optical devices. Finally, we have also found the system can be switched from transmitting state to reflecting state by applying an external strain field. These are distinct and interesting results and can be used to fabricate new types of photonic couplers and fibers which in turn can be used to fabricate all photonic switches.

  2. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

    PubMed Central

    Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus

    2010-01-01

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506

  3. Analysis of quality of images obtained by acousto-optic filtering

    NASA Astrophysics Data System (ADS)

    Bogomolov, Dennis V.; Voloshinov, Vitaly B.

    2005-03-01

    The paper is devoted to the theoretical and experimental investigation of spatial resolution of images obtained during acousto-optic spectral filtration. The consideration was carried out for a wide angle acousto-optic filter designed on the base of paratellurite single crystal. The crystal was cut in the (1 1 0) plane with the direction of acoustic wave propagation at the angle 10 ° relative to the axis [110]. It was found that optical quality of a filtered image is influenced by a spectral bandwidth of a filter. The spectral bandwidth is determined by a length of piezoelectric transducer that generates ultrasonic waves in an acousto-optic cell. The dependence of a number of resolvable spots on the piezotransducer length was examined theoretically. It was shown that a wavelength of the filtered radiation influences the quality of the processed image. Precise and approximate equations have been derived to determine the spectral passband of the acousto-optic filer, the angular field of view of a single pixel, the angular aperture of the device and the number of resolvable spots in a line. Resolution of the images obtained during the acousto-optic filtration was also measured in the experiment.

  4. Acousto-optical imaging using a powerful long pulse laser

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2008-06-01

    Acousto-optical imaging is an emerging biodiagnostic technique which provides an optical spectroscopic signature and a spatial localization of an optically absorbing target embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. Although very promising for medical diagnostic, the practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must obviously satisfy the in vivo safety limits regarding the acceptable power level of both the ultrasonic pressure wave and the laser beam. In this paper, we propose to improve the sensitivity by using a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source also allows illuminating the tissues mainly during the transit time of the ultrasonic wave to maintain the average optical power below the maximum permissible exposure. In our experiment, a single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Photons were tagged in few-cm thick optical phantoms with tone bursts generated by an ultrasonic transducer. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue to process simultaneously a large number of speckle grains. When pumped by high intensity laser pulses, such an interferometer also provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation due to mechanical vibrations or tissues movements. The use of a powerful long pulse laser appears promising to enhance the signal level in ultrasound modulated optical imaging. When combined with a photorefractive interferometer of large optical etendue, such a source could

  5. Holographic topography using acousto-optically generated large synthetic wavelengths

    NASA Astrophysics Data System (ADS)

    Abeywickrema, U.; Beamer, D.; Banerjee, P.; Poon, T.-C.

    2016-03-01

    Digital holography uses phase imaging in a variety of techniques to produce a three-dimensional phase resolved image that includes accurate depth information about the object of interest. Multi-wavelength digital holography is an accurate method for measuring the topography of surfaces. Typically, the object phases are reconstructed for two wavelengths separately and the phase corresponding to the synthetic wavelength (obtained from the two wavelengths) is obtained by calculating the phase difference. Then the surface map can be obtained using proper phase-unwrapping techniques. Usually these synthetic wavelengths are on the order of microns which can be used to resolve depths on the order of microns. In this work, two extremely close wavelengths generated by an acousto-optic modulator (AOM) are used to perform two-wavelength digital holography. Since the difference between the two wavelengths is on the order of picometers, a large synthetic wavelength (on the order of centimeters) can be obtained which can be used to determine the topography of macroscopic surface features. Also since the synthetic wavelength is large, an accurate surface map can be obtained without using a phase-unwrapping technique. A 514 nm Argon-ion laser is used as the optical source, and used with an AOM to generate the zeroth-order and frequency-shifted first-order diffracted orders which are used as the two wavelengths. Both beams are aligned through the same spatial filter assembly. Holograms are captured sequentially using a typical Mach-Zehnder interferometric setup by blocking one beam at a time. Limitations of the large synthetic wavelength are also discussed.

  6. Applications of acousto-optics in holographic memories

    NASA Astrophysics Data System (ADS)

    Gurevich, Boris S.; Gurevich, Simon B.; Zhumaliev, Kubanychbek M.; Akkoziev, Imil A.; Alymkulov, Salmor A.

    1999-09-01

    Acousto-optic deflectors (AODs) are used for data by-page recording as holograms, and for data extraction from the hologram sampled by the AOD. The possibilities and characteristics of AODs define information capacity of the holographic memory devices as well as architecture and parameters of their separate components. Usually 2 AODs are used for 2-D hologram recording, and 3 AODs -- for volume multiplex recording. The calculations of amount of the recorded holograms which can be provided by different AODs have been carried out in the present work, and the limits of information capacity increasing at expense of optimal using of both AODs and recording media, have been appointed. The specific attention have been paid to the hologram 3-D recording with angular multiplexing where information capacity can be increased by 2 orders. The difficulties to be overcome in order to achieve the biggest information capacity, have been noted. Another subject of study is the problem of the sampled data arbitrary access rate increasing which can be provided by AODs application. It has been noted that minimum access time is limited, and this limitation is connected with the duration of the signal transmission through Bragg cell and with the time of signal transmission and processing in other components of holographic memory. It has been shown that information quality of holographic memory grows along with increasing of the number of used AODs. It has also been noted that if the memory parameters are close to their limits, the cross-talks grow, and the optimum must be found.

  7. Acousto-optic devices for operation with 2μm fibre lasers

    NASA Astrophysics Data System (ADS)

    Ward, J. D.; Stevens, G.; Shardlow, P. C.

    2016-03-01

    Fibre lasers operating in the 2μm region are of increasing interest for a range of applications, including laser machining and biomedical systems. The large mode area compared to 1μm fibre lasers combined with operation in an "eye-safe" region of the spectrum makes them particularly attractive. When developing fibre lasers at 1μm and 1·5μm manufacturers were able to call upon enabling technologies used by the telecoms industry, but at longer wavelengths, including 2μm, many such components are either unavailable or immature. We report on recent developments of Acousto-Optic Modulators and Tunable Filters that are specifically optimised for use with fibre systems operating at or around 2μm. AO devices are interesting due to their ability to conserve spatial-coherence, making them appropriate for use with single-mode optical fibres. We describe how the choice of interaction medium is an important consideration, particularly affecting the drive power and the polarisation behaviour of the device - the latter being an important parameter when used in a fibre system. We also describe two designs of AO Tunable Filter intended for laser tuning. Both designs have been demonstrated intracavity in 2μm fibre lasers. The first gives exceptionally narrow resolution (δλ/λ<0·1%). The second design is of a novel type of AOTF where a matched pair of AOTFs is configured to give a substantially net zero frequency-shift with little or no loss of pointing stability, any minor deviations in manufacture being self-compensated. Furthermore, small controlled frequency-shifts (up to about 10kHz) may be introduced with little or no detriment to the alignment of the system.

  8. A Statistical Analysis of the Output Signals of an Acousto-Optic Spectrum Analyzer for CW (Continuous-Wave) Signals

    DTIC Science & Technology

    1988-10-01

    A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.

  9. Acousto-Optic-Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements.

    PubMed

    Park, Nam Su; Chun, Soo Kyung; Han, Ga-Hee; Kim, Chang-Seok

    2017-03-31

    We demonstrate a novel wavelength-comb-swept laser based on two intra-cavity filters: an acousto-optic tunable filter (AOTF) and a Fabry-Pérot etalon filter. The AOTF is used for the tunable selection of the output wavelength with time and the etalon filter for the narrowing of the spectral linewidth to extend the coherence length. Compared to the conventional wavelength-swept laser, the acousto-optic-based wavelength-comb-swept laser (WCSL) can extend the measureable range of displacement measurements by decreasing the sensitivity roll-off of the point spread function. Because the AOTF contains no mechanical moving parts to select the output wavelength acousto-optically, the WCSL source has a high wavenumber (k) linearity of R² = 0.9999 to ensure equally spaced wavelength combs in the wavenumber domain.

  10. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.

    1995-10-01

    In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.

  11. Lyapunov exponent of chaos generated by acousto-optic modulators with feedback

    NASA Astrophysics Data System (ADS)

    Ghosh, Anjan K.; Verma, Pramode

    2011-01-01

    Generation of chaos from acousto-optic modulators with an electronic feedback has been studied for several years. Such chaotic signals have an important application in providing secure encryption in free-space optical communication systems. Lyapunov exponent is an important parameter for analysis of chaos generated by a nonlinear system. The Lyapunov exponent of an acousto-optic system is determined and calculated in this paper to understand the dependence of the chaotic response on the system parameters such as bias, feedback gain, input intensity and initial condition exciting the cell. Analysis of chaos using Lyapunov exponent is consistent with bifurcation analysis and is useful in encrypting data signals.

  12. Acousto-optical combined frequency splitters and shifters as components of a ring optical gyroscope

    SciTech Connect

    Kotov, V M

    1999-03-31

    An analysis is made of the task of symmetrisation of a Y-type directional coupler and of shifting the frequency of counterpropagating waves in a ring gyroscope by means of the relatively recently discovered new type of acousto-optical diffraction when the incident radiation is diffracted simultaneously into two orders. Anisotropic and isotropic acousto-optical diffraction in a uniaxial crystal is considered and expressions convenient for calculations are derived. Experiments carried out on isotropic diffraction in LiNbO{sub 3} confirm, on the whole, the theoretical predictions. (laser applications and other topics in quantum electronics)

  13. Wide-band acousto-optic deflectors with high efficiency for visible range fringe pattern projector.

    PubMed

    Dupont, S; Kastelik, J C; Causa, F

    2007-10-01

    A laser fringe projection system based on a pair of identical acousto-optic TeO(2) deflectors operated at the same frequency and using tangential phase matching anisotropic interaction is demonstrated, achieving large bandwidth and high efficiency. A 40 MHz bandwidth and an acousto-optic efficiency higher than 60% have been measured at wavelength of 514 nm. The specific pris-matic configuration of the in-house developed deflectors greatly facilitates optical alignment of the instrument. The spatial period of the interference fringes can be dynamically controlled over almost one decade by tuning the frequency of the acoustic carriers.

  14. Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers

    SciTech Connect

    Mcgrane, Shawn D; Moore, David S; Greenfield, Margo T

    2008-01-01

    We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.

  15. Modeling-based design and assessment of an acousto-optic guided high-intensity focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Adams, Matthew T.; Cleveland, Robin O.; Roy, Ronald A.

    2017-01-01

    Real-time acousto-optic (AO) sensing has been shown to noninvasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposures. The technique is particularly appropriate for monitoring noncavitating lesions that offer minimal acoustic contrast. A numerical model is presented for an AO-guided HIFU system with an illumination wavelength of 1064 nm and an acoustic frequency of 1.1 MHz. To confirm the model's accuracy, it is compared to previously published experimental data gathered during AO-guided HIFU in chicken breast. The model is used to determine an optimal design for an AO-guided HIFU system, to assess its robustness, and to predict its efficacy for the ablation of large volumes. It was found that a through transmission geometry results in the best performance, and an optical wavelength around 800 nm was optimal as it provided sufficient contrast with low absorption. Finally, it was shown that the strategy employed while treating large volumes with AO guidance has a major impact on the resulting necrotic volume and symmetry.

  16. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.

    PubMed

    Lewin, P A; Mu, C; Umchid, S; Daryoush, A; El-Sherif, M

    2005-12-01

    This work describes the results of initial evaluation of a wideband acousto-optic hydrophone probe designed to operate as point receiver in the frequency range up to 100 MHz. The hydrophone was implemented as a tapered fiber optic (FO) probe sensor with a tip diameter of approximately 7 microm. Such small physical dimensions of the sensor eliminate the need for spatial averaging corrections so that true pressure-time (p-t) waveforms can be faithfully recorded. The theoretical considerations that predicted the FO probe sensitivity to be equal to 4.3 mV/MPa are presented along with a brief description of the manufacturing process. The calibration results that verified the theoretically predicted sensitivity are also presented along with a brief description of the improvements being currently implemented to increase this sensitivity level by approximately 20 dB. The results of preliminary measurements indicate that the fiber optic probes will exhibit a uniform frequency response and a zero phase shift in the frequency range considered. These features might be very useful in rapid complex calibration i.e. determining both magnitude and phase response of other hydrophones by the substitution method. Also, because of their robust design and linearity, these fiber optic hydrophones could also meet the challenges posed by high intensity focused ultrasound (HIFU) and other therapeutic applications. Overall, the outcome of this work shows that when fully developed, the FO probes will be well suited for high frequency measurements of ultrasound fields and will be able to complement the data collected by the current finite aperture piezoelectric PVDF hydrophones.

  17. Invited Article: Acousto-optic finite-difference frequency-domain algorithm for first-principles simulations of on-chip acousto-optic devices

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Cerjan, Alexander; Fan, Shanhui

    2017-02-01

    We introduce a finite-difference frequency-domain algorithm for coupled acousto-optic simulations. First-principles acousto-optic simulation in time domain has been challenging due to the fact that the acoustic and optical frequencies differ by many orders of magnitude. We bypass this difficulty by formulating the interactions between the optical and acoustic waves rigorously as a system of coupled nonlinear equations in frequency domain. This approach is particularly suited for on-chip devices that are based on a variety of acousto-optic interactions such as the stimulated Brillouin scattering. We validate our algorithm by simulating a stimulated Brillouin scattering process in a suspended waveguide structure and find excellent agreement with coupled-mode theory. We further provide an example of a simulation for a compact on-chip resonator device that greatly enhances the effect of stimulated Brillouin scattering. Our algorithm should facilitate the design of nanophotonic on-chip devices for the harnessing of photon-phonon interactions.

  18. Noise tolerance in wavelength-selective switching of optical differential quadrature-phase-shift-keying pulse train by collinear acousto-optic devices.

    PubMed

    Goto, Nobuo; Miyazaki, Yasumitsu

    2014-06-01

    Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100  Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.

  19. Rigorous coupled wave analysis of acousto-optics with relativistic considerations.

    PubMed

    Xia, Guoqiang; Zheng, Weijian; Lei, Zhenggang; Zhang, Ruolan

    2015-09-01

    A relativistic analysis of acousto-optics is presented, and a rigorous coupled wave analysis is generalized for the diffraction of the acousto-optical effect. An acoustic wave generates a grating with temporally and spatially modulated permittivity, hindering direct applications of the rigorous coupled wave analysis for the acousto-optical effect. In a reference frame which moves with the acoustic wave, the grating is static, the medium moves, and the coupled wave equations for the static grating may be derived. Floquet's theorem is then applied to cast these equations into an eigenproblem. Using a Lorentz transformation, the electromagnetic fields in the grating region are transformed to the lab frame where the medium is at rest, and relativistic Doppler frequency shifts are introduced into various diffraction orders. In the lab frame, the boundary conditions are considered and the diffraction efficiencies of various orders are determined. This method is rigorous and general, and the plane waves in the resulting expansion satisfy the dispersion relation of the medium and are propagation modes. Properties of various Bragg diffractions are results, rather than preconditions, of this method. Simulations of an acousto-optical tunable filter made by paratellurite, TeO(2), are given as examples.

  20. Optical Oscillation Established Using Acousto-Optic Bragg Angle Defraction In Conjunction With Closed Cavity Feedback

    NASA Astrophysics Data System (ADS)

    Vezzoli, G. C.; Cadwallender, W.; Megargel, L. R.; Mentzer, M. A.; Craley, D. E.

    1987-03-01

    An optical oscillator has been designed, constructed, and operated by using a HeNe laser and acousto-optic modulator in conjunction with two opposed fiber optic feedback circuits. Depending on round-trip feedback time, a low frequency ( 1Hz) sinusoidal oscillator or a high frequency (100KHz) square wave (,..%,1 us rise time) is obtained.

  1. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  2. Acousto-optic multiphoton laser scanning microscopy and multiphoton photon counting spectroscopy: Applications and implications for optical neurobiology

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay

    Multiphoton excitation of molecular probes has become an important tool in experimental neurobiology owing to the intrinsic optical sectioning and low light scattering it affords. Using molecular functional indicators, multiphoton excitation allows physiological signals within single neurons to be observed from within living brain tissue. Ideally, it would be possible to record from multiple sites located throughout the elaborately branching dendritic arbors, in order to study the correlations of structure and function both within and across experiments. However, existing multiphoton microscope systems based on scanning mirrors do not allow optical recordings to be obtained from more than a handful of sites simultaneously at the high rates required to capture the fast physiological signals of interest (>100Hz for Ca2+ signals, >1kHz for membrane potential transients). In order to overcome this limitation, two-dimensional acousto-optic deflection was employed, to allow an ultrafast laser beam suited for multiphoton excitation to be rapidly repositioned with low latency (˜15mus). This supports a random-access scanning mode in which the beam can repeatedly visit a succession of user-selected sites of interest within the microscope's field-of-view at high rates, with minimal sacrifice of pixel dwell time. This technique of acousto-optic multiphoton laser scanning microscope (AO-MPLSM) was demonstrated to allow the spatial profile of signals arising in response to physiological stimulation to be rapidly mapped. Means to compensate or avoid problems of dispersion which have hampered AO-MPLSM in the past are presented, with the latter being implemented. Separately, the combination of photon counting detection with multiphoton excitation, termed generally multiphoton photon counting spectroscopy (MP-PCS), was also considered, with particular emphasis on the technique of fluorescence correlation spectroscopy (FCS). MP-PCS was shown to allow information about molecular

  3. Development of a Flyable Acousto-Optic Laser Beam Deflection System for a Head Up Display of the Future.

    DTIC Science & Technology

    Rayleigh criteria). The system was designed for stroke writing but was demonstrated with lissajous writing. The acousto - optic deflectors employed...The report describes a laser display which is to be used in a Head-Up Display of the future. The uniqueness of the display is that it uses acousto ... optic components for the modulation and deflection of the laser beam. As a result, there are no moving parts, which increases the reliability and life

  4. LIGHT MODULATION: Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection

    NASA Astrophysics Data System (ADS)

    Molchanov, V. Ya; Voloshinov, V. B.; Makarov, O. Yu

    2009-04-01

    Quasi-collinear acousto-optic interaction is studied in acoustically and optically anisotropic paratellurite crystals. The possible applications of this interaction in acousto-optic tunable filters with a high spectral resolution are discussed. Different modifications of devices are compared and variants of devices intended for processing light beams and selection of light signals in fibreoptic communication systems with wavelength division multiplexing (WDM) at λ simeq 1550 nm are considered.

  5. Piezo-optic, photoelastic, and acousto-optic properties of SrB4O7 crystals.

    PubMed

    Mytsyk, Bohdan; Demyanyshyn, Natalia; Martynyuk-Lototska, Irina; Vlokh, Rostyslav

    2011-07-20

    On the basis of studies of the piezo-optic effect, it has been shown that SrB(4)O(7) crystals can be used as efficient acousto-optic materials in the vacuum ultraviolet spectral range. The full matrices of piezo-optic and photoelastic coefficients have been experimentally obtained for these crystals. The acousto-optic figure of merit and the diffraction efficiency have been estimated for both the visible and deep ultraviolet spectral ranges.

  6. Acousto-optical pulsar processor usage for interstellar medium dispersion measurements

    NASA Astrophysics Data System (ADS)

    Esepkina, Nelli A.; Lavrov, Aleksandr P.; Molodyakov, Sergey A.

    2005-02-01

    The acousto-optical processor (AOP) of a new type for the investigation of pulsar radio emission is proposed that provides for the compensation of signal dispersion in a wide frequency bandwidth. The AOP is based on an acousto-optical spectrum analyzer with a CCD photodetector operating in a special pipeline operational mode (shift-and-add mode), which allows spectral components of the input signal to be added with a controlled time delay immediately in the CCD photodetector. The proposed AOP was successfully used on an RT-64 radio telescope (Kalyazin Radio Astronomy Observatory FIAN) for the observation of pulsars at 1.4 GHz band with bandwidth 45 MHz. The method of direct interstellar medium dispersion measurement on two-frequency band observations with application AOP is described. The measurements of DM for pulsar PSR 1937 + 21 are submitted.

  7. Narrow-band acousto-optic tunable filtering in a two-mode fiber.

    PubMed

    Ostling, D; Engan, H E

    1995-06-01

    We demonstrate an optical filter that utilizes acousto-optic coupling between the spatial modes that propagate in a two-mode elliptical-core fiber. The optical bandwidth at 1090 nm is 0.85 nm, which is in agreement with predictions based on measurement of differential group delay between the modes. The filter is slightly polarization dependent, with a 0.28-nm wavelength difference between the passband peaks for the two polarization eigenstates. The optical insertion loss is dominated by 2-4-dB bending loss in nonoptimized mode strippers, and the coupling loss is negligible. Full acousto-optic mode conversion was achieved at an 8-mW electrical input power to the acoustic transducer.

  8. Note: Laser frequency shifting by using two novel triple-pass acousto-optic modulator configurations

    SciTech Connect

    Carlos-Lopez, E. de; Lopez, J. M.; Lopez, S.; Espinosa, M. G.; Lizama, L. A.

    2012-11-15

    We report the design of two novel triple-pass acousto-optic modulator systems. These designs are extensions of the well known acousto-optic modulator (AOM) double-pass configuration, which eliminates the angle dependence of the diffracted beam with respect to the modulation frequency. In a triple-pass system, however, the frequency dependence of the angle does not disappear but the frequency shift is larger, spanning 3 times the AOM central frequency. In some applications, such as optically pumped Cesium-beam frequency standards, the frequencies of the two laser beams remain fixed and a triple-pass optical system can be used to reduce to one the number of lasers used in such atomic clocks. The two triple-pass configurations use either a retro-reflecting mirror, or a right angle prism to pass for third time the laser beam through the AOM, obtaining diffraction efficiencies of about 27% and 44%, respectively.

  9. Ultraviolet-visible imaging acousto-optic tunable filters in KDP.

    PubMed

    Voloshinov, Vitaly; Gupta, Neelam

    2004-07-01

    There is a need to develop large-aperture acousto-optic tunable filters (AOTFs) in the UV region for applications in astronomy, environmental sciences, biology, etc. We have developed a high-quality noncollinear AOTF cell that uses a single crystal of KDP that has nearly a four times larger acousto-optic figure of merit, M2, than quartz. The linear and angular apertures of this cell are 1.5 cm x 1.5 cm and 1.2 degrees, respectively. The spectral range is 220-480 nm, with 160-cm(-1) spectral resolution and high transmission in the UV. We present an analysis of the design and describe the characterization results.

  10. Designing an acousto-optical spectrometer for Guillermo Haro Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes Bernabe, Adan Omar; Chavushyan, Vahram

    2013-09-01

    The Guillermo Haro astrophysical observatory (Mexico) realizes investigations in the visible and near-infrared range . Actually, the classical grating spectrometer with mechanically removable optical filters and diffraction gratings is exploited there. Unfortunately, the regular process of changing the diffraction gratings with different resolutions and recalibrating the spectrometer is inconvenient and wastes expensive time for observations. This is why exploiting an acousto-optical cell as a dynamic dispersive element is practically desirable, because potentially it realizes tuning the spectral resolution and the range of observation electronically and excludes filters. Some aspects of inserting just one dynamic acousto-optical diffraction grating instead of a set of the traditional static diffraction gratings are preliminarily considered.

  11. Photon frequency-mode matching using acousto-optic frequency beam splitters

    SciTech Connect

    Jones, Nick S.; Stace, T. M.

    2006-03-15

    It is a difficult engineering task to create distinct solid state single photon sources which nonetheless emit photons at the same frequency. It is also hard to create entangled photon pairs from quantum dots. In the spirit of quantum engineering we propose a simple optical circuit which can, in the right circumstances, make frequency distinguishable photons frequency indistinguishable. Our circuit can supply a downstream solution to both problems, opening up a large window of allowed frequency mismatches between physical mechanisms. The only components used are spectrum analysers or prisms and an acousto-optic modulator. We also note that an acousto-optic modulator can be used to obtain Hong-Ou-Mandel two photon interference effects from the frequency distinguishable photons generated by distinct sources.

  12. Wide spectral range imaging acousto-optic turnable filter used in outer space probe

    NASA Astrophysics Data System (ADS)

    Zhang, Zehong; Wang, Liangqiu; He, Xiaoliang; Zhou, Yong

    2014-02-01

    This article introduces a wide spectral range imaging acousto-optic turnable filter made of two transducers. "Mismatch rate" was firstly put forward to represent the degree to which the impedance mismatch and a three stage matching circuit was designed for the filter to improve its spectral range and operating bandwidth. Now the spectral range is from 0.4μm to 1.1μm, the overall operating bandwidth reaches 1.14 octave, the diffraction efficiency over 60%, spectral resolution from 1.3nm to 7.5nm. To get rid of " tin pest", alloy material was used to make bonding layer material instead of pure tin, making the storage temperature of the acousto-optic turnable filter ranges from -65 °C to 85 °C, and the operating temperature from -35 °C to 70 °C.

  13. JPL activities on development of acousto-optic tunable filter imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    Recent activities of JPL in the development of a new type of imaging spectrometers for earth observation and planetary exploration are reported. This instrument uses the acousto-optic tunable filter (AOTF) as high resolution and fast programmable bandpass filter. AOTF operates in the principle of acousto-optic interaction in an anisotropic medium. This filter can be tuned in sequential, random, and multiwavelength access modes, providing observational flexibility. The diffraction process in the filter generates two diffracted monochromatic beams with polarization orthogonal to each other, creating a unique capability to measure both polarimetric and spectral properties of the incoming light simultaneously with a single instrument. The device gives wide wavelength operations with reasonably large throughput. In addition, it is in a compact solid-state structure without moving parts, providing system reliability. These attractive features give promising opportunities to develop a new generation of airborne/spaceborne and ground, real-time, imaging spectrometer systems for remote sensing applications.

  14. Wide-aperture diffraction of unpolarised radiation in a system of two acousto-optic filters

    SciTech Connect

    Magdich, L N; Yushkov, K B; Voloshinov, V B

    2009-04-30

    Light diffraction is studied in two tandem acousto-optic cells filtering unpolarised radiation with a wide angular spectrum. It is shown that the side lobes of the ultrasonic radiation pattern of a piezoelectric transducer produce side diffraction intensity maxima at the output of the system consisting of two filters. Diffraction in paratellurite filters is studied experimentally at 1.06 {mu}m. (light modulation)

  15. A new method for determining the transfer function of an acousto optical tunable filter.

    PubMed

    Mahieux, A; Wilquet, V; Drummond, R; Belyaev, D; Federova, A; Vandaele, A C

    2009-02-02

    The current study describes the determination of the transfer function of an Acousto Optical Tunable Filter from the in-flight solar observations of the SOIR instrument on board Venus Express. An approach is proposed in order to reconstruct the transfer function profile from the analysis of various solar lines. Moreover this technique allows the determination of the evolution of the transfer function as a function of the AOTF radio frequency.

  16. Laser identification system based on acousto-optical barcode scanner principles

    NASA Astrophysics Data System (ADS)

    Khansuvarov, Ruslan A.; Korol, Georgy I.; Preslenev, Leonid N.; Bestugin, Aleksandr R.; Paraskun, Arthur S.

    2016-09-01

    The main purpose of the bar code in the modern world is the unique identification of the product, service, or any of their features, so personal and stationary barcode scanners so widely used. One of the important parameters of bar code scanners is their reliability, accuracy of the barcode recognition, response time and performance. Nowadays, the most popular personal barcode scanners contain a mechanical part, which extremely impairs the reliability indices. Group of SUAI engineers has proposed bar code scanner based on laser beam acoustic deflection effect in crystals [RU patent No 156009 issued 4/16/2015] Through the use of an acousto-optic deflector element in barcode scanner described by a group of engineers SUAI, it can be implemented in the manual form factor, and the stationary form factor of a barcode scanner. Being a wave electronic device, an acousto-optic element in the composition of the acousto-optic barcode scanner allows you to clearly establish a mathematical link between the encoded function of the bar code with the accepted input photodetector intensities function that allows you to speak about the great probability of a bar code clear definition. This paper provides a description of the issued patent, the description of the principles of operation based on the mathematical analysis, a description of the layout of the implemented scanner.

  17. A Very Compact, High Speed and Rugged Acousto-Optic Tunable Filter for Wavelength Division Demultiplexing in Fiber Optic Communication Networks. Phase 1

    DTIC Science & Technology

    2007-11-02

    Novel concepts of near-collinear/collinear acousto - optic interactions have been investigated during this SBIR Phase I program. As a result, several...new acousto - optic tunable filters have been built and tested. The program is highlighted by: (1) Design, fabrication and experimental demonstration of...a novel TeO2 near-collinear acousto - optic tunable filter has been designed, fabricated and tested. The device exhibits a 1.29 nm spectral resolution

  18. Research Cooperation between Catholic Universityof Leuven Campus Kortrijk and University of Gdansk in Acousto-optics - A Historical Recollection1

    NASA Astrophysics Data System (ADS)

    Śliwiński, A.

    A short review of results achieved during many years of cooperation between the Belgian group of KULAK and the Polish group of Gdansk University (UG) is presented as a tribute to Oswald Leroy for his significant contribution. The scientific research in examination of ultrasonic light interaction phenomena was the area of this fruitful joint collaboration since 1971. Oswald Leroy's crucial role in the cooperation is emphasized and some historical events are recalled. His original theoretical papers predicted new theoretical phenomena which were successfully experimentally verified in the A. O. laboratory at the University of Gdansk. Later on, they have become inspiration for further fundamental search in acousto-optics. Members of Gdansk AO group many times visited Kortrijk to work together on ULD phenomena or attending seminars and symposia organized in Belgium and the Belgian group took part in the international Spring Schools and Applications systematically organized by Gdansk University as the triennial meetings since 1980. Leroy's contribution to the mutual co-operation has been recognized as so important and significant that in 1991 he was honored with the Doctorate Honoris Causa of the University of Gdansk.

  19. An advanced regime of the anomalous acousto-optical interaction with tangential phase matching in crystalline materials

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes, Adan O.

    2016-09-01

    Regime of effective non-collinear acousto-optical interaction with tangential phase matching had been identified and previously observed only in two limiting cases: in tellurium dioxide (TeO2) at low acoustic frequencies ( 60 MHz) and in rutile (TiO2) at ultra-high frequencies ( 5 GHz). Both these limits are motivated by optical properties of the chosen materials. Low frequencies in TeO2 admit designing a wide-aperture acousto-optical cell, but limit the frequency bandwidth. While an acousto-optical cell made of TiO2 has very small aperture and exhibits low spectral resolution due to the effect of linear acoustic attenuation. Instead of those limits, we propose an advanced regime of the anomalous acousto-optical interaction with tangential phase matching, which allows us varying the frequency range and optimizing all the performances (for instance, the spectral resolution) of a wide-aperture acousto-optical cell made of the chosen crystal, as the case requires. Recently, we had suggested and successfully tested experimentally the revealed additional degree of freedom, i.e. the action of the tilt angle within the refractive indices ellipsoids to manipulate by the performances of crystalline acousto-optical cells. Now, we consider an opportunity of refining this additional degree of freedom within those ellipsoids of crystalline acousto-optical cell through some declination of the acoustic beam. For our investigations, the lithium niobate (LiNbO3) and rutile (TiO2) crystals of about 5 cm length, operating with the slow-shear acoustic mode along the acoustic axes had been selected. The needed theoretical analysis, numerical estimations, and 3D-vector diagrams have been developed to reveal potential benefits of the proposed technique.

  20. Wet/dry film thickness measurement of paint by absorption spectroscopy with acousto-optic tunable filter spectrometer

    NASA Astrophysics Data System (ADS)

    Sinha, Pranay G.; Xiong, Xiangchun; Jin, Feng; Trivedi, Sudhir; Prasad, Narashima S.

    2005-08-01

    Controlling/monitoring the thickness of applied paint in real time is important to many situations including painting ship and submarine hulls in dry docks for maintaining health of ships and submarines against the harshness of the sea, in automobile and aerospace industries, and in a variety of other industries as a control sensor that plays significant role in product quality, process control, and cost control. Insufficient thickness results to inadequate protection while overspray leads to waste and pollution of the environment. A rugged instrumentation for the real time non-contact accurate measurement of wet and dry paint film thickness measurement will be immensely valuable. As paint is applied with several layers of the same or different type, thickness of each newly sprayed wet layer is of most interest, but measurement on dry paint is also useful. In this study, we use acousto-optic tunable filter-based near infrared spectrometer to obtain the absorption spectrum of layers of paint sprayed on sand blasted steel surface and thus measure the thickness of coating under both wet and dry situations. NIR spectra are obtained from 1100 to 2300 nm on four sample of different thickness of paint up to 127 micron. Partial least squares model built with the spectra shows good correlation with standard error of prediction within ~ 0.7 micron. Results indicate that the spectra also respond to the amount of organic solvent in the wet paint and can be used to monitor the degree of dryness of the paint in real time.

  1. Acousto-optic mode coupling excited by flexural waves in simplified hollow-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Qiu, Minghui; Wu, Zhifang; Dong, Hongguang; Liu, Bo; Miao, Yinping

    2013-05-01

    We have demonstrated the formation of an acoustic grating in a simplified hollow-core photonic crystal fiber, which consists of a hollow hexagonal core and six crown-like air holes, by applying flexural acoustic waves along the fiber axis. The dependence of the resonance wavelength on the applied acoustic frequency has been acquired on the basis of the theoretical calculation of the phase matching curve; it is in good agreement with our experimental observation of the transmission spectral evolution as the applied acoustic frequency varies. Experimental results show that the acoustic grating resonance peak possesses acoustic frequency and strain dependences of 728 nm MHz-1 and -6.98 pm μɛ-1, respectively, based on which high-performance acousto-optic tunable filters and fiber-optic strain sensors with high sensitivity could be achieved. And furthermore, the research work presented in this paper indicates that microbending rather than physical deformation is the main physical mechanism that leads to the formation of equivalent long-period gratings, which would be of significance for developing related grating devices based on simplified hollow-core photonic crystal fibers.

  2. A modeling-based assessment of acousto-optic sensing for monitoring high-intensity focused ultrasound lesion formation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew Tyler

    Real-time acousto-optic (AO) sensing---a dual-wave modality that combines ultrasound with diffuse light to probe the optical properties of turbid media---has been demonstrated to non-invasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposure. The AO signal indicates the onset of lesion formation and predicts resulting lesion volumes. Although proof-of-concept experiments have been successful, many of the underlying parameters and mechanisms affecting thermally induced optical property changes and the AO detectability of HIFU lesion formation are not well understood. In thesis, a numerical simulation was developed to model the AO sensing process and capture the relevant acoustic, thermal, and optical transport processes. The simulation required data that described how optical properties changed with heating. Experiments were carried out where excised chicken breast was exposed to thermal bath heating and changes in the optical absorption and scattering spectra (500 nm--1100 nm) were measured using a scanning spectrophotometer and an integrating sphere assembly. Results showed that the standard thermal dose model currently used for guiding HIFU treatments needs to be adjusted to describe thermally induced optical property changes. To model the entire AO process, coupled models were used for ultrasound propagation, tissue heating, and diffusive light transport. The angular spectrum method was used to model the acoustic field from the HIFU source. Spatial-temporal temperature elevations induced by the absorption of ultrasound were modeled using a finite-difference time-domain solution to the Pennes bioheat equation. The thermal dose model was then used to determine optical properties based on the temperature history. The diffuse optical field in the tissue was then calculated using a GPU-accelerated Monte Carlo algorithm, which accounted for light-sound interactions and AO signal detection. The simulation was

  3. Acousto-optic interaction in alpha-BaB(2)O(4)and Li(2)B(4)O(7) crystals.

    PubMed

    Martynyuk-Lototska, Irina; Mys, Oksana; Dudok, Taras; Adamiv, Volodymyr; Smirnov, Yevgen; Vlokh, Rostyslav

    2008-07-01

    Experimental studies and analysis of acousto-optic diffraction in alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are given. Ultrasonic wave velocity, elastic compliance and stiffness coefficients, and piezo-optic and photoelastic coefficients of alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are determined. The acousto-optic figure of merit has been estimated for different possible geometries of acousto-optic interaction. It is shown that the acousto-optic figures of merit for alpha-BaB(2)O(4) crystals reach the value M(2)=(270 +/- 70) x 10(-15) s(3)/kg for the case of interaction with the slowest ultrasonic wave. The directions of propagation and polarization of those acoustic waves are obtained on the basis of construction of acoustic slowness surfaces. The acousto-optic diffraction is experimentally studied for alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals.

  4. Arrangement of an advanced acousto-optical processor for modeling the triple correlations of low-power optical pulse trains

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Hanessian de la Garza, Ana V.; Chavushyan, Vahram; Campos Acosta, Joaquin

    2012-02-01

    Both a high level of developing the spatially spot-like and one-dimensional input devices and the flexibility of a design inherent in two-dimensional optical systems with similar modulating components make it possible to realize various high-bit-rate opto-electronic processors. This is why a one-dimension acousto-optic technique has been involved in data processing and its modeling based on the algorithm of triple product correlations. Practically, triple product correlations originate within an optical scheme including the modulated light source, representing the first input port, and two wideaperture acousto-optical cells forming two other input ports. Due to specifically constructed lens system, initially modulated light beam is crossing sequentially the apertures of acousto-optical cells oriented at right angle to each other. Finally, a CCD-matrix integrates the received optical signal with respect to time and registers the resulting triple product correlations. In a view of arranging similar acousto-optical processor for modeling triple product correlations, we characterize a novel version of the acousto-optical cells exploiting now tellurium-dioxide crystals. Together with this, potential performances of the progressed design for similar processor are estimated as well.

  5. Optimization of doubly Q-switched lasers with both an acousto-optic modulator and a GaAs saturable absorber.

    PubMed

    Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2007-08-20

    A doubly Q-switched laser with both an acousto-optic (AO) modulator and a GaAs saturable absorber can obtain a more symmetric and shorter pulse with high pulse peak power, which has been experimentally proved. The key parameters of an optimally coupled doubly Q-switched laser with both an AO modulator and a GaAs saturable absorber are determined, and a group of general curves are generated for what we believe is the first time, when the single-photon absorption (SPA) and two-photon absorption (TPA) processes of GaAs are combined, and the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the AO Q-switch are considered. These key parameters include the optimal normalized coupling parameter, the optimal normalized GaAs saturable absorber parameters, and the normalized parameters of the AO Q-switch, which can maximize the output energy. Meanwhile, the corresponding normalized energy, the normalized peak power, and the normalized pulse width are given. The curves clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the GaAs saturable absorber, the AO Q-switch, and the resonator. Sample calculations for a diode-pumped Nd3+:YVO4 laser with both an AO modulator and a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas.

  6. Fiber-optic tunable multiwavelength variable attenuator and routing module designs that use bulk acousto-optics.

    PubMed

    Riza, Nabeel A; Mughal, M Junaid

    2005-02-10

    A compact fiber-coupled bulk acousto-optical multiwavelength variable optical attenuator module design that uses a retroreflective double-pass geometry within a single bulk acousto-optic tunable filter device is presented. The proposed attenuator module demonstrates a high 17-dB notch dynamic range at a low 100-mW drive power and uses a single bulk collinear-interaction acousto-optic tunable-filter device. Experiments show a low (<1.8-dB) fiber-to-fiber insertion loss with a fast 34-micros speed within a wide 1520-1640-nm agile multinotch band. The basic broadband attenuator module design is extended to allow for efficient architectures for routing modules such as agile drop filters, analog hitless tap filters, and digital add-drop switches.

  7. Electro-Optic Effect in the PESO Acousto-Optic Modulator

    DTIC Science & Technology

    1994-11-09

    AD-A286 355 NAIC-ID(RS)T-0395-94 NATIONAL AIR INTELLIGENCE CENTER ELECTRO - OPTIC EFFECT IN THE PESO ACOUSTO-OPTIC MODULATOR by Tai Renzhong, Lu Futun...owing to coupling.betw;ee.elecuc grazing" and "acou- tic grating". Linear electro - optic effect in PESO modulator is helpful to the diffraction and...crystaO A-l/Am,ARjAb, anl / ar:.. thtta=30 and theta=900 . Along these two orientations. th;- electro - optic effect is restricted tcŽ the rn :-t m:,n e

  8. Acoustic wave velocities in two-dimensional composite structures based on acousto-optical crystals

    NASA Astrophysics Data System (ADS)

    Mal'neva, P. V.; Trushin, A. S.

    2015-04-01

    Sound velocities in two-dimensional composite structures based on isotropic and anisotropic acousto-optical crystals have been determined by numerical simulations. The isotropic materials are represented by fused quartz (SiO2) and flint glass, while anisotropic materials include tetragonal crystals of paratellurite (TeO2) and rutile (TiO2) and a trigonal crystal of tellurium (Te). It is established that the acoustic anisotropy of periodic composite structures strongly depends on both the chemical composition and geometric parameters of components.

  9. Acousto-optic diffraction of multicolour Ar-laser radiation in crystalline quartz

    SciTech Connect

    Kotov, V M; Averin, S V; Voronko, A I; Kuznetsov, P I; Tikhomirov, S A; Shkerdin, G N; Bulyuk, A N

    2015-10-31

    We have studied acousto-optic Bragg diffraction of multicolour radiation, generated by an Ar laser in the blue-green region of the spectrum, on an acoustic wave propagating in crystalline quartz. It is shown that crystalline quartz significantly exceeds commonly used paratellurite in terms of phase matching of optical beams with a single acoustic wave. We have performed experiments on pulse modulation of Ar-laser radiation. It is shown that distortions introduced into optical pulses are substantially less when use is made of a quartz crystal rather than paratellurite. (acoustooptics)

  10. Acousto-optic resonant coupling of three spatial modes in an optical fiber.

    PubMed

    Park, Hee Su; Song, Kwang Yong

    2014-01-27

    A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

  11. Compact tunable microwave filter using retroreflective acousto-optic filtering and delay controls.

    PubMed

    Riza, Nabeel A; Ghauri, Farzan N

    2007-03-01

    Programmable broadband rf filters are demonstrated using a compact retroreflective optical design with an acousto-optic tunable filter and a chirped fiber Bragg grating. This design enables fast 34 micros domain analog-mode control of rf filter time delays and weights. Two proof-of-concept filters are demonstrated including a two-tap notch filter with >35 dB notch depth and a four-tap bandpass filter. Both filters have 2-8 GHz tunability and a 34 micros reset time.

  12. Actively mode-locked fiber laser using acousto-optic modulator

    NASA Astrophysics Data System (ADS)

    Nikodem, Michal P.; Sergeant, Hendrik; Kaczmarek, Pawel; Abramski, Krzysztof M.

    2008-12-01

    In recent years we have observed growing interest in mode-locked fiber lasers. Development of erbium doped fiber (EDF) amplifiers and WDM technique made 3rd telecommunication window extremely interesting region for ultrafast optics. The main advantages of fiber lasers i.e. narrow linewidth and wide gain bandwidth make them very attractive sources in various applications. In this paper we present an actively mode-locked erbium doped fiber ring laser. Modelocking is obtained using an acousto-optic modulator (AOM) coupled into the laser cavity. The impact of different parameters (e.g. light polarization, modulation frequency) is investigated. We study mechanisms of controlling the wavelength of the laser.

  13. Acousto-optic parallel read/write head for optical disk data storage.

    PubMed

    McLeod, Robert R; Walter, Sarah K

    2006-09-20

    Parallel read and write of optical disks has traditionally used a static grating for read or a linear array of independent lasers for read and write. Depending on the implementation, these systems suffer from coherent cross talk, excessive space between spots, and an inability to independently track. We show that a dynamic acousto-optic grating can generate multiple parallel read/write spots on the disk, each of which can be independently modulated and tracked and all of which are incoherent in less that a bit period. The resulting disk pickup can potentially reach gigabit per second transfer rates with only a modest increase in the drive complexity.

  14. Acousto-optic parallel read/write head for optical disk data storage

    NASA Astrophysics Data System (ADS)

    McLeod, Robert R.; Walter, Sarah K.

    2006-09-01

    Parallel read and write of optical disks has traditionally used a static grating for read or a linear array of independent lasers for read and write. Depending on the implementation, these systems suffer from coherent cross talk, excessive space between spots, and an inability to independently track. We show that a dynamic acousto-optic grating can generate multiple parallel read/write spots on the disk, each of which can be independently modulated and tracked and all of which are incoherent in less that a bit period. The resulting disk pickup can potentially reach gigabit per second transfer rates with only a modest increase in the drive complexity.

  15. Acousto-optical interaction in fishbone-like one-dimensional phoxonic crystal nanobeam

    NASA Astrophysics Data System (ADS)

    Hsiao, Fu-Li; Hsieh, Hao-Yu; Hsieh, Cheng-Yi; Chiu, Chien-Chang

    2014-09-01

    We demonstrate the simultaneous existence of slow photonic and phononic modes in a fishbone-like one-dimensional phoxonic crystal nanobeam. The phoxonic crystal nanobeam, which is formed by a suspended fishbone-like silicon waveguide, is not only an optical one-dimensional grating waveguide but also a waveguide with acoustic local resonance. Because of the slow group velocities, the acousto-optical interactions are significantly enhanced. The operating optical wavelength and acoustic frequency can be manipulated individually by varying certain geometric parameters of the nanobeam.

  16. Anisotropy of an acousto-optic figure of merit for NaBi(MoO4)2 crystals.

    PubMed

    Mys, Oksana; Krupych, Oleh; Vlokh, Rostyslav

    2016-10-01

    We develop a technique for analyzing the anisotropy of an acousto-optic figure of merit for crystals belonging to tetragonal symmetry groups 4/m, 4, and 4¯. The technique is based on phenomenological relations that describe anisotropies of the effective elasto-optic coefficients and the acoustic wave velocities. Our approach is verified on the example of NaBi(MoO4)2 crystals for all possible types and geometries of acousto-optic interactions. We list and characterize the acousto-optic interaction geometries at which the maximal acousto-optic figures of merit are reached for both isotropic and anisotropic interaction types. Finally, we show that the acousto-optic efficiency of NaBi(MoO4)2 originates mainly from large elasto-optic coefficients.

  17. Spin-to-orbit conversion at acousto-optic diffraction of light: conservation of optical angular momentum.

    PubMed

    Skab, Ihor; Vlokh, Rostyslav

    2012-04-01

    Acousto-optic diffraction of light in optically active cubic crystals is analyzed from the viewpoint of conservation of optical angular momentum. It is shown that the availability of angular momentum in the diffracted optical beam can be necessarily inferred from the requirements of angular momentum conservation law. As follows from our analysis, a circularly polarized diffracted wave should bear an orbital angular momentum. The efficiency of the spin-to-orbit momentum conversion is governed by the efficiency of acousto-optic diffraction.

  18. Acousto-optically tuned isotopic CO{sub 2} lasers for long-range differential absorption LIDAR

    SciTech Connect

    Thompson, D.C.; Busch, G.E.; Hewitt, C.J.; Remelius, D.K.; Shimada, Tsutomu; Strauss, C.E.M.; Wilson, C.W.

    1998-12-01

    The authors are developing 2--100 kHz repetition rate CO{sub 2} lasers with milliJoule pulse energies, rapid acousto-optic tuning and isotopic gas mixes, for Differential Absorption LIDAR (DIAL) applications. The authors explain the tuning method, which uses a pair of acousto-optic modulators and is capable of random access to CO{sub 2} laser lines at rates of 100 kHz or more. The laser system is also described, and they report on performance with both normal and isotopic gas mixes.

  19. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator.

    PubMed

    Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z

    2012-09-01

    We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability.

  20. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator

    PubMed Central

    Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben

    2013-01-01

    We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability. PMID:24307756

  1. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV.

  2. AIMS: Acousto-optic imaging spectrometer for spectral mapping of solid surfaces

    NASA Astrophysics Data System (ADS)

    Glenar, David A.; Blaney, Diana L.; Hillman, John J.

    2003-01-01

    A compact, two-channel acousto-optic tunable filter (AOTF) camera is being built at GSFC as a candidate payload instrument for future Mars landers or small-body rendezvous missions. This effort is supported by the NASA Mars Instrument Development Program (MIDP), Office of Space Science Advanced Technologies and Mission Studies. Acousto-optic Imaging Spectrometer (AIMS) is electronically programmable and provides arbitrary spatial and spectral selection from 0.48 to 2.4 μm. The geometric throughput of AOTF's are well matched to the requirements for lander mounted cameras since (I) they can be made very compact, (II) "slow" (f/14-f/18) optics required for large depth-of-field fall well within the angular aperture limit of AOTF's, and (III) they operate at low ambient temperatures. A breadboard of the AIMS short-wavelength channel is now being used for spectral imaging of high-interest Mars analog materials (iron oxides, carbonates, sulfates and sedimentary basalts) as part of the initial instrument validation exercises.

  3. Designing the acousto-optical cell for optical spectrometer incorporated into the Guillermo Haro Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes Bernabe, Adan Omar; Chavushyan, Vahram

    2013-09-01

    Optical spectrometer of the Guillermo Haro astrophysical observatory (Mexico) exploits mechanically removable traditional static diffraction gratings as dispersive elements. There is a set of the static gratings with the slit-density 50 - 600 lines/mm and optical apertures 9 cm x 9 cm that provide the first order spectral resolution from 9.6 to 0.8 A/pixel, respectively, in the range 400 - 1000 nm. However, the needed mechanical manipulations, namely, replacing the static diffraction gratings with various resolutions and following recalibration of spectrometer within studying even the same object are inconvenient and lead to losing rather expensive observation time. We suggest exploiting an acousto-optical cell, i.e. the dynamic diffraction grating tunable electronically, as dispersive element in that spectrometer. Involving the acousto-optical technique, which can potentially provide electronic control over the spectral resolution and the range of observations, leads to possible eliminating the above-mentioned demerits and to improving the efficiency of analysis.

  4. Radiation effects on optical components of a laser radar sensor designed for remote metrology in ITER

    SciTech Connect

    Menon, M.M.; Grann, E.B.; Slotwinski, A.

    1997-09-01

    A frequency modulated laser radar is being developed for in-vessel metrology and viewing of plasma-facing surfaces. Some optical components of this sensor must withstand intense gamma radiation (3 {times} 10{sup 6} rad/h) during operation. The authors have tested the effect of radiation on a silica core polarization maintaining optical fiber and on TeO{sub 2} crystals at doses up to {approximately} 10{sup 9} rad. Additional tests are planned for evaluating the performance of a complete acousto-optic (AO) scanning device. The progress made in these tests is also described.

  5. LIGHT MODULATION: Wide-aperture diffraction of unpolarised radiation in a system of two acousto-optic filters

    NASA Astrophysics Data System (ADS)

    Magdich, L. N.; Yushkov, K. B.; Voloshinov, V. B.

    2009-04-01

    Light diffraction is studied in two tandem acousto-optic cells filtering unpolarised radiation with a wide angular spectrum. It is shown that the side lobes of the ultrasonic radiation pattern of a piezoelectric transducer produce side diffraction intensity maxima at the output of the system consisting of two filters. Diffraction in paratellurite filters is studied experimentally at 1.06 μm.

  6. Acousto-optic Imaging System for In-situ Measurement of the High Temperature Distribution in Micron-size Specimens

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander S.; Zinin, Pavel V.; Shurygin, Alexander V.

    We developed a unique acousto-optic imaging system for in-situ measurement of high temperature distribution on micron-size specimens. The system was designed to measure temperature distribution inside minerals and functional material phases subjected to high pressure and high temperatures in a diamond anvil cell (DAC) heated by a high powered laser.

  7. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.

    2016-01-01

    We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.

  8. Quasi-4D laser diagnostics using an acousto-optic deflector scanning system

    NASA Astrophysics Data System (ADS)

    Li, Tao; Pareja, Jhon; Becker, Lukas; Heddrich, Wolfgang; Dreizler, Andreas; Böhm, Benjamin

    2017-03-01

    In this paper, a novel scanning system for laser diagnostics was developed and characterized. The system is based on the acousto-optic deflection of a high-speed pulsed laser. Results showed that quasi-volumetric laser illumination with high precision and accuracy can be achieved with a simplified and flexible optical setup. The feasibility of the method for performing high-speed quasi-4D laser diagnostics was demonstrated by the tomographic visualization of a lifted turbulent jet flame using Mie-scattering and multi-plane particle image velocimetry measurements of a turbulent non-reactive mixing case. Three-dimensional flame and flow structures can be detected and tracked with this new scanning system.

  9. Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation.

    PubMed

    Almehmadi, Fares S; Chatterjee, Monish R

    2015-01-10

    Electrocardiography (ECG) signals are used for both medical purposes and identifying individuals. It is often necessary to encrypt this highly sensitive information before it is transmitted over any channel. A closed-loop acousto-optic hybrid device acting as a chaotic modulator is applied to ECG signals to achieve this encryption. Recently improved modeling of this approach using profiled optical beams has shown it to be very sensitive to key parameters that characterize the encryption and decryption process, exhibiting its potential for secure transmission of analog and digital signals. Here the encryption and decryption is demonstrated for ECG signals, both analog and digital versions, illustrating strong encryption without significant distortion. Performance analysis pertinent to both analog and digital transmission of the ECG waveform is also carried out using output signal-to-noise, signal-to-distortion, and bit-error-rate measures relative to the key parameters and presence of channel noise in the system.

  10. Acousto-Optic Modulation and Optoacoustic Gating in Piezo-Optomechanical Circuits

    NASA Astrophysics Data System (ADS)

    Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik

    2017-02-01

    Acoustic-wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (rf) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4-GHz rf waves to 194-THz (1550 nm) optical waves, through coupling to propagating and localized 2.4-GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the rf carrier are mapped to the optical field. We also show optoacoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed rf and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modeled through the coupled mode equations of cavity optomechanics.

  11. Stabilisation of a fibre frequency synthesiser using acousto-optical and electro-optical modulators

    NASA Astrophysics Data System (ADS)

    Koliada, N. A.; Nyushkov, B. N.; Pivtsov, V. S.; Dychkov, A. S.; Farnosov, S. A.; Denisov, V. I.; Bagayev, S. N.

    2016-12-01

    A fibre-optic frequency synthesiser is developed that is stabilised to the optical frequency standard based on molecular iodine ({\\text{Nd : YAG/I}}2). The possibility of transferring stability of the optical frequency standard to other optical frequencies in the IR range 1 - 2 \\unicode{956}{\\text{m}} and to the RF range by using synthesiser phase-locked loops (PLLs) with acousto-optical and electro-optical modulators is experimentally demonstrated. The additive instability introduced into the optical frequency comb of the synthesiser (which arises due to PLL residual random errors) is several orders less than the intrinsic instability of the reference optical frequency standard employed (i.e., is noticeably less than 1 × 10-13 for 1 {\\text{s}} and 5 × 10-15 for 1000 {\\text{s}}).

  12. Efficient double-filtering with a single acousto-optic tunable filter.

    PubMed

    You, Jang-Woo; Ahn, Jeongho; Kim, Soohyun; Kim, Daesuk

    2008-12-22

    We describe an efficient double-filtering method that uses a single acousto-optic tunable filter (AOTF) to improve the spectral resolution and intrinsic sidelobes for the spectral domain analysis systems. Double filtering with a single AOTF is realized by applying a unique feedback scheme based on the fact that incident light can be diffracted into two orthogonally polarized beams of light by an AOTF. Our theoretical explanation attempts to address and satisfy the main prerequisite for the proposed idea. The experimental results confirm that the proposed method achieves a 20% to 30% improvement in spectral resolution and 10 dB suppression of sidelobes with minimized light loss for the extraordinary incident light. We believe that the results of using an AOTF are comparable to the results achieved with two AOTFs in tandem.

  13. Actively mode-locked fiber ring laser by intermodal acousto-optic modulation.

    PubMed

    Bello-Jiménez, M; Cuadrado-Laborde, C; Sáez-Rodríguez, D; Diez, A; Cruz, J L; Andrés, M V

    2010-11-15

    We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187 GHz), easy tunability in the optical wavelength, and low insertion losses (0.7 dB). The narrowest optical pulses obtained were of 95 ps time width, 21 mW peak power, repetition rate of 4.758 MHz, and 110 mW of pump power.

  14. Mode locking of an all-fiber laser by acousto-optic superlattice modulation.

    PubMed

    Cuadrado-Laborde, C; Diez, A; Delgado-Pinar, M; Cruz, J L; Andrés, M V

    2009-04-01

    Active mode locking of an erbium-doped all-fiber laser with a Bragg-grating-based acousto-optic modulator is demonstrated. The fiber Bragg grating was acoustically modulated by a standing longitudinal elastic wave, which periodically modulates the sidebands at twice the acoustic frequency. The laser has a Fabry-Perot configuration in which cavity loss modulation is achieved by tuning the output fiber Bragg grating to one of the acoustically induced sidebands. Optical pulses at 9 MHz repetition rate, 120 mW peak power, and 780 ps temporal width were obtained. The output results to be stable and has a timing jitter below 40 ps. The measured linewidth, 2.8 pm, demonstrates that these pulses are transform limited.

  15. Spatial and temporal thermal analysis of acousto-optic deflectors using finite element analysis model.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun; Huang, Zhifeng; Zhou, Huaichun

    2012-07-01

    Thermal effects greatly influence the optical properties of the acousto-optic deflectors (AODs). Thermal analysis plays an important role in modern AOD design. However, the lack of an effective method of analysis limits the prediction in the thermal performance. In this paper, we propose a finite element analysis model to analyze the thermal effects of a TeO(2)-based AOD. Both transducer heating and acoustic absorption are considered as thermal sources. The anisotropy of sound propagation is taken into account for determining the acoustic absorption. Based on this model, a transient thermal analysis is employed using ANSYS software. The spatial temperature distributions in the crystal and the temperature changes over time are acquired. The simulation results are validated by experimental results. The effect of heat source and heat convection on temperature distribution is discussed. This numerical model and analytical method of thermal analysis would be helpful in the thermal design and practical applications of AODs.

  16. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    SciTech Connect

    Lyakh, A. Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Patel, C. Kumar N.

    2015-04-06

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm{sup −1}. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less than 20 μs.

  17. Ultrasound sensing using the acousto-optic effect in polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Trushkevych, O.; Eriksson, T. J. R.; Ramadas, S. N.; Dixon, S.; Edwards, R. S.

    2015-08-01

    Acousto-optic effects are demonstrated in polymer dispersed liquid crystal (PDLC) films, showing promise for applications in ultrasound sensing. The PDLC films are used to image two displacement profiles of air-coupled flexural transducers' resonant modes at 295 kHz and 730 kHz. Results are confirmed using laser vibrometry. The regions on the transducers with the largest displacements are clearly imaged by the PDLC films, with the resolution agreeing well with laser vibrometry scanning. Imaging takes significantly less time than a scanning system (switching time of a few seconds, as compared to 8 h for laser vibrometry). Heating effects are carefully monitored using thermal imaging and are found not to be the main cause of PDLC clearing.

  18. Acousto-optic liquid-crystal analog beam former for phased-array antennas.

    PubMed

    Riza, N A

    1994-06-10

    A compact phased-array antenna acousto-optic beam former with element-level analog phase (0-2π) and amplitude control using nematic-liquid-crystal display-type technology is experimentally demonstrated. Measurements indicate > 6-bit phase control and 52.6 dB of amplitude-attenuation control. High-quality error calibration and antenna sidelobe-level control is possible with this low-control-power analog beam former. Optical system options using rf Bragg cells or wideband Bragg cells are discussed, with the rf design being the current preferred approach. Transmit-receive beam forming based on frequency upconversion-downconversion by electronic mixing is introduced for the rf Bragg-cell beam former, and comparisons with digital beam forming are highlighted. A millimeter-wave signal generation and control optical architecture is described.

  19. Acousto-optic control of the LPG spectrum for sensing applications

    NASA Astrophysics Data System (ADS)

    Oliveira, Roberson A.; Possetti, Gustavo R. C.; Marques, Carlos A. F.; Neves, Paulo T., Jr.; Bavastri, Carlos A.; Kamikawachi, Ricardo C.; Fabris, José L.; Muller, Marcia; Nogueira, Rogério N.; Canning, John; Pohl, Alexandre A. P.

    2011-05-01

    Experimental and numerical demonstration of the acousto-optic effect applied in long period grating by means of flexural waves is presented. The interaction between acoustic and optical waves is modeled with help of the method of assumed modes, which delivers the strain field inside the grating and the transfer matrix method, which, given the strain field as input, calculate the resultant grating spectrum. The experimental and theoretical results are found to be in good agreement. The main effect of the bends in the grating is the break of degeneracy of the circular cladding modes, leading the attenuation band to be changed. Among all the applications of this methodology, it is important to mention the possibility of use as a tunable filter, laser cavity gain controller, switching device and transducer in sensing systems.

  20. Optical Multiplications With Single Element 2-D Acousto-Optic Laser Beam Deflector

    NASA Astrophysics Data System (ADS)

    Soos, Jolanta I.; Leepa, Douglas C.; Rosemeier, Ronald G.

    1989-05-01

    With the current need for developing very fast computers in comparison to conventional digital chip based systems, the future for optical based signal processing is very bright. Attention has turned to a different application of optics utilizing mathematical operations, in which case operations are numerical, sometimes discrete, and often algebraic in nature. Interest has been so vigorous that many view it as a small revolution in optics, whereby optical signal processing is beginning to encompass what is frequently described as optical computing. The term is fully intended to imply a close comparison with the operations performed by scientific digital canputers. This paper will describe the applications of single element 2-D acousto-optic deflectors for optical multiplication systems.

  1. Spatial mapping of transient atomic concentrations using acousto-optic deflection

    SciTech Connect

    Huie, C.W.; Yeung, E.S.

    1986-08-01

    We report a new imaging system for obtaining spatially and temporally resolved atomic absorption profiles for transient events. This is based on an acousto-optic beam deflector that scans the probe laser beam in one dimension repeatedly across the spatial region of interest. Scan rates of 10 ..mu..s durations essentially freeze the absorbing species in time to allow a spatial resolution of 0.06 cm over a 1.2 cm length. With the use of 2K of buffer memory and a digitization interval of 200 nm (12 bits), the time evolution can be followed up to a total of 400 ..mu..s. The capabilities are demonstrated in the study of atom formation in a laser generated plume for a sodium tungstate surface.

  2. Gain-switched Ho:YAG ceramic laser with an acousto-optic modulator

    NASA Astrophysics Data System (ADS)

    Zhang, Jianing; Shen, Deyuan; Zhang, Jian; Tang, Dingyuan; Chen, Hao

    2016-04-01

    We demonstrate a gain-switched Ho:YAG ceramic laser in-band pumped by an acousto-optically modulated thulium fiber laser at ˜1908 nm. The laser pulse repetition rate could be tuned continuously from 60 to 100 kHz with the pulse energy kept constant for a certain pump power level. The shortest pulse width of 204 ns and a maximum peak power of 75 W have been obtained at 60 kHz under the maximum pump power level of 11 W. A maximum average output power of 1.4 W has been achieved with a pulse repetition rate of 100 kHz, corresponding to a slope efficiency of 57% with respect to the incident pump power. The prospects for further improvement in laser performance are discussed.

  3. Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter.

    PubMed

    Gupta, Neelam; Voloshinov, Vitaly

    2004-05-01

    Hyperspectral imaging in the ultraviolet to visible spectral region has applications in astronomy, biology, chemistry, medical sciences, etc. A novel electronically tunable, random-wavelength access, compact, no-moving-parts, vibration-insensitive, computer-controlled hyperspectral imager operating from 220 to 480 nm with a spectral resolution of 160 cm(-1), e.g., 2 nm at 350 nm, has been developed by use of a KDP acousto-optic tunable filter (AOTF) with an enhanced CCD camera and a pair of crossed calcite Glan-Taylor polarizing prisms. The linear and angular apertures of the AOTF are 1.5 x 1.5 cm2 and 1.2 degrees, respectively. Imager setup and spectral imaging results as well as analyses and discussion of various factors affecting image quality are presented.

  4. Acousto-optical post-processor time-integrating correlator calibration updates

    NASA Astrophysics Data System (ADS)

    Baker, P.

    1992-02-01

    The acousto-optical signal processing facility and time integrating correlator system has been updated to allow proper handling of multiple peaks and to increase the readout rate. These modifications are described. In the supervisor task, a phase shift dialog box has been added to the phase shift menu items. This dialog box allows the operator to limit the area examined while searching for peaks or to specify the peak location directly. An amplitude offset calibration dialog box has been added to the amplitude offset menu item. This dialog box allows the operator to limit the area examined during the amplitude offset calibration, which is designed to perform calculations on a portion of the correlogram that does not contain a peak. In addition, the interface between the photodetector and personal computer has been modified to double the maximum pixel clock rate to 10 MHz.

  5. Dynamic acousto-optic control of a strongly coupled photonic molecule

    PubMed Central

    Kapfinger, Stephan; Reichert, Thorsten; Lichtmannecker, Stefan; Müller, Kai; Finley, Jonathan J.; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J.

    2015-01-01

    Strongly confined photonic modes can couple to quantum emitters and mechanical excitations. To harness the full potential in quantum photonic circuits, interactions between different constituents have to be precisely and dynamically controlled. Here, a prototypical coupled element, a photonic molecule defined in a photonic crystal membrane, is controlled by a radio frequency surface acoustic wave. The sound wave is tailored to deliberately switch on and off the bond of the photonic molecule on sub-nanosecond timescales. In time-resolved experiments, the acousto-optically controllable coupling is directly observed as clear anticrossings between the two nanophotonic modes. The coupling strength is determined directly from the experimental data. Both the time dependence of the tuning and the inter-cavity coupling strength are found to be in excellent agreement with numerical calculations. The demonstrated mechanical technique can be directly applied for dynamic quantum gate operations in state-of-the-art-coupled nanophotonic, quantum cavity electrodynamic and optomechanical systems. PMID:26436203

  6. Prolonged acousto-optic interaction with Lamb waves in crystalline plates

    PubMed

    Parygin; Vershoubskiy; Mozhaev; Weihnacht

    2000-03-01

    The propagation and acousto-optic interaction of Lamb modes in an anisotropic plate of tellurium dioxide (TeO2) are studied numerically and analytically. In the case of a Y-cut X-propagating TeO2 plate, the very high elastic anisotropy of the crystal greatly modifies the dispersion curves, giving rise to their multiple oscillations. The existence ranges of backward Lamb modes increase with the mode order contrary to the case of isotropic plates. The quasi-collinear light scattering by Lamb waves is considered. Owing to the structure of Lamb wave field, a simultaneous light diffraction at two different optical frequencies can take place while Lamb waves are excited only at the single frequency. It is demonstrated with the Z-cut (110)-propagating plate that a small change in the acoustic frequency can result in a significant shift in the frequency of the scattered light.

  7. Time and space integrating acousto-optic folded spectrum processing for SETI

    NASA Technical Reports Server (NTRS)

    Wagner, K.; Psaltis, D.

    1986-01-01

    Time and space integrating folded spectrum techniques utilizing acousto-optic devices (AOD) as 1-D input transducers are investigated for a potential application as wideband, high resolution, large processing gain spectrum analyzers in the search for extra-terrestrial intelligence (SETI) program. The space integrating Fourier transform performed by a lens channels the coarse spectral components diffracted from an AOD onto an array of time integrating narrowband fine resolution spectrum analyzers. The pulsing action of a laser diode samples the interferometrically detected output, aliasing the fine resolution components to baseband, as required for the subsequent charge coupled devices (CCD) processing. The raster scan mechanism incorporated into the readout of the CCD detector array is used to unfold the 2-D transform, reproducing the desired high resolution Fourier transform of the input signal.

  8. Self-acousto-optic modulation and orthogonality violation in the transverse modes of a broad-area Nd-doped yttrium-aluminum-garnet single-shot laser

    SciTech Connect

    Soler Rus, M. Odin; Cabrera-Granado, E.; Guerra Perez, J. M.

    2011-05-15

    Self-acousto-optic Raman-Nath modulation and nonorthogonal transversal modes are found in a broad-area Nd:YAG single-shot laser. The device is free from the thermal-induced effects previously related to orthogonality violation and the acousto-optic modulation comes from a shock wave produced by the discharge of the flash lamps that optically pump the laser. The experimental findings are reproduced by a general model of a class B laser.

  9. Acousto-optical pulsar processor frequency scale calibration for increase accuracy measurement of time of arrival radioemission impulses

    NASA Astrophysics Data System (ADS)

    Esepkina, Nelli A.; Lavrov, Aleksandr P.; Molodyakov, Sergey A.

    2006-04-01

    The acousto-optical processor (AOP) is based on an acousto-optical spectrum analyzer with a CCD photodetector operating in special pipeline mode (shift-and-add mode), which allows spectral components of the input signal to be added with controlled time delay immediately in the CCD photodetector. The proposed AOP was successfully used on radiotelescope RT-64 (Kalyazin Radio Astronomy Observatory FIAN) for the observation of pulsars at 1 .4 GHz in 45 MHz bandwidth. The AOP frequency scale calibration allows increasing accuracy of measurement of time of arrival radioemission pulses. Experimental results on investigation of AOP work on RT-64 and radioemission pulses profiles for pulsar PSR 1937+21 are submitted.

  10. Algorithm of Shaping Multiple-beam Braggs Acousto-optic Diffraction Laser Field Into 1D and 2D Patterns

    NASA Astrophysics Data System (ADS)

    Zakharchenko, S.; Baturin, A.

    2015-09-01

    Algorithm of solving a direct problem of acousto-optic interaction between laser emission and acoustic signal consisting of a set of equidistant frequency components is proposed. An infinite system of coupled wave differential equations is reduced to eigenvalue problem. The contribution of the higher rediffraction orders is analyzed separately. Inverse problem of finding an optimal set of equidistant frequency components of a driving acoustic signal to form the objective diffraction pattern is also considered and a few optimization approaches are analyzed. A naïve heuristic method of splitting 2D pattern into subframes, each suitable for simultaneous projection by two acousto-optical deflectors driven by multifrequency composite signal, is developed.

  11. Experimental analysis of distributed pump absorption and refractive index changes in Yb-doped fibers using acousto-optic interaction.

    PubMed

    Alcusa-Sáez, E P; Díez, A; Andrés, M V

    2015-03-01

    In-fiber acousto-optic interaction is used to characterize the refractive index changes at the C band in a single-mode ytterbium-doped optical fiber under 980 nm pumping. The transmission notch created by the acoustic-induced coupling between the core mode and a cladding mode shifts to longer wavelengths when the pump is delivered to the fiber. The electronic contribution to the refractive index change is quantified from the wavelength shift. Using a time-resolved acousto-optic method, we investigate the distribution of pump absorption, and the resulting refractive index change profile, along sections of ytterbium-doped fiber exceeding 1 m long under different pump power levels.

  12. An acousto-optical method for registration of erythrocytes' agglutination reaction—sera color influence on the resolving power

    NASA Astrophysics Data System (ADS)

    Doubrovski, V. A.; Medvedeva, M. F.; Torbin, S. O.

    2016-01-01

    The absorption spectra of agglutinating sera were used to determine blood groups. It was shown experimentally that the sera color significantly affects the resolving power of the acousto-optical method of blood typing. In order to increase the resolving power of the method and produce an invariance of the method for sera color, we suggested introducing a probing light beam individually for different sera. The proposed technique not only improves the resolving power of the method, but also reduces the risk of false interpretation of the experimental results and, hence, error in determining the blood group of the sample. The latter is especially important for the typing of blood samples with weak agglutination of erythrocytes. This study can be used in the development of an instrument for instrumental human blood group typing based on the acousto-optical method.

  13. Analytical study of acousto/optical holography-interfacing methods for acoustical and optical holography NDT research

    NASA Technical Reports Server (NTRS)

    El-Sum, H. M. A.

    1976-01-01

    The international status of the art of acousto optical imaging techniques adaptable to nondestructive testing and, interfacing methods for acoustical and optical holography in nondestructive testing research are studied. Evaluation of 20 different techniques encompassed investigation of varieties of detectors and detection schemes, all of which are described and summarized. Related investigation is reported in an Appendix. Important remarks on image quality, factors to be considered in designing a particular system, and conclusions and recommendations are presented. Three bibliographies are included.

  14. Calomel-made crystalline acousto-optical cell designed for an advanced regime of noncollinear two-phonon light scattering

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes, Adan Omar

    2016-03-01

    We study the potentials of a wide-aperture crystalline calomel-made acousto-optical cell. Characterizing this cell is nontrivial due to the chosen regime based on an advanced noncollinear two-phonon light scattering. Recently revealed important features of this phenomenon are essentially exploited in the cell and are investigated in more detail. These features can be observed more easily and simply in tetragonal crystals, e.g., calomel, exhibiting specific acousto-optical nonlinearity caused by the acoustic waves of finite amplitude. This parametric nonlinearity manifests itself at low acoustic powers in calomel possessing linear acoustic attenuation. The formerly identified additional degree of freedom, unique to this regime, is exploited for designing the cell with an eye to doubling the resolution due to two-phonon processes. We clarify the role of varying the central acoustic frequency and acoustic attenuation using that degree of freedom. Then the efficiency of calomel is exploited to expand the cell's bandwidth with a cost of its efficiency. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative techniques of optical spectrum analysis with the improved resolution. The achieved spectral resolution of 0.205 Å at 405 nm and the resolving power 19,800 are the best for acousto-optical spectrometers dedicated to space or airborne operations to date as far as we know.

  15. Pre-Juno Optical Analysis of Jupiter's Atmosphere with the NMSU Acousto-optic Imaging Camera

    NASA Astrophysics Data System (ADS)

    Dahl, Emma; Chanover, Nancy J.; Voelz, David; Kuehn, David M.; Strycker, Paul D.

    2016-10-01

    Jupiter's upper atmosphere is a highly dynamic system in which clouds and storms change color, shape, and size on variable timescales. The exact mechanism by which the deep atmosphere affects these changes in the uppermost cloud deck is still unknown. With Juno's arrival at Jupiter in July 2016, the thermal radiation from the deep atmosphere will be measurable with the spacecraft's Microwave Radiometer. By taking detailed optical measurements of Jupiter's uppermost cloud deck in conjunction with Juno's microwave observations, we can provide a context in which to better understand these observations. This data will also provide a complement to the near-IR sensitivity of the Jovian InfraRed Auroral Mapper and will expand on the limited spectral coverage of JunoCam. Ultimately, we can utilize the two complementary datasets in order to thoroughly characterize Jupiter's atmosphere in terms of its vertical cloud structure, color distribution, and dynamical state throughout the Juno era. In order to obtain high spectral resolution images of Jupiter's atmosphere in the optical regime, we use the New Mexico State University Acousto-optic Imaging Camera (NAIC). NAIC contains an acousto-optic tunable filter, which allows us to take hyperspectral image cubes of Jupiter from 450-950 nm at an average spectral resolution (λ/dλ) of 242. We present an analysis of our pre-Juno dataset obtained with NAIC at the Apache Point Observatory 3.5-m telescope during the night of March 28, 2016. Under primarily photometric conditions, we obtained 6 hyperspectral image cubes of Jupiter over the course of the night, totaling approximately 2,960 images. From these data we derive low-resolution optical spectra of the Great Red Spot and a representative belt and zone to compare with previous work and laboratory measurements of candidate chromophore materials. Future work will focus on radiative transfer modeling to elucidate the Jovian cloud structure during the Juno era. This work was supported

  16. Single Element 2-DIMENSIONAL Acousto-Optic Deflectors Design, Fabrication and Implementation for Digital Optical Computing

    NASA Astrophysics Data System (ADS)

    Rosemeier, Jolanta Iwona

    1992-09-01

    With the need to develop very fast computers compared to the conventional digital chip based systems, the future is very bright for optical based signal processing. Attention has turned to a different application of optics utilizing mathematical operations, in which case operations are numerical, sometimes discrete, and often algebraic in nature. Interest has been so vigorous that many view it as a small revolution in optics whereby optical signal processing is beginning to encompass what many frequently describe as optical computing. The term is fully intended to imply close comparison with the operations performed by scientific digital computers. Most present computer intensive problem solving processors rely on a common set of linear equations found in numerical matrix algebra. Recently, considerable research focused on the use of systolic array, which can operate at high speeds with great efficiency. This approach addresses the acousto-optic digital and analog arrays utilizing three dimensional optical interconnect technology. In part I of this dissertation the first single element 2-dimensional (2-D) acousto-optic deflector was designed, fabricated and incorporated into an optical 3 x 3 vector-vector or matrix-matrix multiplier system. This single element deflector is used as a outer-product device. The input vectors are addressed by electronic means and the outer product matrix is displayed as a 2-D array of optical (laser) pixels. In part II of this work a multichannel single element 2-D deflector was designed, fabricated and implemented into a Programmable Logic Array (PLA) optical computing system. This system can be used for: word equality detection, free space optical interconnections, half adder optical system implementation. The PLA system described in this dissertation has capability of word equality detection. The 2-D multichannel deflector that was designed and fabricated is capable of comparing 16 x 16 words every 316 nanoseconds. Each word is 8

  17. Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2006-01-01

    In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.

  18. Acousto-optic tunable filter for dispersion characterization of time-domain optical coherence tomography systems.

    PubMed

    Chin, Catherine; Toadere, Florin; Feuchter, Thomas; Leick, Lasse; Moselund, Peter; Bradu, Adrian; Podoleanu, Adrian

    2016-07-20

    A broadband supercontinuum light source with an acousto-optic tunable filter (AOTF) are used to characterize dispersion in two time-domain OCT systems, at 850 and 1300 nm. The filter is designed to sweep across two spectral ranges, which are restricted here from 800 to 900 nm and from 1200 to 1500 nm, respectively. Dispersion compensation for 850 nm was achieved with a spectral delay line. Dispersion compensation for 1300 nm was achieved using BK 7 rod glasses in the reference arm. The AOTF allows evaluation of dispersion in under as well as overcompensated systems. The AOTF method is based on wavelength dependence of the optical path difference corresponding to the maximum strength of the interference signal recorded using a mirror as object. Comparison is made between the AOTF method and the more usual method based on measurement of the full width at half-maximum of the autocorrelation peak. This comparison shows that the AOTF method is more accurate in terms of evaluation of the dispersion left uncompensated after each adjustment. The AOTF method additionally provides information on the direction of dispersion compensation.

  19. A Lyman-alpha tunable acousto-optic filter for detecting superthermal flare protons

    NASA Technical Reports Server (NTRS)

    Mickey, Donald L.

    1994-01-01

    The goal of this project was to develop and characterize a narrow-band, tunable filter for use near the Lyman-alpha line of hydrogen at 121.6 nm. Such a filter could form the critical component of an instrument to observe asymmetries in the solar Lyman-alpha line, caused by energetic protons accelerated during the impulsive phase of solar flares. Characteristic charge-exchange nonthermal emission at Lyman alpha should be produced when sub-MeV protons are injected into the chromosphere, but no instrument suitable for their detection has been developed. Such an instrument would require a narrow-band (less than 0.01 nm) tunable filter with aperture and throughput consistent with imaging a solar active region at 0.1 second intervals. The development of acousto-optic tunable filters (AOTF) suitable for use as compact, simple tunable filters for astronomical work suggested an investigation into the use of an AOTF at Lyman-alpha.

  20. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection

    SciTech Connect

    Pořízka, Pavel; Kaiser, Jozef

    2014-07-15

    This contribution introduces a new type of setup for fast sample analysis using laser-induced breakdown spectroscopy (LIBS). The novel design combines a high repetition rate laser (up to 50 kHz) as excitation source and an acousto-optical modulator (AOM) as a fast switch for temporally gating the detection of the emitted light. The plasma radiation is led through the active medium of the AOM where it is diffracted on the transient ultrasonic Bragg grid. The diffracted radiation is detected by a compact Czerny-Turner spectrometer equipped with a CCD line detector. Utilizing the new combination of high repetition rate lasers and AOM gated detection, rapid measurements with total integration times of only 10 ms resulted in a limit of detection (LOD) of 0.13 wt.% for magnesium in aluminum alloys. This short integration time corresponds to 100 analyses/s. Temporal gating of LIP radiation results in improved LODs and consecutively higher sensitivity of the LIBS setup. Therefore, an AOM could be beneficially utilized to temporally detect plasmas induced by high repetition rate lasers. The AOM in combination with miniaturized Czerny-Turner spectrometers equipped with CCD line detectors and small footprint diode pumped solid state lasers results in temporally gateable compact LIBS setups.

  1. Theoretical calculation and experimental study of acousto-optically Q-switched CO2 laser.

    PubMed

    Xie, Jijang; Guo, Ruhai; Li, Dianjun; Zhang, Chuansheng; Yang, Guilong; Geng, Yumin

    2010-06-07

    Using resonator inserted with acousto-optically modulator, the experiments of the compacted CO(2) laser were performed with Q-switch. According to various factors that influenced the output of laser, the theoretical calculation of its main parameters was conducted by Q-switched pulsed laser rate equations. Based on the results, the technical route and approach were presented for optimization design of this laser. The measured peak power of this laser device was more than 4000W and pulsed width was 180ns which agreed well with the theoretical calculation. The range of repetition frequency could adjust from 1 Hz to 100 kHz. The theoretical analyzes and experimental results showed that the acoustic traveling time of ultrasonic field could not influence the pulse width of laser so that it did not require inserting optical lens in the cavity to reduce the diameter of beam. The acoustic traveling time only extended the establishingtime of laser pulse. The optimum working frequency of laser is about 1 kHz, which it matched with the radiation life time (1 ms) of CO(2) molecular upper energy level. When the frequency is above 1 kHz, the pulse width of laser increased with the frequency. The full band of wavelength tuning between 9.2 microm and 10.8 microm was obtained by grating selection one by one which the measured spectrum lines were over 30 in the condition of Q-switch.

  2. An acousto-optic tunable filter enhanced CO{sub 2} lidar atmospheric monitor

    SciTech Connect

    Taylor, L.H.; Suhre, D.R.; Mani, S.S.

    1996-12-31

    The atmospheric monitor conceptual design is based on a pulsed CO{sub 2} laser. The narrow laser lines provide high spectral selectivity in the 9-11 {mu}m region, within the 8-14 {mu}m ``fingerprint`` region where most large molecules have unique spectral absorption signatures. Laser power has been chosen so that topological objects, e.g., trees or buildings, as far as 4 km can be used as backreflectors, but the laser intensity is sufficiently low that the laser beam is eye-safe. Time-of-flight measurements give the distance to the topological reflector. The lidar system is augmented with an acousto-optic tunable filter (AOTF) which measures the thermal emission spectra from 3 to 14 {mu}m with a 3 cm{sup -1} passband. Sensitivity to narrow emission lines is enhanced by derivative spectroscopy in which the passband of the AOTF is dithered via the rf drive. Path-averaged concentrations are determined from the emission intensity and laser- determined range.

  3. Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Vila-Francés, Joan; Calpe-Maravilla, Javier; Muñoz-Mari, Jordi; Gómez-Chova, Luis; Amorós-López, Julia; Ribes-Gómez, Emilio; Durán-Bosch, Vicente

    2006-07-01

    This article presents a new imaging spectrometer called autonomous tunable filtering system. The instrument acquires sequential images at different spectral wavelengths in the visible and near infrared range of the electromagnetic spectrum. The spectral selection is performed by an acousto-optic tunable filter (AOTF), which is driven by a custom radio-frequency (rf) generator based on a direct digital synthesizer (DDS). The DDS allows a high flexibility in terms of acquisition speed and bandwidth selection. The rf power is dynamically controlled to drive the AOTF with the optimum value for each wavelength. The images are formed through a carefully designed optical layout and acquired with a high performance digital camera. The application software controls the instrument and acquires the raw spectral images from the camera. This software optionally corrects the image for the AOTF nonidealities, such as diffraction efficiency variations, spatial nonuniformity, and chromatic aberration, and generates a single multiband image file. Moreover, the software can calculate the reflectance or transmittance of the acquired images. The instrument has been calibrated to give precise and repetitive measurements and has been validated against a high performance point spectrometer. As a case example, the instrument has been successfully used for the mapping of chlorophyll content of plant leaves from their multispectral reflectance images.

  4. Tunable transportable spectroradiometer based on an acousto-optical tunable filter: Development and optical performance

    NASA Astrophysics Data System (ADS)

    Kozlova, O.; Sadouni, A.; Truong, D.; Briaudeau, S.; Himbert, M.

    2016-12-01

    We describe a high-performance, transportable, versatile spectroradiometer based on an acousto-optical tunable filter (AOTF). The instrument was developed for temperature metrology, namely, to determine the thermodynamic temperature of black bodies above the Ag freezing point (961.78 °C). Its main design feature is the attenuation of the diffraction side lobes (and, thus, out-of-band stray light) thanks to the use of a double-pass configuration. The radiofrequency tuning of the AOTF allows continuous, fine, and rapid wavelength control over a wide spectral range (650 nm-1000 nm). The instrument tunability can be easily calibrated with an Ar spectral lamp with reproducibility within 10 pm over one week. The instrument was characterised in terms of relative signal stability (few 10-4) and wavelength stability (1 pm) over several hours. The spectral responsivity of the instrument was calibrated with two complementary methods: tuning of the wavelength of the optical source or tuning the radiofrequency of the AOTF. Besides the application for thermodynamic temperature determination at the lowest uncertainty level, this instrument can also be used for multispectral non-contact thermometry of processed materials of non-grey and non-unitary emissivity (in the glass or metallurgical industries).

  5. Advanced fluorescence imaging endoscopy using an acousto-optic tuneable filter

    NASA Astrophysics Data System (ADS)

    Whelan, Maurice P.; Bouhifd, Mounir; Aprahamian, Marc

    2004-07-01

    Two novel prototype instruments for in vivo fluorescence-based medical diagnostics are described. The devices are based on an acousto-optic tuneable filter (AOTF) and can be easily attached to the eyepiece of most commercially available endoscopes. The instruments developed offer significant advantages over typical fixed-filter or filter-wheel fluorescence imaging systems in terms of flexibility, performance and diagnostic potential. Any filtering center-wavelength in the range from 450 to 700 nm can be rapidly selected either by random access or sequential tuning using simple commands delivered over a PC serial interface. In addition, both filtered and unfiltered light can be imaged to facilitate the direct association of fluorescence signals with specific anatomical sites. To demonstrate the system in vivo, a study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on rats. The aim was to detect extremely low-levels of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response. Results show clearly that the device is effective in diagnosing mild pancreatitis in rats without the necessity of administering PpIX promoting agents such as ALA. Planning of human clinical trials is currently underway to demonstrate its potential as a tool for non-invasive early diagnosis of gastroenterological diseases.

  6. The effect of scattering-medium parameters on signal magnitude under acousto-optic tomography

    NASA Astrophysics Data System (ADS)

    Zyuryukina, O. V.; Volkova, E. K.; Perchenko, M. I.; Solov'ev, A. P.

    2014-04-01

    We have experimentally studied the influence of scattering anisotropy parameter g of a medium on the magnitude of signal S (visualization parameter) at an ultrasonic frequency that is registered upon acoustooptic tomography. Aqueous solutions of mixtures of cream and skimmed milk with different ratios between them were used as scattering media. The optical properties of media (absorption coefficient μa and reduced scattering coefficient μ' S ) have been measured on a spectrophotometer (Perkin-Elmer Lambda 950 UV-VIS-NIR) using the inverse adding-doubling technique. As a result of the investigation, we have found that there is a certain correlation between the value of the scattering anisotropy parameter g of aqueous solutions of investigated mixtures and the percentage of the mixture in the aqueous solution, which ensures the required small value of extinction coefficient μ of the scattering medium. An increase in signal S has been revealed with increasing anisotropy parameter g of the medium at a invariable value of extinction coefficient μ. We have concluded that, to solve an inverse problem on the acousto-optic tomography, it is necessary to take into account possible changes in the g factor in scattering media, including biological ones.

  7. A RAPIDLY-TUNABLE ACOUSTO-OPTIC SPECTROMETER FOR A SPACE ENVIRONMENT

    SciTech Connect

    D. THOMPSON; C. HEWITT; C. WILSON

    2000-08-01

    As a complement to our work developing rapidly-tunable ({approximately}10-100 kHz) CO{sub 2} lasers for differential absorption lidar (DIAL) applications,l we have developed a rapidly-tunable spectrometer. A rapid spectral diagnostic is critical for a high speed DIAL system, since analysis of the return signals depends on knowing the spectral purity of the transmitted beam. The spectrometer developed for our lidar system is based on a double-passed large- (75 mm) aperture acousto-optic deflector, a grating, and a fast single-element room temperature mercury-cadmium-telluride detector. The spectrometer has a resolution of {approximately}0.5 cm{sup {minus}1}, a tuning range of 9.0-11.4 pm, a random-access tuning speed of greater than 80 kHz and a S/N ratio of greater than 100:1. We describe the design and performance of this device, as well as of future devices featuring improved resolution, higher speed and easier and more robust alignment. We will also briefly discuss the applications and limitations of the technique in a space environment.

  8. Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain.

    PubMed

    Dekemper, Emmanuel; Loodts, Nicolas; Van Opstal, Bert; Maes, Jeroen; Vanhellemont, Filip; Mateshvili, Nina; Franssens, Ghislain; Pieroux, Didier; Bingen, Christine; Robert, Charles; De Vos, Lieve; Aballea, Ludovic; Fussen, Didier

    2012-09-01

    We describe a new spectral imaging instrument using a TeO(2) acousto-optical tunable filter (AOTF) operating in the visible domain (450-900 nm). It allows for fast (~1 second), monochromatic (FWHM ranges from 0.6 nm at 450 nm to 3.5 nm at 800 nm) picture acquisition with good spatial resolution. This instrument was designed as a breadboard of the visible channel of a new satellite-borne atmospheric limb spectral imager, named the Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere (ALTIUS), that is currently being developed. We tested its remote sensing capabilities by observing the dense, turbulent plume exhausted by a waste incinerator stack at two wavelengths sensitive to NO(2). An average value of 6.0±0.4×10(17) molecules cm(-2) has been obtained for the NO(2) slant column density within the plume, close to the stack outlet. Although this result was obtained with a rather low accuracy, it demonstrates the potential of spectral imaging by using AOTFs in remote sensing.

  9. Post-Flight Test Results of Acousto-Optic Modulator Devices Subjected to Space Exposure

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark

    2014-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in a space environment for more than one and a half years included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator (AOM) devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.

  10. Wavelength-swept fiber laser based on acousto-optic tuning method

    NASA Astrophysics Data System (ADS)

    Chen, Ming-hui; Fan, Yun-ping; Zhang, Hao; Tao, Jian-feng; Zheng, Gang

    2016-10-01

    In this study, we have demonstrated a wavelength-swept fiber laser based on an acousto-optic tunable filter(AOTF) as a selective element and a semiconductor optical amplifier(SOA) as a gain medium in an internal fiber ring cavity. The light deriving from one port of the SOA goes through an optical isolator, the AOTF, a fiber coupler and a polarized controller successively, then it goes back to the other port of the SOA to form a ring cavity. The laser output is from another port of the fiber coupler. The laser made by this method is mainly used for swept-source optical coherence tomography(SS-OCT). The application of the SOA provides a sufficiently broad range and can ensure an increased axial resolution of SS-OCT. AOTF offers a wide tuning range, high switching speed and stable operation against vibration for the non-mechanical structure. The proposed wavelength-swept fiber laser ensures a high axial resolution of tomographic images and has a stable laser output. We have discussed the influence of the SOA injection current to the tuning range of the laser. In the SOA injection current of 280 mA, a continuous wavelength tuning range from 1295 to 1370 nm centered at a wavelength of 1330nm is obtained at the sweep rate of 1.06 kHz, and the power of the swept source was 1.14 mW. In addition, for quantitative characterization of the wavelength-swept performance with a AOTF, we have theoretically and experimentally analyzed the influence of the following controllable parameters: injection current, output power and sweeping frequency.

  11. Acousto-optical deflection-based laser beam scanning for fluorescence detection on multichannel electrophoretic microchips.

    PubMed

    Huang, Z; Munro, N; Hühmer, A F; Landers, J P

    1999-12-01

    Laser beam scanning driven by an acousto-optical deflector (AOD) is presented for multimicrochannel laser-induced fluorescence (LIF) detection during microchip-based electrophoresis. While fast laser beam scanning for LIF detection on capillary or microchannel arrays can been achieved with galvanometric scanning or a translating stage, it can also be accomplished by using acoustic waves to deflect the laser beam in a manner that is dependent on the acoustic frequency. AOD scanning differs from other approaches in that no moving parts are required, and the scan frequency is faster than conventional approaches. Using a digital/analog (D/A) converter to provide addressing voltages to a voltage/frequency converter, rapidly changing the frequency input to the AOD allows the laser beam to be addressed accurately on a microchip. With the ability to change the frequency on the nanosecond time scale, scanning rates as high as 30 Hz for Windows-based LabView programming are possible, with much faster scan rates achievable if a microprocessor-embedded system is utilized. In addition to spatial control, temporal control is easily attainable via raster scanning or random addressing, allowing for the scanning process to be self-aligning. Since the D/A output voltages drive the scanning of the laser beam over all channels, the software can define addressing voltages corresponding to the microchannel centers and, subsequently, fluorescence data can be collected from only those locations. This method allows for flexible, high-speed, self-align scanning for fluorescence detection in capillary or microchip electrophoresis and has the potential to be applied to a number of applications.

  12. Development of fast two-dimensional standing wave microscopy using acousto-optic deflectors

    NASA Astrophysics Data System (ADS)

    Gliko, Olga; Reddy, Duemani G.; Brownell, William E.; Saggau, Peter

    2008-02-01

    A novel scheme for two-dimensional (2D) standing wave fluorescence microscopy (SWFM) using acousto-optic deflectors (AODs) is proposed. Two laser beams were coupled into an inverted microscope and focused at the back focal plane of the objective lens. The position of each of two beams at the back focal plane was controlled by a pair of AODs. This resulted in two collimated beams that interfered in the focal plane, creating a lateral periodic excitation pattern with variable spacing and orientation. The phase of the standing wave pattern was controlled by phase delay between two RF sinusoidal signals driving the AODs. Nine SW patterns of three different orientations about the optical axis and three different phases were generated. The excitation of the specimen using these patterns will result in a SWFM image with enhanced 2D lateral resolution with a nearly isotropic effective point-spread function. Rotation of the SW pattern relative to specimen and varying the SW phase do not involve any mechanical movements and are only limited by the time required for the acoustic wave to fill the aperture of AOD. The resulting total acquisition time can be as short as 100 µs and is only further limited by speed and sensitivity of the employed CCD camera. Therefore, this 2D SWFM can provide a real time imaging of subresolution processes such as docking and fusion of synaptic vesicles. In addition, the combination of 2D SWFM with variable angle total internal reflection (TIR) can extend this scheme to fast microscopy with enhanced three-dimensional (3D) resolution.

  13. Depth discrimination in acousto-optic cerebral blood flow measurement simulation

    NASA Astrophysics Data System (ADS)

    Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.

    2016-03-01

    Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.

  14. Modeling of power spectral density of modified von Karman atmospheric phase turbulence and acousto-optic chaos using scattered intensity profiles over discrete time intervals

    NASA Astrophysics Data System (ADS)

    Chatterjee, Monish R.; Mohamed, Fathi H. A.

    2014-10-01

    In recent research, propagation of plane electromagnetic (EM) waves through a turbulent medium with modified von Karman phase characteristics was modeled and numerically simulated using transverse planar apertures representing narrow phase turbulence along the propagation path. The case for extended turbulence was also studied by repeating the planar phase screens multiple times over the propagation path and incorporating diffractive effects via a split-step algorithm. The goal of the research reported here is to examine two random phenomena: (a) atmospheric turbulence due to von Karman-type phase fluctuations, and (b) chaos generated in an acousto-optic (A-O) Bragg cell under hybrid feedback. The latter problem has been thoroughly examined for its nonlinear dynamics and applications in secure communications. However, the statistical characteristics (such as the power spectral density (PSD)) of the chaos have not been estimated in recent work. To that end, treating the chaos phenomena as a random process, the time waveforms of the chaos intensity and their spectra are numerically evaluated over a (large) number of time iterations. These spectra are then averaged to derive the equivalent PSD of the A-O chaos. For the turbulence problem, an optical beam passing through an input pinhole is propagated through a random phase screen (placed at different locations) to a desired distance (typically near-field) under different levels of turbulence strength. The resulting spatial intensity profile is then averaged and the process repeated over a (large) number of pre-specified time intervals. From this data, once again, the turbulence PSD is calculated via the Fourier spectra of the average intensity snapshots. The results for the two systems are compared.

  15. Development and application of a ray-based model of light propagation through a spherical acousto-optic lens.

    PubMed

    Evans, Geoffrey J; Kirkby, Paul A; Naga Srinivas Nadella, K M; Marin, Bóris; Angus Silver, R

    2015-09-07

    A spherical acousto-optic lens (AOL) consists of four acousto-optic deflectors (AODs) that can rapidly and precisely control the focal position of an optical beam in 3D space. Development and application of AOLs has increased the speed at which 3D random access point measurements can be performed with a two-photon microscope. This has been particularly useful for measuring brain activity with fluorescent reporter dyes because neuronal signalling is rapid and sparsely distributed in 3D space. However, a theoretical description of light propagation through AOLs has lagged behind their development, resulting in only a handful of simplified principles to guide AOL design and optimization. To address this we have developed a ray-based computer model of an AOL incorporating acousto-optic diffraction and refraction by anisotropic media. We extended an existing model of a single AOD with constant drive frequency to model a spherical AOL: four AODs in series driven with linear chirps. AOL model predictions of the relationship between optical transmission efficiency and acoustic drive frequency including second order diffraction effects closely matched experimental measurements from a 3D two-photon AOL microscope. Moreover, exploration of different AOL drive configurations identified a new simple rule for maximizing the field of view of our compact AOL design. By providing a theoretical basis for understanding optical transmission through spherical AOLs, our open source model is likely to be useful for comparing and improving different AOL designs, as well as identifying the acoustic drive configurations that provide the best transmission performance over the 3D focal region.

  16. Experimental research on the multi-order acousto-optic diffraction based on Raman-Nath diffraction

    NASA Astrophysics Data System (ADS)

    Gu, Huadong; Shao, Zhongxing; Zheng, Chenqi; Yang, Jie; Chen, Ruitao; Gu, Zetong

    2015-03-01

    In this paper, the experimental investigation on the interaction length for getting the optimum diffraction of the multi-order acousto-optic diffraction is presented. Based on these results, the feasibility of acousto-optic Q-switch taking H2O or TeO2 as medium respectively for ultraviolet and visible lasers are discussed. The fact that the optimum interaction length tightly relies on the frequency of the sound and does not relate to the wavelength and power of the light is found in the experiment. The interaction length will become longer as the frequency of the ultrasound becomes higher. The interaction length is about 8mm when the acoustic frequency is at about 9MHz and becomes about 4mm at 6MHz. A Q-switch that works with pure water is designed and a total diffractive efficiency of about 98% was obtained under the condition that the acoustic frequency is 9MHz and the acoustic power is 3.4W. An acousto-optic Q-switch made of TeO2, in terms of Raman-Nath diffraction is designed. With a cooling system on the device, a total diffractive efficiency of about 75% is obtained under the condition that the acoustic frequency is 10MHz and the acoustic power is 10W. The loss by one path of the device is about 5% on the best condition. Then the modulated pulse width is measured as about 200ns on the condition that the acoustic frequency is 11MHz, the acoustic power is 6W and the repetition frequency is 10kHz.

  17. Kilohertz generation of high contrast polarization states for visible femtosecond pulses via phase-locked acousto-optic pulse shapers

    SciTech Connect

    Seiler, Hélène; Walsh, Brenna; Palato, Samuel; Kambhampati, Patanjali; Thai, Alexandre; Forget, Nicolas; Crozatier, Vincent

    2015-09-14

    We present a detailed analysis of a setup capable of arbitrary amplitude, phase, and polarization shaping of broadband visible femtosecond pulses at 1 kHz via a pair of actively phase stabilized acousto-optic programmable dispersive filters arranged in a Mach-Zehnder interferometer geometry. The setup features phase stability values around λ/225 at 580 nm as well as degrees of polarization of at least 0.9 for any polarization state. Both numbers are important metrics to evaluate a setup's potential for applications based on polarization-shaped femtosecond pulses, such as fully coherent multi-dimensional electronic spectroscopy.

  18. Improvements on the refresh rate and dynamical properties of a SLM by sequential readout using an acousto-optic modulator

    NASA Astrophysics Data System (ADS)

    Mestre, Michael; Viaris de Lesegno, Bruno; Farcy, René; Pruvost, Laurence; Bourderionnet, Jérôme; Delboulbé, Anne; Loiseaux, Brigitte; Dolfi, Daniel

    2006-08-01

    We demonstrate the use of an acousto-optic modulator to enhance the refresh rate and dynamic properties of a liquid-crystal spatial light modulator (SLM). The useful area of the SLM surface is split in several zones which are addressed separately, and read in a sequence by a steered laser beam. This configuration allows to increase the refresh rate by five orders of magnitude. Furthermore, improvements on the nature of the transition between different holograms are experimentally shown. The advantages of this technique are discussed in the particular context of cold atom manipulation with holographic optical tweezers.

  19. Hyperspectral imaging performance based on two TeO2 acousto-optic tunable filters.

    PubMed

    Wang, Pengchong; Zhang, Zhonghua

    2017-02-20

    The performance parameters of an acousto-optic tunable filter (AOTF) were reasonably optimized based on the previous research, according to which two AOTFs that could be applied to hyperspectral imaging were produced. Through testing, the basic tuning relationship of the two AOTFs was basically in line with the principle. Then, a hyperspectral imaging system was built based on the two AOTFs, and a long-range perspective target imaging experiment was carried out in the entire white light region. Finally, the proposed double-filtering method was applied to the hyperspectral imaging for the first time, and the imaging result was analyzed in detail.

  20. Global maxima for the acousto-optic effect in SrB4O7 crystals.

    PubMed

    Oleh, Buryy; Nazariy, Andrushchak; Andriy, Ratych; Natalia, Demyanyshyn; Bohdan, Mytsyk; Anatoliy, Andrushchak

    2017-03-01

    For the first time, the global maxima of the acousto-optic interaction are theoretically determined for biaxial SrB4O7 crystals by the extreme surfaces method. As it is shown, the highest value of the acousto-optic figure-of-merit M2 is equal to 6.3×10-16  s3/kg and achieved in the case of the isotropic diffraction of the electromagnetic wave propagating in the [010] direction on the fast quasi-transversal acoustic wave.

  1. UV laser with an acousto-optic intra-cavity control for GaN-sapphire cut

    NASA Astrophysics Data System (ADS)

    Gradoboev, Yury G.; Kazaryan, Mishik A.; Mokrushin, Yury M.; Shakin, Oleg V.

    2012-09-01

    A copper vapor laser is proposed as the basic component of the installation for processing of sapphire substrates with a GaN-coating. Laser radiation is transformed to UV range by optical frequency doubling. Powerful UV lasers are prospective tools for crystal cutting, photolithography and recording of the fiber Bragg gratings. The proposed approach is more promising in comparison with the use of excimer radiation because of instabilities of excimer laser generation and low coherence of its radiation, which makes difficult precise focusing and using interference pattern of UV radiation for exposing materials. UV laser based on second harmonic radiation of copper vapors laser has been designed. The UV laser system of high operation stability has been developed with output power 1 W at wavelengths 255.5 nm, 271.1 nm, 289.1 nm and coherence length radiation about 4 cm. The original intra-cavity acousto-optic control of output radiation is developed. It is allows adjusting frequency and on-off time ratio of output laser pulses with high accuracy. The stable heat regime was achieved for an active element of copper vapor laser̤ The laser system allows to select an optimum mode of ultra-violet radiation exposition for production of different optical elements. Intra-cavity acousto-optic cell was used for controlling of single pulse amplitude and number of pulses without any power supply tuning providing the stable operation of the laser system.

  2. In-plane vibration characterization of microelectromechanical systems using acousto-optic modulated partially incoherent stroboscopic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Dung-An; Sheu, Fang-Wen; Chiu, Yen-Sih

    2011-07-01

    A technique using acousto-optic modulated partially incoherent stroboscopic imaging for measurement of in-plane motion of microelectromechanical systems (MEMS) is presented. Vibration measurement is allowed by using flashes of the partially incoherent light source to freeze the positions of the microstructure at 12 equally spaced phases of the vibration period. The first-order diffracted beam taken out by an acousto-optic modulator (AOM) from the light beam of a laser is made partially incoherent by a rotating diffuser and then serves as the stroboscopic light source. Both the MEMS excitation signal and the flash control signal are provided by a dual-channel function generator. The main advantage of this measurement method is the absence of a stroboscopic generator and a high speed digital camera. Microscale prototypes are fabricated and tested. Quantitative estimates of the harmonic responses of the prototypes are obtained from the recorded images. The results agree with those obtained with a commercial MEMS motion analyzer TM with relative errors less than 2%.

  3. A novel acousto-optic modulation-deflection mechanism using refractive index grating as graded index beam router

    NASA Astrophysics Data System (ADS)

    Jangjoo, Alireza; Reza Baezzat, Mohammad; Razavizadeh, Ahmad

    2014-03-01

    A novel acousto-optic modulation mechanism will be addressed in this paper. Focused Gaussian beam passing through acousto-optic media experiences different refractive index regions arising from acoustic waves generated by ultrasonic source. In this way according to the snell's law of refraction the beam propagation path will be altered when these periodic traveling waves reach the incoming radiation where a typical p-n junction photodiode located inside the rising or falling lobe of the undiffracted Gaussian beam senses these small lateral deflections. Due to small variations of the refractive index the magnitude of deflection will be up to tens of micron outside the modulator. Hence, sharp intensity gradient is required for detecting such small beam movements by appropriate lens configuration to focus the Gaussian profile on the detector junction area. In the other words intensity profile of zero order beam oscillates proportional to the time dependent amplitude of the acoustic waves versus previous methods that intensity of diffracted beam changes with applied ultrasonic intensity. The extracted signal properties depend on the beam collimation, quality of beam profile and depth of focus inside the modulator. The first experimental approach was proceeded using a collimated 532 nm diode laser source (TEM00), distilled water as interaction media and 10 MHz transducer as ultrasonic generator where a cylindrical glass column with input-output flat windows was used for liquid support. The present method has advantages over common acoustooptical techniques as low cost, simplicity of operation, direct modulation of the signal and minimum alignment requirement.

  4. MO-A-BRD-01: An Investigation of the Dynamic Response of a Novel Acousto-Optic Liquid Crystal Detector for Full-Field Transmission Ultrasound Breast Imaging

    SciTech Connect

    Rosenfield, J.R.; La Riviere, P.J.; Sandhu, J.S.

    2014-06-15

    Purpose: To characterize the dynamic response of a novel acousto-optic (AO) liquid crystal detector for high-resolution transmission ultrasound breast imaging. Transient and steady-state lesion contrast were investigated to identify optimal transducer settings for our prototype imaging system consistent with the FDA limits of 1 W/cm{sup 2} and 50 J/cm{sup 2} on the incident acoustic intensity and the transmitted acoustic energy flux density. Methods: We have developed a full-field transmission ultrasound breast imaging system that uses monochromatic plane-wave illumination to acquire projection images of the compressed breast. The acoustic intensity transmitted through the breast is converted into a visual image by a proprietary liquid crystal detector operating on the basis of the AO effect. The dynamic response of the AO detector in the absence of an imaged breast was recorded by a CCD camera as a function of the acoustic field intensity and the detector exposure time. Additionally, a stereotactic needle biopsy breast phantom was used to investigate the change in opaque lesion contrast with increasing exposure time for a range of incident acoustic field intensities. Results: Using transducer voltages between 0.3 V and 0.8 V and exposure times of 3 minutes, a unique one-to-one mapping of incident acoustic intensity to steady-state optical brightness in the AO detector was observed. A transfer curve mapping acoustic intensity to steady-state optical brightness shows a high-contrast region analogous to the linear portion of the Hurter-Driffield curves of radiography. Using transducer voltages between 1 V and 1.75 V and exposure times of 90 s, the lesion contrast study demonstrated increasing lesion contrast with increasing breast exposure time and acoustic field intensity. Lesion-to-background contrast on the order of 0.80 was observed. Conclusion: Maximal lesion contrast in our prototype system can be obtained using the highest acoustic field intensity and the

  5. Self-tuning acousto-optic deflectors with acoustic line made of NaBi(MoO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Khansuvarov, Ruslan A.; Shakin, Oleg V.; Vaganov, Mikhail A.; Zhdanov, Arseniy Y.

    2014-09-01

    The idea of acousto-optic self-tuning deflector, which automatically returns the position of the acoustic line, corresponding to the mode of Bragg diffraction feedback implementation is proposed. Features of sodium bismuthate's double molybdate grown by new technology - low gradient Czochralski process are illustrated.

  6. On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters

    SciTech Connect

    Proklov, Valerii V; Byshevski-Konopko, O A; Grigorievski, V I

    2013-06-30

    The scheme is suggested for developing the optical communication line based on the principle of code division of multiple access with matched acousto-optical filters and a 16-bit long Walsh sequence. Results of modelling show that such a line can operate if adjacent spectral lines are separated by at least double the Rayleigh criterion. (optical information transmission)

  7. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF)

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-02-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm‑1 to 4500 cm‑1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.

  8. Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice.

    PubMed

    Yudistira, D; Janner, D; Benchabane, S; Pruneri, V

    2009-10-15

    We report an integrated acousto-optic polarization converter exploiting a novel surface acoustic superlattice (S-ASL) transducer. The S-ASL transducer is made of a ZX-cut periodically poled lithium niobate (PPLN) crystal with uniform coplanar electrodes for surface acoustic wave (SAW) generation. For a PPLN period of 20 microm the SAW is excited at an rf of about 190 MHz, while the phase matching occurs at an optical wavelength of around 1456 nm. The measured mode conversion efficiency of 90% at an input rf power of 1 W and the 3 dB optical bandwidth of 2.5 nm confirm the confinement of the SAW between the electrode gap and the constructive interaction along the whole 10 mm electrode length.

  9. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.

    PubMed

    Wang, Rong; Gao, Jin-Yue

    2005-09-01

    In this paper we propose a new scheme to achieve chaos control and synchronization in Bragg acousto-optic bistable systems. In the scheme, we use the output of one system to drive two identical chaotic systems. Using the maximal conditional Lyapunov exponent (MCLE) as the criterion, we analyze the conditions for realizing chaos synchronization. Numerical calculation shows that the two identical systems in chaos with negative MCLEs and driven by a chaotic system can go into chaotic synchronization whether or not they were in chaos initially. The two systems can go into different periodic states from chaos following an inverse period-doubling bifurcation route as well when driven by a periodic system.

  10. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF).

    PubMed

    Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V

    2016-02-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm(-1) to 4500 cm(-1), sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.

  11. Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay

    NASA Astrophysics Data System (ADS)

    Urbanek, B.; Möller, M.; Eisele, M.; Baierl, S.; Kaplan, D.; Lange, C.; Huber, R.

    2016-03-01

    We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4-ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of 1.7 × 105 / √{ H z } . Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of 10 nm/ √{ H z } . The compact, all-optical design ensures alignment-free operation even in harsh environments.

  12. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator

    PubMed Central

    Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z.

    2013-01-01

    We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution. PMID:22743445

  13. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator.

    PubMed

    Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z

    2012-07-01

    We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution.

  14. Acousto-optical deflection-based whole channel scanning for microchip isoelectric focusing with laser-induced fluorescence detection.

    PubMed

    Sanders, J C; Huang, Z; Landers, J P

    2001-12-01

    This paper describes the development of a technique amenable to the separation of proteins on a microchip by isoelectric focusing (IEF) with entire channel scanning laser-induced fluorescence detection using acousto-optical deflection (AOD). The ability to use AOD to scan the portions of or the entire length of an IEF separation channel allows for high-speed analysis since the mobilization step is circumvented with this technique. Employing no moving parts eliminates mechanical noise and, not only is there no loss of resolution, AOD scanning can potentially increase resolution. The ability of AOD to provide ultra-fast scanning rates (kHz timescale) allows for real-time imaging of the focusing process. This is demonstrated with the separation of naturally fluorescent proteins using entire channel (total scanning range of 2.4 cm) AOD-mediated scanning laser-induced fluorescence detection.

  15. New prototype of acousto-optical radio-wave spectrometer with parallel frequency processing for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan O.; Aguirre Lopez, Arturo

    2016-09-01

    We develop a multi-band spectrometer with a few spatially parallel optical arms for the combined processing of their data flow. Such multi-band capability has various applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar possibility is based on designing each optical arm individually via exploiting different materials for acousto-optical cells operating within various regimes, frequency ranges and light wavelengths from independent light sources. Individual beam shapers provide both the needed incident light polarization and the required apodization to increase the dynamic range of a system. After parallel acousto-optical processing, data flows are united by the joint CCD matrix on the stage of the combined electronic data processing. At the moment, the prototype combines still three bands, i.e. includes three spatial optical arms. The first low-frequency arm operates at the central frequencies 60-80 MHz with frequency bandwidth 40 MHz. The second arm is oriented to middle-frequencies 350-500 MHz with frequency bandwidth 200-300 MHz. The third arm is intended for ultra-high-frequency radio-wave signals about 1.0-1.5 GHz with frequency bandwidth <300 MHz. To-day, this spectrometer has the following preliminary performances. The first arm exhibits frequency resolution 20 KHz; while the second and third arms give the resolution 150-200 KHz. The numbers of resolvable spots are 1500- 2000 depending on the regime of operation. The fourth optical arm at the frequency range 3.5 GHz is currently under construction.

  16. Frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

    SciTech Connect

    Erteza, I.A.; Craft, D.C.; Stalker, K.T.; Taylor, E.W.; Kelley, M.A.; Sanchez, A.D.; Chapman, S.P.; Craig, D.M.; Kinsley, E.

    1994-12-31

    Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this paper, the authors present the results of the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal is to present possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this paper was designed by Sandia National Laboratories (SNL) and performed by SNL and Phillips Laboratory (PL) personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear-wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1 {mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this paper, the authors discuss these effects, and they discuss the effect on the signal processing functionality.

  17. Acousto-optic Bragg diffraction in a LiNbO3 channel-planar composite waveguide with application to optical computing

    NASA Astrophysics Data System (ADS)

    Tsai, C. S.; Zang, D. Y.; Le, P.

    1985-09-01

    Successful experimentation on acousto-optic Bragg diffraction in a LiNbO3 composite waveguide that consists of an array of parallel but uncoupled channel waveguides directly extended to a single-mode planar waveguide and a titanium-indiffused proton-exchanged (TIPE) microlens array is reported for the first time. A channel-waveguide array, a planar waveguide, a linear TIPE microlens array, a 500-MHz surface acoustic wave transducer, and an integrating lens have all been integrated in a substrate size of 0.2 x 1.0 x 2.0 cm to form an integrated acousto-optic Bragg modulator that should find a variety of applications in optical computing, signal processing, and communications. The resulting modulator module has been utilized to perform matrix-vector multiplication.

  18. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  19. An experimental distribution of analog and digital information in a hybrid wireless visible light communication system based on acousto-optic modulation and sinusoidal gratings

    NASA Astrophysics Data System (ADS)

    Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.

    2016-03-01

    In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.

  20. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters.

    PubMed

    Wang, Wenbo; Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2016-06-01

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to -0.70 nm within the spectral range of 500-850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  1. Novel time-of-flight fiber dispersion measurement technique using supercontinuum light sources and acousto-optical tunable filters.

    PubMed

    Blume, Niels Göran; Wagner, Steven

    2015-07-20

    Long-distance fiber links require precise knowledge of fiber dispersion characteristics. Similar dispersion characteristics are necessary for supercontinuum broadband laser absorption spectroscopy (SCLAS) to allow proper data evaluation and species concentration determination, as well as numerous other applications. In this work, a time-of-flight approach to measuring the dispersion characteristic of fibers with supercontinuum laser light sources (SCLs) and acousto-optical tunable filters (AOTFs) is presented. Broadband emission of the SCL is filtered with a narrowband AOTF and dispersed in time by the fiber under test. By using the wavelength-specific delay, the dispersion characteristic can be calculated. The technique is especially suited for longer fibers and was verified against a state-of-the-art phase-shift-based dispersion measurement system. Advantages of the new approach include solely utilizing SCLAS system components, as well as a high level of automation and wide spectral coverage, ranging from 1100 to 1700 nm in a single measurement setup.

  2. Application of the acousto-optic effect to pressure measurements in ultrasound fields in water using a laser vibrometer

    NASA Astrophysics Data System (ADS)

    Buick, J. M.; Cosgrove, J. A.; Douissard, P.-A.; Greated, C. A.; Gilabert, B.

    2004-10-01

    A non-intrusive measuring technique, applied to sensing and measuring acoustic waves at ultrasonic frequencies is considered. The method is optically based and so does not interfere with the ultrasound field. The measurement procedure relies on the acousto-optic effect, that is the change in refractive index which occurs with changing pressure in the ultrasound field. This change in refractive index is detected through the change in the path length of a laser beam propagating through the region of interest. Typically these changes are small corresponding to a physical change of the order of 10-6 m. Fourier analysis is used to separate the component of the signal corresponding to the pressure variation from background noise and vibrations which can be dominant. Application of the technique is illustrated for an underwater ultrasound transducer. Measurements are made using the optical technique and compared to measurements taken with a hydrophone. The effectiveness of the optical measuring technique is discussed. It is shown that the laser vibrometer produces a good estimation of the mean beam pressure provided an estimation of the beam width is available, a restriction which is often satisfied; and the acoustic field can be assumed to be approximately constant across the beam.

  3. Real-Time Display Of 3-D Computed Holograms By Scanning The Image Of An Acousto-Optic Modulator

    NASA Astrophysics Data System (ADS)

    Kollin, Joel S.; Benton, Stephen A.; Jepsen, Mary Lou

    1989-10-01

    The invention of holography has sparked hopes for a three-dimensional electronic imaging systems analogous to television. Unfortunately, the extraordinary spatial detail of ordinary holographic recordings requires unattainable bandwidth and display resolution for three-dimensional moving imagery, effectively preventing their commercial development. However, the essential bandwidth of holographic images can be reduced enough to permit their transmission through fiber optic or coaxial cable, and the required resolution or space-bandwidth product of the display can be obtained by raster scanning the image of a commercially available acousto-optic modulator. No film recording or other photographic intermediate step is necessary as the projected modulator image is viewed directly. The design and construction of a working demonstration of the principles involved is also presented along with a discussion of engineering considerations in the system design. Finally, the theoretical and practical limitations of the system are addressed in the context of extending the system to real-time transmission of moving holograms synthesized from views of real and computer-generated three-dimensional scenes.

  4. TeO2 and Te acousto-optic spectrometer imaging system

    NASA Astrophysics Data System (ADS)

    Souilhac, Dominique J.; Billerey, Dominique

    1994-12-01

    An improved TeO2 and Te infrared acoustooptic tuneable spectrometer has been analysed, using infrared fibres, a high speed frequency synthesiser and optimised algorithms. A comparison is made with the next best AOTF infrared materials, Tl3AsSe3, HgCl2 and PbBr2. A design study of the TeO2 and Te AO imaging spectrometer is also presented, operating in the two thermal bands, 1-5micrometers and 6-12micrometers , using an interchangeable fore-optics and a multiplexed electronically scanned infrared array cooled at 77 degrees K. Some initial experimental results indicate that these systems can perform well, an increase in the dynamic range in the 8-12 micrometers and is obtained compared to the 3-5*m band. It can be very useful in chemical process control, medical diagnostics, aerospace and earth remote sensing. Based on recent imaging spectrometer development, a design study of the TeO2 AO imaging spectrometer in the 0.4-1 micrometers band, for simultaneous spectroscopy at every pixel, is presented, using a CCD camera and fast data processing technology.

  5. Atomic Oxygen (AO) and Nitrogen (AN) In-situ Flux Sensor

    DTIC Science & Technology

    2016-03-10

    Grant # FA9550-01-1-0433 M. R. Beasley, PI Stanford University Project Title: Atomic Oxygen (AO) and Nitrogen (AN) In-situ Flux Sensor ...intensity. The major technological challenge is the VUV nature of the relevant spectral lines in the case of oxygen and nitrogen. A LabVIEW™-based data

  6. Narrow linewidth broadband tunable semiconductor laser at 840 nm with dual acousto-optic tunable configuration for OCT applications

    NASA Astrophysics Data System (ADS)

    Chamorovskiy, Alexander; Shramenko, Mikhail V.; Lobintsov, Andrei A.; Yakubovich, Sergei D.

    2016-03-01

    We demonstrate a tunable narrow linewidth semiconductor laser for the 840 nm spectral range. The laser has a linear cavity comprised of polarization maintaining (PM) fiber. A broadband semiconductor optical amplifier (SOA) in in-line fiber-coupled configuration acts as a gain element. It is based on InGaAs quantum-well (QW) active layer. SOA allows for tuning bandwidth exceeding 25 nm around 840 nm. Small-signal fiber-to-fiber gain of SOA is around 30 dB. A pair of acousto-optic tunable filters (AOTF) with a quasi-collinear interaction of optical and acoustic waves are utilized as spectrally selective elements. AOTF technology benefits in continuous tuning, broadband operation, excellent reproducibility and stability of the signal, as well as a high accuracy of wavelength selectivity due to the absence of mechanically moving components. A single AOTF configuration has typical linewidth in 0.05-0.15 nm range due to a frequency shift obtained during each roundtrip. A sequential AOTF arrangement enables instantaneous linewidth generation of <0.01 nm by compensating for this shift. Linewidth as narrow as 0.0036 nm is observed at 846 nm wavelength using a scanning Fabry-Perot interferometer with 50 MHz spectral resolution. Output power is in the range of 1 mW. While the majority of commercial tunable sources operate in 1060-1550 nm spectral ranges, the 840 nm spectral range is beneficial for optical coherence tomography (OCT). The developed narrow linewidth laser can be relevant for OCT with extended imaging depth, as well as spectroscopy, non-destructive testing and other applications.

  7. Random depth access full-field heterodyne low-coherence interferometry utilizing acousto-optic modulation and a complementary metaloxide semiconductor camera.

    PubMed

    Egan, Patrick; Connelly, Michael J; Lakestani, Fereydoun; Whelan, Maurice P

    2006-04-01

    With analog scanning, time-domain low-coherence interferometry lacks precise depth information, and optical carrier generation demands a linear scanning speed. Full-field heterodyne low-coherence interferometry that uses a logarithmic complementary metal-oxide semiconductor camera, acousto-optic modulation, and digital depth stepping is reported, with which random regions of interest, lateral and axial, can be accessed. Furthermore, nanometer profilometry is possible through heterodyne phase retrieval of the interference signal. The approach demonstrates inexpensive yet high-precision functional machine vision offering true digital random access in three dimensions.

  8. Time-resolved acousto-optic interaction in single-mode optical fibers: characterization of axial nonuniformities at the nanometer scale.

    PubMed

    Alcusa-Sáez, E P; Díez, A; González-Herráez, M; Andrés, M V

    2014-03-15

    We report on a time-resolved acousto-optic interaction technique for the detection of axial nonuniformities in single-mode fibers. It is based on the propagation of short packets of flexural acoustic waves. Small axial nonuniformities (of the order of nanometers) are detected by measuring the transmittance of the fundamental mode as a function of time. It is shown that the technique allows the detection of axial nonuniformities along sections of single-mode fiber exceeding 1 m long with spatial resolution of the order of a few centimeters.

  9. Efficient diode end-pumped acousto-optically Q-switched Nd:YAG/BaTeMo2O9 Raman laser.

    PubMed

    Bai, Fen; Wang, Qingpu; Jiao, Zhiyong; Xu, Xianfeng; Zhang, Hui; Tao, Xutang

    2016-11-10

    BaTeMo2O9 (BTM) is employed to achieve efficient stimulated Raman scattering conversion in a diode end-pumped acousto-optically Q-switched Nd:YAG laser. With an incident diode power of 8.6 W, 732 mW of 1179 nm first-Stokes average output power was generated at a pulse repetition rate of 10 kHz, corresponding to a diode-to-Raman conversion efficiency of 8.5%.

  10. Laser frequency stabilisation by the Pound - Drever - Hall method using an acousto-optic phase modulator operating in the pure Raman - Nath diffraction regime

    SciTech Connect

    Baryshev, Vyacheslav N

    2012-04-30

    Frequency stabilisation of diode laser radiation has been implemented by the Pound - Drever - Hall method using a new acousto-optic phase modulator, operating in the pure Raman - Nath diffraction regime. It is experimentally shown that, as in the case of saturated-absorption spectroscopy in atomic vapour, the spatial divergence of the frequency-modulated output spectrum of this modulator does not interfere with obtaining error signals by means of heterodyne frequency-modulation spectroscopy with a frequency discriminator based on a high-Q Fabry - Perot cavity with finesse of several tens of thousands.

  11. LD end-pumped acousto-optic Q-switched 1319 nm/1338 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Yu, M.; Wang, C.; Yu, K.; Yu, Y. J.; Chen, X. Y.; Jin, G. Y.

    2016-10-01

    Laser characteristics of acousto-optic Q-switched operation of 1319 nm/1338 nm dual-wavelength composite Nd:YAG laser were studied. Maximum output power of 5.77 W was achieved in CW operation. Under Q-switched operation, the maximum peak power of 3.96 kW and minimum pulse width of 65.6 ns was obtained at repetition frequency of 20 kHz with the duty ratio of 96%. The influence of the duration of the ultrasonic field acted on the Q-switch to the output characteristics of dual-wavelength composite Nd:YAG laser had been reported first time.

  12. Combination of a 2-D acousto-optic deflector with laser amplifier for efficient scanning of a Q-switched ND:YAG laser

    NASA Astrophysics Data System (ADS)

    Maák, P.; Jakab, L.; Richter, P. I.; Brignon, A.; Huignard, J.-P.

    2000-03-01

    A two-dimensional acousto-optic deflector has been combined with a large angular acceptance, laser diode-pumped Nd:YAG optical amplifier in order to obtain a scanning system with high angular resolution and with high and uniform optical transmission. Experiments have been carried out in order to optimize the set-up for intensity distribution and optical losses. The combination of newly developed nonlinear and active optical elements provides a relatively uniform intensity distribution over the scanned region corresponding to 300×300 discrete points in the back focal plane of a Fourier lens, at laser pulse energy levels of 1-5 mJ.

  13. Long-cavity all-fiber ring laser actively mode locked with an in-fiber bandpass acousto-optic modulator.

    PubMed

    Cuadrado-Laborde, C; Bello-Jiménez, M; Díez, A; Cruz, J L; Andrés, M V

    2014-01-01

    We demonstrate low-frequency active mode locking of an erbium-doped all-fiber ring laser. As the mode locker, we used a new in-fiber bandpass acousto-optic modulator showing 74% modulation depth, 3.7 dB power insertion losses, 4.5 nm of optical bandwidth, and 20 dB of nonresonant light suppression. The laser generates 330 ps mode-locked pulses over a 10 ns pedestal, at a 1.538 MHz frequency, with 130 mW of pump power.

  14. Acousto-optic signature analysis for inspection of the orbiter thermal protection tile bonds

    NASA Technical Reports Server (NTRS)

    Rodriguez, Julio G.; Tow, D. M.; Barna, B. A.

    1990-01-01

    The goal of this research is to develop a viable NDE technique for the inspection of orbiter thermal protection system (TPS) tile bonds. Phase 2, discussed here, concentrated on developing an empirical understanding of the bonded and unbonded vibration signatures of acreage tiles. Controlled experiments in the laboratory have provided useful information on the dynamic response of TPS tiles. It has been shown that several signatures are common to all the pedigree tiles. This degree of consistency in the tile-SIP (strain isolation pad) dynamic response proves that an unbond can be detected for a known tile and establish the basis for extending the analysis capability to arbitrary tiles for which there are no historical data. The field tests of the noncontacting laser acoustic sensor system, conducted at the Kennedy Space Center (KSC), investigated the vibrational environment of the Orbiter Processing Facility (OPF) and its effect on the measurement and analysis techniques being developed. The data collected showed that for orbiter locations, such as the body flap and elevon, the data analysis scheme, and/or the sensor, will require modification to accommodate the ambient motion. Several methods were identified for accomplishing this, and a solution is seen as readily achievable. It was established that the tile response was similar to that observed in the laboratory. Of most importance, however, is that the field environment will not affect the physics of the dynamic response that is related to bond condition. All of this information is fundamental to any future design and development of a prototype system.

  15. Numerical Analysis of the Crosstalk on an Integrated Acousto-Optic Tunable Filter (AOTF) for Network Applications

    NASA Astrophysics Data System (ADS)

    Sobrinho, C. S.; de Oliveira, M. V. N.; Silva, M. G. Da; Lima, J. L. S.; de Almeida, E. F.; Sombra, A. S. B.

    In this article, we did a study of the crosstalk level (Xtalk) and extinction ratio (Xratio) of an acousto-optic tunable filter (AOTF) operating with ultra-short light pulses (2 ps). It is clear that the transmission bandwidth decreases as the length of the device increases. The compression factor was studied for the switched pulse in an AOTF without loss considering five nonlinearity profiles. One can observe that there is always an optimum value for β (final value of the nonlinearity) that one can obtain a switched pulse with the same time duration of the input pulse. The study of the crosstalk level, of this device, considering the optimum values of β obtained from the compression studies, as a function of the pump power (P0) was done. For the soliton profile at 1 W of pump power one can notice that the Gaussian profile presents the lower Xtalk value (-13 dB), and the constant profile presents the worst value (-9.8 dB). However, if one is looking for a specific Xtalk value, one can conclude that with the constant profile one can obtain this value with a lower power. For the quasi-soliton profile of the same device, with low pump power (1 W), one can notice again that the Gaussian profile presents the lower Xtalk value (-13 dB) and the constant profile presents the worst value (-9.87 dB). This fact can be explained because, with pump power at 1 W, soliton and quasi-soliton profiles lead equivalent input pulses and under the same conditions produce equal results. The Xtalk level, considering all the profiles as a function of the β value, was studied. For all the profiles one has a strong increase of the Xtalk level with the increase of the final β value of the nonlinearity profile. Comparing all the profiles one can conclude that the Gaussian profile presents the lower Xtalk value in the range of β values in use. At the same time the value of the Xtalk for this profile does not change much with the change in the β value, presenting values in interval (-13 d

  16. Two wavelength operation of an acousto-optically tuned quantum cascade laser and direct measurements of quantum cascade laser level lifetimes

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.; Barron-Jimenez, Rodolfo; Dunayevskiy, Ilya; Tsvid, Gene; Lyakh, Arkadiy

    2017-01-01

    We report simultaneous two wavelength operation of an acousto-optically tuned quantum cascade laser (QCL). The two wavelengths can be independently tuned as well as independently switched, retaining the submicrosecond switching capability. In addition, we have used the two wavelength operation as a tool for the direct measure of the lifetimes of the lasing states in a practical QCL. The lifetime measurements in an operational QCL are facilitated by our ability to vary the frequency separation between two simultaneously lasing wavelengths. The measured lifetime is 0.6 ps ± 0.2 ps for our quantum cascade laser. The two wavelength operation of QCLs paves the way for time resolved pump/probe studies of infrared phenomena and provides direct insight into the effectiveness of various QCL structure designs.

  17. Analysis of the frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

    SciTech Connect

    Erteza, I.A.

    1995-04-01

    Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this report, we present the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal of the analysis is to describe possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this report was designed by Sandia National Laboratories and performed by Sandia and Phillips Laboratory personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1{mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this report, we discuss these effects from the perspective of anisotropic Bragg diffraction and momentum mismatch, and we discuss the effect on the signal processing functionality.

  18. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  19. High coherent bi-chromatic laser with gigahertz splitting produced by the high diffraction orders of acousto-optic modulator used for coherent population trapping experiments.

    PubMed

    Yun, Peter; Tan, Bozhong; Deng, Wei; Gu, Sihong

    2011-12-01

    To prepare the coherent population trapping (CPT) states with rubidium and cesium, the commonly used atoms in CPT studies, a coherent bi-chromatic light field with frequency difference of several GHz is a basic requirement. With a 200 MHz center frequency acousto-optic modulator (AOM), we have realized bi-chromatic laser fields with several GHz frequency splits through high diffraction orders. We have experimentally studied the coherence between two frequency components of a bi-chromatic laser beam, which is composed of ±6 orders with frequency split of 3 GHz diffracted from the same laser beam, and the measured residual phase noise is Δφ(2)<0.019 rad(2). The bi-chromatic laser fields were used to prepare CPT states with (85)Rb and (87)Rb atoms, and high contrast CPT signals were obtained. For CPT states preparation, our study result shows that it is a feasible approach to generate the bi-chromatic light field with larger frequency splits through high diffraction orders of AOM.

  20. Hybrid wide-band, low-phase-noise scheme for Raman lasers in atom interferometry by integrating an acousto-optic modulator and a feedback loop.

    PubMed

    Wang, Kai; Yao, Zhanwei; Li, Runbing; Lu, Sibin; Chen, Xi; Wang, Jin; Zhan, Mingsheng

    2016-02-10

    We report a hybrid scheme for phase-coherent Raman lasers with low phase noise in a wide frequency range. In this scheme, a pair of Raman lasers with a frequency difference of 3.04 GHz is generated by the ±1-order diffracted lights of an acousto-optic modulator (1.52 GHz), where a feedback loop is simultaneously applied for suppressing the phase noise. The beat width of the Raman lasers is narrower than 3 Hz. In the low-frequency range, the phase noise of the Raman lasers is suppressed by 35 dB with the feedback. The phase noise is less than -109  dBc/Hz in the high-frequency range. The sensitivity of an atom gyroscope employing the hybrid Raman lasers can be implicitly improved 10 times. Due to the better high-frequency response, the sensitivity is not limited by the durations of Raman pulses. This work is important for improving the performance of atom-interferometer-based measurements.

  1. Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos

    NASA Astrophysics Data System (ADS)

    Almehmadi, Fares S.; Chatterjee, Monish R.

    2014-12-01

    Using intensity feedback, the closed-loop behavior of an acousto-optic hybrid device under profiled beam propagation has been recently shown to exhibit wider chaotic bands potentially leading to an increase in both the dynamic range and sensitivity to key parameters that characterize the encryption. In this work, a detailed examination is carried out vis-à-vis the robustness of the encryption/decryption process relative to parameter mismatch for both analog and pulse code modulation signals, and bit error rate (BER) curves are used to examine the impact of additive white noise. The simulations with profiled input beams are shown to produce a stronger encryption key (i.e., much lower parametric tolerance thresholds) relative to simulations with uniform plane wave input beams. In each case, it is shown that the tolerance for key parameters drops by factors ranging from 10 to 20 times below those for uniform plane wave propagation. Results are shown to be at consistently lower tolerances for secure transmission of analog and digital signals using parameter tolerance measures, as well as BER performance measures for digital signals. These results hold out the promise for considerably greater information transmission security for such a system.

  2. Doppler-free, multiwavelength acousto-optic deflector for two-photon addressing arrays of Rb atoms in a quantum information processor

    NASA Astrophysics Data System (ADS)

    Kim, Sangtaek; McLeod, Robert R.; Saffman, M.; Wagner, Kelvin H.

    2008-04-01

    We demonstrate a dual wavelength acousto-optic deflector (AOD) designed to deflect two wavelengths to the same angles by driving with two RF frequencies. The AOD is designed as a beam scanner to address two-photon transitions in a two-dimensional array of trapped neutral Rb87 atoms in a quantum computer. Momentum space is used to design AODs that have the same diffraction angles for two wavelengths (780 and 480 nm) and have nonoverlapping Bragg-matched frequency response at these wavelengths, so that there will be no cross talk when proportional frequencies are applied to diffract the two wavelengths. The appropriate crystal orientation, crystal shape, transducer size, and transducer height are determined for an AOD made with a tellurium dioxide crystal (TeO2). The designed and fabricated AOD has more than 100 resolvable spots, widely separated band shapes for the two wavelengths within an overall octave bandwidth, spatially overlapping diffraction angles for both wavelengths (780 and 480 nm), and a 4 μs or less access time. Cascaded AODs in which the first device upshifts and the second downshifts allow Doppler-free scanning as required for addressing the narrow atomic resonance without detuning. We experimentally show the diffraction-limited Doppler-free scanning performance and spatial resolution of the designed AOD.

  3. Baseband integrated acousto-optic frequency shifter/modulator module for fiber optic at 1.3 mum.

    PubMed

    Tsai, C S; Cheng, Z Y

    1993-01-01

    A baseband integrated acoustooptic (AO) frequency shifter/modulator module that consists of a pair of titanium-indiffused proton-exchanged (TIPE) waveguide lenses and a pair of cascaded guided-wave AO Bragg cells has been realized in a Y-cut LiNbO(3) waveguide substrate 0.1 cmx1.0 cmx2.0 cm in size. A device module operating at the optical wavelength of 1.3 mum has provided a -3-dB tunable bandwidth of 120 MHz at baseband. The frequency-shifted or -modulated light propagates in a fixed direction, irrespective of the magnitude of frequency shift or modulation, and is focused into a spot (FWHM) of 6.2-mum size on the output edge of the waveguide. Accordingly, this optical frequency shifter/module can be directly interfaced with single-mode optical fibers to facilitate applications in fiber optic systems.

  4. Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste

    2014-07-01

    We report in this paper decisive advance on the detector development for the astronomical applications that require very fast operation. Since the CCD220 and OCAM2 major success, new detector developments started in Europe either for visible and IR wavelengths. Funded by ESO and the FP7 Opticon European network, the NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with strong ESO involvement. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate and providing digital outputs. A camera development, based on this CMOS device and also funded by the Opticon European network, is ongoing. Another major AO wavefront sensing detector development concerns IR detectors based on Avalanche Photodiode (e- APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter offers a 320x255 8 outputs 30 microns IR array, sensitive from 0.4 to 3 microns, with less than 2 e readout noise at 1600 fps. A rectangular window can also be programmed to speed up even more the frame rate when the full frame readout is not required. The high QE response, in the range of 70%, is almost flat over this wavelength range. Advanced packaging with miniature cryostat using pulse tube cryocoolers was developed in the frame of this programme in order to allow use on this detector in any type of environment. The characterization results of this device are presented here. Readout noise as low as 1.7 e at 1600 fps has been measured with a 3 microns wavelength cut-off chip and a multiplication gain of 14 obtained with a limited photodiode polarization of 8V. This device also exhibits excellent linearity, lower than 1%. The pulse tube cooling allows smart and easy cooling down to 55 K. Vibrations investigations using centroiding and FFT measurements were performed proving that the miniature pulse tube does not induce measurable vibrations to the optical bench, allowing use of this

  5. Unbalanced Michelson's interferometer as a fiber optic distributed sensor of external signals

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Szustakowski, Mieczyslaw; Zyczkowski, Marek

    2001-08-01

    The subject of this work is a novel fiber optic distributed sensor system. The system uses a technique called multiplexed reflectometric interferometry to measure dynamic strain in a network of single mode optical fiber sensors. The sensor is constructed on unbalanced fiber optic Michelson's interferometer is activated by series of double pulse. The time interval between those pulses depends on the length of the section of sensor. Acousto-optical modulator acts as an optical frequency shifter. A change in a frequency of electrical pulses exciting the modulator result in a frequency shift in each generated wave packet.

  6. High-peak-power sub-nanosecond intracavity KTiOPO4 optical parametric oscillator pumped by a dual-loss modulated laser with acousto-optic modulator and single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao; Lu, Jianren; Wang, Yonggang; Chu, Hongwei; Luan, Chao

    2016-08-01

    A high-peak-power low-repetition-rate sub-nanosecond intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a doubly Q-switched and mode-locked (QML) YVO4/Nd:YVO4 laser with an acousto-optic modulator (AOM) and a single-walled carbon nanotube saturable absorber (SWCNT-SA) has been demonstrated. A maximum output power of 373 mW at a signal wavelength of 1570 nm was obtained. The smallest pulse width, highest pulse energy, and greatest peak power of mode-locking pulses were estimated to be 119 ps, 124 µJ, and 1.04 MW, respectively, under a maximum incident pump power of 8.3 W and an AOM repetition rate of 2 kHz. This OPO operation paves a simple way to produce eye-safe laser sources at 1570 nm with low repetition rates, small pulse widths, and high peak powers.

  7. Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 microm.

    PubMed

    Nevejans, Dennis; Neefs, Eddy; Van Ransbeeck, Emiel; Berkenbosch, Sophie; Clairquin, Roland; De Vos, Lieve; Moelans, Wouter; Glorieux, Stijn; Baeke, Ann; Korablev, Oleg; Vinogradov, Imant; Kalinnikov, Yuri; Bach, Benny; Dubois, Jean-Pierre; Villard, Eric

    2006-07-20

    A new compact spaceborne high-resolution spectrometer developed for the European Space Agency's Venus Express spacecraft is described. It operates in the IR wavelength range of 2.2 to 4.3 microm and measures absorption spectra of minor constituents in the Venusian atmosphere. It uses a novel echelle grating with a groove density of 4 lines/mm in a Littrow configuration in combination with an IR acousto-optic tunable filter for order sorting and an actively cooled HgCdTe focal plane array of 256 by 320 pixels. It is designed to obtain an instrument line profile of 0.2 cm(-1). First results on optical and spectral properties are reported.

  8. Direct RF A-O Processor Spectrum Analyzer.

    DTIC Science & Technology

    1981-08-01

    The primary objective was to develop and demonstrate design approach, along with the associated processing technologies, for a wideband acousto optic Bragg...cell spectrum analyzer. The signal processor used to demonstrate feasibility of the technical approach consisted of two bulk wave acousto optic deflectors

  9. Rejuvenation of a ten-year old AO curvature sensor: combining obsolescence correction and performance upgrade of MACAO

    NASA Astrophysics Data System (ADS)

    Haguenauer, P.; Fedrigo, E.; Pettazzi, L.; Reinero, C.; Gonte, F.; Pallanca, L.; Frahm, R.; Woillez, J.; Lilley, P.

    2016-07-01

    The MACAO curvature wavefront sensors have been designed as a generic adaptive optics sensor for the Very Large Telescope. Six systems have been manufactured and implemented on sky: four installed in the UTs Coudé train as an AO facility for the VLTI, and two in UT's instruments, SINFONI and CRIRES. The MACAO-VLTI have now been in use for scientific operation for more than a decade and are planned to be operated for at least ten more years. As second generation instruments for the VLTI were planned to start implementation in end of 2015, accompanied with a major upgrade of the VLTI infrastructure, we saw it as a good time for a rejuvenation project of these systems, correcting the obsolete components. This obsolescence correction also gave us the opportunity to implement improved capabilities: the correction frequency was pushed from 420 Hz to 1050 Hz, and an automatic vibrations compensation algorithm was added. The implementation on the first MACAO was done in October 2014 and the first phase of obsolescence correction was completed in all four MACAO-VLTI systems in October 2015 with the systems delivered back to operation. The resuming of the scientific operation of the VLTI on the UTs in November 2015 allowed to gather statistics in order to evaluate the improvement of the performances through this upgrade. A second phase of obsolescence correction has now been started, together with a global reflection on possible further improvements to secure observations with the VLTI.

  10. Measurement of Isotope Shifts, Hyperfine Splittings and Stark Shift for the Ytterbium (6S)2 SINGLET-S(0) to (6S6P) TRIPLET-P(1) Transition Using AN Acousto-Optically Modulated Laser Beam.

    NASA Astrophysics Data System (ADS)

    Li, Jian

    1995-11-01

    Accurate measurements of isotope shifts, hyperfine splittings and Stark shifts are of interest for studying atomic structure. This thesis reports a new method to precisely measure small frequency intervals. This was done using an acousto-optic modulator to frequency shift part of a laser beam. The frequency shifted and unshifted laser beams were then superimposed and excited an atomic beam. The laser frequency was scanned across the transition while fluorescence produced by the radiative decay of the excited state was detected by a photomultiplier. Each transition generated two peaks in the spectrum separated by the acousto-optic modulation frequency, which permitted the frequency to be calibrated. This method was tested by measuring the isotope shifts and hyperfine splittings of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition at 555.6 nm. The shifts (MHz) relative to ^{176} Yb are: ^{173}Yb {it F}=7/2,-1432.1+/-1.2; ^{171}Yb {it F}=1/2, -1176.9+/-1.1; ^{174}Yb, 953.8+/-1.0; ^{172}Yb 1953.9+/-1.6; ^{170}Yb 3240.4+/-2.8; ^{173}Yb {it F}=5/2,3265.8+/-2.8; ^ {168}Yb, 4611.9+/-4.4; ^ {171,173}Yb {it F}=3/2,4760.1 +/-3.7 where the negative sign indicates that the transition occurs at a lower frequency than in ^{176}Yb. The magnetic dipole (a) and electric quadrupole (b) hyperfine coupling constants (MHz) of the (6s6p) ^3P_1 state for ^{171,173}Yb were determined to be a_{171}=3959.1 +/-3.0, a_{173}=-1094.44+/-0.84 and b_{173}=-827.89+/-0.85. These results were in agreement with the most accurate data found in the literature that were obtained by measuring frequency shifts using a Fabry Perot etalon whose length was stabilized with a helium neon laser locked to an iodine line. In contrast, our method uses cheaper and simpler apparatus. Next, the Stark shift of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition was measured by passing the atomic beam through a uniform electric field. The Stark shift rate was found to be -15.419+/-0.048 kHz/(kV/cm)^2. No

  11. High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillator power amplifier.

    PubMed

    Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Hu, Chengzhi; Wu, Bo; Shen, Yonghang

    2013-09-01

    We have experimentally demonstrated a periodically poled magnesium-oxide-doped lithium niobate (PPMgLN)-based, fiber-laser-pumped optical parametric oscillator (OPO) generating idler wavelength of 3.82 μm. The pump fiber laser was constructed with a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber oscillator and a polarization-maintaining fiber amplifier with pulse duration of 190 ns at the highest output power. The OPO was specifically configured in single-pass, singly resonant linear cavity structure to avoid the damage risk of the pump fiber laser, which is always a serious issue in the fiber-laser-pumped, double-pass, singly oscillating structured OPOs. Under the highest pump power of 25 W, an idler average output power of 3.27 W with one-hour peak-to-peak instability of 5.2% was obtained. The measured M2 factors were 1.98 and 1.44 for horizontal and vertical axis, respectively. The high power stability and good beam quality demonstrated the suitability of such technology for practical application.

  12. Studies of effects on optical components and sensors: LDEF experiments AO-147 (ERB components) and S-0014 (APEX)

    NASA Technical Reports Server (NTRS)

    Hickey, John R.; Brinker, David J.; Jenkins, Philip

    1993-01-01

    Some additional results of testing of optical filters and window materials and thermopile sensors of the two experiments are included. The Advanced Photovoltaic Experiment (APEX) interference filters exhibited much greater degradation in space than the ERB filters. The adhesion of the Indium washers to the APEX interference filters is reported.

  13. Depth selective acousto-optic flow measurement

    PubMed Central

    Tsalach, Adi; Schiffer, Zeev; Ratner, Eliahu; Breskin, Ilan; Zeitak, Reuven; Shechter, Revital; Balberg, Michal

    2015-01-01

    Optical based methods for non-invasive measurement of regional blood flow tend to incorrectly assess cerebral blood flow, due to contribution of extra-cerebral tissues to the obtained signal. We demonstrate that spectral analysis of phase-coded light signals, tagged by specific ultrasound patterns, enables differentiation of flow patterns at different depths. Validation of the model is conducted by Monte Carlo simulation. In-vitro experiments demonstrate good agreement with the simulations' results and provide a solid validation to depth discrimination ability. These results suggest that signal contamination originating from extra-cerebral tissue may be eliminated using spectral analysis of ultrasonically tagged light. PMID:26713201

  14. Multiple acousto-optic q-switch

    DOEpatents

    Deason, Vance A.

    1993-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  15. Multiple acousto-optic q-switch

    DOEpatents

    Deason, Vance A.

    1993-12-07

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  16. Acousto-optic tunable filter imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Reyes, George; Rider, David; Cheng, Li-Jen

    1991-01-01

    A remote sensing multispectral imaging instrument is being developed that uses a high resolution, fast programmable acoustooptic tunable filter (AOTF) as the spectral bandpass filter. A compact and fully computer controllable AOTF-based imaging spectrometer that operates in the visible wavelength range (0.5-0.8 microns) has been built and tested with success. A second imaging spectrometer operating in the near-infrared wavelength range (1.2-2.4 microns) is also under experimental investigation. The design criteria meeting various system issues, such as imaging quality, spectral response, and field of view (FOV), are discussed. An experiment using this AOTF imaging spectrometer breadboard is described.

  17. Narrowing of the linewidth of an optical parametric oscillator by an acousto-optic modulator for the realization of mid-IR noise-immune cavity-enhanced optical heterodyne molecular spectrometry down to 10⁻¹⁰ cm⁻¹ Hz⁻¹/².

    PubMed

    Hausmaninger, Thomas; Silander, Isak; Axner, Ove

    2015-12-28

    The linewidth of a singly resonant optical parametric oscillator (OPO) has been narrowed with respect to an external cavity by the use of an acousto-optic modulator (AOM). This made possible an improvement of the sensitivity of a previously realized OPO-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrument for the 3.2 - 3.9 µm mid-infrared region by one order of magnitude. The resulting system shows a detection sensitivity for methane of 2.4 × 10(-10) cm(-1) Hz(-1∕2) and 1.3 × 10(-10) cm(-1) at 20 s, which allows for detection of both the environmentally important (13)CH(4) and CH(3)D isotopologues in atmospheric samples.

  18. Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator

    NASA Technical Reports Server (NTRS)

    Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung

    2005-01-01

    A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.

  19. Laser Ballistic Sensor Development.

    DTIC Science & Technology

    1987-01-01

    scan rate would be 200 KHz. The practical limit, due to mirror deformation and safety, is well below the mechanical limit. Acousto - optic beam deflectors ...INTRODUCTION..............................................1 OPTICAL TEST SET-UP...................................... 2 DATA...DISTRIBUTION LIST. .. ......... .............. 95 LIST OF ILLUSTRATIONS FisgureLA 1 BRL Optical Breadboard ............................ 4 2 Block Diagram of

  20. MagAO: status and science

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.; Close, Laird M.; Males, Jared R.; Hinz, Phil M.; Esposito, Simone; Riccardi, Armando; Briguglio, Runa; Follette, Katherine B.; Pinna, Enrico; Puglisi, Alfio; Vezilj, Jennifer; Xompero, Marco; Wu, Ya-Lin

    2016-07-01

    "MagAO" is the adaptive optics instrument at the Magellan Clay telescope at Las Campanas Observatory, Chile. MagAO has a 585-actuator adaptive secondary mirror and 1000-Hz pyramid wavefront sensor, operating on natural guide stars from R-magnitudes of -1 to 15. MagAO has been in on-sky operation for 166 nights since installation in 2012. MagAO's unique capabilities are simultaneous imaging in the visible and infrared with VisAO and Clio, excellent performance at an excellent site, and a lean operations model. Science results from MagAO include the first ground-based CCD image of an exoplanet, demonstration of the first accreting protoplanets, discovery of a new wide-orbit exoplanet, and the first empirical bolometric luminosity of an exoplanet. We describe the status, report the AO performance, and summarize the science results. New developments reported here include color corrections on red guide stars for the wavefront sensor; a new field stop stage to facilitate VisAO imaging of extended sources; and eyepiece observing at the visible-light diffraction limit of a 6.5-m telescope. We also discuss a recent hose failure that led to a glycol coolant leak, and the recovery of the adaptive secondary mirror (ASM) after this recent (Feb. 2016) incident.

  1. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of

  2. Ultrasound visualization using polymer dispersed liquid crystal sensors

    NASA Astrophysics Data System (ADS)

    Edwards, R. S.; Trushkevych, O.; Eriksson, T. J. R.; Ramadas, S. N.; Dixon, S.

    2017-02-01

    The acousto-optic effect in liquid crystals (LCs) has previously been exploited to build large area acoustic sensors for visualising ultrasound fields, opening up the field of acoustography. There is an opportunity to simplify this technique and open new application areas by employing polymer dispersed LC (PDLC) thin films instead of aligned LC layers. In PDLCs, the normally opaque film becomes transparent under the influence of an acoustic field (e.g. when surface acoustic waves are propagating in the material under the film). This is called acoustic clearing and is visible by eye. There is potential for producing ultrasonic sensors which can be `painted on' to a component, giving direct visualisation of the ultrasonic field without requiring scanning. We demonstrate the effect by using PDLC films to characterise a resonant mode of a flexural air-coupled transducer. Visualisation was quick, with a switching time of a few seconds. The effect shows promise for ultrasound sensing applications for transducer characterisation and NDE.

  3. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering, Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-15

    optical pulses: (1) using acousto - optic modulators (AOMs) driven with a chirped RF source, ( 2 ) using EOPMs driven with a chirped RF source, (3) utilizing a...holograms (SSH) have the potential to duplicate the functional operation of acousto - optic (AO) deflectors , but with bandwidths (BW) in excess of 10 GHz... acousto - optic deflector to create a scanned optical signal that was recorded in an OCT crystal. The scanner functionality of the AOD was thus

  4. Acousto-Optic Fourier Transform Devices for Surveillance Signal Processing.

    DTIC Science & Technology

    1983-06-30

    diffracted light beams. This scheme is illustrated in Fig. 11, and is essentially a Twyman -Green interferometer . This scheme has not been implemented...1, uses a two-mirror interferometer scheme whereby an imaged scene contains a fringe pattern determined by the mirror separation. An array of...obtained from the individual detectors behind the reticle if there is movement in the field, since in that case the interferometer fringes move across

  5. Three-dimensional acousto-optic spectrum analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Metscher, Brian; Lesh, James R.

    1990-01-01

    A three-dimensional acoustooptic spectrum analyzer with subhertz resolution is demonstrated experimentally. The first and second dimensions are the two spatial dimensions of the output detector array, and the third dimension is time as sampled by the detector array frame rate. A superfine resolution of 0.12 Hz has been achieved.

  6. Acousto-optic processor for autonomous SAR guidance

    NASA Astrophysics Data System (ADS)

    Pape, Dennis R.

    1990-09-01

    This paper describes an acoustooptic signal processor designed to produce real-time spotlight mode synthetic aperture radar (SAR) images for autonomous missile guidance. The processor is designed to maintain a range and azimuth resolution of 2 m. High-quality image formation results from electronic motion compensation applied to each received pulse. The processor controls range sidelobes through a weighting function applied during the correlation process, while azimuth sidelobes are controlled either by weighting or by increasing the corehent integration time.

  7. System Sensitivity Analysis Acousto-Optic Spectrum Analysis Receiver.

    DTIC Science & Technology

    1980-02-01

    facteurs determinants dont il est tenu compte sont notamment le produit temps-largeur de bande et la dur~e d’integration du r ~ seau photod~tecteur. Des...92.0 26 96.0 28 100.5 30 104.0 32 110.0 33 0 w 0 (A W) 9V.LIO UNCLASSIFIED Security Cia.,ficaton OOCUMENT CONTROL DATA - R & D ( :e.rv cla s hmi l...itself is unclassified) represented as ITS), (SI. 1C0, ( R ), or (U). la TOTAL NUMBER OF PAGES’ The total page count should follow otrmal pagination

  8. Incoherent acousto-optic image correlator with the kinoform

    NASA Astrophysics Data System (ADS)

    Starikov, Sergey N.; Rodin, Vladislav G.; Solyakin, Ivan V.; Shapkarina, Ekaterina A.; Chervonkin, Alexander P.

    2004-04-01

    Fourier holograms are commonly used for reference images storing in diffraction correlators with spatially coherent or spatially incoherent illumination. Kinoforms can be a real alternative to Fourier holograms in the correlators. The kinoform represents a computer-synthesized optical element which performs only a phase modulation of a light wave. The kinoform restores true intensity of the recorded image and random distribution of phase. Therefore, it can be utilized for storing reference images, first of all, in correlators with spatially incoherent illumination. The absence of carrier frequency reduces demanded number of pixels of the spatial light modulator being used. Since the kinoform provides reconstruction of reference image in zero diffraction order, requirement on monochromaticity of illumination are decreased as well. The diffraction correlator with the kinoform used as spatial frequency filter is considered. The 2-D acoustooptic deflector was employed to form input images in real time by monochromatic spatially incoherent light. The reference images were recorded on the commercially available kinoforms. The input and reference images were of 256×256 pixels and 200×200 pixels respectively. Since input images were consisted of approximately 400 pixels with non-zero brightness, the image update frequency was gained at 200 Hz. The experimental setup and experimental results on images recognition are presented.

  9. Infrared fiber coupled acousto-optic tunable filter spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, K. H.; Kindler, E.; Ko, T.; Lee, F.; Tran, D. C.; Tapphorn, R. M.

    1990-01-01

    A spectrometer design is introduced which combines an acoustooptic tunable filter (AOTF) and IR-transmitting flouride-glass fibers. The AOTF crystal is fabricated from TeO2 and permits random access to any wavelength in less than 50 microseconds, and the resulting spectrometer is tested for the remote analysis of gases and hydrocarbons. The AOTF spectrometer, when operated with a high-speed frequency synthesizer and optimized algorithms, permits accurate high-speed spectroscopy in the mid-IR spectral region.

  10. SRAO: the first southern robotic AO system

    NASA Astrophysics Data System (ADS)

    Law, Nicholas M.; Ziegler, Carl; Tokovinin, Andrei

    2016-08-01

    We present plans for SRAO, the first Southern Robotic AO system. SRAO will use AO-assisted speckle imaging and Robo-AO-heritage high efficiency observing to confirm and characterize thousands of planet candidates produced by major new transit surveys like TESS, and is the first AO system to be capable of building a comprehensive several-thousand-target multiplicity survey at sub-AU scales across the main sequence. We will also describe results from Robo-AO, the first robotic LGS-AO system. Robo-AO has observed tens of thousands of Northern targets, often using a similar speckle or Lucky-Imaging assisted mode. SRAO will be a moderate-order natural-guide-star adaptive optics system which uses an innovative photoncounting wavefront sensor and EMCCD speckle-imaging camera to guide on faint stars with the 4.1m SOAR telescope. The system will produce diffraction-limited imaging in the NIR on targets as faint as mν = 16. In AO-assisted speckle imaging mode the system will attain the 30-mas visible diffraction limit on targets at least as faint as mν = 17. The system will be the first Southern hemisphere robotic adaptive optics system, with overheads an order of magnitude smaller than comparable systems. Using Robo-AO's proven robotic AO software, SRAO will be capable of observing overheads on sub-minute scales, allowing the observation of at least 200 targets per night. SRAO will attain three times the angular resolution of the Palomar Robo-AO system in the visible.

  11. Retinal AO OCT

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Miller, Donald T.

    The last two decades have witnessed extraordinary advances in optical technology to image noninvasively and at high resolution the posterior segment of the eye. Two of the most impactful technological advancements over this period have arguably been optical coherence tomography (OCT) and adaptive optics (AO). The strengths of these technologies complement each other and when combined have been shown to provide unprecedented, micron-scale resolution (<3 μm) in all three dimensions and sensitivity to image the cellular retina in the living eye. This powerful extension of OCT, that is AO-OCT, is the focus of this chapter. It presents key aspects of designing and implementing AO-OCT systems. Particular attention is devoted to the relevant optical properties of the eye that ultimately define these systems, AO componentry and operation tailored for ophthalmic use, and of course use of the latest technologies and methods in OCT for ocular imaging. It surveys the wide range of AO-OCT designs that have been developed for retinal imaging, with AO integrated into every major OCT design configuration. Finally, it reviews the scientific and clinical studies reported to date that show the exciting potential of AO-OCT to image the microscopic retina and fundus in ways not previously possible with other noninvasive methods and a look to future developments in this rapidly growing field.

  12. SCExAO: First Results and On-Sky Performance

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki

    2014-01-01

    We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control (``speckle nulling''). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 106-107 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.

  13. SCExAO: First Results and On-Sky Performance

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Guyon, Olivier; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki

    2013-01-01

    We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control ("speckle nulling"). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield greater than 90% Strehl ratio and enable 10(exp 6) -10(exp 7) contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.

  14. Open Path Trace Gas Laser Sensors for UAV Deployment

    NASA Astrophysics Data System (ADS)

    Shadman, S.; Mchale, L.; Rose, C.; Yalin, A.

    2015-12-01

    Novel trace gas sensors based on open-path Cavity Ring-down Spectroscopy (CRDS) are being developed to enable remote and mobile deployments including on small unmanned aerial systems (UAS). Relative to established closed-path CRDS instruments, the use of open-path configurations allows removal of the bulky and power hungry vacuum and flow system, potentially enabling lightweight and low power instruments with high sensitivity. However, open path operation introduces new challenges including the need to maintain mirror cleanliness, mitigation of particle optical effects, and the need to measure spectral features that are relatively broad. The present submission details open-path CRDS instruments for ammonia and methane and their planned use in UAS studies. The ammonia sensor uses a quantum cascade laser at 10.3 mm in a configuration in which the laser frequency is continuously swept and a trigger circuit and acousto-optic modulator (AOM) extinguish the light when the laser is resonant with the cavity. Ring-down signals are measured with a two-stage thermoelectrically cooled MCT photodetector. The cavity mirrors have reflectivity of 0.9995 and a noise equivalent absorption of 1.5 ppb Hz-1/2 was demonstrated. A first version of the methane sensor operated at 1.7um with a telecom diode laser while the current version operates at 3.6 um with an interband cascade laser (stronger absorption). We have performed validation measurements against known standards for both sensors. Compact optical assemblies are being developed for UAS deployment. For example, the methane sensor head will have target mass of <4 kg and power draw <40 W. A compact single board computer and DAQ system is being designed for sensor control and signal processing with target mass <1 kg and power draw <10 W. The sensor size and power parameters are suitable for UAS deployment on both fixed wing and rotor style UAS. We plan to deploy the methane sensor to measure leakage and emission of methane from

  15. Portable AOTF Raman integrated Tunable Sensor (RAMiTS) for chemical and biosensing

    NASA Astrophysics Data System (ADS)

    Chen, K.; Martin, M. E.; Vo-Dinh, Tuan

    2005-11-01

    This paper describes the development of a compact, self-contained, and portable Raman Integrated Tunable Sensor (RAMiTS) for chemical and biosensing. The RAMiTS consists of a frequency-stabilized diode laser for excitation, an acousto-optic tunable filter (AOTF) for wavelength discrimination, and an avalanche photodiode (APD) for detection. It can provide direct identification and quantitative analysis of chemical and biological samples in a few seconds under field conditions. Instrument control and data acquisition was coordinated by software developed in house using the C language. Evaluation of this instrument was performed by analyzing several model compounds and the high spectral resolution of this instrument was demonstrated by the discrimination of several structurally similar molecules (benzene, toluene and naphthalene) as well as m-, o-, p- isomers of xylene. The potential applications of the RAMiTS coupled with the surface-enhanced Raman scattering (SERS) for the detection of chemical and biological warfare agents will also be discussed in this paper.

  16. AO Group Annual Report

    SciTech Connect

    Olivier, S

    2005-10-04

    The Adaptive Optics (AO) Group in I Division develops and tests a broad range of advanced wavefront control technologies. Current applications focus on: Remote sensing, High power lasers, Astronomy, and Human vision. In the area of remote sensing, the AO Group leads a collaborative effort with LLNL's Nonproliferation, Arms Control & International Security (NAI) Directorate on Enhanced Surveillance Imaging. The ability to detect and identify individual people or vehicles from long-range is an important requirement for proliferation detection and homeland security. High-resolution imaging along horizontal paths through the atmosphere is limited by turbulence, which blurs and distorts the image. For ranges over {approx}one km, visible image resolution can be reduced by over an order of magnitude. We have developed an approach based on speckle imaging that can correct the turbulence-induced blurring and provide high resolution imagery. The system records a series of short exposure images which freeze the atmospheric effects. We can then estimate the image magnitude and phase using a bispectral estimation algorithm which cancels the atmospheric effects while maintaining object information at the diffraction limit of the imaging system.

  17. Characterization of an AO-OCT system

    SciTech Connect

    Evans, J W; Zawadzki, R J; Jones, S; Olivier, S; Werner, J S

    2007-07-26

    Adaptive optics (AO) and optical coherence tomography (OCT) are powerful imaging modalities that, when combined, can provide high-volumetric-resolution, images of the retina. The AO-OCT system at UC Davis has been under development for 2 years and has demonstrated the utility of this technology for microscopic, volumetric, in vivo retinal imaging [1]. The current system uses an AOptix bimorph deformable mirror (DM) for low-order, high-stroke correction [2] and a 140-actuator Boston Micromachines DM for high-order correction [3]. We are beginning to investigate the potential for increasing the image contrast in this system using higher-order wavefront correction. The first step in this analysis is to quantify the residual wavefront error (WFE) in the current system. Developing an error budget is a common tool for improved performance and system design in astronomical AO systems [4, 5]. The process for vision science systems is also discussed in several texts e.g. [6], but results from this type of analysis have rarely been included in journal articles on AO for vision science. Careful characterization of the AO system will lead to improved performance and inform the design of a future high-contrast system. In general, an AO system error budget must include an analysis of three categories of residual WFE: errors in measuring the phase, errors caused by limitations of the DM(s), and errors introduced by temporal variation. Understanding the mechanisms and relative size of these errors is critical to improving system performance. In this paper we discuss the techniques for characterizing these error sources in the AO-OCT system. It is useful to first calculate an error budget for the simpler case using a model eye, and then add the additional errors introduced for the case of a human subject. Measurement error includes calibration error, wavefront sensor (WFS) CCD noise, and sampling errors. Calibration errors must be measured by an external system. Typically this

  18. The Subaru Coronagraphic Extreme AO Project: Progress and Upgrades

    NASA Astrophysics Data System (ADS)

    Jovanovic, Nemanja; Martinache, F.; Guyon, O.; Clergeon, C.; Garrel, V.

    2013-01-01

    The Subaru Coronagraphic Extreme AO (SCExAO) instrument consists of a high performance Phase Induced Amplitude Apodisation (PIAA) coronagraph combined with an extreme Adaptive Optics (AO) system operating in the near-infrared (H band). The extreme AO system driven by the 2000 element deformable mirror will allow for Strehl ratios>90% to be achieved in the H-band when it goes closed loop. This makes the SCExAO instrument a powerful platform for high contrast imaging down to angular separations of the order of 1 λ/D. In this paper we report on the recent progress in regards to the development of the instrument, which includes the addition of a visible bench that makes use of the light at shorter wavelengths not currently utilized by SCExAO and closing the loop on the tip/tilt wavefront sensor. We will also discuss two exciting guest instruments which will expand the capabilities of SCExAO over the next few years; namely CHARIS which is a integral field spectrograph as well as VAMPIRES, a visible aperture masking experiment based on polarimetric analysis of circumstellar disks.

  19. Co-integration of a smart CMOS image sensor and a spatial light modulator for real-time optical phase modulation

    NASA Astrophysics Data System (ADS)

    Laforest, Timothé; Verdant, Arnaud; Dupret, Antoine; Gigan, Sylvain; Ramaz, François; Tessier, Gilles

    2014-03-01

    We present a CMOS light detector-actuator array, in which every pixel combines a spatial light modulator and a photodiode. It will be used in medical imaging based on acousto-optical coherence tomography with a digital holographic detection scheme. Our architecture is able to measure an interference pattern between a scattered beam transmitted through a scattering media and a reference beam. The array of 16 μm pixels pitch has a frame rate of several kfps, which makes this sensor compliant with the correlation time of light in biological tissues. In-pixel analog processing of the interference pattern allows controlling the polarization of a stacked light modulator and thus, to control the phase of the reflected beam. This reflected beam can then be focused on a region of interest, i.e. for therapy. The stacking of a photosensitive element with a spatial light modulator on the same chip brings a significant robustness over the state of the art such as perfect optical matching and reduced delay in controlling light.

  20. Characterizing and mitigating vibrations for SCExAO

    NASA Astrophysics Data System (ADS)

    Lozi, Julien; Guyon, Olivier; Jovanovic, Nemanja; Singh, Garima; Goebel, Sean; Norris, Barnaby; Okita, Hirofumi

    2016-07-01

    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument, under development for the Subaru Telescope, has currently the fastest on-sky wavefront control loop, with a pyramid wavefront sensor running at 3.5 kHz. But even at that speed, we are still limited by low-frequency vibrations. The current main limitation was found to be vibrations attributed mainly to the rotation of the telescope. Using the fast wavefront sensors, cameras and accelerometers, we managed to identify the origin of most of the vibrations degrading our performance. Low-frequency vibrations are coming from the telescope drive in azimuth and elevation, as well as the elevation encoders when the target is at transit. Other vibrations were found at higher frequency coming from the image rotator inside Subaru's adaptive optics facility AO188. Different approaches are being implemented to take care of these issues. The PID control of the image rotator has been tuned to reduce their high-frequency contribution. We are working with the telescope team to tune the motor drives and reduce the impact of the elevation encoder. A Linear Quadratic Gaussian controller (LQG, or Kalman filter) is also being implemented inside SCExAO to control these vibrations. These solutions will not only improve significantly SCExAOs performance, but will also help all the other instruments on the Subaru Telescope, especially the ones behind AO188. Ultimately, this study will also help the development of the TMT, as these two telescopes share very similar drives.

  1. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-14

    for creating fast (~MHz/µs) linear frequency chirped optical pulses: (1) using acousto - optic modulators (AOMs) driven with a chirped RF source, ( 2 ...the cavity. The frequencies allowed in a Fabry–Perot cavity are: where =1,2,... and optical path length of cavity 2 qcv q d d = = (29) The...the functional operation of acousto - optic (AO) deflectors , but with bandwidths (BW) in excess of 10 GHz and Time-Bandwidth Prod- ucts (TB) over 103 by

  2. Review of AO calibrations, or how to best educate your AO system

    NASA Astrophysics Data System (ADS)

    Kolb, Johann

    2016-07-01

    If the Real-Time Computer is the heart of an AO system, the Wavefront Sensor (WFS) its eyes, the Deformable Mirror (DM) its hands and the control strategy its nervous system, the sum of all those parts is made into a harmonious entity thanks to calibrations. This paper does not have the ambition to provide an overview of all the currently existing calibration strategies, but rather to focus on a few challenging problems and their recent evolution in the era of adaptive telescopes, mostly based on the experience of ESO's Adaptive Optics Instruments in general and the AO Facility in particular. Single most important calibration in post-focal AO system, the recording of the Interaction Matrix (IM) between WFS and DM has since long evolved to use fast modulation techniques, has shown to be feasible on-sky and is now almost free from measurements thanks to its pseudo-synthetic generation, quasi-mandatory solution in an adaptive telescope. Pseudo- because it requires an unprecedented knowledge of the components' characteristics, especially the WFS, DM and the optical registration between the two. Bigger telescopes and the use of Laser Guide Stars (LGS) also mean that the properties of the system will change in time and thus need to be constantly updated thanks to online diagnosis tools for spot size measurement, atmosphere monitoring, Wavefront Sensing and control optimization. New loops come into play like the one to minimize LGS Jitter and the one taking over the telescope active optics by means of offloading the DM low orders, and they all require calibration. More calibration means more time and one has to carefully balance the calibrations that require precious telescope night time, day time or for the best, no telescope time at all. Their importance sometimes underestimated, calibrations have repeatedly shown to be a vital part in the optimum functioning of present and future AO systems.

  3. Characterising latency for AO optical sensors: an implementation

    NASA Astrophysics Data System (ADS)

    Dixon, Thomas; Bennet, Francis; Price, Ian; Rigaut, Francois

    2016-07-01

    The latency of electro-optical components is of high importance in the design of Adaptive Optics systems, as it limits the performance of the control loop. There exists a need for a latency measurement method that can be constructed with simple components found in most Adaptive Optics labs that still provides a measurement accurate to sub-microseconds. Through a combination of research and experimentation, potential methodologies were investigated with the aim of producing reliable latency measurements. This document will discuss one such method, involving coupling a LED pulse output and detected pulse input signals to the same clock for easy comparison. For this method, a proof-of-concept was developed using MATLAB and small analogue electronics, and the performance characterised. This characterisation showed that although there is some merit to the method, improvements are necessary to increase the precision of the measurement to a level usable in Adaptive Optics systems.

  4. Cometas: Das Lendas aos Fatos

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.

    O descobrimento de cometas, devido ao seu aparecimento espetacular, tem registro nas mais antigas culturas humanas. A primeira referência situa-se no ano de 1095 antes de Cristo [a.C.; HO; HO, 1962]. A quantidade de registros de descobrimentos cometários, principalmente provenientes do território chinês em particular e do oriente em geral, aumentou gradualmente a partir do quarto século depois de Cristo (d.C.). É de origem chinesa a primeira referência ao cometa P/Halley no ano de 240 a.C. [VOELZKE, 1993]. Com o desenvolvimento da astronomia relativamente às técnicas observacionais os descobrimentos bem como as observações cometárias aumentaram sensivelmente a partir do século XVII, sendo que a partir do século XIX um novo incremento ocorreu devido ao emprego da fotografia e a resultante melhora de sensibilidade na observação.

  5. NFIRAOS Multiconjugate AO System for TMT

    NASA Astrophysics Data System (ADS)

    Herriot, Glen; Andersen, David; Atwood, Jenny; Byrnes, Peter; Boyer, Corinne; Caputa, Kris; Correia, Carlos; Dunn, Jennifer; Ellerbroek, Brent; Fitzsimmons, Joeleff; Gilles, Luc; Hickson, Paul; Hill, Alexis; Pazder, John; Reshetov, Vlad; Smith, Malcolm; Véran, Jean-Pierre; Wang, Lianqi; Wevers, Ivan

    2011-09-01

    NFIRAOS, the Adaptive Optics system for the Thirty Meter Telescope, is a Multiconjugate Adaptive Optics System of order 60x60 with two deformable mirrors and six laser guide star wavefront sensors. NFIRAOS is 8 x 10 x 5 m (L x W x H) on a Nasmyth Platform and supports three client instruments operating over 0.8 - 2.5 μm wavelength range. In this paper we discuss: NFIRAOS' requirements and architecture; changes to NFIRAOS since the last AO4ELT conference; interior details of NFIRAOS; interfaces to instruments; integration and verification plans. Top-level science requirements include 50% sky coverage at the galactic pole with <187 nm wavefront error. Astrometry is an important science driver - to minimize image distortion, we have recently revised the optical design to use four off-axis paraboloidal mirrors. We have vastly simplified the laser WFS zoom optics and moved them inside the cold enclosure. To control image magnification, differential magnification and tip/tilt/focus, NFIRAOS' client instruments have three low-order warfront sensors monitoring near-infrared natural guide stars. These stars are sharpened by NFIRAOS, which assists sky coverage. NFIRAOS will have high throughput and low thermal background - it will be cooled to -30 °C. The insulated walls have a buried cold plate to intercept heat leakage and isothermalize the interior of NFIRAOS. Instruments have stringent requirements on heat leakage and must provide their own rotator and interface to NFIRAOS, including a rotating seal. For wavelength and flat field calibration of client instruments, a NFIRAOS Science Calibration Unit (NSCU) feeds light in the entrance window, through NFIRAOS, to instruments. Inside NFIRAOS are deployable light sources simulating natural and laser guide stars, a focal plane mask with pinholes illuminated by the NSCU, as well as a turbulence phase screen. A prototype screen has been manufactured by magneto-rheological machining. We are currently updating the NFIRAOS

  6. Piezoelectric resonance enhanced microwave and optoelectronic interactive devices

    NASA Astrophysics Data System (ADS)

    McIntosh, Robert

    Electro-optic (EO) devices that modulate optical signals by electric fields are an integrative part of the photonics industry and device optimization is an important area of research. As applications move to large bandwidth and higher frequency, low electro-optic effects and the requirement for large dimension become restrictive for microwave-optical devices. Both experimental and computational evaluations indicate that strain and polarization distribution have a significant impact on electromagnetic wave propagation resulting from a resonant structure; however, no systematic study or fundamental understandings are available. This dissertation research has been carried out to study and further develop the subject of piezoelectric resonance enhanced electro-acoustic-optic process, in order to improve the sensitivity and efficiency of electro-optic sensors and to explore novel applications. Many finite element models have been constructed for evaluating the mechanisms of the phenomena and the effectiveness of the device structure. The enhancement in transmission is found to be directly related to the strain-coupled local polarization. At piezoelectric resonance oscillating dipoles or local polarizations become periodic in the material and have the greatest impact on transmission. Results suggest that the induced charge distribution by a piezoelectric material at certain resonant frequencies is effective for aiding or impeding the transmission of a propagating wave. The behavior of both piezoelectric-defined (or intrinsic piezoelectric materials) and engineered periodic structures are reported. The piezoelectric response of the surface displacement of samples is investigated using an ultra-high frequency laser Doppler vibrometer. A two dimensional view of the surface is obtained and the surface displacement, velocity and acceleration are compared to the electro-optic response under the resonant condition. A study of the acousto-optic (AO) effect in a family of oxide

  7. Q-switching an all-fiber laser using acousto-optic null coupler

    NASA Astrophysics Data System (ADS)

    Berg, Yuval; Goldring, Sharone; Pearl, Shaul; Arie, Ady

    2013-05-01

    A new method for Q-switching an all-fiber laser is presented. It is based on induced acoustic long period grating operating on a null coupler, which acts as acoustically controlled tunable output coupler. Q-switching is achieved by switching on and off the acoustic wave in a burst mode, thereby generating laser pulses that are ~400 times shorter than the acoustically controlled coupler's rise time. Output pulse energy of 22 μJ and temporal width of ~100 ns were measured at a wavelength of 1.54 μm.

  8. A new high efficiency InP acousto-optic device for IR wavelengths

    NASA Astrophysics Data System (ADS)

    Soos, Jolanta I.; Rosemeier, Ronald G.; Rosenbaum, Joel

    1990-09-01

    InP acoustooptic Bragg cells which are IR-transparent in the 1-10 micron bandpass have a center frequency in the 200-600 MHz range, and a diffraction efficiency of 40-60 percent, on the basis of 1-W RF driving power. These devices are anticipated to be ideal in such applications as fiber-optic modulators, IR scanners, deflectors, and HF mode-lockers. In the course of fabrication, the photoelastic constant p44 has been defined; using other crystallographic configurations, such photoelastic constants as p11 and p12 are expected to emerge.

  9. Acousto-optic back-projection: Physical-model-based sound field reconstruction from optical projections

    NASA Astrophysics Data System (ADS)

    Yatabe, Kohei; Ishikawa, Kenji; Oikawa, Yasuhiro

    2017-04-01

    As an alternative to microphones, optical techniques have been studied for measuring a sound field. They enable contactless and non-invasive acoustical observation by detecting density variation of medium caused by sound. Although they have important advantages comparing to microphones, they also have some disadvantages. Since sound affects light at every points on the optical path, the optical methods observe an acoustical quantity as spatial integration. Therefore, point-wise information of a sound field cannot be obtained directly. Ordinarily, the computed tomography (CT) method has been applied for reconstructing a sound field from optically measured data. However, the observation process of the optical methods have not been considered explicitly, which limits the accuracy of the reconstruction. In this paper, a physical-model-based sound field reconstruction method is proposed. It explicitly formulates the physical observation process so that a model mismatch of the conventional methods is eliminated.

  10. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI.

    PubMed

    Gulkis, S

    1989-01-01

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  11. Acousto-Optical Method of Encoding and Visualization of Underwater Space

    DTIC Science & Technology

    2014-01-27

    neurons which are mathematically described as coupled nonlinear oscillators that are slightly unstable. They have a property called ’ Self - Referential ... self - regulating process which is represented by Equation (5) in the ensuing description. [0083] The input/output circuitry 64 outputs signals that...other words, self -correcting dynamics of the Na and Ca ions in the membranes are closely related to the sensing and the flopping of motion actuators

  12. Space Qualification Issues in Acousto-optic and Electro-optic Devices

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta

    2007-01-01

    Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.

  13. Millimeter-resolution acousto-optic quantitative imaging in a tissue model system

    NASA Astrophysics Data System (ADS)

    Bratchenia, Aliaksandr; Molenaar, Robert; van Leewen, Ton; Kooyman, Rob P. H.

    2009-05-01

    We have investigated the application of ultrasound modulated coherent light for quantitative determination of the ratio of dye concentrations and total concentration of absorbers in a blood vessel-mimicking sample. A 3-mm-diam tube containing the mixture of dyes inside an Intralipid-based gel with optical properties similar to tissue was interrogated by two different laser wavelengths in combination with intense microsecond ultrasound bursts. The use of calibration curves allowed us to extract quantitative information on the ratio of dye concentrations with the accuracy of better than 15%, as well as on the total concentration. Furthermore, we demonstrated the feasibility to obtain a quantitative 3-D map of the absorbing structure with a spatial resolution of better than 3 mm. These findings give an outlook to apply this technique for noninvasive 3-D mapping of oxygen saturation and total concentration of hemoglobin in tissue.

  14. Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications - System issues

    NASA Technical Reports Server (NTRS)

    Yu, Jeffrey; Chao, Tien H.; Cheng, Li-Jen

    1990-01-01

    A recently developed AOTF operating in the visible, 0.4-0.8 micron bandpass is presently compared with other spectrometer designs, with a view to the advantages it may uniquely offer for prospective NASA missions. Since spectral identification is accomplished by this system through the scanning of a few spectral bands, data storage requirements for spectral image analysis can be significantly reduced. Attention is given to spectral and imaging capabilities and their applicability to defense, remote sensing, and industrial uses.

  15. Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications - Breadboard demonstration

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Cheng, Li-Jen; Lambert, Jim

    1990-01-01

    Considerations of performance criteria in image quality, spectral response, programmability, and field-of-view, are presently discussed for a NASA AOTF system. Experimental data obtained with an AOTF imaging spectrometer breadboard are presented. Attention is given to the identification of Nd(3+) contained in bastanite rock by means of this imaging spectrometer.

  16. The Robo-AO software: fully autonomous operation of a laser guide star adaptive optics and science system

    NASA Astrophysics Data System (ADS)

    Riddle, Reed L.; Burse, Mahesh P.; Law, Nicholas M.; Tendulkar, Shriharsh P.; Baranec, Christoph; Rudy, Alexander R.; Sitt, Marland; Arya, Ankit; Papadopoulos, Athanasios; Ramaprakash, A. N.; Dekany, Richard G.

    2012-07-01

    Robo-AO is the first astronomical laser guide star adaptive optics (AO) system designed to operate completely independent of human supervision. A single computer commands the AO system, the laser guide star, visible and near-infrared science cameras (which double as tip-tip sensors), the telescope, and other instrument functions. Autonomous startup and shutdown sequences as well as concatenated visible observations were demonstrated in late 2011. The fully robotic software is currently operating during a month long demonstration of Robo- AO at the Palomar Observatory 60-inch telescope.

  17. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C03

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C03 The IDE mounting plate and the detector frames are coated with a brown stain similiar to that seen on the other experiments in this and other trays located nearby. The stain seems to be slightly darker along the lower edge of the solar sensor mounting plate. The colors and designs seen on the detectors are reflections of the surrounding area. The thin brown film on the detectors metallic surface has resulted in a duller reflection of a technician, in the upper left, and other items.

  18. SCExAO as a precursor to an ELT exoplanet direct imaging instrument

    NASA Astrophysics Data System (ADS)

    Jovanovic, Nemanja; Guyon, Olivier; Martinache, Frantz; Clergeon, Christophe; Singh, Garima; Vievard, Sebastien; Kudo, Tomoyuki; Garrel, Vincent; Norris, Barnaby; Tuthill, Peter; Stewart, Paul; Huby, Elsa; Perrin, Guy; Lacour, Sylvestre

    2013-12-01

    The Subaru Coronagraphic Extreme AO (SCExAO) instrument consists of a high performance Phase Induced Amplitude Apodisation (PIAA) coronagraph combined with an extreme Adaptive Optics (AO) system operating in the near-infrared (H band). The extreme AO system driven by the 2000 element deformable mirror will allow for Strehl ratios>90% to be achieved in the H-band when it goes closed loop. This makes the SCExAO instrument a powerful platform for high contrast imaging down to angular separations of the order of 1 lambda/D and an ideal testbed for exploring coronagraphic techniques for ELTs. In this paper we report on the recent progress in regards to the development of the instrument, which includes the addition of a visible bench that makes use of the light at shorter wavelengths not currently utilized by SCExAO and closing the loop on the tip/tilt wavefront sensor. We will also discuss several exciting guest instruments which will expand the capabilities of SCExAO over the next few years; namely CHARIS which is a integral field spectrograph as well as VAMPIRES, a visible aperture masking experiment based on polarimetric analysis of circumstellar disks. In addition we will elucidate the unique role extreme AO systems will play in enabling high precision radial velocity spectroscopy for the detection of small companions.

  19. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C09 The postflight photograph was taken prior to the experiment tray being removed from the LDEF. The tray corner clamp blocks are un-anodized aluminum and that alone accounts for the major difference in color between the corner clamp blocks and the center clamp blocks. The IDE mounting plate and the detector frames and detectors seem to be in excellent condition. Close inspection of the photograph reveals several locations where impacts on detector surfaces are visible. A faint gold or tan stain can be seen around several of the fasteners and in a rectangular configuration, near the center, along the bottom edge of the detector mounting plate. Stains can also be seen near the top right edge of the solar sensor, on the mounting plate, and around the extreme edges of the solar sensor baseplate. The colors and designs seen on the detectors are reflections of the surrounding area.

  20. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  1. Resolution of the COBE Earth sensor anomaly

    NASA Technical Reports Server (NTRS)

    Sedler, J.

    1993-01-01

    Since its launch on November 18, 1989, the Earth sensors on the Cosmic Background Explorer (COBE) have shown much greater noise than expected. The problem was traced to an error in Earth horizon acquisition-of-signal (AOS) times. Due to this error, the AOS timing correction was ignored, causing Earth sensor split-to-index (SI) angles to be incorrectly time-tagged to minor frame synchronization times. Resulting Earth sensor residuals, based on gyro-propagated fine attitude solutions, were as large as plus or minus 0.45 deg (much greater than plus or minus 0.10 deg from scanner specifications (Reference 1)). Also, discontinuities in single-frame coarse attitude pitch and roll angles (as large as 0.80 and 0.30 deg, respectively) were noted several times during each orbit. However, over the course of the mission, each Earth sensor was observed to independently and unexpectedly reset and then reactivate into a new configuration. Although the telemetered AOS timing corrections are still in error, a procedure has been developed to approximate and apply these corrections. This paper describes the approach, analysis, and results of approximating and applying AOS timing adjustments to correct Earth scanner data. Furthermore, due to the continuing degradation of COBE's gyroscopes, gyro-propagated fine attitude solutions may soon become unavailable, requiring an alternative method for attitude determination. By correcting Earth scanner AOS telemetry, as described in this paper, more accurate single-frame attitude solutions are obtained. All aforementioned pitch and roll discontinuities are removed. When proper AOS corrections are applied, the standard deviation of pitch residuals between coarse attitude and gyro-propagated fine attitude solutions decrease by a factor of 3. Also, the overall standard deviation of SI residuals from fine attitude solutions decrease by a factor of 4 (meeting sensor specifications) when AOS corrections are applied.

  2. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  3. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  4. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray H11

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray H11 The Interplanetary Dust Experiment hardware has a thin brown stain on the exposed surfaces. A deeper brown stain, probably from the material underneath the small electrical cover plate of the detector frame, can be seen in the upper right corner of some of the detectors. Stain that was seen on the solar sensor base plate in the flight photograph cannot be seen because of reflected light. The colors seen in the detector's mirror like surface are reflections of the surrounding area. A dark spot seen on a detector in the third row from the top in the flight photograph, was not found in a postflight inspection. A close inspection of this photograph does reveal several impact damage locations.

  5. Identification of system misregistrations during AO-corrected observations

    NASA Astrophysics Data System (ADS)

    Béchet, C.; Thiébaut, É.; .; Tallon, M.; Kolb, J.; Madec, P.-Y.

    2011-09-01

    The E-ELT will be equipped with a deformable mirror inside the telescope. The performance of reconstruction and control depends on the calibration of the interaction matrix- or a model of the interaction matrix- , which characterizes the system and the relationship between the commands sent to the deformable mirrors (DM) and the wavefront sensors (WFS) slopes. Such a calibration will be more complex than for the current systems at the VLT since it will have to be at least partly measured on sky and for a much larger number of degrees of freedom (more than 5000). In addition, gravity or temperature variations for instance are likely to introduce slow evolution of the matching between the M4 Deformable mirror and the WFS geometry. This can occur during observations and therefore degrade the adaptive optics (AO) correction. To relax the need of frequent painful calibrations and to prevent a loss of performance due to misregistrations, we investigate how to track the evolution of the interaction matrix errors in closed-loop without introducing any degradation in the observations. This is done thanks to identification methods and optimization theory. First, we formally describe the problem and the difficulties of such an identification in closed-loop configuration. Then, we present 2 solutions, based on the optimization of the error of estimates of the WFS slopes, at the output of the closed-loop AO. The performance of the methods and their limitations are discussed formally and thanks to numerical simulations of a high order AO system. We finally explore to which extent these methods currently studied for the Adaptive Optics Facility (AOF) at the VLT can be applied to the E-ELT.

  6. TRANSDUCER FIELD IMAGING USING ACOUSTOGRAPHY

    PubMed Central

    Sandhu, Jaswinder S.; Schoonover, Robert W.; Weber, Joshua I.; Tawiah, J.; Kunin, Vitaliy; Anastasio, Mark A.

    2013-01-01

    A common current practice for transducer field mapping is to scan, point-by-point, a hydrophone element in a 2D raster at various distances from the transducer radiating surface. This approach is tedious, requiring hours of scanning time to generate full cross-sectional and/or axial field distributions. Moreover, the lateral resolution of the field distribution image is dependent on the indexing steps between data points. Acoustography is an imaging process in which an acousto-optical (AO) area sensor is employed to record the intensity of an ultrasound wavefield on a two-dimensional plane. This paper reports on the application of acoustography as a simple but practical method for assessing transducer field characteristics. A case study performed on a commercial transducer is reported, where the radiated fields are imaged using acoustography and compared to the corresponding quantities that are predicted numerically. PMID:23967016

  7. The adaptive optics modes for HARMONI: from Classical to Laser Assisted Tomographic AO

    NASA Astrophysics Data System (ADS)

    Neichel, B.; Fusco, T.; Sauvage, J.-F.; Correia, C.; Dohlen, K.; El-Hadi, K.; Blanco, L.; Schwartz, N.; Clarke, F.; Thatte, N. A.; Tecza, M.; Paufique, J.; Vernet, J.; Le Louarn, M.; Hammersley, P.; Gach, J.-L.; Pascal, S.; Vola, P.; Petit, C.; Conan, J.-M.; Carlotti, A.; Vérinaud, C.; Schnetler, H.; Bryson, I.; Morris, T.; Myers, R.; Hugot, E.; Gallie, A. M.; Henry, David M.

    2016-07-01

    HARMONI is a visible and NIR integral field spectrograph, providing the E-ELT's core spectroscopic capability at first light. HARMONI will work at the diffraction limit of the E-ELT, thanks to a Classical and a Laser Tomographic AO system. In this paper, we present the system choices that have been made for these SCAO and LTAO modules. In particular, we describe the strategy developed for the different Wave-Front Sensors: pyramid for SCAO, the LGSWFS concept, the NGSWFS path, and the truth sensor capabilities. We present first potential implementations. And we asses the first system performance.

  8. Novel algorithm implementations in DARC: the Durham AO real-time controller

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Bitenc, Urban; Jenkins, David

    2016-07-01

    The Durham AO Real-time Controller has been used on-sky with the CANARY AO demonstrator instrument since 2010, and is also used to provide control for several AO test-benches, including DRAGON. Over this period, many new real-time algorithms have been developed, implemented and demonstrated, leading to performance improvements for CANARY. Additionally, the computational performance of this real-time system has continued to improve. Here, we provide details about recent updates and changes made to DARC, and the relevance of these updates, including new algorithms, to forthcoming AO systems. We present the computational performance of DARC when used on different hardware platforms, including hardware accelerators, and determine the relevance and potential for ELT scale systems. Recent updates to DARC have included algorithms to handle elongated laser guide star images, including correlation wavefront sensing, with options to automatically update references during AO loop operation. Additionally, sub-aperture masking options have been developed to increase signal to noise ratio when operating with non-symmetrical wavefront sensor images. The development of end-user tools has progressed with new options for configuration and control of the system. New wavefront sensor camera models and DM models have been integrated with the system, increasing the number of possible hardware configurations available, and a fully open-source AO system is now a reality, including drivers necessary for commercial cameras and DMs. The computational performance of DARC makes it suitable for ELT scale systems when implemented on suitable hardware. We present tests made on different hardware platforms, along with the strategies taken to optimise DARC for these systems.

  9. Real-time control for the high order, wide field DRAGON AO test bench

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Bharmal, Nazim A.; Bitenc, Urban; Dipper, Nigel; Morris, Tim; Myers, Richard; Reeves, Andrew; Younger, Eddy

    2014-07-01

    DRAGON is a high order, wide field AO test-bench at Durham. A key feature of DRAGON is the ability to be operated at real-time rates, i.e. frame rates of up to 1kHz, with low latency to maintain AO performance. Here, we will present the real-time control architecture for DRAGON, which includes two deformable mirrors, eight wavefront sensors and thousands of Shack-Hartmann sub-apertures. A novel approach has been taken to allow access to the wavefront sensor pixel stream, reducing latency and peak computational load, and this technique can be implemented for other similar wavefront sensor cameras with no hardware costs. We report on experience with an ELT-suitable wavefront sensor camera. DRAGON will form the basis for investigations into hardware acceleration architectures for AO real-time control, and recent work on GPU and many-core systems (including the Xeon Phi) will be reported. Additionally, the modular structure of DRAGON, its remote control capabilities, distribution of AO telemetry data, and the software concepts and architecture will be reported. Techniques used in DRAGON for pixel processing, slope calculation and wavefront reconstruction will be presented. This will include methods to handle changes in CN2 profile and sodium layer profile, both of which can be modelled in DRAGON. DRAGON software simulation techniques linking hardware-in-the-loop computer models to the DRAGON real-time system and control software will also be discussed. This tool allows testing of the DRAGON system without requiring physical hardware and serves as a test-bed for ELT integration and verification techniques.

  10. PSF reconstruction for AO photometry and astrometry

    NASA Astrophysics Data System (ADS)

    Ascenso, J.; Neichel, B.; Silva, M.; Fusco, T.; Garcia, P.

    2015-12-01

    Extracting accurate photometry (and astrometry) from images taken with adaptive optics assisted instruments is particularly challenging. Current post-processing tools are not prepared to achieve high accuracy from AO data, especially in limiting cases of crowded fields and marginally resolved sources. We quantify the limitations of these tools with synthetic images, and present a proof-of-concept study showing the potential of using reconstructed PSFs from the (GL)AO system telemetry to increase the measured photometric accuracy. We show that the photometric accuracy is significantly improved with a good PSF reconstruction in considerably crowded regions. We demonstrate the need for a dedicated post-processing tool that incorporates available information about the PSF, as well as the ability to adjust to the spatial variations of the PSF characteristic of AO data.

  11. Twelve thousand laser-AO observations: first results from the Robo-AO large surveys

    NASA Astrophysics Data System (ADS)

    Law, Nicholas M.; Baranec, Christoph; Riddle, Reed L.

    2014-07-01

    Robo-AO is the first AO system which can feasibly perform surveys of thousands of targets. The system has been operating in a fully robotic mode on the Palomar 1.5m telescope for almost two years. Robo-AO has completed nearly 12,000 high-angular-resolution observations in almost 20 separate science programs including exoplanet characterization, field star binarity, young star binarity and solar system observations. We summarize the Robo-AO surveys and the observations completed to date. We also describe the data-reduction pipeline we developed for Robo-AO—the first fully-automated AO data-reduction, point-spread-function subtraction and companion-search pipeline.

  12. Smart sensors

    NASA Astrophysics Data System (ADS)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  13. Smart sensors

    NASA Astrophysics Data System (ADS)

    Corsi, Carlo

    1991-09-01

    The term 'smart sensors' refers to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics, and intelligence applications. In a broad sense, they include any sensor system covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of very large scale integration (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performances. Thus, sophisticated signal processing operations will be developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays, on the same focal plane, avoiding complex computing located far away from the sensors. Recently this approach has achieved higher goals by a new and revolutionary sensor concept which introduces inside the sensor some of the basic functions of living eyes, such as dynamic stare, dishomogeneity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor system. This paper concerns the processing techniques limited to the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by a smart pattern correlation thresholding.

  14. Closed-loop focal plane wavefront control with the SCExAO instrument

    NASA Astrophysics Data System (ADS)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  15. Sensor web

    NASA Technical Reports Server (NTRS)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  16. Aptamer Sensors

    PubMed Central

    Marrazza, Giovanna

    2017-01-01

    In the last years, great progress has been accomplished in the development of aptamer sensors with different transducers. In order to improve the sensitivity of these biosensors, several methodologies have been employed. In this Special Issue, the state of art and the future trends in the field of aptamer sensors have been explored. PMID:28054983

  17. Temperature Sensor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Weed Instrument Inc. produces a line of thermocouples - temperature sensors - for a variety of industrial and research uses. One of the company's newer products is a thermocouple specially designed for high accuracy at extreme temperatures above 3,000 degrees Fahrenheit. Development of sensor brought substantial increases in Weed Instrument sales and employment.

  18. Smart Sensors

    NASA Astrophysics Data System (ADS)

    Corsi, C.

    2007-01-01

    The term "Smart Sensors" refers to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduced inside the sensor some of the basic functions of living eyes, such as dynamic stare, non-uniformity compensation, spatial and temporal filtering. New objectives and requirements are presented for this type of new infrared smart sensor systems. This paper is concerned with the front end of FPA microbolometers processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation thresholding.

  19. MEMS DM development at Iris AO, Inc.

    NASA Astrophysics Data System (ADS)

    Helmbrecht, Michael A.; He, Min; Kempf, Carl J.; Besse, Marc

    2011-03-01

    Iris AO is actively developing piston-tip-tilt (PTT) segmented MEMS deformable mirrors (DM) and adaptive optics (AO) controllers for these DMs. This paper discusses ongoing research at Iris AO that has advanced the state-of-the-art of these devices and systems over the past year. Improvements made to open-loop operation and mirror fabrication enables mirrors to open-loop flatten to 4 nm rms. Additional testing of an anti snap-in technology was conducted and demonstrates that the technology can withstand 100 million snap-in events without failure. Deformable mirrors with dielectric coatings are shown that are capable of handling 630 W/cm2 of incident laser power. Over a localized region on the segment, the dielectric coatings can withstand 100kW/cm2 incident laser power for 30 minutes. Results from the first-ever batch of PTT489 DMs that were shipped to pilot customers are reported. Optimizations made to the open-loop PTT controller are shown to have latencies of 157.5 μs and synchronous array update rates of nearly 6.5 kHz. Finally, plans for the design and fabrication of the next-generation PTT939 DM are presented.

  20. SCExAO: the most complete instrument to characterize exoplanets and stellar environments

    NASA Astrophysics Data System (ADS)

    Lozi, Julien; Guyon, Olivier; Jovanovic, Nemanja; Singh, Garima; Doughty, Danielle; Pathak, Prashant; Goebel, Sean; Kudo, Tomoyuki

    2015-12-01

    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument, currently under development for the Subaru Telescope, optimally combines state-of-the-art technologies to directly study exoplanets and stellar environments at the diffraction limit, both in visible and infrared light (0.6 to 2.4 um). The instrument already includes an ultra-fast visible pyramid wavefront sensor operating at 3.5 kHz, a 2k-actuator deformable mirror, a set of optimal coronagraphs that can work as close as 1 l/D, a low-order wavefront sensor, a high-speed speckle control, and two visible interferometric modules, VAMPIRES and FIRST. Stability of the wavefront correction has already been demonstrated on sky, and SCExAO is already producing scientific results. After the integration of the Integral Field Spectrograph (IFS) CHARIS and a Microwave Kinetic Inductance Detector (MKID) in 2016, SCExAO will be one of the most powerful and effective tools for characterizing exoplanets and disks.

  1. Using the Fingerprinting Method to Customize RTLS Based on the AoA Ranging Technique

    PubMed Central

    Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J.

    2016-01-01

    Real-time Locating Systems (RTLSs) have the ability to precisely locate the position of things and people in real time. They are needed for security and emergency applications, but also for healthcare and home care appliances. The research aims for developing an analytical method to customize RTLSs, in order to improve localization performance in terms of precision. The proposed method is based on Angle of Arrival (AoA), a ranging technique and fingerprinting method along with an analytically defined uncertainty of AoA, and a localization uncertainty map. The presented solution includes three main concerns: geometry of indoor space, RTLS arrangement, and a statistical approach to localization precision of a pair of location sensors using an AoA signal. An evaluation of the implementation of the customized RTLS validates the analytical model of the fingerprinting map. The results of simulations and physical experiments verify the proposed method. The research confirms that the analytically established fingerprint map is the valid representation of RTLS’ performance in terms of precision. Furthermore, the research demonstrates an impact of workspace geometry and workspace layout onto the RTLS’ performance. Moreover, the studies show how the size and shape of a workspace and the placement of the calibration point affect the fingerprint map. Withal, the performance investigation defines the most effective arrangement of location sensors and its influence on localization precision. PMID:27314354

  2. Using the Fingerprinting Method to Customize RTLS Based on the AoA Ranging Technique.

    PubMed

    Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J

    2016-06-14

    Real-time Locating Systems (RTLSs) have the ability to precisely locate the position of things and people in real time. They are needed for security and emergency applications, but also for healthcare and home care appliances. The research aims for developing an analytical method to customize RTLSs, in order to improve localization performance in terms of precision. The proposed method is based on Angle of Arrival (AoA), a ranging technique and fingerprinting method along with an analytically defined uncertainty of AoA, and a localization uncertainty map. The presented solution includes three main concerns: geometry of indoor space, RTLS arrangement, and a statistical approach to localization precision of a pair of location sensors using an AoA signal. An evaluation of the implementation of the customized RTLS validates the analytical model of the fingerprinting map. The results of simulations and physical experiments verify the proposed method. The research confirms that the analytically established fingerprint map is the valid representation of RTLS' performance in terms of precision. Furthermore, the research demonstrates an impact of workspace geometry and workspace layout onto the RTLS' performance. Moreover, the studies show how the size and shape of a workspace and the placement of the calibration point affect the fingerprint map. Withal, the performance investigation defines the most effective arrangement of location sensors and its influence on localization precision.

  3. Multi-conjugate AO for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Béchet, C.; Le Louarn, M.; Tallon, M.; Sánchez-Capuchino, J.; Collados Vera, M.

    2012-07-01

    The European Solar Telescope (EST) will be a 4-meter diameter world-class facility, optimized for studies of the magnetic coupling between the deep photosphere and upper chromosphere. It will specialize in high spatial resolution observations and therefore it has been designed to incorporate an innovative built-in Multi-Conjugate Adaptive Optics system (MCAO). It combines a narrow field high order sensor that will provide the information to correct the ground layer and a wide field low order sensor for the high altitude mirrors used in the MCAO mode. One of the challenging particularities of solar AO is that it has to be able to correct the turbulence for a wide range of observing elevations, from zenith to almost horizon. Also, seeing is usually worse at day-time, and most science is done at visible wavelengths. Therefore, the system has to include a large number of high altitude deformable mirrors. In the case of the EST, an arrangement of 4 high altitude DMs is used. Controlling such a number of mirrors makes it necessary to use fast reconstruction algorithms to deal with such large amount of degrees of freedom. For this reason, we have studied the performance of the Fractal Iterative Method (FriM) and the Fourier Transform Reconstructor (FTR), to the EST MCAO case. Using OCTOPUS, the end-to-end simulator of the European Southern Observatory, we have performed several simulations with both algorithms, being able to reach the science requirement of a homogeneous Strehl higher that 50% all over the 1 arcmin field of view.

  4. LDEF (Prelaunch), AO201 : Interplanetary Dust Experiment, Tray B12

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO201 : Interplanetary Dust Experiment, Tray B12 The prelaunch photograph shows the six (6) inch deep Interplanetary Dust Experiment (IDE) master control tray. The tray has three (3) mounting/cover plates elevated on fiberglass stand-offs to provide clearance and protection for hardware and electronics located underneath. The stand-offs also raise the plates to a level that minimizes shading of detectors by the tray sidewalls. The mounting plate located at the left hand end of the tray is populated with eighty (80) metaloxide-silicon (MOS) capacitor-type impact sensors and one (1) solar sensor that is located approximately in the center of the mounting plate. The IDE sensors are two (2) inch diameter MOS capacitor structures approximately 250 um thick. The detectors are formed by growing either 0.4um or 1.0um thick silicon oxide, SiO2, layer on the 250um thick, B-doped polished silicon wafer. The top metal contact, the visible surface, was formed by vapor deposition of 1000A of aluminum on the SiO2 surface. Aluminum was also vapor deposited on the backside to form the contact with the silicon substrate. Gold wires are bonded to the front and back aluminum layers for use in connecting the detectors to the circuits. The complete wafers, IDE detectors, are mounted on chromic anodized aluminum frames by bonding the detector backside to the aluminum frame with a space qualified RTV silicon adhesive, de-volatized RTV-511. The difference in colors of the detectors is caused by reflections in the metallized surfaces. A reflection of one of the technicians is visible in the three (3) rows of detector on the left hand side of the mounting plate. The solar sensor, located at the mounting plate center, consist of four (4) silicon solar cells connected in series and associated circuity bonded to an aluminum baseplate. The solar sensor registered each orbital sunrise independant of LDEF orientation at the time of sunrise. When IDE solar sensor data from the six

  5. GPS-Based Navigation And Orbit Determination for the AMSAT AO-40 Satellite

    NASA Technical Reports Server (NTRS)

    Davis, George; Moreau, Michael; Carpenter, Russell; Bauer, Frank

    2002-01-01

    The AMSAT OSCAR-40 (AO-40) spacecraft occupies a highly elliptical orbit (HEO) to support amateur radio experiments. An interesting aspect of the mission is the attempted use of GPS for navigation and attitude determination in HEO. Previous experiences with GPS tracking in such orbits have demonstrated the ability to acquire GPS signals, but very little data were produced for navigation and orbit determination studies. The AO-40 spacecraft, flying two Trimble Advanced Navigation Sensor (TANS) Vector GPS receivers for signal reception at apogee and at perigee, is the first to demonstrate autonomous tracking of GPS signals from within a HEO with no interaction from ground controllers. Moreover, over 11 weeks of total operations as of June 2002, the receiver has returned a continuous stream of code phase, Doppler, and carrier phase measurements useful for studying GPS signal characteristics and performing post-processed orbit determination studies in HEO. This paper presents the initial efforts to generate AO-40 navigation solutions from pseudorange data reconstructed from the TANS Vector code phase, as well as to generate a precise orbit solution for the AO-40 spacecraft using a batch filter.

  6. Application thinking on Bian-stone of the acousto-optic effect in the treatment of primary dysmenorrhea

    NASA Astrophysics Data System (ADS)

    Ge, Shu; Chen, Gui-Zhen; Liu, Song-Hao

    2009-08-01

    In order to identify the relations between the Si-Bin Bian-stone of the mineral composition characteristics and Bian-stone of the good infrared emission features. A detailed study of the Sibin Bian-stone samples was conducted by using the laser Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). The study is to provide theoretical physical support for Bian-stone in the treatment of primary dysmenorrhea. And Thermal tomography technology (TTM) is intended to be carried out to assess the effects of Bian-stone. The Raman spectroscopic study confirmed the existence of fine-grained pyrite, anatase, calcitepyrite and graphite. It is believed that the combination of good thermal properties of the above 4 minerals make the Sibin Bian-stone as a useful material with very good physiotherapical functions. The ultrasonic has a resonance with the body's biological molecules so that it can improve meridians microcirculation. Hence, the Sibin Bian-stones can be used to make acupuncture tools for stimulating the circulation of the blood in vessels and relieving pains of human beings by utilizing its infrared thermal radiation property. TTM which accepts the heat produced by the metabolism process of life can reflect the energy status information, TTM will be introduced to evaluate effect at the overall level of the abdomen from the thermal image and analyze to derive a comprehensive diagnosis. In sum, this experiment is explored to provide a new idea for the modernization of traditional Chinese medicine.

  7. FPGA-based phase control of acousto-optic modulator Fourier synthesis system through gradient descent phase-locking algorithm.

    PubMed

    Underwood, Kenneth J; Jones, Andrew M; Gopinath, Juliet T

    2015-06-20

    We present a new application of the stochastic parallel gradient descent (SPGD) algorithm to fast active phase control in a Fourier synthesis system. Pulses (4.9 ns) with an 80 MHz repetition rate are generated by feedback from a single phase-sensitive metric. Phase control is applied via fast current modulation of a tapered amplifier using an SPGD algorithm realized on a field-programmable gate array (FPGA). The waveforms are maintained by constant active feedback from the FPGA. We also discuss the extension of this technique to many more semiconductor laser emitters in a diode laser array.

  8. Acousto-optic effect in a nematic liquid-crystal layer under the binary effect of sound and viscous waves

    SciTech Connect

    Kozhevnikov, E. N.

    2010-03-15

    The optical effect in a liquid crystal cell containing a homeotropic layer of nematic liquid crystal (NLC) is analyzed. An NLC layer, located between crossed polaroids and opaque in the absence of external effect, is cleared after irradiation by an ultrasonic beam with a sharp spatial boundary. This enlightenment is suggested to be caused by the reorientation of crystal molecules in the acoustic flows that arise under the binary effect of the layer compression in the irradiated region and the viscous waves propagating from the layer boundaries. The flows were calculated taking into account the stress caused by the velocity convection and crystal structure relaxation. An expression is derived for the cell transparency, and the relative role of the convection and relaxation processes in the effect is determined.

  9. Sensor technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective is to provide necessary expertise and technology to advance space remote sensing of terrestrial, planetary, and galactic phenomena through the use of electromagnetic and electro-optic properties of gas, liquid, and solid state materials technology. The Sensor Technology Program is divided into two subprograms: a base research and development part and a Civil Space Technology Initiative (CSTI) part. The base research and development consists of research on artificially grown materials such as quantum well and superlattice structure with the potential for new and efficient means for detecting electromagnetic phenomena. Research is also being done on materials and concepts for detector components and devices for measuring high energy phenomena such as UV, X-, and gamma rays that are required observables in astrophysis and solar physics missions. The CSTI program is more mission driven and is balanced among four major disciplines: detector sensors; submillimeter wave sensors; LIDAR/DIAL sensors; and cooler technology.

  10. LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray G10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray G10 The flight/on-orbit photograph of the G10 experi ment tray was taken from the Orbiter aft flight deck during the LDEF retrieval. A light brown stain can be seen on the experiment tray flanges and to a lesser degree on the IDE Chemglaze Z tained their integrity. A light tan stain on the solar sensor base plate, located in the center of the tray, is more easily seen than that on the IDE mounting plate. Surface defects are highly visible due to the lighting conditions existing at the time the photograph was taken. The lighting angle is such that many impact craters can be seen. Two (2) detectors, located in the twenty (20) detector layout in the lower left corner of the tray, seem to have defects. A triangular shaped discoloration appears on the second detector from the left and in the second row from the bottom. Another irregular shaped discoloration can be seen on the fourth detector from the left and in the third row from the bottom. These discolorations appear to be due to material and/or fabrication defects and not reflected light. The blue colors on the detector's mirror like surface are caused by reflections of the LDEF surroundings.

  11. Vegetation indices from active optical sensors in irrigated Durum Wheat: nitrogen and water effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in the use of active optical sensors (AOS) for guiding nitrogen (N) management of crops like wheat (Triticum aestivum L.) has been strong since the mid-1990s. Recently, AOS have been used to assess water status of crops in addition to plant N status. Researchers have investigated vegetati...

  12. Development of a Pyramid Wave-front Sensor

    NASA Astrophysics Data System (ADS)

    El Hadi, Kacem; Vignaux, Mael; Fusco, Thierry

    2013-12-01

    Within the framework of the E-ELT studies, several laboratories are involved on some instruments: HARMONY with its ATLAS adaptive optics [AO] system, EAGLE or EPICS. Most of the AO systems will probably integrate one or several pyramidal wavefront sensors, PWFS (R. Ragazzoni [1]). The coupling in an AO loop and the control in laboratory (then on sky) of this type of sensor is fundamental for the continuation of the projects related to OA systems on the E-ELT. LAM (Laboratory of Astrophysics of Marseille) is involved in particular in the VLT-SPHERE, ATLAS, EPICS projects. For the last few years, our laboratory has been carrying out different R&D activities in AO instrumentation for ELTs. An experimental AO bench is designed and being developed to allow the validation of new wave-front sensing and control concepts [2]. One the objectives of this bench, is the experimental validation of a pyramid WFS. Theoretical investigations on its behavior have been already made. The world's fastest and most sensitive camera system (OCAM2) has been recently developed at LAM (J.L Gach [3], First Light Imaging). Conjugating this advantage with the pyramid concept, we plan to demonstrate a home made Pyramid sensor for Adaptive Optics whose the speed and the precision are the key points. As a joint collaboration with ONERA and Shaktiware, our work aims at the optimization (measurement process, calibration and operation) in laboratory then on the sky of a pyramid sensor dedicated to the first generation instruments for ELTs. The sensor will be implemented on the ONERA ODISSEE AO bench combining thus a pyramid and a Shack-Hartmann wavefront sensors. What would give the possibility to compare strictly these two WFS types and make this bench unique in France and even in Europe. Experimental work on laboratory demonstration is undergoing. The status of our development will presented at the conference.

  13. Bringing the Visible Universe into Focus with Robo-AO

    PubMed Central

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A.N.; Tendulkar, Shriharsh P.; Bui, Khanh; Burse, Mahesh P.; Chordia, Pravin; Das, Hillol K.; Davis, Jack T.C.; Dekany, Richard G.; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Morton, Timothy D.; Ofek, Eran O.; Punnadi, Sujit

    2013-01-01

    focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system2,3 employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope. PMID:23426078

  14. Bringing the visible universe into focus with Robo-AO.

    PubMed

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh P; Bui, Khanh; Burse, Mahesh P; Chordia, Pravin; Das, Hillol K; Davis, Jack T C; Dekany, Richard G; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Morton, Timothy D; Ofek, Eran O; Punnadi, Sujit

    2013-02-12

    a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system, employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.

  15. Bringing the Visible Universe into Focus with Robo-AO

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A. N.; Tendulkar, Shriharsh P.; Bui, Khanh; Burse, Mahesh P.; Chordia, Pravin; Das, Hillol K.; Davis, Jack T. C.; Dekany, Richard G.; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Morton, Timothy D.; Ofek, Eran O.; Punnadi, Sujit

    2013-02-01

    focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.

  16. Deformable mirror designs for extreme AO (XAO)

    NASA Astrophysics Data System (ADS)

    Cavaco, Jeffrey; Wirth, Allan

    2014-08-01

    One of the science missions for the next generation of extremely large ground based telescopes (30-42m apertures) is the imaging and spectroscopy of exoplanets. To achieve that goal an Adaptive Optics (AO) subsystem with a very large number of corrected modes is required. To provide contrast ratios in the range of 10-9 or better for a 42m telescope an AO system with 25,000 to 60,000 channels will be needed. This is approximately an order of magnitude beyond the current state of the art. Adaptive Optics Associates Xinetics has developed the Photonex Module Deformable Mirror (DM) technology specifically to address the needs of extreme AO for high contrast applications. A Photonex Module is a monolithic block of electrostrictive ceramic in which a high density of individually addressable actuators are formed by screen printing of electrodes and partial wire saw cutting of the ceramic. The printed electrode structures also allow all electrical connections to be made at the back surface of the module via flex circuits. Actuator spacings of 1mm or less have been achieved using this approach. The individual modules can be edge butted and bonded to achieve high actuator count. The largest DMs fabricated to date have 4096 actuators in a 64X64mm array. In this paper the engineering challenges in extending this technology by a factor of ten or more in actuator count will be discussed. A conceptual design for a DM suitable for XAO will be presented. Approaches for a support structure that will maintain the low spatial frequency surface figure of this large (~0.6m) DM and for the electrical interface to the tens of thousands of actuators will be discussed. Finally, performance estimates will be presented.

  17. AO corrected satellite imaging from Mount Stromlo

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  18. Bragg grating-based fibre optic sensors in structural health monitoring.

    PubMed

    Todd, Michael D; Nichols, Jonathan M; Trickey, Stephen T; Seaver, Mark; Nichols, Christy J; Virgin, Lawrence N

    2007-02-15

    This work first considers a review of the dominant current methods for fibre Bragg grating wavelength interrogation. These methods include WDM interferometry, tunable filter (both Fabry-Perot and acousto-optic) demultiplexing, CCD/prism technique and a newer hybrid method utilizing Fabry-Perot and interferometric techniques. Two applications using these techniques are described: hull loads monitoring on an all-composite fast patrol boat and bolt pre-load loss monitoring in a composite beam in conjunction with a state-space modelling data analysis technique.

  19. AO Observations of Three Powerful Radio Galaxies

    SciTech Connect

    de Vries, W; van Bruegel, W; Quirrenbach, A

    2002-08-01

    The host galaxies of powerful radio sources are ideal laboratories to study active galactic nuclei (AGN). The galaxies themselves are among the most massive systems in the universe, and are believed to harbor supermassive black holes (SMBH). If large galaxies are formed in a hierarchical way by multiple merger events, radio galaxies at low redshift represent the end-products of this process. However, it is not clear why some of these massive ellipticals have associated radio emission, while others do not. Both are thought to contain SMBHs, with masses proportional to the total luminous mass in the bulge. It either implies every SMBH has recurrent radio-loud phases, and the radio-quiet galaxies happen to be in the ''low'' state, or that the radio galaxy nuclei are physically different from radio-quiet ones, i.e. by having a more massive SMBH for a given bulge mass. Here we present the first results from our adaptive optics imaging and spectroscopy pilot program on three nearby powerful radio galaxies. Initiating a larger, more systematic AO survey of radio galaxies (preferentially with Laser Guide Star equipped AO systems) has the potential of furthering our understanding of the physical properties of radio sources, their triggering, and their subsequent evolution.

  20. The NGS Pyramid wavefront sensor for ERIS

    NASA Astrophysics Data System (ADS)

    Riccardi, A.; Antichi, J.; Quirós-Pacheco, F.; Esposito, S.; Carbonaro, L.; Agapito, G.; Biliotti, V.; Briguglio, R.; Di Rico, G.; Dolci, M.; Ferruzzi, D.; Pinna, E.; Puglisi, A.; Xompero, M.; Marchetti, E.; Fedrigo, E.; Le Louarn, M.; Conzelmann, R.; Delabre, B.; Amico, P.; Hubin, N.

    2014-07-01

    ERIS is the new Single Conjugate Adaptive Optics (AO) instrument for VLT in construction at ESO with the collaboration of Max-Planck Institut fuer Extraterrestrische Physik, ETH-Institute for Astronomy and INAF - Osservatorio Astrofisico di Arcetri. The ERIS AO system relies on a 40×40 sub-aperture Pyramid Wavefront Sensor (PWFS) for two operating modes: a pure Natural Guide Star high-order sensing for high Strehl and contrast correction and a low-order visible sensing in support of the Laser Guide Star AO mode. In this paper we present in detail the preliminary design of the ERIS PWFS that is developed under the responsibility of INAF-Osservatorio Astrofisico di Arcetri in collaboration with ESO.

  1. Teal Ruby Experiment. Phase I Definition Study. Volume I. Part 2. Appendixes

    DTIC Science & Technology

    1977-05-01

    the optics and fixed filters * Hughes Aircraft Company for the monolithic focal plane and processor * Rockwell International Science Center for... filters , and pointing sub- system; manufacture and subsystem test of these elements * Final assembly and system level tests of the complete sensor system...LOCKHEED MISSILES & SPACE COMPANY. INC. LMSC-5699533 WADIM I. DOBROV - Acousto-Optical Tunable Filter Assemblies Responsibilities * Detailed design, analysis

  2. Water Sensors

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.

  3. Diferentes Metodologias Aplicadas ao Ensino de Astronomia

    NASA Astrophysics Data System (ADS)

    Albrecht, E.; Voelzke, M. R.

    2007-08-01

    Espera-se que o educando ao final da educação básica, adquira uma compreensão atualizada das hipóteses, modelos e formas de investigação sobre a origem e evolução do Universo em que vive. O presente trabalho tem como principal objetivo compreender dentre três práticas pedagógicas adotadas no Ensino de Astronomia, na terceira série do Ensino Médio, da Escola Estadual Colônia dos Pescadores, qual melhor cumpre o papel de formação e aprendizagem para vida. A pesquisa preliminar foi através de um questionário onde o intuito foi diagnosticar o conhecimento já existente acerca do tema em questão. O questionário é composto de vinte questões dissertativas e objetivas, onde os educandos das três turmas envolvidas o responderam. Este trabalho utiliza as seguintes metodologias: a tradicional, onde o professor é um repassador de informações, fazendo uso exclusivo de lousa e giz; a segunda também de forma tradicional, porém com auxílio de multimídia para desenvolvimento das aulas e aterceira sob forma de seminários, elaborados e apresentados pelos educandos, no qual o educador faz apenas as intervenções necessárias. Ao final do trabalho os alunos responderão novamente o questionário inicial para diagnosticar dentre as três metodologias utilizadas qual apresentou melhor resultado. Os resultados preliminares obtidos, já podem ser observados e, dos 119 alunos entrevistados, as respostas obtidas são as mais diversas e evidenciam que a grande maioria nunca teve em sua vida escolar o tema Astronomia. Ao serem questionados se já haviam estudado Astronomia as respostas foram: turma A: sim 43%; turma B: sim: 21%; turma C: sim: 24%. Porém quando questionados a respeito do significado de Astronomia observou-se que: turma A: 100% de acertos; turma B: 64% acertos; turma C: 84% de acertos, demonstrando claramente a aprendizagem em diferentes esferas, não dependendo unicamente da escola. Até o presente momento, verificou-se que há interesse em

  4. AO Infrared Imaging of M71 Core

    NASA Astrophysics Data System (ADS)

    Ruberg, Andres; Richer, H.; Brewer, J.; Davis, S.; Hickson, P.; Knigge, C.; Dieball, A.; Hurley, J.; Shara, M.; Hansen, B.; Gebhardt, K.; Fahlman, G.

    2007-05-01

    In this poster we present infrared H and K AO data taken with ALTAIR/NIRI on Gemini North of the globular cluster Messier 71. This data represents approximately 22ks of observations in H and 17ks in K, in a field 22x22 arcsec centered on the core of the cluster. These data were secured under superb conditions and will provide an excellent opportunity to pursue our scientific goals. These goals include the observation of the end of hydrogen-burning main sequence in a moderately metal-rich globular cluster and, by fitting the brightness profile and looking for deviations from a King model, we will search for evidence for a central black hole in this cluster.

  5. Sensor apparatus

    DOEpatents

    Deason, Vance A [Idaho Falls, ID; Telschow, Kenneth L [Idaho Falls, ID

    2009-12-22

    A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

  6. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  7. Gas sensor

    SciTech Connect

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  8. Chemical sensor

    NASA Technical Reports Server (NTRS)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  9. A Full-Color, High-Resolution Laser Projector for a Flight Simulator Visual Display

    DTIC Science & Technology

    1993-08-01

    Acousto - optic deflectors work in a similar manner as the acousto - optic modulator. The difference is...that acousto - optic deflectors vary acoustic drive frequency to deflect the beam where the acousto - optic modulator varies acoustic drive amplitude to... acousto - optic modulators, deflectors , and high-speed polygon mirror scanners, cost-effective laser projection can be attained. These new

  10. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray B12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray B12 The postflight photograph shows little change of the exposed surfaces when compared with the prelaunch photograph. Although not noticable in the photograph, a light coating of contamination was seen on all experiment surfaces in this location. The difference in colors of the IDE detectors, located on the right hand mounting plate, is a result of the reflected surroundings and not related to space exposure. A close observation of the detector surfaces reveal that some damage has occured from meteroid and/or debris impacts. One impact crater can be seen, upper right quadrant, on the detector located in the sixth (6th) row down from the top and the fifth (5th) row from the right. Other impacts, smaller in size, show as small white dots on the detector surface. The solar sensor seems to have changed little, if any. However, the color of the solar array baseplate, showing indications of contamination, appears to be darker than the detector mounting plate. The center section cover plate shows little change when compared with the pre-launch photograph. However, during inspection, a light coat of the brown contamination has been observed on all surfaces. The color of the bonding material (RTV) used to secure several thin specimen, sapphire, to individual mounting plates has changed from pink to gold. At one location, that of a single specimen, the bonding material is more gray than gold in color. This has been attributed to the specimen being considerably thicker. The EPDS thermal cover in the right hand side of the tray shows a light coating of brown contamination on the Chemglaze II A-276 white paint.

  11. 589 nm sum-frequency generation laser for the LGS/AO of Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Saito, Yoshihiko; Hayano, Yutaka; Saito, Norihito; Akagawa, Kazuyuki; Takazawa, Akira; Kato, Mayumi; Ito, Meguru; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras; Guyon, Olivier; Hattori, Masayuki; Oya, Shin; Watanabe, Makoto; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2006-06-01

    We developed a high power and high beam quality 589 nm coherent light source by sum-frequency generation in order to utilize it as a laser guide star at the Subaru telescope. The sum-frequency generation is a nonlinear frequency conversion in which two mode-locked Nd:YAG lasers oscillating at 1064 and 1319 nm mix in a nonlinear crystal to generate a wave at the sum frequency. We achieved the qualities required for the laser guide star. The power of laser is reached to 4.5 W mixing 15.65 W at 1064 nm and 4.99 W at 1319 nm when the wavelength is adjusted to 589.159 nm. The wavelength is controllable in accuracy of 0.1 pm from 589.060 and 589.170 nm. The stability of the power holds within 1.3% during seven hours operation. The transverse mode of the beam is the TEM 00 and M2 of the beam is smaller than 1.2. We achieved these qualities by the following technical sources; (1) simple construction of the oscillator for high beam quality, (2) synchronization of mode-locked pulses at 1064 and 1319 nm by the control of phase difference between two radio frequencies fed to acousto-optic mode lockers, (3) precise tunability of wavelength and spectral band width, and (4) proper selection of nonlinear optical crystal. We report in this paper how we built up each technical source and how we combined those.

  12. AO modelling for wide-field E-ELT instrumentation using Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Morris, Simon; Morris, Tim; Myers, Richard

    2014-08-01

    Extensive simulations of AO performance for several E-ELT instruments (including EAGLE, MOSAIC, HIRES and MAORY) have been ongoing using the Monte-Carlo Durham AO Simulation Package. We present the latest simulation results, including studies into DM requirements, dependencies of performance on asterism, detailed point spread function generation, accurate telescope modelling, and studies of laser guide star effects. Details of simulations will be given, including the use of optical models of the E-ELT to generate wave- front sensor pupil illumination functions, laser guide star modelling, and investigations of different many-layer atmospheric profiles. We discuss issues related to ELT-scale simulation, how we have overcome these, and how we will be approaching forthcoming issues such as modelling of advanced wavefront control, multi-rate wavefront sensing, and advanced treatment of extended laser guide star spots. We also present progress made on integrating simulation with AO real-time control systems. The impact of simulation outcomes on instrument design studies will be discussed, and the ongoing work plan presented.

  13. LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Law, Nicholas; Morton, Timothy; Ziegler, Carl; Nofi, Larissa; Atkinson, Dani; Riddle, Reed

    2015-12-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets. We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys. Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss plans to extend the survey to other transiting planet missions such as K2 and TESS as Robo-AO is in the process of being re-deployed to the 2.1-m telescope at Kitt Peak for 3 years and a higher-contrast Robo-AO system is being developed for the 2.2-m UH telescope on Maunakea.

  14. On-sky AO test bench

    NASA Astrophysics Data System (ADS)

    Brousseau, Denis; Thibault, Simon; Lavigne, Jean-François; Véran, Jean-Pierre

    2016-07-01

    With the upcoming construction of ELTs, several existing technologies are being pushed beyond their performance limit and it became essential to develop and evaluate alternatives. We present a specifically designed focal plane box which will allow to evaluate, directly on-sky, the performance of a number of next generation adaptive optics related technologies The system will able us to compare the performance of several new wavefront sensors in contrast to a Shack-Hartman wavefront sensor. The system has been designed for the "Observatoire du Mont Mégantic" (OMM) which hosts a telescope having a 1.6-meter diameter primary. The OMM telescope, located halfway between Montreal and Quebec City, is known to be an excellent location to develop and test precursor instruments which can then be upscaled to larger telescopes (ex. SPIOMM which led to SITELLE at the CFHT). We present the results of the first run made at the telescope and also identify problems that were encountered. We also propose a series of modifications to the system that will help to solve these issues.

  15. Directly Imaging Planets with SCExAO: First Results

    NASA Astrophysics Data System (ADS)

    Currie, Thayne M.; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Tamura, Motohide; Kudo, Tomoyuki; Uyama, Taichi; Garcia, Eugenio

    2017-01-01

    We present the first science results from the newly commissioned Subaru Coronagraphic Extreme Adaptive Optics project, an experimental system dedicated to image faint jovian planets around nearby stars. SCExAO is now achieving true extreme AO capability. We describe the typical performance of SCExAO, the first images of benchmark exoplanets and planet-forming disks, and SCExAO’s first science results. Finally, we briefly chart the path forward for SCExAO to achieve its full scientific capability, including imaging mature planets in reflected light.

  16. Pressure sensor

    DOEpatents

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  17. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  18. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  19. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  20. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  1. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  2. Electromagnetic DM technology meets future AO demands

    NASA Astrophysics Data System (ADS)

    Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten; Doelman, Niek

    New deformable mirror technology is developed by the Technische Universiteit Eindhoven, Delft University of Technology and TNO Science and Industry. Several prototype adaptive deformable mirrors are realized mirrors, up to 427 actuators and ∅150mm diameter, with characteristics suitable for future AO systems. The prototypes consist of a 100µm thick, continuous facesheet on which low voltage, electromagnetic, push-pull actuators impose out-of-plane displacements. The variable reluctance actuators with ±10µm stroke and nanometer resolution are located in a standard actuator module. Each module with 61 actuators connects to a single PCB with dedicated, 16 bit, PWM based, drivers. A LVDS multi-drop cable connects up to 32 actuator modules. With the actuator module, accompanying PCB and multi-drop system the deformable mirror technology is made modular in its mechanics and electronics. An Ethernet-LVDS bridge enables any commercial PC to control the mirror using the UDP standard. Latest results of the deformable mirror technology development are presented.

  3. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  4. WIYN active optics: a platform for AO

    NASA Astrophysics Data System (ADS)

    Code, Arthur D.; Claver, Charles F.; Goble, Larry W.; Jacoby, George H.; Sawyer, David G.

    1998-09-01

    The WIYN 3.5 meter telescope is situated on the southwest ridge of Kitt Peak yielding excellent atmosphere seeing conditions. As such, the telescope and enclosure design was directed towards exploiting this feature. The primary mirror was spun cast and figured by the Steward Observatory Mirror Laboratory and the secondary mirror by Contraves. In both cases the performance exceeded the design specifications. The borosilicate primary is actively temperature controlled to within 0.2 C of the desired temperature, typically 0.5 degrees C below the ambient air. The telescope structure is also temperature controlled and the enclosure is opened to the outside ion all sides, which all heat sources are vented to ducts carrying air downwind of the facility. The primary mirror is actively controlled for low order aberrations by 66 axial actuators which are adjusted open loop via force matrix look-up tables and closed loop via real-time wavefront curvature sensing measurements. The active optics also included real-time collimation and focus control. The telescope drive and guider are capable of providing tracking to a few hundredths of a second of arc. By employing active telescope control at this level, it is possible to maintain telescope and local wavefront distortion to a level where atmospheric effects dominate the image quality. Since a significant fraction of the power in the atmospheric disturbances is contained in image motion the first step in adaptive optics control will be simple tip tilt. Studies of higher order AO system are being carried out, as well as additional test characterizing the telescope and site. It is intended to continue such studies in an attempt to establish long term variances.

  5. Robo-AO: Performance and Characterization at Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Tendulkar, Shriharsh P.; Baranec, C.; Riddle, R. L.; Ramaprakash, A. N.; Law, N. M.; Kulkarni, S. R.; Dekany, R.; Bui, K.; Davis, J.; Burse, M.; Das, H.; Punnadi, S.; Chordia, P.

    2013-01-01

    Hosted at the Palomar 60-inch telescope, Robo-AO is the world's first completely autonomous, laser-beacon supported adaptive optics (AO) system, delivering diffraction-limited images in the visible and IR wavelengths. With simultaneous turbulence monitoring using a MASS-DIMM instrument, we have characterized the performance of Robo-AO as a function of local seeing, turbulence profile, laser return power and the brightness of the tip-tilt star. We shall present the various AO metrics: The full-width at half maxima of the point spread function, the Strehl ratio, the isoplanatic angle and their variations with the atmospheric and operating conditions. Strategies for optimizing robotic AO observations based on varying conditions will be discussed.

  6. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  7. Influenza sensor

    DOEpatents

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2003-09-30

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  8. Influenza Sensor

    DOEpatents

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2005-05-17

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  9. Influenza Sensor

    DOEpatents

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2006-03-28

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  10. The path to visible extreme adaptive optics with MagAO-2K and MagAO-X

    NASA Astrophysics Data System (ADS)

    Males, Jared R.; Close, Laird M.; Guyon, Olivier; Morzinski, Katie M.; Hinz, Philip; Esposito, Simone; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Riccardi, Armando; Puglisi, Alfio; Mazin, Ben; Ireland, Michael J.; Weinberger, Alycia; Conrad, Al; Kenworthy, Matthew; Snik, Frans; Otten, Gilles; Jovanovic, Nemanja; Lozi, Julien

    2016-07-01

    The next generation of extremely large telescopes (ELTs) have the potential to image habitable rocky planets, if suitably optimized. This will require the development of fast high order "extreme" adaptive optics systems for the ELTs. Located near the excellent site of the future GMT, the Magellan AO system (MagAO) is an ideal on-sky testbed for high contrast imaging development. Here we discuss planned upgrades to MagAO. These include improvements in WFS sampling (enabling correction of more modes) and an increase in speed to 2000 Hz, as well as an H2RG detector upgrade for the Clio infrared camera. This NSF funded project, MagAO-2K, is planned to be on-sky in November 2016 and will significantly improve the performance of MagAO at short wavelengths. Finally, we describe MagAO-X, a visible-wavelength extreme-AO "afterburner" system under development. MagAO-X will deliver Strehl ratios of over 80% in the optical and is optimized for visible light coronagraphy.

  11. Photorefractive Integrators and Correlators

    DTIC Science & Technology

    1992-12-01

    The use of photorefractive crystals as optically addressed time integrating spatial light modulators in acousto - optic signal processing applications...adaptive acousto - optic processor. These results demonstrated the feasibility of using photorefractives for such applications.... Photorefractive, Acousto - optic processor.

  12. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  13. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  14. Microcantilever sensor

    DOEpatents

    Thundat, T.G.; Wachter, E.A.

    1998-02-17

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.

  15. Microcantilever sensor

    DOEpatents

    Thundat, Thomas G.; Wachter, Eric A.

    1998-01-01

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere.

  16. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  17. AO 0235+164 and Surrounding Field: Surprising HST Results

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Beaver, E. A.; Cohen, Ross D.; Junkkarinen, V. T.; Lyons, R. W.

    1996-01-01

    Results obtained with the Hubble Space Telescope on the highly variable radio, x-ray, and gamma-ray emitting QSO (or BL Lac object) AO 0235 + 164 are presented and analyzed. WFPC2 images were obtained in 1994 June, when AO 0235 + 164 was bright (m approx. 17), and the results are described in Sec. 3. After subtraction of the PSF of the QSO, hereafter called AO following the nomenclature of Yanny et al. (1989), the companion object named A, 2 sec south of AO, is discovered not to be an elliptical galaxy as hypothesized earlier, but to be an AGN object, with a central UV-bright point-source nucleus and faint surrounding nebulosity extending to AO. The second companion object 1.3 sec east of AO discovered by Yanny et al. (1989) and named object Al, appears more like a normal spiral galaxy. We have measured the positions, luminosities, and colors of some 30 faint objects in the field around AO 0235 + 16; most are extended and may be star-forming galaxies in a loose group or cluster. Our most surprising result of the HST observations comes from FOS spectra obtained in 1995 July, discussed in Sec. 4. Because of a positioning error of the telescope and AO's faintness at that time (m approx. 20), object A was observed instead of the intended target AO. Serendipitously, we discovered A to have broad deep BALQSO-type absorptions of C IV, Si IV, N V shortward of broad emissions. A is thus ejecting high velocity, highly ionized gas into the surrounding IGM. We discuss in Sec. 5 the relationship of the objects in the central 10 sec X 1O sec region around AO, where redshifts z(sub e) = 0.94, z(sub a) = 0.524, 0.851 in AO, (sub e) = 0.524 and Z(sub BAL)=0.511 in A, are found. We hypothesize that some of the 30 faint objects in the 77 sec. x 77 sec. field may be part of a large star-forming region at z approx. 0.5, as suggested for a few objects by Yanny et al. (1989). The proximity of two highly active extragalactic objects, AO 0235+164 and its AGN companion A, is remarkable and

  18. Sensors for Entertainment.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  19. Sensors, Update 1

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    1996-12-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Treatments include current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Furthermore, the sensor market as well as peripheral aspects such as standards are covered. Each volume is divided into four sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides an overview of suppliers and market trends for a particular section, and Sensor Standards, reviews recent legislation and requirements for sensors. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  20. Mass Sensor

    SciTech Connect

    Adams, B.E.

    2001-01-18

    The purpose of this CRADA was to use Honeywell's experience in low temperature cofire ceramics and traditional ceramics to assemble a relatively low-cost, mass-producible miniature mass analyzer. The specific design, given to us by Mass Sensors, LLC, was used to test for helium. The direct benefit for the participant was to have a prototype unit assembled for the purpose of proof of concept and the ability to secure venture capital investors. From that, the company would begin producing their own product for sale. The consumer/taxpayer benefits come from the wide variety of industries that can utilize this technology to improve quality of life. Medical industry can use this technology to improve diagnostic ability; manufacturing industry can use it for improved air, water, and soil monitoring to minimize pollution; and the law enforcement community can use this technology for identification of substances. These are just a few examples of the benefit of this technology. The benefits to DOE were in the area of process improvement for cofire and ceramic materials. From this project we demonstrated nonlinear thickfilm fine lines and spaces that were 5-mil wide with 5-mil spaces; determined height-to diameter-ratios for punched and filled via holes; demonstrated the ability to punch and fill 5-mil microvias; developed and demonstrated the capability to laser cut difficult geometries in 40-mil ceramic; developed and demonstrated coupling LTCC with standard alumina and achieving hermetic seals; developed and demonstrated three-dimensional electronic packaging concepts; and demonstrated printing variable resistors within 1% of the nominal value and within a tightly defined ratio. The capability of this device makes it invaluable for many industries. The device could be used to monitor air samples around manufacturing plants. It also could be used for monitoring automobile exhaust, for doing blood gas analysis, for sampling gases being emitted by volcanoes, for studying

  1. FlyEyes: A CCD-Based Wavefront Sensor for PUEO, the CFHT Curvature AO System

    DTIC Science & Technology

    2010-09-28

    but have been known to fail. Furthermore, curvature systems with large numbers of subapertures are now in operation and the cost of individual APDs...Astronomy and Astrophysics , National Taiwan University, Taipei, Taiwan, R.O.C. Gerry Luppino GL Scientific, 3367 Waialae avenue, Honolulu, Hawaii 96816...Furthermore, curvature systems with large numbers of subapertures are now in operation and the cost of individual APDs may become prohibitive for

  2. The Robo-AO automated intelligent queue system

    NASA Astrophysics Data System (ADS)

    Riddle, Reed L.; Hogstrom, Kristina; Papadopoulos, Athanasios; Baranec, Christoph; Law, Nicholas M.

    2014-07-01

    Robo-AO is the first automated laser adaptive optics instrument. In just its second year of scientific operations, it has completed the largest adaptive optics surveys to date, each comprising thousands of targets. Robo-AO uses a fully automated queue scheduling system that selects targets based on criteria entered on a per observing program or per target basis, and includes the ability to coordinate with US Strategic Command automatically to avoid lasing space assets. This enables Robo-AO to select among thousands of targets at a time, and achieve an average observation rate of approximately 20 targets per hour.

  3. LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey

    NASA Astrophysics Data System (ADS)

    Law, Nicholas Michael; Baranec, Christoph; Morton, Timothy; Ziegler, Carl; Atkinson, Dani; Riddle, Reed

    2015-08-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets.We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys.Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss several KOIs of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are ``coincident multiple'' systems, with several transiting planets shared between the two stars. Finally, we will discuss and update the 98%-confidence evidence from our survey that third bodies in star/planet systems produce an excess of close-in giant planets.

  4. Real-time processing for the ATST AO system

    NASA Astrophysics Data System (ADS)

    Richards, K.; Rimmele, T.

    The real-time processing requirements for the four meter Advanced Technology Solar Telescope extended source high order adaptive optics system will be approximately 15 times that of the Dunn Solar Telescope AO systems on which the ATST AO system is based. The ATST AO, with its approximately 1232 subapertures, will use massively parallel processing and is based on Analog Devices TigerSHARC DSPs as the central processing units. We will discuss the requirements for processing and data handling and the architecture of the correlating Shack-Hartmannn and reconstructor processing unit and present the results of bench-mark testing of the DSP hardware that was selected for the ATST AO system.

  5. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem.

  6. Visible AO Observations at Halpha for Accreting Young Planets

    NASA Astrophysics Data System (ADS)

    Close, L. M.; Follette, K.; Males, J. R.; Morzinski, K.; Rodigas, T. J.; Hinz, P.; Wu, Y.-L.; Apai, D.; Najita, J.; Puglisi, A.; Esposito, S.; Riccardi, A.; Bailey, V.; Xompero, M.; Briguglio, R.; Weinberger, A.

    2014-01-01

    We utilized the new high-order (250-378 mode) Magellan Adaptive Optics system (MagAO) to obtain very high-resolution science in the visible with MagAO's VisAO CCD camera. In the good-median seeing conditions of Magellan (0.5-0.7'') we find MagAO delivers individual short exposure images as good as 19 mas optical resolution. Due to telescope vibrations, long exposure (60s) r' (0.63μm) images are slightly coarser at FWHM = 23-29 mas (Strehl ~ 28%) with bright (R < 9 mag) guide stars. These are the highest resolution filled-aperture images published to date. Images of the young (~ 1 Myr) Orion Trapezium θ1 Ori A, B, and C cluster members were obtained with VisAO. In particular, the 32 mas binary θ1 Ori C 1 C 2 was easily resolved in non-interferometric images for the first time. Relative positions of the bright trapezium binary stars were measured with ~ 0.6-5 mas accuracy. In the second commissioning run we were able to correct 378 modes and achieved good contrasts (Strehl>20% on young transition disks at Hα). We discuss the contrasts achieved at Hα and the possibility of detecting low mass (~ 1-5 Mjup) planets (past 5AU) with our new SAPPHIRES survey with MagAO at Hα.

  7. Carbon Dioxide Sensor Technology.

    DTIC Science & Technology

    1983-04-01

    identify the promising sensor concepts is provided in this section along with the basic conclusions that were reached regarding avail- able sensor techniques ...63 Estimated Operating Characteristics ... .......... 65 Conclusions and Recommendations (SAW) ... ......... 68 Calorimetric Technique ...Desired Sensor Properties. .. .. ... .. ... .. ..... 8 Table 2A. Candidate Sensor Techniques . .. .. ... .. ... .. ... 14 Selected for Further Analysis

  8. Sensor response rate accelerator

    DOEpatents

    Vogt, Michael C.

    2002-01-01

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  9. Wireless ferroelectric resonating sensor.

    PubMed

    Viikari, Ville; Seppa, Heikki; Mattila, Tomi; Alastalo, Ari

    2010-04-01

    This paper presents a passive wireless resonating sensor that is based on a ferroelectric varactor. The sensor replies with its data at an intermodulation frequency when a reader device illuminates it at 2 closely located frequencies. The paper derives a theoretical equation for the response of such a sensor, verifies the theory by simulations, and demonstrates a temperature sensor based on a ferroelectric varactor.

  10. LDEF (Prelaunch), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09

    NASA Technical Reports Server (NTRS)

    1983-01-01

    LDEF (Prelaunch), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 EL-1994-00302 LDEF (Prelaunch), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) on the LDEF. The Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) occupies a 6 inch deep LDEF peripheral experiment tray and consist of two series connected variable conductance heatpipes, a black chrome solar collector panel and a silvered TEFLON® radiator panel, a power source to support six thermistor-type temperature monitoring sensors and actuations of two valves. Fiberglass standoffs and internal insulation blankets thermally isolated the experiment from the experiment tray and the LDEF interior. The outside of the CVCHPE, except the collector and radiator panels, was covered with an aluminumized Kapton multilayer insulation (MLI) blanket with an outer layer of 0.076 mm thick Kapton. The two patches of thin film materials, part of Experiment S1001 by NASA GSFC, were attached to the cover of the external thermal blanket with Kapton tape. The experiment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners.

  11. AO WFS detector developments at ESO to prepare for the E-ELT

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Casali, Mark; Finger, Gert; Lewis, Steffan; Marchetti, Enrico; Mehrgan, Leander; Ramsay, Suzanne; Reyes, Javier

    2016-07-01

    ESO has a very active on-going AO WFS detector development program to not only meet the needs of the current crop of instruments for the VLT, but also has been actively involved in gathering requirements, planning, and developing detectors and controllers/cameras for the instruments in design and being proposed for the E-ELT. This paper provides an overall summary of the AO WFS Detector requirements of the E-ELT instruments currently in design and telescope focal units. This is followed by a description of the many interesting detector, controller, and camera developments underway at ESO to meet these needs; a) the rationale behind and plan to upgrade the 240x240 pixels, 2000fps, "zero noise", L3Vision CCD220 sensor based AONGC camera; b) status of the LGSD/NGSD High QE, 3e- RoN, fast 700fps, 1760x1680 pixels, Visible CMOS Imager and camera development; c) status of and development plans for the Selex SAPHIRA NIR eAPD and controller. Most of the instruments and detector/camera developments are described in more detail in other papers at this conference.

  12. Demonstration of the suitability of GPUs for AO real-time control at ELT scales

    NASA Astrophysics Data System (ADS)

    Bitenc, Urban; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.

    2016-07-01

    We have implemented the full AO data-processing pipeline on Graphics Processing Units (GPUs), within the framework of Durham AO Real-time Controller (DARC). The wavefront sensor images are copied from the CPU memory to the GPU memory. The GPU processes the data and the DM commands are copied back to the CPU. For a SCAO system of 80x80 subapertures, the rate achieved on a single GPU is about 700 frames per second (fps). This increases to 1100 fps (1565 fps) if we use two (four) GPUs. Jitter exhibits a distribution with the root-mean-square value of 20 μs-30 μs and a negligible number of outliers. The increase in latency due to the pixel data copying from the CPU to the GPU has been reduced to the minimum by copying the data in parallel to processing them. An alternative solution in which the data would be moved from the camera directly to the GPU, without CPU involvement, could be about 10%-20% faster. We have also implemented the correlation centroiding algorithm, which - when used - reduces the frame rate by about a factor of 2-3.

  13. Nanotube Sensors

    NASA Technical Reports Server (NTRS)

    McEuen, Paul L.

    2002-01-01

    Under this project, we explored the feasibility of utilizing carbon nanotubes in sensing applications. The grant primarily supported a graduate student, who worked on a number of aspects of the electrical properties of carbon nanotubes in collaboration with other researchers in my group. The two major research accomplishments are described below. The first accomplishment is the demonstration that solution carbon nanotube transistors functioned well in an electrolyte environment. This was important for two reasons. First, it allowed us to explore the ultimate limits of nanotube electronic performance by using the electrolyte as a highly effective gate, with a dielectric constant of approximately 80 and an effective insulator thickness of approximately 1 nm. Second, it showed that nanotubes function well under biologically relevant conditions (salty water) and therefore offer great promise as biological sensors. The second accomplishment was the demonstration that a voltage pulse applied to an AFM tip could be used to electrically cut carbon nanotubes. We also showed that a carefully applied pulse could also 'nick' a nanotube, creating a tunnel barrier without completely breaking the tube. Nicking was employed to make, for example, a quantum dot within a nanotube.

  14. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  15. Sensors, Update 2

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    1996-10-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Furthermore, the sensor market as well as peripheral aspects such as standards are covered. Each volume is divided into four sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  16. EDITORIAL: Humidity sensors Humidity sensors

    NASA Astrophysics Data System (ADS)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  17. Sensor sentinel computing device

    DOEpatents

    Damico, Joseph P.

    2016-08-02

    Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.

  18. Beyond the Blur: Construction and Characterization of the First Autonomous AO System, and, An AO Survey of Magnetar Proper Motions

    NASA Astrophysics Data System (ADS)

    Tendulkar, Shriharsh Prakash

    Adaptive optics (AO) corrects distortions created by atmospheric turbulence and delivers diffraction-limited images on ground-based telescopes. The vastly improved spatial resolution and sensitivity has been utilized for studying everything from the magnetic fields of sunspots upto the internal dynamics of high-redshift galaxies. This thesis about AO science from small and large telescopes is divided into two parts: Robo-AO and magnetar kinematics. In the first part, I discuss the construction and performance of the world's first fully autonomous visible light AO system, Robo-AO, at the Palomar 60-inch telescope. Robo-AO operates extremely efficiently with an overhead < 50s, typically observing about 22 targets every hour. We have performed large AO programs observing a total of over 7,500 targets since May 2012. In the visible band, the images have a Strehl ratio of about 10% and achieve a contrast of upto 6 magnitudes at a separation of 1‧‧. The full-width at half maximum achieved is 110-130 milli-arcsecond. I describe how Robo-AO is used to constrain the evolutionary models of low-mass pre-main-sequence stars by measuring resolved spectral energy distributions of stellar multiples in the visible band, more than doubling the current sample. I conclude this part with a discussion of possible future improvements to the Robo-AO system. In the second part, I describe a study of magnetar kinematics using high-resolution near-infrared (NIR) AO imaging from the 10-meter Keck II telescope. Measuring the proper motions of five magnetars with a precision of upto 0.7 milli-arcsecond/yr -1, we have more than tripled the previously known sample of magnetar proper motions and proved that magnetar kinematics are equivalent to those of radio pulsars. We conclusively showed that SGR 1900+14 and SGR 1806-20 were ejected from the stellar clusters with which they were traditionally associated. The inferred kinematic ages of these two magnetars are 6 +/- 1.8 kyr and 650 +/-3 00

  19. Sensor modules for wireless distributed sensor networks

    SciTech Connect

    Lee, A P; McConaghy, C F; Simon, J N; Benett, W; Jones, L; Trevino, J

    1999-02-22

    A national security need as well as environmental monitoring need exists for networks of sensors. The advantages of a network of sensors over a single sensor are improved range, sensitivity, directionality, and data readability. Depending upon the particular application, sensors can be acoustic, chemical, biological, thermal or inertial. A major desire in these sensor networks is to have the individual sensor and associated electronics small and low enough in power that the battery can also be small and of long life. Smaller, low power sensor nodes can allow more nodes per network. A typical network for security applications is depicted in Figure 1. Here a number of sensor nodes are deployed around a central hub node in a star configuration. In this scenario the hubs communicate with each other and ultimately relay information to a satellite. Future networks might follow this scenario or some other network architecture such as a hopping network where individual nodes communicate directly with each other. The focus of our research has been on development of the small low power nodes and less on the overall network topology. However, some consideration of the network must be given when designing the nodes and some consideration of the nodes must be given when designing the network. An individual sensor node contains not only the sensor but also the sensor interface electronics, analog to digital (A/D) converter, logic, RF communication link, antenna, and the battery. Future nodes will also contain some form of signal processing to allow more sophisticated network architectures. The FY98 goal for this project was to make a sensor node with a physical form factor of a 2 inch x 2 inch x 2 inch cube.

  20. Sensors, Update 9

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    2001-10-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  1. Sensors, Update 10

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Fedder, Gary K.; Korvink, Jan G.

    2002-04-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  2. Sensors, Update 12

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Fedder, Gary K.; Korvink, Jan G.

    2003-04-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  3. Sensors, Update 8

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    2001-02-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections: Sensor Technology reviews highlights in applied and basic research, while Sensor Applications covers new or improved applications of sensors, and Sensor Markets provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be invaluable to scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  4. Post-Coronagraph Wavefront Sensor for Gemini Planet Imager

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick; Pueyo, Laurent; Soummer, Remi; Shelton, Chris; Bartos, Randall; Fregoso, Felipe; Nemati, Bijan; Best, Paul; Angione, John

    2009-01-01

    The calibration wavefront system for the Gemini Planet Imager (GPI) will measure the complex wavefront at the apodized pupil and provide slow phase errors to the AO system to mitigate against image plane speckles that would cause a loss in contrast. This talk describes both the low-order and high-order sensors in the calibration wavefront sensor and how the information is combined to form the wavefront estimate before the coronagraph. We will show laboratory results from our calibration testbed that demonstrate the subsystem performance at levels commensurate with those required on the final instrument.

  5. The Gemini Planet Imager Calibration Wavefront Sensor Instrument

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick S.; Bartos, Randall D.; Trinh, Thang Q.; Pueyo, Laurent A.; Fregoso, Santos F.; Angione, John R.; Shelton, J. Chris

    2010-01-01

    The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10(exp -7) within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.

  6. Second generation Robo-AO instruments and systems

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Chun, Mark R.; Lu, Jessica R.; Connelley, Michael S.; Hall, Donald; Atkinson, Dani; Jacobson, Shane

    2014-07-01

    The prototype Robo-AO system at the Palomar Observatory 1.5-m telescope is the world's first fully automated laser adaptive optics instrument. Scientific operations commenced in June 2012 and more than 12,000 observations have since been performed at the ~0.12" visible-light diffraction limit. Two new infrared cameras providing high-speed tip-tilt sensing and a 2' field-of-view will be integrated in 2014. In addition to a Robo-AO clone for the 2-m IGO and the natural guide star variant KAPAO at the 1-m Table Mountain telescope, a second generation of facility-class Robo-AO systems are in development for the 2.2-m University of Hawai'i and 3-m IRTF telescopes which will provide higher Strehl ratios, sharper imaging, ~0.07", and correction to λ = 400 nm.

  7. Initial Performance of the Keck AO Wavefront Controller System

    SciTech Connect

    Johansson, E M; Acton, D S; An, J R; Avicola, K; Beeman, B V; Brase, J M; Carrano, C J; Gathright, J; Gavel, D T; Hurd, R L; Lai, O; Lupton, W; Macintosh, B A; Max, C E; Olivier, S S; Shelton, J C; Stomski, P J; Tsubota, K; Waltjen, K E; Watson, J A; Wizinowich, P L

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements to the controller performance are discussed.

  8. High-Performance CCSDS AOS Protocol Implementation in FPGA

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) space data link protocol provides a framing layer between channel coding such as LDPC (low-density parity-check) and higher-layer link multiplexing protocols such as CCSDS Encapsulation Service, which is described in the following article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS AOS protocol implementation needs to be optimized to both reduce energy consumption and operate at a high rate.

  9. Initial performance of the Keck AO wavefront controller system

    NASA Astrophysics Data System (ADS)

    Johansson, Erik M.; Acton, D. Scott; An, Jong R.; Avicola, Kenneth; Beeman, Bart V.; Brase, James M.; Carrano, Carmen J.; Gathright, John; Gavel, Donald T.; Hurd, Randall L.; Lai, Olivier; Lupton, William; Macintosh, Bruce A.; Max, Claire E.; Olivier, Scot S.; Shelton, J. Christopher; Stomski, Paul J.; Tsubota, Kevin; Waltjen, Kenneth E.; Watson, James A.; Wizinowich, Peter L.

    2000-07-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements to the controller performance are discussed.

  10. Learning sensor models for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ertin, Emre

    2007-04-01

    Sensor data generation is a key component of high fidelity design and testing of applications at scale. In addition to its utility in validation of applications and network services, it provides a theoretical basis for the design of algorithms for efficient sampling, compression and exfiltration of the sensor readings. Modeling of the environmental processes that gives rise to sensor readings is the core problem in physical sciences. Sensor modeling for wireless sensor networks combine the physics of signal generation and propagation with models of transducer saturation and fault models for hardware. In this paper we introduce a novel modeling technique for constructing probabilistic models for censored sensor readings. The model is an extension of the Gaussian process regression and applies to continuous valued readings subject to censoring. We illustrate the performance of the proposed technique in modeling wireless propagation between nodes of a wireless sensor network. The model can capture the non-isotropic nature of the propagation characteristics and utilizes the information from the packet reception failures. We use measured data set from the Kansei sensor network testbed using 802.15.4 radios.

  11. A Prediction of the Damping Properties of Hindered Phenol AO-60/polyacrylate Rubber (AO-60/ACM) Composites through Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Yang, Da-Wei; Zhao, Xiu-Ying; Zhang, Geng; Li, Qiang-Guo; Wu, Si-Zhu

    2016-05-01

    Molecule dynamics (MD) simulation, a molecular-level method, was applied to predict the damping properties of AO-60/polyacrylate rubber (AO-60/ACM) composites before experimental measures were performed. MD simulation results revealed that two types of hydrogen bond, namely, type A (AO-60) -OH•••O=C- (ACM), type B (AO-60) - OH•••O=C- (AO-60) were formed. Then, the AO-60/ACM composites were fabricated and tested to verify the accuracy of the MD simulation through dynamic mechanical thermal analysis (DMTA). DMTA results showed that the introduction of AO-60 could remarkably improve the damping properties of the composites, including the increase of glass transition temperature (Tg) alongside with the loss factor (tan δ), also indicating the AO-60/ACM(98/100) had the best damping performance amongst the composites which verified by the experimental.

  12. Electrochemical Sensors: Functionalized Silica

    SciTech Connect

    Fryxell, Glen E.; Lin, Yuehe; Yantasee, Wassana

    2009-03-24

    This chapter summarizes recent devellopment of electrochemical sensors based on functionlized mesoporous silica materials. The nanomatrials based sensors have been developed for sensitive and selective enrironmental detection of toxic heavy metal and uranium ions.

  13. Air Sensor Toolbox

    EPA Pesticide Factsheets

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  14. Multi Sensor Array

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Voska, Ned (Technical Monitor)

    2002-01-01

    This paper presents viewgraphs on the Multi Sensor Array. The topics include: 1) MSA Algorithm; 2) Types of Sensors for the MSA; 3) How to test the MSA; 4) Monte Carlo Simulation; and 5) Accelerated Life Tests.

  15. Wake Vortex Sensors Requirements Overview

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1997-01-01

    The presentation includes discussions of primary wake vortex system requirements, evolution models, sensor evolution, site specific sensor tradeoffs, wake sensor functions, deployment considerations, the operational test bed system and additional sensor requirements.

  16. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  17. Secure Sensor Platform

    SciTech Connect

    Troy Ross, Barry Schoeneman

    2010-08-25

    The Secure Sensor Platform (SSP) software provides a framework of functionality to support the development of low-power autonomous sensors for nuclear safeguards. This framework provides four primary functional blocks of capabilities required to implement autonomous sensors. The capabilities are: communications, security, power management, and cryptography. Utilizing this framework establishes a common set of functional capabilities for seamless interoperability of any sensor based upon the SSP concept.

  18. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  19. Giant magnetoresistive sensor

    DOEpatents

    Stearns, Daniel G.; Vernon, Stephen P.; Ceglio, Natale M.; Hawryluk, Andrew M.

    1999-01-01

    A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

  20. Directional Acoustic Density Sensor

    DTIC Science & Technology

    2010-09-13

    fluctuations of fluid density at a point . (2) DESCRIPTION OF THE PRIOR ART [0004] Conventional vector sensors measure particle velocity, v (vx,Vytvz...dipole-type or first order sensor that is realized by measuring particle velocity at a point , (which is the vector sensor sensing approach for...underwater sensors), or by measuring the gradient of the acoustic pressure at two closely spaced (less than the wavelength of an acoustic wave) points as it

  1. Course Material Model in A&O Learning Environment.

    ERIC Educational Resources Information Center

    Levasma, Jarkko; Nykanen, Ossi

    One of the problematic issues in the content development for learning environments is the process of importing various types of course material into the environment. This paper describes a method for importing material into the A&O open learning environment by introducing a material model for metadata recognized by the environment. The first…

  2. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  3. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  4. Sensors for Entertainment

    PubMed Central

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored. PMID:27428981

  5. Micro sun sensor

    NASA Technical Reports Server (NTRS)

    Liebe, C. C.; Mobasser, S.; Wrigley, C. J.; Bae, Y.; Howard, A.; Schroeder, J.

    2002-01-01

    A new generation of sun sensors is emerging. These sun sensors utilize an imaging detector and the sun sensor determines the sun angles based on an image of fringes or centroids on the detector plane. Typically determines the sun angle in two axes.

  6. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  7. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  8. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  9. Multifuctional integrated sensors (MFISES).

    SciTech Connect

    Homeijer, Brian D.; Roozeboom, Clifton

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  10. Sensor mount assemblies and sensor assemblies

    DOEpatents

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  11. Multimission unattended ground sensor

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Succi, George P.; Fitzgerald, James; Clapp, Daniel; Gampert, Robert; Martel, Philip O.

    2002-08-01

    Technological advances in a number of fields have allowed SenTech to develop a highly capable Unattended Ground Sensor (UGS) able to perform a number of critical missions such as ground and air vehicle surveillance, personnel detection and tracking and sniper localization. These sensors have also been combined with electro-optic sensors to provide target images and improved tracking accuracy. Processing is done in a highly integrated processing module developed under DARPA's IUGS program. Acoustic sensors have been engineered to achieve a three-pound unit with a 15 day field life and long range VHF communications. These sensors will be delivered in early 2002 for testing during field exercises. Extensive testing of the algorithms and software has been conducted over the last few years at a variety of government-sponsored tests and demonstrations. A Gateway unit has been developed which can manage the operation of an eight-sensor field and perform two-dimensional sensor fusion.

  12. Silicon force sensor

    DOEpatents

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  13. Digital Sensor Technology

    SciTech Connect

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.; Bockhorst, Richard M.

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  14. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    SciTech Connect

    Limb, Scott J.

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  15. Real-time control system verification for ELT AO systems

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Myers, Richard; Morris, Tim; Bharmal, Nazim; Bitenc, Urban; Dipper, Nigel; Reeves, Andrew; Gendron, Eric; Rousset, Gérard; Hubert, Zoltan; Vidal, Fabrice; Matin, Olivier; Gratadour, Damien; Chemla, Fanny

    2013-12-01

    ELT AO systems have demanding computational requirements for real-timecontrol. These systems are required to be fully tested and robustbefore commissioning so that valuable on-sky time is not wasted. Inthis talk I will report recent work at Durham on our ELT AO real-timecontrol system, algorithms that we use to improve robustness, anddevelopment of an end-to-end testing environment that will allow fulltesting of real-time control systems, including both Monte-Carlosimulation and hardware approaches. The talk will include experiencegained with CANARY, how the robustness of this system has beenimproved, and our experience operating with four laser guide stars. Workcarried out in this area on the DRAGON test-bench will also bedescribed.

  16. Solid State Humidity Sensors

    NASA Astrophysics Data System (ADS)

    Chang, Song-Lin

    There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.

  17. High-Resolution Imaging of Asteroids/Satellites with AO

    NASA Astrophysics Data System (ADS)

    Merline, William

    2012-02-01

    We propose to make high-resolution observations of asteroids using AO, to measure size, shape, and pole position (spin vectors), and/or to search for satellites. We have demonstrated that AO imaging allows determination of the pole/dimensions in 1 or 2 nights on a single target, rather than the years of observations with lightcurve inversion techniques that only yield poles and axial ratios, not true dimensions. Our new technique (KOALA) combines AO imaging with lightcurve and occultation data for optimum size/shape determinations. We request that LGS be available for faint targets, but using NGS AO, we will measure several large and intermediate asteroids that are favorably placed in spring/summer of 2012 for size/shape/pole. Accurately determining the volume from the often-irregular shape allows us to derive densities to much greater precision in cases where the mass is known, e.g., from the presence of a satellite. We will search several d! ozen asteroids for the presence of satellites, particularly in under-studied populations, particularly NEOs (we have recently achieved the first-ever optical image of an NEO binary [Merline et al. 2008b, IAUC 8977]). Satellites provide a real-life lab for testing collisional models. We will search for satellites around special objects at the request of lightcurve observers, and we will make a search for debris in the vicinity of Pluto, in support of the New Horizons mission. Our shape/size work requires observations over most of a full rotation period (typically several hours).

  18. Mid - infrared solid state lasers for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Terekhov, Yuri

    This work is devoted to study of novel high power middle-infrared (Mid-IR) laser sources enabling development of portable platform for sensing of organic molecules with the use of recently discovered Quartz Enhanced Photo Acoustic Spectroscopy (QEPAS). The ability to detect small concentrations is beneficial to monitor atmosphere pollution as well for biomedical applications such as analysis of human breath to detect earlier stages of cancer or virus activities. A QEPAS technique using a quartz tuning fork (QTF) as a detector enables a strong enhancement of measured signal when pump laser is modulated with a frequency coinciding with a natural frequency of a QTF. It is known that the detectability of acousto-optics based sensors is proportional to the square root of the laser intensity used for detection of analyte. That is the reason why commercially available semiconductor Mid-IR lasers having small output power limit sensitivity of modern QEPAS based sensors. The lack of high power broadly tunable lasers operating with a modulation frequency of quartz forks (~ 32.768 kHz) is the major motivation of this study. Commercially available Mid-IR (2-3.3 microm), single frequency, continuous wave (CW) fiber pumped lasers based on transition metal doped chalcogenides (e.g. Cr:ZnSe) prove to be efficient laser sources for organic molecules detection. However, their direct modulation is limited to several kHz, and cannot be directly used in combination with QEPAS. Hence, one objective of this work is to study and develop fiber laser pumped Ho:YAG (Er:YAG)/Cr:ZnSe tandem laser system/s. Ho (Holmium) and/or Er (Erbium) ions having long radiation lifetime (~ 10 ms) can effectively accumulate population inversion under CW fiber laser excitation. Utilization of acousto-optic (AO) modulators in the cavity of Ho:YAG (Er:YAG) laser will enable effective Q-Switching with repetition rate easily reaching the resonance frequency of a QTF. It is expected that utilization of Ho:YAG (Er

  19. LDEF results for polymer matrix composite experiment AO 180

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.

    1992-01-01

    This report represents a summary of the results obtained to-date on a polymer matrix composite experiment (AO 180) located at station D-12, about 82 deg off the 'ram' direction. Different material systems comprised of graphite, boron, and aramid (Kevlar) fiber reinforcements were studied. Although previous results were presented on in-situ thermal-vacuum cycling effects, particularly dimensional changes associated with outgassing, additional comparative data will be shown from ground-based tests on control and flight samples. The system employed was fully automated for thermal-vacuum cycling using a laser interferometer for monitoring displacements. Erosion of all three classes of materials due to atomic oxygen (AO) will also be discussed, including angle of incidence effects. Data from this experiment will be compared to published results for similar materials in other LDEF experiments. Composite materials' erosion yields will be presented on an AO design nomogram useful for estimating total material loss for given exposure conditions in low Earth orbit (LEO). Optical properties of these materials will also be compared with control samples. A survey of the damage caused by micrometeoroids/debris impacts will be addressed as they relate to polymer matrix composites. Correlations between hole size and damage pattern will be given. Reference to a new nomogram for estimating the number distribution of micrometeoroid/debris impacts for a given space structure as a function of time in LEO will be addressed based on LDEF data.

  20. Single-shot retinal imaging with AO spectral OCT

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Rha, Jungtae; Jonnal, Ravi S.; Miller, Donald T.

    2005-04-01

    We demonstrate for the first time an adaptive optics (AO) spectral OCT retina camera that acquires with unprecedented 3D resolution (2.9 μm lateral; 5.5 μm axial) single shot B-scans of the living human retina. The camera centers on a Michelson interferometer that consists of a superluminescent diode for line illuminating the subject's retinal; voice coil translator for controlling the optical path length of the reference channel; and an imaging spectrometer that is cascaded with a 12-bit area CCD array. The imaging spectrometer was designed with negligible off-axis aberrations and was constructed from stock optical components. AO was integrated into the detector channel of the interferometer and dynamically compensated for most of the ocular aberration across a 6 mm pupil. Short bursts of B-scans, with 100 Ascans each, were successfully acquired at 1 msec intervals. Camera sensitivity was found sufficient to detect reflections from all major retinal layers. Individual outer segments of photoreceptors at different retinal eccentricities were observed in vivo. Periodicity of the outer segments matched cone spacing as measured from AO flood illuminated images of the same patches of retina.

  1. AO Distal Radius Fracture Classification: Global Perspective on Observer Agreement.

    PubMed

    Jayakumar, Prakash; Teunis, Teun; Giménez, Beatriz Bravo; Verstreken, Frederik; Di Mascio, Livio; Jupiter, Jesse B

    2017-02-01

    Background The primary objective of this study was to test interobserver reliability when classifying fractures by consensus by AO types and groups among a large international group of surgeons. Secondarily, we assessed the difference in inter- and intraobserver agreement of the AO classification in relation to geographical location, level of training, and subspecialty. Methods A randomized set of radiographic and computed tomographic images from a consecutive series of 96 distal radius fractures (DRFs), treated between October 2010 and April 2013, was classified using an electronic web-based portal by an invited group of participants on two occasions. Results Interobserver reliability was substantial when classifying AO type A fractures but fair and moderate for type B and C fractures, respectively. No difference was observed by location, except for an apparent difference between participants from India and Australia classifying type B fractures. No statistically significant associations were observed comparing interobserver agreement by level of training and no differences were shown comparing subspecialties. Intra-rater reproducibility was "substantial" for fracture types and "fair" for fracture groups with no difference accounting for location, training level, or specialty. Conclusion Improved definition of reliability and reproducibility of this classification may be achieved using large international groups of raters, empowering decision making on which system to utilize. Level of Evidence Level III.

  2. MITRE sensor layer prototype

    NASA Astrophysics Data System (ADS)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  3. Liquid level sensor

    SciTech Connect

    Kulkarni, Atul; Karekar, R.N.; Aiyer, R.C.

    2005-10-15

    The article reports an idea of using a simple, cantilever-type load cell with a rod as a level sensor for continuous liquid level measurements. The sensor is based on the principle of the Archimedes buoyancy principle. The density and geometry of the rod govern the choice of the load cell. The length of the rod is governed by the height of the tank. A series of cyclic tests have demonstrated a highly repeatable response of the sensor. The accuracy of this low-cost sensor is field tested and found to be {+-}0.5% of the full range, for a 10 m level of water in a tank, and is working reliably for the period of 18 months. The sensor range can be easily extended to lower and higher tank heights. The sensor is crowned by its easy installation and calibration.

  4. Magnetic current sensor

    NASA Technical Reports Server (NTRS)

    Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)

    1998-01-01

    A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.

  5. Intelligent Sensors Security

    PubMed Central

    Bialas, Andrzej

    2010-01-01

    The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408) used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC) related security design patterns and to improve the effectiveness of the sensor development process. PMID:22315571

  6. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  7. Clementine sensor suite

    SciTech Connect

    Ledebuhr, A.G.

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  8. Working Group Report: Sensors

    SciTech Connect

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  9. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  10. Sensors reduce car emissions

    SciTech Connect

    Paula, G.

    1996-11-01

    Advanced control and diagnostic sensors play a key role in antipollution devices such as catalytic converters, electronic fuel injection, and exhaust-gas recirculation systems. Technologies such as catalytic converters, electronic fuel injection, and exhaust-gas recirculation (EGR) systems have decreased automobile emissions approximately 90 percent from their 1960 levels. The cornerstone of many of these emissions-control technologies are sensors that provide feedback and control. Any sensor--particularly those installed under an automobile hood--must withstand harsh conditions, such as intense heat, shock, continual vibration, corrosive gases, and electromagnetic fields. As a result microelectromechanical-system sensors, though widely used in automobiles, have not been applied to emissions monitoring and pollution control because they are not rugged enough to survive inside an engine. Most automobile sensors use mature technologies, but newer technologies such as fiber-optic sensors will be installed in vehicles within the next few years.

  11. SIMS chemical and isotopic analysis of impact features from LDEF experiments AO187-1 and AO187-2

    NASA Technical Reports Server (NTRS)

    Stadermann, Frank J.; Amari, Sachiko; Foote, John; Swan, Pat; Walker, Robert M.; Zinner, Ernst

    1995-01-01

    Previous secondary ion mass spectrometry (SIMS) studies of extended impact features from LDEF capture cell experiment AO187-2 showed that it is possible to distinguish natural and man-made particle impacts based on the chemical composition of projectile residues. The same measurement technique has now been applied to specially prepared gold target impacts from experiment AO187-1 in order to identify the origins of projectiles that left deposits too thin to be analyzed by conventional energy-dispersive x-ray (EDX) spectroscopy. The results indicate that SIMS may be the method of choice for the analysis of impact deposits on a variety of sample surfaces. SIMS was also used to determine the isotopic compositions of impact residues from several natural projectiles. Within the precision of the measurements all analyzed residues show isotopically normal compositions.

  12. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  13. Transient multivariable sensor evaluation

    DOEpatents

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  14. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  15. Vehicle Based Vector Sensor

    DTIC Science & Technology

    2015-09-28

    300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...unmanned underwater vehicle that can function as an acoustic vector sensor . (2) Description of the Prior Art [0004] It is known that a propagating...mechanics. An acoustic vector sensor measures the particle motion via an accelerometer and combines Attorney Docket No. 300001 2 of 16 the

  16. Remote electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris; Larson, David

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  17. Beam imaging sensor

    DOEpatents

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  18. Networked Sensor Arrays

    SciTech Connect

    R. J. Tighe

    2002-10-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical.

  19. Contact stress sensor

    DOEpatents

    Kotovsky, Jack [Oakland, CA

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  20. Contact stress sensor

    DOEpatents

    Kotovsky, Jack

    2014-02-11

    A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  1. Miniature Airflow Sensor

    NASA Technical Reports Server (NTRS)

    Kershner, D. D.

    1984-01-01

    Miniature flow-angle and airspeed sensor quickly mounted on light aircraft wing with two-sided tape since conventional sensors are restricted to large aircraft. Sensor operates as free-trailing wind vane selfalineing in airstream through two independent axes. Vane attached to wing surface through hollow mounting boom that fits on mounting plate attached to wing with two-sided neoprene-foam tape. Method shown strong enough for loads of low-speed flight.

  2. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  3. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  4. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging

    NASA Astrophysics Data System (ADS)

    Li, Yu-Jiao; Huang, Wei-Jun; Ma, Feng-Chao; Wang, Rui; Lu, Ming-Zhu; Wan, Ming-Xi

    2016-11-01

    Not Available Supported by the National Key Scientific Instrument and Equipment Development Projects of China under Grant No 81127901, and the National Natural Science Foundation of China under Grant Nos 61372017 and 30970828.

  5. Improved Capacitive Liquid Sensor

    NASA Technical Reports Server (NTRS)

    Waldman, Francis A.

    1992-01-01

    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  6. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  7. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  8. Perforated diode neutron sensors

    NASA Astrophysics Data System (ADS)

    McNeil, Walter J.

    A novel design of neutron sensor was investigated and developed. The perforated, or micro-structured, diode neutron sensor is a concept that has the potential to enhance neutron sensitivity of a common solid-state sensor configuration. The common thin-film coated diode neutron sensor is the only semiconductor-based neutron sensor that has proven feasible for commercial use. However, the thin-film coating restricts neutron counting efficiency and severely limits the usefulness of the sensor. This research has shown that the perforated design, when properly implemented, can increase the neutron counting efficiency by greater than a factor of 4. Methods developed in this work enable detectors to be fabricated to meet needs such as miniaturization, portability, ruggedness, and adaptability. The new detectors may be used for unique applications such as neutron imaging or the search for special nuclear materials. The research and developments described in the work include the successful fabrication of variant perforated diode neutron detector designs, general explanations of fundamental radiation detector design (with added focus on neutron detection and compactness), as well as descriptive theory and sensor design modeling useful in predicting performance of these unique solid-state radiation sensors. Several aspects in design, fabrication, and operational performance have been considered and tested including neutron counting efficiency, gamma-ray response, perforation shapes and depths, and silicon processing variations. Finally, the successfully proven technology was applied to a 1-dimensional neutron sensor array system.

  9. Smart and Intelligent Sensors

    NASA Technical Reports Server (NTRS)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  10. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  11. Panoramic attitude sensor

    NASA Technical Reports Server (NTRS)

    Meek, I. C.

    1976-01-01

    Each subassembly, design analysis, and final calibration data on all assemblies for the Panormic Attitude Sensor (PAS) are described. The PAS is used for course attitude determination on the International Ultraviolet Explorer Spacecraft (IUE). The PAS contains a sun sensor which is sensitive only to the sun's radiation and a mechanically scanned sensor which is sensitive to the earth, moon, and the sun. The signals from these two sensors are encoded and sent back in the telemetry data stream to determine the spacecraft attitude.

  12. Multi-sensor electrometer

    NASA Technical Reports Server (NTRS)

    Gompf, Raymond (Inventor); Buehler, Martin C. (Inventor)

    2003-01-01

    An array of triboelectric sensors is used for testing the electrostatic properties of a remote environment. The sensors may be mounted in the heel of a robot arm scoop. To determine the triboelectric properties of a planet surface, the robot arm scoop may be rubbed on the soil of the planet and the triboelectrically developed charge measured. By having an array of sensors, different insulating materials may be measured simultaneously. The insulating materials may be selected so their triboelectric properties cover a desired range. By mounting the sensor on a robot arm scoop, the measurements can be obtained during an unmanned mission.

  13. Microfabricated Formaldehyde Gas Sensors

    PubMed Central

    Flueckiger, Jonas; Ko, Frank K.; Cheung, Karen C.

    2009-01-01

    Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation. PMID:22291561

  14. Smart Sensor Demonstration Payload

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Bracey, Andrew; Rawls, Stephen; Morris, Jon; Turowski, Mark; Franzl, Richard; Figueroa, Fernando

    2010-01-01

    Sensors are a critical element to any monitoring, control, and evaluation processes such as those needed to support ground based testing for rocket engine test. Sensor applications involve tens to thousands of sensors; their reliable performance is critical to achieving overall system goals. Many figures of merit are used to describe and evaluate sensor characteristics; for example, sensitivity and linearity. In addition, sensor selection must satisfy many trade-offs among system engineering (SE) requirements to best integrate sensors into complex systems [1]. These SE trades include the familiar constraints of power, signal conditioning, cabling, reliability, and mass, and now include considerations such as spectrum allocation and interference for wireless sensors. Our group at NASA s John C. Stennis Space Center (SSC) works in the broad area of integrated systems health management (ISHM). Core ISHM technologies include smart and intelligent sensors, anomaly detection, root cause analysis, prognosis, and interfaces to operators and other system elements [2]. Sensor technologies are the base fabric that feed data and health information to higher layers. Cost-effective operation of the complement of test stands benefits from technologies and methodologies that contribute to reductions in labor costs, improvements in efficiency, reductions in turn-around times, improved reliability, and other measures. ISHM is an active area of development at SSC because it offers the potential to achieve many of those operational goals [3-5].

  15. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  16. CHOUGH: implementation and performance of a high-order 4m AO demonstrator

    NASA Astrophysics Data System (ADS)

    Bharmal, Nazim A.; Basden, Alastair G.; Bourgenot, Cyril J.; Black, Martin; Dubbeldam, Cornelis M.; Henry, David M.; Hölck-Santibanez, Daniel; Morris, Timothy J.; Robertson, David J.; Schmoll, Jürgen; Talbot, Robert G.; Younger, Eddy J.; Myers, Richard M.

    2016-07-01

    CHOUGH is a small, fast project to provide an experimental on-sky high-order SCAO capability to the 4.2m WHT telescope. The basic goal has r0-sized sub- apertures with the aim of achieving high-Strehl ratios (> 0:5) in the visible (> 650 nm). It achieves this by including itself into the CANARY experiment: CHOUGH is mounted as a breadboard and intercepts the beam within CANARY via a periscope. In doing so, it takes advantage of the mature CANARY infrastructure, but add new AO capabilities. The key instruments that CHOUGH brings to CANARY are: an atmospheric dispersion compensator; a 32 × 32 (1000 actuator) MEMS deformable mirror; 31 × 31 wavefront sensor; and a complementary (narrow-field) imager. CANARY provides a 241-actuator DM, tip/tilt mirror, and comprehensive off-sky alignment facility together with a RTC. In this work, we describe the CHOUGH sub-systems: backbone, ADC, MEMS-DM, HOWFS, CAWS, and NFSI.

  17. Laser pointing camera: a valuable tool for the LGS-AO operations

    NASA Astrophysics Data System (ADS)

    Centrone, M.; Bonaccini Calia, D.; Pedichini, F.; Cerruto, A.; Ricciardi, A.; Ambrosino, F.

    2016-07-01

    We describe the design, functionalities and commissioning results of the Laser Pointing Camera, developed at INAF-OAR in collaboration with ESO and Astrel for the 4LGSF of the ESO Adaptive Optics Facility. The LPC has proven a fundamental tool during commissioning and operation of the 4LGSF. It allows to calibrate the pointing and focusing models of the four LGS, to reduce to zero the overhead time for the open-loop acquisition of the LGS in the wavefront sensor. During LGS-AO operation it collects regularly the LGS photometry, the LGS fwhm and the cirrus clouds scattering levels. By recognizing via astrometric software the field stars as well as the multiple LGS, LPC is insensitive to flexures of the laser launch telescope or of the receiver telescope opto-mechanics. We present the Commissioning results of the Laser Pointing Camera, obtained at the ESO VLT during the all 4LGSF Laser Guide Star Units Commissioning, and will discuss its possible extension for the ELT operations.

  18. Semantic Sensor Web

    NASA Astrophysics Data System (ADS)

    Sheth, A.; Henson, C.; Thirunarayan, K.

    2008-12-01

    Sensors are distributed across the globe leading to an avalanche of data about our environment. It is possible today to utilize networks of sensors to detect and identify a multitude of observations, from simple phenomena to complex events and situations. The lack of integration and communication between these networks, however, often isolates important data streams and intensifies the existing problem of too much data and not enough knowledge. With a view to addressing this problem, the Semantic Sensor Web (SSW) [1] proposes that sensor data be annotated with semantic metadata that will both increase interoperability and provide contextual information essential for situational knowledge. Kno.e.sis Center's approach to SSW is an evolutionary one. It adds semantic annotations to the existing standard sensor languages of the Sensor Web Enablement (SWE) defined by OGC. These annotations enhance primarily syntactic XML-based descriptions in OGC's SWE languages with microformats, and W3C's Semantic Web languages- RDF and OWL. In association with semantic annotation and semantic web capabilities including ontologies and rules, SSW supports interoperability, analysis and reasoning over heterogeneous multi-modal sensor data. In this presentation, we will also demonstrate a mashup with support for complex spatio-temporal-thematic queries [2] and semantic analysis that utilize semantic annotations, multiple ontologies and rules. It uses existing services (e.g., GoogleMap) and semantics enhanced SWE's Sensor Observation Service (SOS) over weather and road condition data from various sensors that are part of Ohio's transportation network. Our upcoming plans are to demonstrate end to end (heterogeneous sensor to application) semantics support and study scalability of SSW involving thousands of sensors to about a billion triples. Keywords: Semantic Sensor Web, Spatiotemporal thematic queries, Semantic Web Enablement, Sensor Observation Service [1] Amit Sheth, Cory Henson, Satya

  19. Carbon nanotube sensors

    NASA Astrophysics Data System (ADS)

    Dai, Liming

    2002-07-01

    Measurement represents one of the oldest methods used by human beings to better understand and control the world. Many measurement systems are primarily physical sensors, which measure time, temperature, weight, distance, and various other physical parameters. The need for cheaper, faster, and more accurate meansurements has been a driving force for the development of new systems and technologies for measurements of materials, both chemical and biological. In fact, chemical and biological sensors (or biosensors) are the evolved products of physical measurement technologies. Chemical sensors are measurement devices that convert a chemical or physical change of a specific analyte into a measurable signal, whose magnitude is normally proportional to the concentration of the analyte. On the other hand, biosensors are a subset of chemical sensors that employ a biological sensing element connected to a transducer to recognize the physiochemical change and to produce the measurable signal from particular analytes, which are not necessary to be biological materials themselves, although sometimes they are. Depending on the basis of the transduction principle, chemical and biological sensors can be classified into three major classes with different transducers: sensors with electrical transducers, sensors with optical transducers, and sensors with other transducers (e.g. mass change). The unique properties of carbon nanotubes have led to their use in areas as diverse as sensors, actuators, field-emitting flat panel displays, energy and gas storages (Dai and Mau, 2001). As we shall see below, the principles for carbon nanotube sensors to detect the nature of gases and to determine their concentrations are based on change in electrical properties induced by charge transfer with the gas molecules (e.g. O2, H2, CO2) or in mass due to physical adsorption. This article provides a status report on the research and development of carbon nanotube sensors.

  20. Green FLASH: energy efficient real-time control for AO

    NASA Astrophysics Data System (ADS)

    Gratadour, D.; Dipper, N.; Biasi, R.; Deneux, H.; Bernard, J.; Brule, J.; Dembet, R.; Doucet, N.; Ferreira, F.; Gendron, E.; Laine, M.; Perret, D.; Rousset, G.; Sevin, A.; Bitenc, U.; Geng, D.; Younger, E.; Andrighettoni, M.; Angerer, G.; Patauner, C.; Pescoller, D.; Porta, F.; Dufourcq, G.; Flaischer, A.; Leclere, J.-B.; Nai, A.; Palazzari, P.; Pretet, D.; Rouaud, C.

    2016-07-01

    The main goal of Green Flash is to design and build a prototype for a Real-Time Controller (RTC) targeting the European Extremely Large Telescope (E-ELT) Adaptive Optics (AO) instrumentation. The E-ELT is a 39m diameter telescope to see first light in the early 2020s. To build this critical component of the telescope operations, the astronomical community is facing technical challenges, emerging from the combination of high data transfer bandwidth, low latency and high throughput requirements, similar to the identified critical barriers on the road to Exascale. With Green Flash, we will propose technical solutions, assess these enabling technologies through prototyping and assemble a full scale demonstrator to be validated with a simulator and tested on sky. With this R&D program we aim at feeding the E-ELT AO systems preliminary design studies, led by the selected first-light instruments consortia, with technological validations supporting the designs of their RTC modules. Our strategy is based on a strong interaction between academic and industrial partners. Components specifications and system requirements are derived from the AO application. Industrial partners lead the development of enabling technologies aiming at innovative tailored solutions with potential wide application range. The academic partners provide the missing links in the ecosystem, targeting their application with mainstream solutions. This increases both the value and market opportunities of the developed products. A prototype harboring all the features is used to assess the performance. It also provides the proof of concept for a resilient modular solution to equip a large scale European scientific facility, while containing the development cost by providing opportunities for return on investment.