Science.gov

Sample records for acousto-optic programmable dispersive

  1. Programmable Real-Time Acousto-Optic/CCD SAR processor

    NASA Technical Reports Server (NTRS)

    Haney, M.; Wagner, K.; Psaltis, D.

    1984-01-01

    The theory of operation of the Real-Time Acousto-Optic SAR Processor is reviewed and recent experimental results are presented. The results include a demonstration of the real-time imaging capability of the processor with simulated radar signals. An advanced version of this processor is then described in which a programmable reference function is entered via a second acousto-optic device to eliminate the need for a 2-D SLM. In this implementation the reference function is updated by electronic means to give the processor the flexibility to adapt rapidly to changes in the parameters of the radar/target geometry.

  2. Two-cascade acousto-optic dispersive delay line for ultrashort laser pulses

    SciTech Connect

    Molchanov, V Ya; Chizhikov, S I; Yushkov, K B

    2011-08-31

    An optical dispersive delay line for controlling the spectral composition and phase of ultrashort laser pulses is considered. To control independently the spectral amplitude and spectral phase of pulses, it is proposed to use the cascade arrangement of two acousto-optic cells with different control signals. (letters)

  3. Compensation of spatial dispersion of an acousto-optic deflector with a special Keplerian telescope.

    PubMed

    Hu, Qinglei; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2016-01-15

    Compensation of spatial dispersion caused by the acousto-optic deflector (AOD) when using a femtosecond laser is difficult across the whole scanning range of the system, and this is a significant impediment to its use. In conventional methods, the dispersion of the AOD was compensated only when it was at a particular position, while at other positions, the quality of the light beam was reduced. We developed a novel method for compensating the spatial dispersion within the entire scanning range using a special Keplerian telescope. Our experimental results show that the residual dispersion of the AOD is compensated sufficiently, and the focal spots of the laser reach the diffraction limit within a 40-MHz ultrasound bandwidth. PMID:26766675

  4. Compensation of spatial dispersion of an acousto-optic deflector with a special Keplerian telescope.

    PubMed

    Hu, Qinglei; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2016-01-15

    Compensation of spatial dispersion caused by the acousto-optic deflector (AOD) when using a femtosecond laser is difficult across the whole scanning range of the system, and this is a significant impediment to its use. In conventional methods, the dispersion of the AOD was compensated only when it was at a particular position, while at other positions, the quality of the light beam was reduced. We developed a novel method for compensating the spatial dispersion within the entire scanning range using a special Keplerian telescope. Our experimental results show that the residual dispersion of the AOD is compensated sufficiently, and the focal spots of the laser reach the diffraction limit within a 40-MHz ultrasound bandwidth.

  5. Acousto-optic tunable filter for dispersion characterization of time-domain optical coherence tomography systems.

    PubMed

    Chin, Catherine; Toadere, Florin; Feuchter, Thomas; Leick, Lasse; Moselund, Peter; Bradu, Adrian; Podoleanu, Adrian

    2016-07-20

    A broadband supercontinuum light source with an acousto-optic tunable filter (AOTF) are used to characterize dispersion in two time-domain OCT systems, at 850 and 1300 nm. The filter is designed to sweep across two spectral ranges, which are restricted here from 800 to 900 nm and from 1200 to 1500 nm, respectively. Dispersion compensation for 850 nm was achieved with a spectral delay line. Dispersion compensation for 1300 nm was achieved using BK 7 rod glasses in the reference arm. The AOTF allows evaluation of dispersion in under as well as overcompensated systems. The AOTF method is based on wavelength dependence of the optical path difference corresponding to the maximum strength of the interference signal recorded using a mirror as object. Comparison is made between the AOTF method and the more usual method based on measurement of the full width at half-maximum of the autocorrelation peak. This comparison shows that the AOTF method is more accurate in terms of evaluation of the dispersion left uncompensated after each adjustment. The AOTF method additionally provides information on the direction of dispersion compensation. PMID:27463927

  6. Novel time-of-flight fiber dispersion measurement technique using supercontinuum light sources and acousto-optical tunable filters.

    PubMed

    Blume, Niels Göran; Wagner, Steven

    2015-07-20

    Long-distance fiber links require precise knowledge of fiber dispersion characteristics. Similar dispersion characteristics are necessary for supercontinuum broadband laser absorption spectroscopy (SCLAS) to allow proper data evaluation and species concentration determination, as well as numerous other applications. In this work, a time-of-flight approach to measuring the dispersion characteristic of fibers with supercontinuum laser light sources (SCLs) and acousto-optical tunable filters (AOTFs) is presented. Broadband emission of the SCL is filtered with a narrowband AOTF and dispersed in time by the fiber under test. By using the wavelength-specific delay, the dispersion characteristic can be calculated. The technique is especially suited for longer fibers and was verified against a state-of-the-art phase-shift-based dispersion measurement system. Advantages of the new approach include solely utilizing SCLAS system components, as well as a high level of automation and wide spectral coverage, ranging from 1100 to 1700 nm in a single measurement setup. PMID:26367820

  7. An acousto-optical imaging spectrometer for astrophysical measurements

    NASA Astrophysics Data System (ADS)

    Anikin, S. P.; Esipov, V. F.; Molchanov, V. Ya.; Tatarnikov, A. M.; Yushkov, K. B.

    2016-07-01

    An optical scheme of an acousto-optical imaging spectrometer for observing extended astrophysical objects with line emission spectra is proposed. The use of an additional prism with a specified angular dispersion makes it possible to separate images of an extended object at different emission lines and images generated by minor maxima of the acousto-optical filter transmission function. A prototype of the imaging spectrometer has been designed.

  8. Acousto-Optical Imaging Spectropolarimeter

    NASA Technical Reports Server (NTRS)

    Saif, Babak; Glenar, David; Zimmerman, Robert; Seery, Bernard

    1992-01-01

    Imaging spectropolarimeter designed around acousto-optical tunable filter (AOTF) takes polarization-specific spectral images of solid surfaces, aerosols, and absorption and emission phenomena in gas phase, at wavelengths from 500 to 1,000 nm. Produces side-by-side spectral images in two mutually perpendicular polarizations, one corresponding to ordinary, other corresponding to extraordinary waves in acousto-optical material. Offers large aperture, high resolving power, and rapid tunability, with no moving parts.

  9. Advanced acousto-optic signal processors

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1983-01-01

    The basic acousto-optic signal processing architectures (spectrum analyzer, space-integrating, time-integrating, and triple product processor) systems and algorithms such as the chirp-Z transform are reviewed. New acousto-optic data processing systems and applications that utilze these basic architectures and new ones are described. These include a matched spatial filter acousto-optic processor, two new hybrid time and space-integrating systems, a triple product processor, and four new matrix-vector iterative feedback systems.

  10. Kilohertz generation of high contrast polarization states for visible femtosecond pulses via phase-locked acousto-optic pulse shapers

    SciTech Connect

    Seiler, Hélène; Walsh, Brenna; Palato, Samuel; Kambhampati, Patanjali; Thai, Alexandre; Forget, Nicolas; Crozatier, Vincent

    2015-09-14

    We present a detailed analysis of a setup capable of arbitrary amplitude, phase, and polarization shaping of broadband visible femtosecond pulses at 1 kHz via a pair of actively phase stabilized acousto-optic programmable dispersive filters arranged in a Mach-Zehnder interferometer geometry. The setup features phase stability values around λ/225 at 580 nm as well as degrees of polarization of at least 0.9 for any polarization state. Both numbers are important metrics to evaluate a setup's potential for applications based on polarization-shaped femtosecond pulses, such as fully coherent multi-dimensional electronic spectroscopy.

  11. Kilohertz generation of high contrast polarization states for visible femtosecond pulses via phase-locked acousto-optic pulse shapers

    NASA Astrophysics Data System (ADS)

    Seiler, Hélène; Walsh, Brenna; Palato, Samuel; Thai, Alexandre; Crozatier, Vincent; Forget, Nicolas; Kambhampati, Patanjali

    2015-09-01

    We present a detailed analysis of a setup capable of arbitrary amplitude, phase, and polarization shaping of broadband visible femtosecond pulses at 1 kHz via a pair of actively phase stabilized acousto-optic programmable dispersive filters arranged in a Mach-Zehnder interferometer geometry. The setup features phase stability values around λ/225 at 580 nm as well as degrees of polarization of at least 0.9 for any polarization state. Both numbers are important metrics to evaluate a setup's potential for applications based on polarization-shaped femtosecond pulses, such as fully coherent multi-dimensional electronic spectroscopy.

  12. Bandwidth control in a hybrid fiber acousto-optic filter.

    PubMed

    Jung, Y; Lee, S B; Lee, Jhang W; Oh, K

    2005-01-01

    We report a bandwidth variation technique in an acousto-optic filter. Utilizing the adiabatic conversion in both optical and acoustic modes, we obtain a novel hybrid waveguide composed of serial concatenation of single-mode fiber (SMF) and two-mode hollow optical fiber (HOF). On the basis of dissimilarity in the phase-matching conditions and beat-length dispersion in SMF and HOF, the FWHM of the resonant bands is varied from 3.8 to 190 nm near the 1.5-microm region in a single device. Furthermore, we theoretically analyze the acousto-optic coupling among the guided modes in HOF, which shows good agreement with experimental observations. PMID:15648646

  13. Systolic acousto-optic binary convolver

    SciTech Connect

    Guilfoyle, P.S.

    1984-01-01

    A novel high speed array processing optical architecture is described. A multichannel acousto-optic binary convolver is architecturally configured as a systolic array processor. The architecture provides a high speed means of matrix/vector multiplications using the digital multiplication via an analog convolution algorithm. This algorithm and a systolic acousto-optic implementation permit the speed of optics to be combined with the accuracy of digital computation. 15 references.

  14. Acousto-optic spectrometer for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    Recent developments in acousto-optic techniques and in photodetector arrays have made feasible a new type of RF spectrometer, offering the advantages of wide bandwidth, high resolution, large number of channels in compact, lightweight, energy efficient, and relatively low cost systems. Such a system employs an acousto-optic diffraction cell which serves the key role of converting RF signals to ultrasonic traveling-waves modulating the optical index of the cell. The cell is illuminated across its aperture by a monochromatic laser beam. A fraction of the light is diffracted by the acoustic waves. A focusing lens follows the cell and essentially performs a Fourier transform of the RF signal into a far-field intensity pattern. CSIRO in Australia and the Tokyo Astronomical Observatory in Japan have taken the lead in using acousto-optic techniques in astronomical applications. The first practical device was successfully made at CSIRO for obtaining dynamical spectrographs of solar radio emission.

  15. Acousto-optic spectrometer for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

  16. Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers

    SciTech Connect

    Mcgrane, Shawn D; Moore, David S; Greenfield, Margo T

    2008-01-01

    We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.

  17. Acousto-optic Extensometer for Bolts

    NASA Technical Reports Server (NTRS)

    Maram, J.; Kuhr, G.

    1985-01-01

    Bolt torque or tension deduced from non contacting measurements. Pulsed Laser induces shockwave in bolthead while continuous-wave acousto-optic detector monitors distortion produced by shock. Shock travel time measured to determine bolt length. Solid-state position detector relatively inexpensive and keeps down cost of extensometer.

  18. Integrated acousto-optic mode locker

    SciTech Connect

    Myslinski, P.

    1986-11-01

    A new type of the acousto-optic modulator is presented. The novel design reduces the number of optical elements inside the laser cavity resulting in higher quality of the mode-locked pulses. An application of the modulator to an argon-ion laser is described.

  19. Automated acousto-optic infrared analyzer system

    SciTech Connect

    Steinbruegge, K.B.; Gottlieb, M.S.

    1984-12-25

    An automated acousto-optic tunable filter infrared analyzer system useable in a variety of industrial and commercial control applications. The system relies upon a narrow band pass tunable acousto-optic filter which is selectively tuned by predetermined rf frequency signals to selectively transmit the narrow band pass of interest which corresponds to a specific molecular species for identification and analysis. The system includes a microcomputer and associated memory function to measure and compare detected signals from an infrared detector which converts the filtered infrared signal to an electrical signal. The memory provides control signals for the computer and for controlling the sequence and frequency of rf energy applied to tune the filter. In this way, the near to mid range infrared can be analyzed for absorption bands corresponding to predetermined molecular species such as combustion product gases, and a feedback signal generated to control the combustion process.

  20. New Studies of Acousto-Optic Interactions.

    NASA Astrophysics Data System (ADS)

    Neev, Joseph

    1988-06-01

    Acousto-optics is the field of science pertaining to the study of interactions between light and acoustic vibrations in solids, liquids, or gases. In recent years this field has evolved to much more than just the point where acoustics and optics meet. It has become a crossroad for many disciplines and technologies. This diversity in itself makes it a difficult and interesting area of research. In this work some fundamental concepts of acousto -optic interactions are re-examined. New understanding was gained of the process of diffraction of light by a propagating sound column under the condition of changing interaction orientation and changing sound frequency. This new understanding has shown existing treatments of these problems to be incomplete. It is further shown that one such commonly used model yields wrong predictions which stand in violation of the principle of time reversal. A device whose principle of operation is based on the knowledge gained in this study was implemented in a ring laser to induce unidirectional operation. In addition, acousto -optic light deflectors were investigated and new insight to their theory of operation was obtained. New operating configurations for these devices were tested, and future uses and applications are suggested.

  1. Techniques for measuring radiation induced effects of acousto optic devices

    SciTech Connect

    Taylor, E.W.

    1995-08-01

    Innovative measurement techniques for determining radiation induced changes in acousto optic devices are briefly discussed. Measurements of acousto optic operational parameters such as signal transmission efficiency, diffraction efficiency, spatial intensity and bandwidth responses during electron irradiations are described. During exposure to pulsed electrons, only transient perturbations to the acousto optic operational parameters were experienced. Examples of new measurement procedures and typical data resulting from the measurements are presented.

  2. Optimization of a femtosecond Ti : sapphire amplifier using a acouto-optic programmable dispersive filter and a genetic algorithm.

    SciTech Connect

    Korovyanko, O. J.; Rey-de-Castro, R.; Elles, C. G.; Crowell, R. A.; Li, Y.

    2006-01-01

    The temporal output of a Ti:Sapphire laser system has been optimized using an acousto-optic programmable dispersive filter and a genetic algorithm. In-situ recording the evolution of spectral phase, amplitude and temporal pulse profile for each iteration of the algorithm using SPIDER shows that we are able to lock the spectral phase of the laser pulse within a narrow margin. By using the second harmonic of the CPA laser as feedback for the genetic algorithm, it has been demonstrated that severe mismatch between the compressor and stretcher can be compensated for in a short period of time.

  3. Rigorous coupled wave analysis of acousto-optics with relativistic considerations.

    PubMed

    Xia, Guoqiang; Zheng, Weijian; Lei, Zhenggang; Zhang, Ruolan

    2015-09-01

    A relativistic analysis of acousto-optics is presented, and a rigorous coupled wave analysis is generalized for the diffraction of the acousto-optical effect. An acoustic wave generates a grating with temporally and spatially modulated permittivity, hindering direct applications of the rigorous coupled wave analysis for the acousto-optical effect. In a reference frame which moves with the acoustic wave, the grating is static, the medium moves, and the coupled wave equations for the static grating may be derived. Floquet's theorem is then applied to cast these equations into an eigenproblem. Using a Lorentz transformation, the electromagnetic fields in the grating region are transformed to the lab frame where the medium is at rest, and relativistic Doppler frequency shifts are introduced into various diffraction orders. In the lab frame, the boundary conditions are considered and the diffraction efficiencies of various orders are determined. This method is rigorous and general, and the plane waves in the resulting expansion satisfy the dispersion relation of the medium and are propagation modes. Properties of various Bragg diffractions are results, rather than preconditions, of this method. Simulations of an acousto-optical tunable filter made by paratellurite, TeO(2), are given as examples. PMID:26367426

  4. Rigorous coupled wave analysis of acousto-optics with relativistic considerations.

    PubMed

    Xia, Guoqiang; Zheng, Weijian; Lei, Zhenggang; Zhang, Ruolan

    2015-09-01

    A relativistic analysis of acousto-optics is presented, and a rigorous coupled wave analysis is generalized for the diffraction of the acousto-optical effect. An acoustic wave generates a grating with temporally and spatially modulated permittivity, hindering direct applications of the rigorous coupled wave analysis for the acousto-optical effect. In a reference frame which moves with the acoustic wave, the grating is static, the medium moves, and the coupled wave equations for the static grating may be derived. Floquet's theorem is then applied to cast these equations into an eigenproblem. Using a Lorentz transformation, the electromagnetic fields in the grating region are transformed to the lab frame where the medium is at rest, and relativistic Doppler frequency shifts are introduced into various diffraction orders. In the lab frame, the boundary conditions are considered and the diffraction efficiencies of various orders are determined. This method is rigorous and general, and the plane waves in the resulting expansion satisfy the dispersion relation of the medium and are propagation modes. Properties of various Bragg diffractions are results, rather than preconditions, of this method. Simulations of an acousto-optical tunable filter made by paratellurite, TeO(2), are given as examples.

  5. Acousto-optic tunable filter multispectral imaging system

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    This paper discusses recent activities of Jet Propulsion Laboratory in the development of a new type of remote sensing multispectral imaging instruments using acousto-optic tunable filter (AOTF) as programmable bandpass filter. This remote sensor provides real-time operation; observational flexibility; measurements of spectral, spatial, and polarization information using a single instrument; and compact, solid state structure without moving parts. Two microcomputer-controlled AOTF imaging spectrometer breadboard systems were designed and built. One operates in the wavelength range of 0.48-0.76 micron and the other in the range of 1.2-2.5 micron. Experiments were performed using these two systems to observe geological and botanical objects in laboratory and outdoor environment. Results have demonstrated the feasibility of using the AOTF multispectral imaging system as a real-time versatile remote sensor with operational flexibility for future Army tactical applications.

  6. Linearization of acousto-optic modulator transmission function

    NASA Astrophysics Data System (ADS)

    Korol, G.; Moskaletz, D.; Moskaletz, O.

    2016-08-01

    The procedure of linearization of nonlinear transmission function of the optical transparency in the form of an acousto-optic modulator by the methods of nonlinear functional analysis is described. The transmission function of a pair of acousto-optic modulators is linearized in the context of generalized superposition principle.

  7. Theoretical study of Fourier-transform acousto-optic imaging.

    PubMed

    Barjean, Kinia; Ramaz, François; Tualle, Jean-Michel

    2016-05-01

    We propose a full theoretical study of Fourier-transform acousto-optic imaging, which we recently introduced and experimentally assessed in [Opt. Lett.40, 705-708 (2015)OPLEDP0146-959210.1364/OL.40.000705] as an alternative to achieve axial resolution in acousto-optic imaging with a higher signal-to-noise ratio. PMID:27140883

  8. NASA applications for acousto-optic spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.

    1984-01-01

    Small, compact, and rugged IF spectrometers are needed in high resolution heterodyne receivers designed for a new generation of space-borne telescopes planned for the next decade. Acousto-optic Spectrometers (AOS) promise to provide the necessary bandwidth and resolution in a package which is compact, power efficient, and ruggedized for space applications. Sensitivity, linearity, and stability are the primary goals of an astronomical receiver and these features must be demonstrated in order for an AOS to be accepted in place of more conventional RF or digital technology.

  9. Passive long range acousto-optic sensor

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  10. Acousto-optic image processing in coherent light

    SciTech Connect

    Balakshy, V I; Voloshinov, V B

    2005-01-31

    The results of recent studies on coherent acousto-optic image processing performed at the chair of physics of oscillations at the Department of Physics of Moscow State University are reported. It is shown that this processing method is based on the filtration of the spatial spectrum of an optical signal in an acousto-optic cell. The main attention is paid to the analysis of the dependence of the transfer function of the cell on the crystal cut, geometry of acousto-optic interaction, and acoustic-wave parameters. It is shown that an acousto-optic cell allows the image differentiation and integration as well as the visualisation of phase objects. The results of experiments and computer simulation are presented which illustrate the possibilities of acousto-optic image processing. (laser applications and other topics in quantum electronics)

  11. Towards acousto-optic tissue imaging with nanosecond laser pulses.

    PubMed

    Resink, S G; Hondebrink, E; Steenbergen, W

    2014-02-10

    We present a way to generate acousto-optical signals in timovssue-like media with nanosecond laser pulses. Our method is based on recording and analyzing speckle patterns formed by interaction of nanosecond laser pulses with tissue, without and with simultaneous application of ultrasound. Stroboscopic application allows visualizing the temporal behavior of speckles while the ultrasound is propagating through the medium. We investigate two ways of quantifying the acousto-optic effect, viz. adding and subtracting speckle patterns obtained at various ultrasound phases. Both methods are compared with the existing speckle contrast method using a 2D scan and are found to perform similarly. Our method gives outlook on overcoming the speckle decorrelation problem in acousto-optics, and therefore brings in-vivo acousto-optic measurements one step closer. Furthermore it enables combining acousto-optics and photoacoustics in one setup with a single laser.

  12. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-01

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions. PMID:26561090

  13. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-01

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  14. Influence of nonreciprocal effect on the operation of a collinear acousto-optic filter

    SciTech Connect

    Dobrolenskii, Yu S; Voloshinov, V B; Zyuryukin, Yu A

    2008-01-31

    The nonreciprocal effect is studied theoretically and experimentally by the example of collinear acousto-optic interaction in a birefringent crystal. It is shown that this effect at ultrasonic frequencies {approx}1 GHz and above considerably influences the parameters of modern acousto-optic devices, in particular, tunable acousto-optic filters. The nonreciprocal effect is estimated for different acousto-optic materials. (acoustooptics)

  15. JPL activities on development of acousto-optic tunable filter imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    Recent activities of JPL in the development of a new type of imaging spectrometers for earth observation and planetary exploration are reported. This instrument uses the acousto-optic tunable filter (AOTF) as high resolution and fast programmable bandpass filter. AOTF operates in the principle of acousto-optic interaction in an anisotropic medium. This filter can be tuned in sequential, random, and multiwavelength access modes, providing observational flexibility. The diffraction process in the filter generates two diffracted monochromatic beams with polarization orthogonal to each other, creating a unique capability to measure both polarimetric and spectral properties of the incoming light simultaneously with a single instrument. The device gives wide wavelength operations with reasonably large throughput. In addition, it is in a compact solid-state structure without moving parts, providing system reliability. These attractive features give promising opportunities to develop a new generation of airborne/spaceborne and ground, real-time, imaging spectrometer systems for remote sensing applications.

  16. Two-Dimensional Acousto-Optical Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Lesh, James R.; Metscher, Brian

    1991-01-01

    State-of-the-art two-dimensional acousto-optical spectrum analyzer processes input radio-frequency signal in real time into components in any number of spectral channels up to about 10(Sup5). Input radio-frequency signal to be analyzed launched via transducer into acousto-optical device along x axis. Acousto-optical device becomes Bragg cell. Pulsed plane waves of light from laser aimed at Bragg cell, which spatially modulates phases of plane waves and diffracts waves according to pattern of acoustic signal.

  17. Eliminating Bias In Acousto-Optical Spectrum Analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Lesh, James R.

    1992-01-01

    Scheme for digital processing of video signals in acousto-optical spectrum analyzer provides real-time correction for signal-dependent spectral bias. Spectrum analyzer described in "Two-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18092), related apparatus described in "Three-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18122). Essence of correction is to average over digitized outputs of pixels in each CCD row and to subtract this from the digitized output of each pixel in row. Signal processed electro-optically with reference-function signals to form two-dimensional spectral image in CCD camera.

  18. Acousto-optic filtering of lidar signals

    NASA Technical Reports Server (NTRS)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  19. Ultrafast acousto-optic imaging with ultrasonic plane waves.

    PubMed

    Laudereau, Jean-Baptiste; Grabar, Alexander A; Tanter, Mickaël; Gennisson, Jean-Luc; Ramaz, François

    2016-02-22

    Due to multiple light scattering inside biological tissues, deep non-invasive optical medical imaging is very challenging. Acousto-optic imaging is a technique coupling ultrasound and light that allows recovering optical contrast at depths of few centimeters with a millimeter resolution. Recent advances in acousto-optic imaging are using short focused ultrasound pulses often averaged over several hundred or thousand pulses. As the pulsing rate of commercial probes is limited to about few ultrasound cycles every 100 μs, acquiring an acousto-optic image usually takes several tens of seconds due to the high number of acoustic pulses excitation. We propose here a new acousto-optic imaging technique based on the use of ultrasound plane waves instead of focused ones that allows increasing drastically the imaging rate. PMID:26907033

  20. Three-Dimensional Acousto-Optical Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Lesh, James R.

    1991-01-01

    Experimental acousto-optical Bragg-cell spectrum analyzer achieves subhertz frequency resolution. System represents extension to three dimensions of two-dimensional spectrum-analyzer concept described in, "Two-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18092). First and second dimensions two spatial dimensions of charge-coupled-device (CCD) imaging array. Third dimension time, as sampled at frame rate of CCD array.

  1. A miniature acousto-optic image correlator

    SciTech Connect

    Molley, P.A.; Sweatt, W.C.; Strong, D.S.

    1991-01-01

    An acousto-optic (AO) image correlator architecture will be presented that minimizes the overall system size while maintaining excellent image quality for large input scenes. The correlator can accommodate grayscale input scenes with dimensions of 512 {times} 244 pixels and grayscale reference templates of size 64 {times} 64 pixels. The size of the optical system, however is less than ten cubic inches, 1in. {times} 1in. {times} 9in. This design incorporates a surface emitting laser diode array that has a center-to-center spacing of the laser elements matched to the row spacing on the CCD. Furthermore, the space-bandwidth and center frequency of the AO cell are chosen to match the length of the input image information in the cell to the width of the CCD. These two design decisions allow close to one-to-one imaging through the entire optical system producing the shortest possible path length. The optics were then designed with a goal of producing nearly diffraction-limited quality. 8 refs., 3 figs., 1 tab.

  2. Acousto-optic, electro-optic, and magneto-optic devices and applications

    SciTech Connect

    Lucero, J.

    1987-01-01

    These proceedings contain 30 papers grouped under the headings of: Acousto-optic devices; Signal processing architectures; Acousto-optic and electro-optic applications; Magneto-optic and guided wave optic devices.

  3. Compact tunable microwave filter using retroreflective acousto-optic filtering and delay controls.

    PubMed

    Riza, Nabeel A; Ghauri, Farzan N

    2007-03-01

    Programmable broadband rf filters are demonstrated using a compact retroreflective optical design with an acousto-optic tunable filter and a chirped fiber Bragg grating. This design enables fast 34 micros domain analog-mode control of rf filter time delays and weights. Two proof-of-concept filters are demonstrated including a two-tap notch filter with >35 dB notch depth and a four-tap bandpass filter. Both filters have 2-8 GHz tunability and a 34 micros reset time.

  4. Beam deformation within an acousto-optic lens.

    PubMed

    Zhou, Zhenqiao; Li, Longhui; Wang, Jiancun; Hu, Qinglei; Zeng, Shaoqun

    2015-05-15

    The acousto-optic lens (AOL) is becoming a popular tool in the neuroscience field. Here we analyzed the deformation of the diffraction beam after passage through an AOL consisting of a pair of acousto-optic deflectors using both theoretical and experimental data. The results showed that, because of the high sensitivity of optical spatial frequencies of acousto-optic deflectors, the boundary strength of the diffraction beam of the AOL decreases significantly. When the focal length of AOL diminishes, the deformation of the diffraction beam becomes more serious with a smaller beam size. This deformation of the diffraction beam finally leads to a decreased illuminative numerical aperture, which worsens the image's spatial resolution. PMID:26393698

  5. Dynamic fluorescence lifetime imaging based on acousto-optic deflectors

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Peng, Xiao; Qi, Jing; Gao, Jian; Fan, Shunping; Wang, Qi; Qu, Junle; Niu, Hanben

    2014-11-01

    We report a dynamic fluorescence lifetime imaging (D-FLIM) system that is based on a pair of acousto-optic deflectors for the random regions of interest (ROI) study in the sample. The two-dimensional acousto-optic deflector devices are used to rapidly scan the femtosecond excitation laser beam across the sample, providing specific random access to the ROI. Our experimental results using standard fluorescent dyes in live cancer cells demonstrate that the D-FLIM system can dynamically monitor the changing process of the microenvironment in the ROI in live biological samples.

  6. Acousto-optic techniques for real SAR imaging

    NASA Technical Reports Server (NTRS)

    Haney, M.; Psaltis, D.

    1985-01-01

    Recent advancements in the development of the Real Time Acousto-optic SAR Processor are presented. In particular, the technique for introducing the azimuth reference function into the processor via an acousto-optic Bragg cell is discussed. This approach permits the reference function to be stored in electronic memory, thus giving the processor the flexibility needed to adapt rapidly to changes in the radar/target geometry. The architecture is described and results are presented which show the applicability of the technique to both spot-light and strip-map SAR.

  7. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

    PubMed

    Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L

    2008-07-01

    Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.

  8. Investigation of acoustic beam reflection influence on the collinear acousto-optic interaction characteristics.

    PubMed

    Mantsevich, S N

    2016-08-01

    Significant part of acousto-optic devices apply the acoustic beam reflection to arouse the desired type of acoustic mode propagating along the required direction in crystal. The influence of acoustic beam reflection process on the ultrasound field structure in the acousto-optic cell and the collinear acousto-optic diffraction characteristics is examined in this paper. The investigation is carried on the example of the collinear acousto-optic filter fabricated on the base of calcium molybdate crystal. It is shown that the reflection process changes the acoustic field structure and affects the acousto-optic filter transmission function shape and diffraction efficiency.

  9. Investigation of acoustic beam reflection influence on the collinear acousto-optic interaction characteristics.

    PubMed

    Mantsevich, S N

    2016-08-01

    Significant part of acousto-optic devices apply the acoustic beam reflection to arouse the desired type of acoustic mode propagating along the required direction in crystal. The influence of acoustic beam reflection process on the ultrasound field structure in the acousto-optic cell and the collinear acousto-optic diffraction characteristics is examined in this paper. The investigation is carried on the example of the collinear acousto-optic filter fabricated on the base of calcium molybdate crystal. It is shown that the reflection process changes the acoustic field structure and affects the acousto-optic filter transmission function shape and diffraction efficiency. PMID:27153373

  10. Imaging spectrometer based on a acousto-optic tunable filter

    SciTech Connect

    Beattie, M.E.; Harrison, D.C.

    1994-12-31

    Characterization of an Acousto-Optic Tunable Filter (AOTF) is performed by measuring the filter`s laser line response, tuning relationship, and diffraction efficiency. An imaging spectrometer that utilizes the filter is described. The system is comprised of an optical system, AOTF filter, dual focal plane CCD camera, and a control computer. Data from the system are presented.

  11. Developing a stochastic model for acousto-optic tissue imaging

    NASA Astrophysics Data System (ADS)

    Resink, Steffen G.; Steenbergen, Wiendelt

    2012-02-01

    Direct optical measurements in scattering media offer poor resolution due to the high scattering. Ultrasound is scattered orders of magnitude less in tissue compared with light and therefore offers good resolution. Photoacoustics and acoustooptics are both relatively new hybrid techniques that enable measurements of optical properties in scattering media by combining ultrasound and light. Quantified measurements of the fluence and absorption coefficient however are desired and can not be performed by these separate techniques. A new approach to achieve this goal is to combine both hybrid techniques. By combining photoacoustic and acousto-optic measurements there is sufficient information to calculate the absorption coefficient and fluence at the ultrasound focus used for the acousto-optics. We require knowledge on the interaction of light and sound inside tissue, so the size of the so called tagging volume can be determined. This tagging volume is defined by the size and shape of the ultrasound focus used in the acousto-optic measurements. A stochastic model for acousto-optics is under development that used existing knowledge on the in the interaction between light and sound. By separating light transport and the interactions of light and sound and writing this interaction as a probability density function it is possible to find the effective geometrical properties of the tagging volume. At the moment multiple interaction mechanisms of sound and light are added to this model. In the future this model will be validated in phantoms and biological tissue.

  12. Compact acousto-optic modulator operatingin the purely Raman - Nath diffraction regime as a phase modulator in FM spectroscopy

    SciTech Connect

    Baryshev, Vyacheslav N; Epikhin, V M

    2010-08-03

    We report fabrication of a new acousto-optic modulator (AOM-RN) operating purely in the Raman - Nath diffraction regime. This device can be used as an external phase modulator in frequency-modulation (FM) optical heterodyne spectroscopy for fast and broadband frequency control of diode lasers. The AOM-RN design is significantly simplified, and its dimensions are minimised due to a decrease (by almost an order of magnitude in comparison with the existing AOMs) in the acousto-optic interaction length and the absence of impedance matching circuit. The FM spectroscopy based on AOM-RN makes it possible to analyse both absorption and dispersion properties of optical resonances under study; this possibility is shown by the example of saturated-absorption resonances in cesium vapour. The possibility of detecting coherent population trapping resonances using FM spectroscopy with AOM-RN as an external phase modulator is experimentally demonstrated.

  13. AIMS: Acousto-optic imaging spectrometer for spectral mapping of solid surfaces

    NASA Astrophysics Data System (ADS)

    Glenar, David A.; Blaney, Diana L.; Hillman, John J.

    2003-01-01

    A compact, two-channel acousto-optic tunable filter (AOTF) camera is being built at GSFC as a candidate payload instrument for future Mars landers or small-body rendezvous missions. This effort is supported by the NASA Mars Instrument Development Program (MIDP), Office of Space Science Advanced Technologies and Mission Studies. Acousto-optic Imaging Spectrometer (AIMS) is electronically programmable and provides arbitrary spatial and spectral selection from 0.48 to 2.4 μm. The geometric throughput of AOTF's are well matched to the requirements for lander mounted cameras since (I) they can be made very compact, (II) "slow" (f/14-f/18) optics required for large depth-of-field fall well within the angular aperture limit of AOTF's, and (III) they operate at low ambient temperatures. A breadboard of the AIMS short-wavelength channel is now being used for spectral imaging of high-interest Mars analog materials (iron oxides, carbonates, sulfates and sedimentary basalts) as part of the initial instrument validation exercises.

  14. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV.

  15. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV. PMID:22559541

  16. Acousto-optic laser projection systems for displaying TV information

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  17. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  18. Resonant acousto-optics in the terahertz range: TO-phonon polaritons driven by an ultrasonic wave

    NASA Astrophysics Data System (ADS)

    Muljarov, E. A.; Poolman, R. H.; Ivanov, A. L.

    2011-03-01

    The resonant acousto-optic effect is studied both analytically and numerically in the terahertz range where the transverse-optical (TO) phonons play the role of a mediator which strongly couples the ultrasound and light fields. A propagating acoustic wave interacts with the TO phonons via anharmonic channels and opens band gaps in the TO-phonon polariton energy dispersion that results in pronounced Bragg scattering and reflection of the incoming light. The separation in frequency of different Bragg replicas, which is at the heart of acousto-optics, allows us to study the resonant acousto-optic effect in the most simple and efficient geometry of collinear propagation of electromagnetic and ultrasonic waves. The acoustically induced energy gaps, Bragg reflection spectra, and the spatial distribution of the electric field and polarization are calculated for CuCl parameters, in a wide range of frequencies and intensities of the pumping acoustic wave. Our results show drastic changes in terahertz spectra of semiconductor crystals that open the way for efficient and accessible manipulation of their infrared properties by tuning the parameters of the acoustic wave.

  19. Monitoring the Oxygen Dynamics of Brain Tissue In Vivo by Fast Acousto-Optic Scanning Microscopy: A Proposed Instrument.

    PubMed

    Zhou, Zhenqiao; Chen, Dayu; Huang, Zhiqiang; Wang, Shaofang; Zeng, Shaoqun

    2016-01-01

    The function of the brain neural circuit is highly dependent on oxygen supply. Imaging the precise oxygen distribution and dynamics are critical for understanding the relationship between neuronal activity and oxygen dynamics of the nearby capillaries. Here, we develop fast acousto-optic scanning two-photon microscopy. Combined with oxygen probes, such as PtP-C343, we can monitor oxygen dynamics at the submicron level by this real-time microscopy. In this fast acousto-optic scanning microscopy, an acousto-optic deflector (AOD), an inertia-less scanner, is used to scan the femtosecond laser. A cylindrical lens is used to compensate the 'cylindrical lens effect' of AOD and a prism is used to compensate the chromatic dispersion of AOD. An electro-optical modulator (EOM) and a sCMOS camera are gated to measure the phosphorescence lifetime. With a 40× water objective lens, this set-up can image a 100 μm × 100 μm field of view at a speed of 20 frames per second and a 25 μm × 8 μm field of view at a speed of 500 frames per second. This real-time two-photon microscopy is expected to be a good tool for observing and recording the precise rapid oxygen dynamics in the cerebral cortex, which will facilitate studies of oxygen metabolism in neurosciences. PMID:27526168

  20. Holmium laser with an acousto-optic paratellurite filter

    NASA Astrophysics Data System (ADS)

    Mukhin, A. V.; Velikanov, S. D.; Glukhodedov, V. D.; Zakharov, N. G.; Frolov, Yu N.

    2016-08-01

    Experimental results on a solid-state holmium laser (Ho : YAG) with an intracavity acousto-optic paratellurite filter are presented. The laser power in cw and repetitively pulsed regimes is determined experimentally. It is shown that the use of an acoustooptic filter in the Ho : YAG laser cavity makes it possible to solve several important problems such as obtaining repetitively pulsed lasing, wavelength tuning and linearly polarised emission.

  1. Fiber-Coupled Acousto-Optical-Filter Spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, Kenneth H.; Li, Frank Yanan

    1993-01-01

    Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.

  2. Acousto-optical/Magneto-optical Correlator Or Convolver

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Davis, Jeffrey A.

    1989-01-01

    Experimental system demonstrates optical processing of multiple channels of binary signals. One input channel contains signal that varies with time and applied to one-dimensional acousto-optical cell. Other input channel contains two-dimensional pattern that is stationary or can vary with time and applied to magneto-optical spatial light modulator. Output is time-varying correlation or convolution of first input with one of rows in second input.

  3. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  4. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-08-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  5. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    PubMed Central

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-01-01

    The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493

  6. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics.

    PubMed

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E; Dkhil, Brahim; Ruello, Pascal

    2016-01-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493

  7. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics.

    PubMed

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E; Dkhil, Brahim; Ruello, Pascal

    2016-08-05

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  8. Tunable acousto-optic filters with the multiple interaction of light and sound

    SciTech Connect

    Voloshinov, V B; Knyazev, G A; Magdich, L N

    2005-11-30

    Optical multipass schemes of the interaction of light and sound, which are promising for filtration of optical beams based on tunable acousto-optic filters, are studied. The features of operation of acousto-optic filters in the rejection and transmission regimes are considered. It is proved theoretically and confirmed experimentally that the use of multiple interaction improves the spectral and energy parameters of acousto-optic devices. The collinear and transverse geometry of acousto-optic interaction in cells based on a paratellurite crystal is studied in the double-pass, three-pass, and multipass diffraction regimes. (control of laser radiation parameters)

  9. Acousto-optic tunable filter imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Reyes, George; Rider, David; Cheng, Li-Jen

    1991-01-01

    A remote sensing multispectral imaging instrument is being developed that uses a high resolution, fast programmable acoustooptic tunable filter (AOTF) as the spectral bandpass filter. A compact and fully computer controllable AOTF-based imaging spectrometer that operates in the visible wavelength range (0.5-0.8 microns) has been built and tested with success. A second imaging spectrometer operating in the near-infrared wavelength range (1.2-2.4 microns) is also under experimental investigation. The design criteria meeting various system issues, such as imaging quality, spectral response, and field of view (FOV), are discussed. An experiment using this AOTF imaging spectrometer breadboard is described.

  10. Bulk and integrated acousto-optic spectrometers for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    The development of sensitive heterodyne receivers (front end) in the centimeter and millimeter range, and the construction of sensitive RF spectrometers (back end) enable the spectral lines of interstellar molecules to be detected and identified. A technique was developed which combines acoustic bending of a collimated coherent light beam by a Bragg cell followed by detection by a sensitive array of photodetectors (thus forming an RF acousto-optic spectrometer (AOS). An AOS has wide bandwidth, large number of channels, and high resolution, and is compact, lightweight, and energy efficient. The thrust of receiver development is towards high frequency heterodyne systems, particularly in the millimeter, submillimeter, far infrared, and 10 micron spectral ranges.

  11. Acousto-optic mode-locked soliton laser

    SciTech Connect

    Pinto, J.F.; Yakymyshyn, C.P.; Pollock, C.R.

    1988-05-01

    An acousto-optic modulator has been used to actively mode lock a KCl:Tl/sup 0/ (1) color-center laser at 1.5 ..mu..m. The color-center laser is capable of generating transform-limited pulses as short as 6 psec with 2-W cw pump power. Based on this actively mode-locked KCl:Tl/sup 0/ (1) laser a stable soliton laser has been operated, with performance similar to that of the synchronously pumped soliton laser.

  12. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  13. Fast acousto-optic q-switch laser

    SciTech Connect

    Ellis, F.E.

    1981-12-29

    A fast acousto-optic q-switch laser is taught comprising a lasing medium, reflecting means mounted substantially perpendicular to the longitudinal axis of the lasing medium and spaced from a first end thereof, feedback reflecting means spaced from a second end of the lasing medium, optical pumping means for pumping the lasing medium, an acousto-optic switch mounted along and tilted at a preselected angle with respect to the longitudinal axis of the lasing medium between the second end of the lasing medium and said feedback reflecting means and spaced from the second end of said lasing medium for deflecting a portion of the radiation emitted by the lasing medium, and first and second transducers mounted in opposition to each other on the switch, the first transducer mounted with respect to the switch such that the gradient of the envelope of the acoustic energy introduced into and propagated through the switch approximates the gradient of the non-uniform population inversion directly in the lasing medium, and the second transducer mounted with respect to the switch such that acoustic energy introduced into and propagated through the switch has a velocity vector opposite to the first transducer and timed to provide maximum feedback when lasing occurs, said feedback reflecting means positioned along and tilted at a preselected angle with respect to the longitudinal axis of said lasing medium related to the path to be taken by the deflected portion of radiation for reflecting said deflected portion of radiation back to said switch.

  14. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method. PMID:27250458

  15. Collinear Acousto-Optical Transformation of Bessel Light Beams in Biaxial Gyrotropic Crystals

    NASA Astrophysics Data System (ADS)

    Belyi, V. N.; Kulak, G. V.; Krokh, G. V.; Shakin, O. V.

    2016-05-01

    The collinear acousto-optical transformation of Bessel light beams in biaxial gyrotropic crystals into two annular, internal conical refraction beams with orthogonal elliptical polarization is studied. It is found that the diffraction efficiency is maximal (~50-60%) for low ultrasound intensities and varies slightly with further increases in acoustic power. At high ultrasound intensities, the intensities of the transmitted and diffracted annular beams differ insignificantly. The possible use of this acousto-optical interaction for creating collinear tuneable narrow-band acousto-optical filters at low ultrasonic frequencies is demonstrated.

  16. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1995-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  17. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1993-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  18. Monolithic bulk shear-wave acousto-optic tunable filter.

    PubMed

    Gnewuch, Harald; Pannell, Christopher N

    2002-12-01

    We demonstrate a monolithic bulk shear-wave acousto-optic tunable filter combining a piezoelectric transducer array and the acoustic interaction medium in a single crystal. An X-propagating acoustic longitudinal wave is excited in the "crossed-field" scheme by an rf-Ey-field in a chirped acoustic superlattice formed by domain-inversion in lithium niobate (LiNbO3). The acoustic longitudinal wave is efficiently (97.5%) converted at a mechanically free boundary into a Y-propagating acoustic slow-shear wave that couples collinearly propagating e- and o-polarized optical waves. A relative conversion efficiency of 80%/W was measured at 980 nm. PMID:12546145

  19. Acousto-optic spectrum analyzer for plasma diagnostics

    SciTech Connect

    Irby, J.H.; Beals, D.

    1987-08-01

    An acousto-optic rf spectrometer (AOS) has been designed and constructed for use on the CONSTANCE B and TARA mirror experiments at MIT. The AOS is an analog preprocessor of data that can come from a variety of sources, including rf probes and microwave/laser scattering experiments. The output of the AOS is the Fourier transform amplitude of the input in a parallel format suitable for computer acquisition. The spectrometer, having a bandwidth of 500 MHz and a resolution of 1 MHz, together with its receiver, is capable of looking at fluctuations anywhere in the frequency range of a few MHz up to 4 GHz. Power levels of a few nanowatts can be detected. Complete 500-MHz-wide spectra can be processed and acquired at the rate of 1 every 10 ..mu..s. The optical components, receiver, and data-acquisition interface will be discussed, and initial data taken on the CONSTANCE B experiment will be shown.

  20. Acousto-optic/CCD real-time SAR data processor

    NASA Technical Reports Server (NTRS)

    Psaltis, D.

    1983-01-01

    The SAR processor which uses an acousto-optic device as the input electronic-to-optical transducer and a 2-D CCD image sensor, which is operated in the time-delay-and-integrate (TDI) mode is presented. The CCD serves as the optical detector, and it simultaneously operates as an array of optically addressed correlators. The lines of the focused SAR image form continuously (at the radar PRF) at the final row of the CCD. The principles of operation of this processor, its performance characteristics, the state-of-the-art of the devices used and experimental results are outlined. The methods by which this processor can be made flexible so that it can be dynamically adapted to changing SAR geometries is discussed.

  1. Influence of acoustic anisotropy in paratellurite on quasicollinear acousto-optic interaction.

    PubMed

    Mantsevich, S N; Balakshy, V I; Molchanov, V Ya; Yushkov, K B

    2015-12-01

    The influence of paratellurite acoustic anisotropy on the quasicollinear acousto-optic diffraction characteristics was examined. In the presented case the quasicollinear geometry of acousto-optic diffraction is realized with the use of acoustic beam reflection from one of the crystal surfaces. The simulations were based on the solution of acoustic beams propagation problem for anisotropic media previously presented in Balakshy and Mantsevich (2012). It is shown that media inhomogeneity affects the distribution of the acoustic energy in the ultrasound beam and the shape of wave fronts. The acoustic beam structure influences the characteristics of quasicollinear acousto-optic diffraction causing transformation of acousto-optic device transmission function shape and reducing the diffraction efficiency. PMID:26118495

  2. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    SciTech Connect

    Tadesse, Semere A.; Li, Huan; Liu, Qiyu; Li, Mo

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  3. A novel collinear LiNbO3 acousto optical tunable filter with the improved range of transmission and spectral resolution

    NASA Astrophysics Data System (ADS)

    Arellanes, Adan Omar; Shcherbakov, Alexandre S.; Bertone, Emanuele

    2015-02-01

    This investigation represents a deep and advanced analysis of exploiting lithium niobate (LiNbO3) crystals for the collinear acousto-optical tunable filter (AOTF) in violet and near ultraviolet ranges. The selection of this material is motivated by its high birefringence, which is a key parameter for improving the resolution of AOTF. For this matter, we take into account all the important factors that can deteriorate the resolution in order to find extreme conditions for the best performances. In concrete, we analyze the well- known photorefraction effect accompanied by the light induced absorption in those ranges for the LiNbO3 crystals doped by selected materials. The best observed results have been obtained with magnesium (Mg) dopant in the congruent melt of LiNbO3, which also shifts the absorption edge far into the middle UV-range. This analysis had made it possible to formulate the physical criterion determining the enlarged practical limitations of the incident light power density. Together with previously studied non-uniformity and dispersion of the birefringence along the length of acousto-optical interaction in a crystal, we exploit the recently discovered and experimentally confirmed acousto-optical nonlinearity, which can improve the transmission function inherent in the collinear interaction via applying the acoustic waves of finite amplitude in the AOTF. As a result, the obtained spectral resolution is the best available for any collinear AOTF to our knowledge.

  4. Acousto-Optic Imaging Spectrometers for Mars Surface Science

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Blaney, D. L.

    2000-01-01

    NASA's long term plan for Mars sample collection and return requires a highly streamlined approach for spectrally characterizing a landing site, documenting the mineralogical make-up of the site and guiding the collections of samples which represent the diversity of the site. Ideally, image data should be acquired at hundreds of VIS and IR wavelengths, in order to separately distinguish numerous anticipated species, using principal component analysis and linear unmixing. Cameras with bore-sighted point spectrometers can acquire spectra of isolated scene elements, but it requires 10(exp 2) to 10(exp 2) successive motions and precise relative pointing knowledge in order to create a single data cube which qualifies as a spectral map. These and other competing science objectives have to be accomplished within very short lander/rover operational lifetime (a few sols). True, 2-D imaging spectroscopy greatly speeds up the data acquisition process, since the spectra of all pixels in the scene are collected at once. This task can be accomplished with cameras that use electronically tunable acousto-optic tunable filters (AOTFs) as the optical tuning element. AOTFs made from TeO2 are now a mature technology, and operate at wavelengths from near-UV to about 5 microns. Because of incremental improvements in the last few years, present generation devices are rugged, radiation-hard and operate at temperatures down to at least 150K so they can be safely integrated into the ambient temperature optics of in-situ instruments such as planetary or small-body landers. They have been used for ground-based astronomy, and were also baselined for the ST-4 Champollion IR comet lander experiment (CIRCLE), prior to cancellation of the ST-4 mission last year. AIMS (for Acousto-optic Imaging spectrometer), is a prototype lander instrument which is being built at GSFC with support by the NASA OSS Advanced Technologies and Mission Studies, Mars Instrument Definition and Development Program (MIDP

  5. Recent advance in application of acousto-optic tunable filters

    NASA Astrophysics Data System (ADS)

    Khansuvarov, Ruslan A.; Shakin, Oleg V.; Vaganov, Mikhail A.; Zhdanov, Arseniy Y.; Prokashev, Vadim N.

    2014-09-01

    This paper aims to inform those interested in the scientific work of a large group of scientists: workers of the Department of Electronics and Optical communications of St. Petersburg State University of Aerospace Instrumentation in collaboration with workers of the Department of Quantum Electronics of St. Petersburg State Technical University in the area of researches and development of acousto-optic tunable filters (AOTF). Paper discusses the important features of the AOTF structure and their parameters that affect its work, such as: spectral range of optical radiation, spectral resolution, active aperture of the optical radiation, optical transmission of the working spectral range, optical radiation polarization (linear, circular or arbitrary) , diffraction efficiency, contrast, distortion of the optical radiation's front, frequency range of elastic waves, switching time, maximum electric control power, impedance. Also the AOTF using is considered: AOTF's implications for control of laser radiation, AOTF's application to determine the counterfeit money. The last part of the report focuses on materials that act as antireflection thin films. Spectral characteristics of "clean" and enlightened substrates of ZnSe and Ge are shown. As seen from the examples in the report, antireflection thin films increase transmittance of optical elements.

  6. Materials for imaging acousto-optic tunable filters

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2014-05-01

    Research and development of robust compact hyperspectral imagers that can acquire both spectral and spatial features from a scene of interest is of utmost importance for standoff detection of targets as well as chemical and biological agents and backgrounds. Hyperspectral imagers can acquire images with a large number of narrow spectral bands and take advantage of the characteristic spectral signatures of different materials making up the scene. At the Army Research Laboratory (ARL), we are developing hyperspectral imagers based on acousto-optic tunable filters (AOTFs) that can provide adaptive no-moving-parts imagers from the ultraviolet (UV) to the long wave infrared (LWIR) to acquire a two-dimensional spectral image and build up a two-dimensional image cube as a function of time instead of using traditional grating or prism based approach that requires relative motion between sensor and scene. Here, we will review the development of different imaging AOTFs operating from the UV to the LWIR based on a variety of birefringent materials and include the spectral imaging carried out with these filters including both with single and double piezoelectric transducers. We will also include the theoretical background needed to carry out the filter design and discuss development of mercurous halide crystals that can be used to develop AOTFs operating over a wide spectral region from the visible to the LWIR.

  7. A new multifunction acousto-optic signal processor

    NASA Technical Reports Server (NTRS)

    Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.

    1984-01-01

    An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.

  8. Precision laser spectroscopy using acousto-optic modulators

    SciTech Connect

    Van Wijngaarden, W.A.

    1996-12-31

    This paper reports on a new spectroscopic method that uses a frequency-modulated laser to excite an atomic beam. It has an especially promising future given the rapid technological advances in developing new relatively inexpensive acousto-optic and electro-optic modulators. Most significantly, this new method is free of various systematic effects that have limited the accuracy of past experiments. This chapter is organized as follows. Section II briefly reviews some of the advances made in optical spectroscopy during the last few decades. Principally, it discusses the use of Fabry-Perot etalons in conjunction with laser atomic beam spectroscopy. Interferometers have been extensively employed by numerous groups to determine many different kinds of frequency shifts. Section III describes three possible experimental arrangements using optically modulated laser beams to make frequency measurements. The advantages and limitations of these approaches are illustrated in Section IV by three specific examples of experiments that determined isotope shifts and hyperfine structure. Section V discusses some precision Stark shift measurements for optical transitions. It concludes with a summary of polarizability data having uncertainties of less than 0.5%. Sections IV and V also compare the results obtained using a variety of competing spectroscopic techniques. Finally, Section VI gives concluding remarks. 96 refs., 15 figs., 6 tabs.

  9. Electro-optic and acousto-optic laser beam scanners

    NASA Astrophysics Data System (ADS)

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  10. Acousto-optic tunable filter as a notch filter

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2016-05-01

    An acousto-optic tunable filter (AOTF) is an all solid-state robust device with no-moving parts that has been used in the development of hyperspectral imagers from the ultraviolet to the longwave infrared. Such a device is developed by bonding a piezoelectric transducer on a specially cut prism in a birefringent crystal. When broadband white light is incident on the prism input facet, two orthogonally polarized diffracted beams at a wavelength with a narrowband bandpass are transmitted. The transmitted wavelength can be tuned by varying the applied radio frequency (RF). This is what is done in a hyperspectral imager. An AOTF can also be used with multiple RFs applied at the same time to diffract a number of different wavelengths. This mode can be exploited to design a tunable optical notch filter where multiple RFs are applied simultaneously such that all wavelength in a specific range can transmit except for a specific wavelength which is notched. We designed an optical system using a TeO2 AOTF with telecentric confocal optics operating in the shortwave infrared (SWIR) with a 16-channel RF driver where both the amplitude and frequency can be controlled independently for each channel. We will discuss the optical system, its characterization and present results obtained.

  11. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    SciTech Connect

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-11-21

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.

  12. High-dynamic-range hybrid analog-digital control broadband optical spectral processor using micromirror and acousto-optic devices.

    PubMed

    Riza, Nabeel A; Reza, Syed Azer

    2008-06-01

    For the first time, to the best of our knowledge, the design and demonstration of a programmable spectral filtering processor is presented that simultaneously engages the power of an analog-mode optical device such as an acousto-optic tunable filter and a digital-mode optical device such as the digital micromirror device. The demonstrated processor allows a high 50 dB attenuation dynamic range across the chosen 1530-1565 nm (~C band). The hybrid analog-digital spectral control mechanism enables the processor to operate with greater versatility when compared to analog- or digital-only processor designs. Such a processor can be useful both as a test instrument in biomedical applications and as an equalizer in fiber communication networks.

  13. The nonreciprocal effect under low- and high-frequency collinear acousto-optic interactions

    NASA Astrophysics Data System (ADS)

    Dyakonov, E. A.; Voloshinov, V. B.; Nikitin, P. A.

    2012-12-01

    The nonreciprocal effect under collinear acousto-optic interaction in the low- and high-frequency regimes is studied theoretically. The magnitudes of nonreciprocity determined from the ultrasonic frequency and from the wavelength of light are shown to be quantitatively identical. An expression that governs the magnitude of the nonreciprocity and that is valid for both low- and high-frequency regimes of the collinear acousto-optic interaction is obtained. The shape and width of the frequency characteristic of the collinear acousto-optic interaction calculated in the low diffraction efficiency approximation are shown to be the same in the low- and high-frequency regimes. The dependence of the frequency bandwidth of the collinear acousto-optic interaction on the ultrasonic-wave attenuation and diffraction efficiency is obtained. The magnitude of the nonreciprocal effect in some of the crystals used in acousto-optics is estimated numerically. The nonreciprocity of the collinear interaction is shown to be substantially stronger in the high-frequency regime relative to the low-frequency regime. Sapphire is proved to be an optimal material for experimental realization of the nonreciprocal effect in the high-frequency regime.

  14. Holographic topography using acousto-optically generated large synthetic wavelengths

    NASA Astrophysics Data System (ADS)

    Abeywickrema, U.; Beamer, D.; Banerjee, P.; Poon, T.-C.

    2016-03-01

    Digital holography uses phase imaging in a variety of techniques to produce a three-dimensional phase resolved image that includes accurate depth information about the object of interest. Multi-wavelength digital holography is an accurate method for measuring the topography of surfaces. Typically, the object phases are reconstructed for two wavelengths separately and the phase corresponding to the synthetic wavelength (obtained from the two wavelengths) is obtained by calculating the phase difference. Then the surface map can be obtained using proper phase-unwrapping techniques. Usually these synthetic wavelengths are on the order of microns which can be used to resolve depths on the order of microns. In this work, two extremely close wavelengths generated by an acousto-optic modulator (AOM) are used to perform two-wavelength digital holography. Since the difference between the two wavelengths is on the order of picometers, a large synthetic wavelength (on the order of centimeters) can be obtained which can be used to determine the topography of macroscopic surface features. Also since the synthetic wavelength is large, an accurate surface map can be obtained without using a phase-unwrapping technique. A 514 nm Argon-ion laser is used as the optical source, and used with an AOM to generate the zeroth-order and frequency-shifted first-order diffracted orders which are used as the two wavelengths. Both beams are aligned through the same spatial filter assembly. Holograms are captured sequentially using a typical Mach-Zehnder interferometric setup by blocking one beam at a time. Limitations of the large synthetic wavelength are also discussed.

  15. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

    PubMed Central

    Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus

    2010-01-01

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506

  16. Analysis the processing algorithm for the frequency measurement variance of the acousto-optic spectrum analyzer

    NASA Astrophysics Data System (ADS)

    He, Qi-rui; Gan, Lu; Zhou, Ying; Gao, Chun-ming; Zhang, Xi-ren

    2015-08-01

    When the acousto-optic device worked on the Bragg model, the non-liner affected the diffraction beam. There were some errors between the diffraction beam deflection peak position and the input signal's frequency, which reduced the frequency measure accuracy of the acousto-optic spectrum analyzer. Under the existing optical experimental platform, we eliminated the CCD background noise by reducing the threshold firstly, and then we processed the data by four methods, the peak value method, the Gaussian fitting method, the squared cancroids method and the Hilbert transform method. The least frequency measure variance is 31.8 KHz2, the data processed by the Gaussian fitting method. It provides theoretical support for reducing the frequency measurement variance of acousto-optic spectrum analyzer.

  17. Acousto-optic fiber interferometer based on concatenated flexural wave modulation

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Zhang, Ning; Miao, Yinping

    2015-07-01

    An acousto-optic fiber interferometer has been proposed and experimentally demonstrated by employing two MgF2 sandwiches to implement concatenated flexural acoustic wave modulation onto single-mode optical fibers. The transmission spectrum of the acoustic grating pair has been experimentally investigated. Experimental results indicate that interferometric spectral fringes possess a frequency sensitivity as large as -499.0 nm/MHz due to the Mach-Zehnder interference. Moreover, the applied radio frequency signal voltage for flexural wave generation has a great impact on the transmission spectral properties. The work presented would be of importance for the understanding of the acousto-optic interaction mechanism in concatenated acoustic fiber gratings and is helpful for the design of related acousto-optic fiber devices.

  18. Transformation of phase dislocations under acousto-optic interaction of optical and acoustical Bessel beams

    NASA Astrophysics Data System (ADS)

    Belyi, V. N.; Khilo, P. A.; Kazak, N. S.; Khilo, N. A.

    2016-07-01

    The generation of wavefront phase dislocations of vortex Bessel light beams under acousto-optic (AO) diffraction in uniaxial crystals has been investigated. For the first time the process of AO interaction is studied with participation of Bessel acoustic beams instead of plane waves. A mathematical description of AO interaction is provided, which supposes the satisfaction of two types of phase-matching condition. The acousto-optic processes of transferring optical singularities onto the wavefront of BLBs are investigated and the generation of high-order optical vortices is considered at the interaction of optical and acoustical Bessel beams. The change of Bessel function order or phase dislocation order is explained as a result of the spin–orbital interaction under acousto-optic diffraction of vortex Bessel beams.

  19. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.

    1995-10-01

    In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.

  20. Acousto-optical combined frequency splitters and shifters as components of a ring optical gyroscope

    SciTech Connect

    Kotov, V M

    1999-03-31

    An analysis is made of the task of symmetrisation of a Y-type directional coupler and of shifting the frequency of counterpropagating waves in a ring gyroscope by means of the relatively recently discovered new type of acousto-optical diffraction when the incident radiation is diffracted simultaneously into two orders. Anisotropic and isotropic acousto-optical diffraction in a uniaxial crystal is considered and expressions convenient for calculations are derived. Experiments carried out on isotropic diffraction in LiNbO{sub 3} confirm, on the whole, the theoretical predictions. (laser applications and other topics in quantum electronics)

  1. Influence of acoustic anisotropy of paratellurite crystal on the double acousto-optic Bragg light scattering

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.; Voloshinov, V. B.

    2016-09-01

    Influence of acoustic anisotropy on acousto-optic interaction in optically and acoustically anisotropic media is theoretically and experimentally studied. A specific type of acousto-optic diffraction is analyzed with allowance for the phase-matching conditions for two diffraction maxima. Analytical expressions for the phase-mismatch parameters versus the angle between the phase and group velocities of acoustic wave are derived. Light intensity in the diffraction peaks is numerically calculated, and experimental data on the diffraction in the paratellurite crystal at an acoustic walk-off angle of 54° are presented.

  2. Fast scanning synchronous luminescence spectrometer based on acousto-optic tunable filters

    SciTech Connect

    Hueber, D.M.; Stevenson, C.L.; Vo-Dinh, T.

    1995-11-01

    A new luminescence spectrometer based on quartz-collinear acousto-optic tunable filters (AOTFs) and capable of synchronous scanning is described. An acousto-optic tunable filter is an electronically tunable optical bandpass filter. Unlike a tunable grating monochromator, an AOTF has no moving mechanical parts, and an AOTF can be tuned to any wavelength within its operating range in microseconds. These characteristics, combined with the small size of these devices, make AOTFs an important new alternative to conventional monochromators, especially for portable instrumentation. The relevant performance of the AOTFs (efficiency, bandwidth, rejection, etc.) is compared with that of typical small-grating monochromator. {copyright} {ital 1995 Society for Applied Spectroscopy.}

  3. Investigations of spread function of the optical spectral device based on acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Kazakov, Vasily; Korol, Georgy; Moskaletz, Oleg

    2016-04-01

    The analysis of the spectra of the dynamic signals in optical range by techniques of acousto-optics at light diffraction on a traveling acoustic wave excited by a periodic sequence of radio pulses with a rectangular envelope and linear variation of the instantaneous frequency is considered. The expression of the spread function of the spectral device based on acousto-optical tunable filter that allows to investigate in detail the advantages of this optical spectrometer is obtained. Mathematical modeling of the spread functions for different values of speed of change of the instantaneous control frequency is performed. The results of experimental research are provided.

  4. Integrated acousto-optic mode locking device for a mode locked laser system

    SciTech Connect

    Myslinski, P.

    1988-04-05

    An integrated acousto-optic mode locker is described comprising: a laser medium having first and second ends and a longitudinal axis; an excitation source for producing a population inversion in the medium; an acoustic-optic modulator mounted along the longitudinal axis of the laser medium and placed in close proximity to a first end of the laser medium; an output mirror mounted close to a second end to the laser medium and constituting together with the acoustic-optic modulator an optical resonator having an optical axis and an optical path of length L; means for controlling and maintaining the temperature of the acousto-optic modulator.

  5. Matrix/vector multiplication by use of a two-dimensional multichannel acousto-optic device

    NASA Astrophysics Data System (ADS)

    He, Shiya; Zhao, Qida; Yu, Kuanxin; Liu, Wei; Liu, Deguo; Shu, Xuesui

    1998-08-01

    The method to perform matrix/vector multiplication using the acousto-optic (AO) processor has been studded in some earlier publications. This processing architecture provides high speed and high accuracy calculation. However, in the system, two AO devices must be used. For this reason, the optical couple between the two devices has to be adjusted carefully. It will cause the inconvenience and unsteadiness. A novel two- dimensional multichannel acousto-optic device is presented in this paper. By use of this kind of device, the trouble which the earlier architecture suffered from is got rid of and the experiment system is simplified.

  6. Highly efficient acousto-optic diffraction in Sn2P2S6 crystals.

    PubMed

    Martynyuk-Lototska, I Yu; Mys, O G; Grabar, A A; Stoika, I M; Vysochanskii, Yu M; Vlokh, R O

    2008-01-01

    We have studied the acousto-optic (AO) diffraction in Sn2P2S6 crystals and found that they manifest high values of an AO figure of merit. The above crystals may therefore be used as highly efficient materials in different AO applications.

  7. Influence of Acoustic Field Structure on Polarization Characteristics of Acousto-optic Interaction in Crystals

    NASA Astrophysics Data System (ADS)

    Muromets, A. V.; Trushin, A. S.

    Influence of acoustic field structure on polarization characteristics of acousto-optic interaction is investigated. It is shown that inhomogeneity of acoustic field and mechanism of ultrasound excitation causes changes in values of acousto-optic figure of merit for ordinary and extraordinary light beams in comparison with theoretic values. The theoretic values were derived under assumption that acoustic wave is homogeneous. Experimental analysis was carried out in acousto-optic cell based on lithium niobate crystal where the acoustic wave propagates at the angle 13 degrees to Z axis of the crystal. We used three different methods of ultrasound generation in the crystal: by means of external piezotransducer, by interdigital transducer and by two sets of electrodes placed on top of the crystal surface. In the latter case, the first pair of the electrodes was directed along X crystal axis, while the second pair of the electrodes was directed orthogonally to X crystal axis and the direction of ultrasound. Obtained values for diffraction efficiencies for ordinary and extraordinary polarized optical beams were qualitatively different which may be caused by spatial inhomogeneity of the generated acoustic waves in the crystal. Structure of acoustic field generated by these sets of electrodes was examined by laser probing. We performed the analysis of the acoustic field intensity using acousto-optic method. A relation of diffraction efficiencies for ordinary and extraordinary light waves was measured during each iteration of the laser probing.

  8. Integrated optic a.d. convertor based on bulk acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    Gottlieb, M.; Brandt, G. B.

    1980-05-01

    A method is described using integrated optics to perform high data rate a.d. conversion. The approach uses the bulk acousto-optic interaction in optical waveguides, with a segmented transducer array to deflect light in response to an analogue signal applied to phase-shifting elements at the transducer.

  9. Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser

    SciTech Connect

    Roy, R.; Schulz, P.A.; Walther, A.

    1987-09-01

    An acousto-optic modulator causes undirectional operation of dye and Ti:sapphire ring lasers. The modulator has a low insertion loss in the cavity and can be used to switch the direction of the beam electronically. The ring laser performance is characterized, and experiments to probe the origin of the unidirectional operation are described.

  10. Piezo-optic, photoelastic, and acousto-optic properties of SrB4O7 crystals.

    PubMed

    Mytsyk, Bohdan; Demyanyshyn, Natalia; Martynyuk-Lototska, Irina; Vlokh, Rostyslav

    2011-07-20

    On the basis of studies of the piezo-optic effect, it has been shown that SrB(4)O(7) crystals can be used as efficient acousto-optic materials in the vacuum ultraviolet spectral range. The full matrices of piezo-optic and photoelastic coefficients have been experimentally obtained for these crystals. The acousto-optic figure of merit and the diffraction efficiency have been estimated for both the visible and deep ultraviolet spectral ranges.

  11. Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection

    SciTech Connect

    Molchanov, V Ya; Makarov, O Yu; Voloshinov, V B

    2009-04-30

    Quasi-collinear acousto-optic interaction is studied in acoustically and optically anisotropic paratellurite crystals. The possible applications of this interaction in acousto-optic tunable filters with a high spectral resolution are discussed. Different modifications of devices are compared and variants of devices intended for processing light beams and selection of light signals in fibreoptic communication systems with wavelength division multiplexing (WDM) at {lambda} {approx_equal} 1550 nm are considered. (light modulation)

  12. Ultraviolet-visible imaging acousto-optic tunable filters in KDP.

    PubMed

    Voloshinov, Vitaly; Gupta, Neelam

    2004-07-01

    There is a need to develop large-aperture acousto-optic tunable filters (AOTFs) in the UV region for applications in astronomy, environmental sciences, biology, etc. We have developed a high-quality noncollinear AOTF cell that uses a single crystal of KDP that has nearly a four times larger acousto-optic figure of merit, M2, than quartz. The linear and angular apertures of this cell are 1.5 cm x 1.5 cm and 1.2 degrees, respectively. The spectral range is 220-480 nm, with 160-cm(-1) spectral resolution and high transmission in the UV. We present an analysis of the design and describe the characterization results.

  13. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns.

    PubMed

    Resink, S G; Steenbergen, W

    2015-06-01

    Recently we presented acousto-optic (AO) probing of scattering media using addition or subtraction of speckle patterns due to tandem nanosecond pulses. Here we present a theoretical framework for ideal (polarized, noise-free) speckle patterns with unity contrast that links ultrasound-induced optical phase modulation, the fraction of light that is tagged by ultrasound, speckle contrast, mean square difference of speckle patterns and the contrast of the summation of speckle patterns acquired at different ultrasound phases. We derive the important relations from basic assumptions and definitions, and then validate them with simulations. For ultrasound-generated phase modulation angles below 0.7 rad (assuming uniform modulation), we are now able to relate speckle pattern statistics to the acousto-optic phase modulation. Hence our theory allows quantifying speckle observations in terms of ultrasonically tagged fractions of light for near-unity-contrast speckle patterns.

  14. Breakdown of the linear acousto-optic interaction regime in phoxonic cavities.

    PubMed

    Almpanis, Evangelos; Papanikolaou, Nikolaos; Stefanou, Nikolaos

    2014-12-29

    The limits of validity of the linear photoelastic model are investigated in a one-dimensional dual photonic-phononic cavity, formed by alternating layers of a chalcogenide glass and a polymer homogeneous and isotropic material, which supports both optical and acoustic resonant modes localized in the same region. It is shown that the linear-response regime breaks down when either the acoustic excitation increases or the first-order acousto-optic interaction coupling element vanishes by symmetry, giving rise to the manifestation of multiphonon absorption and emission processes by a photon. Our results provide a consistent interpretation of different aspects of the underlying physics relating to nonlinear acousto-optic interactions that can occur in such cavities. PMID:25607131

  15. Note: Laser frequency shifting by using two novel triple-pass acousto-optic modulator configurations

    SciTech Connect

    Carlos-Lopez, E. de; Lopez, J. M.; Lopez, S.; Espinosa, M. G.; Lizama, L. A.

    2012-11-15

    We report the design of two novel triple-pass acousto-optic modulator systems. These designs are extensions of the well known acousto-optic modulator (AOM) double-pass configuration, which eliminates the angle dependence of the diffracted beam with respect to the modulation frequency. In a triple-pass system, however, the frequency dependence of the angle does not disappear but the frequency shift is larger, spanning 3 times the AOM central frequency. In some applications, such as optically pumped Cesium-beam frequency standards, the frequencies of the two laser beams remain fixed and a triple-pass optical system can be used to reduce to one the number of lasers used in such atomic clocks. The two triple-pass configurations use either a retro-reflecting mirror, or a right angle prism to pass for third time the laser beam through the AOM, obtaining diffraction efficiencies of about 27% and 44%, respectively.

  16. Note: laser frequency shifting by using two novel triple-pass acousto-optic modulator configurations.

    PubMed

    de Carlos-López, E; López, J M; López, S; Espinosa, M G; Lizama, L A

    2012-11-01

    We report the design of two novel triple-pass acousto-optic modulator systems. These designs are extensions of the well known acousto-optic modulator (AOM) double-pass configuration, which eliminates the angle dependence of the diffracted beam with respect to the modulation frequency. In a triple-pass system, however, the frequency dependence of the angle does not disappear but the frequency shift is larger, spanning 3 times the AOM central frequency. In some applications, such as optically pumped Cesium-beam frequency standards, the frequencies of the two laser beams remain fixed and a triple-pass optical system can be used to reduce to one the number of lasers used in such atomic clocks. The two triple-pass configurations use either a retro-reflecting mirror, or a right angle prism to pass for third time the laser beam through the AOM, obtaining diffraction efficiencies of about 27% and 44%, respectively. PMID:23206109

  17. Mode conversion based on the acousto-optical interaction in photonic-phononic waveguide

    NASA Astrophysics Data System (ADS)

    Chen, Guodong; Zhang, Ruiwen; Xiong, Huang; Xie, Heng; Gao, Ya; Feng, Danqi; Sun, Junqiang

    2015-02-01

    We present a scheme for on-chip optical mode conversion in a hybrid photonic-phononic waveguide. Both propagating optical and acoustic wave can be tightly confined in the hybrid waveguide, and the acoustooptical interaction can be enhanced to realize optical mode conversion within a chip-scale size. The theoretical model of the acousto-optic interaction is established to explain the mode conversion. The numerical simulation results indicate that the high efficient mode conversion can be achieved by adjusting the intensity of the acoustic wave. We also show that the mode conversion bandwidth can be dramatically broadened to 13 THz by adjusting the frequency of the acoustic wave to match phase condition of the acousto-optic interaction. This mode converter on-chip is promising in order to increase the capacity of silicon data busses for on-chip optical interconnections.

  18. Photon frequency-mode matching using acousto-optic frequency beam splitters

    SciTech Connect

    Jones, Nick S.; Stace, T. M.

    2006-03-15

    It is a difficult engineering task to create distinct solid state single photon sources which nonetheless emit photons at the same frequency. It is also hard to create entangled photon pairs from quantum dots. In the spirit of quantum engineering we propose a simple optical circuit which can, in the right circumstances, make frequency distinguishable photons frequency indistinguishable. Our circuit can supply a downstream solution to both problems, opening up a large window of allowed frequency mismatches between physical mechanisms. The only components used are spectrum analysers or prisms and an acousto-optic modulator. We also note that an acousto-optic modulator can be used to obtain Hong-Ou-Mandel two photon interference effects from the frequency distinguishable photons generated by distinct sources.

  19. Measurement of isotope shifts and hyperfine splittings of ytterbium by means of acousto-optic modulation

    SciTech Connect

    van Wijngaarden, W.A.; Li, J.

    1994-11-01

    The isotope and hyperfine shifts for the Yb {sup 1}{ital S}{sub 0}(6{ital s}{sup 2}){r_arrow}{sup 3}{ital P}{sub 1}(6{ital s}6{ital p}) transition were determined with an acousto-optic modulator used to frequency shift part of a laser beam. The frequency-shifted and -unshifted laser beams were superimposed and excited an atomic beam. The laser was scanned across the transition while fluorescence produced by the radiative decay of the excited state was detected by a photomultiplier. Each isotope generated two peaks in the spectrum separated by the acousto-optic shift, which permitted the frequency to be calibrated. This relatively simple method yields results that agree well with the most accurate existing data, which were obtained by measurement of frequency shifts with a Fabry--Perot etalon whose length was stabilized with a helium--neon laser locked to an iodine line.

  20. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns.

    PubMed

    Resink, S G; Steenbergen, W

    2015-06-01

    Recently we presented acousto-optic (AO) probing of scattering media using addition or subtraction of speckle patterns due to tandem nanosecond pulses. Here we present a theoretical framework for ideal (polarized, noise-free) speckle patterns with unity contrast that links ultrasound-induced optical phase modulation, the fraction of light that is tagged by ultrasound, speckle contrast, mean square difference of speckle patterns and the contrast of the summation of speckle patterns acquired at different ultrasound phases. We derive the important relations from basic assumptions and definitions, and then validate them with simulations. For ultrasound-generated phase modulation angles below 0.7 rad (assuming uniform modulation), we are now able to relate speckle pattern statistics to the acousto-optic phase modulation. Hence our theory allows quantifying speckle observations in terms of ultrasonically tagged fractions of light for near-unity-contrast speckle patterns. PMID:25985079

  1. Comparison of real-time acousto-optic SAR (synthetic aperture radar) processor architectures

    SciTech Connect

    Stalker, K.T.; Dickey, F.M.; Molley, P.A.

    1987-08-01

    A comparison of real-time acousto-optic processors for synthetic aperture radar (SAR) image formation has been performed. These processors take advantage of the high processing speed and large time bandwidth product of acousto-optic devices (AOD's) in combination with the multichannel correlation capability of charge coupled devices (CCD) to form the SAR image in real time. They offer significant size, weight and power consumption advantages compared to conventional optical or digital processors. Architectures utilizing both spatial carriers and subtraction schemes for elimininating the unwanted bias terms have been analyzed. Also, multichannel architectures for complex (quadrature) processing have been addressed. In addition to imaging performance, the impact of these approaches on system complexity, real-time processing speed and required component capabilities are discussed. Results from both our analysis and the experimental implementation of a selected group of these architectures are presented. 8 refs., 5 figs., 1 tab.

  2. Independent acousto-optic separation of the two wavelengths of a polychromatic light beam

    NASA Astrophysics Data System (ADS)

    Kastelik, J. C.; Gazalet, Marc G.; Haine, F.; Pommeray, Michel

    1997-02-01

    A special configuration based on two successive acousto- optic interactions in uniaxial crystals with two noncollinear acoustic waves is presented. It leads to two angularly split wavelengths from a multiline laser beam with independent acousto-optic efficiencies. General expressions of the angular deviation and the spectral bandwidth are derived. Since the application concerns the restitution of colored images, a novel combination of wavelengths using the blue primary at 458 nm is investigated for trichromatic color matching. Numerical computations have been drawn for paratellurite. A practical separator using the slow shear wave in paratellurite is designed, and experimental results for the independent separation of 514- and 458-nm wavelengths of an Ar laser are reported.

  3. Wave-theory analysis of acousto-optic Bragg diffraction image formation.

    PubMed

    Mehrl, D J; Liu, Z C; Korpel, A

    1993-09-10

    We analyze anastigmatic Bragg diffraction imaging by use of an efficient numerical method that makes use of a plane-wave spectrum formalism applicable to weak acousto-optic diffraction involving threedimensional light and sound fields. Results from this wave-theory analysis are compared with previous results derived on the basis of ray theory, and are shown to be in good agreement, thus corroborating the validity of both techniques.

  4. Tunable beam shaping with a phased array acousto-optic modulator.

    PubMed

    Grinenko, A; MacDonald, M P; Courtney, C R P; Wilcox, P D; Demore, C E M; Cochran, S; Drinkwater, B W

    2015-01-12

    We demonstrate the generation of Bessel beams using an acousto-optic array based on a liquid filled cavity surrounded by a cylindrical multi-element ultrasound transducer array. Conversion of a Gaussian laser mode into a Bessel beam with tunable order and position is shown. Also higher-order Bessel beams up to the fourth order are successfully generated with experimental results very closely matching simulations.

  5. Effect of group velocity mismatch on acousto-optic interaction of ultrashort laser pulses

    SciTech Connect

    Yushkov, K B; Molchanov, V Ya

    2011-12-31

    Equations describing acousto-optic diffraction of ultrashort laser pulses in an anisotropic medium are derived, taking into account the group velocity mismatch of optical eigenmodes. It is shown that the solution of the modified coupled-mode equations taking into account the group delay is characterised by an increase in the pulse duration, a decrease in diffraction efficiency, a change in the shape of the wave packet envelope, as well as by an increase in the width of the transmission function.

  6. System for linear control and stabilization of laser radiation power by an acousto-optic modulator

    SciTech Connect

    Poleshchuk, A.G.; Khimich, A.K.

    1980-09-01

    This paper presents the results of the development and testing of an acousto-optic modulator control system and describes the operating principle of its circuit. The range of linear light flux power control is greater by a factor of 1000, the relative error is less than 1%, the operating frequency bandwidth is 0--250 kHz, and the decrease in the amplitude of the laser power fluctuations is a factor of 100.

  7. Wide-aperture diffraction of unpolarised radiation in a system of two acousto-optic filters

    SciTech Connect

    Magdich, L N; Yushkov, K B; Voloshinov, V B

    2009-04-30

    Light diffraction is studied in two tandem acousto-optic cells filtering unpolarised radiation with a wide angular spectrum. It is shown that the side lobes of the ultrasonic radiation pattern of a piezoelectric transducer produce side diffraction intensity maxima at the output of the system consisting of two filters. Diffraction in paratellurite filters is studied experimentally at 1.06 {mu}m. (light modulation)

  8. An acousto-optic image correlator with a throughput rate of 1000 templates per second

    SciTech Connect

    Molley, P.A.

    1990-03-28

    A two dimensional image correlator based on acousto-optic (AO) and charge-coupled devices (CCDs) is described that can be built with existing technology to provide 1000 frames per second operation. In recent years, architectures have been developed that perform the two dimensional correlation utilizing one dimensional input devices. The input scene is loaded into the acousto-optic device (AOD) one line at time. This line is then correlated against all of the rows of a reference template introduced into the optical system using a one dimensional array of LEDs or laser diodes. However, it generally takes a much greater time to load the AO cell than it does to process the information. this latency time severely limits the maximum throughput rate of the processor. This paper introduces a new acousto-optic correlator implementation that overcomes this bottleneck so that processing can occur close to 100% of the time. A grayscale image correlator is proposed that can be built using present technology that can realistically achieve throughput rates on the order of 10{sup 12} operations per second. This translates to over 1000 correlations per second for input scenes with dimensions of 512 {times} 512 pixels and reference templates of size 64 {times} 64 pixels. 10 refs., 4 figs.

  9. Acousto-optic multiphoton laser scanning microscopy and multiphoton photon counting spectroscopy: Applications and implications for optical neurobiology

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay

    Multiphoton excitation of molecular probes has become an important tool in experimental neurobiology owing to the intrinsic optical sectioning and low light scattering it affords. Using molecular functional indicators, multiphoton excitation allows physiological signals within single neurons to be observed from within living brain tissue. Ideally, it would be possible to record from multiple sites located throughout the elaborately branching dendritic arbors, in order to study the correlations of structure and function both within and across experiments. However, existing multiphoton microscope systems based on scanning mirrors do not allow optical recordings to be obtained from more than a handful of sites simultaneously at the high rates required to capture the fast physiological signals of interest (>100Hz for Ca2+ signals, >1kHz for membrane potential transients). In order to overcome this limitation, two-dimensional acousto-optic deflection was employed, to allow an ultrafast laser beam suited for multiphoton excitation to be rapidly repositioned with low latency (˜15mus). This supports a random-access scanning mode in which the beam can repeatedly visit a succession of user-selected sites of interest within the microscope's field-of-view at high rates, with minimal sacrifice of pixel dwell time. This technique of acousto-optic multiphoton laser scanning microscope (AO-MPLSM) was demonstrated to allow the spatial profile of signals arising in response to physiological stimulation to be rapidly mapped. Means to compensate or avoid problems of dispersion which have hampered AO-MPLSM in the past are presented, with the latter being implemented. Separately, the combination of photon counting detection with multiphoton excitation, termed generally multiphoton photon counting spectroscopy (MP-PCS), was also considered, with particular emphasis on the technique of fluorescence correlation spectroscopy (FCS). MP-PCS was shown to allow information about molecular

  10. Finite-difference time-domain simulation of compact acousto-optic filters based on multireflection beam expanding

    SciTech Connect

    Tsarev, Andrei V

    2007-04-30

    The results of numerical simulation of acousto-optic (AO) tunable filters of a new type based on multireflection beam expanding in waveguide structures are discussed. Planar waveguide filters based on thin chalcogenide (As{sub 2}S{sub 3}) films of lithium niobate (LiNbO{sub 3}) are considered. The operation of filters is analysed by the finite-difference time-domain (FDTD) method by using the license FullWAVE software package (RSoft Design Group, Inc.). It is shown that AO filters have very good dispersion properties and AO filters of extremely small size provide a narrow filtration line within the tuning range of more than 100 nm (at a wavelength of 1.54 {mu}m). It is important that the normalised linewidth (measured in units of the reciprocal filter length) is an order of magnitude smaller than the theoretical limit for AO filters produced from the same material in the conventional way, without the use of multireflection beam expanding. (acoustooptics)

  11. Acousto-optic interaction in alpha-BaB(2)O(4)and Li(2)B(4)O(7) crystals.

    PubMed

    Martynyuk-Lototska, Irina; Mys, Oksana; Dudok, Taras; Adamiv, Volodymyr; Smirnov, Yevgen; Vlokh, Rostyslav

    2008-07-01

    Experimental studies and analysis of acousto-optic diffraction in alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are given. Ultrasonic wave velocity, elastic compliance and stiffness coefficients, and piezo-optic and photoelastic coefficients of alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are determined. The acousto-optic figure of merit has been estimated for different possible geometries of acousto-optic interaction. It is shown that the acousto-optic figures of merit for alpha-BaB(2)O(4) crystals reach the value M(2)=(270 +/- 70) x 10(-15) s(3)/kg for the case of interaction with the slowest ultrasonic wave. The directions of propagation and polarization of those acoustic waves are obtained on the basis of construction of acoustic slowness surfaces. The acousto-optic diffraction is experimentally studied for alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals.

  12. Fiber-optic tunable multiwavelength variable attenuator and routing module designs that use bulk acousto-optics.

    PubMed

    Riza, Nabeel A; Mughal, M Junaid

    2005-02-10

    A compact fiber-coupled bulk acousto-optical multiwavelength variable optical attenuator module design that uses a retroreflective double-pass geometry within a single bulk acousto-optic tunable filter device is presented. The proposed attenuator module demonstrates a high 17-dB notch dynamic range at a low 100-mW drive power and uses a single bulk collinear-interaction acousto-optic tunable-filter device. Experiments show a low (<1.8-dB) fiber-to-fiber insertion loss with a fast 34-micros speed within a wide 1520-1640-nm agile multinotch band. The basic broadband attenuator module design is extended to allow for efficient architectures for routing modules such as agile drop filters, analog hitless tap filters, and digital add-drop switches.

  13. Fourier transform acousto-optic imaging with a custom-designed CMOS smart-pixels array.

    PubMed

    Barjean, Kinia; Contreras, Kevin; Laudereau, Jean-Baptiste; Tinet, Éric; Ettori, Dominique; Ramaz, François; Tualle, Jean-Michel

    2015-03-01

    We report acousto-optic imaging (AOI) into a scattering medium using a Fourier Transform (FT) analysis to achieve axial resolution. The measurement system was implemented using a CMOS smart-pixels sensor dedicated to the real-time analysis of speckle patterns. This first proof-of-principle of FT-AOI demonstrates some of its potential advantages, with a signal-to-noise ratio comparable to the one obtained without axial resolution, and with an acquisition rate compatible with a use on living biological tissue.

  14. Electronically tunable coherent Raman spectroscopy using acousto-optics tunable filter.

    PubMed

    Petrov, Georgi I; Meng, Zhaokai; Yakovlev, Vladislav V

    2015-09-21

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, we demonstrated a novel instrumentation to the broadband coherent Raman spectroscopy. System's tunability allows assessing Raman transitions ranging from <400 cm(-1) to 4500 cm(-1). We validated the use of the new instrumentation by collecting coherent anti-Stokes spectra and stimulated Raman spectra of various samples. PMID:26406668

  15. Multiplication of the frequency shift of optical radiation by means of cascade acousto-optic interaction

    SciTech Connect

    Kotov, V M

    2000-04-30

    A method for increasing the frequency shift of optical radiation by means of cascade acousto-optic diffraction of light is proposed and studied. The method is based on special features of anisotropic diffraction in an anisotropic medium and optical properties of gyrotropic media. Five-cascade diffraction of radiation from a He - Ne laser ({lambda}=0.633 {mu}m) in a TeO{sub 2} single crystal with an efficiency of 8% was obtained experimentally. (laser applications and other topics in quantum electronics)

  16. Double pass in acousto-optic tunable filter for telecommunication network

    NASA Astrophysics Data System (ADS)

    Issa, Hadeel; Quintard, Véronique; Pérennou, André; Sakkour, Afif

    2014-07-01

    We investigate an acousto-optic tunable filter setup for wavelength division multiplexing telecommunication applications in wideband C (100 nm around 1550 nm). Anisotropic Bragg diffraction of light in TeO2 bulk crystal is first investigated experimentally and theoretically in a quasi-collinear interaction configuration. Based on those characterizations, we propose a double-pass optical beam which allows us to improve the filter performances in terms of crosstalk and selectivity: the full width at half maximum and the sidelobe level are reduced.

  17. Acoustic wave velocities in two-dimensional composite structures based on acousto-optical crystals

    NASA Astrophysics Data System (ADS)

    Mal'neva, P. V.; Trushin, A. S.

    2015-04-01

    Sound velocities in two-dimensional composite structures based on isotropic and anisotropic acousto-optical crystals have been determined by numerical simulations. The isotropic materials are represented by fused quartz (SiO2) and flint glass, while anisotropic materials include tetragonal crystals of paratellurite (TeO2) and rutile (TiO2) and a trigonal crystal of tellurium (Te). It is established that the acoustic anisotropy of periodic composite structures strongly depends on both the chemical composition and geometric parameters of components.

  18. High-frequency acousto-optic mode locker for picosecond pulse generation

    SciTech Connect

    Keller, U.; Li, K.D.; Khuri-Yakub, P.T.; Bloom, D. ); Gerstenberger, D.C.; Weingarten, K.J. )

    1990-01-01

    We modeled, designed, and built a 500-MHz acousto-optic mode locker with a diffraction efficiency of 28% per 1 W drive power. The transducer is zinc oxide sputtered onto a sapphire substrate. A new figure of merit is defined for the mode-locker design, which indicates that sapphire is a good substrate material. Pulse widths of less than 10 psec with an average power of 150 mW were achieved from a 500-MHz pulse-rate, diode-pumped, cw mode-locked Nd:YLF laser using a pump power of 700 mW.

  19. A remote sensor to monitor combustion products using a tunable acousto-optic filter

    SciTech Connect

    Bardash, M.J.

    1989-01-01

    An optical system using a tunable acousto-optic filter to measure the temperature and partial pressures of CO and CO[sub 2] in combustion gases has been designed and operated. The system measures the infrared absorption over a linear path through the combustion products from several lines of the vibration-rotation band of CO at 4.7[mu]m. The temperature and partial pressure of CO is then calculated using these data. The infrared absorption due the asymmetric stretch mode of CO[sub 2] is then measured. The entire system, under computer control, is self calibrating and is well suited for remote process control applications.

  20. Tunable semiconductor laser with an acousto-optic filter in an external fibre cavity

    SciTech Connect

    Andreeva, E V; Mamedov, D S; Ruenkov, A A; Shramenko, M V; Magdich, L N; Yakubovich, S D

    2006-04-30

    A tunable semiconductor laser with a laser amplifier based on a double-pass superluminescent diode as an active element and an acousto-optic filter in an external fibre cavity as a selective element is investigated. A continuous spectral tuning is achieved in a band of width 60 nm centered at a wavelength of 845 nm and the 'instant' linewidth below 0.05 nm is obtained. The sweep frequency within the tuning range achieves 200 Hz. The cw power at the output of a single-mode fibre was automatically maintained constant at the level up to 1.5 mW. (lasers and amplifiers)

  1. Image transformation caused by wide-angle acousto-optic interaction

    SciTech Connect

    Machikhin, A S; Pozhar, V E

    2010-11-13

    The problem of diffraction of divergent image-transfer light beams by an acoustic wave is considered. Expressions that describe the transfer function as a function of spectral and angular coordinates and are valid for any birefringence are obtained for the first time. The main characteristics of wide-angle acousto-optic tunable filters (angular and spectral bandwidths) are calculated and compared with the experimental data. The dependence of the transfer function on the angle of light incidence is investigated and a fundamental change in its topology is shown. (acoustooptics)

  2. Anisotropic acousto-optic interaction in tellurium crystal with acoustic walk-off.

    PubMed

    Balakshy, Vladimir; Voloshin, Andrey

    2016-06-10

    The influence of the acoustic beam energy walk-off on characteristics of anisotropic Bragg diffraction of light is studied theoretically by the example of a tellurium single crystal. Calculations for wide ranges of Bragg angles and ultrasound frequencies are produced on the basis of an original solution of the acousto-optic (AO) interaction problem, which takes into consideration the acoustic walk-off. It is established that the walk-off can substantially change the region of AO interaction, resulting in narrowing or broadening of the frequency characteristic depending on the crystal cut, acoustic frequency, incident light polarization, and walk-off angle sign. PMID:27409010

  3. Spin-to-orbit conversion at acousto-optic diffraction of light: conservation of optical angular momentum.

    PubMed

    Skab, Ihor; Vlokh, Rostyslav

    2012-04-01

    Acousto-optic diffraction of light in optically active cubic crystals is analyzed from the viewpoint of conservation of optical angular momentum. It is shown that the availability of angular momentum in the diffracted optical beam can be necessarily inferred from the requirements of angular momentum conservation law. As follows from our analysis, a circularly polarized diffracted wave should bear an orbital angular momentum. The efficiency of the spin-to-orbit momentum conversion is governed by the efficiency of acousto-optic diffraction.

  4. Acousto-optically tuned isotopic CO{sub 2} lasers for long-range differential absorption LIDAR

    SciTech Connect

    Thompson, D.C.; Busch, G.E.; Hewitt, C.J.; Remelius, D.K.; Shimada, Tsutomu; Strauss, C.E.M.; Wilson, C.W.

    1998-12-01

    The authors are developing 2--100 kHz repetition rate CO{sub 2} lasers with milliJoule pulse energies, rapid acousto-optic tuning and isotopic gas mixes, for Differential Absorption LIDAR (DIAL) applications. The authors explain the tuning method, which uses a pair of acousto-optic modulators and is capable of random access to CO{sub 2} laser lines at rates of 100 kHz or more. The laser system is also described, and they report on performance with both normal and isotopic gas mixes.

  5. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator

    PubMed Central

    Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben

    2013-01-01

    We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability. PMID:24307756

  6. Laser communication system with acousto-optic tracking and modulation: experimental study

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Sofka, Jozef

    2009-12-01

    Laser communication systems are highly preferred for broadband applications. This technology uses higher regions of the spectrum, and offers unsurpassed throughput, information security, reduced weight and size of the components, and power savings. Unfortunately, small beam divergence requires precise positioning, which becomes very critical at high data rates. Complex motion patterns of the communicating platforms, vibrations, and atmospheric effects cause significant signal losses due to the pointing errors, beam wander, and other higher order effects. Mitigation of those effects is achieved by fast tracking, which can be successfully combined with signal modulation. In this work, we focus on the application of acousto-optic technology and its effect on communication performance. We present experimental results for a laser communication link affected by pointing distortions. These distortions are generated to emulate specific operation environments with particular spectral characteristics. The acousto-optic technology is used to build an agile tracking system combined with signal modulation in the same device to assure maximum signal reception, in spite of the harsh operational conditions. The received communication signal is recorded and statistically analyzed to calculate the bit error rates. This work presents synthesis of a tracking system and experimental results characterizing the communication performance under uncompensated pointing disturbance and with tracking.

  7. The Development and Field Testing of the Portable Acousto-optic Spectrometer for Astrobiology

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Uckert, Kyle; Voelz, David; Boston, Penelope

    2014-11-01

    The development of in situ instrumentation for the detection of biomarkers on planetary surfaces is critical for the search for evidence of present or past life in our solar system. In our earlier instrument development efforts we addressed this need through the development of a near-infrared point spectrometer intended for quick-look examinations of samples that could be subsequently analyzed with a laser desorption time-of-flight mass spectrometer. The point spectrometer utilized an acousto-optic tunable filter (AOTF) crystal as the wavelength selecting element. In parallel with the aforementioned development efforts we identified the need for a portable version of the AOTF spectrometer that we could test and demonstrate in a range of field locations on Earth chosen to serve as terrestrial analogs for extreme environments elsewhere in the solar system. Here we describe the development and field testing of the Portable Acousto-optic Spectrometer for Astrobiology (PASA). We demonstrated this instrument in two very different cave environments, a predominantly gypsum and calcite cave in New Mexico and an actively forming cave rich in hydrated sulfates in Tabasco, Mexico. Both of these microbially active environments contain evidence of biologic alteration of minerals, which can be detected using IR spectroscopy. We will describe the instrument operations and present some data acquired with PASA to demonstrate its efficacy as a tool for biomarker detection on planetary surfaces. This work was supported by NASA's EPSCoR program through grant number NNX12AK77A.

  8. Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.

    PubMed

    Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei

    2012-10-20

    Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.

  9. Dynamic wavefront shaping with an acousto-optic lens for laser scanning microscopy.

    PubMed

    Konstantinou, George; Kirkby, Paul A; Evans, Geoffrey J; Naga Srinivas Nadella, K M; Griffiths, Victoria A; Mitchell, John E; Angus Silver, R

    2016-03-21

    Acousto-optic deflectors (AODs) arranged in series and driven with linearly chirped frequencies can rapidly focus and tilt optical wavefronts, enabling high-speed 3D random access microscopy. Non-linearly chirped acoustic drive frequencies can also be used to shape the optical wavefront allowing a range of higher-order aberrations to be generated. However, to date, wavefront shaping with AODs has been achieved by using single laser pulses for strobed illumination to 'freeze' the moving acoustic wavefront, limiting voxel acquisition rates. Here we show that dynamic wavefront shaping can be achieved by applying non-linear drive frequencies to a pair of AODs with counter-propagating acoustic waves, which comprise a cylindrical acousto-optic lens (AOL). Using a cylindrical AOL we demonstrate high-speed continuous axial line scanning and the first experimental AOL-based correction of a cylindrical lens aberration at 30 kHz, accurate to 1/35th of a wave at 800 nm. Furthermore, we develop a model to show how spherical aberration, which is the major aberration in AOL-based remote-focusing systems, can be partially or fully corrected with AOLs consisting of four or six AODs, respectively. PMID:27136821

  10. Dynamic two-dimensional refractive index modulation for high performance acousto-optic deflector.

    PubMed

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam A; Kar, Aravinda

    2015-12-28

    The performance of an acousto-optic deflector is studied for two-dimensional refractive index that varies as periodic and sinc functions in the transverse and longitudinal directions, respectively, with respect to the direction of light propagation. Phased array piezoelectric transducers can be operated at different phase shifts to produce a two-dimensionally inhomogeneous domain of phase grating in the acousto-optic media. Also this domain can be steered at different angles by selecting the phase shift appropriately. This mechanism of dynamically tilting the refractive index-modulated domain enables adjusting the incident angle of light on the phase grating plane without moving the light source. So the Bragg angle of incidence can be always achieved at any acoustic frequency, and consequently, the deflector can operate under the Bragg diffraction condition at the optimum diffraction efficiency. Analytic solutions are obtained for the Bragg diffraction of plane waves based on the second order coupled mode theory, and the diffraction efficiency is found to be unity for optimal index modulations at certain acoustic parameters. PMID:26832030

  11. Laser heterodyne method of shift measurement using acousto-optic interaction

    SciTech Connect

    Teleshevskii, V.I.

    1985-04-01

    Heterodyne methods of optical-field detection using acousto-optic interaction (AOI) have gained use in optical and acoustical holography, optical interferometry and interference microscopy, and ultrasonics. These methods detect the amplitude and phase at each point of the optical field at a given carrier frequency and, in conjunction with scanning, recover the wave fronts scattered by an object. This paper examines another heterodyne method of acoustooptic conversion of light-wave phase shift in which AOI is accomplished at the output of the interference system. The described method allows a differential scheme for conversion of light-wave phase shifts which increases stability and doubles sensitivity. This is a two-channel system and has an electrical reference signal that is formed by acousto-optic conversion in transillumination of the point of the acoustic grating as the measuring signal. The proposed method has provided a basis for designing and putting into serial production laser meters with displacement ranges of up to 10 m and up to 30 m and with discreteness to 0.01 micrometers.

  12. A high dynamic range acousto-optic image correlator for real-time pattern recognition

    SciTech Connect

    Molley, P.A.; Stalker, K.T.

    1988-01-01

    The architecture and experimental results for an incoherent acousto-optic image correlator suitable for real-time applications are presented. In the basic architecture, each time a line of the raster scanned input image is fed into the acousto-optic device (AOD), all rows of a digitally stored reference image are read into the system using an array of light emitting diodes (LED's). Thus, the required two-dimensional correltaion is performed as a series of multi-channel 1-D time-integrations in x (performed in the AOD) combined with a multi-channel correlation in y (perpendicular to the AOD axis) using a modified CCD. The LED array and detector modifications which markedly increase the dynamic range are discussed as well as correlator design. Further, a novel memory for storing the reference object is described for rapidly changing templates. Experimental results indicate the architecture is useful for applications in the areas of character recognition and target identification. 8 refs., 8 figs.

  13. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors.

    PubMed

    Salomé, R; Kremer, Y; Dieudonné, S; Léger, J-F; Krichevsky, O; Wyart, C; Chatenay, D; Bourdieu, L

    2006-06-30

    Two-photon scanning microscopy (TPSM) is a powerful tool for imaging deep inside living tissues with sub-cellular resolution. The temporal resolution of TPSM is however strongly limited by the galvanometric mirrors used to steer the laser beam. Fast physiological events can therefore only be followed by scanning repeatedly a single line within the field of view. Because acousto-optic deflectors (AODs) are non-mechanical devices, they allow access at any point within the field of view on a microsecond time scale and are therefore excellent candidates to improve the temporal resolution of TPSM. However, the use of AOD-based scanners with femtosecond pulses raises several technical difficulties. In this paper, we describe an all-digital TPSM setup based on two crossed AODs. It includes in particular an acousto-optic modulator (AOM) placed at 45 degrees with respect to the AODs to pre-compensate for the large spatial distortions of femtosecond pulses occurring in the AODs, in order to optimize the spatial resolution and the fluorescence excitation. Our setup allows recording from freely selectable point-of-interest at high speed (1kHz). By maximizing the time spent on points of interest, random-access TPSM (RA-TPSM) constitutes a promising method for multiunit recordings with millisecond resolution in biological tissues.

  14. Acousto-optic Imaging System for In-situ Measurement of the High Temperature Distribution in Micron-size Specimens

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander S.; Zinin, Pavel V.; Shurygin, Alexander V.

    We developed a unique acousto-optic imaging system for in-situ measurement of high temperature distribution on micron-size specimens. The system was designed to measure temperature distribution inside minerals and functional material phases subjected to high pressure and high temperatures in a diamond anvil cell (DAC) heated by a high powered laser.

  15. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.

    2016-01-01

    We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.

  16. The Plane Wave Spectrum in Acousto-Optic Imaging of Ultrasonic Fields.

    NASA Astrophysics Data System (ADS)

    Mehrl, David Joseph

    This thesis takes an in-depth look at two major areas of acousto-optics: Bragg diffraction imaging and Schlieren imaging. Both of these methods relate to the imaging of ultrasonic sound fields. The latter method is particularly relevant as it forms the basis for many practical signal processing schemes. A review of the angular plane wave spectrum concept is followed by an outline of a three-dimensional acousto -optic interaction formalism. This formalism forms the basis for the wave-theory analyses of Bragg diffraction and Schlieren imaging which are undertaken in later chapters. A ray tracing method, applicable to acousto-optic scattering, is also developed and justified on the basis of eikonal theory. Bragg diffraction imaging is analyzed by means of both ray tracing and wave theory methods, and the results are shown to be in mutual agreement. Also discussed are the development and results of a computer program which generates three-dimensional ray tracings that depict various Bragg diffraction imaging configurations. Experimental results are presented that support our theoretical findings. Schlieren imaging is analyzed in chapter 4. The classical Raman-Nath model (and its limitations) is first discussed. We then proceed to analyze Schlieren imaging by means of wave theory. We find that the Schlieren image of a monophonic sound field possesses an extremely large depth of focus (i.e. it is almost diffraction free). We proceed to show that the Raman-Nath interpretation can be extended to high frequency (Bragg) regimes, provided certain constraints are met. Finally, we examine wideband Schlieren imaging using optical heterodyning, which is of great practical importance in signal processing schemes. Several key results are obtained. We first present an illustrative example of a Schlieren signal processing scheme employing optical heterodyning. Although this scheme is not new per se, we present experimental results of a working experiment in which we correlate a pulse

  17. Acousto-optic method used to control water pollution by miscible liquids

    NASA Astrophysics Data System (ADS)

    Ferria, Kouider; Griani, Lazhar; Laouar, Naamane

    2012-05-01

    An acousto-optic (A.O.) method has been developed for controlling the quality of water mixed by miscible liquids like acetone or ethanol… The liquid mixture is filled in a rectangular glass cell, which is placed orthogonally to the incident collimated beam of light. This cell consists of a piezoelectric transducer for generating ultrasonic waves. The collimated light while passing through this cell undergoes a diffraction phenomenon. The diffracted dots are collected by a converging photographic objective and displayed in its back focal plane. The location of the diffracted dots and their intensity are sensitive to any variation of the interaction medium. This result leads to decide about the quality of the water.

  18. Acousto-optic interaction in biconical tapered fibers: shaping of the stopbands

    NASA Astrophysics Data System (ADS)

    Ramírez-Meléndez, Gustavo; Bello-Jiménez, Miguel Ángel; Cuadrado-Laborde, Christian; Díez, Antonio; Cruz, José Luis; Rodríguez-Cobos, Amparo; Balderas-Navarro, Raúl; Andrés Bou, Miguel Vicente

    2016-03-01

    The effect of a gradual reduction of the fiber diameter on the acousto-optic (AO) interaction is reported. The experimental and theoretical study of the intermodal coupling induced by a flexural acoustic wave in a biconical tapered fiber shows that it is possible to shape the transmission spectrum, for example, substantially broadening the bandwidth of the resonant couplings. The geometry of the taper transitions can be regarded as an extra degree of freedom to design the AO devices. Optical bandwidths above 45 nm are reported in a tapered fiber with a gradual reduction of the fiber down to 70 μm diameter. The effect of including long taper transition is also reported in a double-tapered structure. A flat attenuation response is reported with 3-dB stopband bandwidth of 34 nm.

  19. Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter.

    PubMed

    Gupta, Neelam; Voloshinov, Vitaly

    2004-05-01

    Hyperspectral imaging in the ultraviolet to visible spectral region has applications in astronomy, biology, chemistry, medical sciences, etc. A novel electronically tunable, random-wavelength access, compact, no-moving-parts, vibration-insensitive, computer-controlled hyperspectral imager operating from 220 to 480 nm with a spectral resolution of 160 cm(-1), e.g., 2 nm at 350 nm, has been developed by use of a KDP acousto-optic tunable filter (AOTF) with an enhanced CCD camera and a pair of crossed calcite Glan-Taylor polarizing prisms. The linear and angular apertures of the AOTF are 1.5 x 1.5 cm2 and 1.2 degrees, respectively. Imager setup and spectral imaging results as well as analyses and discussion of various factors affecting image quality are presented.

  20. Q-switched fiber laser based on an acousto-optic modulator with injection seeding technique.

    PubMed

    Li, Wencai; Liu, Haowei; Zhang, Ji; Long, Hu; Feng, Sujuan; Mao, Qinghe

    2016-06-10

    The operation mechanism and the pulse property of an actively Q-switched erbium-doped fiber laser based on an acousto-optic modulator (AOM) switch with the injection seeding technique are investigated. Our results show that the Q-switched pulses can be locked to oscillate near a fixed frequency higher than that of the seed laser, though the frequency-shift effect of the AOM impedes stable cavity mode oscillations. The operation mechanism of such Q-switch fiber lasers can be explained by the mutual locking-in among the shifted frequency components originated from the injected coherence seed with the help of the gain dynamics of the Q-switch cavity. Moreover, narrow-linewidth Q-switched pulses with different repetition rates can be obtained with different cavity lengths for incredibly stable output pulses without any use of cavity-stabilized techniques. PMID:27409015

  1. Acousto-optic liquid-crystal analog beam former for phased-array antennas.

    PubMed

    Riza, N A

    1994-06-10

    A compact phased-array antenna acousto-optic beam former with element-level analog phase (0-2π) and amplitude control using nematic-liquid-crystal display-type technology is experimentally demonstrated. Measurements indicate > 6-bit phase control and 52.6 dB of amplitude-attenuation control. High-quality error calibration and antenna sidelobe-level control is possible with this low-control-power analog beam former. Optical system options using rf Bragg cells or wideband Bragg cells are discussed, with the rf design being the current preferred approach. Transmit-receive beam forming based on frequency upconversion-downconversion by electronic mixing is introduced for the rf Bragg-cell beam former, and comparisons with digital beam forming are highlighted. A millimeter-wave signal generation and control optical architecture is described.

  2. Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation.

    PubMed

    Almehmadi, Fares S; Chatterjee, Monish R

    2015-01-10

    Electrocardiography (ECG) signals are used for both medical purposes and identifying individuals. It is often necessary to encrypt this highly sensitive information before it is transmitted over any channel. A closed-loop acousto-optic hybrid device acting as a chaotic modulator is applied to ECG signals to achieve this encryption. Recently improved modeling of this approach using profiled optical beams has shown it to be very sensitive to key parameters that characterize the encryption and decryption process, exhibiting its potential for secure transmission of analog and digital signals. Here the encryption and decryption is demonstrated for ECG signals, both analog and digital versions, illustrating strong encryption without significant distortion. Performance analysis pertinent to both analog and digital transmission of the ECG waveform is also carried out using output signal-to-noise, signal-to-distortion, and bit-error-rate measures relative to the key parameters and presence of channel noise in the system.

  3. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    NASA Astrophysics Data System (ADS)

    Lyakh, A.; Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Patel, C. Kumar N.

    2015-04-01

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ˜8.5 μm to ˜9.8 μm when the AOM frequency was changed from ˜41MHz to ˜49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ˜4.7 cm-1. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less than 20 μs.

  4. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    SciTech Connect

    Lyakh, A. Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Patel, C. Kumar N.

    2015-04-06

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm{sup −1}. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less than 20 μs.

  5. Three-surface model for the ray tracing of an imaging acousto-optic tunable filter.

    PubMed

    Zhao, Huijie; Li, Chongchong; Zhang, Ying

    2014-11-10

    A three-surface model is proposed for the ray tracing of an imaging acousto-optic tunable filter (AOTF) in the optical design of an AOTF imaging system. The first and last surfaces are two refractive planes corresponding to the incident and exit facets of the AOTF, while the property of the second surface is defined particularly to describe the change of the ray trace owing to the interaction of the acoustic and optic waves. One parameter, the acoustic angle, is first corrected using the test tuning relation to compensate for the nonideality of the acoustic wave. The model has been verified with a two-piezotransducer AOTF to show its usefulness. The differences between the measured diffracted angles and the modeling value are below 0.01°. The comparison demonstrates the accuracy and the efficiency of the three-surface model.

  6. Use of acousto-optic tunable filter in fluorescence imaging endoscopy

    NASA Astrophysics Data System (ADS)

    Bouhifd, Mounir; Whelan, Maurice; Aprahamian, Marc

    2003-10-01

    A prototype instrument for fluorescence-based medical diagnostics in vivo is described. The system consists of a rigid endoscope comprising a UV laser-source for fluorescence excitation and a white light source for direct imaging. An acousto-optic tuneable filter (AOTF) is employed as a full-field tuneable bandpass filter. This allows fast continuous or random-access tuning with high filtering efficiency. A study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on a rat model. In particular, the aim was to detect autofluorescence of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response.

  7. Time and space integrating acousto-optic folded spectrum processing for SETI

    NASA Technical Reports Server (NTRS)

    Wagner, K.; Psaltis, D.

    1986-01-01

    Time and space integrating folded spectrum techniques utilizing acousto-optic devices (AOD) as 1-D input transducers are investigated for a potential application as wideband, high resolution, large processing gain spectrum analyzers in the search for extra-terrestrial intelligence (SETI) program. The space integrating Fourier transform performed by a lens channels the coarse spectral components diffracted from an AOD onto an array of time integrating narrowband fine resolution spectrum analyzers. The pulsing action of a laser diode samples the interferometrically detected output, aliasing the fine resolution components to baseband, as required for the subsequent charge coupled devices (CCD) processing. The raster scan mechanism incorporated into the readout of the CCD detector array is used to unfold the 2-D transform, reproducing the desired high resolution Fourier transform of the input signal.

  8. Actively mode-locked fiber ring laser by intermodal acousto-optic modulation.

    PubMed

    Bello-Jiménez, M; Cuadrado-Laborde, C; Sáez-Rodríguez, D; Diez, A; Cruz, J L; Andrés, M V

    2010-11-15

    We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187 GHz), easy tunability in the optical wavelength, and low insertion losses (0.7 dB). The narrowest optical pulses obtained were of 95 ps time width, 21 mW peak power, repetition rate of 4.758 MHz, and 110 mW of pump power.

  9. Mode locking of an all-fiber laser by acousto-optic superlattice modulation.

    PubMed

    Cuadrado-Laborde, C; Diez, A; Delgado-Pinar, M; Cruz, J L; Andrés, M V

    2009-04-01

    Active mode locking of an erbium-doped all-fiber laser with a Bragg-grating-based acousto-optic modulator is demonstrated. The fiber Bragg grating was acoustically modulated by a standing longitudinal elastic wave, which periodically modulates the sidebands at twice the acoustic frequency. The laser has a Fabry-Perot configuration in which cavity loss modulation is achieved by tuning the output fiber Bragg grating to one of the acoustically induced sidebands. Optical pulses at 9 MHz repetition rate, 120 mW peak power, and 780 ps temporal width were obtained. The output results to be stable and has a timing jitter below 40 ps. The measured linewidth, 2.8 pm, demonstrates that these pulses are transform limited.

  10. Acousto-optically generated potential energy landscapes: potential mapping using colloids under flow.

    PubMed

    Juniper, Michael P N; Besseling, Rut; Aarts, Dirk G A L; Dullens, Roel P A

    2012-12-17

    Optical potential energy landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full potential energy of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The potential of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well potentials to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the potential for fully controlled design of optical landscapes, constructed from single optical traps.

  11. Fiber-optic remote multisensor system based on an acousto-optic tunable filter (AOTF)

    SciTech Connect

    Moreau, F.; Moreau, S.M.; Hueber, D.M.; Vo-dinh, T.

    1996-10-01

    This paper describes a new fiber-optic multisensor based on an acousto-optic tunable filter (AOTF) and capable of remote sensing using a multioptical fiber array (MOFA). A two-dimensional charge-coupled device (CCD) was used as a detector, and the AOTF was used as a wavelength selector. Unlike a tunable grating or prism-based monochromator, an AOTF has no moving parts, and an AOTF can be rapidly tuned to any wavelength in its operating range within microseconds. The large aperture of the AOTF allows the optical signal from over 100 fiber-optic sensors to be measured simultaneously. These characteristics, combined with their small size, make AOTFs an important new alternative to conventional monochromators, especially for spectral multisensing and imaging. A prototype fiber-optic multisensor system has been developed, and its feasibility for simultaneous detection of molecular luminescence signal via fiber-optic probes is demonstrated. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}

  12. Performance of an acousto-optic Bragg cell under ion microbeam irradiation

    SciTech Connect

    Paxton, A.H.; Schone, H.; Taylor, E.W.; McKinney, S.; Doyle, B.L.

    1997-08-01

    An acousto optic (AO) deflector composed of PbMoO{sub 4} was exposed to 4 MeV protons while operating under Bragg angle conditions. An ion beam in air of 1 mm width was directed normal to the crystal face and laser beam. Between exposures, the approximately 13 mm x 8.5 mm AO deflector was mechanically translated in two dimensions in front of the fixed ion beam. The AO diffraction efficiency was mapped and was observed to change as a function of ion beam location and dose rate. These effects are attributed to the induced change in the temperature distribution of the crystal, which changed the sonic velocity and refractive index. Similar effects were observed when the ion beam was directed at the acoustic transducer.

  13. Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior.

    PubMed

    Hsu, Jin-Chen; Lu, Tsung-Yi; Lin, Tzy-Rong

    2015-10-01

    Acousto-optic (AO) coupling in a two-layer GaAs/Ag heterogeneous phoxonic crystal nanobeam cavity with plasmonic behavior is studied numerically. Because of the Ag metal layer, the cavity structure hybridizes photons and surface plasmons, squeezing the optical energy into small regions near the GaAs/Ag interface; the phononic cavity modes can be simultaneously tailored to highly match the photonic cavity modes at reduced regions in the cavity. Consequently, AO coupling is enhanced at near-infrared wavelengths. Boosting of the interface effect by the acoustic displacement field mainly contributes to the AO coupling enhancement. The simultaneous small photonic mode volume and high spatial matching of photonic and phononic cavity modes enhance the photonic resonance wavelength shift by one order of magnitude. This study enables applications of strong AO or photon-phonon interaction in subwavelength nano-structures. PMID:26480095

  14. Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization

    SciTech Connect

    Paldus, B.A.; Harris, J.S. Jr.; Martin, J.; Xie, J.; Zare, R.N.

    1997-10-01

    By using an acousto-optic modulator, we have stabilized a free-running continuous wave (CW) laser diode in the presence of strong reflections from a high finesse Fabry{endash}Perot resonator. The laser diode linewidth can be stabilized from several MHz, for high resolution spectroscopy of species at low pressures, to several hundred MHz, for lower resolution spectroscopy of species at atmospheric pressures. We demonstrated CW cavity ring-down spectroscopy of water vapor at both 1 atm and 5 Torr. We achieved ring-down repetition rates of 10{endash}50 kHz, and a noise level of 2{times}10{sup {minus}8} cm{sup {minus}1}. {copyright} {ital 1997 American Institute of Physics.}

  15. Calibrating bead displacements in optical tweezers using acousto-optic deflectors

    SciTech Connect

    Vermeulen, Karen C.; Mameren, Joost van; Stienen, Ger J.M.; Peterman, Erwin J.G.; Wuite, Gijs J.L.; Schmidt, Christoph F.

    2006-01-15

    Displacements of optically trapped particles are often recorded using back-focal-plane interferometry. In order to calibrate the detector signals to displacements of the trapped object, several approaches are available. One often relies either on scanning a fixed bead across the waist of the laser beam or on analyzing the power spectrum of movements of the trapped bead. Here, we introduce an alternative method to perform this calibration. The method consists of very rapidly scanning the laser beam across the solvent-immersed, trapped bead using acousto-optic deflectors while recording the detector signals. It does not require any knowledge of solvent viscosity and bead diameter, and works in all types of samples, viscous or viscoelastic. Moreover, it is performed with the same bead as that used in the actual experiment. This represents marked advantages over established methods.

  16. Automatic target recognition and tracking using an acousto-optic image correlator

    SciTech Connect

    Molley, P.A.; Kast, B.A. )

    1992-05-01

    This paper discusses a hybrid electro-optic image processor, developed for automatic target recognition and tracking using an acousto-optic correlator and digital electronics. The optical system performs the computationally intensive correlation operation on the large 2-D input scenes. The electronics provide the decision-making capability and also perform part of the postprocessing needed for increasing the peak-to-clutter ratio in cluttered scenes. The system is able to analyze each correlation plane and apply a real-time template selection algorithm to accommodate scale or rotation changes of the target. A demonstration of the current system capabilities is presented using a terrain board with several different types of stationary and moving model vehicles.

  17. Dynamic acousto-optic control of a strongly coupled photonic molecule.

    PubMed

    Kapfinger, Stephan; Reichert, Thorsten; Lichtmannecker, Stefan; Müller, Kai; Finley, Jonathan J; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J

    2015-01-01

    Strongly confined photonic modes can couple to quantum emitters and mechanical excitations. To harness the full potential in quantum photonic circuits, interactions between different constituents have to be precisely and dynamically controlled. Here, a prototypical coupled element, a photonic molecule defined in a photonic crystal membrane, is controlled by a radio frequency surface acoustic wave. The sound wave is tailored to deliberately switch on and off the bond of the photonic molecule on sub-nanosecond timescales. In time-resolved experiments, the acousto-optically controllable coupling is directly observed as clear anticrossings between the two nanophotonic modes. The coupling strength is determined directly from the experimental data. Both the time dependence of the tuning and the inter-cavity coupling strength are found to be in excellent agreement with numerical calculations. The demonstrated mechanical technique can be directly applied for dynamic quantum gate operations in state-of-the-art-coupled nanophotonic, quantum cavity electrodynamic and optomechanical systems. PMID:26436203

  18. Remote spectral imaging system (RSIS) based on an acousto-optic tunable filter (AOTF)

    SciTech Connect

    Moreau, F.; Hueber, D.M.; Vo-Dinh, T.

    1996-12-31

    This paper describes a new remote spectral imaging system (RSIS) based on an acousto-optic tunable filter (AOTF) capable of remote sensing using an imaging fiberoptic probe (IFP). A two-dimensional charge coupled device (CCD) was used as a detector. The AOTF was used as a wavelength selector. Unlike a tunable grating or prism based monochromator, the tunable filter has no moving parts, and it can be rapidly tuned to any wavelength in its operating range. The large aperture of the AOTF and its high spatial resolution allowed the optical image from an IFP to be recorded by a CCD. These characteristics, combined with their small size, make AOTF`s important new alternatives to conventional monochromators, especially for spectral multisensing and imaging. A prototype RSIS system, using both IFP and AOTF, was developed and its feasibility for spectral imaging was demonstrated. 40 refs., 8 figs.

  19. Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter.

    PubMed

    Zhang, Wending; Gao, Wei; Huang, Ligang; Mao, Dong; Jiang, Biqiang; Gao, Feng; Yang, Dexing; Zhang, Guoquan; Xu, Jingjun; Zhao, Jianlin

    2015-06-29

    An all-fiber optical heterodyne detection configuration was proposed based on an all-fiber acousto-optic structure, which acted as both frequency shifter and coupler at the same time. The vibration waveform within a frequency range between 1 Hz to 200 kHz of a piezoelectric mirror was measured using this optical heterodyne detection system. The minimal measurable vibration amplitude and resolution are around 6 pm and 1 pm in the region of tens to hundreds of kilohertz, respectively. The configuration has advantages of compact size, high accuracy and non-contact measurement. Moreover, it is of a dynamically adjustable signal-to-noise ratio to adapt different surface with different reflections in the measurement, which will improve the usage efficiency of the light power. PMID:26191765

  20. POLARIS-II - An acousto-optic imaging spectropolarimeter for ground-based astronomy

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.; Saif, B.; Bergstralh, J.

    1992-01-01

    A compact, acousto-optic tunable filter (AOTF) imaging spectropolarimeter for ground based astronomy from 400-1100 nm has been constructed at NASA/GSFC. The key components of this instrument are a TeO2 non-collinear AOTF, CCD camera, and an all-reflective optical relay assembly which uses a single elliptical mirror to produce side-by-side orthogonally polarized spectral images. The instrument was used at the Lowell Observatory 42-inch telescope for 'first light' planetary imaging and measurements of photometric standard stars. Narrow-band images of Saturn near 700 nm appear to show polarization effects which result from multiple scattering by aerosols. The instrument has recently been upgraded in order to integrate the RF drive electronics and eliminate contamination by scattered light. Design of the instrument and some initial results are presented.

  1. Emission spectroscopy of laser ablation plasma with time gating by acousto-optic modulator

    SciTech Connect

    Sakka, Tetsuo; Irie, Kyohei; Fukami, Kazuhiro; Ogata, Yukio H.

    2011-02-15

    The capability of acousto-optic modulator (AOM) to perform time-gated measurements for laser ablation plasma spectroscopy has been examined. Especially, we focused on the capability of the ''AOM gating'' to exclude the continuum and extremely broadened spectra usually observed immediately after the laser ablation. Final goal of the use of the AOM is to achieve considerable downsizing of the system for in situ and on-site analyses. In the present paper, it is shown that narrow and clear spectral lines can be obtained with the AOM gating even if the target is submerged in water. Also, application of this technique to the targets in air is demonstrated. It has been revealed that the AOM gating is fast enough to exclude the continuum and broadened lines, while effectively acquiring sufficiently narrow atomic lines lasting slightly longer than the continuum.

  2. Effect of metal coating in all-fiber acousto-optic tunable filter using torsional wave.

    PubMed

    Song, Du-Ri; Jun, Chang Su; Do Lim, Sun; Kim, Byoung Yoon

    2014-12-15

    Torsional mode acousto-optic tunable filter (AOTF) is demonstrated using a metal-coated birefringent optical fiber for an improved robustness. The changes in acoustic and optical properties of a metal-coated birefringent optical fiber induced by the thin metal coating were analyzed experimentally and theoretically. The filter wavelength shift is successfully explained as a result of combined effect of acoustic wavelength change and optical birefringence change. We also demonstrated a small form-factor configuration by coiling the fiber with 6 cm diameter without performance degradation. The center wavelength of the filter can be tuned >35 nm by changing the applied frequency, and the coupling efficiency is higher than 92% with <5 nm 3-dB bandwidth. PMID:25607036

  3. Influence of acoustic energy walk-off on acousto-optic diffraction characteristics.

    PubMed

    Balakshy, Vladimir I; Voloshin, Andrey S; Molchanov, Vladimir Ya

    2015-05-01

    Influence of acoustic beam energy walk-off on characteristics of Bragg diffraction of light is studied theoretically and experimentally by the example of a paratellurite single crystal. Two cases of isotropic and anisotropic light scattering are examined. Angular and frequency characteristics of acousto-optic interaction are calculated in wide ranges of Bragg angles and ultrasound frequencies by means of modified Raman-Nath equations. It is shown that the walk-off can substantially change the width of angular and frequency ranges, resulting in their narrowing or broadening subject to position of the operating point in the Bragg angle frequency characteristic. Coefficients of broadening are introduced for characterization of this effect. It is established that frequency dependences of the broadening coefficients are similar to the Bragg angle frequency characteristics. Experimental verification of the calculations is carried out with a paratellurite cell of 10.5° crystal cut. PMID:25708348

  4. Spatial and temporal thermal analysis of acousto-optic deflectors using finite element analysis model.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun; Huang, Zhifeng; Zhou, Huaichun

    2012-07-01

    Thermal effects greatly influence the optical properties of the acousto-optic deflectors (AODs). Thermal analysis plays an important role in modern AOD design. However, the lack of an effective method of analysis limits the prediction in the thermal performance. In this paper, we propose a finite element analysis model to analyze the thermal effects of a TeO(2)-based AOD. Both transducer heating and acoustic absorption are considered as thermal sources. The anisotropy of sound propagation is taken into account for determining the acoustic absorption. Based on this model, a transient thermal analysis is employed using ANSYS software. The spatial temperature distributions in the crystal and the temperature changes over time are acquired. The simulation results are validated by experimental results. The effect of heat source and heat convection on temperature distribution is discussed. This numerical model and analytical method of thermal analysis would be helpful in the thermal design and practical applications of AODs.

  5. Gain-switched Ho:YAG ceramic laser with an acousto-optic modulator

    NASA Astrophysics Data System (ADS)

    Zhang, Jianing; Shen, Deyuan; Zhang, Jian; Tang, Dingyuan; Chen, Hao

    2016-04-01

    We demonstrate a gain-switched Ho:YAG ceramic laser in-band pumped by an acousto-optically modulated thulium fiber laser at ˜1908 nm. The laser pulse repetition rate could be tuned continuously from 60 to 100 kHz with the pulse energy kept constant for a certain pump power level. The shortest pulse width of 204 ns and a maximum peak power of 75 W have been obtained at 60 kHz under the maximum pump power level of 11 W. A maximum average output power of 1.4 W has been achieved with a pulse repetition rate of 100 kHz, corresponding to a slope efficiency of 57% with respect to the incident pump power. The prospects for further improvement in laser performance are discussed.

  6. Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation.

    PubMed

    Almehmadi, Fares S; Chatterjee, Monish R

    2015-01-10

    Electrocardiography (ECG) signals are used for both medical purposes and identifying individuals. It is often necessary to encrypt this highly sensitive information before it is transmitted over any channel. A closed-loop acousto-optic hybrid device acting as a chaotic modulator is applied to ECG signals to achieve this encryption. Recently improved modeling of this approach using profiled optical beams has shown it to be very sensitive to key parameters that characterize the encryption and decryption process, exhibiting its potential for secure transmission of analog and digital signals. Here the encryption and decryption is demonstrated for ECG signals, both analog and digital versions, illustrating strong encryption without significant distortion. Performance analysis pertinent to both analog and digital transmission of the ECG waveform is also carried out using output signal-to-noise, signal-to-distortion, and bit-error-rate measures relative to the key parameters and presence of channel noise in the system. PMID:25967617

  7. Twisted optical-fiber-based acousto-optic tunable filter controlled by the flexural acoustic polarization

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chul; Lee, Kwang Jo

    2015-08-01

    The spectral characteristics of twisted fiber-based acousto-optic filters are theoretically investigated. The influences of three types of flexural acoustic polarization states — linear, circular, and elliptical polarizations — on filter spectra are studied under realistic experimental conditions: a fiber length of 5 - 20 cm and a circumferential fiber twist angle of < 12 π. We will analytically show that either a single- or a dual-resonance filter spectrum is achievable depending on the input polarization state of applied acoustic waves and that the spectral position of each resonance peak can be scanned continuously and linearly in the wavelength domain by using the fiber twist. The feasible spectral tuning range of the resonances is calculated to > 80 nm for a twist angle of 12 π. We will describe how the transmission of each resonance peak can also be selectively tuned by adjusting the ellipticity of the input acoustic polarization from linear to circular. The results illustrate that our approach exploiting a combination of the fiber twist and acoustic polarization management offers an excellent route to the spectral shaping of all-fiber acousto-optic devices in that the transmission of multiple resonances, as well as their spectral positions, are readily and individually controllable in a single device configuration. In addition, we also propose a novel cosine apodization method to suppress the undesirable sidelobe spectra occurring between the dual resonance peaks. The technique is based on a cosine modulation of the AO coupling strength along the fiber, which is achieved by using a combination of the fiber's circumferential twist and the linear acoustic polarization. The proposed scheme is useful to minimize the crosstalk occurring between adjacent resonance peaks. We highlight that our approach is directly applicable to matched filtering as robust, adaptable, stable, and versatile optical filters.

  8. Self-acousto-optic modulation and orthogonality violation in the transverse modes of a broad-area Nd-doped yttrium-aluminum-garnet single-shot laser

    SciTech Connect

    Soler Rus, M. Odin; Cabrera-Granado, E.; Guerra Perez, J. M.

    2011-05-15

    Self-acousto-optic Raman-Nath modulation and nonorthogonal transversal modes are found in a broad-area Nd:YAG single-shot laser. The device is free from the thermal-induced effects previously related to orthogonality violation and the acousto-optic modulation comes from a shock wave produced by the discharge of the flash lamps that optically pump the laser. The experimental findings are reproduced by a general model of a class B laser.

  9. An acousto-optical method for registration of erythrocytes' agglutination reaction—sera color influence on the resolving power

    NASA Astrophysics Data System (ADS)

    Doubrovski, V. A.; Medvedeva, M. F.; Torbin, S. O.

    2016-01-01

    The absorption spectra of agglutinating sera were used to determine blood groups. It was shown experimentally that the sera color significantly affects the resolving power of the acousto-optical method of blood typing. In order to increase the resolving power of the method and produce an invariance of the method for sera color, we suggested introducing a probing light beam individually for different sera. The proposed technique not only improves the resolving power of the method, but also reduces the risk of false interpretation of the experimental results and, hence, error in determining the blood group of the sample. The latter is especially important for the typing of blood samples with weak agglutination of erythrocytes. This study can be used in the development of an instrument for instrumental human blood group typing based on the acousto-optical method.

  10. Acousto-optic Bragg diffraction in paratellurite by the sidelobes of the spatial radiation spectrum of an acoustic transducer

    NASA Astrophysics Data System (ADS)

    Kotov, V. M.

    2016-09-01

    Acousto-optic Bragg diffraction in paratellurite is investigated within the two first diffraction orders for the case of diffraction by the sidelobes of the spatial radiation spectrum of an acoustic transducer. One of the diffraction orders is due to anisotropic diffraction, and the other, to isotropic diffraction. Such a diffraction regime is achieved when the diffraction plane is inclined toward the optical axis of the crystal. For light with a wavelength of 0.63 × 10-4 cm diffracted by a "slow" sound wave with a frequency of 26 MHz, the effect manifests itself when the angle between the acousto-optic diffraction plane and the optical axis of paratellurite is ~3°. The effect is experimentally verified. The diffraction efficiency is 20% for each of the diffraction orders for a microwave signal of 8 V at the transducer.

  11. Hyper-spectral modulation fluorescent imaging using double acousto-optical tunable filter based on TeO2-crystals

    NASA Astrophysics Data System (ADS)

    Zaytsev, Kirill I.; Perchik, Alexey V.; Chernomyrdin, Nikita V.; Kudrin, Konstantin G.; Reshetov, Igor V.; Yurchenko, Stanislav O.

    2015-01-01

    We have proposed a method for hyper-spectral fluorescent imaging based on acousto-optical filtering. The object of interest was pumped using ultraviolet radiation of mercury lamp equipped with monochromatic excitation filter with the window of transparency centered at 365 nm. Double TeO2-based acousto-optical filter, tunable in range from 430 to 780 nm and having 2 nm bandwidth of spectral transparency, was used in order to detect quasimonochromatic images of object fluorescence. Modulating of ultraviolet pump intensity was used in order to reduce an impact of non-fluorescent background on the sample fluorescent imaging. The technique for signal-to-noise ratio improvement, based on fluorescence intensity estimation via digital processing of modulated video sequence of fluorescent object, was introduced. We have implemented the proposed technique for the test sample studying and we have discussed its possible applications.

  12. Lamb wave acousto-optic modulator in ZnO/MgO multiple quantum wells and comparison with classical modulator.

    PubMed

    Gryba, T; Lefebvre, J-E; Elmaimouni, L; Ratolojanahary, F E

    2015-10-10

    An analysis of a ZnO/MgO multiple quantum well (MQW) acousto-optic modulator with Lamb waves is performed. With the MQW thickness in the range of 0.2 times the Lamb wavelength, the only observed Lamb modes are the lowest-order symmetric S0 and antisymmetric A0 modes. These modes induce strain and electric field components which influence the absorption coefficient of the modulator by the associated variation of the excitonic energies of MQW. The optical absorption coefficient spectra of the modulator as a function of the Lamb waves' power is presented. The Lamb-wave-based modulator gives a better absorption coefficient than the Rayleigh-wave-based one. An analysis of a classical acousto-optic modulator is also performed for comparison of performance. PMID:26479819

  13. All-fiber 10 MHz acousto-optic modulator of a fiber Bragg grating at 1060 nm wavelength.

    PubMed

    Silva, Ricardo E; Tiess, Tobias; Becker, Martin; Eschrich, Tina; Rothhardt, Manfred; Jäger, Matthias; Pohl, Alexandre A P; Bartelt, Hartmut

    2015-10-01

    Acousto-optic modulation of a 1 cm fiber Bragg grating at 10.9 MHz frequency and 1065 nm wavelength is demonstrated for the first time. A special modulator design is employed to acoustically induce a dynamic radial long period grating which couples power of the fundamental mode to the higher-order modes supported by the Bragg grating. A modulated reflection band with a depth of 16 dB and 320 pm bandwidth has been achieved. The results indicate a higher modulation frequency compared to previous studies using flexural acoustic waves. In addition, the reduction of the grating length and the modulator size points to compact and faster acousto-optic modulators. PMID:26480112

  14. Modeling of in vivo acousto-optic two-photon imaging of the retina in the human eye.

    PubMed

    Kusnyerik, Akos; Rozsa, Balazs; Veress, Mate; Szabo, Arnold; Nemeth, Janos; Maak, Pal

    2015-09-01

    Our aim is to establish a novel combined acousto-optical method for in vivo imaging of the human retina with the two-photon microscope. In this paper we present modeling results based on eye model samples constructed with parameters measured on patients. We used effectively the potential of the electronic compensation offered by the acousto-optic lenses to avoid the use of adaptive optical correction. Simulation predicted lateral resolution between 1.6 µm and 3 µm on the retina. This technology allows the visualization of single cells and promises real time measuring of neural activity in individual neurons, neural segments and cell assemblies with 30-100 µs temporal and subcellular spatial resolution. PMID:26368444

  15. Anisotropy of the acousto-optic figure of merit for LiNbO₃ crystals: isotropic diffraction.

    PubMed

    Mys, Oksana; Kostyrko, Myroslav; Krupych, Oleh; Vlokh, Rostyslav

    2015-09-20

    We have developed an approach for analyzing the anisotropy of the acousto-optic figure of merit (AOFM) for lithium niobate crystals in the case of isotropic acousto-optic (AO) diffraction. The working relations for the effective elasto-optic coefficients and the AOFM have been derived. We have found that, under the conditions of isotropic AO diffraction, the maximum AOFM value for LiNbO3 is equal to 11.62×10(-15)  s(3)/kg. This is peculiar for the geometry of AO interaction of the shear acoustic wave propagating in the Y-Z plane (the velocity 3994 m/s) with the optical wave polarized in the same plane. We have demonstrated that the maximum AOFM values are achieved mainly due to the essential anisotropy and high values of the elasto-optic coefficient of LiNbO3. PMID:26406522

  16. Analysis of acousto-optic interaction based on forward stimulated Brillouin scattering in hybrid phononic-photonic waveguides.

    PubMed

    Zhang, Ruiwen; Chen, Guodong; Sun, Junqiang

    2016-06-13

    We present the generation of forward stimulated Brillouin scattering (FSBS) in hybrid phononic-photonic waveguides. To confine the optical and acoustic waves simultaneously, a hybrid waveguide is designed by embedding the silicon line defect in the silicon nitride phononic crystal slab. By taking into account three kinds hybrid waveguide, the appropriate structural parameters are obtained to enhance the acousto-optic interaction. We fabricate the honeycomb hybrid waveguide with a CMOS compatible technology. The forward Brillouin frequency shift is measured up to 2.425 GHz and the acoustic Q-factor of the corresponding acoustic mode is 1100. The influences of pump power, acoustic loss, nonlinear optical loss and lattice constant on the acousto-optic interaction in FSBS are analyzed and discussed. The proposed approach has important potential applications in on-chip all-optical signal processing. PMID:27410324

  17. Analytical study of acousto/optical holography-interfacing methods for acoustical and optical holography NDT research

    NASA Technical Reports Server (NTRS)

    El-Sum, H. M. A.

    1976-01-01

    The international status of the art of acousto optical imaging techniques adaptable to nondestructive testing and, interfacing methods for acoustical and optical holography in nondestructive testing research are studied. Evaluation of 20 different techniques encompassed investigation of varieties of detectors and detection schemes, all of which are described and summarized. Related investigation is reported in an Appendix. Important remarks on image quality, factors to be considered in designing a particular system, and conclusions and recommendations are presented. Three bibliographies are included.

  18. Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation.

    PubMed

    Fatemi, F K; Bashkansky, M; Dutton, Z

    2007-03-19

    We demonstrate an experimental technique for high-resolution, high-speed spatial manipulation of atom clouds. By combining holographically engineered laser beams from a spatial light modulator with off-axis shear mode acousto-optic deflectors, we manipulate 1 x 3 arrays of cold atoms with individual site addressability. Additionally, we demonstrate smooth 2-dimensional motion of atomic ensembles, and the ability to guide multiple atomic ensembles independently.

  19. Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors.

    PubMed

    Zurauskas, Mantas; Rogers, John; Podoleanu, Adrian Gh

    2013-01-28

    We present a novel low-coherence interferometer configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire up to eight time domain optical coherence tomography en-face images. The capabilities of the configuration are evaluated in terms of depth resolution, signal to noise ratio and crosstalk. Then the configuration is employed to demonstrate simultaneous en-face optical coherence tomography imaging at five different depths in a specimen of armadillidium vulgare. PMID:23389175

  20. Design of an acousto-optic goniometric specimens mount. Report No. 2 on modeling of acoustic microscopes

    SciTech Connect

    Evans, G.E.; Rice, D.L.; Schwartz, M.

    1985-05-01

    The proposed project is to design, build, and test an acousto-optic goniometric specimen mount. It will be used in a related experiment, evaluating reflection of sound from the surfaces of various specimens. The desired specimen mount is one which will utilize as much of the existing testing apparatus as possible. The mount must provide a means of scanning the sound beam with a laser.

  1. Optimum cavity length and absolute cavity detuning in acousto-optically mode-locked argon-ion lasers

    NASA Astrophysics Data System (ADS)

    Ruddock, I. S.; Illingworth, R.

    1987-09-01

    Acousto-optic mode-locking in an argon-ion laser was investigated in detail. Measurement of the discharge current is shown to be an accurate means of locating the optimum cavity length which depends strongly on level of excitation. The absolute cavity mismatch between the optimum length and that corresponding to c/4 vRF was determined by direct measurement and by using a cw dye laser as an active interferometer.

  2. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were

  3. Pre-Juno Optical Analysis of Jupiter's Atmosphere with the NMSU Acousto-optic Imaging Camera

    NASA Astrophysics Data System (ADS)

    Dahl, Emma; Chanover, Nancy J.; Voelz, David; Kuehn, David M.; Strycker, Paul D.

    2016-10-01

    Jupiter's upper atmosphere is a highly dynamic system in which clouds and storms change color, shape, and size on variable timescales. The exact mechanism by which the deep atmosphere affects these changes in the uppermost cloud deck is still unknown. With Juno's arrival at Jupiter in July 2016, the thermal radiation from the deep atmosphere will be measurable with the spacecraft's Microwave Radiometer. By taking detailed optical measurements of Jupiter's uppermost cloud deck in conjunction with Juno's microwave observations, we can provide a context in which to better understand these observations. This data will also provide a complement to the near-IR sensitivity of the Jovian InfraRed Auroral Mapper and will expand on the limited spectral coverage of JunoCam. Ultimately, we can utilize the two complementary datasets in order to thoroughly characterize Jupiter's atmosphere in terms of its vertical cloud structure, color distribution, and dynamical state throughout the Juno era. In order to obtain high spectral resolution images of Jupiter's atmosphere in the optical regime, we use the New Mexico State University Acousto-optic Imaging Camera (NAIC). NAIC contains an acousto-optic tunable filter, which allows us to take hyperspectral image cubes of Jupiter from 450-950 nm at an average spectral resolution (λ/dλ) of 242. We present an analysis of our pre-Juno dataset obtained with NAIC at the Apache Point Observatory 3.5-m telescope during the night of March 28, 2016. Under primarily photometric conditions, we obtained 6 hyperspectral image cubes of Jupiter over the course of the night, totaling approximately 2,960 images. From these data we derive low-resolution optical spectra of the Great Red Spot and a representative belt and zone to compare with previous work and laboratory measurements of candidate chromophore materials. Future work will focus on radiative transfer modeling to elucidate the Jovian cloud structure during the Juno era. This work was supported

  4. Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong.

    PubMed

    Cheng, Andrew Y S; Chan, M H

    2004-12-01

    Measurement of the atmospheric concentration of nitrogen dioxide (NO(2)) pollutant was demonstrated by differential optical absorption spectroscopy (DOAS) using a visible acousto-optic tunable filter. In a traditional spectral scanning DOAS system for atmospheric concentration monitoring, a highly stable light source is required. When the light intensity fluctuates during scanning, the concentration retrieval will be inaccurate. In order to reduce the error due to intensity fluctuations, a modified DOAS system has been developed by introducing a broadband light intensity monitoring channel. Using the measured intensity of the broadband channel as the intensity of the light source, the spectrum can be de-biased and the residual intensity variation will primarily result from atmospheric extinction. In addition, by employing the lock-in detection technique, the background light interference is also removed in the modified DOAS system. The atmospheric NO(2) concentration measurement was performed at the campus of City University of Hong Kong, and the results were compared with the concentration reported from a nearby monitoring station in Sham Shui Po, operated by the Hong Kong Environmental Protection Department.

  5. Post-flight test results of acousto-optic modulator devices subjected to space exposure

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark

    2014-09-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 modulewas brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.

  6. The Aerosol Limb Imager: acousto-optic imaging of limb scattered sunlight for stratospheric aerosol profiling

    NASA Astrophysics Data System (ADS)

    Elash, B. J.; Bourassa, A. E.; Loewen, P. R.; Lloyd, N. D.; Degenstein, D. A.

    2015-12-01

    The Aerosol Limb Imager (ALI) is an optical remote sensing instrument designed to image scattered sunlight from the atmospheric limb. These measurements are used to retrieve spatially resolved information of the stratospheric aerosol distribution, including spectral extinction coefficient and particle size. Here we present the design, development and test results of an ALI prototype instrument. The long term goal of this work is the eventual realization of ALI on a satellite platform in low earth orbit, where it can provide high spatial resolution observations, both in the vertical and cross-track. The instrument design uses a large aperture Acousto-Optic Tunable Filter (AOTF) to image the sunlit stratospheric limb in a selectable narrow wavelength band ranging from the visible to the near infrared. The ALI prototype was tested on a stratospheric balloon flight from the Canadian Space Agency (CSA) launch facility in Timmins, Canada, in September 2014. Preliminary analysis of the hyperspectral images indicate that the radiance measurements are of high quality, and we have used these to retrieve vertical profiles of stratospheric aerosol extinction coefficient from 650-1000 nm, along with one moment of the particle size distribution. Those preliminary results are promising and development of a satellite prototype of ALI within the Canadian Space Agency is ongoing.

  7. Performance of a laser communication system with acousto-optic tracking: an experimental study

    NASA Astrophysics Data System (ADS)

    Nikulin, V.; Khandekar, R.; Sofka, J.

    2006-02-01

    Laser communication systems hold great promise for broadband applications. This technology uses much higher-than-RF region of the spectrum and allows concentration of the signal within a very small spatial angle, thus offering unsurpassed throughput, information security, reduced weight and size of the components and power savings. Unfortunately, these intrinsic advantages do not come without a price: small beam divergence requires precise positioning, which becomes very critical at high bit rates. Complex motion patterns of the communicating platforms, resident vibrations, and atmospheric effects are known to cause significant signal losses through the mechanisms of the pointing errors, beam wander and other higher-order effects. Mitigation of those effects is achieved through the multiple means of fast tracking and wavefront control. In this paper we focus on the application of a beam steering technology and its effect on the communication performance of the system. We present the results of an experimental study of a laser communication link subjected to pointing distortions. These distortions are generated by a special disturbance element in the optical setup, which recreates specific operation environments with particular spectral characteristics. The acousto-optic technology is used to build an agile tracking system to assure the maximum signal reception in spite of the harsh operational conditions. The received communication signal is recorded and statistically analyzed to calculate the bit-error-rates. This paper presents the synthesis of a tracking system and the experimental results characterizing the communication performance under uncompensated pointing disturbance and with tracking.

  8. An acousto-optic tunable filter enhanced CO{sub 2} lidar atmospheric monitor

    SciTech Connect

    Taylor, L.H.; Suhre, D.R.; Mani, S.S.

    1996-12-31

    The atmospheric monitor conceptual design is based on a pulsed CO{sub 2} laser. The narrow laser lines provide high spectral selectivity in the 9-11 {mu}m region, within the 8-14 {mu}m ``fingerprint`` region where most large molecules have unique spectral absorption signatures. Laser power has been chosen so that topological objects, e.g., trees or buildings, as far as 4 km can be used as backreflectors, but the laser intensity is sufficiently low that the laser beam is eye-safe. Time-of-flight measurements give the distance to the topological reflector. The lidar system is augmented with an acousto-optic tunable filter (AOTF) which measures the thermal emission spectra from 3 to 14 {mu}m with a 3 cm{sup -1} passband. Sensitivity to narrow emission lines is enhanced by derivative spectroscopy in which the passband of the AOTF is dithered via the rf drive. Path-averaged concentrations are determined from the emission intensity and laser- determined range.

  9. Post-Flight Test Results of Acousto-Optic Modulator Devices Subjected to Space Exposure

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark

    2014-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in a space environment for more than one and a half years included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator (AOM) devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.

  10. Bulk acousto-optic wavelength agile filter module for a wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2005-05-01

    An acousto-optic tunable filter-based wavelength-selection module with features optimized for a wavelength-multiplexed optical scanner (W-MOS) is proposed and demonstrated. The W-MOS produces high-speed multiple scan beams if it is engaged with an agile tunable source with multiwavelength generation capability. In particular, the proposed fiber-connected module features high-speed, low-loss, narrow-linewidth, and single-multiple wavelength selection by means of radio frequency drive signal control for single- or multiple-beam scan operations. The unique module offers input laser beam power control that in turn delivers the desired scanned laser beam power shaping. Experimental results match module design theory and demonstrate a fast 5.4-micros wavelength selection speed, a low (1.53-dB) fiber-to-fiber optical insertion loss, a 5.55-nm 3-dB spectral width, and a 1500-1600-nm agile wavelength operational band.

  11. Deflection of a monochromatic THz beam by acousto-optic methods

    SciTech Connect

    Voloshinov, V B; Nikitin, P A; Gerasimov, V V; Choporova, Yu Yu; Knyazev, B A

    2013-12-31

    The possibility of controlled deflection of an electromagnetic THz beam of a free-electron laser by acousto-optic (AO) methods has been demonstrated for the first time. The material of the AO deflector was chosen to be single-crystal germanium, which has a fairly large refractive index (n = 4.0) and a relatively low absorption coefficient for electromagnetic waves. The absorption coefficient α in germanium is 0.75 ± 0.02 cm{sup -1} at a wavelength λ = 140 μm. The diffracted beam intensity is shown to be maximum at an effective AO interaction length l = 1/α. A diffraction efficiency of 0.05% at a travelling acoustic wave power of 1.0 W is experimentally obtained. It is established that a change in the ultrasonic frequency from 25 to 39 MHz leads to variation in the external Bragg angle in the range from 19.5° to 27.5°. At a fixed Bragg angle θ{sub B} = 22.4° the frequency band of diffraction is 4.2 ± 0.1 MHz and the angular range of laser beam scanning reaches 2.5° ± 0.5°. The results obtained indicate that AO interaction can be used for controlled deflection of electromagnetic THz beams. (terahertz radiation)

  12. A RAPIDLY-TUNABLE ACOUSTO-OPTIC SPECTROMETER FOR A SPACE ENVIRONMENT

    SciTech Connect

    D. THOMPSON; C. HEWITT; C. WILSON

    2000-08-01

    As a complement to our work developing rapidly-tunable ({approximately}10-100 kHz) CO{sub 2} lasers for differential absorption lidar (DIAL) applications,l we have developed a rapidly-tunable spectrometer. A rapid spectral diagnostic is critical for a high speed DIAL system, since analysis of the return signals depends on knowing the spectral purity of the transmitted beam. The spectrometer developed for our lidar system is based on a double-passed large- (75 mm) aperture acousto-optic deflector, a grating, and a fast single-element room temperature mercury-cadmium-telluride detector. The spectrometer has a resolution of {approximately}0.5 cm{sup {minus}1}, a tuning range of 9.0-11.4 pm, a random-access tuning speed of greater than 80 kHz and a S/N ratio of greater than 100:1. We describe the design and performance of this device, as well as of future devices featuring improved resolution, higher speed and easier and more robust alignment. We will also briefly discuss the applications and limitations of the technique in a space environment.

  13. Advanced fluorescence imaging endoscopy using an acousto-optic tuneable filter

    NASA Astrophysics Data System (ADS)

    Whelan, Maurice P.; Bouhifd, Mounir; Aprahamian, Marc

    2004-07-01

    Two novel prototype instruments for in vivo fluorescence-based medical diagnostics are described. The devices are based on an acousto-optic tuneable filter (AOTF) and can be easily attached to the eyepiece of most commercially available endoscopes. The instruments developed offer significant advantages over typical fixed-filter or filter-wheel fluorescence imaging systems in terms of flexibility, performance and diagnostic potential. Any filtering center-wavelength in the range from 450 to 700 nm can be rapidly selected either by random access or sequential tuning using simple commands delivered over a PC serial interface. In addition, both filtered and unfiltered light can be imaged to facilitate the direct association of fluorescence signals with specific anatomical sites. To demonstrate the system in vivo, a study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on rats. The aim was to detect extremely low-levels of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response. Results show clearly that the device is effective in diagnosing mild pancreatitis in rats without the necessity of administering PpIX promoting agents such as ALA. Planning of human clinical trials is currently underway to demonstrate its potential as a tool for non-invasive early diagnosis of gastroenterological diseases.

  14. Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems.

    PubMed

    Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan

    2013-05-20

    The accuracy of the radiometric response of acousto-optic tunable filter (AOTF) hyperspectral imaging systems is crucial for obtaining reliable measurements. It is therefore important to know the radiometric response and noise characteristics of the hyperspectral imaging system used. A radiometric model of an AOTF hyperspectral imaging system composed of an imaging sensor radiometric model (CCD, CMOS, and sCMOS) and an AOTF light transmission model is proposed. Using the radiometric model, a method for obtaining the fixed pattern noise (FPN) of the imaging system by displacing and imaging an illuminated reference target is developed. Methods for estimating the temporal noise of the imaging system, using the photon transfer method, and for correcting FPN are also presented. Noise estimation and image restoration methods were tested on an AOTF hyperspectral imaging system. The results indicate that the developed methods can accurately calculate temporal and FPN, and can effectively correct the acquired images. After correction, the signal-to-noise ratio of the acquired images was shown to increase by 26%. PMID:23736239

  15. Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Vila-Francés, Joan; Calpe-Maravilla, Javier; Muñoz-Mari, Jordi; Gómez-Chova, Luis; Amorós-López, Julia; Ribes-Gómez, Emilio; Durán-Bosch, Vicente

    2006-07-01

    This article presents a new imaging spectrometer called autonomous tunable filtering system. The instrument acquires sequential images at different spectral wavelengths in the visible and near infrared range of the electromagnetic spectrum. The spectral selection is performed by an acousto-optic tunable filter (AOTF), which is driven by a custom radio-frequency (rf) generator based on a direct digital synthesizer (DDS). The DDS allows a high flexibility in terms of acquisition speed and bandwidth selection. The rf power is dynamically controlled to drive the AOTF with the optimum value for each wavelength. The images are formed through a carefully designed optical layout and acquired with a high performance digital camera. The application software controls the instrument and acquires the raw spectral images from the camera. This software optionally corrects the image for the AOTF nonidealities, such as diffraction efficiency variations, spatial nonuniformity, and chromatic aberration, and generates a single multiband image file. Moreover, the software can calculate the reflectance or transmittance of the acquired images. The instrument has been calibrated to give precise and repetitive measurements and has been validated against a high performance point spectrometer. As a case example, the instrument has been successfully used for the mapping of chlorophyll content of plant leaves from their multispectral reflectance images.

  16. Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems.

    PubMed

    Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan

    2013-05-20

    The accuracy of the radiometric response of acousto-optic tunable filter (AOTF) hyperspectral imaging systems is crucial for obtaining reliable measurements. It is therefore important to know the radiometric response and noise characteristics of the hyperspectral imaging system used. A radiometric model of an AOTF hyperspectral imaging system composed of an imaging sensor radiometric model (CCD, CMOS, and sCMOS) and an AOTF light transmission model is proposed. Using the radiometric model, a method for obtaining the fixed pattern noise (FPN) of the imaging system by displacing and imaging an illuminated reference target is developed. Methods for estimating the temporal noise of the imaging system, using the photon transfer method, and for correcting FPN are also presented. Noise estimation and image restoration methods were tested on an AOTF hyperspectral imaging system. The results indicate that the developed methods can accurately calculate temporal and FPN, and can effectively correct the acquired images. After correction, the signal-to-noise ratio of the acquired images was shown to increase by 26%.

  17. Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2006-01-01

    In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.

  18. Investigation of acousto-optic properties of tellurium-based glasses for infrared applications

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. B.; Gupta, N.; Kulakova, L. A.; Khorkin, V. S.; Melekh, B. T.; Knyazev, G. A.

    2016-02-01

    We examined the physical properties of infrared optical glasses composed of tellurium, germanium, selenium, sulfur and silicon. In particular, we measured optical, acoustic and photoelastic parameters of the following alloy compounds: germanium-selenium-tellurium (Ge-Se-Te), germanium-selenium-sulfur-tellurium (Ge-Se-S-Te), germanium-silicon-tellurium (Ge-Si-Te) and silicon-tellurium (Si-Te). Like single-crystal tellurium, the glasses demonstrate good acousto-optic (AO) diffraction efficiency and have reasonable optical transparency in a wide spectral region covering wavelengths from 1.5 to 20 μm. The optical, acoustic and photoelastic properties of the tellurium-based compounds were measured using infrared lamp sources of radiation as well as He-Ne and CO2 lasers. In this paper, we report on the optical, acoustic and photoelastic parameters of a selection of these compounds and discuss the advantages and disadvantages of using these glasses for AO device applications. We also present the measured characteristics of an AO cell fabricated in a Si20Te80 glass material which exhibited high optical uniformity and long-term chemical stability.

  19. LD-pumped acousto-optical Q-switched burst-mode Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Li, Xudong; Ma, Yufei; Yu, Xin; Chen, Deying

    2016-04-01

    A high-repetition-rate, high-peak-power burst-mode laser for laser-based measurement applications is presented by using a master oscillator power amplifier structure. An laser diode arrays (LDA) side-pumped Nd:YAG acousto-optical (A-O) Q-switched laser serves as the master oscillator. Under pulsed pumping, pulse trains with 2-25 pulses are obtained when the repetition rate changes from 10 kHz to 100 kHz. The maximum pulse burst energy of 31.2 mJ is achieved in the A-O Q-switched pulse burst laser oscillator at 10 kHz. Two LDA side pumped Nd:YAG modules are employed in the amplification stage. After the amplification, the pulse burst energy at 10 kHz reaches ~170 mJ with a single pulse energy of 85.2 mJ and a pulse width of 14.5 ns, generating a peak power of 6.1 MW. At 100 kHz, the total burst energy reaches 220 mJ with a single pulse energy of 8.8 mJ in the pulse burst laser system.

  20. Spectropolarimetric detection using photoelastic modulators and acousto-optic tunable filter.

    PubMed

    Zhang, Rui; Wen, Tingdun; Wang, Yaoli; Wang, Zhibin; Li, Kewu

    2015-10-10

    This paper proposes a spectropolarimetric detection method based on three photoelastic modulators (3PEMs) and an acousto-optic tunable filter (AOTF). Operating the 3PEMs at slightly resonant frequencies (ω123) generates a different frequency signal that modulates the polarized component of the incident light at a low-frequency (0, 2ω1-2ω3, ω23). The frequency of the low-frequency modulation component is two to three orders of magnitude lower than the resonant frequency of any of the 3PEMs so the general area array detector can realize the detection. I, Q, and U of the incident light's Stokes parameters can be obtained in only one detection by extracting the low-frequency component from the detector's signals, and then combining it with an AOTF to finally realize the spectropolarimetric imaging detection. The paper introduces the basic principle, preliminarily verifies feasibility through a corresponding numerical simulation and experiment, and makes an error analysis on the polarization detection results according to factors of difference frequency and phase delay amplitude. The theory has potential application value to spectropolarimetric technology. PMID:26479804

  1. Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization.

    PubMed

    de Vries, Oliver; Saule, Tobias; Plötner, Marco; Lücking, Fabian; Eidam, Tino; Hoffmann, Armin; Klenke, Arno; Hädrich, Steffen; Limpert, Jens; Holzberger, Simon; Schreiber, Thomas; Eberhardt, Ramona; Pupeza, Ioachim; Tünnermann, Andreas

    2015-07-27

    We introduce and experimentally validate a pulse picking technique based on a travelling-wave-type acousto-optic modulator (AOM) having the AOM carrier frequency synchronized to the repetition rate of the original pulse train. As a consequence, the phase noise characteristic of the original pulse train is largely preserved, rendering this technique suitable for applications requiring carrier-envelope phase stabilization. In a proof-of-principle experiment, the 1030-nm spectral part of an 74-MHz, carrier-envelope phase stable Ti:sapphire oscillator is amplified and reduced in pulse repetition frequency by a factor of two, maintaining an unprecedentedly low carrier-envelope phase noise spectral density of below 68 mrad. Furthermore, a comparative analysis reveals that the pulse-picking-induced additional amplitude noise is minimized, when the AOM is operated under synchronicity. The proposed scheme is particularly suitable when the down-picked repetition rate is still in the multi-MHz-range, where Pockels cells cannot be applied due to piezoelectric ringing. PMID:26367616

  2. Double-filtering method based on two acousto-optic tunable filters for hyperspectral imaging application.

    PubMed

    Wang, Pengchong; Zhang, Zhonghua

    2016-05-01

    A hyperspectral imaging system was demonstrated based on two acousto-optic tunable filters (AOTFs). Efficient regulation of the incoherent beam was executed by means of the wide-angular regime of Bragg diffraction in the birefringent materials. A double-filtering process was achieved when these two AOTFs operated with a central wavelength difference. In comparison with the single-filtering method, the spectral bandwidth was greatly compressed, giving an increment of 42.02% in spectral resolution at the wavelength of 651.62 nm. Experimental results and theoretical calculations are basically identical. Furthermore, the sidelobe was found to be suppressed by the double-filtering process with the first order maximum decreased from -9.25 dB to -22.35 dB. The results indicated high spectral resolution and high spectral purity were obtained simultaneously from this method. The basic spectral resolution performance was examined with a didymium glass by this configuration. We present our experimental methods and the detailed results obtained. PMID:27137600

  3. A Lyman-alpha tunable acousto-optic filter for detecting superthermal flare protons

    NASA Technical Reports Server (NTRS)

    Mickey, Donald L.

    1994-01-01

    The goal of this project was to develop and characterize a narrow-band, tunable filter for use near the Lyman-alpha line of hydrogen at 121.6 nm. Such a filter could form the critical component of an instrument to observe asymmetries in the solar Lyman-alpha line, caused by energetic protons accelerated during the impulsive phase of solar flares. Characteristic charge-exchange nonthermal emission at Lyman alpha should be produced when sub-MeV protons are injected into the chromosphere, but no instrument suitable for their detection has been developed. Such an instrument would require a narrow-band (less than 0.01 nm) tunable filter with aperture and throughput consistent with imaging a solar active region at 0.1 second intervals. The development of acousto-optic tunable filters (AOTF) suitable for use as compact, simple tunable filters for astronomical work suggested an investigation into the use of an AOTF at Lyman-alpha.

  4. Interferometric surface-wave acousto-optic time-integrating correlators

    NASA Technical Reports Server (NTRS)

    Berg, N. J.; Abramovitz, I. J.; Casseday, M. W.

    1981-01-01

    A structure for a coherent-interferometric acousto-optic (AO) time-integrating correlator was implemented by using a single surface acoustic wave (SAW) device with tilted transducers to reduce intermodulation terms. The SAW device was fabricated on Y-Z LiNbO3 with a center frequency of 175 MHz, a bandwidth of 60 MHz, and a time aperture of about 10 micros. The density of the photodetector array, with a potential of 120 MHz. Typical integration times are 30 to 40 ms, providing processing gains in excess of 10 to the 6th power. Such a device is useful in providing fast synchronization of communication links and in demodulating to base band and simultaneously acting as a synchronization lock monitor for moderate data rates. Where processing may be limited by Doppler shifts, a two dimensional architecture was implemented to allow full processing gain. Two one-dimensional, SAW AO time-integrating correlators and a two dimensional correlator are evaluated.

  5. Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    PubMed Central

    Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren

    2011-01-01

    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813

  6. Fluorescence micro-optical sectioning tomography using acousto-optical deflector-based confocal scheme

    PubMed Central

    Qi, Xiaoli; Yang, Tao; Li, Longhui; Wang, Jiancun; Zeng, Shaoqun; Lv, Xiaohua

    2015-01-01

    Abstract. Fluorescent labeling has opened up the possibility of clarifying the complex distribution and circuit wiring of specific neural circuits for particular functions. To acquire the brain-wide fluorescently labeled neural wiring, we have previously developed the fluorescence micro-optical sectioning tomography imaging system. This employs simultaneous mechanical sectioning and confocal imaging of the slices, and is capable of acquiring the image dataset of a centimeter-sized whole-mouse brain at a voxel resolution of 1  μm. We analyze the key optical considerations for the use of an acousto-optical deflector (AOD) scanner-based confocal detection scheme in this system. As a result, the influence of confocal detection, the imaging site during sectioning, and AOD fast scan mode on signal-to-background noise ratio are described. It is shown that mechanical sectioning to separate the slice and optical sectioning by confocal detection should be combined to maximize background suppression in simultaneous fast scan imaging while sectioning system setup. PMID:26793740

  7. Acousto-optic tunable filter for imaging application with high performance in the IR region

    NASA Astrophysics Data System (ADS)

    Valle, S.; Ward, J.; Pannell, C.; Johnson, N. P.

    2015-03-01

    Acousto-Optic Tunable Filters with large acceptance angle (parallel tangent configuration) are the component of choice for imaging application in visible and NIR region wavelength. AOTF in the wavelength range above 2μm could be impractical due to the λ2 and interaction length dependencies on acoustic field intensity to achieve peak diffraction efficiency. A potential solution to reduce the RF power requirement for full diffraction efficiency is to realize a resonant acoustic cavity, and "recycle" the phonons. This configuration could give a theoretical advantage factor between 4 and 10. A prototype device with an operational wavelength range between 1μm and 2μm has been designed and tested and an optimized design to operate between 2μm - 4μm has been prepared and under construction. Due to the presence of standing wave, when the device is not in resonance a feedback signal from the device is affecting the electrical matching and the power delivered to the device is mostly reflected back (VSWR > 25), therefore a special RF driver is required in order to maintain in resonance the device. The resonance frequencies are also affected by the temperature of the device, thus a temperature control mechanism with high accuracy is required. We present the preliminary results of the first prototype, which are in good agreement with the mathematical model and an advantage factor of about 4 has been measured. Further investigation are planned in order to improve the device performance and develop the RF driver for the resonant configuration.

  8. Acousto-optic devices for operation with 2μm fibre lasers

    NASA Astrophysics Data System (ADS)

    Ward, J. D.; Stevens, G.; Shardlow, P. C.

    2016-03-01

    Fibre lasers operating in the 2μm region are of increasing interest for a range of applications, including laser machining and biomedical systems. The large mode area compared to 1μm fibre lasers combined with operation in an "eye-safe" region of the spectrum makes them particularly attractive. When developing fibre lasers at 1μm and 1·5μm manufacturers were able to call upon enabling technologies used by the telecoms industry, but at longer wavelengths, including 2μm, many such components are either unavailable or immature. We report on recent developments of Acousto-Optic Modulators and Tunable Filters that are specifically optimised for use with fibre systems operating at or around 2μm. AO devices are interesting due to their ability to conserve spatial-coherence, making them appropriate for use with single-mode optical fibres. We describe how the choice of interaction medium is an important consideration, particularly affecting the drive power and the polarisation behaviour of the device - the latter being an important parameter when used in a fibre system. We also describe two designs of AO Tunable Filter intended for laser tuning. Both designs have been demonstrated intracavity in 2μm fibre lasers. The first gives exceptionally narrow resolution (δλ/λ<0·1%). The second design is of a novel type of AOTF where a matched pair of AOTFs is configured to give a substantially net zero frequency-shift with little or no loss of pointing stability, any minor deviations in manufacture being self-compensated. Furthermore, small controlled frequency-shifts (up to about 10kHz) may be introduced with little or no detriment to the alignment of the system.

  9. Near-infrared emission spectrometry based on an acousto-optical tunable filter.

    PubMed

    Gonzaga, Fabiano Barbieri; Pasquini, Celio

    2005-02-15

    A spectrometer has been constructed to detect the radiation emitted by thermally excited samples in the near-infrared spectral region extending from 1500 to 3000 nm. The instrument employs an acousto-optical tunable filter (AOTF) made of TeO2 and attains maximum sensitivity by making effective use of the two diffracted beams produced by the anisotropic AOTF. The full exploitation of the transmitted power of the monochromatic beams is reported for the first time and became possible because the detector does not saturate when employed for the acquisition of the weak emission signal in the NIR region, even when exposed to the total (nondiffracted) beam. Thus, modulation and lock-in-based detection can be employed to find the intensity of the diffracted beams superimposed on the nondiffracted beam. The resolution is slighted degraded in view of the small (approximately 10 nm) difference in the wavelength diffracted in the ordinary and extraordinary beams. The instrument has been evaluated in terms of signal-to-noise ratio, effect of sample thickness, and excitation temperature and for its potential in analytical applications in monitoring high-temperature kinetics, for qualitative identification of inorganic solids, for use with a closed cell to obtain spectra of species that evaporate at the temperatures (> 150 degrees C) necessary for sample excitation, and for quantitative purposes in the determination of soybean oil content in olive oil. The feasibility of near-infrared emission spectroscopy has been demonstrated together with some of its advantages over mid-infrared emission spectroscopy, such as greater tolerance to sample thickness, suitable signal-to-noise, and its use in the investigation of kinetic phenomena and phase transitions at high temperatures.

  10. Depth discrimination in acousto-optic cerebral blood flow measurement simulation

    NASA Astrophysics Data System (ADS)

    Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.

    2016-03-01

    Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.

  11. Experimental research on the multi-order acousto-optic diffraction based on Raman-Nath diffraction

    NASA Astrophysics Data System (ADS)

    Gu, Huadong; Shao, Zhongxing; Zheng, Chenqi; Yang, Jie; Chen, Ruitao; Gu, Zetong

    2015-03-01

    In this paper, the experimental investigation on the interaction length for getting the optimum diffraction of the multi-order acousto-optic diffraction is presented. Based on these results, the feasibility of acousto-optic Q-switch taking H2O or TeO2 as medium respectively for ultraviolet and visible lasers are discussed. The fact that the optimum interaction length tightly relies on the frequency of the sound and does not relate to the wavelength and power of the light is found in the experiment. The interaction length will become longer as the frequency of the ultrasound becomes higher. The interaction length is about 8mm when the acoustic frequency is at about 9MHz and becomes about 4mm at 6MHz. A Q-switch that works with pure water is designed and a total diffractive efficiency of about 98% was obtained under the condition that the acoustic frequency is 9MHz and the acoustic power is 3.4W. An acousto-optic Q-switch made of TeO2, in terms of Raman-Nath diffraction is designed. With a cooling system on the device, a total diffractive efficiency of about 75% is obtained under the condition that the acoustic frequency is 10MHz and the acoustic power is 10W. The loss by one path of the device is about 5% on the best condition. Then the modulated pulse width is measured as about 200ns on the condition that the acoustic frequency is 11MHz, the acoustic power is 6W and the repetition frequency is 10kHz.

  12. Development and application of a ray-based model of light propagation through a spherical acousto-optic lens

    PubMed Central

    Evans, Geoffrey J.; Kirkby, Paul A.; Nadella, K. M. Naga Srinivas; Marin, Bóris; Silver, R. Angus

    2016-01-01

    A spherical acousto-optic lens (AOL) consists of four acousto-optic deflectors (AODs) that can rapidly and precisely control the focal position of an optical beam in 3D space. Development and application of AOLs has increased the speed at which 3D random access point measurements can be performed with a two-photon microscope. This has been particularly useful for measuring brain activity with fluorescent reporter dyes because neuronal signalling is rapid and sparsely distributed in 3D space. However, a theoretical description of light propagation through AOLs has lagged behind their development, resulting in only a handful of simplified principles to guide AOL design and optimization. To address this we have developed a ray-based computer model of an AOL incorporating acousto-optic diffraction and refraction by anisotropic media. We extended an existing model of a single AOD with constant drive frequency to model a spherical AOL: four AODs in series driven with linear chirps. AOL model predictions of the relationship between optical transmission efficiency and acoustic drive frequency including second order diffraction effects closely matched experimental measurements from a 3D two-photon AOL microscope. Moreover, exploration of different AOL drive configurations identified a new simple rule for maximizing the field of view of our compact AOL design. By providing a theoretical basis for understanding optical transmission through spherical AOLs, our open source model is likely to be useful for comparing and improving different AOL designs, as well as identifying the acoustic drive configurations that provide the best transmission performance over the 3D focal region. PMID:26368449

  13. Development and application of a ray-based model of light propagation through a spherical acousto-optic lens.

    PubMed

    Evans, Geoffrey J; Kirkby, Paul A; Naga Srinivas Nadella, K M; Marin, Bóris; Angus Silver, R

    2015-09-01

    A spherical acousto-optic lens (AOL) consists of four acousto-optic deflectors (AODs) that can rapidly and precisely control the focal position of an optical beam in 3D space. Development and application of AOLs has increased the speed at which 3D random access point measurements can be performed with a two-photon microscope. This has been particularly useful for measuring brain activity with fluorescent reporter dyes because neuronal signalling is rapid and sparsely distributed in 3D space. However, a theoretical description of light propagation through AOLs has lagged behind their development, resulting in only a handful of simplified principles to guide AOL design and optimization. To address this we have developed a ray-based computer model of an AOL incorporating acousto-optic diffraction and refraction by anisotropic media. We extended an existing model of a single AOD with constant drive frequency to model a spherical AOL: four AODs in series driven with linear chirps. AOL model predictions of the relationship between optical transmission efficiency and acoustic drive frequency including second order diffraction effects closely matched experimental measurements from a 3D two-photon AOL microscope. Moreover, exploration of different AOL drive configurations identified a new simple rule for maximizing the field of view of our compact AOL design. By providing a theoretical basis for understanding optical transmission through spherical AOLs, our open source model is likely to be useful for comparing and improving different AOL designs, as well as identifying the acoustic drive configurations that provide the best transmission performance over the 3D focal region. PMID:26368449

  14. Experimental study of the use of multiband acousto-optic filters for spectral encoding / decoding the optical signals

    NASA Astrophysics Data System (ADS)

    Proklov, V. V.; Byshevski-Konopko, O. A.; Filatov, A. L.; Lugovskoi, A. V.; Pisarevsky, Yu V.

    2016-08-01

    A prototype of the acousto-optic (AO) decoder of optical signals is created on the base of the multiband AO filter. The joint work of the decoder with the developed previously AO coder has been verified experimentally. The main qualitative and quantitate characteristics of the spectral coding and decoding by Walsh sequences of the industrial LED radiation in the near infrared range are investigated. It is shown, that in the proposed data transmission system realization Signal-to-Interference Ratio (SIR) is not less than 13 dB.

  15. Feasibility study of complex wavefield retrieval in off-axis acoustic holography employing an acousto-optic sensor

    PubMed Central

    Rodríguez, Guillermo López; Weber, Joshua; Sandhu, Jaswinder Singh; Anastasio, Mark A.

    2011-01-01

    We propose and experimentally demonstrate a new method for complex-valued wavefield retrieval in off-axis acoustic holography. The method involves use of an intensity-sensitive acousto-optic (AO) sensor, optimized for use at 3.3 MHz, to record the acoustic hologram and a computational method for reconstruction of the object wavefield. The proposed method may circumvent limitations of conventional implementations of acoustic holography and may facilitate the development of acoustic-holography-based biomedical imaging methods. PMID:21669451

  16. Quantum entanglement with acousto-optic modulators: Two-photon beats and Bell experiments with moving beam splitters

    SciTech Connect

    Stefanov, Andre; Zbinden, Hugo; Gisin, Nicolas; Suarez, Antoine

    2003-04-01

    We present an experiment testing quantum correlations with frequency shifted photons. We test Bell inequality with two-photon interferometry where we replace the beam splitters with acousto-optic modulators, which are equivalent to moving beam splitters. We measure the two-photon beats induced by the frequency shifts, and we propose a cryptographic scheme in relation. Finally, setting the experiment in a relativistic configuration, we demonstrate that the quantum correlations are not only independent of the distance but also of the time ordering between the two single-photon measurements.

  17. Effect of the parameters of a wide-aperture acousto-optic filter on the image processing quality

    SciTech Connect

    Voloshinov, V B; Bogomolov, D V

    2006-05-31

    The properties of wide-aperture paratellurite crystal acousto-optic filters used for optical image processing are studied. The influence of parameters of these filters on the quality of optical imaging in laser and nonmonochromatic light is studied. The spatial resolution of filters is measured upon laser and nonmonochromatic illumination of objects. Filtration is performed in a broad wavelength range at different powers of a control electric signal. The optimisation of the filter parameters for improving its spatial resolution is discussed. (optical image processing)

  18. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    SciTech Connect

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-11-30

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D{sub 2} line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  19. A novel acousto-optic modulation-deflection mechanism using refractive index grating as graded index beam router

    NASA Astrophysics Data System (ADS)

    Jangjoo, Alireza; Reza Baezzat, Mohammad; Razavizadeh, Ahmad

    2014-03-01

    A novel acousto-optic modulation mechanism will be addressed in this paper. Focused Gaussian beam passing through acousto-optic media experiences different refractive index regions arising from acoustic waves generated by ultrasonic source. In this way according to the snell's law of refraction the beam propagation path will be altered when these periodic traveling waves reach the incoming radiation where a typical p-n junction photodiode located inside the rising or falling lobe of the undiffracted Gaussian beam senses these small lateral deflections. Due to small variations of the refractive index the magnitude of deflection will be up to tens of micron outside the modulator. Hence, sharp intensity gradient is required for detecting such small beam movements by appropriate lens configuration to focus the Gaussian profile on the detector junction area. In the other words intensity profile of zero order beam oscillates proportional to the time dependent amplitude of the acoustic waves versus previous methods that intensity of diffracted beam changes with applied ultrasonic intensity. The extracted signal properties depend on the beam collimation, quality of beam profile and depth of focus inside the modulator. The first experimental approach was proceeded using a collimated 532 nm diode laser source (TEM00), distilled water as interaction media and 10 MHz transducer as ultrasonic generator where a cylindrical glass column with input-output flat windows was used for liquid support. The present method has advantages over common acoustooptical techniques as low cost, simplicity of operation, direct modulation of the signal and minimum alignment requirement.

  20. Fluctuations of optical phase of diffracted light for Raman-Nath diffraction in acousto-optic effect

    NASA Astrophysics Data System (ADS)

    Cun-Cheng, Weng; Zhang, Xiao-Man

    2015-01-01

    The Raman-Nath diffraction in acousto-optic effect was studied theoretically and experimentally in the paper. Up to now, each order of diffracted light in Raman-Nath diffraction was still considered simply to be just frequency-shifted and to be a plane wave. However, we find that the phase and frequency shifts occur simultaneously and individually in Raman-Nath diffraction. The findings demonstrate that, in addition to the frequency shift, the optical phase of each order of diffracted light is also shifted by the sound wave and fluctuates with the sound wave and is related to the location in the acoustic field from which the diffracted light originates. As a result, the wavefront of each order of diffracted light is modulated to fluctuate spatially and temporally with the sound wave. Obviously, these findings are significant for applications of Raman-Nath diffraction in acousto-optic effect because the optical phase plays an important role in optical coherence technology. Project supported by the National Natural Science Foundation of China (Grant No. 61178089) and the Science and Technology Program of the Educational Office of Fujian Province of China (Grant Nos. JB12012 and JB13003).

  1. Competitive effects in a YAG:Nd/sup 3 +/ ring laser with acousto-optic mode locking

    SciTech Connect

    Goncharova, I.F.; Kornienko, L.S.; Kravtsov, N.V.; Nanii, O.E.; Shelaev, A.N.

    1981-06-01

    An experimental study was made of the competitive interactions of opposite light waves in a YAG:Nd/sup 3 +/ ring laser with acousto-optic mode locking. These effects were investigated with the laser at rest and rotating. A study was made of the dependence of suppression of one of the opposite waves on the detuning of the modulation frequency from the intermode value, on the difference between the resonator frequencies due to rotation, and on the position and orientation of the acousto-optic modulator. It was found that the competition between the opposite waves in the case of forced mode locking could be weaker or stronger than in the case of free oscillations. Moreover, in the case of a solid-state ring laser with a homogeneously broadened luminescence line of the active substance one could realize bidirectional or unidirectional mode locking. Different forms of modulation of the intensities of the opposite waves were possible under forced mode-locking conditions when the ultrasonic frequency was scanned.

  2. Information encryption and retrieval in mid-RF range using acousto-optic chaos

    NASA Astrophysics Data System (ADS)

    Chatterjee, Monish R.; Kundur, Abhinay

    2012-06-01

    In recent work, low-frequency AC signal encryption, decryption and retrieval using system-parameter based keys at the receiver stage of an acousto-optic (A-O) Bragg cell under first-order feedback have been demonstrated [1,2]. The corresponding nonlinear dynamics have also been investigated using the Lyapunov exponent and the so-called bifurcation maps [3]. The results were essentially restricted to A-O chaos around 10 KHz, and (baseband) signal bandwidths in the 1-4 KHz range. The results have generally been satisfactory, and parameter tolerances (prior to severe signal distortion at the output) in the +/-5% - +/-10% range have been obtained. Periodic AC waveforms, and a short audio clip have been examined in this series of investigations. Obviously, a main drawback in the above series of simulations has been the low and impractical signal bandwidths used. The effort to increase the bandwidth involves designing a feedback system with much higher chaos frequency that would then be amenable to higher BW information. In this paper, we re-visit the problem for the case where the feedback delay time is reduced considerably, and the system parameters in the transmitter adjusted in order to drive the system with a DC driver bias into chaos. Reducing the feedback time delay to less than 1 μs, an average chaos frequency of about 10 MHz was achieved after a few trials. For the AC application, a chaos region was chosen that would allow a large enough dynamic range for the width of the available passband. Based on these dynamic choices, periodic AC signals with 1 MHz (fundamental) bandwidth were used for the RF bias driver (along with a DC bias). A triangular wave and a rectangular pulse train were chosen as examples. Results for these cases are presented here, along with comments on the system performance, and the possibility of including (static) images for signal encryption. Overall, the results are encouraging, and affirm the possibility of using A-O chaos for securely

  3. On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters

    SciTech Connect

    Proklov, Valerii V; Byshevski-Konopko, O A; Grigorievski, V I

    2013-06-30

    The scheme is suggested for developing the optical communication line based on the principle of code division of multiple access with matched acousto-optical filters and a 16-bit long Walsh sequence. Results of modelling show that such a line can operate if adjacent spectral lines are separated by at least double the Rayleigh criterion. (optical information transmission)

  4. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF)

    PubMed Central

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-01-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm−1 to 4500 cm−1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies. PMID:26828198

  5. Solving the speckle decorrelation challenge in acousto-optic sensing using tandem nanosecond pulses within the ultrasound period.

    PubMed

    Resink, Steffen; Hondebrink, Erwin; Steenbergen, Wiendelt

    2014-11-15

    We present a novel acousto-optic (AO) method, based on a nanosecond laser system, which will enable us to obtain AO signals in liquid turbid media. By diverting part of the light in a delay line, we inject tandem pulses with 27 ns separation. The change of the speckle pattern, caused by the ultrasound phase shift, reduces the speckle contrast of the integrated speckle pattern captured in a single camera frame. With these tandem pulses, we were able to perform AO on a 2 cm liquid turbid medium in transmission mode. We show the raw signal and a spatial AO scan of a homogenous water-intralipid sample. This approach is potentially capable of AO probing in vivo, since the acquisition time (of approximately 40 ns) is four orders of magnitude less than the typical time scales of speckle decorrelation found in vivo. The method may eventually enable us to obtain fluence compensated photoacoustic signals generated by the same laser. PMID:25490500

  6. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF).

    PubMed

    Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V

    2016-01-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm(-1) to 4500 cm(-1), sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies. PMID:26828198

  7. Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay

    NASA Astrophysics Data System (ADS)

    Urbanek, B.; Möller, M.; Eisele, M.; Baierl, S.; Kaplan, D.; Lange, C.; Huber, R.

    2016-03-01

    We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4-ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of 1.7 × 105 / √{ H z } . Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of 10 nm/ √{ H z } . The compact, all-optical design ensures alignment-free operation even in harsh environments.

  8. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF)

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-02-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm-1 to 4500 cm-1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.

  9. Tandem pulsed acousto-optics: obtaining the tagged light fraction from modulated non-ideal speckle patterns.

    PubMed

    Resink, S G; Steenbergen, W

    2016-01-21

    Recently we presented novel methods for acousto-optic (AO) imaging of biological tissues, taking (1) the mean square difference of speckle patterns (subtraction method) or (2) the contrast of the summation of speckle patterns (summation method) acquired from nanosecond pulses of coherent light, fired at different ultrasound phases. In this study we relate the two methods both analytically and experimentally. We experimentally show that these two methods are nearly identical provided that the maximum achievable speckle contrast is determined correctly. We show with simulations that after correction the outcome is independent of experimental detection parameters. This makes the AO methods in this study reliable, allowing quantifying speckle observations in terms of the ultrasonically tagged fractions of light. The use of tandem nanosecond pulses in one burst of ultrasound overcomes the challenge of tissue dynamics. PMID:26682957

  10. Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps

    SciTech Connect

    Froehlich, B.; Lahaye, T.; Kaltenhaeuser, B.; Kuebler, H.; Mueller, S.; Koch, T.; Fattori, M.; Pfau, T.

    2007-04-15

    We report on a scheme to improve the pointing stability of the first order beam diffracted by an acousto-optic modulator (AOM). Due to thermal effects inside the crystal, the angular position of the beam can change by as much as 1 mrad when the radio-frequency power in the AOM is reduced to decrease the first order beam intensity. This is done, for example, to perform forced evaporative cooling in ultracold atom experiments using far-off-resonant optical traps. We solve this problem by driving the AOM with two radio frequencies f{sub 1} and f{sub 2}. The power of f{sub 2} is adjusted relative to the power of f{sub 1} to keep the total power constant. Using this, the beam displacement is decreased by a factor of 20. The method is simple to implement in existing experimental setups, without any modification of the optics.

  11. Design and testing of space-domain minimum average correlation energy (SMACE) filters for 2-D acousto-optic correlators

    SciTech Connect

    Connelly, J.M.; Vijaya Kumar, B.V.K. ); Molley, P.A.; Stalker, K.T.; Kast, B.A. )

    1991-01-01

    Two-dimensional Acousto-optic (AO) correlators differ from the frequency plane correlators in that multiplying, shifting, and adding, rather than Fourier transforming are used to obtain the correlations. Thus, many of the available composite filter design techniques are not aimed at designing filters for use in AO correlators since they yield frequency-domain functions. In this paper, a method is introduced for designing filter impulse responses of arbitrary extents for implementation on AO correlators. These filters are designed to yield sharp correlation peaks. Simulation results are included to illustrate the viability of the proposed approach. Also included are some initial results from the first successful use of grey-level composite filters on an AO correlator. 12 refs,. 14 figs., 3 tabs.

  12. All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber.

    PubMed

    Huang, Ligang; Song, Xiaobo; Chang, Pengfa; Peng, Weihua; Zhang, Wending; Gao, Feng; Bo, Fang; Zhang, Guoquan; Xu, Jingjun

    2016-04-01

    An all-fiber tunable laser was fabricated based on an acousto-optic tunable filter and a tapered fiber. The structure was of a high signal-to-noise ratio, therefore, no extra gain flattening was needed in the laser. In the experiment, the wavelength of the laser could be tuned from 1532.1 nm to 1570.4 nm with a 3-dB bandwidth of about 0.2 nm. Given enough nonlinearity in the laser cavity, it could also generate a sliding-frequency pulse train. The laser gains advantages of fast tuning and agility in pulse generation, and its simple structure is low cost for practical applications. PMID:27137035

  13. Frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

    SciTech Connect

    Erteza, I.A.; Craft, D.C.; Stalker, K.T.; Taylor, E.W.; Kelley, M.A.; Sanchez, A.D.; Chapman, S.P.; Craig, D.M.; Kinsley, E.

    1994-12-31

    Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this paper, the authors present the results of the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal is to present possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this paper was designed by Sandia National Laboratories (SNL) and performed by SNL and Phillips Laboratory (PL) personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear-wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1 {mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this paper, the authors discuss these effects, and they discuss the effect on the signal processing functionality.

  14. Anisotropy of acousto-optic figure of merit for LiNbO3 crystals: anisotropic diffraction.

    PubMed

    Mys, Oksana; Kostyrko, Myroslav; Vlokh, Rostyslav

    2016-03-20

    We have developed a method for the analysis of anisotropy of an acousto-optic figure of merit (AOFM), which is valid for the case of anisotropic diffraction in the trigonal crystals of the point symmetries 3m, 32, and 3¯m. The method is verified via the example of LiNbO3 crystals. The relations for the effective elasto-optic coefficients and the AOFM are obtained for the three types of acousto-optic (AO) interactions peculiar for the anisotropic AO diffraction: the interaction of a so-called type VII with a quasi-longitudinal acoustic wave and the interactions of types VIII and IX with two quasi-transverse acoustic waves. The AO diffraction geometries providing maximal AOFM values have been determined for each of the mentioned interaction types. We have found that the maximum AOFM proper for LiNbO3 is equal to 15.9×10-15  s3/kg. This value is achieved at the type IX of AO interactions in the interaction plane rotated by 60.0 deg around the principal X axis with respect to the principal X-Z plane. The type VIII of AO interactions is characterized by a comparable AOFM (15.1×10-15  s3/kg), which is realized in the Y-Z interaction plane. A close comparison of our results with the available experimental data demonstrates their fairly good agreement. PMID:27140586

  15. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  16. Improved time-resolved acousto-optic technique for optical fiber analysis of axial non-uniformities by using edge interrogation.

    PubMed

    Alcusa-Sáez, E P; Díez, A; González-Herráez, M; Andrés, M V

    2015-03-23

    The time-resolved acousto-optic technique demonstrated recently to be a very useful method for the analysis of fiber axial non-uniformities, able to detect variations of fiber diameter in the nanometric scale with a spatial resolution of few cm. An edge interrogation approach is proposed to improve further the performance of this technique. The detection of subnanometer fiber diameter changes or sub-ppm changes of the core refractive index is demonstrated.

  17. An experimental distribution of analog and digital information in a hybrid wireless visible light communication system based on acousto-optic modulation and sinusoidal gratings

    NASA Astrophysics Data System (ADS)

    Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.

    2016-03-01

    In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.

  18. Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications - Breadboard demonstration

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Cheng, Li-Jen; Lambert, Jim

    1990-01-01

    Considerations of performance criteria in image quality, spectral response, programmability, and field-of-view, are presently discussed for a NASA AOTF system. Experimental data obtained with an AOTF imaging spectrometer breadboard are presented. Attention is given to the identification of Nd(3+) contained in bastanite rock by means of this imaging spectrometer.

  19. Acousto-Optic Tunable Filters (AOTFs) Optimised for Operation in the 2-4μm region

    NASA Astrophysics Data System (ADS)

    Ward, J. D.; Valle, S.; Pannell, C.; Johnson, N. P.

    2015-06-01

    Acousto-Optic Tunable Filters (AOTFs) are electronically-controlled bandpass optical filters. They are often preferred in applications in spectroscopy where their agility and rapid random-access tuning can be deployed to advantage. When used for spectral imaging a large aperture (typically 10mm or more) is desired in order to permit sufficient optical throughput. However, in the mid IR the λ2 dependence on RF drive power combined with the large aperture can prove to be a hurdle, often making them impractical for many applications beyond about 2μm. We describe and compare a series of specialised free-space configurations of AOTF made from single crystal tellurium dioxide, that require relatively low RF drive power. We report on AOTFs specifically optimised for operation with a new generation of Supercontinuum source operating in the 2-4μm window and show how these may be used in a spectral imaging system. Finally, we describe an AOTF with an (acoustic) Fabry-Perot cavity operating at acoustic resonance rather than the conventional travelling-wave mode; the acoustic power requirement therefore being reduced. We present an analysis of the predicted performance. In addition, we address the practical issues in deploying such a scheme and outline the design of a prototype “resonant AOTF” operating in the 1-2μm region.

  20. The Aerosol Limb Imager: acousto-optic imaging of limb-scattered sunlight for stratospheric aerosol profiling

    NASA Astrophysics Data System (ADS)

    Elash, B. J.; Bourassa, A. E.; Loewen, P. R.; Lloyd, N. D.; Degenstein, D. A.

    2016-03-01

    The Aerosol Limb Imager (ALI) is an optical remote sensing instrument designed to image scattered sunlight from the atmospheric limb. These measurements are used to retrieve spatially resolved information of the stratospheric aerosol distribution, including spectral extinction coefficient and particle size. Here we present the design, development and test results of an ALI prototype instrument. The long-term goal of this work is the eventual realization of ALI on a satellite platform in low earth orbit, where it can provide high spatial resolution observations, both in the vertical and cross-track. The instrument design uses a large-aperture acousto-optic tunable filter (AOTF) to image the sunlit stratospheric limb in a selectable narrow wavelength band ranging from the visible to the near infrared. The ALI prototype was tested on a stratospheric balloon flight from the Canadian Space Agency (CSA) launch facility in Timmins, Canada, in September 2014. Preliminary analysis of the hyperspectral images indicates that the radiance measurements are of high quality, and we have used these to retrieve vertical profiles of stratospheric aerosol extinction coefficient from 650 to 1000 nm, along with one moment of the particle size distribution. Those preliminary results are promising and development of a satellite prototype of ALI within the Canadian Space Agency is ongoing.

  1. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2016-06-01

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to -0.70 nm within the spectral range of 500-850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  2. Spectra analysis of nonuniform FBG-based acousto-optic modulator by using Fourier mode coupling theory.

    PubMed

    Liu, Chao; Pei, Li; Li, Zhuoxuan; Ning, Tigang; Yu, Shaowei; Kang, Zexin

    2013-05-10

    Fourier mode coupling theory was first employed in the spectral analysis of several nonuniform fiber Bragg grating (FBG)-based acousto-optic modulators (NU-FBG-AOMs) with the effects of Gaussian-apodization (GA), phase shift (PS), and linear chirp (LC). Because of the accuracy and simplicity of the algorithm applied in this model, the modulation performances of these modulators can be acquired effectively and efficiently. Based on the model, the reflected spectra of these modulators were simulated under various acoustic frequencies and acoustically induced strains. The simulation results of the GA-FBG-AOM and PS-FBG-AOM showed that the wavelength spacing between the primary reflection peak and the secondary reflection peak is proportional to the acoustic frequency, and the reflectivity of reflection peaks depends on the acoustically induced strains. But for the LC-FBG-AOM, the wavelength spacing between the neighboring reflection peaks increased linearly and inversely with the acoustic frequency, and the extinction ratio of each peak relates to the acoustically induced strain. These numerical analysis results, which were effectively used in the designs and fabrications of these NU-FBG-AOMs, can broaden the AOM-based application scope and shed light on the performance optimization of optical wavelength-division multiplex system.

  3. High-resolution spectroscopy using an acousto-optic tunable filter and a fiber-optic Fabry-Perot interferometer

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.; DSilva, A.P.

    1996-04-01

    A compact, solid-state, high-resolution spectrometer consisting of an acousto-optic tunable filter (AOTF) and a fiber-optic Fabry{endash}Perot (FFP) interferometer has been developed. The system has been designed for high-resolution inductively coupled plasma atomic emission spectroscopy (ICP-AES) applications. A description of the AOTF-FFP and its performance is presented. The resolution of the AOTF-FFP was determined by measuring the physical widths of ICP emission lines using a 1.5-m-focal-length grating spectrometer and deconvoluting the physical line shapes from the acquired AOTF-FFP spectra. Over the optimum range of the FFP mirror coatings, the resolution is sufficient for the determination of isotopic and hyperfine emission features in ICP-AES experiments, and approaches that of the 1.5-m spectrometer. The application of the AOTF-FFP to the determination of uranium isotopes (U-235 and U-238) introduced into the ICP is presented. {copyright} {ital 1996 Society for Applied Spectroscopy.}

  4. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters.

    PubMed

    Wang, Wenbo; Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2016-06-01

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to -0.70 nm within the spectral range of 500-850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s. PMID:27370436

  5. Acousto-optic effect compensation for optical determination of the normal velocity distribution associated with acoustic transducer radiation.

    PubMed

    Foote, Kenneth G; Theobald, Peter D

    2015-09-01

    The acousto-optic effect, in which an acoustic wave causes variations in the optical index of refraction, imposes a fundamental limitation on the determination of the normal velocity, or normal displacement, distribution on the surface of an acoustic transducer or optically reflecting pellicle by a scanning heterodyne, or homodyne, laser interferometer. A general method of compensation is developed for a pulsed harmonic pressure field, transmitted by an acoustic transducer, in which the laser beam can transit the transducer nearfield. By representing the pressure field by the Rayleigh integral, the basic equation for the unknown normal velocity on the surface of the transducer or pellicle is transformed into a Fredholm equation of the second kind. A numerical solution is immediate when the scanned points on the surface correspond to those of the surface area discretization. Compensation is also made for oblique angles of incidence by the scanning laser beam. The present compensation method neglects edge waves, or those due to boundary diffraction, as well as effects due to baffles, if present. By allowing measurement in the nearfield of the radiating transducer, the method can enable quantification of edge-wave and baffle effects on transducer radiation. A verification experiment has been designed. PMID:26428801

  6. Narrow linewidth broadband tunable semiconductor laser at 840 nm with dual acousto-optic tunable configuration for OCT applications

    NASA Astrophysics Data System (ADS)

    Chamorovskiy, Alexander; Shramenko, Mikhail V.; Lobintsov, Andrei A.; Yakubovich, Sergei D.

    2016-03-01

    We demonstrate a tunable narrow linewidth semiconductor laser for the 840 nm spectral range. The laser has a linear cavity comprised of polarization maintaining (PM) fiber. A broadband semiconductor optical amplifier (SOA) in in-line fiber-coupled configuration acts as a gain element. It is based on InGaAs quantum-well (QW) active layer. SOA allows for tuning bandwidth exceeding 25 nm around 840 nm. Small-signal fiber-to-fiber gain of SOA is around 30 dB. A pair of acousto-optic tunable filters (AOTF) with a quasi-collinear interaction of optical and acoustic waves are utilized as spectrally selective elements. AOTF technology benefits in continuous tuning, broadband operation, excellent reproducibility and stability of the signal, as well as a high accuracy of wavelength selectivity due to the absence of mechanically moving components. A single AOTF configuration has typical linewidth in 0.05-0.15 nm range due to a frequency shift obtained during each roundtrip. A sequential AOTF arrangement enables instantaneous linewidth generation of <0.01 nm by compensating for this shift. Linewidth as narrow as 0.0036 nm is observed at 846 nm wavelength using a scanning Fabry-Perot interferometer with 50 MHz spectral resolution. Output power is in the range of 1 mW. While the majority of commercial tunable sources operate in 1060-1550 nm spectral ranges, the 840 nm spectral range is beneficial for optical coherence tomography (OCT). The developed narrow linewidth laser can be relevant for OCT with extended imaging depth, as well as spectroscopy, non-destructive testing and other applications.

  7. Characterization of the non-collinear acousto-optical cell based on calomel (Hg2Cl2) crystal and operating within the two-phonon light scattering

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes, Adan O.

    2016-03-01

    Performances of any system for data processing based on acousto-optical technique are mainly determined by parameters of the acousto-optical cell (AOC) exploited within the schematic arrangement. Here, basic properties of the AOC, involved into a novel processor for precise optical spectrum analysis dedicated to modern astrophysical applications, are considered. Because potential applications of this processor will be focused on investigations in extra-galactic astronomy as well as studies of extra-solar planets, an advanced regime of the non-collinear two-phonon light scattering has been elaborated for spectrum analysis with significantly improved spectral resolution. Under similar uprated requirements, the AOC, based on that specific regime in the calomel (Hg2Cl2) crystal, had been chosen, and its parameters were analyzed theoretically and verified experimentally. Then, the adequate approach to estimating the frequency/spectral bandwidth and spectral resolution had been developed. The bandwidth was calculated and experimentally realized with the additionally involved tilt angle of light incidence, allowing variations for acoustic frequencies. The resolution was characterized taking into account its doubling peculiar to the nonlinear two-phonon mechanism of light scattering. Proof-of-principle experiments were performed with the calomel AOC of 52 mm optical aperture, providing ~94% efficiency in the transmitted light due to the slow-shear acoustic mode of finite amplitude (the acoustic power density ~150 mW/mm2) with the velocity of 0.347×105 cm/s at the radio-wave acoustic frequency ~71 MHz. As a result, we have obtained the spectral resolution <0.235 Å within the spectral bandwidth <290 Å that looks as the best one can mention at the moment in acousto-optics.

  8. LD end-pumped acousto-optic Q-switched 1319 nm/1338 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Yu, M.; Wang, C.; Yu, K.; Yu, Y. J.; Chen, X. Y.; Jin, G. Y.

    2016-10-01

    Laser characteristics of acousto-optic Q-switched operation of 1319 nm/1338 nm dual-wavelength composite Nd:YAG laser were studied. Maximum output power of 5.77 W was achieved in CW operation. Under Q-switched operation, the maximum peak power of 3.96 kW and minimum pulse width of 65.6 ns was obtained at repetition frequency of 20 kHz with the duty ratio of 96%. The influence of the duration of the ultrasonic field acted on the Q-switch to the output characteristics of dual-wavelength composite Nd:YAG laser had been reported first time.

  9. Long-cavity all-fiber ring laser actively mode locked with an in-fiber bandpass acousto-optic modulator.

    PubMed

    Cuadrado-Laborde, C; Bello-Jiménez, M; Díez, A; Cruz, J L; Andrés, M V

    2014-01-01

    We demonstrate low-frequency active mode locking of an erbium-doped all-fiber ring laser. As the mode locker, we used a new in-fiber bandpass acousto-optic modulator showing 74% modulation depth, 3.7 dB power insertion losses, 4.5 nm of optical bandwidth, and 20 dB of nonresonant light suppression. The laser generates 330 ps mode-locked pulses over a 10 ns pedestal, at a 1.538 MHz frequency, with 130 mW of pump power.

  10. Characterization of the optical sub-system in an advanced prototype of a new acousto-optical spectrometer for the Mexican Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Sanchez Lucero, Daniel; Laskin, Alexander

    2011-09-01

    A few optically matched by each other sub-systems related to an advanced prototype of acousto-optical spectrometer for radio-astronomy are analyzed jointly. Rather precise control over the incident light polarization should be assured in the scheme together with a required expanding of the incident light beam. Moreover, the needed light-beam apodization, suppressing side lobes within registration of each individual resolvable spot and increasing the dynamic range of spectrometer, has to be taken into account as well. The current stage of analysis related to afore-mentioned problems as well as the results of trial experiments are presented.

  11. Laser frequency stabilisation by the Pound - Drever - Hall method using an acousto-optic phase modulator operating in the pure Raman - Nath diffraction regime

    SciTech Connect

    Baryshev, Vyacheslav N

    2012-04-30

    Frequency stabilisation of diode laser radiation has been implemented by the Pound - Drever - Hall method using a new acousto-optic phase modulator, operating in the pure Raman - Nath diffraction regime. It is experimentally shown that, as in the case of saturated-absorption spectroscopy in atomic vapour, the spatial divergence of the frequency-modulated output spectrum of this modulator does not interfere with obtaining error signals by means of heterodyne frequency-modulation spectroscopy with a frequency discriminator based on a high-Q Fabry - Perot cavity with finesse of several tens of thousands.

  12. Precise modulation of laser radiation by an acousto-optic modulator for stabilisation of the Nd : YAG laser on optical resonances in molecular iodine

    NASA Astrophysics Data System (ADS)

    Denisov, V. I.; Ignatovich, S. M.; Kvashnin, N. L.; Skvortsov, M. N.; Farnosov, S. A.

    2016-05-01

    A system of precise frequency modulation of laser radiation by an acousto-optic modulator, which makes it possible to stabilise the radiation power and simultaneously suppress the residual amplitude modulation to a level of 10-8 of the total laser power at the third harmonic of modulation frequency (~500 Hz), is presented. The use of this system for the Nd : YAG/I2 optical frequency standard and application of digital signal synthesis and processing methods provided a level of frequency standard instability as small as ~10-15 for ~6 × 104 s.

  13. Pulsed 456 nm deep-blue light generation by acousto-optical Q-switching and intracavity frequency doubling of Nd:GdVO4

    NASA Astrophysics Data System (ADS)

    Gao, J.; Yu, X.; Chen, F.; Li, X. D.; Yan, R. P.; Zhang, Z.; Yu, J. H.; Wang, Y. Z.

    2008-08-01

    We present what is, to the best of our knowledge, the first pulsed deep-blue laser at 456 nm by acousto-optical Q-switching and intracavity frequency doubling of a diode-end-pumped Nd:GdVO4 laser on the 4F3/2 → 4I9/2 transition at 912 nm. When the incident pump power is 36 W, the maximum single pulse energy of 44.1 μJ, pulse duration of 140 ns and peak power of 315 W are achieved at 10 kHz; the maximum average power of 770 mW, pulse duration of 200 ns and peak power of 193 W are obtained at 20 kHz. The fluctuation of the blue output power is less than 2.4% within the given 20 min at the maximum blue output power.

  14. Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm.

    PubMed

    Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Huang, Jianhua; Luo, Zundu; Huang, Yidong

    2012-05-01

    Actively Q-switched self-frequency-doubling laser at 800 nm was first reported in an Er:Yb:YAl3(BO3)4 crystal by using an acousto-optical modulator. At incident pump power of 16 W and pulse repetition frequency of 1 kHz, 1600 nm fundamental pulse laser with energy of 130 μJ and width of 170 ns, and self-frequency-doubling 800 nm pulse laser with energy of 20 μJ and width of 96 ns were respectively achieved in a hemispherical resonator end-pumped by a 970 nm laser diode. Pulse characteristics of fundamental and self-frequency-doubling lasers at different pulse repetition frequencies were also investigated.

  15. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    PubMed

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode. PMID:25402086

  16. Application of independent component analysis method in real-time spectral analysis of gaseous mixtures for acousto-optical spectrometers based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fadeyev, A. V.; Pozhar, V. E.

    2012-10-01

    It is discussed the reliability problem of time-optimized method for remote optical spectral analysis of gas-polluted ambient air. The method based on differential optical absorption spectroscopy (DOAS) enables fragmentary spectrum registration (FSR) and is suitable for random-spectral-access (RSA) optical spectrometers like acousto-optical (AO) ones. Here, it is proposed the algorithm based on statistical method of independent component analysis (ICA) for estimation of a correctness of absorption spectral lines selection for FSR-method. Implementations of ICA method for RSA-based real-time adaptive systems are considered. Numerical simulations are presented with use of real spectra detected by the trace gas monitoring system GAOS based on AO spectrometer.

  17. Synchronization of two passively mode-locked erbium-doped fiber lasers by an acousto-optic modulator and grating scheme

    SciTech Connect

    Jiang, M.; Sha, W.; Rahman, L.; Barnett, B.C.; Andersen, J.K.; Islam, M.N.; Reddy, K.V.

    1996-06-01

    We synchronize two passively mode-locked erbium-doped fiber lasers by adjusting only the cavity length to correct both the repetition rate and the phase. The interlaser jitter is less than 6ps (1.3times the pulse width) and is extracted from the cross correlation of the two lasers. The lock can be maintained for extended periods of time. These results are obtained by use of a novel acousto-optic-modulator{endash}grating scheme, which provides an equivalent of 300 {mu}m in cavity length tuning with a bandwidth of 10 kHz. These parameters are 30 times the length and 10 times the bandwidth of a typical piezoelectric transducer. {copyright} {ital 1996 Optical Society of America.}

  18. Effect of direction of incident light on the basic performance of a TeO2 acousto-optic tunable filter.

    PubMed

    Wang, Pengchong; Zhang, Zhonghua

    2016-08-01

    The selection of the ultrasonic polar angle is vitally important to the performance of an acousto-optic tunable filter (AOTF). The effects of ultrasonic angle on various properties of AOTFs were studied. Then, according to the selected ultrasonic angle, the changes of internal and external separation angles were analyzed in detail when the light was incident upon the crystal surface in two different ways. Additionally, the drift of diffracted light caused by chromatic aberration was analyzed, and an appropriate compensation wedge angle was calculated by the improved derivation formula. The external separation angle increased obviously after placing a wedge angle on the output end. Finally, the effect of incident beam with a cone angle on spectral bandwidth and diffraction efficiency is discussed. PMID:27505364

  19. Acousto-optic Q-switching laser performance of Yb:GdCa(4)O(BO(3))(3)crystal.

    PubMed

    Chen, Xiaowen; Xu, Honghao; Guo, Yunfeng; Han, Wenjuan; Yu, Haohai; Zhang, Huaijin; Liu, Junhai

    2015-08-20

    We report on the active Q-switching laser performance of Yb:GdCa4O(BO3)3 crystal, demonstrated by employing an acousto-optic Q-switch in a compact plano-concave resonator. Stable repetitively Q-switched operation is achieved with pulse repetition rates varying from 30 to 0.2 kHz, producing an average output power of 10.2 W at 1027.5 nm at 30 kHz of repetition rate, with an optical-to-optical efficiency of 30%. The maximum pulse energy generated at the lowest repetition rate of 0.2 kHz is 4.75 mJ, with a pulse width being 11 ns, gives rise to a peak power that amounts to 432 kW. PMID:26368745

  20. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    PubMed

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  1. Study of radiation-induced effects in photonic devices: Acousto-optic modulators and deflectors. Final report, 15 August 1991--15 August 1997

    SciTech Connect

    Taylor, E.W.; Sanchez, A.D.; Winter, J.E.; McKinney, S.J.; Paxton, A.H.

    1998-01-01

    In a preliminary report acousto-optic devices (AODs) were exposed to flash x-ray, linearly accelerated electrons, and gamma ray irradiations to determine their sensitivity to radiation and applicability to space and enhanced radiation environments. This final report is a continuation and finalization of those initial studies and details the findings of a comprehensive investigation of radiation induced effects in lead molybdate (PbMoO{sub 4}), gallium phosphide (GaP) , indium phosphide (InP), tellurium dioxide (TeO{sub 2}), and lithium niobate (LiNbO{sub 3}) acousto-optic Bragg cell deflectors and modulators. Gamma ray, X-ray, electrons, proton and neutron irradiations were conducted to bound, delineate and differentiate radiation induced changes to operational AO Bragg Cells. The majority of the irradiations were performed in situ, wherein the Bragg cells were fully operational during the radiation exposures. Using this approach, instantaneous changes to Bragg cell parameters such as spatial intensities, deflection angles, bandwidth, material absorption, diffraction efficiency and polarization states were determined. A majority of the radiation induced effects observed were determined to evolve from the heating associated with the interaction of radiation with matter, thus resulting in observable thermo-optic effects. The effects of heating in AO Bragg crystals were investigated and confirmed using three independent approaches: traditional broad area source irradiations, ion microbeam irradiations, and irradiation by a CO{sub 2} laser. It was concluded that AO Bragg deflectors and modulators are quite insensitive to the long term low dose radiation environments that would be encountered in the natural space environment. However, under pulsed high dose (or high fluence) irradiations, Bragg cell transient responses could result in disruption of normal operations.

  2. Analysis of the frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

    SciTech Connect

    Erteza, I.A.

    1995-04-01

    Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this report, we present the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal of the analysis is to describe possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this report was designed by Sandia National Laboratories and performed by Sandia and Phillips Laboratory personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1{mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this report, we discuss these effects from the perspective of anisotropic Bragg diffraction and momentum mismatch, and we discuss the effect on the signal processing functionality.

  3. Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope☆

    PubMed Central

    Fernández-Alfonso, Tomás; Nadella, K.M. Naga Srinivas; Iacaruso, M. Florencia; Pichler, Bruno; Roš, Hana; Kirkby, Paul A.; Silver, R. Angus

    2014-01-01

    Background Two-photon microscopy is widely used to study brain function, but conventional microscopes are too slow to capture the timing of neuronal signalling and imaging is restricted to one plane. Recent development of acousto-optic-deflector-based random access functional imaging has improved the temporal resolution, but the utility of these technologies for mapping 3D synaptic activity patterns and their performance at the excitation wavelengths required to image genetically encoded indicators have not been investigated. New method Here, we have used a compact acousto-optic lens (AOL) two-photon microscope to make high speed [Ca2+] measurements from spines and dendrites distributed in 3D with different excitation wavelengths (800–920 nm). Results We show simultaneous monitoring of activity from many synaptic inputs distributed over the 3D arborisation of a neuronal dendrite using both synthetic as well as genetically encoded indicators. We confirm the utility of AOL-based imaging for fast in vivo recordings by measuring, simultaneously, visually evoked responses in 100 neurons distributed over a 150 μm focal depth range. Moreover, we explore ways to improve the measurement of timing of neuronal activation by choosing specific regions within the cell soma. Comparison with existing methods These results establish that AOL-based 3D random access two-photon microscopy has a wider range of neuroscience applications than previously shown. Conclusions Our findings show that the compact AOL microscope design has the speed, spatial resolution, sensitivity and wavelength flexibility to measure 3D patterns of synaptic and neuronal activity on individual trials. PMID:24200507

  4. Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier.

    PubMed

    Efimov, A; Reitze, D H

    1998-10-15

    We have constructed a 26-fs chirped-pulse amplifier that incorporates a programmable liquid-crystal spatial light modulator in the pulse stretcher. The modulator serves a dual purpose. First, we apply frequency-dependent phase shifts to compensate for cubic, quartic, and nonlinear phase dispersion in the amplifier, which results in a reduction in pulse duration from 32 to 26 fs, in agreement with the transform limit of the amplified pulse spectrum. Second, we are able to produce high-fidelity compressed amplified shaped pulses by applying phase masks directly within the stretcher. Shaped pulse energies of greater than 1 mJ are routinely obtained.

  5. Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier.

    PubMed

    Efimov, A; Reitze, D H

    1998-10-15

    We have constructed a 26-fs chirped-pulse amplifier that incorporates a programmable liquid-crystal spatial light modulator in the pulse stretcher. The modulator serves a dual purpose. First, we apply frequency-dependent phase shifts to compensate for cubic, quartic, and nonlinear phase dispersion in the amplifier, which results in a reduction in pulse duration from 32 to 26 fs, in agreement with the transform limit of the amplified pulse spectrum. Second, we are able to produce high-fidelity compressed amplified shaped pulses by applying phase masks directly within the stretcher. Shaped pulse energies of greater than 1 mJ are routinely obtained. PMID:18091861

  6. High Power Continuous-Wave and Acousto-Optic Q-Switched Nd:GdVO4 Laser Operated at 912 nm

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Yu, Xin; Chen, Fei; Li, Xu-Dong; Zhang, Zhen; Yu, Jun-Hua; Wang, Yue-Zhu

    2008-01-01

    We present a high power and efficient operation of the 4F3/2 → 4I9/2 transition in Nd:GdVO4 at 912nm. In the cw mode, the maximum output power of 8.6 W is achieved when the incident pump power is 40.3 W, leading to a slope efficiency of 33.3% and an optical-optical efficiency of 21.3%. To the best of our knowledge, this is the highest cw laser power at 912 nm obtained with the conventional Nd:GdVO4 crystal. Pulsed operation of 912 nm laser has also been realized by inserting a small acousto-optic (A-O) Q-Switch inside the resonator. As a result, the minimal pulse width of 20 ns and the average laser power 1.43 W at the repetition rate of 10 kHz are obtained, corresponding to 7.1 kW peak power. We believe that this is the highest laser peak power at 912nm. Furthermore, duration of 65ns has also been acquired when the repetition rate is 100kHz.

  7. High coherent bi-chromatic laser with gigahertz splitting produced by the high diffraction orders of acousto-optic modulator used for coherent population trapping experiments.

    PubMed

    Yun, Peter; Tan, Bozhong; Deng, Wei; Gu, Sihong

    2011-12-01

    To prepare the coherent population trapping (CPT) states with rubidium and cesium, the commonly used atoms in CPT studies, a coherent bi-chromatic light field with frequency difference of several GHz is a basic requirement. With a 200 MHz center frequency acousto-optic modulator (AOM), we have realized bi-chromatic laser fields with several GHz frequency splits through high diffraction orders. We have experimentally studied the coherence between two frequency components of a bi-chromatic laser beam, which is composed of ±6 orders with frequency split of 3 GHz diffracted from the same laser beam, and the measured residual phase noise is Δφ(2)<0.019 rad(2). The bi-chromatic laser fields were used to prepare CPT states with (85)Rb and (87)Rb atoms, and high contrast CPT signals were obtained. For CPT states preparation, our study result shows that it is a feasible approach to generate the bi-chromatic light field with larger frequency splits through high diffraction orders of AOM.

  8. Hybrid wide-band, low-phase-noise scheme for Raman lasers in atom interferometry by integrating an acousto-optic modulator and a feedback loop.

    PubMed

    Wang, Kai; Yao, Zhanwei; Li, Runbing; Lu, Sibin; Chen, Xi; Wang, Jin; Zhan, Mingsheng

    2016-02-10

    We report a hybrid scheme for phase-coherent Raman lasers with low phase noise in a wide frequency range. In this scheme, a pair of Raman lasers with a frequency difference of 3.04 GHz is generated by the ±1-order diffracted lights of an acousto-optic modulator (1.52 GHz), where a feedback loop is simultaneously applied for suppressing the phase noise. The beat width of the Raman lasers is narrower than 3 Hz. In the low-frequency range, the phase noise of the Raman lasers is suppressed by 35 dB with the feedback. The phase noise is less than -109  dBc/Hz in the high-frequency range. The sensitivity of an atom gyroscope employing the hybrid Raman lasers can be implicitly improved 10 times. Due to the better high-frequency response, the sensitivity is not limited by the durations of Raman pulses. This work is important for improving the performance of atom-interferometer-based measurements. PMID:26906364

  9. Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl(3)(BO(3))(4) pulse laser at 1522  nm.

    PubMed

    Chen, Y J; Lin, Y F; Huang, J H; Gong, X H; Luo, Z D; Huang, Y D

    2015-11-01

    End-pumped by a continuous-wave 976 nm diode laser, efficient 1522 nm laser operation was demonstrated in an Er:Yb:GdAl(3)(BO(3))(4) crystal when a sapphire crystal was used as a heat diffuser. A continuous-wave 1522 nm laser with a maximum output power of 750 mW and slope efficiency of 36% was realized at an absorbed pump power of 4.1 W. The pulse performances of an acousto-optic Q-switched laser with various repetition frequencies were investigated in detail. In a repetition frequency range of 1-10 kHz, 1522 nm pulse lasers with a slope efficiency of about 10%, peak output power at the kilowatt level, and width of about 50 ns were first obtained in an Er:Yb:GdAl(3)(BO(3))(4) crystal pumped by a continuous-wave diode laser. The results indicate that the crystal is a promising gain medium for an actively Q-switched 1.5 μm laser.

  10. Optimization of doubly Q-switched lasers with both an acousto-optic modulator and a GaAs saturable absorber

    SciTech Connect

    Li Dechun; Zhao Shengzhi; Li Guiqiu; Yang Kejian

    2007-08-20

    A doubly Q-switched laser with both an acousto-optic (AO) modulator and a GaAs saturable absorber can obtain a more symmetric and shorter pulse with high pulse peak power, which has been experimentally proved. The key parameters of an optimally coupled doubly Q-switched laser with both an AO modulator and a GaAs saturable absorber are determined, and a group of general curves are generated for what we believe is the first time, when the single-photon absorption (SPA) and two-photon absorption (TPA) processes of GaAs are combined, and the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the AO Q-switch are considered. These key parameters include the optimal normalized coupling parameter, the optimal normalized GaAs saturable absorber parameters, and the normalized parameters of the AO Q-switch, which can maximize the output energy. Meanwhile, the corresponding normalized energy, the normalized peak power, and the normalized pulse width are given. The curves clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the GaAs saturable absorber,the AO Q-switch, and the resonator. Sample calculations for a diode-pumpedNd3+:YVO4 laser with both an AO modulator and a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas.

  11. Optimization of doubly Q-switched lasers with both an acousto-optic modulator and a GaAs saturable absorber.

    PubMed

    Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2007-08-20

    A doubly Q-switched laser with both an acousto-optic (AO) modulator and a GaAs saturable absorber can obtain a more symmetric and shorter pulse with high pulse peak power, which has been experimentally proved. The key parameters of an optimally coupled doubly Q-switched laser with both an AO modulator and a GaAs saturable absorber are determined, and a group of general curves are generated for what we believe is the first time, when the single-photon absorption (SPA) and two-photon absorption (TPA) processes of GaAs are combined, and the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the AO Q-switch are considered. These key parameters include the optimal normalized coupling parameter, the optimal normalized GaAs saturable absorber parameters, and the normalized parameters of the AO Q-switch, which can maximize the output energy. Meanwhile, the corresponding normalized energy, the normalized peak power, and the normalized pulse width are given. The curves clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the GaAs saturable absorber, the AO Q-switch, and the resonator. Sample calculations for a diode-pumped Nd3+:YVO4 laser with both an AO modulator and a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas.

  12. Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl(3)(BO(3))(4) pulse laser at 1522  nm.

    PubMed

    Chen, Y J; Lin, Y F; Huang, J H; Gong, X H; Luo, Z D; Huang, Y D

    2015-11-01

    End-pumped by a continuous-wave 976 nm diode laser, efficient 1522 nm laser operation was demonstrated in an Er:Yb:GdAl(3)(BO(3))(4) crystal when a sapphire crystal was used as a heat diffuser. A continuous-wave 1522 nm laser with a maximum output power of 750 mW and slope efficiency of 36% was realized at an absorbed pump power of 4.1 W. The pulse performances of an acousto-optic Q-switched laser with various repetition frequencies were investigated in detail. In a repetition frequency range of 1-10 kHz, 1522 nm pulse lasers with a slope efficiency of about 10%, peak output power at the kilowatt level, and width of about 50 ns were first obtained in an Er:Yb:GdAl(3)(BO(3))(4) crystal pumped by a continuous-wave diode laser. The results indicate that the crystal is a promising gain medium for an actively Q-switched 1.5 μm laser. PMID:26512485

  13. Optimization of peak power of doubly Q-switched lasers with both an acousto-optic modulator and a Cr4+-doped saturable absorber

    SciTech Connect

    Li Dechun; Zhao Shengzhi; Li Guiqiu; Yang Kejian

    2006-08-01

    A doubly Q-switched laser can obtain a shorter pulse with a stable repetition rate and high pulse peak power, which has been experimentally proved. By taking into account the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the acousto-optic (AO) Q switch, we introduce the coupled rate equations for a doubly Q-switched laser with both an AO modulator and a Cr4+-doped saturable absorber. These coupled rate equations are solved numerically. The key parameters of an optimally coupled doubly Q-switched laser are determined based on maximizing the peak power, which include the optimal normalized coupling parameter, the optimal normalized saturable absorber parameters, and the normalized parameters of the AO Q switch. The optimal normalized peak power, the corresponding normalized energy, and the normalized pulse width are also given, and a group of general curves are generated for the first time to our knowledge. The curves can give us a good understanding of the dependence of the optimal key parameters on the parameters of the gain medium, the saturable absorber, the AO Q switch, the resonator, and the spatial distributions of the intracavity photon density. The optimal calculations for a diode-pumped Nd3+:YVO4 laser with both an AO modulator and a Cr4+:YAG saturable absorber are presented to demonstrate the use of the curves and the related formulas.

  14. FPGA-based phase control of acousto-optic modulator Fourier synthesis system through gradient descent phase-locking algorithm.

    PubMed

    Underwood, Kenneth J; Jones, Andrew M; Gopinath, Juliet T

    2015-06-20

    We present a new application of the stochastic parallel gradient descent (SPGD) algorithm to fast active phase control in a Fourier synthesis system. Pulses (4.9 ns) with an 80 MHz repetition rate are generated by feedback from a single phase-sensitive metric. Phase control is applied via fast current modulation of a tapered amplifier using an SPGD algorithm realized on a field-programmable gate array (FPGA). The waveforms are maintained by constant active feedback from the FPGA. We also discuss the extension of this technique to many more semiconductor laser emitters in a diode laser array.

  15. FPGA-based phase control of acousto-optic modulator Fourier synthesis system through gradient descent phase-locking algorithm.

    PubMed

    Underwood, Kenneth J; Jones, Andrew M; Gopinath, Juliet T

    2015-06-20

    We present a new application of the stochastic parallel gradient descent (SPGD) algorithm to fast active phase control in a Fourier synthesis system. Pulses (4.9 ns) with an 80 MHz repetition rate are generated by feedback from a single phase-sensitive metric. Phase control is applied via fast current modulation of a tapered amplifier using an SPGD algorithm realized on a field-programmable gate array (FPGA). The waveforms are maintained by constant active feedback from the FPGA. We also discuss the extension of this technique to many more semiconductor laser emitters in a diode laser array. PMID:26193004

  16. Interface and post-processing requirements to insert an acousto-optic range-Doppler processor into an advanced radar digital signal processor

    NASA Astrophysics Data System (ADS)

    Durrett, Rodney A.; Dean, R.; McCarthy, Daniel F.; Viveiros, Edward A.; Caraway, Willie

    1995-06-01

    The interfacing and post-processing requirements for the development and insertion of an acousto-optic (AO), range-Doppler processor will be described. This system has been configured to operate as an integral part of the signal processing chain of an advanced spread- spectrum radar developed by the US Army Missile Command (MICOM). This MICOM radar transmits a continuous repeated, biphase-coded waveform and processes a block of received data to detect and track targets i range and Doppler in the presence of severe ground clutter. Multiple code rates are processed to extend the range window through application of residue number techniques. Range and Doppler processing are achieved in the AO processor using an additive triple-product processor architecture that coherently detects the range-Doppler information on a high-speed, custom 3D CCD detector array developed by the Army Research Laboratory. We present the interfaces to the radar and the post-processing of the data produced by the AO range-Doppler processor into the format required by the MICOM signal processor. The interfaces comprise the extraction of digital in-phase and quadrature data, the condition of this data for the AO range-Doppler processor, and the insertion of the post- processed optical data into the radar signal processor. Timing and latency issues are critical to real-time operation (creating range-Doppler images at approximately 1600 Hz frames rates) within the MICOM radar. The post-processing section cover optical processor architecture/post-processing tradeoffs, focusing on requirements, algorithms, and hardware implementation.

  17. MO-A-BRD-01: An Investigation of the Dynamic Response of a Novel Acousto-Optic Liquid Crystal Detector for Full-Field Transmission Ultrasound Breast Imaging

    SciTech Connect

    Rosenfield, J.R.; La Riviere, P.J.; Sandhu, J.S.

    2014-06-15

    Purpose: To characterize the dynamic response of a novel acousto-optic (AO) liquid crystal detector for high-resolution transmission ultrasound breast imaging. Transient and steady-state lesion contrast were investigated to identify optimal transducer settings for our prototype imaging system consistent with the FDA limits of 1 W/cm{sup 2} and 50 J/cm{sup 2} on the incident acoustic intensity and the transmitted acoustic energy flux density. Methods: We have developed a full-field transmission ultrasound breast imaging system that uses monochromatic plane-wave illumination to acquire projection images of the compressed breast. The acoustic intensity transmitted through the breast is converted into a visual image by a proprietary liquid crystal detector operating on the basis of the AO effect. The dynamic response of the AO detector in the absence of an imaged breast was recorded by a CCD camera as a function of the acoustic field intensity and the detector exposure time. Additionally, a stereotactic needle biopsy breast phantom was used to investigate the change in opaque lesion contrast with increasing exposure time for a range of incident acoustic field intensities. Results: Using transducer voltages between 0.3 V and 0.8 V and exposure times of 3 minutes, a unique one-to-one mapping of incident acoustic intensity to steady-state optical brightness in the AO detector was observed. A transfer curve mapping acoustic intensity to steady-state optical brightness shows a high-contrast region analogous to the linear portion of the Hurter-Driffield curves of radiography. Using transducer voltages between 1 V and 1.75 V and exposure times of 90 s, the lesion contrast study demonstrated increasing lesion contrast with increasing breast exposure time and acoustic field intensity. Lesion-to-background contrast on the order of 0.80 was observed. Conclusion: Maximal lesion contrast in our prototype system can be obtained using the highest acoustic field intensity and the

  18. High-peak-power sub-nanosecond intracavity KTiOPO4 optical parametric oscillator pumped by a dual-loss modulated laser with acousto-optic modulator and single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao; Lu, Jianren; Wang, Yonggang; Chu, Hongwei; Luan, Chao

    2016-08-01

    A high-peak-power low-repetition-rate sub-nanosecond intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a doubly Q-switched and mode-locked (QML) YVO4/Nd:YVO4 laser with an acousto-optic modulator (AOM) and a single-walled carbon nanotube saturable absorber (SWCNT-SA) has been demonstrated. A maximum output power of 373 mW at a signal wavelength of 1570 nm was obtained. The smallest pulse width, highest pulse energy, and greatest peak power of mode-locking pulses were estimated to be 119 ps, 124 µJ, and 1.04 MW, respectively, under a maximum incident pump power of 8.3 W and an AOM repetition rate of 2 kHz. This OPO operation paves a simple way to produce eye-safe laser sources at 1570 nm with low repetition rates, small pulse widths, and high peak powers.

  19. Modulation frequency characteristics of the Q-switched envelope in a doubly Q-switched and mode-locked laser with acousto-optic modulator and Cr4+:YAG saturable absorber

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Jia; Li, Yufei; Zhao, Shengzhi; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Chu, Hongwei

    2015-11-01

    The modulation frequency characteristics of the Q-switched envelope in a doubly Q-switched and mode-locked Nd:GGG laser with an acousto-optic modulator (AOM) and Cr4+:YAG saturable absorber are given. At a fixed incident pump power, the repetition rates of the Q-switched envelope and the related laser characteristics versus the modulation frequency of AOM for different small signal transmissions of Cr4+:YAG saturable absorbers have been measured. The experimental results show that the repetition rates of the Q-switched envelope, the average output power, the average peak power, and the pulse widths of the Q-switched envelopes are subharmonics of the modulation frequency at a fixed incident pump power. Furthermore, the mechanism for these behaviors is discussed.

  20. Dispersal

    USGS Publications Warehouse

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  1. Measurement of Isotope Shifts, Hyperfine Splittings and Stark Shift for the Ytterbium (6S)2 SINGLET-S(0) to (6S6P) TRIPLET-P(1) Transition Using AN Acousto-Optically Modulated Laser Beam.

    NASA Astrophysics Data System (ADS)

    Li, Jian

    1995-11-01

    Accurate measurements of isotope shifts, hyperfine splittings and Stark shifts are of interest for studying atomic structure. This thesis reports a new method to precisely measure small frequency intervals. This was done using an acousto-optic modulator to frequency shift part of a laser beam. The frequency shifted and unshifted laser beams were then superimposed and excited an atomic beam. The laser frequency was scanned across the transition while fluorescence produced by the radiative decay of the excited state was detected by a photomultiplier. Each transition generated two peaks in the spectrum separated by the acousto-optic modulation frequency, which permitted the frequency to be calibrated. This method was tested by measuring the isotope shifts and hyperfine splittings of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition at 555.6 nm. The shifts (MHz) relative to ^{176} Yb are: ^{173}Yb {it F}=7/2,-1432.1+/-1.2; ^{171}Yb {it F}=1/2, -1176.9+/-1.1; ^{174}Yb, 953.8+/-1.0; ^{172}Yb 1953.9+/-1.6; ^{170}Yb 3240.4+/-2.8; ^{173}Yb {it F}=5/2,3265.8+/-2.8; ^ {168}Yb, 4611.9+/-4.4; ^ {171,173}Yb {it F}=3/2,4760.1 +/-3.7 where the negative sign indicates that the transition occurs at a lower frequency than in ^{176}Yb. The magnetic dipole (a) and electric quadrupole (b) hyperfine coupling constants (MHz) of the (6s6p) ^3P_1 state for ^{171,173}Yb were determined to be a_{171}=3959.1 +/-3.0, a_{173}=-1094.44+/-0.84 and b_{173}=-827.89+/-0.85. These results were in agreement with the most accurate data found in the literature that were obtained by measuring frequency shifts using a Fabry Perot etalon whose length was stabilized with a helium neon laser locked to an iodine line. In contrast, our method uses cheaper and simpler apparatus. Next, the Stark shift of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition was measured by passing the atomic beam through a uniform electric field. The Stark shift rate was found to be -15.419+/-0.048 kHz/(kV/cm)^2. No

  2. Diode-pumped acousto-optical Q-switched 912 nm Nd:GdVO4 laser and extra-cavity frequency-doubling of 456 nm deep-blue light emission

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Zhang, K.; He, Y.; Zheng, C. B.; Wang, C. R.; Guo, J.

    2015-05-01

    In this paper, a diode-pumped acousto-optical (A-O) Q-switched 912 nm Nd:GdVO4 laser and pulsed 456 nm deep-blue light emission by extra-cavity frequency-doubling are demonstrated. To compensate the serious thermal-lensing effect in laser crystal, a compact unstable resonator is used. At an incident pump power of 49.5 W, a maximum average output power of 2.3 W 912 nm laser is obtained at 10 kHz, corresponding to an optical conversion efficiency of 4.6% and a slope efficiency of 9.2%. Minimum pulse width of 20 ns and maximum peak power of 10.5 kW 912 nm laser are achieved at a pump power of 45.3 W. Using a BiBO crystal as the frequency-doubler, maximum average output power of 623 mW 456 nm deep-blue light is obtained at 10 kHz, with a pulse width of 21.3 ns and a peak power of 2.3 kW. Moreover, stable operating repetition rate of 912 nm laser and 456 nm deep-blue light is up to 100 kHz.

  3. High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillator power amplifier.

    PubMed

    Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Hu, Chengzhi; Wu, Bo; Shen, Yonghang

    2013-09-01

    We have experimentally demonstrated a periodically poled magnesium-oxide-doped lithium niobate (PPMgLN)-based, fiber-laser-pumped optical parametric oscillator (OPO) generating idler wavelength of 3.82 μm. The pump fiber laser was constructed with a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber oscillator and a polarization-maintaining fiber amplifier with pulse duration of 190 ns at the highest output power. The OPO was specifically configured in single-pass, singly resonant linear cavity structure to avoid the damage risk of the pump fiber laser, which is always a serious issue in the fiber-laser-pumped, double-pass, singly oscillating structured OPOs. Under the highest pump power of 25 W, an idler average output power of 3.27 W with one-hour peak-to-peak instability of 5.2% was obtained. The measured M2 factors were 1.98 and 1.44 for horizontal and vertical axis, respectively. The high power stability and good beam quality demonstrated the suitability of such technology for practical application. PMID:24085093

  4. Multispectral endoscopy and microscopy imaging system using a spectrally programmable light engine

    NASA Astrophysics Data System (ADS)

    MacKinnon, N.; Stange, Ulrich; Lane, Pierre M.; MacAulay, Calum E.

    2005-03-01

    We report a spectrally and temporally programmable light engine based on a spatial light modulator that can dynamically create any narrow or broadband spectral profile for hyperspectral, fluorescence, or principal component imaging. Most hyperspectral or multispectral imaging systems use wavelength selection devices such as acousto-optic tunable filters (AOTFs), tunable grating or prism-based monochromators, or filter wheels. While these devices can select wavelengths they cannot create arbitrary spectral profiles. This simple and economical system can be controlled at high speed (up to 5000 illumination profiles per second). Digitally controlled illumination is bit additive with image data providing high dynamic range imaging with monochrome or color imaging devices. This is especially advantageous for endoscopes employing small well CCD or CMOS sensors since the dynamic range now can extend beyond the limits of the sensor itself. In this report we show multispectral images of in vivo tissue and in vitro tissue samples using endoscopes, surgical microscopes and conventional microscopes.

  5. Depth selective acousto-optic flow measurement

    PubMed Central

    Tsalach, Adi; Schiffer, Zeev; Ratner, Eliahu; Breskin, Ilan; Zeitak, Reuven; Shechter, Revital; Balberg, Michal

    2015-01-01

    Optical based methods for non-invasive measurement of regional blood flow tend to incorrectly assess cerebral blood flow, due to contribution of extra-cerebral tissues to the obtained signal. We demonstrate that spectral analysis of phase-coded light signals, tagged by specific ultrasound patterns, enables differentiation of flow patterns at different depths. Validation of the model is conducted by Monte Carlo simulation. In-vitro experiments demonstrate good agreement with the simulations' results and provide a solid validation to depth discrimination ability. These results suggest that signal contamination originating from extra-cerebral tissue may be eliminated using spectral analysis of ultrasonically tagged light. PMID:26713201

  6. Multiple acousto-optic q-switch

    SciTech Connect

    Deason, Vance A.

    1993-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  7. Multiple acousto-optic q-switch

    SciTech Connect

    Deason, Vance A.

    1993-12-07

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  8. Depth selective acousto-optic flow measurement.

    PubMed

    Tsalach, Adi; Schiffer, Zeev; Ratner, Eliahu; Breskin, Ilan; Zeitak, Reuven; Shechter, Revital; Balberg, Michal

    2015-12-01

    Optical based methods for non-invasive measurement of regional blood flow tend to incorrectly assess cerebral blood flow, due to contribution of extra-cerebral tissues to the obtained signal. We demonstrate that spectral analysis of phase-coded light signals, tagged by specific ultrasound patterns, enables differentiation of flow patterns at different depths. Validation of the model is conducted by Monte Carlo simulation. In-vitro experiments demonstrate good agreement with the simulations' results and provide a solid validation to depth discrimination ability. These results suggest that signal contamination originating from extra-cerebral tissue may be eliminated using spectral analysis of ultrasonically tagged light. PMID:26713201

  9. Acousto-Optical/Electronic Processor For SAR

    NASA Technical Reports Server (NTRS)

    Bicknell, T. J.; Farr, W. H.

    1992-01-01

    Lightweight, compact, low-power apparatus processes synthetic-aperture-radar (SAR) returns in real time, providing imagery aboard moving aircraft or spacecraft platform. Processor includes optical and electronic subsystems that, together, resolve range and azimuth coordinates of radar targets by combination of spatial and temporal integrations.

  10. Narrowing of the linewidth of an optical parametric oscillator by an acousto-optic modulator for the realization of mid-IR noise-immune cavity-enhanced optical heterodyne molecular spectrometry down to 10⁻¹⁰ cm⁻¹ Hz⁻¹/².

    PubMed

    Hausmaninger, Thomas; Silander, Isak; Axner, Ove

    2015-12-28

    The linewidth of a singly resonant optical parametric oscillator (OPO) has been narrowed with respect to an external cavity by the use of an acousto-optic modulator (AOM). This made possible an improvement of the sensitivity of a previously realized OPO-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrument for the 3.2 - 3.9 µm mid-infrared region by one order of magnitude. The resulting system shows a detection sensitivity for methane of 2.4 × 10(-10) cm(-1) Hz(-1∕2) and 1.3 × 10(-10) cm(-1) at 20 s, which allows for detection of both the environmentally important (13)CH(4) and CH(3)D isotopologues in atmospheric samples. PMID:26832028

  11. A programmable light engine for quantitative single molecule TIRF and HILO imaging.

    PubMed

    van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin

    2008-10-27

    We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.

  12. High power femtosecond lasers at ELI-NP

    SciTech Connect

    Dabu, Razvan

    2015-02-24

    Specifications of the high power laser system (HPLS) designed for nuclear physics experiments are presented. Configuration of the 2 × 10 PW femtosecond laser system is described. In order to reach the required laser beam parameters, advanced laser techniques are proposed for the HPLS: parametric amplification and cross-polarized wave generation for the intensity contrast improvement and spectral broadening, acousto-optic programmable filters to compensate for spectral phase dispersion, optical filters for spectrum management, combined methods for transversal laser suppression.

  13. Spectral imagery with an acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Smith, W. Hayden; Schempp, W. V.; Conner, C. P.; Katzka, P.

    1987-01-01

    .A spectral imager for astronomy and aeronomy has been fabricated using collinear or non-collinear acoustooptic tunable filters (AOTFs). The AOTF provides high transparency, rapid tunability over a wide wavelength range, a capability of varying the bandwidth by more than an order of magnitude, high etendue, and linearly polarized output. Some typical observational applications of acoustooptic tunable filters used in several configurations at astronomical telescopes are demonstrated.

  14. Acousto-optic filter for electronic laser tuning

    NASA Technical Reports Server (NTRS)

    Harris, S. E.

    1972-01-01

    Electronically tunable lithium niobate filter utilizes acoustic-optic diffraction for tuning laser to desired frequencies. Filter placed inside laser cavity diffracts incident optical signal of one polarization into orthogonal polarization by collinearly propagating acoustic beam to desired wavelength.

  15. Flight experiment on acousto-optic crystal growth

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Duval, Walter M. B.

    1991-01-01

    The physical vapor transport method was used for growing mercurous chloride crystals in different convective conditions. Optical homogeneity is found to be extremely dependent on convection levels. Results of numerical studies indicate that for a gravity level of 0.001 g or less the Stefan wind drives the flow and no recirculating cells are observed.

  16. Three-dimensional acousto-optic spectrum analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Metscher, Brian; Lesh, James R.

    1990-01-01

    A three-dimensional acoustooptic spectrum analyzer with subhertz resolution is demonstrated experimentally. The first and second dimensions are the two spatial dimensions of the output detector array, and the third dimension is time as sampled by the detector array frame rate. A superfine resolution of 0.12 Hz has been achieved.

  17. Infrared fiber coupled acousto-optic tunable filter spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, K. H.; Kindler, E.; Ko, T.; Lee, F.; Tran, D. C.; Tapphorn, R. M.

    1990-01-01

    A spectrometer design is introduced which combines an acoustooptic tunable filter (AOTF) and IR-transmitting flouride-glass fibers. The AOTF crystal is fabricated from TeO2 and permits random access to any wavelength in less than 50 microseconds, and the resulting spectrometer is tested for the remote analysis of gases and hydrocarbons. The AOTF spectrometer, when operated with a high-speed frequency synthesizer and optimized algorithms, permits accurate high-speed spectroscopy in the mid-IR spectral region.

  18. Programmable Pacemaker

    NASA Technical Reports Server (NTRS)

    1980-01-01

    St. Jude Medical's Cardiac Rhythm Management Division, formerly known as Pacesetter Systems, Inc., incorporated Apollo technology into the development of the programmable pacemaker system. This consists of the implantable pacemaker together with a physician's console containing the programmer and a data printer. Physician can communicate with patient's pacemaker by means of wireless telemetry signals transmitted through the communicating head held over the patient's chest. Where earlier pacemakers deliver a fixed type of stimulus once implanted, Programalith enables surgery free "fine tuning" of device to best suit the patient's changing needs.

  19. Programmable Pulser

    NASA Technical Reports Server (NTRS)

    Baumann, Eric; Merolla, Anthony

    1988-01-01

    User controls number of clock pulses to prevent burnout. New digital programmable pulser circuit in three formats; freely running, counted, and single pulse. Operates at frequencies up to 5 MHz, with no special consideration given to layout of components or to terminations. Pulser based on sequential circuit with four states and binary counter with appropriate decoding logic. Number of programmable pulses increased beyond 127 by addition of another counter and decoding logic. For very large pulse counts and/or very high frequencies, use synchronous counters to avoid errors caused by propagation delays. Invaluable tool for initial verification or diagnosis of digital or digitally controlled circuity.

  20. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.

  1. Temporal E-Beam Shaping in an S-Band Accelerator

    SciTech Connect

    Loos, H.; Dowell, D.; Gilevich, A.; Limborg-Deprey, C.; Boscolo, M.; Ferrario, M.; Petrarca, M.; Vicario, C.; Murphy, J.B.; Sheehy, B.; Shen, Y.; Tsang, T.; Wang, X.J.; Wu, Z.; Serafini, L.; /INFN, Milan

    2006-02-15

    New short-wavelength SASE light sources will require very bright electron beams, brighter in some cases than is now possible. One method for improving brightness involves the careful shaping of the electron bunch to control the degrading effects of its space charge forces. We study this experimentally in an S-band system, by using an acousto-optical programmable dispersive filter to shape the photocathode laser pulse that drives the RF photoinjector. We report on the efficacy of shaping from the IR through the UV, and the effects of shaping on the electron beam dynamics.

  2. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  3. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  4. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  5. Programmable Logic Controllers.

    ERIC Educational Resources Information Center

    Insolia, Gerard; Anderson, Kathleen

    This document contains a 40-hour course in programmable logic controllers (PLC), developed for a business-industry technology resource center for firms in eastern Pennsylvania by Northampton Community College. The 10 units of the course cover the following: (1) introduction to programmable logic controllers; (2) DOS primer; (3) prerequisite…

  6. Analog optical processing and computing; Proceedings of the Meeting, Cambridge, MA, October 25, 26, 1984

    SciTech Connect

    Caulfield, H.J.

    1985-01-01

    Developments in optical signal processing are discussed, taking into account acousto-optic processors for passive surveillance, innovative and compact architectures for real-time two-dimensional correlation, scale-invariant Wigner distribution and ambiguity functions, an acousto-optic convolver for digital pulses, holography and four-wave mixing to see through the skin, the phase-conjugate of a Fourier hologram using four-wave mixing in BSO crystal, and a tunable, variable bandwidth, acousto-optic filter. Subjects related to pattern recognition are also explored, giving attention to optimal linear discriminant functions, orientation variability in generalized matched filters, an adaptive acousto-optic processor, an optical implementation of the synthetic discrimination function, and optimality considerations in modified matched spatial filters. A hybrid digital/integrated optical processor for on-line classification is considered along with white-light optical signal processing with a programmable magneto-optic device, and Lloyd's mirror as an optical processor.

  7. Distributed computing systems programme

    SciTech Connect

    Duce, D.

    1984-01-01

    Publication of this volume coincides with the completion of the U.K. Science and Engineering Research Council's coordinated programme of research in Distributed Computing Systems (DCS) which ran from 1977 to 1984. The volume is based on presentations made at the programme's final conference. The first chapter explains the origins and history of DCS and gives an overview of the programme and its achievements. The remaining sixteen chapters review particular research themes (including imperative and declarative languages, and performance modelling), and describe particular research projects in technical areas including local area networks, design, development and analysis of concurrent systems, parallel algorithm design, functional programming and non-von Neumann computer architectures.

  8. SOTANCP3 Scientific Programme

    NASA Astrophysics Data System (ADS)

    2014-12-01

    The programme for the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics" which was held at the KGU (Kanto Gakuin University) Kannai Media Center (8th floor of Yokohoma Media Business Center (YMBC))

  9. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1998-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter's column will include some announcements and some recent radiation test results and evaluations of interest. Specifically, the following topics will be covered: the Military and Aerospace Applications of Programmable Devices and Technologies Conference to be held at GSFC in September, 1998, proton test results, heavy ion test results, and some total dose results.

  10. Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  11. Classification of acousto-optic correlation signatures of spread spectrum signals using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Deberry, John W.

    1989-05-01

    The primary goal of this research was to determine if artificial Neural Networks (ANNs) can be trained to classify the correlation signatures of direct sequence and frequency-hopped spread-spectrum signals. Secondary goals were to determine: (1) if network classification performance can be modeled with a conditional probability matrix, (2) if the symmetry of the matrices can be controlled, and (3) if using a majority vote rule over independently trained networks improves classification performance. Correlation signatures of the spread-spectrum signals were obtained from United States Army Harry Diamond Laboratories. The signatures were preprocessed and separated into various training and testing data sets. Thirty samples of network responses for several sets of training conditions were gathered using a neural network simulator.

  12. TeO2 and Te acousto-optic spectrometer imaging system

    NASA Astrophysics Data System (ADS)

    Souilhac, Dominique J.; Billerey, Dominique

    1994-12-01

    An improved TeO2 and Te infrared acoustooptic tuneable spectrometer has been analysed, using infrared fibres, a high speed frequency synthesiser and optimised algorithms. A comparison is made with the next best AOTF infrared materials, Tl3AsSe3, HgCl2 and PbBr2. A design study of the TeO2 and Te AO imaging spectrometer is also presented, operating in the two thermal bands, 1-5micrometers and 6-12micrometers , using an interchangeable fore-optics and a multiplexed electronically scanned infrared array cooled at 77 degrees K. Some initial experimental results indicate that these systems can perform well, an increase in the dynamic range in the 8-12 micrometers and is obtained compared to the 3-5*m band. It can be very useful in chemical process control, medical diagnostics, aerospace and earth remote sensing. Based on recent imaging spectrometer development, a design study of the TeO2 AO imaging spectrometer in the 0.4-1 micrometers band, for simultaneous spectroscopy at every pixel, is presented, using a CCD camera and fast data processing technology.

  13. Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator.

    PubMed

    Skoff, David R; Laaser, Jennifer E; Mukherjee, Sudipta S; Middleton, Chris T; Zanni, Martin T

    2013-08-30

    Over the last decade two-dimensional infrared (2D IR) spectroscopy has proven to be a very useful extension of infrared spectroscopy, yet the technique remains restricted to a small group of specialized researchers because of its experimental complexity and high equipment cost. We report on a spectrometer that is compact, mechanically robust, and is much less expensive than previous designs because it uses a single pixel MCT detector rather than an array detector. Moreover, each axis of the spectrum can be collected in either the time or frequency domain via computer programming. We discuss pulse sequences for scanning the probe axis, which were not previously possible. We present spectra on metal carbonyl compounds at 5 µm and a model peptide at 6 µm. Data collection with a single pixel MCT takes longer than using an array detector, but publishable quality data are still achieved with only a few minutes of averaging.

  14. Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications - System issues

    NASA Technical Reports Server (NTRS)

    Yu, Jeffrey; Chao, Tien H.; Cheng, Li-Jen

    1990-01-01

    A recently developed AOTF operating in the visible, 0.4-0.8 micron bandpass is presently compared with other spectrometer designs, with a view to the advantages it may uniquely offer for prospective NASA missions. Since spectral identification is accomplished by this system through the scanning of a few spectral bands, data storage requirements for spectral image analysis can be significantly reduced. Attention is given to spectral and imaging capabilities and their applicability to defense, remote sensing, and industrial uses.

  15. A compact implementation of a real time acousto-optic synthetic aperture radar processor

    NASA Technical Reports Server (NTRS)

    Shaik, Kamran; Lesh, James R.; Hemmati, Hamid

    1988-01-01

    The architecture of a real-time acoustooptic synthetic aperture radar processor is reviewed and recent efforts to develop a compact processor are presented. It employs an acoustooptic device operated in the space integrating mode to compress the signal in range.

  16. Analysis of a crossed Bragg-cell acousto optical spectrometer for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1986-01-01

    The search for radio signals from extraterrestrial intelligent (SETI) beings requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg-cell spectrometer as described by Psaltis and Casasent (1979). This technique makes use of the Folded Spectrum concept, introduced by Thomas (1966). The Folded Spectrum is a two-dimensional Fourier Transform of a raster scanned one-dimensional signal. It is directly related to the long one-dimensional spectrum of the original signal and is ideally suited for optical signal processing.

  17. High-performance acousto-optic materials - Hg2Cl2 and PbBr2

    NASA Technical Reports Server (NTRS)

    Gottlieb, Milton; Goutzoulis, Anastasios P.; Singh, N. B.

    1992-01-01

    New results achieved with recently grown Hg2Cl2 and PbBr2 crystals are described. With an optimized crystal growth technique Hg2Cl2 crystals were grown that show a significantly reduced acoustic attenuation compared to prior crystals, from 13.4 to 8 dB/microsec-GHz-squared. These crystals allow the development of Hg2Cl2 Bragg cells with time-bandwidth product figures in the 5100 to 6900 range, frequency operation as high as that for TeO2, and resolution about 25 percent higher than TeO2 for similar crystal lengths. PbBr2 crystals were also grown that exhibit a large figure of merit (M2 = 550) with an attenuation coefficient of 12 dB/microsec-GHz-squared. This material may be the choice for infrared devices where large diffraction efficiencies are needed.

  18. Synthetic aperture radar imaging using acousto-optics and charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Wagner, K.; Haney, M.

    1983-01-01

    The operating principles of an acoustooptic/CCD real-time SAR processor are described, and experimental results are presented. Particular consideration is given to time-and-space integrating processing, the range processor, and the azimuth processor. The interferometric detection scheme is examined in detail.

  19. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1989-01-01

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  20. Acousto-optic signature analysis for inspection of the orbiter thermal protection tile bonds

    NASA Technical Reports Server (NTRS)

    Rodriguez, Julio G.; Tow, D. M.; Barna, B. A.

    1990-01-01

    The goal of this research is to develop a viable NDE technique for the inspection of orbiter thermal protection system (TPS) tile bonds. Phase 2, discussed here, concentrated on developing an empirical understanding of the bonded and unbonded vibration signatures of acreage tiles. Controlled experiments in the laboratory have provided useful information on the dynamic response of TPS tiles. It has been shown that several signatures are common to all the pedigree tiles. This degree of consistency in the tile-SIP (strain isolation pad) dynamic response proves that an unbond can be detected for a known tile and establish the basis for extending the analysis capability to arbitrary tiles for which there are no historical data. The field tests of the noncontacting laser acoustic sensor system, conducted at the Kennedy Space Center (KSC), investigated the vibrational environment of the Orbiter Processing Facility (OPF) and its effect on the measurement and analysis techniques being developed. The data collected showed that for orbiter locations, such as the body flap and elevon, the data analysis scheme, and/or the sensor, will require modification to accommodate the ambient motion. Several methods were identified for accomplishing this, and a solution is seen as readily achievable. It was established that the tile response was similar to that observed in the laboratory. Of most importance, however, is that the field environment will not affect the physics of the dynamic response that is related to bond condition. All of this information is fundamental to any future design and development of a prototype system.

  1. Acousto-optic tunable filter field spectrometer for validation of airborne and spaceborne imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, David M.

    1990-01-01

    A new concept for a field portable spectrometer designed to meet the needs of the remote sensing community is presented. This instrument uses acoustooptic tunable filters (AOTFs) as wavelength sorters, allowing the design of a rugged, compact, light-weight tool that provides broad spectral coverage, great versatility, and ease of utilization. The spectrometer provides continuous spectral coverage from 0.4 to 2.5 microns with two channels defined by detector technology, while a visible channel covering the 0.4 to 1.0 micron spectral range uses silicon PV photodiodes. The short-wavelength IR channel covers the 0.9 to 2.5 micron special range with thermoelectrically cooled lead sulfide PC detectors.

  2. Demonstration of a tunable two-frequency projected fringe pattern with acousto-optic deflectors

    SciTech Connect

    Dupont, S.; Kastelik, J. C.

    2008-05-15

    We report on a fringe projector for three-dimensional shape measurement. The developed instrument is able to project a two-frequency fringe pattern, each frequency is independently controlled by electronics. Moreover, each phase of the two fringe patterns is also independently adjusted. The projection system is based on the use of a pair of custom large bandwidth (40 MHz) and high efficiency (60%) TeO{sub 2} deflectors. The developed instrument offers the combined advantages of a static two-frequency fringe projector and of a tunable single frequency fringe projector.

  3. Cosine apodization of dual-resonance all-fiber acousto-optic tunable filters.

    PubMed

    Park, Hyun Chul; Lee, Kwang Jo

    2015-09-01

    We experimentally demonstrate a novel cosine apodization technique for dual-resonance all-fiber acoustic-optic tunable filter. The technique is based on a hybrid control of input acoustic polarization state and circumferential fiber twist. We will show that intrinsic sidelobe spectra occurring between dual filtering bands are successfully suppressed through our approach, which will be also theoretically confirmed via our analytical and numerical studies. The results illustrate that the spectral positions of each resonance are tuned linearly and continuously by the fiber twist, and that overall sidelobe spectra between two resonances are suppressed regardless of fiber twist angle. The proposed scheme is useful to minimize cross talk between adjacent wavelength channels in optical sensor systems. We highlight that our approach is directly applicable to low-noise matched filtering. PMID:26368876

  4. Acousto-optic tomography using amplitude-modulated focused ultrasound and a near-IR laser

    SciTech Connect

    Yao Yong; Xing Da; He Yonghong; Ueda, Ken-ichi

    2001-11-30

    A novel tomographic method that can be applied in strongly scattering optical media is proposed. 1-MHz focused ultrasound is used to tag the scattering photons in the biological tissue; it carries a 10-KHz sinusoidal wave to act as a detection wave through amplitude-modulation (AM). The scattering photons that come from the focused zone carry the modulated information. Their optoelectronic signal is demodulated by real-time FFT. By detecting and discriminating ultrasound-modulated information carried by scattered photons, the optical tomographic images of the media simulating biological tissue and of a buried object are reconstructed by the AM spectral intensity. This ultrasound-tagged optical tomography can be applied to tissue structures with different optical parameters. For the first time, by using this method, we obtained the tomographic image of a 5 mm-wide soft rubber cube buried in a biological tissue-simulating media with a detecting depth of 30 mm. (laser applications and other topics in quantum electronics)

  5. Space Qualification Issues in Acousto-optic and Electro-optic Devices

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta

    2007-01-01

    Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.

  6. Acousto-optical detection of hidden objects via speckle based imaging.

    PubMed

    Lev, Aner; Sfez, Bruno

    2015-10-01

    Optical detection of objects hidden behind opaque screening layers is a challenging problem. We demonstrate an optically detected echographic-like method that combines collimated acoustic and laser beams. The acoustic waves cross the screening layers, and their back-reflection from the hidden objects is detected through the analysis of a dynamic laser speckle pattern created at the outer surface of the screening layer. Real-time remote detection of moving targets 15 meters away, with a few mm resolution is demonstrated using a very sensitive camera detection scheme. PMID:26480159

  7. Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator

    NASA Astrophysics Data System (ADS)

    Skoff, David R.; Laaser, Jennifer E.; Mukherjee, Sudipta S.; Middleton, Chris T.; Zanni, Martin T.

    2013-08-01

    Over the last decade two-dimensional infrared (2D IR) spectroscopy has proven to be a very useful extension of infrared spectroscopy, yet the technique remains restricted to a small group of specialized researchers because of its experimental complexity and high equipment cost. We report on a spectrometer that is compact, mechanically robust, and is much less expensive than previous designs because it uses a single pixel MCT detector rather than an array detector. Moreover, each axis of the spectrum can be collected in either the time or frequency domain via computer programming. We discuss pulse sequences for scanning the probe axis, which were not previously possible. We present spectra on metal carbonyl compounds at 5 μm and a model peptide at 6 μm. Data collection with a single pixel MCT takes longer than using an array detector, but publishable quality data are still achieved with only a few minutes of averaging.

  8. Programmable telemetry test system

    NASA Astrophysics Data System (ADS)

    Guadiana, J. M.

    A portable programmable telemetry test system was designed to test shipboard telemetry systems used for evaluating performance of missile systems in the surface missile fleet. The test system accurately simulates any missile in the current Navy inventory, and provides test and calibration signals to verify telemetry systems. The total test system weighs just over 15 lbs and occupies less than 1 cubic foot. Internal batteries allow testing or calibration of RF front ends out on weather decks. The modulation section consists of an FM/PAM/PCM simulator and simple control circuitry, and is programmable via an Intel 2715 EPROM, the frame format memory. A second EPROM provides a wave-form library.

  9. Creating capacity through partnership: a palliative care skills development programme.

    PubMed

    Kelsall, Kay; Brennan, Ebony; Cole, Teresa

    2015-08-01

    This paper presents the development and implementation of a recurrently funded, rolling, 6-month palliative care secondment programme for NHS community staff nurses based in a rural health economy in Southwest England. The programme is a key tool in a wider development plan for improving access to, and the quality of, palliative and end-of-life care for a dispersed rural population. This is part of a much bigger programme of integration to meet the shared challenges of service capacity, equity, and sustainability that are presented by the geographical and demographical profile of the locality. The 'bigger picture' is defined and set in the context of the national drive and evidence base for integration in order to explain the reasons behind the secondment programme. This is followed by outlining the iterative process of design and implementation--the 'what?' and 'how?'--and key learning points to date are shared.

  10. Programmable ECG Waveform

    PubMed Central

    Le Huy, P.; Yvroud, E.; Gilgenkrantz, J.M.; Baille, N.; Aliot, E.

    1984-01-01

    In this paper, the simulation of an electrocardiogram using a CMOS microprocessor is described. The programmability has been made accessible to every user. All inherent parameters of different waves in an ECG, such as amplitude, slope, duration can be independently modified by software. Thus, the testing of some sophisticated devices may be easily performed.

  11. Backgrounder: The MAB Programme.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Office of Public Information.

    The Man and the Biosphere Programme (MAB) was launched in November 1971 under the auspices of Unesco. Its aim is to help to develop scientific knowledge with a view to the rational management and conservation of natural resources, to train qualified personnel in this field, and to disseminate the knowledge acquired both to the decision-makers and…

  12. Conceptualizing Programme Evaluation

    ERIC Educational Resources Information Center

    Hassan, Salochana

    2013-01-01

    The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…

  13. Work Programme, 2014

    ERIC Educational Resources Information Center

    Cedefop - European Centre for the Development of Vocational Training, 2014

    2014-01-01

    Cedefop's work programme 2014 constitutes an ambitious attempt to preserve its core activities, respond to new requests and ensure previous quality standards while respecting resource constraints. Nevertheless, it also reflects the risk that the Centre's ability to deliver its mission and increasing demands may be affected by further budgetary…

  14. Computer Programmer/Analyst.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This publication contains 25 subjects appropriate for use in a competency list for the occupation of computer programmer/analyst, 1 of 12 occupations within the business/computer technologies cluster. Each unit consists of a number of competencies; a list of competency builders is provided for each competency. Titles of the 25 units are as…

  15. Programmable physiological infusion

    NASA Technical Reports Server (NTRS)

    Howard, W. H.; Young, D. R.; Adachi, R. R. (Inventor)

    1974-01-01

    A programmable physiological infusion device and method are provided wherein a program source, such as a paper tape, is used to actuate an infusion pump in accordance with a desired program. The system is particularly applicable for dispensing calcium in a variety of waveforms.

  16. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Day, John H. (Technical Monitor)

    2001-01-01

    This report will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will continue a series of notes concentrating on analysis techniques with this issue's section discussing the use of Root-Sum-Square calculations for digital delays.

  17. Developing Online Doctoral Programmes

    ERIC Educational Resources Information Center

    Chipere, Ngoni

    2015-01-01

    The objectives of the study were to identify best practices in online doctoral programming and to synthesise these practices into a framework for developing online doctoral programmes. The field of online doctoral studies is nascent and presents challenges for conventional forms of literature review. The literature was therefore reviewed using a…

  18. LOGSIM programmer's manual

    NASA Technical Reports Server (NTRS)

    Mitchell, C. L.; Taylor, J. F.

    1976-01-01

    A programmer's manual is reported for a Logic Simulator (LOGSIM) computer program that is a large capacity event simulator with the capability to accurately simulate the effects of certain unknown states, rise and fall times, and floating nodes in large scale metal oxide semiconductor logic circuits. A detailed description of the software with flow charts is included within the report.

  19. A programmable artificial retina

    SciTech Connect

    Bernard, T.M. ); Zavidovique, B.Y. . Electrical Engineering Dept. Perception System Lab., Arcueil ); Devos, F.J. . Dept. of Integrated Circuits and Systems)

    1993-07-01

    An artificial retina is a device that intimately associates an imager with processing facilities on a monolithic circuit. Yet, except for simple environments and applications, analog hardware will not suffice to process and compact the raw image flow from the photosensitive array. To solve this output problem, an on-chip array of bare Boolean processors with halftoning facilities might be used, providing versatility from programmability. By setting the pixel memory size to 3 b, the authors have demonstrated both the technological practicality and the computational efficiency of this programmable Boolean retina concept. Using semi-static shifting structures together with some interaction circuitry, a minimal retina Boolean processor can be built with less than 30 transistors and controlled by as few as 6 global clock signals. The successful design, integration, and test of such a 65x76 Boolean retina on a 50-mm[sup 2] CMOS 2-[mu]m circuit are presented.

  20. Optically programmable excitonic traps

    PubMed Central

    Alloing, Mathieu; Lemaître, Aristide; Galopin, Elisabeth; Dubin, François

    2013-01-01

    With atomic systems, optically programmed trapping potentials have led to remarkable progress in quantum optics and quantum information science. Programmable trapping potentials could have a similar impact on studies of semiconductor quasi-particles, particularly excitons. However, engineering such potentials inside a semiconductor heterostructure remains an outstanding challenge and optical techniques have not yet achieved a high degree of control. Here, we synthesize optically programmable trapping potentials for indirect excitons of bilayer heterostructures. Our approach relies on the injection and spatial patterning of charges trapped in a field-effect device. We thereby imprint in-situ and on-demand electrostatic traps into which we optically inject cold and dense ensembles of excitons. This technique creates new opportunities to improve state-of-the-art technologies for the study of collective quantum behavior of excitons and also for the functionalisation of emerging exciton-based opto-electronic circuits. PMID:23546532

  1. NSF announces diversity programme

    NASA Astrophysics Data System (ADS)

    Kruesi, Liz

    2016-04-01

    The US National Science Foundation (NSF) has initiated a new funding programme that will create schemes to increase diversity in science, technology, engineering and mathematics (STEM). The initiative - Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (INCLUDES) - aims to increase the participation of women, those with a low socioeconomic status, people with disabilities and those from minority racial backgrounds.

  2. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  3. NSF announces diversity programme

    NASA Astrophysics Data System (ADS)

    Kruesi, Liz

    2016-04-01

    The US National Science Foundation (NSF) has initiated a new funding programme that will create schemes to increase diversity in science, technology, engineering and mathematics (STEM). The initiative – Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (INCLUDES) – aims to increase the participation of women, those with a low socioeconomic status, people with disabilities and those from minority racial backgrounds.

  4. Programmable mechanical metamaterials.

    PubMed

    Florijn, Bastiaan; Coulais, Corentin; van Hecke, Martin

    2014-10-24

    We create mechanical metamaterials whose response to uniaxial compression can be programmed by lateral confinement, allowing monotonic, nonmonotonic, and hysteretic behavior. These functionalities arise from a broken rotational symmetry which causes highly nonlinear coupling of deformations along the two primary axes of these metamaterials. We introduce a soft mechanism model which captures the programmable mechanics, and outline a general design strategy for confined mechanical metamaterials. Finally, we show how inhomogeneous confinement can be explored to create multistability and giant hysteresis.

  5. Punch Card Programmable Microfluidics

    PubMed Central

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word “PUNCHCARD MICROFLUIDICS” using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  6. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.

  7. Programmable Supramolecular Polymerizations.

    PubMed

    van der Zwaag, Daan; de Greef, Tom F A; Meijer, E W

    2015-07-13

    Living large: Rational design of self-assembly pathways has been demonstrated in supramolecular polymers. By controlling the concentration of an aggregation-competent monomer through intramolecular interactions, living supramolecular polymerization conditions were achieved. This universal approach can be used to obtain aggregates of well-defined length and narrow dispersity, and allows access to new supramolecular polymer architectures. PMID:26095705

  8. Binary mask programmable hologram.

    PubMed

    Tsang, P W M; Poon, T-C; Zhou, Changhe; Cheung, K W K

    2012-11-19

    We report, for the first time, the concept and generation of a novel Fresnel hologram called the digital binary mask programmable hologram (BMPH). A BMPH is comprised of a static, high resolution binary grating that is overlaid with a lower resolution binary mask. The reconstructed image of the BMPH can be programmed to approximate a target image (including both intensity and depth information) by configuring the pattern of the binary mask with a simple genetic algorithm (SGA). As the low resolution binary mask can be realized with less stringent display technology, our method enables the development of simple and economical holographic video display.

  9. Flexible programmable logic module

    DOEpatents

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  10. NASCAP programmer's reference manual

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Stannard, P. R.; Katz, I.

    1993-01-01

    The NASA Charging Analyzer Program (NASCAP) is a computer program designed to model the electrostatic charging of complicated three-dimensional objects, both in a test tank and at geosynchronous altitudes. This document is a programmer's reference manual and user's guide. It is designed as a reference to experienced users of the code, as well as an introduction to its use for beginners. All of the many capabilities of NASCAP are covered in detail, together with examples of their use. These include the definition of objects, plasma environments, potential calculations, particle emission and detection simulations, and charging analysis.

  11. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1999-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter the focus is on some experimental data on low voltage drop out regulators to support mixed 5 and 3.3 volt systems. A discussion of the Small Explorer WIRE spacecraft will also be given. Lastly, we show take a first look at robust state machines in Hardware Description Languages (VHDL) and their use in critical systems. If you have information that you would like to submit or an area you would like discussed or researched, please give me a call or e-mail.

  12. A programmable Fortran preprocessor

    SciTech Connect

    Rosing, M.

    1995-06-01

    A programmable Fortran preprocessor is described. It allows users to define compile time operations that can examine and modify the source tree before it is compiled with a traditional compiler. This intermediate step allows the definition of routines and operations that adapt to the context in which they are used. Context sensitive operations increase the flexibility of abstractions that can be built without degrading efficiency, as compared to using traditional run time based abstractions such as libraries or objects. The preprocessor is described briefly along with an example of how it is used to add CMFortran array operations to Fortran77. Other preprocessors that have been implemented are also briefly described.

  13. Lectures on Dispersion Theory

    DOE R&D Accomplishments Database

    Salam, A.

    1956-04-01

    Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)

  14. Copernicus Earth observation programme

    NASA Astrophysics Data System (ADS)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  15. Dispersion y dinamica poblacional

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...

  16. CAMAC modular programmable function generator

    SciTech Connect

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve.

  17. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  18. Dispersants displace hot oiling

    SciTech Connect

    Wash, R.

    1984-02-01

    Laboratory experiments and field testing of dispersants in producing wells have resulted in development of 2 inexpensive paraffin dispersant packages with a broad application range, potential for significant savings over hot oiling, and that can be applied effectively by both continuous and batch treating techniques. The 2 dispersants are soluble in the carrier solvent (one soluble in oil, one in water); are able to readily disperse the wax during a hot flask test conducted in a laboratory; and leave the producing interval water wet. Field data on the 2 dispersants are tabulated, demonstrating their efficacy.

  19. Theory of dispersive microlenses

    NASA Technical Reports Server (NTRS)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  20. Programmable Image Processing Element

    NASA Astrophysics Data System (ADS)

    Eversole, W. L.; Salzman, J. F.; Taylor, F. V.; Harland, W. L.

    1982-07-01

    The algorithmic solution to many image-processing problems frequently uses sums of products where each multiplicand is an input sample (pixel) and each multiplier is a stored coefficient. This paper presents a large-scale integrated circuit (LSIC) implementation that provides accumulation of nine products and discusses its evolution from design through application 'A read-only memory (ROM) accumulate algorithm is used to perform the multiplications and is the key to one-chip implementation. The ROM function is actually implemented with erasable programmable ROM (EPROM) to allow reprogramming of the circuit to a variety of different functions. A real-time brassboard is being constructed to demonstrate four different image-processing operations on TV images.

  1. GCS programmer's manual

    NASA Technical Reports Server (NTRS)

    Lowman, Douglas S.; Withers, B. Edward; Shagnea, Anita M.; Dent, Leslie A.; Hayhurst, Kelly J.

    1990-01-01

    A variety of instructions to be used in the development of implementations of software for the Guidance and Control Software (GCS) project is described. This document fulfills the Radio Technical Commission for Aeronautics RTCA/DO-178A guidelines, 'Software Considerations in Airborne Systems and Equipment Certification' requirements for document No. 4, which specifies the information necessary for understanding and programming the host computer, and document No. 12, which specifies the software design and implementation standards that are applicable to the software development and testing process. Information on the following subjects is contained: activity recording, communication protocol, coding standards, change management, error handling, design standards, problem reporting, module testing logs, documentation formats, accuracy requirements, and programmer responsibilities.

  2. Programmable Cadence Timer

    NASA Technical Reports Server (NTRS)

    Hall, William A.; Gilbert, John

    1990-01-01

    Electronic metronome paces users through wide range of exercise routines. Conceptual programmable cadence timer provides rhythmic aural and visual cues. Timer automatically changes cadence according to program entered by the user. It also functions as clock, stopwatch, or alarm. Modular pacer operated as single unit or as two units. With audiovisual module moved away from base module, user concentrates on exercise cues without distraction from information appearing on the liquid-crystal display. Variety of uses in rehabilitative medicine, experimental medicine, sports, and gymnastics. Used in intermittent positive-pressure breathing treatment, in which patient must rhythmically inhale and retain medication delivered under positive pressure; and in incentive spirometer treatment, in which patient must inhale maximally at regular intervals.

  3. Japan's Eco-School Programme

    ERIC Educational Resources Information Center

    Mori, Masayuki

    2007-01-01

    Since 1997, several ministries in Japan have collaborated on an eco-school programme, which applies to both newly constructed and renovated school buildings, in an effort to make its schools more environmentally friendly. The programme equips school buildings with ecological features such as photovoltaic cells, solar thermal collectors, other new…

  4. [Evaluation of health promotion programmes].

    PubMed

    Berkowska, M; Sito, A

    2000-01-01

    The paper contains a review of definitions of evaluation and discusses the need to evaluate health promotion programmes. The classification of types of evaluation is presented. It is aimed to create a common language of communication between evaluation and the common understanding of terms. The relation between evaluation of health promotion programmes and quality assurance, best practice and evidence based health promotion are discussed.

  5. Programmable Logic Controllers. Teacher Edition.

    ERIC Educational Resources Information Center

    Rauh, Bob; Kaltwasser, Stan

    These materials were developed for a seven-unit secondary or postsecondary education course on programmable logic controllers (PLCs) that treats most of the skills needed to work effectively with PLCs as programming skills. The seven units of the course cover the following topics: fundamentals of programmable logic controllers; contracts, timers,…

  6. General purpose programmable accelerator board

    DOEpatents

    Robertson, Perry J.; Witzke, Edward L.

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  7. Dispersible carbon nanotubes.

    PubMed

    Soulié-Ziakovic, Corinne; Nicolaÿ, Renaud; Prevoteau, Alexandre; Leibler, Ludwik

    2014-01-27

    A method is proposed to produce nanoparticles dispersible and recyclable in any class of solvents, and the concept is illustrated with the carbon nanotubes. Classically, dispersions of CNTs can be achieved through steric stabilization induced by adsorbed or grafted polymer chains. Yet, the surface modification of CNTs surfaces is irreversible, and the chemical nature of the polymer chains imposes the range of solvents in which CNTs can be dispersed. To address this limitation, supramolecular bonds can be used to attach and to detach polymer chains from the surface of CNTs. The reversibility of supramolecular bonds offers an easy way to recycle CNTs as well as the possibility to disperse the same functional CNTs in any type of solvent, by simply adapting the chemical nature of the stabilizing chains to the dispersing medium. The concept of supramolecular functionalization can be applied to other particles, for example, silica or metal oxides, as well as to dispersing in polymer melts, films or coatings.

  8. Costs of dispersal.

    PubMed

    Bonte, Dries; Van Dyck, Hans; Bullock, James M; Coulon, Aurélie; Delgado, Maria; Gibbs, Melanie; Lehouck, Valerie; Matthysen, Erik; Mustin, Karin; Saastamoinen, Marjo; Schtickzelle, Nicolas; Stevens, Virginie M; Vandewoestijne, Sofie; Baguette, Michel; Barton, Kamil; Benton, Tim G; Chaput-Bardy, Audrey; Clobert, Jean; Dytham, Calvin; Hovestadt, Thomas; Meier, Christoph M; Palmer, Steve C F; Turlure, Camille; Travis, Justin M J

    2012-05-01

    Dispersal costs can be classified into energetic, time, risk and opportunity costs and may be levied directly or deferred during departure, transfer and settlement. They may equally be incurred during life stages before the actual dispersal event through investments in special morphologies. Because costs will eventually determine the performance of dispersing individuals and the evolution of dispersal, we here provide an extensive review on the different cost types that occur during dispersal in a wide array of organisms, ranging from micro-organisms to plants, invertebrates and vertebrates. In general, costs of transfer have been more widely documented in actively dispersing organisms, in contrast to a greater focus on costs during departure and settlement in plants and animals with a passive transfer phase. Costs related to the development of specific dispersal attributes appear to be much more prominent than previously accepted. Because costs induce trade-offs, they give rise to covariation between dispersal and other life-history traits at different scales of organismal organisation. The consequences of (i) the presence and magnitude of different costs during different phases of the dispersal process, and (ii) their internal organisation through covariation with other life-history traits, are synthesised with respect to potential consequences for species conservation and the need for development of a new generation of spatial simulation models. PMID:21929715

  9. Intragenomic Conflict over Dispersal.

    PubMed

    Farrell, Elizabeth J; Úbeda, Francisco; Gardner, Andy

    2015-09-01

    Intragenomic conflict may arise when social partners are more related through one parent than the other-for example, owing to individuals or gametes of one sex dispersing further prior to fertilization. In particular, genes originating from the former parent are favored to promote selflessness, and those originating from the latter parent are favored to promote selfishness. While the impact of patterns of dispersal on the evolution of intragenomic conflict has received recent attention, the consequences of intragenomic conflict for the evolution of dispersal remain to be explored. We suggest that if the evolution of dispersal is driven at least in part by kin selection, differential relatedness of social partners via their mothers versus their fathers may lead to an intragenomic conflict, with maternal-origin genes and paternal-origin genes favoring different rates of dispersal. As an illustration, we extend a classic model of the evolution of dispersal to explore how intragenomic conflict may arise between an individual's maternal-origin and paternal-origin genes over whether that individual should disperse in order to ease kin competition. Our analysis reveals extensive potential for intragenomic conflict over dispersal and predicts that genes underpinning dispersal phenotypes may exhibit parent-of-origin-specific expression, which may facilitate their discovery. PMID:26655360

  10. Scientific Programme Committee

    NASA Astrophysics Data System (ADS)

    2013-02-01

    Scientific Programme Committee A. Blondel, University of Geneva A. Cervera, IFIC M. Dracos, IN2P3 I. Efhymiopoulos, CERN J. Ellis, CERN S. Geer, FNAL R. Garoby, CERN M. Goodman, ANL D. Harris, FNAL T. Hasegawa, KEK P. Huber, Virginia Tech. D. Kaplan, IIT Y.D. Kim, Sejong University H. Kirk, BNL Y. Kuno, Osaka University K. Long, Imperial College N.K. Mondal, TIFR J. Morfin, FNAL Y. Mori, Kyoto University K. Nishikawa, KEK V. Palladino, University of Napoli C. Prior, RAL F.J.P. Soler, University of Glasgow J. Strait, FNAL R. Svoboda, University of California Davis F. Terranova, LN Frascati M. Zisman, LBNL Local Organizing Committee E. Benedetto, CERN/NTUA C. Blanchard, University of Geneva A. Blondel, University of Geneva (co-chair) I. Efthymiopoulos, CERN (co-chair) F. Dufour, University of Geneva F. Girard-Madoux, CERN E. Gschwendtner, CERN A. Korzenev, University of Geneva M. Morer-Olafsen, CERN S. Murphy, University of Geneva G. Prior, CERN G. Wikström, University of Geneva E. Wildner, CERN Sponsors EuCARD European Organization for Nuclear Research (CERN) Swiss Institute for Particle Physics (CHIPP) University of Geneva

  11. The BGAN extension programme

    NASA Astrophysics Data System (ADS)

    Rivera, Juan J.; Trachtman, Eyal; Richharia, Madhavendra

    2005-11-01

    Mobile satellite telecommunications systems have undergone an enormous evolution in the last decades, with the interest in having advanced telecommunications services available on demand, anywhere and at any time, leading to incredible advances. The demand for braodband data is therefore rapidly gathering pace, but current solutions are finding it increasingly difficult to combine large bandwidth with ubiquitous coverage, reliability and portability. The BGAN (Broadband Global Area Network) system, designed to operate with the Inmarsat-4 satellites, provides breakthrough services that meet all of these requirements. It will enable broadband connection on the move, delivering all the key tools of the modern office. Recognising the great impact that Inmarsat's BGAN system will have on the European satellite communications industry, and the benefits that it will bring to a wide range of European industries, in 2003 ESA initiated the "BGAN Extension" project. Its primary goals are to provide the full range of BGAN services to truly mobile platforms, operating in aeronautical, vehicular and maritime environments, and to introduce a multicast service capability. The project is supported by the ARTES Programme which establishes a collaboration agreement between ESA, Inmarsat and a group of key industrial and academic institutions which includes EMS, Logica, Nera and the University of Surrey (UK).

  12. Programmable electronic synthesized capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  13. ESO's Astronomy Education Programme

    NASA Astrophysics Data System (ADS)

    Pierce-Price, D. P. I.; Boffin, H.; Madsen, C.

    2006-08-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, has operated a programme of astronomy education for some years, with a dedicated Educational Office established in 2001. We organise a range of activities, which we will highlight and discuss in this presentation. Many are run in collaboration with the European Association for Astronomy Education (EAAE), such as the "Catch a Star!" competition for schools, now in its fourth year. A new endeavour is the ALMA Interdisciplinary Teaching Project (ITP). In conjunction with the EAAE, we are creating a set of interdisciplinary teaching materials based around the Atacama Large Millimeter Array project. The unprecedented astronomical observations planned with ALMA, as well as the uniqueness of its site high in the Atacama Desert, offer excellent opportunities for interdisciplinary teaching that also encompass physics, engineering, earth sciences, life sciences, and culture. Another ongoing project in which ESO takes part is the "Science on Stage" European science education festival, organised by the EIROforum - the group of seven major European Intergovernmental Research Organisations, of which ESO is a member. This is part of the European Science Teaching Initiative, along with Science in School, a newly-launched European journal for science educators. Overviews of these projects will be given, including results and lessons learnt. We will also discuss possibilities for a future European Astronomy Day project, as a new initiative for European-wide public education.

  14. Automatic TLI recognition system, programmer`s guide

    SciTech Connect

    Lassahn, G.D.

    1997-02-01

    This report describes the software of an automatic target recognition system (version 14), from a programmer`s point of view. The intent is to provide information that will help people who wish to modify the software. In separate volumes are a general description of the ATR system, Automatic TLI Recognition System, General Description, and a user`s manual, Automatic TLI Recognition System, User`s Guide. 2 refs.

  15. Molecular programme of senescence in dry and fleshy fruits.

    PubMed

    Gómez, María Dolores; Vera-Sirera, Francisco; Pérez-Amador, Miguel A

    2014-08-01

    Fruits of angiosperms can be divided into dry and fleshy fruits, depending on their dispersal strategies. Despite their apparently different developmental programmes, researchers have attempted to compare dry and fleshy fruits to establish analogies of the distinct biochemical and physiological processes that occur. But what are the common and specific phenomena in both biological strategies? Is valve dehiscence and senescence of dry fruits comparable to final ripening of fleshy fruits, when seeds become mature and fruits are competent for seed dispersal, or to over-ripening when advanced senescence occurs? We briefly review current knowledge on dry and fleshy fruit development, which has been extensively reported recently, and is the topic of this special issue. We compare the processes taking place in Arabidopsis (dry) and tomato (fleshy) fruit during final development steps using transcriptome data to establish possible analogies. Interestingly, the transcriptomic programme of Arabidopsis silique shares little similarity in gene number to tomato fruit ripening or over-ripening. In contrast, the biological processes carried out by these common genes from ripening and over-ripening programmes are similar, as most biological processes are shared during both programmes. On the other hand, several biological terms are specific of Arabidopsis and tomato ripening, including senescence, but little or no specific processes occur during Arabidopsis and tomato over-ripening. These suggest a closer analogy between silique senescence and ripening than over-ripening, but a major common biological programme between Arabidopsis silique senescence and the last steps of tomato development, irrespective of its distinction between ripening and over-ripening.

  16. A Programmable Optical Angle Clamp for Rotary Molecular Motors

    PubMed Central

    Pilizota, Teuta; Bilyard, Thomas; Bai, Fan; Futai, Masamitsu; Hosokawa, Hiroyuki; Berry, Richard M.

    2007-01-01

    Optical tweezers are widely used for experimental investigation of linear molecular motors. The rates and force dependence of steps in the mechanochemical cycle of linear motors have been probed giving detailed insight into motor mechanisms. With similar goals in mind for rotary molecular motors we present here an optical trapping system designed as an angle clamp to study the bacterial flagellar motor and F1-ATPase. The trap position was controlled by a digital signal processing board and a host computer via acousto-optic deflectors, the motor position via a three-dimensional piezoelectric stage and the motor angle using a pair of polystyrene beads as a handle for the optical trap. Bead-pair angles were detected using back focal plane interferometry with a resolution of up to 1°, and controlled using a feedback algorithm with a precision of up to 2° and a bandwidth of up to 1.6 kHz. Details of the optical trap, algorithm, and alignment procedures are given. Preliminary data showing angular control of F1-ATPase and angular and speed control of the bacterial flagellar motor are presented. PMID:17434937

  17. Seed dispersal in fens

    USGS Publications Warehouse

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  18. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  19. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  20. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  1. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  2. Dispersal from Microbial Biofilms.

    PubMed

    Barraud, Nicolas; Kjelleberg, Staffan; Rice, Scott A

    2015-12-01

    One common feature of biofilm development is the active dispersal of cells from the mature biofilm, which completes the biofilm life cycle and allows for the subsequent colonization of new habitats. Dispersal is likely to be critical for species survival and appears to be a precisely regulated process that involves a complex network of genes and signal transduction systems. Sophisticated molecular mechanisms control the transition of sessile biofilm cells into dispersal cells and their coordinated detachment and release in the bulk liquid. Dispersal cells appear to be specialized and exhibit a unique phenotype different from biofilm or planktonic bacteria. Further, the dispersal population is characterized by a high level of heterogeneity, reminiscent of, but distinct from, that in the biofilm, which could potentially allow for improved colonization under various environmental conditions. Here we review recent advances in characterizing the molecular mechanisms that regulate biofilm dispersal events and the impact of dispersal in a broader ecological context. Several strategies that exploit the mechanisms controlling biofilm dispersal to develop as applications for biofilm control are also presented. PMID:27337281

  3. A Column Dispersion Experiment.

    ERIC Educational Resources Information Center

    Corapcioglu, M. Y.; Koroglu, F.

    1982-01-01

    Crushed glass and a Rhodamine B solution are used in a one-dimensional optically scanned column experiment to study the dispersion phenomenon in porous media. Results indicate that the described model gave satisfactory results and that the dispersion process in this experiment is basically convective. (DC)

  4. Evolution of dispersal distance.

    PubMed

    Durrett, Rick; Remenik, Daniel

    2012-03-01

    The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287-293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409-435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205-218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.

  5. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  6. Social skills programmes for schizophrenia

    PubMed Central

    Almerie, Muhammad Qutayba; Al Marhi, Muhammad Okba; Alsabbagh, Mohamad; Jawoosh, Muhammad; Matar, Hosam E; Maayan, Nicola

    2014-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: The primary objective is to investigate the effects of social skills training programmes, compared to standard care, for people with schizophrenia. PMID:25414592

  7. Field Evaluation of Programmable Thermostats

    SciTech Connect

    Sachs, O.; Tiefenbeck, V.; Duvier, C.; Qin, A.; Cheney, K.; Akers, C.; Roth, K.

    2012-12-01

    Prior research suggests that poor programmable thermostats usability may prevent their effective use to save energy. The Fraunhofer team hypothesized that home occupants with high-usability thermostats would be more likely to use them to save energy than people with a basic thermostats. In this report, the team discusses results of a project in which the team monitored and compared programmable thermostats with basic thermostats in an affordable housing apartment complex.

  8. Pre-school intervention programmes.

    PubMed

    Reader, L

    1984-01-01

    This paper re-examines the rationale for pre-school intervention programmes and the results from a variety of programmes are reviewed. The distinction is drawn between programmes for the socially disadvantaged and for the handicapped. The importance of parental involvement in such programmes is discussed, both with regard to advantages for the child and for the family. The wide variety of pre-school programmes that are possible are examined with consideration given to the population served, the geographical area, the theoretical basis and delivery systems. Considerable attention is paid to the difficulty of evaluating any pre-school intervention programme. With these points in mind, home visiting, a popular form of pre-school intervention with practitioners, is examined and advantages and disadvantages of this form of intervention are enumerated. The paper ends with a cautionary note, and attention paid to authors who feel that early intervention can have dangers. The conclusion drawn is that better documentation of the work going on in the field is the only way to overcome gaps in our knowledge and to individualize services to parents and to children. PMID:6236911

  9. Norwegian mastitis control programme

    PubMed Central

    2009-01-01

    breeding, eradicating bovine virus diarrhoea virus (BVDV) and a better implementation of mastitis prevention programmes. PMID:22081877

  10. Dispersal and metapopulation stability.

    PubMed

    Wang, Shaopeng; Haegeman, Bart; Loreau, Michel

    2015-01-01

    Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability. PMID:26557427

  11. Dispersion in isotachophoresis

    NASA Astrophysics Data System (ADS)

    Bercovici, Moran; Santiago, Juan G.

    2008-11-01

    Isotachophoresis (ITP) is a widely used separation and preconcentration technique, which has been utilized in numerous applications including drug discovery, toxin detection, and food analysis. In ITP, analytes are segregated and focused between relatively high mobility leading ions and relatively low mobility trailing ions. These electromigration dynamics couple with advective processes associated with non-uniform electroosmotic flow (EOF). The latter generates internal pressure gradients leading to strong dispersive fluxes. This dispersion is nearly ubiquitous and currently limits the sensitivity and resolution of typical ITP assays. Despite this, there has been little work studying these coupled mechanisms. We performed an analytical and experimental study of dispersion dynamics in ITP. To achieve controlled pressure gradients, we suppressed EOF and applied an external pressure head to balance electromigration. Under these conditions, we show that radial electromigration (as opposed to radial diffusion as in Taylor dispersion) balances axial electromigration. To validate the analysis, we monitored the shape of a focusing fluorescent zone as a function of applied electric field. These experiments show that ITP dispersion may result in analyte widths an order of magnitude larger than predicted by the typical non-dispersive theory. Our goal is to develop a simplified dispersion model to capture this phenomenon, and to implement it in a numerical solver for general ITP problems.

  12. Dispersive hydrodynamics: Preface

    NASA Astrophysics Data System (ADS)

    Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.

    2016-10-01

    This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.

  13. Assessing the Financial Viability of Academic Programmes

    ERIC Educational Resources Information Center

    Swift, Lynette

    2012-01-01

    This paper reviews and examines approaches to determining the financial viability of academic programmes as a critical component of assessing a programme's overall sustainability. Key to assessing the financial viability of a programme is understanding the teaching activities required to deliver the programme and the cost of those activities. A…

  14. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  15. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  16. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  17. Fickian dispersion is anomalous

    NASA Astrophysics Data System (ADS)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  18. Fickian dispersion is anomalous

    SciTech Connect

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  19. Fickian dispersion is anomalous

    DOE PAGES

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  20. Radon programmes and health marketing.

    PubMed

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed. PMID:21498864

  1. Programmable data communications controller requirements

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design requirements for a Programmable Data Communications Controller (PDCC) that reduces the difficulties in attaching data terminal equipment to a computer are presented. The PDCC is an interface between the computer I/O channel and the bit serial communication lines. Each communication line is supported by a communication port that handles all line control functions and performs most terminal control functions. The port is fabricated on a printed circuit board that plugs into a card chassis, mating with a connector that is joined to all other card stations by a data bus. Ports are individually programmable; each includes a microprocessor, a programmable read-only memory for instruction storage, and a random access memory for data storage.

  2. The ESO Observing Programmes Committee

    NASA Astrophysics Data System (ADS)

    Westerlund, B. E.

    1982-06-01

    Since 1978 the ESO Observing Programmes Committee (OPC) has "the function to inspect and rank the proposals made for observing programmes at La Silla, and thereby to advise the Director General on the distribution of observing time". The members (one from each member country) and their alternates are nominated by the respective national committees for five-year terms (not immediately renewable). The terms are staggered so that each year one or two persons are replaced. The Chairman is appointed annually by the Council. He is invited to attend Council meetings and to report to its members.

  3. When is dispersal for dispersal? Unifying marine and terrestrial perspectives.

    PubMed

    Burgess, Scott C; Baskett, Marissa L; Grosberg, Richard K; Morgan, Steven G; Strathmann, Richard R

    2016-08-01

    Recent syntheses on the evolutionary causes of dispersal have focused on dispersal as a direct adaptation, but many traits that influence dispersal have other functions, raising the question: when is dispersal 'for' dispersal? We review and critically evaluate the ecological causes of selection on traits that give rise to dispersal in marine and terrestrial organisms. In the sea, passive dispersal is relatively easy and specific morphological, behavioural, and physiological adaptations for dispersal are rare. Instead, there may often be selection to limit dispersal. On land, dispersal is relatively difficult without specific adaptations, which are relatively common. Although selection for dispersal is expected in both systems and traits leading to dispersal are often linked to fitness, systems may differ in the extent to which dispersal in nature arises from direct selection for dispersal or as a by-product of selection on traits with other functions. Our analysis highlights incompleteness of theories that assume a simple and direct relationship between dispersal and fitness, not just insofar as they ignore a vast array of taxa in the marine realm, but also because they may be missing critically important effects of traits influencing dispersal in all realms. PMID:26118564

  4. Measuring turbulent fluid dispersion using laser induced phosphorescence

    NASA Astrophysics Data System (ADS)

    van der Voort, Dennis; Dam, Nico; van de Water, Willem; Kunnen, Rudie; Clercx, Herman; van Heijst, Gertjan

    2015-11-01

    Fluid dispersion due to turbulence is an important subject in both natural and engineering processes, from cloud formation to turbulent mixing and liquid spray combustion. The combination of small scales and often high velocities results in few experimental techniques that can follow the course of events. We introduce a novel technique, which measures the dispersion of ``tagged'' fluid particles by means of laser-induced phosphorescence, using a solution containing a europium-based molecular complex with a relatively long phosphorescence half-life. This technique is used to measure transport processes in both the dispersion of droplets in homogeneous isotropic turbulence and the dispersion of fluid of near-nozzle spray breakup processes. By tagging a small amount of droplets/fluid via laser excitation, the tagged droplets can be tracked in a Lagrangian way. The absolute dispersion of the droplets can be measured in a variety of turbulent flows. Using this technique it is shows that droplets around St =τp /τη ~ 1 (Stokes number) disperse faster than true fluid tracers in homogeneous isotropic turbulence, as well as differences between longitudinal and radial dispersion in turbulent sprays. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Organisation for Scientific Research (NWO).

  5. Cauchy's dispersion equation reconsidered : dispersion in silicate glasses.

    SciTech Connect

    Smith, D. Y.; Inokuti, M.; Karstens, W.; Physics; Univ. of Vermont; St. Michael's College

    2002-01-01

    We formulate a novel method of characterizing optically transparent substances using dispersion theory. The refractive index is given by a generalized Cauchy dispersion equation with coefficients that are moments of the uv and ir absorptions. Mean dispersion, Abbe number, and partial dispersion are combinations of these moments. The empirical relation between index and dispersion for families of glasses appears as a consequence of Beer's law applied to the uv spectra.

  6. Drilling mud dispersants

    SciTech Connect

    Gleason, P. A.; Brase, I. E.

    1985-05-21

    Dispersants useful in aqueous drilling mud formulations employed in the drilling of subterranean wells where high temperature and high pressure environments are encountered are disclosed. The dispersants, when used in amounts of about 0.1 to 25 ppb provide muds containing colloidal material suspended in an aqueous medium with improved high temperature and high pressure stability. The dispersants are water soluble sulfonated vinyl toluene-maleic anhydride copolymers which have a molar ratio of vinyl toluene to maleic anhydride of about 1:1 to less than about 2:1, a molecular weight of 1,000 to 25,000 and at least about 0.7 sulfonic acid groups per vinyl toluene unit.

  7. Environmental protection during animal disease eradication programmes.

    PubMed

    McDaniel, H A

    1991-09-01

    This paper identifies animal disease eradication (ADE) programme activities which may have a negative impact on the environment. It suggests ways to lessen the impact of such activities without compromising the programme objectives. Reducing losses from livestock and poultry diseases with prevention, control and eradication programmes produces a net positive impact on the environment. An Environmental Impact Statement (EIS) should be integrated into the planning of any ADE programme. Decision-makers should give due consideration to the environmental effects of ADE programme activities, together with cost, personnel needs and other, more traditional, management concerns. A better environment will be a supplemental benefit from ADE programmes.

  8. Environmental protection during animal disease eradication programmes.

    PubMed

    McDaniel, H A

    1991-09-01

    This paper identifies animal disease eradication (ADE) programme activities which may have a negative impact on the environment. It suggests ways to lessen the impact of such activities without compromising the programme objectives. Reducing losses from livestock and poultry diseases with prevention, control and eradication programmes produces a net positive impact on the environment. An Environmental Impact Statement (EIS) should be integrated into the planning of any ADE programme. Decision-makers should give due consideration to the environmental effects of ADE programme activities, together with cost, personnel needs and other, more traditional, management concerns. A better environment will be a supplemental benefit from ADE programmes. PMID:1782433

  9. Designing Individualised Leadership Development Programmes

    ERIC Educational Resources Information Center

    Forde, Christine; McMahon, Margery; Gronn, Peter

    2013-01-01

    The recruitment of sufficient numbers of suitably qualified teachers into headship is an international issue and to address this in Scotland alternative headship preparation programmes were trialled to provide greater flexibility in order to better match the individual development needs and circumstances of the aspirant head teachers. Drawing from…

  10. Portugal's Secondary School Modernisation Programme

    ERIC Educational Resources Information Center

    Heitor, Teresa V.; Freire da Silva, Jose M. R.

    2009-01-01

    The aim of the Secondary School Modernisation Programme, being implemented in Portugal by "Parque Escolar, EPE", is based on the pursuit of quality and makes Portuguese education a potential international benchmark. This paper discusses the strategies adopted to reorganise school spaces. It describes the conceptual model and highlights the…

  11. COMPUTER PROGRAMMER APTITUDE BATTERY, MANUAL.

    ERIC Educational Resources Information Center

    PALORMO, JEAN M.

    DEVELOPED TO AID MANAGERS OF DATA-PROCESSING CENTERS AND PERSONNEL DIRECTORS IN SCREENING PERSONS WITH APTITUDES FOR COMPUTER PROGRAMING, THE COMPUTER PROGRAMMER APTITUDE BATTERY (CPAB) INCLUDES DETAILED DESCRIPTION OF TEST ADMINISTRATION, INTERPRETATION, DEVELOPMENT, AND STATISTICAL INFORMATION. FIVE SEPARATELY TIMED TESTS (VERBAL MEANING,…

  12. Implementing a Successful Laptop Programme.

    ERIC Educational Resources Information Center

    Westwood, Pete; Dobson, Lindsey

    1999-01-01

    Describes experiences in instituting a personal ownership laptop programme for 10 and 11 year-olds. Argues that learning with laptops captivates and empowers students, making them more self-motivated and task-oriented. There is increased risk-taking, as students work at their own pace, and in their own time. Furthermore, creativity is encouraged.…

  13. Evaluation of quality improvement programmes

    PubMed Central

    Ovretveit, J; Gustafson, D

    2002-01-01

    

 In response to increasing concerns about quality, many countries are carrying out large scale programmes which include national quality strategies, hospital programmes, and quality accreditation, assessment and review processes. Increasing amounts of resources are being devoted to these interventions, but do they ensure or improve quality of care? There is little research evidence as to their effectiveness or the conditions for maximum effectiveness. Reasons for the lack of evaluation research include the methodological challenges of measuring outcomes and attributing causality to these complex, changing, long term social interventions to organisations or health systems, which themselves are complex and changing. However, methods are available which can be used to evaluate these programmes and which can provide decision makers with research based guidance on how to plan and implement them. This paper describes the research challenges, the methods which can be used, and gives examples and guidance for future research. It emphasises the important contribution which such research can make to improving the effectiveness of these programmes and to developing the science of quality improvement. PMID:12486994

  14. Acousto-optic effect in a nematic liquid-crystal layer under the binary effect of sound and viscous waves

    SciTech Connect

    Kozhevnikov, E. N.

    2010-03-15

    The optical effect in a liquid crystal cell containing a homeotropic layer of nematic liquid crystal (NLC) is analyzed. An NLC layer, located between crossed polaroids and opaque in the absence of external effect, is cleared after irradiation by an ultrasonic beam with a sharp spatial boundary. This enlightenment is suggested to be caused by the reorientation of crystal molecules in the acoustic flows that arise under the binary effect of the layer compression in the irradiated region and the viscous waves propagating from the layer boundaries. The flows were calculated taking into account the stress caused by the velocity convection and crystal structure relaxation. An expression is derived for the cell transparency, and the relative role of the convection and relaxation processes in the effect is determined.

  15. Use of acousto-optic grating as a sensor for determining the adulteration in liquids being used in daily life

    NASA Astrophysics Data System (ADS)

    Soni, Kirti; Kasana, R. S.

    2008-01-01

    An optical sensor has been developed for finding the proportional composition of two liquids in a mixture. The variation of the refractive index of a liquid produces light diffraction phenomenon. A liquid mixture is filled in a rectangular glass cell, which is placed orthogonically to the incident collimated beams of light. This cell consists of a piezoelectric crystal vibrator for generating ultrasonic waves. The collimated light while passing through this cell gets diffracted. The diffracted dots are collected by a converging lens and displayed in the back focal plane of the lens. The location of the diffracted dots decide the composition of mixture constituents namely fuel oils, edible oils, wine, water, etc. Thus, the adulteration of various liquids can be determined by having the knowledge of the position of diffraction dots.

  16. Application thinking on Bian-stone of the acousto-optic effect in the treatment of primary dysmenorrhea

    NASA Astrophysics Data System (ADS)

    Ge, Shu; Chen, Gui-Zhen; Liu, Song-Hao

    2009-08-01

    In order to identify the relations between the Si-Bin Bian-stone of the mineral composition characteristics and Bian-stone of the good infrared emission features. A detailed study of the Sibin Bian-stone samples was conducted by using the laser Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). The study is to provide theoretical physical support for Bian-stone in the treatment of primary dysmenorrhea. And Thermal tomography technology (TTM) is intended to be carried out to assess the effects of Bian-stone. The Raman spectroscopic study confirmed the existence of fine-grained pyrite, anatase, calcitepyrite and graphite. It is believed that the combination of good thermal properties of the above 4 minerals make the Sibin Bian-stone as a useful material with very good physiotherapical functions. The ultrasonic has a resonance with the body's biological molecules so that it can improve meridians microcirculation. Hence, the Sibin Bian-stones can be used to make acupuncture tools for stimulating the circulation of the blood in vessels and relieving pains of human beings by utilizing its infrared thermal radiation property. TTM which accepts the heat produced by the metabolism process of life can reflect the energy status information, TTM will be introduced to evaluate effect at the overall level of the abdomen from the thermal image and analyze to derive a comprehensive diagnosis. In sum, this experiment is explored to provide a new idea for the modernization of traditional Chinese medicine.

  17. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  18. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  19. Uranium Dispersion & Dosimetry Model.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  20. MAMA Dispersion Solutions

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2009-07-01

    Wavelength dispersion solutions will be determined on a yearly basis as part of a long-term monitoring program. Deep engineering wavecals for each MAMA grating will be obtained at common cenwaves. Intermediate settings will also be taken to check the reliability of derived dispersion solutions. Final selection was determined on basis of past monitoring and C17 requirements. The internal wavelength calibrations will be taken using the LINE line lamp. Extra-deep wavecals are included for some echelle modes and first order modes to ensure detection of weak lines.

  1. Fully programmable two-dimensional pulse shaper for broadband line-by-line amplitude and phase control.

    PubMed

    Metcalf, Andrew J; Torres-Company, Victor; Supradeepa, V R; Leaird, Daniel E; Weiner, Andrew M

    2013-11-18

    We introduce a fully programmable two-dimensional (2D) pulse shaper, able to simultaneously control the amplitude and phase of very fine spectral components over a broad bandwidth. This is achieved by aligning two types of spectral dispersers in a cross dispersion setup: a virtually imaged phased array for accessing fine resolution and a transmission grating for achieving broad bandwidth. We take advantage of the resultant 2D dispersion profile as well as introduce programmability by adding a 2D liquid crystal on silicon spatial light modulator at the masking plane. Our shaper has a resolution of ~3 GHz operating over the entire 'C' band of >5.8 THz. Experimental evidence is provided that highlights the full programmability, fine spectral control, and broad bandwidth operation (limited currently by the bandwidth of the input light). We also show line-by-line manipulation of record 836 comb lines over the C-band. PMID:24514316

  2. Adult Learners' Perceptions of An Undergraduate HRD Degree Completion Programme: Reasons for Entering, Attitudes towards Programme and Impact of Programme

    ERIC Educational Resources Information Center

    Dwyer, Dan; Thompson, Dale Edward; Thompson, Cecelia K.

    2013-01-01

    The purpose of the study was to evaluate an undergraduate distance education (DE) programme based upon adult learners' perceptions. The study investigated the value of the Human Resource Development programme at the University of Arkansas by examining the students' reasons for returning to college, their attitudes towards the programme and the…

  3. Warm fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1983-01-01

    The charged particle generator was further tested after some design modification. The generator performance was measured with additional instrumentation and found to confirm previous measurements. Plans for a field testing were than developed. The overall status of the program and the field test plans were presented to a group of atmospheric scientists and electrostatic experts at the NASA/MSFC sponsored USRA Workshop on Electrostatic Fog Dispersal at NCAR, Boulder, Colorado discussed in previous sections. The recommendations from this workshop are being evaluated as to whether NASA should proceed with the field test or whether further theoretical research on the phenomenon of electrostatic fog dispersal and additional development of the charged particle generator should be carried out. Information obtained from the USRA Workshop clearly identified three physical mechanisms that could possibly influence the fog dispersal process, which heretofore have not been considered, and which may provide additional insight to the direction of further fog dispersal work. These mechanisms are: the effect of corona discharge on the electric field strength at the surface, the influx of fog into the cleared volume by turbulent diffusion, and the increase in supersaturation as liquid water is removed, activating haze particles, and thus generating more fog. Plans are being formulated to investigate these mechanisms.

  4. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  5. Octave spanning wedge dispersive mirrors with low dispersion oscillations.

    PubMed

    Habel, Florian; Shirvanyan, Vage; Trubetskov, Michael; Burger, Christian; Sommer, Annkatrin; Kling, Matthias F; Schultze, Martin; Pervak, Vladimir

    2016-05-01

    A novel concept for octave spanning dispersive mirrors with low spectral dispersion oscillations is presented. The key element of the so-called wedge dispersive mirror is a slightly wedged layer which is coated on a specially optimized dispersive multilayer stack by a common sputter coating process. The group delay dispersion (GDD) of a pulse reflected on a wedge dispersive mirror is nearly free of oscillations. Fabricated mirrors with negative GDD demonstrate the compression of a pulse down to 3.8 fs as good as double angled mirrors optimized for the same bandwidth.

  6. The JOSHUA (J80) system programmer`s manual

    SciTech Connect

    Smetana, A.O.; McCort, J.T.; Westmoreland, B.W.

    1993-08-01

    The JOSHUA system routines (JS routines) can be used to manage a JOSHUA data base and execute JOSHUA modules on VAX/VMS and IBM/MVS computer systems. This manual provides instructions for using the JS routines and information about the internal data structures and logic used by the routines. It is intended for use primarily by JOSHUA systems programmers, however, advanced applications programmers may also find it useful. The JS routines are, as far as possible, written in ANSI FORTRAN 77 so that they are easily maintainable and easily portable to different computer systems. Nevertheless, the JOSHUA system provides features that are not available in ANSI FORTRAN 77, notably dynamic module execution and a data base of named, variable length, unformatted records, so some parts of the routines are coded in nonstandard FORTRAN or assembler (as a last resort). In most cases, the nonstandard sections of code are different for each computer system. To make it easy for programmers using the JS routines to avoid naming conflicts, the JS routines and common block all have six character names that begin with the characters {open_quotes}JS.{close_quotes} Before using this manual, one should be familiar with the JOSHUA system as described in {open_quotes}The JOSHUA Users` Manual,{close_quotes} ANSI FORTRAN 77, and at least one of the computer systems for which the JS routines have been implemented.

  7. Polymer-dispersed liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  8. School Security Assessment Programme in Australia

    ERIC Educational Resources Information Center

    Marrapodi, John

    2007-01-01

    This article describes a successful security risk management programme in Australia. The state-wide programme follows a structured risk management approach focusing on the safety and security of people, information, provision, and assets in the school environment. To assist school principals, a Security Risk Assessment Programme was developed on a…

  9. 21 CFR 870.3700 - Pacemaker programmers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to change noninvasively one or more...

  10. 21 CFR 870.3700 - Pacemaker programmers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to noninvasively change one or more...

  11. 21 CFR 870.3700 - Pacemaker programmers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to noninvasively change one or more...

  12. The ECDL Programme in Italian Universities

    ERIC Educational Resources Information Center

    Calzarossa, Maria Carla; Ciancarini, Paolo; Maresca, Paolo; Mich, Luisa; Scarabottolo, Nello

    2007-01-01

    The European Computer Driving Licence (ECDL) programme aims at testing practical skills and competences in using ICT tools. This paper presents the results of a monitoring exercise aimed at analyzing the impact of the ECDL programme in the Italian Universities. The ECDL programme, adopted in most Italian Universities since the year 2000, has…

  13. Radioactive Reliability of Programmable Memories

    NASA Astrophysics Data System (ADS)

    Loncar, Boris; Osmokrovic, Predrag; Stojanovic, Marko; Stankovic, Srboljub

    2001-02-01

    In this study, we examine the reliability of erasable programmable read only memory (EPROM) and electrically erasable programmable read only memory (EEPROM) components under the influence of gamma radiation. This problem has significance in military industry and space technology. Total dose results are presented for the JL 27C512D EPROM and 28C64C EEPROM components. There is evidence that EPROM components have better radioactive reliability than EEPROM components. Also, the changes to the EPROM are reversible, and after erasing and reprogramming all EPROM components are functional. On the other hand, changes to the EEPROM are irreversible, and under the influence of gamma radiation, all EEPROM components became permanently nonfunctional. The obtained results are analyzed and explained via the interaction of gamma radiation with oxide layers.

  14. Programmable spectroscopy enabled by DLP

    NASA Astrophysics Data System (ADS)

    Rose, Bjarke; Rasmussen, Michael; Herholdt-Rasmussen, Nicolai; Jespersen, Ole

    2015-03-01

    Ibsen Photonics has since 2012 worked to deploy Texas Instruments DLP® technology to high efficiency, fused silica transmission grating based spectrometers and programmable light sources. The use of Digital Micromirror Devices (DMDs) in spectroscopy, allows for replacement of diode array detectors by single pixel detectors, and for the design of a new generation of programmable light sources, where you can control the relative power, exposure time and resolution independently for each wavelength in your spectrum. We present the special challenges presented by DMD's in relation to stray light and optical throughput, and we comment on the possibility for instrument manufacturers to generate new, dynamic measurement schemes and algorithms for increased speed, higher accuracy, and greater sample protection. We compare DMD based spectrometer designs with competing, diode array based designs, and provide suggestions for target applications of the technology.

  15. The Physics Programme at Superb

    NASA Astrophysics Data System (ADS)

    Bevan, Adrian

    2013-11-01

    SuperB is a next generation high luminosity e+e- collider that will be built at the Cabibbo Laboratory, Tor Vergata, in Italy. The physics goals of this experiment are to search for signs of physics beyond the Standard Model through precision studies of rare or forbidden processes. While the name suggests that B physics is the main goal, this experiment is a Super Flavour Factory, and precision measurements of Bu,d,s, D, τ, Υ, and ψ(3770) decays as well as spectroscopy and exotica searches form part of a broad physics programme. In addition to searching for new physics (NP) in the form of heavy particles, or violations of laws of physics, data from SuperB will be able to perform precision tests of the Standard Model. I will briefly review of some highlights of the SuperB physics programme.

  16. Programmable data collection platform study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of a feasibility study incorporating microprocessors in data collection platforms in described. An introduction to microcomputer hardware and software concepts is provided. The influence of microprocessor technology on the design of programmable data collection platform hardware is discussed. A standard modular PDCP design capable of meeting the design goals is proposed, and the process of developing PDCP programs is examined. A description of design and construction of the UT PDCP development system is given.

  17. Nikolaevskiy equation with dispersion.

    PubMed

    Simbawa, Eman; Matthews, Paul C; Cox, Stephen M

    2010-03-01

    The Nikolaevskiy equation was originally proposed as a model for seismic waves and is also a model for a wide variety of systems incorporating a neutral "Goldstone" mode, including electroconvection and reaction-diffusion systems. It is known to exhibit chaotic dynamics at the onset of pattern formation, at least when the dispersive terms in the equation are suppressed, as is commonly the practice in previous analyses. In this paper, the effects of reinstating the dispersive terms are examined. It is shown that such terms can stabilize some of the spatially periodic traveling waves; this allows us to study the loss of stability and transition to chaos of the waves. The secondary stability diagram ("Busse balloon") for the traveling waves can be remarkably complicated. PMID:20365845

  18. Dispersion suppressors with bending

    SciTech Connect

    Garren, A.

    1985-10-01

    Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.

  19. Dispersion Analysis Research Tool

    1998-11-10

    The DART thermomechanical model, for the prediction of fission-product-induced swelling in aluminum dispersion fuels, calculates irradiation-induced fission gas bubbles as a function of fuel morphology. DART calculates the behavior of a rod, tube, or plate during closure of as-fabricated porosity, during which the fuel particle swelling is accommodated by the relatively soft aluminum matrix flowing into the existing porosity. The code also determines the subsequent macroscopic changes in rod diameter or plate/tube thickness caused bymore » additional fuel deformation processes. In addition, a calculation for the effect of irradiation on the thermal conductivity of the dispersion fuel, and for fuel restructuring and swelling due to the aluminum fuel reaction, amorphization, and recrystallization is included.« less

  20. Light dispersion in space

    NASA Astrophysics Data System (ADS)

    Barbosa, L. C.

    2015-09-01

    Considering an idea of F. Arago in 1853 regarding light dispersion through the light ether in the interstellar space, this paper presents a new idea on an alternative interpretation of the cosmological red shift of the galaxies in the universe. The model is based on an analogy with the temporal material dispersion that occurs with light in the optical fiber core. Since intergalactic space is transparent, according to the model, this phenomenon is related to the gravitational potential existing in the whole space. Thus, it is possible to find a new interpretation to Hubble's constant. In space, light undergoes a dispersion process in its path, which is interpreted by a red shift equation of the type Δz = HL, since H = (d2n/dλ2 Δv Δλ), where H means the Hubble constant, n is the refractive index of the intergalactic space, Δλ is the spectral width of the extragalactic source, and Δv is the variation of the speed of light caused by the gravitational potential. We observe that this "constant" is governed by three new parameters. Light traveling the intergalactic space undergoes red shift due to this mechanism, while light amplitude decreases with time, and the wavelength always increases, thus producing the same type of behavior given by Hubble's Law. It can be demonstrated that the dark matter phenomenon is produced by the apparent speed of light of the stars on the periphery of the galaxies, without the existence of dark energy. Based on this new idea, the model of the universe is static, lacking expansion. Other phenomena may be interpreted based on this new model of the universe. We have what we call temporal gravitational dispersion of light in space produced by the variations of the speed of light, due to the presence of the gravitational potential in the whole space.

  1. Disabling Radiological Dispersal Terror

    SciTech Connect

    Hart, M

    2002-11-08

    Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

  2. The Lombardy Rare Donor Programme

    PubMed Central

    Revelli, Nicoletta; Villa, Maria Antonietta; Paccapelo, Cinzia; Manera, Maria Cristina; Rebulla, Paolo; Migliaccio, Anna Rita; Marconi, Maurizio

    2014-01-01

    Background In 2005, the government of Lombardy, an Italian region with an ethnically varied population of approximately 9.8 million inhabitants including 250,000 blood donors, founded the Lombardy Rare Donor Programme, a regional network of 15 blood transfusion departments coordinated by the Immunohaematology Reference Laboratory of the Ca’ Granda Ospedale Maggiore Policlinico in Milan. During 2005 to 2012, Lombardy funded LORD-P with 14.1 million euros. Materials and methods During 2005–2012 the Lombardy Rare Donor Programme members developed a registry of blood donors and a bank of red blood cell units with either rare blood group phenotypes or IgA deficiency. To do this, the Immunohaematology Reference Laboratory performed extensive serological and molecular red blood cell typing in 59,738 group O or A, Rh CCDee, ccdee, ccDEE, ccDee, K− or k− donors aged 18–55 with a record of two or more blood donations, including both Caucasians and ethnic minorities. In parallel, the Immunohaematology Reference Laboratory implemented a 24/7 service of consultation, testing and distribution of rare units for anticipated or emergent transfusion needs in patients developing complex red blood cell alloimmunisation and lacking local compatible red blood cell or showing IgA deficiency. Results Red blood cell typing identified 8,747, 538 and 33 donors rare for a combination of common antigens, negative for high-frequency antigens and with a rare Rh phenotype, respectively. In June 2012, the Lombardy Rare Donor Programme frozen inventory included 1,157 red blood cell units. From March 2010 to June 2012 one IgA-deficient donor was detected among 1,941 screened donors and IgA deficiency was confirmed in four previously identified donors. From 2005 to June 2012, the Immunohaematology Reference Laboratory provided 281 complex red blood cell alloimmunisation consultations and distributed 8,008 Lombardy Rare Donor Programme red blood cell units within and outside the region

  3. Succinimide lubricating oil dispersant

    SciTech Connect

    Wisotsky, M.J.; Bloch, R.; Brownwell, D.W.; Chen, F.J.; Gutierrez, A.

    1987-08-11

    A lubricating oil composition is described exhibiting improved dispersancy in both gasoline and diesel engines comprising a major amount of lubricating oil and 0.5 to 10 weight percent of a dispersant, the dispersant being prepared in a sequential process comprising the steps of: (a) in a first step reacting an oil-soluble polyolefin succinic anhydride, the olefin being a C/sub 3/ or C/sub 4/ olefin and an alkylene polyamine of the formula H/sub 2/N(CH/sub 2/)/sub n/(NH(CH/sub 2/)/sub n/)/sub m/sup -// NH/sub 2/ wherein n is 2 or 3 and m is 0 to 10, in a molar ratio of about 1.0 to 2.2 moles of polyolefin succinic anhydride per mole of polyamine, and (b) reacting the product of step (a) with dicarboxylic acid anhydride selected from the group consisting of maleic anhydride and succinic anhydride in sufficient molar proportions to provide a total mole ratio of about 2,3 to 3.0 moles of anhydride compounds per mole of polyamine.

  4. Wavelength dispersion of optical waveguides

    NASA Astrophysics Data System (ADS)

    Bennett, G. A.; Chen, C.-L.

    1980-06-01

    Coefficients that characterize the contribution to the total waveguide dispersion from guide geometry and from material dispersion are introduced. These are cast in terms of the normalized parameters of normalized frequency, asymmetry measure, and effective guide index. This allows plotting of universal curves for the dispersion coefficients for step thin film and exponentially graded slab waveguides that are applicable to all such structures.

  5. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1996-04-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  6. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  7. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.

    1995-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  8. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Harris, Michael T.; Scott, Timothy C.; Basaran, Osman A.

    1996-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  9. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.

    1998-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  10. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Harris, Michael T.; Scott, Timothy C.; Basaran, Osman A.

    1998-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  11. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1998-04-14

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  12. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1998-06-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  13. Programmable, automated transistor test system

    NASA Technical Reports Server (NTRS)

    Truong, L. V.; Sundburg, G. R.

    1986-01-01

    A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.

  14. Programmable Multi-Chip Module

    DOEpatents

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2004-11-16

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  15. Programmable multi-chip module

    DOEpatents

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2004-03-02

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  16. Programmable Multi-Chip Module

    DOEpatents

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2005-05-24

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  17. Dispersal dynamics in food webs.

    PubMed

    Melián, Carlos J; Křivan, Vlastimil; Altermatt, Florian; Starý, Petr; Pellissier, Loïc; De Laender, Frederik

    2015-02-01

    Studies of food webs suggest that limited nonrandom dispersal can play an important role in structuring food webs. It is not clear, however, whether density-dependent dispersal fits empirical patterns of food webs better than density-independent dispersal. Here, we study a spatially distributed food web, using a series of population-dispersal models that contrast density-independent and density-dependent dispersal in landscapes where sampled sites are either homogeneously or heterogeneously distributed. These models are fitted to empirical data, allowing us to infer mechanisms that are consistent with the data. Our results show that models with density-dependent dispersal fit the α, β, and γ tritrophic richness observed in empirical data best. Our results also show that density-dependent dispersal leads to a critical distance threshold beyond which site similarity (i.e., β tritrophic richness) starts to decrease much faster. Such a threshold can also be detected in the empirical data. In contrast, models with density-independent dispersal do not predict such a threshold. Moreover, preferential dispersal from more centrally located sites to peripheral sites does not provide a better fit to empirical data when compared with symmetric dispersal between sites. Our results suggest that nonrandom dispersal in heterogeneous landscapes is an important driver that shapes local and regional richness (i.e., α and γ tritrophic richness, respectively) as well as the distance-decay relationship (i.e., β tritrophic richness) in food webs.

  18. Quantum optical rotatory dispersion

    PubMed Central

    Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel

    2016-01-01

    The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements. PMID:27713928

  19. A programmable image compression system

    NASA Technical Reports Server (NTRS)

    Farrelle, Paul M.

    1989-01-01

    A programmable image compression system which has the necessary flexibility to address diverse imaging needs is described. It can compress and expand single frame video images (monochrome or color) as well as documents and graphics (black and white or color) for archival or transmission applications. Through software control, the compression mode can be set for lossless or controlled quality coding; the image size and bit depth can be varied; and the image source and destination devices can be readily changed. Despite the large combination of image data types, image sources, and algorithms, the system provides a simple consistent interface to the programmer. This system (OPTIPAC) is based on the TITMS320C25 digital signal processing (DSP) chip and has been implemented as a co-processor board for an IBM PC-AT compatible computer. The underlying philosophy can readily be applied to different hardware platforms. By using multiple DSP chips or incorporating algorithm specific chips, the compression and expansion times can be significantly reduced to meet performance requirements.

  20. GMES Space Component: Programme overview

    NASA Astrophysics Data System (ADS)

    Aschbacher, J.; Milagro-Perez, M. P.

    2012-04-01

    The European Union (EU) and the European Space Agency (ESA) have developed the Global Monitoring for Environment and Security (GMES) programme as Europe's answer to the vital need for joined-up data about our climate, environment and security. Through a unique combination of satellite, atmospheric and Earth-based monitoring systems, the initiative will provide new insight into the state of the land, sea and air, providing policymakers, scientists, businesses and the public with accurate and timely information. GMES capabilities include monitoring and forecasting of climatic change, flood risks, soil and coastal erosion, crop and fish resources, air pollution, greenhouse gases, iceberg distribution and snow cover, among others. To accomplish this, GMES has been divided into three main components: Space, In-situ and Services. The Space Component, led by ESA, comprises five types of new satellites called Sentinels that are being developed by ESA specifically to meet the needs of GMES, the first of which to be launched in 2013. These missions carry a range of technologies, such as radar and multi-spectral imaging instruments for land, ocean and atmospheric monitoring. In addition, access to data from the so-called Contributing Missions guarantees that European space infrastructure is fully used for GMES. An integrated Ground Segment ensures access to Sentinels and Contributing Missions data. The in-situ component, under the coordination of the European Environment Agency (EEA), is composed of atmospheric and Earth based monitoring systems, and based on established networks and programmes at European and international levels. The European Commission is in charge of implementing the services component of GMES and of leading GMES overall. GMES services, fed with data from the Space and In-situ components, will provide essential information in five main domains, atmosphere, ocean and land monitoring as well as emergency response and security. Climate change has been added

  1. [Evaluation in school anti-tobacco programmes].

    PubMed

    Szymborski, J; Berkowska, M; Sito, A; Malkowska, A

    2000-01-01

    The National Research Institute of Mother and Child (NRIMC) school anti-tobacco programmes are presented. They are discussed with reference to the Centres for Disease Control and Prevention (CDC) guidelines and other effective school programmes to prevent tobacco use among children and young people. The general objectives of the programmes at different educational levels and the elaborated strategic recommendations are presented. The own conceptualised evaluation model of school anti-tobacco programmes is analysed, including process and outcome evaluation. The presented model clarifies concepts and procedures of planning the design and evaluation of the programme in its different stages. In our opinion, the NRIMC evaluation model can be applied in other heath promotion programmes.

  2. Building a global business continuity programme.

    PubMed

    Lazcano, Michael

    2014-01-01

    Business continuity programmes provide an important function within organisations, especially when aligned with and supportive of the organisation's goals, objectives and organisational culture. Continuity programmes for large, complex international organisations, unlike those for compact national companies, are more difficult to design, build, implement and maintain. Programmes for international organisations require attention to structural design, support across organisational leadership and hierarchy, seamless integration with the organisation's culture, measured success and demonstrated value. This paper details practical, but sometimes overlooked considerations for building successful global business continuity programmes.

  3. A leadership programme for critical care.

    PubMed

    Crofts, Linda

    2006-08-01

    This paper describes the genesis, design and implementation of a leadership programme for critical care. This was an initiative funded by the National Health Service (NHS) Nursing Leadership Project and had at the core of its design flexibility to meet the needs of the individual hospitals, which took part in it. Participation was from the multi-disciplinary critical care team. Six NHS hospitals took part in the programme which was of 20 days duration and took place on hospital sites. The programme used the leadership model of as its template and had a number of distinct components; a baseline assessment, personal development, principles of leadership and critical case reviews. The programme was underpinned by three themes; working effectively in multi-professional teams to provide patient focussed care, managing change through effective leadership and developing the virtual critical care service. Each group set objectives pertinent to their own organisation's needs. The programme was evaluated by a self-reporting questionnaire; group feedback and feedback from stakeholders. Programme evaluation was positive from all the hospitals but it was clear that the impact of the programme varied considerably between the groups who took part. It was noted that there was some correlation between the success of the programme and organisational 'buy in' as well as the organisational culture within which the participants operated. A key feature of the programme success was the critical case reviews, which were considered to be a powerful learning tool and medium for group learning and change management. PMID:16621563

  4. A leadership programme for critical care.

    PubMed

    Crofts, Linda

    2006-08-01

    This paper describes the genesis, design and implementation of a leadership programme for critical care. This was an initiative funded by the National Health Service (NHS) Nursing Leadership Project and had at the core of its design flexibility to meet the needs of the individual hospitals, which took part in it. Participation was from the multi-disciplinary critical care team. Six NHS hospitals took part in the programme which was of 20 days duration and took place on hospital sites. The programme used the leadership model of as its template and had a number of distinct components; a baseline assessment, personal development, principles of leadership and critical case reviews. The programme was underpinned by three themes; working effectively in multi-professional teams to provide patient focussed care, managing change through effective leadership and developing the virtual critical care service. Each group set objectives pertinent to their own organisation's needs. The programme was evaluated by a self-reporting questionnaire; group feedback and feedback from stakeholders. Programme evaluation was positive from all the hospitals but it was clear that the impact of the programme varied considerably between the groups who took part. It was noted that there was some correlation between the success of the programme and organisational 'buy in' as well as the organisational culture within which the participants operated. A key feature of the programme success was the critical case reviews, which were considered to be a powerful learning tool and medium for group learning and change management.

  5. Building a global business continuity programme.

    PubMed

    Lazcano, Michael

    2014-01-01

    Business continuity programmes provide an important function within organisations, especially when aligned with and supportive of the organisation's goals, objectives and organisational culture. Continuity programmes for large, complex international organisations, unlike those for compact national companies, are more difficult to design, build, implement and maintain. Programmes for international organisations require attention to structural design, support across organisational leadership and hierarchy, seamless integration with the organisation's culture, measured success and demonstrated value. This paper details practical, but sometimes overlooked considerations for building successful global business continuity programmes. PMID:24854730

  6. SMED - Sulphur MEditerranean Dispersion

    NASA Astrophysics Data System (ADS)

    Salerno, Giuseppe G.; Sellitto, Pasquale; Corradini, Stefano; Di Sarra, Alcide Giorgio; Merucci, Luca; Caltabiano, Tommaso; La Spina, Alessandro

    2016-04-01

    Emissions of volcanic gases and particles can have profound impacts on terrestrial environment, atmospheric composition, climate forcing, and then on human health at various temporal and spatial scales. Volcanic emissions have been identified as one of the largest sources of uncertainty in our understanding of recent climate change trends. In particular, a primary role is acted by sulphur dioxide emission due to its conversion to volcanic sulphate aerosol via atmospheric oxidation. Aerosols may play a key role in the radiative budget and then in photochemistry and tropospheric composition. Mt. Etna is one of the most prodigious and persistent emitters of gasses and particles on Earth, accounting for about 10% of global average volcanic emission of CO2 and SO2. Its sulphur emissions stand for 0.7 × 106 t S/yr9 and then about 10 times bigger than anthropogenic sulphur emissions in the Mediterranean area. Centrepiece of the SMED project is to advance the understanding of volcanogenic sulphur dioxide and sulphate aerosol particles dispersion and radiative impact on the downwind Mediterranean region by an integrated approach between ground- and space-based observations and modelling. Research is addressed by exploring the potential relationship between proximal SO2 flux and aerosol measured remotely in the volcanic plume of Mt. Etna between 2000 and 2014 and distal aerosol ground-based measurements in Lampedusa, Greece, and Malta from AERONET network. Ground data are combined with satellite multispectral polar and geostationary imagers able to detect and retrieve volcanic ash and SO2. The high repetition time of SEVIRI (15 minutes) will ensure the potential opportunity to follow the entire evolution of the volcanic cloud, while, the higher spatial resolution of MODIS (1x1 km2), are exploited for investigating the probability to retrieve volcanic SO2 abundances from passive degassing. Ground and space observations are complemented with atmospheric Lagrangian model

  7. Natural dispersion revisited.

    PubMed

    Johansen, Øistein; Reed, Mark; Bodsberg, Nils Rune

    2015-04-15

    This paper presents a new semi-empirical model for oil droplet size distributions generated by single breaking wave events. Empirical data was obtained from laboratory experiments with different crude oils at different stages of weathering. The paper starts with a review of the most commonly used model for natural dispersion, which is followed by a presentation of the laboratory study on oil droplet size distributions formed by breaking waves conducted by SINTEF on behalf of the NOAA/UNH Coastal Response Research Center. The next section presents the theoretical and empirical foundation for the new model. The model is based on dimensional analysis and contains two non-dimensional groups; the Weber and Reynolds number. The model was validated with data from a full scale experimental oil spill conducted in the Haltenbanken area offshore Norway in July 1982, as described in the last section of the paper.

  8. Field Evaluation of Programmable Thermostats

    SciTech Connect

    Sachs, O.; Tiefenbeck, V.; Duvier, C.; Qin, A.; Cheney, K.; Akers, C.; Roth, K.

    2012-12-01

    Prior research suggests that poor programmable thermostats usability may prevent their effective use to save energy. We hypothesized that home occupants with a high-usability thermostats would be more likely to use them to save energy than people with a basic thermostat. We randomly installed a high-usability thermostat in half the 77 apartments of an affordable housing complex, installing a basic thermostat in the other half. During the heating season, we collected space temperature and furnace on-off data to evaluate occupant interaction with the thermostats, foremost nighttime setbacks. We found that thermostat usability did not influence energy-saving behaviors, finding no significant difference in temperature maintained among apartments with high- and low-usability thermostats.

  9. Aurora europe's space exploration programme

    NASA Astrophysics Data System (ADS)

    Ongaro, F.; Swings, J. P.; Condessa, R.

    2003-04-01

    What will happen after the ISS in terms of space exploration, specifically to the human presence beyond Earth? What will be the role of Europe in the future international venture to explore space? What are the most immediate actions to be undertaken in Europe in order to best profit from the efforts made through the participation in the ISS and to position Europe's capabilities according to its interests? As approved by the Ministers at the Edinburgh Council in November 2001, the European Space Exploration Programme - Aurora - is ESA's programme in charge of defining and implementing the long term plan for human and robotic exploration of the Solar system. The Aurora programme started in 2002 and extends until the end goal of Aurora: the first human mission to Mars, expected in the 2025-2030 time-frame. The approach of Aurora is to implement a robust development of technologies and robotic missions, in parallel to the utilization phase of the ISS, to prepare for a continuous and sustainable future of human space exploration (which shall include the Moon, Mars and the asteroids as targets), in which Europe will be a valuable partner. Two classes of missions are foreseen in the programme's strategy: Flagships, defined as major missions driving to soft landing, in-situ analysis, sample return from other planetary bodies and eventually human missions; and Arrows, defined as cost-capped, short development time missions to demonstrate new technologies or mission approaches, or to exploit opportunities for payloads on European or international missions. So far the participating national delegations have approved two Flagships (ExoMars and Mars Sample Return) and two Arrows (Earth Re-entry and Mars Aerocapture) for phase A industrial studies. Although the last call for ideas of Aurora resulted in the definition of two Flagship missions targeted to Mars, the next one might be aimed to the Moon. At this stage the role of the Moon, on the path of Mars exploration is not

  10. Optical programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2011-11-10

    Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.

  11. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  12. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  13. Self-shaping composites with programmable bioinspired microstructures.

    PubMed

    Erb, Randall M; Sander, Jonathan S; Grisch, Roman; Studart, André R

    2013-01-01

    Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material's microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.

  14. Teaching and Learning National Transformation Programme

    ERIC Educational Resources Information Center

    Browne, Liz

    2006-01-01

    This article reports on a research project undertaken on behalf of the Standards Unit to research the impact of the Teaching and Learning National Transformation Programme for the Learning and Skills sector. The transformational programme is best described as having three enablers, namely teaching and learning resources to support practitioners,…

  15. Students' Perception of Industrial Internship Programme

    ERIC Educational Resources Information Center

    Renganathan, Sumathi; Karim, Zainal Ambri Bin Abdul; Li, Chong Su

    2012-01-01

    Purpose: An important aspect of an academic curriculum in higher learning institutions for technical disciplines is the industrial internship programme for students. The purpose of this paper is to investigate students' perception of the effectiveness of an industrial internship programme offered by a private technological university in Malaysia.…

  16. Parenting Programmes: The Best Available Evidence

    ERIC Educational Resources Information Center

    Bunting, Lisa

    2004-01-01

    Parenting programmes have been provided to a wide range of child and parent groups across a number of countries, but are they effective? This aim of this paper is to examine the findings from a number of systematic reviews that summarise the best available research evidence on the impact of these programmes on a range of parental and child…

  17. Controller-Programmer for telemetry systems

    NASA Astrophysics Data System (ADS)

    Daniels, R. Michael

    1988-10-01

    The development, testing, and implementation of modern, sophisticated telemetry systems requires a controller capable of adequately exercising the telemeter. A flight test requires a programmer to cycle through the flight events. This report describes an adaptable, programmable system that encompasses both of these requirements.

  18. Popular participation in community health programmes.

    PubMed

    Jones, A M

    1993-01-01

    Community health programmes can be one of the most important and most available forms of education for the total community. This article outlines health programmes and health education initiatives, as well as approaches to participatory training, in several South Pacific countries.

  19. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  20. Erasmus Mundus SEN: The Inclusive Scholarship Programme?

    ERIC Educational Resources Information Center

    Grinbergs, Christopher J.; Jones, Hilary

    2013-01-01

    The Erasmus Mundus MA/Mgr in Special Education Needs (EM SEN) was created as a Masters Course funded by the European Commission's Erasmus Mundus Programme (EMP) to challenge and educate students in inclusive policy and practice in education. Yet, it is debatable the extent to which this programme embodies the values of an inclusive approach,…