Science.gov

Sample records for acousto-ultrasonic stress wave

  1. Acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1990-01-01

    The theoretical development, methodology, and potential applications of acousto-ultrasonic nondestructive testing are set forth in an overview to assess the effectiveness of the technique. Stochastic wave propagation is utilized to isolate and describe defects in fiber-reinforced composites, particularly emphasizing the integrated effects of diffuse populations of subcritical flaws. The generation and nature of acousto-ultrasonic signals are described in detail, and stress-wave factor analysis of the signals is discussed. Applications of acousto-ultrasonics are listed including the prediction of failure sites, assessing fatique and impact damage, calculating ultimate tensile strength, and determining interlaminar bond strength. The method can identify subtle but important variations in fiber-reinforced composites, and development of the related instrumentation technology is emphasized.

  2. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  3. Review of acousto-ultrasonic NDE for composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Kautz, Harold

    1990-01-01

    Acousto-ultrasonics utilizes simulated stress waves to detect and quantify defect states, damage conditions, and variations of mechanical properties in fiber reinforced composites. The term acousto-ultrasonics denotes a combination of aspects of acoustic emission methodology with ultrasonic materials characterization. The acousto-ultrasonic approach was developed to deal primarily with evaluation of the integrated effect of minor flaws and diffuse flaw populations of subcritical flaws in composite and bonded structures. These factors singly and collectively also influence acousto-ultrasonic measurements that, in turn, correlate with dynamic response and mechanical property variations. Since it was first introduced, the acousto-ultrasonic approach was successfully applied to a variety of materials, including polymeric, metallic, and ceramic matrix composites; adhesively bonded materials; paper and wood products; cable and rope; and also human bone. Examples of applications and limitations of the approach are reviewed. Basic methods and guidelines are discussed. The underlying hypothesis and theory development needs are indicated.

  4. Nondestructive evaluation/characterization of composite materials and structures using the acousto-ultrasonic techniques

    NASA Technical Reports Server (NTRS)

    Dos Reis, H. L. M.; Vary, A.

    1988-01-01

    This paper introduces the nature and the underlying rational of the acousto-ultrasonic stress wave factor technique and some of its applications to composite materials and structures. Furthermore, two examples of successful application of the acousto-ultrasonic technique are presented in detail. In the first example, the acousto-ultrasonic technique is used to evaluate the adhesive bond strength between rubber layers and steel plates, and in the seocnd example the tehcnique is used to monitor progressive damage in wire rope.

  5. The acousto-ultrasonic approach. [for NDE

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1988-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  6. Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  7. Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  8. Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures

    NASA Astrophysics Data System (ADS)

    Kautz, Harold E.

    1992-09-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  9. Quality Evaluation By Acousto-Ultrasonic Testing Of Composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1989-01-01

    Promising nondestructive-testing method based on ultrasonic simulation of stress waves. Report reviews acousto-ultrasonic technology for nondestructive testing. Discusses principles, suggests advanced signal-analysis schemes for development, and presents potential applications. Acousto-ultrasonics applied principally to assess defects in laminated and filament-wound fiber-reinforced composite materials. Technique used to determine variations in such properties as tensile, shear, and flexural strengths and reductions in strength and toughness caused by defects. Also used to evaluate states of cure, porosities, orientation of fibers, volume fractions of fibers, bonding between fibers and matrices, and qualities of interlaminar bonds.

  10. Classification of Low Velocity Impactors Using Spiral Sensing of Acousto-Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Agbasi, Chijioke Raphael

    The non-linear elastodynamics of a flat plate subjected to low velocity foreign body impacts is studied, resembling the space debris impacts on the space structure. The work is based on a central hypothesis that in addition to identifying the impact locations, the material properties of the foreign objects can also be classified using acousto-ultrasonic signals (AUS). Simultaneous localization of impact point and classification of impact object is quite challenging using existing state-of-the-art structural health monitoring (SHM) approaches. Available techniques seek to report the exact location of impact on the structure, however, the reported information is likely to have errors from nonlinearity and variability in the AUS signals due to materials, geometry, boundary conditions, wave dispersion, environmental conditions, sensor and hardware calibration etc. It is found that the frequency and speed of the guided wave generated in the plate can be quantized based on the impactor's relationship with the plate (i.e. the wave speed and the impactor's mechanical properties are coupled). In this work, in order to characterize the impact location and mechanical properties of imapctors, nonlinear transient phenomenon is empirically studied to decouple the understanding using the dominant frequency band (DFB) and Lag Index (LI) of the acousto-ultrasonic signals. Next the understanding was correlated with the elastic modulus of the impactor to predict transmitted force histories. The proposed method presented in this thesis is especially applicable for SHM where sensors cannot be widely or randomly distributed. Thus a strategic organization and localization of the sensors is achieved by implementing the geometric configuration of Theodorous Spiral Sensor Cluster (TSSC). The performance of TSSC in characterizing the impactor types are compared with other conventional sensor clusters (e.g. square, circular, random etc.) and it is shown that the TSSC is advantageous over

  11. An acousto-ultrasonics pattern recognition approach for the characterization of the mechanical response of engineering materials

    SciTech Connect

    Haddad, Y.M.; Molina, G.

    1996-10-01

    Acousto-Ultrasonic technique, in conjunction with pattern recognition methodology, is demonstrated to be a successful non-destructive tool for the characterization of the mechanical response of engineering materials. In this context, the value of the internal stress, under different mechanical inputs, is correlated with the so-called Acousto-ultrasonic Parameter (AUP). The latter is an identification property of the wave propagation characteristics of the material. In this paper, the principles and instrumentations involved in the acousto-ultrasonic technique are described. Statistical pattern recognition methodology, used for the analysis of acousto-ultrasonic waveforms and in the design of the required discriminating classifiers, is presented. Illustrative examples are given concerning the evaluation of the level of stress in a class of engineering materials; namely, Polyvinyl chloride (PVC), due to controlled low-energy impact loading. The presented approach is seen to be useful in estimating the stress-state in on-site members of engineering structures.

  12. Transply crack density detection by acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Hemann, John H.; Bowles, Kenneth J.; Kautz, Harold; Cavano, Paul

    1987-01-01

    The acousto-ultrasonic method was applied to a PMR-15 8-harness, satin Celion 3000 fabric composite to determine the extent of transply cracking. A six-ply 0/90 laminate was also subjected to mechanical loading, which induced transply cracking. The stress wave factor (SWF) is defined as the energy contained in the received signal from a 2.25-MHz center frequency transducer. The correlation of the SWF with transply crack density is shown.

  13. Acousto-ultrasonic evaluation of ceramic matrix composite materials

    NASA Technical Reports Server (NTRS)

    Dosreis, Henrique L. M.

    1991-01-01

    Acousto-ultrasonic nondestructive evaluation of ceramic composite specimens with a lithium-alumino-silicate glass matrix reinforced with unidirectional silicon carbide (NICALON) fibers was conducted to evaluate their reserve of strength. Ceramic composite specimens with different amount of damage were prepared by four-point cyclic fatigue loading of the specimens at 500 C for a different number of cycles. The reserve of strength of the specimens was measured as the maximum bending stress recorded during four-pointed bending test with the load monotonically increased until failure occurs. It was observed that the reserve of strength did not correlate with the number of fatigue cycles. However, it was also observed that higher values of the stress wave factor measurements correspond to higher values of the reserve of strength test data. Therefore, these results show that the acousto-ultrasonic approach has the potential of being used to monitor damage and to estimate the reserve of strength of ceramic composites.

  14. Nondestructive evaluation by acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1988-01-01

    Acousto-ultrasonics is an ultrasonic technique that was originally devised to cope with the particular problems associated with nondestructive evaluation (NDE) of fiber/polymer composite structures. The fiber/polymer composites are more attenuating to ultrasound than any other material presently of interest. This limits the applicability of high-frequency ultrasonics. A common use of ultrasound is the imaging of flaws internal to a structure by scattering from the interface with the flaw. However, structural features of composites can scatter ultrasound internally, thus obscuring the flaws. A need relative to composites is to be able to nondestructively measure the strength of laminar boundaries in order to assess the integrity of a structure. Acousto-ultrasonics has exhibited the ability to use the internal scattering to provide information for determining the strength of laminar boundaries. Analysis of acousto-ultrasonic signals by the wave ray paths that compose it leads to waveform partitioning that enhances the sensitivity to mechanical strength parameters.

  15. Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Hong, Ming; Su, Zhongqing; Wang, Qiang; Cheng, Li

    2013-01-01

    There has been increasing interest in using the nonlinear features of acousto-ultrasonic (AU) waves to detect damage onset (e.g., micro-fatigue cracks) due to their high sensitivity to damage with small dimensions. However, most existing approaches are able to infer the existence of fatigue damage qualitatively, but fail to further ascertain its location and severity. A damage characterization approach, in conjunction with the use of an active piezoelectric sensor network, was established, capable of evaluating fatigue cracks in a quantitative manner (including the co-presence of multiple fatigue cracks, and their individual locations and severities). Fundamental investigations, using both experiment and enhanced finite element analysis dedicated to the simulation of nonlinear AU waves, were carried out to link the accumulation of nonlinearities extracted from high-order AU waves to the characteristic parameters of a fatigue crack. A probability-based diagnostic imaging algorithm was developed, facilitating an intuitive presentation of identification results in images. The approach was verified experimentally by evaluating multi-fatigue cracks near rivet holes of a fatigued aluminum plate, showing satisfactory precision in characterizing real, barely visible fatigue cracks. Compared with existing methods, this approach innovatively (i) uses permanently integrated active sensor networks, conducive to automatic and online health monitoring; (ii) characterizes fatigue cracks at a quantitative level; (iii) allows detection of multiple fatigue cracks; and (iv) visualizes identification results in intuitive images.

  16. Determination of plate wave velocities and diffuse field decay rates with braod-band acousto-ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1993-01-01

    Lowest symmetric and lowest antisymmetric plate wave modes were excited and identified in broad-band acousto-ultrasonic (AU) signals collected from various high temperature composite materials. Group velocities have been determined for these nearly nondispersive modes. An algorithm has been developed and applied to determine phase velocities and hence dispersion curves for the frequency ranges of the broad-band pulses. It is demonstrated that these data are sensitive to changes in the various stiffness moduli of the materials, in agreement by analogy, with the theoretical and experimental results of Tang and Henneke on fiber reinforced polymers. Diffuse field decay rates have been determined in the same specimen geometries and AU configuration as for the plate wave measurements. These decay rates are of value in assessing degradation such as matrix cracking in ceramic matrix composites. In addition, we verify that diffuse field decay rates respond to fiber/matrix interfacial shear strength and density in ceramic matrix composites. This work shows that velocity/stiffness and decay rate measurements can be obtained in the same set of AU experiments for characterizing materials and in specimens with geometries useful for mechanical measurements.

  17. Acousto-ultrasonics - Retrospective exhortation with bibliography

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1991-01-01

    Major research on the acousto-ultrasonic (AU) technique (also known as the stress-wave-factor technique) encompassing aspects of acoustic emission and ultrasonic materials characterization methodology is reviewed. AU deals primarily with such factors as the assessment of the integrated effects of diffuse defect states, thermomechanical degradation, and population of subcritical flaws that influence AU measurements correlating with mechanical property variations. AU is used to evaluate fiber-reinforced composites, adhesive bonds, lumber, paper and wood products, cable and rope, and human bone. The AU technique has been demonstrated to be sensitive to interlaminar and adhesive bond strength variations and has been shown to be useful in assessing microporosity and microcracking produced by fatigue cycling. An extensive bibliography ranging from 1985 to 1991 is presented.

  18. Acousto-ultrasonics - An update

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1989-01-01

    The application possibilities and limitations of acoustoultrasonics are reviewed. One of the most useful aspects of acousto-ultrasonics is its ability to assess degradation and damage states in composites. The sensitivity of the acousto-ultrasonic approach for detecting and measuring subtle but significant material property variations in composites has been demonstrated.

  19. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.

    1990-01-01

    The acousto-ultrasonic method has proven to be a most interesting technique for nondestructive evaluation of the mechanical properties of a variety of materials. Use of the technique or a modification thereof, has led to correlation of the associated stress wave factor with mechanical properties of both metals and composite materials. The method is applied to the nondestructive evaluation of selected fiber reinforced structural composites. For the first time, conventional piezoelectric transducers were replaced with laser beam ultrasonic generators and detectors. This modification permitted true non-contact acousto-ultrasonic measurements to be made, which yielded new information about the basic mechanisms involved as well as proved the feasibility of making such non-contact measurements on terrestrial and space structures and heat engine components. A state-of-the-art laser based acousto-ultrasonic system, incorporating a compact pulsed laser and a fiber-optic heterodyne interferometer, was delivered to the NASA Lewis Research Center.

  20. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total

  1. Noncontact Acousto-Ultrasonic Testing With Laser Beams

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.

    1994-01-01

    Laser beams used to excite and detect acoustic waves in specimens. Laser/acousto-ultrasonic technique entails no mechanical contact between specimens and testing apparatus. Apparatus located at relatively large distances (meters) from specimens, making it possible to test specimens too hot for contact measurements or located in inaccessible places, vacuums, or hostile environments.

  2. Acousto-ultrasonic verification of the strength of filament wound composite material

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.

    1986-01-01

    The concept of acousto-ultrasonic (AU) waveform partitioning was applied to nondestructive evaluation of mechanical properties in filament wound composites (FWC). A series of FWC test specimens were subjected to AU analysis and the results were compared with destructively measured interlaminar shear strengths (ISS). AU stress-wave factor (SWF) measurements gave greater than 90 percent correlation coefficient upon regression against the ISS. This high correlation was achieved by employing the appropriate time and frequency domain partitioning as dictated by wave propagation path analysis. There is indication that different SWF frequency partitions are sensitive to ISS at different depths below the surface.

  3. Highly reproducible Bragg grating acousto-ultrasonic contact transducers

    NASA Astrophysics Data System (ADS)

    Saxena, Indu Fiesler; Guzman, Narciso; Lieberman, Robert A.

    2014-09-01

    Fiber optic acousto-ultrasonic transducers offer numerous applications as embedded sensors for impact and damage detection in industrial and aerospace applications as well as non-destructive evaluation. Superficial contact transducers with a sheet of fiber optic Bragg gratings has been demonstrated for guided wave ultrasound based measurements. It is reported here that this method of measurement provides highly reproducible guided ultrasound data of the test composite component, despite the optical fiber transducers not being permanently embedded in it.

  4. Noncontact Acousto-Ultrasonics for Material Characterization

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1998-01-01

    A NdYAG 1064 nm, laser pulse was employed to produce ultrasonic waves in specimens of SiC/SiC and SiC/Ti 6-4 composites which are high temperature materials of interest for aerospace applications. Air coupled transducers were used to detect and collect the signals used for acousto-ultrasonic analysis. Conditions for detecting ultrasonic decay signals were examined. The results were compared to those determined on the same specimens with contact coupling. Some non-contact measurements were made employing conventional air focused detectors. Others were performed with a more novel micromachined capacitance transducer. Concerns of the laser-in technology include potential destructiveness of the laser pulse. Repeated laser pulsing at the same location does lead to deterioration of the ultrasonic signal in some materials, but seems to recover with time. Also, unlike contact AU, the frequency regime employed is a function of laser-material interaction rather than the choice of transducers. Concerns of the air coupled-out technology include the effect of air attenuation. This imposes a practical upper limit to frequency of detection. In the case of the experimental specimens studied ultrasonic decay signals could be imaged satisfactorily.

  5. Acousto-ultrasonics-based fatigue damage characterization: Linear versus nonlinear signal features

    NASA Astrophysics Data System (ADS)

    Su, Zhongqing; Zhou, Chao; Hong, Ming; Cheng, Li; Wang, Qiang; Qing, Xinlin

    2014-03-01

    Engineering structures are prone to fatigue damage over service lifespan, entailing early detection and continuous monitoring of the fatigue damage from its initiation through growth. A hybrid approach for characterizing fatigue damage was developed, using two genres of damage indices constructed based on the linear and the nonlinear features of acousto-ultrasonic waves. The feasibility, precision and practicability of using linear and nonlinear signal features, for quantitatively evaluating multiple barely visible fatigue cracks in a metallic structure, was compared. Miniaturized piezoelectric elements were networked to actively generate and acquire acousto-ultrasonic waves. The active sensing, in conjunction with a diagnostic imaging algorithm, enabled quantitative evaluation of fatigue damage and facilitated embeddable health monitoring. Results unveiled that the nonlinear features of acousto-ultrasonic waves outperform their linear counterparts in terms of the detectability. Despite the deficiency in perceiving small-scale damage and the possibility of conveying false alarms, linear features show advantages in noise tolerance and therefore superior practicability. The comparison has consequently motivated an amalgamation of linear and nonlinear features of acousto-ultrasonic waves, targeting the prediction of multi-scale damage ranging from microscopic fatigue cracks to macroscopic gross damage.

  6. Acousto-Ultrasonic analysis of failure in ceramic matrix composite tensile specimens

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.; Chulya, Abhisak

    1993-01-01

    Three types of acousto-ultrasonic (AU) measurements, stress-wave factor (SWF), lowest antisymmetric plate mode group velocity (VS), and lowest symmetric plate mode group velocity (VL), were performed on specimens before and after tensile failure. Three different Nicalon fiber architectures with ceramic matrices were tested. These composites were categorized as 1D (unidirectional fiber orientation) SiC/CAS glass ceramic, and 2D and 3D woven SiC/SiC ceramic matrix materials. SWF was found to be degraded after tensile failure in all three material categories. VS was found to be degraded only in the 1D SiC/CAS. VL was difficult to determine on the irregular specimen surfaces but appeared unchanged on all failed specimens. 3D woven specimens with heat-treatment at high temperature exhibited degradation only in SWF.

  7. An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Walker, James L.

    1996-01-01

    The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.

  8. Study of the stress wave factor technique for evaluation of composite materials. Final report

    SciTech Connect

    Duke, J.C. Jr.; Henneke, E.G. II; Kiernan, M.T.; Grosskopf, P.P.

    1989-01-01

    The acousto-ultrasonic approach for nondestructive evaluation provides a measurement procedure for quantifying the integrated effect of globally distributed damage characteristic of fiber reinforced composite materials. The evaluation procedure provides a stress wave factor that correlates closely with several material performance parameters. The procedure was investigated for a variety of materials including advanced composites, hybrid structure bonds, adhesive bonds, wood products, and wire rope. The research program focused primarily on development of fundamental understanding and applications advancements of acousto-ultrasonics for materials characterization. This involves characterization of materials for which detection, location, and identification of imperfections cannot at present be analyzed satisfactorily with mechanical performance prediction models. In addition to presenting definitive studies on application potentials, the understanding of the acousto-ultrasonic method as applied to advanced composites is reviewed.

  9. A study of the stress wave factor technique for evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Kiernan, M. T.; Grosskopf, P. P.

    1989-01-01

    The acousto-ultrasonic approach for nondestructive evaluation provides a measurement procedure for quantifying the integrated effect of globally distributed damage characteristic of fiber reinforced composite materials. The evaluation procedure provides a stress wave factor that correlates closely with several material performance parameters. The procedure was investigated for a variety of materials including advanced composites, hybrid structure bonds, adhesive bonds, wood products, and wire rope. The research program focused primarily on development of fundamental understanding and applications advancements of acousto-ultrasonics for materials characterization. This involves characterization of materials for which detection, location, and identification of imperfections cannot at present be analyzed satisfactorily with mechanical performance prediction models. In addition to presenting definitive studies on application potentials, the understanding of the acousto-ultrasonic method as applied to advanced composites is reviewed.

  10. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.; Vary, Alex; Kautz, Harold

    1990-01-01

    Presented in viewgraph format, the possibility of using laser generation and detection of ultrasound to replace piezoelectric transducers for the acousto-ultrasonic technique is advanced. The advantages and disadvantages of laser acousto-ultrasonics are outlined. Laser acousto-ultrasonics complements standard piezoelectric acousto-ultrasonics and offers non-contact nondestructive evaluation.

  11. Acousto-ultrasonics to Assess Material and Structural Properties

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    2002-01-01

    This report was created to serve as a manual for applying the Acousto-Ultrasonic NDE method, as practiced at NASA Glenn, to the study of materials and structures for a wide range of applications. Three state of the art acousto-ultrasonic (A-U) analysis parameters, ultrasonic decay (UD) rate, mean time (or skewing factor, "s"), and the centroid of the power spectrum, "f(sub c)," have been studied and applied at GRC for NDE interrogation of various materials and structures of aerospace interest. In addition to this, a unique application of Lamb wave analysis is shown. An appendix gives a brief overview of Lamb Wave analysis. This paper presents the analysis employed to calculate these parameters and the development and reasoning behind their use. It also discusses the planning of A-U measurements for materials and structures to be studied. Types of transducer coupling are discussed including contact and non-contact via laser and air. Experimental planning includes matching transducer frequency range to material and geometry of the specimen to be studied. The effect on results of initially zeroing the DC component of the ultrasonic waveform is compared with not doing so. A wide range of interrogation problems are addressed via the application of these analysis parameters to real specimens is shown for five cases: Case 1: Differences in density in [0] SiC/RBSN ceramic matrix composite. Case 2: Effect of tensile fatigue cycling in [+/-45] SiC/SiC ceramic matrix composite. Case 3: Detecting creep life, and failure, in Udimet 520 Nickel-Based Super Alloy. Case 4: Detecting Surface Layer Formation in T-650-35/PMR-15 Polymer Matrix Composites Panels due to Thermal Aging. Case 5: Detecting Spin Test Degradation in PMC Flywheels. Among these cases a wide range of materials and geometries are studied.

  12. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  13. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  14. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    PubMed

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-03-14

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM.

  15. An Acoustic Emission and Acousto-Ultrasonic Analysis of Impact Damaged Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.; Workman, Gary L.

    1996-01-01

    high as 50% were produced. An acousto-ultrasonic robotic evaluation system (AURES) was developed for mapping the effects of damage on filament wound pressure vessels prior to hydroproof testing. The AURES injects a single broadband ultrasonic pulse into each vessel at preprogrammed positions and records the effects of the interaction of that pulse on the material volume with a broadband receiver. A stress wave factor in the form of the energy associated with the 750 to 1000 kHz and 1000 to 1250 kHz frequency bands were used to map the potential failure sites for each vessel. The energy map associated with the graphite/epoxy vessels was found to decrease in the region of the impact damage. The kevlar vessels showed the opposite trend, with the energy values increasing around the damage/failure sites.

  16. The Influence of Finite-size Sources in Acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Pavlakovic, Brian N.; Rose, Joseph L.

    1994-01-01

    This work explores the effects that the finite normal axisymmetric traction loading of an infinite isotropic plate has on wave propagation in acousto-ultrasonics (AU), in which guided waves are created using two normal incidence transducers. Although the work also addresses the effects of the transducer pressure distribution and pulse shape, this thesis concentrates on two main questions: how does the transducer's diameter control the phase velocity and frequency spectrum of the response, and how does the plate thickness relate to the plate's excitability? The mathematics of the time-harmonic solution and the physical principles and the practical considerations for AU wave generation are explained. Transient sources are modeled by the linear superposition of the time-harmonic solutions found using the Hankel transform and they are then compared to experimental data to provide insight into the relation between the size of the transducer and the preferred phase velocity.

  17. Nondestructive Evaluation of Adhesively Bonded Joints by Acousto-Ultrasonic Technique and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    Reliable applications of adhesively bonded joints require an effective nondestructive evaluation technique for their bond strength prediction. To properly evaluate factors affecting bond strength, effects of defects such as voids and disbonds on stress distribution in the overlap region must be understood. At the same time, in order to use acousto-ultrasonic (AU) technique to evaluate bond quality, the effect of these defects on dynamic response of single lap joints must be clear. The stress distribution in a single lap joint with and without defects (void or disbond) is analyzed. A bar-Theta parameter which contains adherend and adhesive thickness and properties is introduced. It is shown for bonded joints with bar-Theta greater than 10, that a symmetric void or disbond in the middle of overlap up to the 70 percent of overlap length has negligible effect on bond strength. In contrast frequency response analyses by a finite element technique showed that the dynamic response is affected significantly by the presence of voids or disbonds. These results have direct implication in the interpretations of AU results. Through transmission attenuation and a number of AU parameters for various specimens with and without defects are evaluated. It is found that although void and disbond have similar effects on bond strength (stress distribution), they have completely different effects on wave propagation characteristics. For steel-adhesive-steel specimens with voids, the attenuation changes are related to the bond strength. However, the attenuation changes for specimens with disbond are fairly constant over a disbond range. In order to incorporate the location of defects in AU parameters, a weighting function is introduced. Using an immersion system with focused transducers, a number of AU parameters are evaluated. It is found that by incorporating weighting functions in these parameters better sensitivities (AU parameters vs. bond strength) are achieved. Acoustic emission

  18. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    NASA Astrophysics Data System (ADS)

    Torres-Arredondo, M.-A.; Tibaduiza, D.-A.; McGugan, M.; Toftegaard, H.; Borum, K.-K.; Mujica, L. E.; Rodellar, J.; Fritzen, C.-P.

    2013-10-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures.

  19. Development of a High Performance Acousto-ultrasonic Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2002-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  20. Development of a High Performance Acousto-Ultrasonic Scan System

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2003-03-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and themographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  1. Development of a High Performance Acousto-Ultrasonic Scan System

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2002-10-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  2. Acousto-ultrasonics as a monitor of material anisotropy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Kiernan, M. T.

    1988-01-01

    This paper discusses experimental results obtained by performing the acousto-ultrasonic (AU) method at various azimuthal angles on the surface of fiber-reinforced composite plates. The use of an IBM-PC/data-acquisition board to obtain a digitized AU signal to be analyzed by specially developed software is described. An introduction is given to the use of AU parameters to quantify information evidenced in amplitude/frequency plots. A description of how the parameters are obtained by calculating various spectral moments and the area under particular ranges of the spectral density curve is presented. Results are given from voltage/time plots, amplitude/frequency plots, and plots showing the variation of calculated AU parameters with azimuthal angle. Finally, how the variation of AU parameters with azimuthal angle may be related to variation in material properties with azimuthal angle is discussed.

  3. Experimental Investigation on Acousto-Ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Gang; Banks, Curtis E.

    2015-01-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while using reduced number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor in a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves and they are oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It is shown that the PM-FBG sensor system is able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acousto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications.

  4. A physical model for the acousto-ultrasonic method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kiernan, Michael T.; Duke, John C., Jr.

    1990-01-01

    A basic physical explanation, a model, and comments on NDE application of the acousto-ultrasonic (AU) method for composite materials are presented. The basis of this work is a set of experiments where a sending and a receiving piezoelectric transducer were both oriented normal to the surface, at different points, on aluminum plates, various composite plates, and a tapered aluminum plate. The purpose and basic idea is introduced. Also, general comments on the AU method are offered. A literature review is offered for areas pertinent, such as composite materials, wave propagation, ultrasonics, and the AU. Special emphasis is given to theory which is used later on and past experimental results that are important to the physical understanding of the AU method. The experimental set-up, procedure, and the ensuing analysis are described. The experimental results are presented in both a quantitative and qualitative manner. A physical understanding of experimental results based on elasticity solution is furnished. Modeling and applications of the AU method is discussed for composite material and general conclusions are stated. The physical model of the AU method for composite materials is offered, something which has been much needed and sorely lacking. This physical understanding is possible due to the extensive set of experimental measurements, also reported.

  5. Damage Assessment of Creep Tested and Thermally Aged Udimet 520 Using Acousto-Ultrasonics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Kautz, Harold E.; Cao, Wei

    2001-01-01

    Due to elevated temperatures and excessive stresses, turbine components may experience creep behavior. As a result, it is desirable to monitor and assess the current condition of such components. This study employed the Acousto-Ultrasonics (AU) method in an effort to monitor the state of the material at various percentages of used up creep life in the nickel base alloy, Udimet 520. A stepped specimen (i.e., varying cross sectional area) was employed which allowed for a postmortem nondestructive evaluation (NDE) analysis of the various levels of used up life. The overall objectives here were two fold: First, a user friendly, graphical interface AU system was developed, and second the new AU system was applied as an NDE tool to assess distributed damage resulting from creep. The experimental results demonstrated that the AU method shows promise as an NDE tool capable of detecting material changes as a function of used up creep life. Furthermore, the changes in the AU parameters were mainly attributed to the case of combined load and elevated temperature (i.e., creep) and not simply because of a timed exposure at elevated temperature (i.e., heat treatment or thermal aging).

  6. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads

    NASA Technical Reports Server (NTRS)

    Tiwari, Anil

    1995-01-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model

  7. A preliminary investigation of acousto-ultrasonic NDE of metal matrix composite test specimens

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.; Lerch, Brad A.

    1991-01-01

    Acousto-ultrasonic (AU) measurements were performed on a series of tensile specimens composed of 8 laminated layers of continuous, SiC fiber reinforced Ti-15-3 matrix. The following subject areas are covered: AU signal analysis; tensile behavior; AU and interrupted tensile tests; AU and thermally cycled specimens; AU and stiffness; and AU and specimen geometry.

  8. Piezoelectric phased array acousto-ultrasonic interrogation of damage in thin plates

    NASA Astrophysics Data System (ADS)

    Purekar, Ashish S.

    Structural Health Monitoring (SHM) and Condition Based Maintenance (CBM) systems can provide substantial benefits for aging aerospace systems as well as newer systems still in the design process. In aging aerospace systems, a retrofitted SHM system would alert users of incipient damage preventing catastrophic failure. For newer systems, incorporating a SHM approach and using CBM techniques can reduce life-cycle costs. Central to such SHM and CBM systems is the ability to detect damage in a structure. Traditional approaches to damage detection in structures involve one of two methods. In the modal dynamics approach, the natural frequencies and modeshapes of a structure shift when damage occurs. The location, type, and amount of damage is determined by the shifts in the modal properties due to damage. Alternately, in an Ultrasonics approach, the structure is scanned with a specialized transducer which induces high frequency vibrations in the structure. Damage in the structure is inferred when these vibrations are altered. In the same vein as Ultrasonics, Acoustic Emission based methods listen for energy release in the structure upon defect growth. All of these techniques have limitations which hinder their usage in a practical system. This thesis attempts to develop a methodology with the benefits of the modal approach as well as the Ultrasonics/Acoustic Emission approach. The methodology is commonly referred to as an Acousto-Ultrasonic technique for damage detection. The structural dynamics of plate structures is described as wavelike in nature where the plate is a medium for wave propagation. For thin plates, bulk wave propagation is described using Lamb wave modes. The two fundamental modes of wave propagation are the in-plane acoustic mode and the transverse bending mode. The interaction of these waves with a discontinuity or damaged region changes the way the waves propagate. Part of the incident wavefront is reflected back while the rest is transmitted through

  9. Damage Assessment of Creep Tested and Thermally Aged Metallic Alloys Using Acousto-Ultrasonics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Kautz, Harold E.; Baaklini, George Y.

    2001-01-01

    In recent years emphasis has been placed on the early detection of material changes experienced in turbine powerplant components. During the scheduled overhaul of a turbine, the current techniques of examination of various hot section components aim to find flaws such as cracks, wear, and erosion, as well as excessive deformations. Thus far, these localized damage modes have been detected with satisfactory results. However, the techniques used to find these flaws provide no information on life until the flaws are actually detected. Major improvements in damage assessment, safety, as well as more accurate life prediction could be achieved if nondestructive evaluation (NDE) techniques could be utilized to sense material changes that occur prior to the localized defects mentioned. Because of elevated temperatures and excessive stresses, turbine components may experience creep behavior. As a result, it is desirable to monitor and access the current condition of such components. Research at the NASA Glenn Research Center involves developing and utilizing an NDE technique that discloses distributed material changes that occur prior to the localized damage detected by the current methods of inspection. In a recent study, creep processes in a nickel-base alloy were the life-limiting condition of interest, and the NDE technique was acousto-ultrasonics (AU). AU is an NDE technique that utilizes two ultrasonic transducers to interrogate the condition of a test specimen. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen while a receiving transducer detects the signal after it has passed through the material. The goal of the method is to correlate certain parameters of the detected waveform to characteristics of the material between the two transducers. Here, the waveform parameter of interest is the attenuation due to internal damping for which information is being garnered from the frequency domain. The parameters utilized to

  10. An optimal baseline selection methodology for data-driven damage detection and temperature compensation in acousto-ultrasonics

    NASA Astrophysics Data System (ADS)

    Torres-Arredondo, M.-A.; Sierra-Pérez, Julián; Cabanes, Guénaël

    2016-05-01

    The process of measuring and analysing the data from a distributed sensor network all over a structural system in order to quantify its condition is known as structural health monitoring (SHM). For the design of a trustworthy health monitoring system, a vast amount of information regarding the inherent physical characteristics of the sources and their propagation and interaction across the structure is crucial. Moreover, any SHM system which is expected to transition to field operation must take into account the influence of environmental and operational changes which cause modifications in the stiffness and damping of the structure and consequently modify its dynamic behaviour. On that account, special attention is paid in this paper to the development of an efficient SHM methodology where robust signal processing and pattern recognition techniques are integrated for the correct interpretation of complex ultrasonic waves within the context of damage detection and identification. The methodology is based on an acousto-ultrasonics technique where the discrete wavelet transform is evaluated for feature extraction and selection, linear principal component analysis for data-driven modelling and self-organising maps for a two-level clustering under the principle of local density. At the end, the methodology is experimentally demonstrated and results show that all the damages were detectable and identifiable.

  11. Acousto-ultrasonic system for the inspection of composite armored vehicles

    NASA Astrophysics Data System (ADS)

    Godinez, Valery F.; Carlos, Mark F.; Delamere, Michael; Hoch, William; Fotopoulos, Christos; Dai, Weiming; Raju, Basavaraju B.

    2001-04-01

    In this paper the design and implementation of a unique acousto-ultrasonics system for the inspection of composite armored vehicles is discussed. The system includes a multi-sensor probe with a position-tracking device mounted on a computer controlled scanning bridge. The system also includes an arbitrary waveform generator with a multiplexer and a multi-channel acoustic emission board capable of simultaneously collecting and processing up to four acoustic signals in real time. C-scans of an armored vehicle panel with defects are presented.

  12. New acousto-ultrasonic techniques applied to aerospace materials

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1988-01-01

    The use of an NdYAG pulsed laser for generating ultrasonic waves for NDE in resin matrix composites was investigated. A study was conducted of the use of the 1.064 micron wavelength NdYAG pulsed laser with the neat, unreinforced resin as well as graphite fiber/polymer composite specimens. In the case of the neat resins it was found that, at normal incidence, about 25 percent of the laser pulse energy was reflected at the incident surface. An attenuation coefficient for the polyimide resin, PMR-15 was determined to be approximately 5.8 np/cm. It was found in energy balance studies that graphite fiber/polymer specimens attenuate the laser beam more than do neat resins. The increase absorption is in the graphite fibers. The occurrence of laser induced surface damage was also studied. For the polymer neat resin, damage appears as pit formation over a small fraction of the pulse impact area and discoloration over a larger part of the area. A damage threshold was inferred from observed damage as a function of pulse energy. The 600 F cured PMR-15 and PMR-11 exhibit about the same amount of damage for a given laser pulse energy. The damage threshold is between 0.06 and 0.07 J/sq cm.

  13. Sub-frequency range stress wave factor NDE technique for assessing damage in fiber-epoxy composites

    NASA Astrophysics Data System (ADS)

    Hong, Gang

    This research aims at modifying, improving and calibrating the Stress Wave Factor Nondestructive Evaluation (SWF NDE) technique and applying it to a fiber epoxy composite material and other composite structures. In order to access the composite's integrity the Energy of SWF within a selected Sub Frequency Range (SFR) instead of the whole measured frequency range as of conventional SWF is used. This technique, introduced and examined herein and is termed the Sub Frequency Range Stress Wave Factors (SFR-SWF) and is tailored to improve the conventional SWF technique with respect to sensibility and accuracy. A series of controlled damage tests were performed, and relevant acousto-ultrasonic observations were conducted. The overall property of the composites subjected to hygrothermal degradation, the localized defects such as the surface crack and the historical damage were assessed with conventional SWF and SFR-SWF. The two methods are compared in detail. The hygrothermal degradation and surface crack experiments were also simulated using the finite element method. Dynamic numerical analysis was conducted to simulate the wave propagation process, both in time domain and frequency domain using the commercial finite element code ABAQUS. The numerical results were also evaluated via both SWF and SFR-SWF, and were compared with the results of experiments. Thus, the potential of SFR-SWF was evaluated. A general conclusion from this research is that the SFR-SWF has the better capability than that of the conventional SWF in assessing the composite's overall condition, localized defects and historical damage. Since there are still open questions regarding the physical understanding of the SWF and SFR-SWF, the finite element analysis provides confirmation for certain observed behaviors of the Acousto-Ultrasonic and SFR-SWF technique.

  14. Acousto-ultrasonic measurements to monitor damage during fatigue of composites

    NASA Technical Reports Server (NTRS)

    Govada, A.; Henneke, E. G.; Talreja, R.

    1984-01-01

    An acousto-ultrasonic nondestructive testing method used to monitor damage during static and fatigue loading of thin graphite epoxy laminates is described. The experimental procedure, the signal analysis by the Fast Fourier Transform (FFT) algorithm, and the results of this analysis are discussed. Quasi-static tension tests showed a sharp decrease in the quantitative parameters when transverse cracks developed in the 90 degrees plies of a (0, 90/2/)s laminate. When internal micro-delaminations unite to form macro-delaminations, a sharp decrease in the parameters is also observed. The parameters are found to correlate well with other indications of damage development such as stiffness and degradation. The root mean square value of the moment is found to be more sensitive to damage than stiffness. Various signals and spectrums of graphite epoxy systems are presented.

  15. Noncontact acousto-ultrasonics using laser generation and laser interferometric detection

    NASA Technical Reports Server (NTRS)

    Green, Robert E., Jr.; Huber, Robert D.

    1991-01-01

    A compact, portable fiber-optic heterodyne interferometer designed to detect out-of-plane motion on surfaces is described. The interferometer provides a linear output for displacements over a broad frequency range and can be used for ultrasonic, acoustic emission, and acousto-ultrasonic (AU) testing. The interferometer in conjunction with a compact pulsed Nd:YAG laser represents a noncontact testing system. This system was tested to determine its usefulness for the AU technique. The results obtained show that replacement of conventional piezoelectric transducers (PZT) with a laser generation/detection system make it possible to carry out noncontact AU measurements. The waveforms recorded were 5 MHZ PZT-generated ultrasound propagating through an aluminum block, detection of the acoustic emission event, and laser AU waveforms from graphite-epoxy laminates and a filament-wound composite.

  16. Ray propagation path analysis of acousto-ultrasonic signals in composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1987-01-01

    The most important result was the demonstration that acousto-ultrasonic (AU) energy introduced into a laminated graphite/resin propagates by two modes through the structure. The first mode, along the graphite fibers, is the faster. The second mode, through the resin matrix, besides being slower is also more strongly attenuated at the higher frequencies. This demonstration was accomplished by analyzing the time and frequency domain of the composite AU signal and comparing them to the same for a neat resin specimen of the same chemistry and geometry as the composite matrix. Analysis of the fine structure of AU spectra was accomplished by various geometrical strategies. It was shown that the multitude of narrow peaks associated with AU spectra are the effect of the many pulse arrivals in the signal. The shape and distribution of the peaks is mainly determined by the condition of nonnormal reflections of ray paths. A cepstrum analysis was employed which can be useful in detecting characteristic times. Analysis of propagation modes can be accomplished while ignoring the fine structure.

  17. The development of an interpretive methodology for the application of real-time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads

    NASA Astrophysics Data System (ADS)

    Tiwari, Anil

    Research effort was directed towards developing a near real-time acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool study the failure mechanisms of ceramic composites. Progression damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi static loads or cyclic loads (10 Hz, R = 0.1). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96) and then averaged every second over ten load cycles and store in a computer file during fatigue tests. These averaged gated signal are representative of the damage state of the specimen at that point c its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicatt (SiC/CAS) and silicon carbide/magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15 percent below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model for

  18. Investigation of an expert health monitoring system for aeronautical structures based on pattern recognition and acousto-ultrasonics

    NASA Astrophysics Data System (ADS)

    Tibaduiza-Burgos, Diego Alexander; Torres-Arredondo, Miguel Angel

    2015-08-01

    Aeronautical structures are subjected to damage during their service raising the necessity for periodic inspection and maintenance of their components so that structural integrity and safe operation can be guaranteed. Cost reduction related to minimizing the out-of-service time of the aircraft, together with the advantages offered by real-time and safe-life service monitoring, have led to a boom in the design of inexpensive and structurally integrated transducer networks comprising actuators, sensors, signal processing units and controllers. These kinds of automated systems are normally referred to as smart structures and offer a multitude of new solutions to engineering problems and multi-functional capabilities. It is thus expected that structural health monitoring (SHM) systems will become one of the leading technologies for assessing and assuring the structural integrity of future aircraft. This study is devoted to the development and experimental investigation of an SHM methodology for the detection of damage in real scale complex aeronautical structures. The work focuses on each aspect of the SHM system and highlights the potentialities of the health monitoring technique based on acousto-ultrasonics and data-driven modelling within the concepts of sensor data fusion, feature extraction and pattern recognition. The methodology is experimentally demonstrated on an aircraft skin panel and fuselage panel for which several damage scenarios are analysed. The detection performance in both structures is quantified and presented.

  19. On the design of acousto-ultrasonics-pattern recognition classifiers for the identification of material response states

    SciTech Connect

    Haddad, Y.M.; Molina, G.J.

    1998-12-31

    This paper deals with the design procedure of computer-based Pattern Recognition (PR) Classifiers, when the Acousto-Ultrasonics (AU) technique is employed for the identification of material response states. For this purpose, material specimens presenting different mechanical response states are processed to retrieve AU signals in the form of digitalized records. The retrieved AU data are, then, grouped in distinct classes, each pertaining to a known response state of the material under consideration. These AU data are, subsequently, identified by pattern vectors, the components of which represent values of characteristic features in certain domains of description. PR-classifiers built from these pattern vectors are subsequently used to identify unknown response states of the material by classifying their pertaining AU signals as belonging to one of the predefined classes. In the paper, AU-experimental work in conjunction with PR-computational results are presented to illustrate the design procedure and testing of PR-classifiers for the purpose of identifying various low-energy repeated-impact states of a class of polymeric material; namely, Polyvinylchloride (PVC).

  20. Experimental investigation on acousto-ultrasonic sensing using polarization-maintaining fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Banks, Curtis E.; Wang, Gang

    2016-04-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while reducing the number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor attached to a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves that were oriented at 0, 45, and 90 degrees with respect to PMFBG axial direction, respectively. The actuation frequency was varied from 20 kHz to 200 kHz. It was shown that the PM-FBG sensor system was able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acouto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications.

  1. Experimental Investigation on Acousto-ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Gag; Banks, Curtis E.

    2016-01-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while reducing the number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor attached to a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves that were oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It was shown that the PM-FBG sensor system was able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acouto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications. Nomenclature.

  2. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  3. An Integrated Acousto/Ultrasonic Structural Health Monitoring System for Composite Pressure Vessels.

    PubMed

    Bulletti, Andrea; Giannelli, Pietro; Calzolai, Marco; Capineri, Lorenzo

    2016-06-01

    This paper describes the implementation of a structural health monitoring (SHM) method for mechanical components and structures in composite materials with a focus on carbon-fiber-overwrapped pressure vessels (COPVs) used in the aerospace industry. Two flex arrays of polyvinylidene fluoride (PVDF) interdigital transducers have been designed, realized, and mounted on the COPV to generate guided Lamb waves (mode A0) for damage assessment. We developed a custom electronic instrument capable of performing two functions using the same transducers: passive-mode detection of impacts and active-mode damage assessment using Lamb waves. The impact detection is based on an accurate evaluation of the time of arrival and was successfully tested with low-velocity impacts (7 and 30 J). Damage detection and progression is based on the calculation of a damage index matrix which compares a set of signals acquired from the transducers with a baseline. This paper also investigates the advantage of tuning the active-mode frequency to obtain the maximum transducer response in the presence of structural variations of the specimen, and therefore, the highest sensitivity to damage.

  4. An Integrated Acousto/Ultrasonic Structural Health Monitoring System for Composite Pressure Vessels.

    PubMed

    Bulletti, Andrea; Giannelli, Pietro; Calzolai, Marco; Capineri, Lorenzo

    2016-03-23

    This paper describes the implementation of a Structural Health Monitoring (SHM) method for mechanical components and structures in composite materials with a focus on Carbon Fiber Overwrapped Pressure Vessels (COPV) used in the aerospace industry. Two flex arrays of PVDF interdigital transducers have been designed, realized and mounted on the COPV to generate guided Lamb waves (mode A0) for damage assessment. We developed a custom electronic instrument capable of performing two functions using the same transducers: passive mode detection of impacts and active mode damage assessment using Lamb waves. The impact detection is based on an accurate evaluation of the time of arrival and was successfully tested with low-velocity impacts (7J and 30J). Damage detection and progression is based on the calculation of a Damage Index matrix which compares a set of signals acquired from the transducers with a baseline. The paper also investigates the advantage of tuning the active mode frequency to obtain the maximum transducer response in the presence of structural variations of the specimen, and therefore the highest sensitivity to damage.

  5. Stress wave focusing transducers

    SciTech Connect

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  6. Stress wave emission from plasmonic nanobubbles

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru

    2017-01-01

    Stress wave emission from the collapse of cavitation nanobubbles, generated after irradiation of single-spherical gold nanoparticles with laser pulses, was investigated numerically. The significant parameters of this study are the nanoparticle radius, laser pulse duration, and laser fluence. For conditions comparable to those existing during plasmonic photothermal therapy, a purely compressive pressure wave is emitted during nanobubble collapse, not a shock. In the initial stage of its propagation, the stress wave amplitude is proportional to the inverse of the stress wave radius. The maximum amplitude and the duration of the stress wave decreases with the laser fluence, laser pulse duration, and gold nanoparticle radius. The full width at half maximum duration of the stress wave is almost constant up to a distance of 50 µm from the emission center. The stress wave amplitude is smaller than 5 MPa, while the stress wave duration is smaller than 35 ns. The stress wave propagation results in minor mechanical effects on biological tissue that are restricted to very small dimensions on a cellular or sub-cellular level. The stress wave is, however, able to produce breaching of the human cell membrane and bacterial wall even at distances as large as 50 µm from the emission centre. The experimentally observed melting of gold nanoparticles comes from the large temperature reached inside the nanoparticles during laser irradiation and not from the propagation of the stress wave into the surrounding liquid during nanobubble rebound.

  7. Effects of stress waves on cells

    SciTech Connect

    Campbell, H L; Da Silva, L B; Visuri, S R

    1998-03-02

    Laser induced stress waves are being used in a variety of medical applications, including drug delivery and targeted tissue disruption. Stress waves can also be an undesirable side effect in laser procedures such as ophthalmology and angioplasty. Thus, a study of the effects of stress waves on a cellular level is useful. Thermoelastic stress waves were produced using a Q-switched frequency-doubled Nd:YAG laser (@.=532nm) with a pulse duration of 4 ns. The laser radiation was delivered to an absorbing media. A thermoelastic stress wave was produced in the absorbing media and propagated into plated cells. The energy per pulse delivered to a sample and the spot size were varied. Stress waves were quantified. We assayed for cell viability and damage using two methods. The laser parameters within which cells maintain viability were investigated and thresholds for cell damage were defined. A comparison of cell damage thresholds for different cell lines was made.

  8. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  9. Strongly nonlinear stress waves in dissipative metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Yichao; Nesterenko, Vitali F.

    2017-01-01

    We present the results of measurements and numerical simulations of stress wave propagation in a one-dimensional strongly nonlinear dissipative metamaterial composed of steel disks and Nitrile O-rings. The incoming bell shape stress wave is generated by the strikers with different masses. Numerical modeling including a viscous dissipative term to describe dynamic behavior of O-rings is developed to predict the wave amplitude, shape and propagation speed of stress waves. The viscous dissipation prevented the incoming pulse from splitting into trains of solitary waves typical for non-dissipative strongly nonlinear discrete systems. The linear momentum and energy from the striker were completely transferred into this strongly nonlinear "soft" metamaterial.

  10. Characterising fatigue crack in an aluminium plate using guided elastic waves

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Su, Zhongqing; Cheng, Li

    2011-04-01

    Integrity of in-service engineering structures is prone to fatigue damage over their lifespan. Majority of the currently existing elastic-wave-based damage identification techniques have been developed and validated for damage at macroscopic levels, by canvassing linear properties of elastic waves such as attenuation, transmission, reflection and mode conversion. However the real damage in engineering structures often initiates from fatigue crack, presenting highly nonlinear characteristics under cyclic loads. It is of great significance but vast challenge to detect fatigue damage of small dimension at its initial stage. In this study, traditional elastic-wave-based damage identification techniques were first employed with an attempt to detect fatigue crack initiated from a notch in an aluminium plate with the assistance of a signal correlation analysis, to observe the deficiency of the approach. Then the higher-order harmonic wave generation was used to exploit the nonlinear characteristics of acousto-ultrasonic waves (Lamb waves), whereby the fatigue damage was characterised. Results show that nonlinear characteristics of acousto-ultrasonic waves can facilitate more effective detection of fatigue damage than linear signal features such as wave reflection, transmission or mode conversion.

  11. A study of the stress wave factor technique for nondestructive evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Sarrafzadeh-Khoee, A.; Kiernan, M. T.; Duke, J. C., Jr.; Henneke, E. G., II

    1986-01-01

    The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes.

  12. Geometric effects on stress wave propagation.

    PubMed

    Johnson, K L; Trim, M W; Horstemeyer, M F; Lee, N; Williams, L N; Liao, J; Rhee, H; Prabhu, R

    2014-02-01

    The present study, through finite element simulations, shows the geometric effects of a bioinspired solid on pressure and impulse mitigation for an elastic, plastic, and viscoelastic material. Because of the bioinspired geometries, stress wave mitigation became apparent in a nonintuitive manner such that potential real-world applications in human protective gear designs are realizable. In nature, there are several toroidal designs that are employed for mitigating stress waves; examples include the hyoid bone on the back of a woodpecker's jaw that extends around the skull to its nose and a ram's horn. This study evaluates four different geometries with the same length and same initial cross-sectional diameter at the impact location in three-dimensional finite element analyses. The geometries in increasing complexity were the following: (1) a round cylinder, (2) a round cylinder that was tapered to a point, (3) a round cylinder that was spiraled in a two dimensional plane, and (4) a round cylinder that was tapered and spiraled in a two-dimensional plane. The results show that the tapered spiral geometry mitigated the greatest amount of pressure and impulse (approximately 98% mitigation) when compared to the cylinder regardless of material type (elastic, plastic, and viscoelastic) and regardless of input pressure signature. The specimen taper effectively mitigated the stress wave as a result of uniaxial deformational processes and an induced shear that arose from its geometry. Due to the decreasing cross-sectional area arising from the taper, the local uniaxial and shear stresses increased along the specimen length. The spiral induced even greater shear stresses that help mitigate the stress wave and also induced transverse displacements at the tip such that minimal wave reflections occurred. This phenomenon arose although only longitudinal waves were introduced as the initial boundary condition (BC). In nature, when shearing occurs within or between materials

  13. Impact produced stress waves in composites

    SciTech Connect

    Clements, B.; Johnson, J.; Addessio, F.; Hixson, R.

    1997-05-01

    The Nonhomogenized Dynamic Method of Cells (NHDMOC) is used to study the propagation of stress waves through laminates. The accuracy of the theory is tested by applying it to a plate-impact experiment and checking its ability to resolve a propagation shock wave front. The theory is then compared to Lagrangian hydrodynamic calculations, where it is found that the NHDMOC consistently requires less fine spatial and temporal grids, and less artificial viscosity to control numerical noise. The theory is then used to treat the impact of an epoxy-graphite bilaminate. When the viscoelastic properties of the epoxy are accounted for, the theory agrees well with the experiment.

  14. Propagating Stress Waves During Epithelial Expansion

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Utuje, Kazage J. C.; Marchetti, M. Cristina

    2015-06-01

    Coordinated motion of cell monolayers during epithelial wound healing and tissue morphogenesis involves mechanical stress generation. Here we propose a model for the dynamics of epithelial expansion that couples mechanical deformations in the tissue to contractile activity and polarization in the cells. A new ingredient of our model is a feedback between local strain, polarization, and contractility that naturally yields a mechanism for viscoelasticity and effective inertia in the cell monolayer. Using a combination of analytical and numerical techniques, we demonstrate that our model quantitatively reproduces many experimental findings [Nat. Phys. 8, 628 (2012)], including the buildup of intercellular stresses, and the existence of traveling mechanical waves guiding the oscillatory monolayer expansion.

  15. Ultrasonic evaluation of mechanical properties of thick, multilayered, filament-wound composites

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.

    1987-01-01

    A preliminary investigation is conducted to define capabilities and limitations of ultrasonic and acousto-ultrasonic measurements related to mechanical properties of filament wound graphite/epoxy composite structures. The structures studied are segments of filament wound cylinders formed of multiple layers of hoop and helical windings. The segments consist of 24 to 35 layers and range from 3.02 to 3.34 cm in wall thickness. The resultant structures are anisotropic, heterogeneous, porous, and highly attenuating to ultrasonic frequencies greater than 1 MHz. The segments represent structures to be used for Space Shuttle booster cases.Ultrasonic velocity and acousto-ultrasonic stress wave factor measurement approaches are discussed. Correlations among velocity, density, and porosity, and between the acousto-ultrasonic stress wave factor and interlaminar shear strength are presented.

  16. Ultrasonic evaluation of mechanical properties of thick, multilayered, filament wound composites

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.

    1985-01-01

    A preliminary investigation is conducted to define capabilities and limitations of ultrasonic and acousto-ultrasonic measurements related to mechanical properties of filament wound graphite/epoxy composite structures. The structures studied are segments of filament wound cylinders formed of multiple layers of hoop and helical windings. The segments consist of 24 to 35 layers and range from 3.02 to 3.34 cm in wall thickness. The resultant structures are anisotropic, heterogeneous, porous, and highly attenuating to ultrasonic frequencies greater than 1 MHz. The segments represent structures to be used for space shuttle booster cases. Ultrasonic velocity and acousto-ultrasonic stress wave factor measurement approaches are discussed. Correlations among velocity, density, and porosity, and between the acousto-ultrasonic stress wave factor and interlaminar shear strength are presented.

  17. Biological effects of laser-induced stress waves

    SciTech Connect

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-12-31

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress.

  18. Simulations of laser-initiated stress waves

    SciTech Connect

    Maitland, D.J.; Celliers, P.; Amendt, P.; Da Silva, L.; London, R.A.; Matthews, D.; Strauss, M.; Visuri, S.R.

    1997-03-07

    We present a study of the short-time scale (< 250 ns) fluid dynamic response of water to a fiber-delivered laser pulse of variable energy and spatial profile. The laser pulse was deposited on a stress confinement time scale. The spatial profile was determined by the fiber core radius r (110 and 500 microns) and the water absorption coefficient {mu}{sub 2} (200 and 50 l/cm). Considering 2D cylindrical symmetry, the combination of fiber radius and absorption coefficient parameters can be characterized as near planar (1{mu}{sub 2} greater than r), symmetric (1/{mu}{sub 2}=r), and side-directed (1/{mu}{sub 2} less than r). The spatial profile study shows how the stress wave various as a function of geometry. For example, relatively small absorption coefficients can result in side-propagating shear and tensile fields.

  19. Stress Wave Interaction Between Two Adjacent Blast Holes

    NASA Astrophysics Data System (ADS)

    Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali

    2016-05-01

    Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.

  20. Spallation and fracture resulting from reflected and intersecting stress waves.

    NASA Technical Reports Server (NTRS)

    Kinslow, R.

    1973-01-01

    Discussion of the effects of stress waves produced in solid by explosions or high-velocity impacts. These waves rebound from free surfaces in the form of tensile waves that are capable of causing internal fractures or spallation of the material. The high-speed framing camera is shown to be an important tool for observing the stress waves and fracture in transparent targets, and its photographs provide valuable information on the mechanics of fracture.

  1. Nonlinear propagation of stress waves during high speed cutting

    NASA Astrophysics Data System (ADS)

    Jiang, Yifei; Zhang, Jun; He, Yong; Liu, Hongguang; Zhao, Wanhua

    2016-11-01

    Stress waves induced by high speed cutting (HSC) were demonstrated visually, and the dependence of their nonlinear propagation characteristics on cutting speed was studied. The time-resolved photoelasticity imaging technique in the bright-field mode was used to observe stress waves in the workpiece, and the obtained photoelastic images were evaluated semi-quantitatively. The experimental results were quantitatively reproduced via the lattice model, which helped explain our observations by analyzing the superposition of stress waves. According to the further simulation, we find that as the cutting speed increases, the stress intensity of the workpiece near the cutting tool is not in a linear enhancement process, with strong distortion of stress field under the superposition of different stress wave components. These help us have a deep understanding about the HSC mechanism under stress waves' effects.

  2. High Sea-Floor Stress Induced by Extreme Hurricane Waves

    DTIC Science & Technology

    2010-01-01

    mean-square amplitude of a sinusoidal wave, where uwu σ2= , 141 and uσ is the standard deviation of orbital-velocity fluctuations based on the 512-s...was a factor of 4 smaller than CWτ based on 182 the wave-orbital velocity, uwu σ2= (Figure 3). The current-wave stress can be 183 approximated as...and was about 15%-20% of the 207 surface wind stress, where uwu σ2= . The maximum stress based on the maximum wave-208 orbital velocity was found to

  3. Stress wave transmission and reflection through auxetic solids

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng

    2013-08-01

    This paper establishes the effect of auxeticity on stress wave transmission and reflection. Specifically, investigation was made on wave transmission across two perfectly bonded isotropic solids in which the Poisson’s ratios ranged between -1 and 0.5. The results show that the combined use of auxetic and conventional solids at extreme Poisson’s ratio is helpful to multiply or even to eliminate stress waves, under the prescribed density and modulus relations. These results suggest the usefulness of auxetic solids as smart materials and in smart structures for effective control of stress wave transmission.

  4. Acoustoelastic Lamb Wave Propagation in Biaxially Stressed Plates (Preprint)

    DTIC Science & Technology

    2012-03-01

    particularly as compared to most bulk wave NDE methods, Lamb wave are particularly sensitive to changes in the propagation environment, such as... Wilcox , and J. E. Michaels, “Efficient temperature compensation strategies for guided wave structural health monitoring,” Ultrasonics, 50, pp. 517...Liu, “Effects of residual stress on guided waves in layered media,” Rev. Prog. Quant. NDE , 17, D. O. Thompson and D. E. Chimenti (Eds.), Plenum Press

  5. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zheng, Bowen

    2016-11-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.

  6. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    PubMed Central

    Xu, Jun; Zheng, Bowen

    2016-01-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices. PMID:27892963

  7. Nondestructive Testing Residual Stress Using Ultrasonic Critical Refracted Longitudinal Wave

    NASA Astrophysics Data System (ADS)

    Xu, Chunguang; Song, Wentao; Pan, Qinxue; Li, Huanxin; Liu, Shuai

    Residual stress has significant impacts on the performance of the mechanical components, especially on its strength, fatigue life and corrosion resistance and dimensional stability. Based on theory of acoustoelasticity, the testing principle of ultrasonic LCR wave method is analyzed. The testing system of residual stress is build. The method of calibration of stress coefficient is proposed in order to improve the detection precision. At last, through experiments and applications on residual stress testing of oil pipeline weld joint, vehicle's torsion shaft, glass and ceramics, gear tooth root, and so on, the result show that it deserved to be studied deeply on application and popularization of ultrasonic LCR wave method.

  8. Stress waves in isotropic elastic plate excited by circular transducer

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Karagulle, H.

    1986-01-01

    Steady state harmonic stress waves in an isotropic elastic plate excited on one face by a circular transducer are analyzed theoretically. The transmitting transducer transforms an electrical voltage into a uniform normal stress at the top of the plate. To solve the boundary value problem,the radiation into a half-space is considered. The receiving transducer produces an electrical voltage proportional to the average spatially integrated normal stress over its face due to an incident wave. A numerical procedure is given to evaluate the frequency response at a receiving point due to a multiply reflected wave in the near field. Its stability and convergence are discussed. Parameterization plots which determine the particular wave whose frequency response has maximum magnitude compared with other multiple reflected waves are given for a range of values of dimensionless parameters. The effects of changes in the values of the parameters are discussed.

  9. Microstructural Design for Stress Wave Energy Management

    DTIC Science & Technology

    2013-04-01

    simulations are based on elastic moduli of generic CFRP taken from literature. We ordered 8 customized 16"xl6"xl/8" panel of unidirectional CFRP from a...speed measurements. We plan to use ultrasonic transducers to measure pressure and shear wave speeds in samples taken from CFRP panel in order to find...of CFRP panel and assembling in a multilayered design. Then we will investigate wave propagation in the layered structure by sending an elastic

  10. Viscosity, Shear Waves, and Atomic-Level Stress-Stress Correlations

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.; Morris, J. R.; Egami, T.

    2011-03-01

    The Green-Kubo equation relates the macroscopic stress-stress correlation function to a liquid’s viscosity. The concept of the atomic-level stresses allows the macroscopic stress-stress correlation function in the equation to be expressed in terms of the space-time correlations among the atomic-level stresses. Molecular dynamics studies show surprisingly long spatial extension of stress-stress correlations and also longitudinal and transverse waves propagating in liquids over ranges which could exceed the system size. The results reveal that the range of propagation of shear waves corresponds to the range of distances relevant for viscosity. Thus our results show that viscosity is a fundamentally nonlocal quantity. We also show that the periodic boundary conditions play a nontrivial role in molecular dynamics simulations, effectively masking the long-range nature of viscosity.

  11. Surface wave propagation in thin silver films under residual stress

    NASA Astrophysics Data System (ADS)

    Njeh, Anuar; Wieder, Thomas; Schneider, D.; Fuess, Hartmut; Ben Ghozlen, M. H.

    Investigations using surface acoustic waves provide information on the elastic properties of thin films. Residual stresses change the phase velocity of the surface waves. We have calculated phase velocity and dispersion of surface waves in thin silver films with a strong [111]-fibre texture. A non-linear description of surface waves propagating along the [110]-direction of the substrate has been developed on the basis of an acoustoelastic theory, taking into account residual stresses. The relative change delta_v/v of the velocity v was found to be lin-ear for large excitation frequencies. The dispersion curves were measured using a photoa-coustic method. For sputtered polycrystalline thin silver films we found good agreement be-tween the experimental and calculated dispersion curves for frequencies up to 225 MHz.

  12. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Rokhlin, S. I.

    1997-01-01

    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual

  13. Sensitivity of higher order acoustoelastic Lamb wave in stressed plates

    NASA Astrophysics Data System (ADS)

    Pei, Ning; Bond, Leonard J.

    2017-02-01

    Residual stress can occur during various metal working processes including rolling, forging and welding. Such stress can impact the performance of the material, including generating cracking and corrosion. To better control residual stresses, the initial distribution of stresses in materials must be known. Ultrasonic methods can be used as a good tool for non-destructive residual stress characterization and this can be achieved at modest cost. One approach is to employ Lamb waves the acoustoelastic effect for thin plate materials. This paper reports a study in which a numerical model is used to investigate Lamb wave dispersion curves for plates under load. The numerical result shows that the sensitivity of different modes varies and that the S1 mode is the most sensitivity to the effects of load, as compared with S0, A0 and A1 modes. If a local load of 100 MPa is applied the change in velocity for the S1 mode can be as large to 40 m/s, which is about 6 times more than the effect on traditional bulk waves. This makes the S1 mode potentially a good option for residual stress characterization in thin plates industry application.

  14. The stress-induced surface wave velocity variations in concrete

    NASA Astrophysics Data System (ADS)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  15. Higher order acoustoelastic Lamb wave propagation in stressed plates.

    PubMed

    Pei, Ning; Bond, Leonard J

    2016-11-01

    Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.

  16. Stress waves in transversely isotropic media: The homogeneous problem

    NASA Technical Reports Server (NTRS)

    Marques, E. R. C.; Williams, J. H., Jr.

    1986-01-01

    The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.

  17. Stress-wave experiments on selected crustal rocks and minerals

    SciTech Connect

    Grady, D E

    1983-09-01

    Large amplitude compressive stress-wave experiments on selected crustal rocks and minerals have been performed. The materials studied included Vermont marble, Blair dolomite, Oakhall limestone, z-cut calcite and oil shale. In each case specific constitutive features were studied. These features included interrelation of plastic yielding and phase transformation, rate dependent plastic flow, dilatancy under dynamic loading conditions, and energy dissipation at stress amplitudes below measured Hugoniot elastic limits. A new experimental method using in-material mutual-inductance magnetic gauges is also described.

  18. Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Tsui, C. Y.

    1972-01-01

    Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.

  19. Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Atakturk, Serhad S.

    1992-01-01

    Incidence of wave breaking for pure wind driven waves has been studied on Lake Washington at wind speeds up to 8 m/s. Video recordings were employed to identify and categorize the breaking events in terms of micro-scale, spilling and plunging breakers. These events were correlated with the magnitude of the wave spectrum measured with a resistance wire wave gauge and band pass filtered between 6 and 10 Hz. An equivalent percentage of breaking crests were found for spilling and plunging events. Wave forcing as measured by wind stress (or friction velocity, u(sub *), squared) and by inverse wave age, u(sub *)/Cp where Cp is the phase velocity of the waves at the peak of the frequency spectrum, were found to be good prerictors of percentage of breaking crests. When combined in a two parameter regression, those two variables gave small standard deviation and had a high correlation coefficient (66 percent). The combination of u(sub *)(exp 2) and u(sub *)/Cp can be understood in physical terms. Furthermore, for the larger values of u(sub *)(exp 2) the dependence of wave braking and wave age was stronger than at the low end of the values u(sub *)(exp 2) and u(sub *)/Cp. Thus, both the level of wave development as determined by inverse wave age, which we may term relative wind effectiveness for wave forcing and the wind forcing on the water surface determine the incidence of wave breaking. Substituting U(sub 10)(sup 3.75) (which is the dependence of whitecap cover found by Monahan and coworkers) an equivalent correlation was found to the prediction by u(sub *)(exp 2). Slightly better standard deviation value and higher correlation coefficient were found by using a Reynolds number as predictor. A two-parameter regression involving u(sub *)(exp 2) and a Reynold's number proposed by Toba and his colleagues which relates u(sub *)(exp 2) and peak wave frequency, improves the correlation even more but is less easy to interpret in physical terms. The equivalent percentage of

  20. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals

    PubMed Central

    Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu

    2016-01-01

    We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal. PMID:27477236

  1. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu

    2016-08-01

    We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal.

  2. Interaction of laser-induced stress waves with metals

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Fairand, B. P.

    1979-01-01

    An investigation of the effect of high intensity laser induced stress waves on the hardness and tensile strength of 2024 and 7075 aluminum and on the fatigue properties of 7075 aluminum were investigated. Laser shocking increases the hardness of the underaged 2024-T351 but has little or no effect on the peak aged 2024-T351 and 7075-T651 or the overaged 7075-T73. The fretting fatigue life of fastener joints of 7075-T6 was increased by orders of magnitude by laser shocking the region around the fastener hole; the fatigue crack propagation rates were decreased by laser shocking.

  3. Analysis of the Stress Wave Effect During Rock Breakage by Pulsating Jets

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Wei, Jianping; Ren, Ting

    2016-02-01

    Formation, propagation and attenuation of stress waves during rock breakage by pulsating jets are simulated by introducing the Johnson-Holmquist-Concrete nonlinear constitutive model, and using the smoothed particle hydrodynamics approach. The curve of stress over time at different locations of the rock surface under the action of high-velocity pulsating jets is obtained, as well as relationship curve between amplitude of stress wave and distance to jet action spot. Based on the computational results, breakage behavior of rocks under stress wave effect, and impacts of jet velocity and rock properties on stress wave effect are analyzed. The results show that the stress wave effect of pulsating jets is rather strongly localized, and the amplitude of stress wave decreases sharply with increasing distance to jet action spot. The intensity and effect range of stress wave are in direct proportion to jet velocity; besides, there is a threshold velocity regarding macroscopic failure of rocks. Rocks of different lithologies have somewhat different failure modes under stress wave action of pulsating jets; failure mode of low strength rocks like sandstone is mainly crack propagation under tensile stress during rock loading and unloading processes, whereas the failure mode of hard brittle rocks such as limestone and granite is mainly longitudinal failure caused by stress concentration.

  4. Stress wave attenuation in shock-damaged rock

    NASA Astrophysics Data System (ADS)

    Liu, Cangli; Ahrens, Thomas J.

    1997-03-01

    The velocity and attenuation of ultrasonic stress waves in gabbroic rock samples (San Marcos, California) subjected to shock loading in the 2 GPa range were studied. Prom P wave velocity measurements we determined the damage parameter Dp and crack density ɛ of the samples and related these to the attenuation coefficient (quality factor) under dynamic strains of 2×10-7 and at a frequency of 2 MHz using the ultrasonic pulse-echo method. A fit to the data yields the P wave spatial attenuation coefficient at a frequency of 2 MHz, αp(Dp) = 1.1 + 28.2DP (decibels per centimeter). From the relation between the attenuation coefficient and quality factor, the quality factor Q is given by Q-1 = 0.011(1 + 25.6Dp)(1 - Dp)½. Using O'Connell-Budiansky theory relating crack density to velocity, the parameter in Walsh's theory was determined based on experimental data. An approximate method is also proposed to estimate the average half-length of cracks based on the attenuation measurements.

  5. Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation

    SciTech Connect

    Hu Haofeng; Wang Xiaolei; Zhai Hongchen; Zhang Nan; Wang Pan

    2010-08-09

    Shadowgraphs of dynamic processes outside and inside transparent target during the intense femtosecond laser ablation of silica glass are recorded. Two material ejections outside the target and two corresponding stress waves inside the target are observed at different energy fluences. In particular, a third stress wave can be observed at energy fluence as high as 40 J/cm{sup 2}. The first wave is a thermoelastic wave, while the second and the third may be generated subsequently by the mechanical expansions. In addition, the magnitudes of the three stress waves decrease sequentially based on our analysis.

  6. Guided wave propagation in porous unidirectional carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Dobmann, Nicolas; Bach, Martin

    2017-02-01

    Networks of piezoelectric transducers mounted on aircraft structures for Acousto Ultrasonics (AU) purposes are designed to be applied during the service life of the aircraft. The approach to integrate these sensor networks already during the manufacture of carbon fiber reinforced plastic (CFRP) host structures prompts ideas to achieve an additional benefit by their application for cure monitoring, thus extending their use to the manufacturing chain. This benefit could be extended even further if guided waves generated by AU sensor networks could be used for porosity testing extensively applied for CFRP aircraft structures. In light of this, an experimental study was conducted to investigate effects of porosity on the propagation of guided waves in a basic configuration of unidirectional CFRP. Several samples were manufactured at different porosity levels by variation of the processing pressure. Wave fields were acquired using an ultrasonic scanning device. In the present work, phase velocities are chosen as best measurable and quantifiable propagation feature and the approach for the analysis of phase velocities in porosity samples is outlined. First results are presented and discussed regarding the influence of porosity on guided wave phase velocity and basic applicability for porosity testing of aircraft structures.

  7. Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.

  8. Stress Waves and Characteristics of Zigzag and Armchair Silicene Nanoribbons

    PubMed Central

    Fan, Yu-Cheng; Fang, Te-Hua; Chen, Tao-Hsing

    2016-01-01

    The mechanical properties of silicene nanostructures subject to tensile loading were studied via a molecular dynamics (MD) simulation. The effects of temperature on Young’s modulus and the fracture strain of silicene with armchair and zigzag types were examined. The maximum in-plane stress and the corresponding critical strain of the armchair and the zigzag silicene sheets at 300 K were 8.85 and 10.62, and 0.187 and 0.244 N/m, respectively. The in-plane stresses of the silicene sheet in the armchair direction at the temperatures of 300, 400, 500, and 600 K were 8.85, 8.50, 8.26, and 7.79 N/m, respectively. The in-plane stresses of the silicene sheet in the zigzag direction at the temperatures of 300, 400, 500, and 600 K were 10.62, 9.92, 9.64, and 9.27 N/m, respectively. The improved mechanical properties can be calculated in a silicene sheet yielded in the zigzag direction compared with the tensile loading in the armchair direction. The wrinklons and waves were observed at the shear band across the center zone of the silicene sheet. These results provide useful information about the mechanical and fracture behaviors of silicene for engineering applications.

  9. Large-amplitude internal waves benefit corals during thermal stress.

    PubMed

    Wall, M; Putchim, L; Schmidt, G M; Jantzen, C; Khokiattiwong, S; Richter, C

    2015-01-22

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management.

  10. Large-amplitude internal waves benefit corals during thermal stress

    PubMed Central

    Wall, M.; Putchim, L.; Schmidt, G. M.; Jantzen, C.; Khokiattiwong, S.; Richter, C.

    2015-01-01

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management. PMID:25473004

  11. Numerical modeling investigation of radiation stress in coastal wave-current coupling

    NASA Astrophysics Data System (ADS)

    Guan, Changlong; Li, Rui

    2014-05-01

    It is believed that the radiation stress is the main driving force for nearshore wave-induced currents. So far several theoretical formulas of radiation stress have been proposed, among which the vertical structures differ considerably. A numerical wave flume (NWF) have been established on the basis of the CFD software, and applied to simulate the wave motion in various shallow water topography with different incident waves. The results from the NWF is used to analyze the features of radiation stress. It is found, that the vertical integral of the radiation stress is agreeably consistent with the well-known classical result by Longuet-Higgins and Stewart (1964), while the vertical structure of the radiation stress is discontinuous at the surface where the maximum exists, which can be better characterized with the formula by Mellor (2008). The effects of radiation stress and wave roller are implemented in a coupled SWAN-POM model, so that the coupled model is able to simulate the wave setup and wave-induced current. The numerical modeling results have been verified by the field measurements. It is shown that the modelled wave setup corresponding to various radiation stress formulas is well in agreement with the field observation. This means the modeled wave setup is dependent on the vertical integral of radiation stress rather than the vertical structure of that. In comparison with the observed current velocity and direction data, it is shown that the modeled results with Mellor's radiation stress formula plus wave roller is able to be consistent with the filed measurement well. This indicates that the modeled wave-induced current is dependent on the vertical structure of radiation stress rather than the vertical integral of that.

  12. Effect of Stress on Energy Flux Deviation of Ultrasonic Waves in Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.

  13. Evaluation of thermally induced non-Fourier stress wave disturbances via tailored hybrid transfinite element formulations

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    Accurate solutions have been obtained for a class of non-Fourier models in dynamic thermoelasticity which are relevant to the understanding of thermally-induced stress wave disturbances. The method employs tailored hybrid formulations based on the transfinite element approach. The results show that significant thermal stresses may arise due to non-Fourier effects, especially when the speeds of propagation of the thermal and stress waves are equal.

  14. Characterizing Wave- and Current-Induced Bottom Shear Stress: U.S. Middle Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Dalyander, S.; Butman, B.

    2011-12-01

    The combined action of waves and currents at the seabed creates bottom shear stress, impacting local geology, habitat, and anthropogenic use. In this study, a methodology is developed to characterize the magnitude of benthic disturbance based on spatially and seasonally-resolved statistics (mean, standard deviation, 95th percentile) of wave-current bottom shear stress. The frequency of stress forcing is used to distinguish regions dominated by storms (return interval longer than 33 hours) from those dominated by the tides (periods shorter than 33 hours). In addition, the relative magnitude of the contribution to stress from waves, tides, and storm-driven currents is investigated by comparing wave stress, tidal current stress, and stress from the residual current (currents with tides removed), as well as through cross-correlation of wave and current stress. The methodology is applied to numerical model time-series data for the Middle Atlantic Bight (MAB) off the U.S. East Coast for April 2010 to April 2011; currents are provided from the Integrated Ocean Observing System (IOOS) operational hydrodynamic forecast Experimental System for Predicting Shelf and Slope Optics (ESPreSSO) and waves are provided from a Simulating WAves Nearshore (SWAN) hindcast developed for this project. Spatial resolution of the model is about 5 km and time-series wave and current data are at 1 and 2-hours respectively. Regions of the MAB delineated by stress characteristics include a tidally-dominated shallow region with relative high stress southeast of Massachusetts over Nantucket Shoals; a coastal band extending offshore to about 30 m water depth dominated by waves; a region dominated by waves and wind-driven currents offshore of the Outer Banks of North Carolina; and a low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the "Mud Patch". Comparison of the stress distribution with surface sediment texture data shows that

  15. Stress wave propagation in a composite beam subjected to transverse impact.

    SciTech Connect

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-08-01

    Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate

  16. Characterization of composite materials by means of the ultrasonic stress wave factor

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G.; Stinchcomb, W. W.; Reifsnider, K. L.

    1983-01-01

    The usual approach to nondestructively evaluating a composite structure involves inspection and mechanical analysis of the inspection results. Such an approach has met with only limited success. On the other hand, the ultrasonic stress wave factor technique directly evaluates the material. Despite requiring access to only one surface of the material, the technique interrogates the material in the directions of applied load. Using the stress wave factor technique it is possible to determine the failure location in the material. The correlation of the stress wave factor with stiffness is shown. In addition, the use of the technique for determining the strength or life of composite material structures is discussed.

  17. Wave Propagation through a Viscous Incompressible Fluid Contained in an Initially Stressed Elastic Tube

    PubMed Central

    Atabek, H. B.; Lew, H. S.

    1966-01-01

    To have a better understanding of the flow of blood in arteries a theoretical analysis of the pressure wave propagation through a viscous incompressible fluid contained in an initially stressed tube is considered. The fluid is assumed to be Newtonian. The tube is taken to be elastic and isotropic. The analysis is restricted to tubes with thin walls and to waves whose wavelengths are very large compared with the radius of the tube. It is further assumed that the amplitude of the pressure disturbance is sufficiently small so that nonlinear terms of the inertia of the fluid are negligible compared with linear ones. Both circumferential and longitudinal initial stresses are considered; however, their origins are not specified. Initial stresses enter equations as independent parameters. A frequency equation, which is quadratic in the square of the propagation velocity is obtained. Two out of four roots of this equation give the velocity of propagation of two distinct outgoing waves. The remaining two roots represent incoming waves corresponding to the first two waves. One of the waves propagates more slowly than the other. As the circumferential and/or longitudinal stress of the wall increases, the velocity of propagation and transmission per wavelength of the slower wave decreases. The response of the fast wave to a change in the initial stress is on the opposite direction. PMID:19210972

  18. EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.

    PubMed

    Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang

    2011-06-01

    As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.

  19. Characterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf

    USGS Publications Warehouse

    Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.

    2013-01-01

    Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.

  20. Stress waves in an isotropic elastic plate excited by a circular transducer

    NASA Technical Reports Server (NTRS)

    Karagulle, H.; Williams, J. H., Jr.; Lee, S. S.

    1985-01-01

    Steady state harmonic stress waves in an isotropic elastic plate excited on one face by a circular transducer are analyzed theoretically. The transmitting transducer transforms an electrical voltage into a uniform normal stress at the top of the plate. To solve the boundary value problem, the radiation into a half-space is considered. The receiving transducer produces an electrical voltage proportional to the average spatially integrated normal stress over its face due to an incident wave. A numerical procedure is given to evaluate the frequency response at a receiving point due to a multiply reflected wave in the near field. Its stability and convergence are discussed. Parameterization plots which determine the particular wave whose frequency response has maximum magnitude compared with other multiple reflected waves are given for a range of values of dimensionless parameters. The effects of changes in the values of the parameters are discussed.

  1. Stress Wave Propagation Across a Rock Mass with Two Non-parallel Joints

    NASA Astrophysics Data System (ADS)

    Chai, S. B.; Li, J. C.; Zhang, Q. B.; Li, H. B.; Li, N. N.

    2016-10-01

    A rock mass includes a number of joints, which govern the mechanical behavior of the rock mass and greatly affect stress wave propagation. Generally, joints do not parallel with each other, resulting in multiple wave reflections between joints and complex wave propagation process in rock masses. The present study presents an approach to analyze stress wave propagation through a rock mass with two non-parallel joints when the angle between the two joints is <10°. For incident P-wave impinging on this kind of rock mass, multiple reflections take place between the two joints. Meanwhile, transmitted waves are generated and propagate successively away from the joints. The mathematical expressions for P-wave propagation across the two joints are established in time domain by analyzing the wave field in the rock mass. By comparing with the result from numerical simulation, the new approach is proved to be effective to analyze wave propagation across two non-parallel joints, where the influence of joint tips on wave propagation is neglected. Parametric studies show that the joint stiffness, joint angle and frequency of incident wave have different effects on transmission and reflection coefficients.

  2. Shear wave transducer for stress measurements in boreholes

    DOEpatents

    Mao, Nai-Hsien

    1987-01-01

    A technique and apparatus for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data is used to back-calculate the applied stress.

  3. Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru; Vogel, Alfred

    2006-07-01

    Stress wave emission and cavitation bubble dynamics after optical breakdown in water and a tissue phantom with Nd: YAG laser pulses of 6 ns duration were investigated both experimentally and numerically to obtain a better understanding of the physical mechanisms involved in plasma-mediated laser surgery. Experimental tools were high-speed photography with 50000 frames s(-1) , and acoustic measurements. The tissue phantom consisted of a transparent polyacrylamide (PAA) gel, the elastic properties of which can be controlled by modifying the water content. Breakdown in water produced a purely compressive stress wave. By contrast, in stiff PAA samples and for sufficiently large pulse energies, the compression wave was followed by an intense tensile wave, similar to the behaviour previously observed in cornea. The elastic/plastic response of the medium led to a significant decrease of the maximum size of the cavitation bubble and to a shortening of its oscillation period which was found to be related to the generation of the tensile stress wave upon breakdown. For increasing elastic modulus of the PAA, both the amplitudes of the bubble oscillation and of the stress wave emitted during bubble collapse decreased until the bubble oscillation was so strongly damped that no collapse stress wave was emitted. Numerical simulations were performed using a spherical model of bubble dynamics which includes the compressibility and elastic/plastic behaviour of the medium, viscosity, density and surface tension. The calculations revealed that consideration of the elastic/plastic behaviour of the medium surrounding the bubble is essential to describe the experimentally observed bipolar shape of the stress wave emitted upon optical breakdown. Water is a poor tissue model because the shape of the emitted stress waves and the bubble dynamics differ strongly for both materials. The mechanical properties of PAA were also found to be quite different from those of tissues. Experimental and

  4. Nonlinear stress waves in a perfectly flexible string. [for aerodynamic decelerating system

    NASA Technical Reports Server (NTRS)

    Fan, D.-N.; Mcgarvey, J. F.

    1977-01-01

    This paper discusses nonlinear stress-wave propagation in a perfectly flexible string obeying a quasilinear (rate-dependent) constitutive equation. Wave speeds and compatibility relations valid along various families of characteristics were determined. It was shown that the compatibility relations associated with the transverse as well as the longitudinal waves readily yield a physical interpretation when they are expressed in suitable variables and in vector form. Coding based on the present information was completed for the machine solution of a class of mixed initial- and boundary-value problems of practical interest. Computer simulation of the stress-wave interaction in the 40-foot lanyard in the Arcas 'Rocoz' system during deployment was carried out using a stress-strain relation for nylon at the strain rate of 30/second. A method for estimating the maximum tension and strain in a string during the initial loading phase is proposed.

  5. Determination of Surface Stress Distributions in Steel Using Laser-Generated Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Shi; Yifei; Ni; Chenyin; Shen; Zhonghua; Ni; Xiaowu; Lu; Jian

    2008-05-01

    High frequency surface acoustic waves (SAWs) are excited by a pulsed laser and detected by a specially designed poly(vinylidene fluoride) (PVDF) transducer to investigate surface stress distribution. Two kinds of stressed surfaces are examined experimentally. One is a steel plate elastically deformed under simple bending forces, where the surface stress varies slowly. The other is a welded steel plate for which the surface stress varies very rapidly within a small area near the welding seam. Applying a new signal processing method developed from correlation technique, the velocity distribution of the SAWs, which reflects the stress distribution, is obtained in these two samples with high resolution.

  6. THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS

  7. Turbulence and stress owing to gravity wave and tidal breakdown

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.

    1981-01-01

    For some years it has been accepted that tides and gravity waves propagating into the upper mesosphere from below are the major source of turbulence in the upper mesosphere. The considered investigation has the objective to examine the implications of such a situation in some detail. The main propagating diurnal mode seems to be the primary contributor at tropical latitudes. Because of the high phase speed of this mode, it is only slightly affected by the mean zonal flow of the atmosphere. Wavebreaking appears to occur around 85 km, leading to a layer of enhanced eddy diffusion and wave induced acceleration extending between 85 km and about 108 km. Above 108 km molecular transport dominates. Gravity waves appear to be dominant at middle and high latitudes. The flow distribution will effectively determine which gravity waves (depending on phase speed) can reach the mesosphere.

  8. Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.

  9. Northeast storms ranked by wind stress and wave-generated bottom stress observed in Massachusetts Bay, 1990-2006

    USGS Publications Warehouse

    Butman, B.; Sherwood, C.R.; Dalyander, P.S.

    2008-01-01

    Along the coast of the northeastern United States, strong winds blowing from the northeast are often associated with storms called northeasters, coastal storms that strongly influence weather. In addition to effects caused by wind stress, the sea floor is affected by bottom stress associated with these storms. Bottom stress caused by orbital velocities associated with surface waves integrated over the duration of a storm is a metric of storm strength at the sea floor. Near-bottom wave-orbital velocities calculated by using measurements of significant wave height and dominant wave period and the parametric spectral method described in Wiberg and Sherwood [Wiberg, P.L., Sherwood, C.R. Calculating wave-generated bottom orbital velocities from surface wave parameters. Computers in Geosciences, in press] compared well with observations in Massachusetts Bay. Integrated bottom-wave stress (called IWAVES), calculated at 30 m water depth, and a companion storm-strength metric, integrated surface wind stress at 10 m (called IWINDS), are used to provide an overview of the strength, frequency, and timing of large storms in Massachusetts Bay over a 17-year period from January 1990 through December 2006. These new metrics reflect both storm duration and intensity. Northeast storms were the major cause of large waves in Massachusetts Bay because of the long fetch to the east: of the strongest 10% of storms (n=38) ranked by IWAVES, 22 had vector-averaged wind stress from the northeast quadrant. The Blizzard of December 1992, the Perfect Storm of October 1991, and a December 2003 storm were the strongest three storms ranked by IWAVES and IWINDS, and all were northeasters. IWAVES integrated over the winter season (defined as October-May) ranged by about a factor of 11; the winters with the highest integrated IWAVES were 1992-1993 and 2004-2005 and the winter with the lowest integrated IWAVES was 2001-2002. May 2005 was the only month in the 17-year record that two of the nine

  10. Experimental study of the stress effect on attenuation of normally incident P-wave through coal

    NASA Astrophysics Data System (ADS)

    Feng, Junjun; Wang, Enyuan; Chen, Liang; Li, Xuelong; Xu, Zhaoyong; Li, Guoai

    2016-09-01

    The purpose of this study is to experimentally investigate the stress effect on normally incident P-wave attenuation through coal specimens. Laboratory tests were carried out using a Split Hopkinson pressure bar (SHPB) system, and a modified method was proposed to determine the quality factor (Q) of P-waves through coal specimens. Larger quality factor denotes less energy attenuated during P-wave propagating through coal. Experimental results indicate that the quality factor and stress (σ) within coal specimens are positively correlated. The P-wave propagation through coal specimens causes crack closure at the beginning of the coal fracture process in SHPB tests, an innovative model was thus proposed to describe the relationship between the crack closure length and the dynamic stress induced by P-wave. Finally, the stress effect on P-wave attenuation through coal was quantitatively represented by a power function Q = a(c-bσ)- 6, and the material constants a, b, and c were determined as 1.227, 1.314, and 0.005, respectively. The results obtained in this study would be helpful for engineers to estimate seismic energy attenuation and coal mass instability in coal mines.

  11. Self-consistent evolution of tissue damage under stress wave propagation

    SciTech Connect

    Amendt, P; Glinsky, M; Kaufman, Y; London, R A; Sapir, M; Strauss, M

    1999-01-14

    Laser-initiated stress waves are reflected from tissue boundaries, thereby inducing tensile stresses, which are responsible for tissue damage. A self-consistent model of tissue failure evolution induced by stress wave propagation is considered. The failed tissue is represented by an ensemble of spherical voids and includes the effect of nucleation, growth and coalescence of voids under stress wave tension. Voids nucleate around impurities and grow according to an extended Rayleigh model that includes the effects of surface tension, viscosity and acoustic emission at void collapse. The damage model is coupled self-consistently to a one-dimensional planar hydrodynamic model of stress waves generated by a short pulse laser. We considered the problem of a bipolar wave generated by a short pulse laser absorbed on a free boundary of an aqueous system. The propagating wave includes a tensile component, which interacts with the impurities of exponential distribution in dimension, impurity density ({approximately}10{sup 8} cm{sup -3}) void and an ensemble of voids is generated. For moderate growth reduces the tensile wave component and causes the pressure to oscillate between tension and compression. For low impurity density ({approximately}10{sup 6} cm{sup -3} ) the bubbles grow on a long time scale (5-10 {micro}sec) relative to the wave interaction time ({approximately}100 nsec). At later times the growing bubbles interact with each other causing pressure oscillations and delay the system from reaching the 1 bar ambient compression pressure. This effect increases considerably the bubble lifetime consistent with experiments. At the collapse stage small bubbles collapse earlier and induce pressures, which reduce the collapse time of the larger bubbles.

  12. Isolated true surface wave in a radiative band on a surface of a stressed auxetic.

    PubMed

    Trzupek, D; Zieliński, P

    2009-08-14

    We demonstrate that a surface resonance (pseudosurface wave) may transform into a true surface wave, i.e., acquire an infinite lifetime, at a single isolated point within a bulk band (radiative region) in a model of a stressed auxetic material. In contrast with the secluded supersonic elastic surface waves, the one found here does not belong to a dispersion line of true surface waves. Therefore we propose to call it an isolated true surface wave (ITSW). The ITSW manifests itself by a deltalike peak in the local density of states and by anomalies in reflection coefficients. The phenomenon may be useful in redirecting energy and/or information from the bulk to the surface in devices supporting guided acoustic waves.

  13. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations.

    PubMed

    Balbus, Steven A

    2016-10-18

    A conserved stress energy tensor for weak field gravitational waves propagating in vacuum is derived directly from the linearized general relativistic wave equation alone, for an arbitrary gauge. In any harmonic gauge, the form of the tensor leads directly to the classical expression for the outgoing wave energy. The method described here, however, is a much simpler, shorter, and more physically motivated approach than is the customary procedure, which involves a lengthy and cumbersome second-order (in wave-amplitude) calculation starting with the Einstein tensor. Our method has the added advantage of exhibiting the direct coupling between the outgoing wave energy flux and the work done by the gravitational field on the sources. For nonharmonic gauges, the directly derived wave stress tensor has an apparent index asymmetry. This coordinate artifact may be straightforwardly removed, and the symmetrized (still gauge-invariant) tensor then takes on its widely used form. Angular momentum conservation follows immediately. For any harmonic gauge, however, the stress tensor found is manifestly symmetric from the start, and its derivation depends, in its entirety, on the structure of the linearized wave equation.

  14. Softening of stressed granular packings with resonant sound waves.

    PubMed

    Reichhardt, C J Olson; Lopatina, L M; Jia, X; Johnson, P A

    2015-08-01

    We perform numerical simulations of a two-dimensional bidisperse granular packing subjected to both a static confining pressure and a sinusoidal dynamic forcing applied by a wall on one edge of the packing. We measure the response experienced by a wall on the opposite edge of the packing and obtain the resonant frequency of the packing as the static or dynamic pressures are varied. Under increasing static pressure, the resonant frequency increases, indicating a velocity increase of elastic waves propagating through the packing. In contrast, when the dynamic amplitude is increased for fixed static pressure, the resonant frequency decreases, indicating a decrease in the wave velocity. This occurs both for compressional and for shear dynamic forcing and is in agreement with experimental results. We find that the average contact number Zc at the resonant frequency decreases with increasing dynamic amplitude, indicating that the elastic softening of the packing is associated with a reduced number of grain-grain contacts through which the elastic waves can travel. We image the excitations created in the packing and show that there are localized disturbances or soft spots that become more prevalent with increasing dynamic amplitude. Our results are in agreement with experiments on glass bead packings and earth materials such as sandstone and granite and may be relevant to the decrease in elastic wave velocities that has been observed to occur near fault zones after strong earthquakes, in surficial sediments during strong ground motion, and in structures during earthquake excitation.

  15. Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A stress wave factor was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), 0 deg + or - 45 deg/0 deg symmetrical, and + or - 45 deg] symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  16. Correlation of fiber composite tensile strength with the ultrasonic stress wave factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A 'stress wave factor' was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), (0 deg/+ or - 45 deg/0) symmetrical, and (+ or - 45 deg) symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  17. Correlation of stress-wave-emission characteristics with fracture aluminum alloys

    NASA Technical Reports Server (NTRS)

    Hartbower, C. E.; Reuter, W. G.; Morais, C. F.; Crimmins, P. P.

    1972-01-01

    A study to correlate stress wave emission characteristics with fracture in welded and unwelded aluminum alloys tested at room and cryogenic temperature is reported. The stress wave emission characteristics investigated were those which serve to presage crack instability; viz., a marked increase in:(1) signal amplitude; (2) signal repetition rate; and (3) the slope of cumulative count plotted versus load. The alloys were 7075-T73, 2219-T87 and 2014-T651, welded with MIG and TIG using 2319 and 4043 filler wire. The testing was done with both unnotched and part-through-crack (PTC) tension specimens and with 18-in.-dia subscale pressure vessels. In the latter testing, a real time, acoustic emission, triangulation system was used to locate the source of each stress wave emission. With such a system, multiple emissions from a given location were correlated with defects found by conventional nondestructive inspection.

  18. Mechanical-Stress Induced Nd:YAG Active Quarter-Wave Plate

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Akatsuka, Masanori; Ishikawa, Koji; Naito, Kenta; Yonezawa, Yoshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakai, Sadao

    1994-09-01

    A quarter-wave retardation was obtained by mechanically induced stress in a Nd:YAG laser rod and a laser gain of 1.15 at 1064 nm was obtained by pumping with a quasi-CW 300 W laser-diode array at 808 nm. The laser rod was held in a brass heatsink in which the mechanical stress was induced horizontally by means of screws. The effective quarter-wave area was measured to be 1 mm (vertical)×2 mm (horizontal) in the center of the 4 mm-diameter Nd:YAG rod by means of a newly constructed polarimeter.

  19. Wave-induced pore pressure and effective stresses in a porous seabed with variable permeability

    SciTech Connect

    Jeng, D.S.; Seymour, B.R.

    1996-12-31

    An evaluation of wave-induced soil response is particularly useful for geotechnical and coastal engineers involved in the design of foundations for offshore structures. To simplify the mathematical procedure, most theories available for the wave/seabed interaction problem have assumed a porous seabed with uniform permeability, despite strong evidence of variable permeability. This paper proposes an analytical solution for the wave induced soil response in a porous seabed with variable permeability. Verification is available through reduction to the simple case of uniform permeability. The numerical results indicate that the effect of variable soil permeability on pore pressure and effective stresses is significant.

  20. Influence of surface stress and atomic defect generation on Rayleigh wave propagation in laser-excited solids

    NASA Astrophysics Data System (ADS)

    Mirzade, F. Kh.

    2013-07-01

    The surface stress effects on the Rayleigh wave propagation characteristics in solids with distributions of laser-induced atomic defects (vacancies, interstitial atoms) are studied. Defect-density fields are governed by the strain-induced generation, recombination and diffusion of atomic defects. Formulation of the general surface wave propagation problem has been made, and the corresponding frequency equation has been derived and analyzed. Some important frequency equations, as obtained by other authors, have been deduced as special cases from the frequency equation for Rayleigh waves. The combined effects of surface stress and defect density field on the Rayleigh wave velocities are shown by numerical calculations and graphs. It is found that the Rayleigh waves are generally dispersive; and in the case of low frequency with residual surface tension, a critical wave length exists, below which the propagation of Rayleigh waves is not possible. This critical wave length depends on both the residual stress and the defect distribution.

  1. Determination of stress glut moments of total degree 2 from teleseismic surface wave amplitude spectra

    NASA Astrophysics Data System (ADS)

    Bukchin, B. G.

    1995-08-01

    A special case of the seismic source, where the stress glut tensor can be expressed as a product of a uniform moment tensor and a scalar function of spatial coordinates and time, is considered. For such a source, a technique of determining stress glut moments of total degree 2 from surface wave amplitude spectra is described. The results of application of this technique for the estimation of spatio-temporal characteristics of the Georgian earthquake, 29.04.91 are presented.

  2. Nonlinear Rayleigh waves to detect initial damage leading to stress corrosion cracking in carbon steel

    NASA Astrophysics Data System (ADS)

    Matlack, K. H.; Kim, J.-Y..; Jacobs, L. J.; Qu, J.; Singh, P. M.

    2012-05-01

    This research experimentally investigates second harmonic generation of Rayleigh waves propagating through carbon steel samples damaged in a stress corrosion environment. Damage from stress corrosion cracking is of major concern in nuclear reactor tubes and in gas and fuel transport pipelines. For example, certain types of stress corrosion cracking (SCC) account for more failures in steam generator tubes than most other damage mechanisms, yet these cracks do not initiate until late in the structure's life. Thus, there is a need to be able to measure the damage state prior to crack initiation, and it has been shown that the acoustic nonlinearity parameter - the parameter associated with second harmonic generation - is sensitive to microstructural evolution. In this work, samples are immersed in a sodium carbonate-bicarbonate solution, which typically forms in the soil surrounding buried pipelines affected by SCC, and held at yield stress for 5-15 days to the onset of stress corrosion cracking. Measurements of second harmonic generation with Rayleigh waves are taken intermittently to relate cumulative damage prior to macroscopic cracking to nonlinear wave propagation. Experimental results showing changes in second harmonic generation due to stress corrosion damage are presented.

  3. The Stress-Wave Radiation from Growing Cracks.

    DTIC Science & Technology

    1979-08-01

    transducer effects in acoustic emission studies of fatigue cracking, or stress-corrosion cracking. POSTAL ADDRESS: Chief Superintendent, Aeronautical... measure of the effective width of the P-pulse of the primary radiation (except for a= r/2, where there is a caustic). In the far field, i.e. for R...Corporate Author: 8. Reference Numbers Aeronautical Research Laboratories (a) Task: DST 76/92 9. Cost Code : (b) Sponsoring Agency: 32-6720 10. Imprint: 11

  4. Soil Liquefaction Resulting from Blast-Induced Spherical Stress Waves

    DTIC Science & Technology

    1990-01-01

    on vibration sensitive. two phase materials like loose saturated sands, there can be elastic strain in the water phase but plastic strain in the sand...similar behaviour. Liquefaction can be induced by a variety of loading menhanisms including monotonic stress changes, earthquakes, and blast vibrations ...A sandstone bedrock is estimated to lie between 8 and 9 m below the ground surface with a series of folded shale layers over the sandstone. The top

  5. Study of heat-stress levels in naturally ventilated sheep barns during heat waves: development and assessment of regression models

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Bartzanas, T.; Panagakis, P.; Zhang, G.; Kittas, C.

    2016-11-01

    It is well documented that heat-stress burdens sheep welfare and productivity. Peak heat-stress levels are observed when high temperatures prevail, i.e. during heat waves; however, continuous measurements inside livestock buildings are not usually available for long periods so as to study the variation of summer heat-stress levels for several years, especially during extreme hot weather. Α methodology to develop a long time series of summer temperature and relative humidity inside naturally ventilated sheep barns is proposed. The accuracy and the transferability of the developed linear regression models were verified. Temperature Humidity Index (THI) was used to assess sheep's potential heat-stress. Τhe variation of THI inside a barn during heat wave and non-heat wave days was examined, and the results were comparatively assessed. The analysis showed that sheep were exposed to moderate, severe, and extreme severe heat-stress in 10, 21 and 66 % of hours, respectively, during heat wave days, while the corresponding values during non-heat wave days were 14, 33 and 43 %, respectively. The heat load on sheep was much higher during heat wave events than during non-heat wave periods. Additionally, based on the averaged diurnal variation of THI, it was concluded that extreme severe heat-stress conditions were prevailing between 1000 and 2400 hours local time during heat wave days. Cool off night periods were never and extremely rarely detected during heat wave and non-heat wave days, respectively.

  6. Stress wave propagation analysis on vortex-induced vibration of marine risers

    NASA Astrophysics Data System (ADS)

    Li, Hua-jun; Wang, Chao; Liu, Fu-shun; Hu, Sau-Lon James

    2017-03-01

    To analyze the stress wave propagation associated with the vortex-induced vibration (VIV) of a marine riser, this paper employed a multi-signal complex exponential method. This method is an extension of the classical Prony's method which decomposes a complicated signal into a number of complex exponential components. Because the proposed method processes multiple signals simultaneously, it can estimate the "global" dominating frequencies (poles) shared by those signals. The complex amplitude (residues) corresponding to the estimated frequencies for those signals is also obtained in the process. As the signals were collected at different locations along the axial direction of a marine riser, the phenomena of the stress wave propagation could be analyzed through the obtained residues of those signals. The Norwegian Deepwater Program (NDP) high mode test data were utilized in the numerical studies, including data sets in both the in-line (IL) and cross-flow (CF) directions. It was found that the most dominant component in the IL direction has its stress wave propagation along the riser being dominated by a standing wave, while that in the CF direction dominated by a traveling wave.

  7. The effect of surface stress on the propagation of Lamb waves.

    PubMed

    Chakraborty, A

    2010-06-01

    This work investigates the possibility of the propagation of Lamb waves in thin solid layers with external traction free surfaces, in the presence of surface elasticity, inertia and residual stress. It is demonstrated that such waves do exist and that their characteristics can be quite different from their classical counterparts. The governing equations with non-classical boundary conditions involving the bulk and surface stress are solved exactly in the frequency-wavenumber domain. This solution is utilized to compute the Lamb wave modes for different layer thicknesses. An efficient strategy to capture all the modes of Lamb waves within a given frequency window is outlined. It is shown that the effect of surface elasticity and inertia becomes significant with increasing frequency and decreasing layer thickness, where the number of modes participating within a given frequency window is more than that permitted by the classical theory. Further, it is observed that the nature of the Lamb wave modes (in terms of negative dispersion) in the presence of surface stress is similar to what predicted by the nonlocal theory and microstructure based continuum theory.

  8. Visualization of stress wave propagation via air-coupled acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan

    2017-02-01

    We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.

  9. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, P. J.

    1988-01-01

    Ways of implementing the turbulence closure scheme based on modeling the large scale coherent structures as instability waves were sought. The computational tools necessary to apply this scheme to jets of arbitrary geometry were developed. The model, developed earlier, was extended to the shock structure of supersonic jets of arbitrary geometry and multiple jets. It was found that though the qualititate features of the unsteady flow field could be predicted there were always difficulties with some of the quantitative features. This led to the new formation of the closure scheme. The schemes for computations tools which were developed are efficient and represent the application of the very powerful mathematical tools to the problems of practical significance.

  10. Propagation of high amplitude stress waves through a filled artificial joint: An experimental study

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolin; Qi, Shengwen; Xia, Kaiwen; Zheng, Hong; Zheng, Bowen

    2016-07-01

    This paper investigates the propagation of high amplitude stress waves through a filled joint using a modified steel split Hopkinson pressure bar (SHPB) system. Quartz sand fillings with various thickness are placed in a steel tube and then sandwiched between the incident and transmitted bars to simulate the filled rock joints. Using SHPB, the incident stress waves with similar frequency spectrum but varying amplitude are induced to load the artificial filled joints. The particle size distributions of the fillings after tests are analyzed. It is discovered that as the amplitude of the incident wave increases, the fillings experience three stages of deformation: initial compaction, crushing and crushing and compaction. In the initial compaction stage and the crushing and compaction stage, the fillings are mainly compacted, and thus the transmission coefficient increases with the amplitude of the incident wave. However in the crushing stage, the transmission coefficient decreases with the increase of the amplitude of the incident wave. This is a result of energy consumption due to particle crushing. The observed dependence of the transmission coefficient on the wave amplitude is consistent with the particle size distribution of recovered fillings.

  11. Long-wave tangential stresses in the lithosphere and mantle of Venus

    SciTech Connect

    Zharkov, V.N.; Marchenkov, K.I.; Lyubimov, V.M.

    1987-01-01

    The loading coefficients are calculated for real models of Venus taking into account the asthenosphere for anomalous density waves positioned at different characteristic levels. An associated analysis of the topography and the non-equilibrium part of the gravitational field allows one to determine long-wave primary tangential stresses in the lithosphere and mantle for zonal harmonics with n = 2-8. The stresses in the lithosphere of Venus are approximately equal to 30 bar, while those in the lower mantle can be up to 45 bar, but they are only on the order of a few bars in the weakened upper mantle. The low level of tangential stresses in the core and mantle of Venus is an important indication that the interior of the planet is intensely heated. A conclusion is drawn on aseismic nature of Venus.

  12. Poroelastic Wave Propagation With a 3D Velocity-Stress-Pressure Finite-Difference Algorithm

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Symons, N. P.; Bartel, L. C.

    2004-12-01

    Seismic wave propagation within a three-dimensional, heterogeneous, isotropic poroelastic medium is numerically simulated with an explicit, time-domain, finite-difference algorithm. A system of thirteen, coupled, first-order, partial differential equations is solved for the particle velocity vector components, the stress tensor components, and the pressure associated with solid and fluid constituents of the two-phase continuum. These thirteen dependent variables are stored on staggered temporal and spatial grids, analogous to the scheme utilized for solution of the conventional velocity-stress system of isotropic elastodynamics. Centered finite-difference operators possess 2nd-order accuracy in time and 4th-order accuracy in space. Seismological utility is enhanced by an optional stress-free boundary condition applied on a horizontal plane representing the earth's surface. Absorbing boundary conditions are imposed on the flanks of the 3D spatial grid via a simple wavefield amplitude taper approach. A massively parallel computational implementation, utilizing the spatial domain decomposition strategy, allows investigation of large-scale earth models and/or broadband wave propagation within reasonable execution times. Initial algorithm testing indicates that a point force density and/or moment density source activated within a poroelastic medium generates diverging fast and slow P waves (and possibly an S-wave)in accord with Biot theory. Solid and fluid particle velocities are in-phase for the fast P-wave, whereas they are out-of-phase for the slow P-wave. Conversions between all wave types occur during reflection and transmission at interfaces. Thus, although the slow P-wave is regarded as difficult to detect experimentally, its presence is strongly manifest within the complex of waves generated at a lithologic or fluid boundary. Very fine spatial and temporal gridding are required for high-fidelity representation of the slow P-wave, without inducing excessive

  13. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, P. J.

    1987-01-01

    Numerical methods were developed that will form the computational part of the turbulence closure scheme. A wave model was developed for the two-dimensional shear layer. This configuration is being used as a test case for the closure schemes. Various numerical schemes were examined to give efficient solutions of the Rayleigh equation for this geometry. These include both spectral and finite difference methods. Secondly, numerical methods are under development to solve the non-separable Rayleigh equation. This solution is required for the closure scheme in more complex geometries. A model problem was used to assist in the algorithm development. Two-dimensional spectral methods and a hybrid spectral/finite difference technique were developed. An analytic solution of the Rayleigh equation for a basic elliptic flow was obtained. This will be used to verify the stability codes developed for arbitrary geometries. Other numerical methods for solving the Rayleigh equation based on the boundary element technique were also examined. These solutions are forming the basis of a model for the shock structure in jets of arbitrary geometry.

  14. Preliminary Studies on Damage Tolerant Strategies for Composite Design and Health Monitoring

    DTIC Science & Technology

    2009-05-22

    methodology for detecting damage in thin walled plate metallic structures, using 2-D ultrasonic phased arrays , was presented, obtaining beam-forming...active nonlinear acousto- ultrasonic based methods, and (2) active Lamb wave based methods Lamb wave methods are based on the principle of detecting...open field. On the other hand, the nonlinear acousto- ultrasonic methods attempt to exploit the effect of anomalously high levels of nonlinearity in

  15. Effects of initial stress on transverse wave propagation in carbon nanotubes based on Timoshenko laminated beam models

    NASA Astrophysics Data System (ADS)

    Cai, H.; Wang, X.

    2006-01-01

    Based on Timoshenko laminated beam models, this paper investigates the influence of initial stress on the vibration and transverse wave propagation in individual multi-wall carbon nanotubes (MWNTs) under ultrahigh frequency (above 1 THz), in which the initial stress in the MWNTs can occur due to thermal or lattice mismatch between different materials. Considering van der Waals force interaction between two adjacent tubes and effects of rotary inertia and shear deformation, results show that the initial stress in individual multi-wall carbon nanotubes not only affects the number of transverse wave speeds and the magnitude of transverse wave speeds, but also terahertz critical frequencies at which the number of wave speeds changes. When the initial stress in individual multi-wall carbon nanotubes is the compressive stress, transverse wave speeds decrease and the vibration amplitude ratio of two adjacent tubes increases. When the initial stress in individual multi-wall carbon nanotubes is the tensile stress, transverse wave speeds increase and the vibration amplitude ratio of two adjacent tubes decreases. The investigation of the effects of initial stress on transverse wave propagation in carbon nanotubes may be used as a useful reference for the application and the design of nanoelectronic and nanodrive devices, nano-oscillators, and nanosensors, in which carbon nanotubes act as basic elements.

  16. Stress Partitioning in the Wave Bottom Boundary Layer with the Double-Averaged Navier Stokes Equations

    NASA Astrophysics Data System (ADS)

    Rodriguez-Abudo, S.; Foster, D.

    2010-12-01

    A technique for double-averaging the momentum equations has been successfully implemented on PIV observations of the two-dimensional time-dependent velocity field over a rippled bed. This technique, originally proposed by Gimenez-Curto and Corniero Lera [1996], uses ensemble and subsequent spatial averaging to yield the Double Averaged Navier-Stokes (DANS) equations. The resulting formulation yields a balance between the acceleration deficit and various pressure- and shear-induced drag terms as a function of wave phase. This approach is of great advantage as it allows for direct determination of the form-induced stresses. Preliminary results are exciting and show negligible viscous stresses, and comparable magnitude between the form-induced, Reynolds, and radiation stresses. The momentum balance shows remarkable agreement between the shear stress gradient and the acceleration deficit for phases with large wave steepness. Discrepancies are attributed to the pressure-induced form drag terms. This approach is promising as it provides a new method for stress partitioning and subsequent evaluation of the relative contribution of each component to the total stress. Moreover, it will further allow for in depth analyses of friction factors and sediment transport rates.

  17. Dynamic response of polyurea subjected to nanosecond rise-time stress waves

    NASA Astrophysics Data System (ADS)

    Youssef, George; Gupta, Vijay

    2012-08-01

    Shaped charges and explosively formed projectiles used in modern warfare can attain speeds as high as 30,000 ft/s. Impacts from these threats are expected to load the armor materials in the 10 to 100 ns timeframe. During this time, the material strains are quite limited but the strain rates are extremely high. To develop armors against such threats it is imperative to understand the dynamic constitutive behavior of materials in the tens of nanoseconds timeframe. Material behavior in this parameter space cannot be obtained by even the most sophisticated plate-impact and split-Hopkinson bar setups that exist within the high energy materials field today. This paper introduces an apparatus and a test method that are based on laser-generated stress waves to obtain such material behaviors. Although applicable to any material system, the test procedures are demonstrated on polyurea which shows unusual dynamic properties. Thin polyurea layers were deformed using laser-generated stress waves with 1-2 ns rise times and 16 ns total duration. The total strain in the samples was less than 3%. Because of the transient nature of the stress wave, the strain rate varied throughout the deformation history of the sample. A peak value of 1.1×105 s-1 was calculated. It was found that the stress-strain characteristics, determined from experimentally recorded incident and transmitted wave profiles, matched satisfactorily with those computed from a 2D wave mechanics simulation in which the polyurea was modeled as a linearly viscoelastic solid with constants derived from the quasi-static experiments. Thus, the test data conformed to the Time-Temperature Superposition (TTS) principle even at extremely high strain rates of our test. This then extends the previous observations of Zhao et al. (Mech. Time-Depend. Mater. 11:289-308, 2007) who showed the applicability of the TTS principle for polyurea in the linearly viscoelastic regime up to peak strain rates of 1200 s-1.

  18. Calculations of the stress tensor under Symmetric cylindrical shock wave loading

    SciTech Connect

    Chikhradze, N. M.; Lomidze, I.; Marquis, F. D. S.; Staudhammer, Karl P.; Japaridze, L. A.; Peikrishvili, A. B.

    2001-01-01

    The calculation of the components of the stress tensor under symmetric cylindrical shock wave loading, when the pressure impulse of cylindrical symmetry is being spread uniformly along the surface of an infinite cylindrical elastic body, have been carried out. The objective of these calculations is to assess with a sufficient approximation the stress-deformed state in samples during low intensity axis-symmetric shock wave loading. The necessity of such an assessment is grounded on a wide utilization and practical applications of shock wave axis-symmetric loading used in the explosive processing of advanced materials. Tile main assumptions made at the initial stage of these calculations are: elasticity and isotropy of medium, constancy of the sound speed and Lame elasticity constants, and medium boundary conditions of cylindrical symmetry. Subsequently, the removal of some assumptions during the investigation process makes possible to take into account effects engendered by boundary conditions' asymmetry and changes in the sound speed and Lame constants These changes are caused by irreversible thermal transformations going on in the medium. Well known methods for solving differential equations, such as the Fourier method, functions of Bessel, Neumann, and Hankel, equations of Helmholtz, are used in these calculations. These calculations, assuming axial symmetry, are presented as a set of simple equations where the arguments are components of the stress tensor and the solution of this set, for this specific case, gives all the components of the stress tensor.

  19. Prediction of stress waves propagation in progressively loaded seven wire strands

    NASA Astrophysics Data System (ADS)

    Bartoli, Ivan; Castellazzi, Giovanni; Marzani, Alessandro; Salamone, Salvatore

    2012-04-01

    High tensile strength steel strands are widespread load carrying structural components in civil structures. Due to their critical role, several researchers have investigated nondestructive techniques to assess the presence of damage such as corrosion or the change in prestress level (prestress loss). Ultrasonic Guided Waves are known to be an effective approach for defect detection in components with waveguide geometry such as strands. However, Guided Wave propagation (dispersion properties) in steel strands is fairly complex partially due to the strand helical geometry and the influence of axial prestress. For instance, the strand axial stress generates a proportional radial stress between adjacent wires (interwire stress) that is responsible for inter-wire coupling effects. While experimental and numerical investigations have attempted to study and predict wave propagation in axially loaded strands, the propagation phenomenon is not yet fully understood. The present paper intends to improve the knowledge of dispersion properties in progressively loaded seven wire strands accounting for helical geometry and interwire contact forces. Full three dimensional Finite Element simulations as well as Semi-Analytical Models will be used to predict the dispersion curves in strands as a function of the axial stress.

  20. Nonlinear ultrasonic guided waves for stress monitoring in prestressing tendons for post-tensioned concrete structures

    NASA Astrophysics Data System (ADS)

    Bartoli, Ivan; Nucera, Claudio; Srivastava, Ankit; Salamone, Salvatore; Phillips, Robert; Lanza di Scalea, Francesco; Coccia, Stefano; Sikorsky, Charles S.

    2009-03-01

    Many bridges, including 90% of the California inventory, are post-tensioned box-girders concrete structures. Prestressing tendons are the main load-carrying components of these and other post-tensioned structures. Despite their criticality, much research is needed to develop and deploy techniques able to provide real-time information on the level of prestress in order to detect dangerous stress losses. In collaboration with Caltrans, UCSD is investigating the combination of ultrasonic guided waves and embedded sensors to provide both prestress level monitoring and defect detection capabilities in concrete-embedded PS tendons. This paper presents a technique based on nonlinear ultrasonic guided waves in the 100 kHz - 2 MHz range for monitoring prestress levels in 7-wire PS tendons. The technique relies on the fact that an axial stress on the tendon generates a proportional radial stress between adjacent wires (interwire stress). In turn, the interwire stress modulates nonlinear effects in ultrasonic wave propagation through both the presence of finite strains and the interwire contact. The nonlinear ultrasonic behavior of the tendon under changing levels of prestress is monitored by tracking higher-order harmonics at (nω) arising under a fundamental guided-wave excitation at (ω). Experimental results will be presented to identify (a) ranges of fundamental excitations at (ω) producing maximum nonlinear response, and (b) optimum lay-out of the transmitting and the receiving transducers within the test tendons. Compared to alternative methods based on linear ultrasonic features, the proposed nonlinear ultrasonic technique appears more sensitive to prestress levels and more robust against changing excitation power at the transmitting transducer or changing transducer/tendon bond conditions.

  1. Differential impact of the first and second wave of a stress response on subsequent fear conditioning in healthy men.

    PubMed

    Antov, Martin I; Wölk, Christoph; Stockhorst, Ursula

    2013-10-01

    Stress is a process of multiple neuroendocrine changes over time. We examined effects of the first-wave and second-wave stress response on acquisition and immediate extinction of differential fear conditioning, assessed by skin conductance responses. In Experiment 1, we placed acquisition either close to the (second-wave) salivary cortisol peak, induced by a psychosocial stressor (experimental group, EG), or after non-stressful pretreatment (control group, CG). Contrary to predictions, groups did not differ in differential responding. In the EG only, mean differential responding was negatively correlated with cortisol increases. In Experiment 2, we placed conditioning near the first-wave stress response, induced by a cold pressor test (CPT), or after a warm-water condition (CG). CPT-stress increased extinction resistance. Moreover, acquisition performance after CPT was positively correlated with first-wave blood pressure increases. Data suggest that mediators of the first-wave stress response enhance fear maintenance whereas second-wave cortisol responsivity to stress might attenuate fear learning.

  2. DERIVATIONS FOR HOOP STRESSES DUE TO SHOCK WAVES IN A TUBE

    SciTech Connect

    Leishear, R

    2007-04-30

    Equations describing the hoop stresses in a pipe due to water hammer have been presented in the literature in a series of papers, and this paper discusses the complete derivation of the pertinent equation. The derivation considers the pipe wall response to a water hammer induced shock wave moving along the inner wall of the pipe. Factors such as fluid properties, pipe wall materials, pipe dimensions, and damping are considered. These factors are combined to present a single, albeit rather complicated, equation to describe the pipe wall vibrations and hoop stresses as a function of time. This equation is also compared to another theoretical prediction for hoop stresses, which is also derived herein. Specifically, the two theories predict different maximum stresses, and the differences between these predictions are graphically displayed.

  3. [EEG changes and stress reactions in rat induced by millimeter wave].

    PubMed

    Xie, Taorong; Pei, Jian; Li, Fen; Huang, Xin; Chen, Shude; Qiao, Dengjiang

    2011-02-01

    The present paper is aimed to study the processes of stress reaction and their judgment bases in rat induced by 35 GHz millimeter wave quantitatively. The relative change in the average energy of each EEG frequency band decomposed by wavelet analysis was calculated for extracting the stress indicator for the purpose. The rat would experience quiet period, guarding period, deadlock period and prostrating period in sequence. The judgment bases of different stress periods in rat induced by millimeter wave were obtained by analyzing the skin temperature, skin injury and changes of blood biochemical indexes during each stress period. The stress period changed from quiet period to guarding period when the skin temperature of irradiated area reached the thermal pain threshold. It was from guarding period to deadlock period when the skin had gotten serious injury. Then the rat reaction sensitivity decreased, and injury of its visceral organs occurred. The rat got to prostrating period when the sustained irradiation caused the rat's visceral organs to get more serious injury. The further sustained irradiation finally induced death of the rat.

  4. Effect of initial stress on propagation behaviors of shear horizontal waves in piezoelectric/piezomagnetic layered cylinders.

    PubMed

    Zhao, X; Qian, Z H; Zhang, S; Liu, J X

    2015-12-01

    An analytical approach is taken to investigate shear horizontal wave (SH wave) propagation in layered cylinder with initial stress, where a piezomagnetic (PM) material thin layer is bonded to a piezoelectric (PE) cylinder. Two different material combinations are taken into account, and the phase velocities of the SH waves are numerically calculated for the magnetically open and short cases, respectively. It is found that the initial stress, the thickness ratio and the material performance have a great influence on the phase velocity. The results obtained in this paper can offer fundamental significance to the application of PE/PM composite media or structure for the acoustic wave and microwave technologies.

  5. A study of the stress wave factor technique for the characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Govada, A. K.; Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1985-01-01

    This study has investigated the potential of the Stress Wave Factor as an NDT technique for thin composite laminates. The conventional SWF and an alternate method for quantifying the SWF were investigated. Agreement between the initial SWF number, ultrasonic C-scan, inplane displacements as obtained by full field moire interferometry, and the failure location have been observed. The SWF number was observed to be the highest when measured along the fiber direction and the lowest when measured across the fibers. The alternate method for quantifying the SWF used square root of the zeroth moment (square root of M sub o) of the frequency spectrum of the received signal as a quantitative parameter. From this study it therefore appears that the stress wave factor has an excellent potential to monitor damage development in thin composite laminates.

  6. Stress waves generated in thin metallic films by a Q-switched ruby laser

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1974-01-01

    Investigation results on stress waves generated by Q-switched ruby laser irradiated thin metal films under confinement, studied over a wide range of film materials and film thicknesses, are reviewed. The results indicate that the dependence on these parameters is much weaker than is predicted by heat transfer estimations commonly used to describe the interaction of laser irradiation with unconfined bulk-solid surfaces.

  7. Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity

    NASA Astrophysics Data System (ADS)

    Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.

    2017-02-01

    The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.

  8. Hertzian impact: experimental study of the force pulse and resulting stress waves.

    PubMed

    McLaskey, Gregory C; Glaser, Steven D

    2010-09-01

    Ball impact has long been used as a repeatable source of stress waves in solids. The amplitude and frequency content of the waves are a function of the force-time history, or force pulse, that the ball imposes on the massive body. In this study, Glaser-type conical piezoelectric sensors are used to measure vibrations induced by a ball colliding with a massive plate. These measurements are compared with theoretical estimates derived from a marriage of Hertz theory and elastic wave propagation. The match between experiment and theory is so close that it not only facilitates the absolute calibration the sensors but it also allows the limits of Hertz theory to be probed. Glass, ruby and hardened steel balls 0.4 to 2.5 mm in diameter were dropped onto steel, glass, aluminum, and polymethylmethacrylate plates at a wide range of approach velocities, delivering frequencies up to 1.5 MHz into these materials. Effects of surface properties and yielding of the plate material were analyzed via the resulting stress waves and simultaneous measurements of the ball's coefficient of restitution. The sensors are sensitive to surface normal displacements down to about +/-1 pm in the frequency range of 20 kHz to over 1 MHz.

  9. Characterization of damage due to stress corrosion cracking in carbon steel using nonlinear surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Zeitvogel, D. T.; Matlack, K. H.; Kim, J.-Y.; Jacobs, L. J.; Singh, P. M.; Qu, J.

    2013-01-01

    Cold rolled carbon steel 1018C is widely used in pressurized fuel pipelines. In these structures, stress corrosion cracking (SCC) can pose a significant problem because cracks initiate late in the lifetime and often unexpectedly, but grow fast once they get started. To ensure a safe operation it is crucial that any damage can be detected before the structural stability is reduced by large cracks. In the early stages of SCC, microstructural changes occur which in many cases increase the acoustic nonlinearity of the material. Therefore, an initially monochromatic Rayleigh wave is distorted and measurable higher harmonics are generated. Different levels of stress corrosion cracking is induced in five specimens. For each specimen, nonlinear ultrasonic measurements are performed before and after inducing the damage. For the measurements, oil coupled wedge transducers are used to generate and detect tone burst Rayleigh wave signals. The amplitudes of the received fundamental and second harmonic waves are measured at varying propagation distances to obtain a measure for the acoustic nonlinearity of the specimens. The results show a damage-dependent increase in nonlinearity for early stages of damage, indicating the feasibility of this nonlinear ultrasonic method to detect the initiation of stress corrosion cracking.

  10. Reflection and transmission of plane SH-waves in an initially stressed inhomogeneous anisotropic magnetoelastic medium

    NASA Astrophysics Data System (ADS)

    Majhi, S.; Pal, P. C.; Kumar, S.

    2017-01-01

    This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower half-space is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for half-spaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell's law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the half-spaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.

  11. In situ measurements of shear stresses of a flushing wave in a circular sewer using ultrasound.

    PubMed

    Staufer, P; Pinnekamp, J

    2008-01-01

    Deposits build up in sewer networks during both spells of dry weather and in connection with storm water events. In order to reduce the negative effects of deposit on the environment, different cleaning technologies and strategies are applied to remove the deposits. Jet cleaning represents the most widely used method to clean sewers. Another alternative cleaning procedure is flushing. On account of new developments in measurement and control panels, the flushing method is becoming more important. Therefore, in the last few years a number of new flushing devices have been constructed for application in basins, main sewers and initial reaches. Today, automatic flushing gates are able to accomplish cleaning procedures under economical and ecological conditions. The properties of flushing waves for cleaning sewers have been determined by several mathematical-numerical studies. These various investigations use altering numerical schemes, are based on different sets of physical equations and take one- or more dimensional aspects into account. Considering that bottom shear stress is the key value to evaluate the beginning of motion of any deposit, one may use this value that has to be determined by measurements. This paper deals with shear stresses caused by flushing waves which have been measured by an ultrasonic device that can determine the velocity in different depths of flow. Thus, it is possible, within certain limits, to calculate bottom shear stresses based on the log-wall law. Further discussion will deal with the requirements of measurements, its uncertainty and aspects in respect to the application of simulation of flushing waves.

  12. Reversible T-wave inversions and neurogenic myocardial stunning in a patient with recurrent stress-induced cardiomyopathy.

    PubMed

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Suyama, Jumpei; Toshida, Tsutomu; Kayano, Hiroyuki; Shinozuka, Akira; Gokan, Takehiko; Kobayashi, Youichi

    2014-05-01

    A 72-year-old female was diagnosed as a stress-induced cardiomyopathy from apical ballooning pattern of left ventricular dysfunction without coronary artery stenosis after the mental stress. ECG showed the transient T-wave inversions after the ST-segment elevations. By the mental stress after 1 year, she showed a transient dysfunction with similar ECG changes again. T-wave inversions recovered earlier, and cardiac sympathetic dysfunction showed a lighter response corresponding to the less severe dysfunction than those after the first onset. Wellens' ECG pattern was associated with the degree of neurogenic myocardial stunning with sympathetic hyperinnervation caused by mental stress.

  13. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs

    NASA Astrophysics Data System (ADS)

    Ghorbanpour Arani, A.; Roudbari, M. A.

    2014-11-01

    This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler-Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.

  14. Promising quantitative nondestructive evaluation techniques for composite materials

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.

    1985-01-01

    Some recent results in the area of the ultrasonic, acoustic emission, thermographic, and acousto-ultrasonic NDE of composites are reviewed. In particular, attention is given to the progress in the use of ultrasonic attenuation, acoustic emission (parameter) delay, liquid-crystal thermography, and the stress wave factor in structural integrity monitoring of composite materials. The importance of NDE flaw significance characterizations is emphasized since such characterizations can directly indicate the appropriate NDE technique sensitivity requirements. The role of the NDE of flawed composites with and without overt defects in establishing quantitative accept/reject criteria for structural integrity assessment is discussed.

  15. Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum.

    PubMed

    Li, Biao; Wei, Jinmin; Wei, Xiaolan; Tang, Kun; Liang, Yilong; Shu, Kunxian; Wang, Bochu

    2008-06-01

    The effect of sound wave stress on important medicinal plant, Dendrobium candidum Wall. ex Lindl, was investigated, including the responses on malondialdehyde (MDA) content, the activities change of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX). Results were found that the activities of SOD, CAT, POD and APX enhanced totally in different organs of D. candidum, as leaves, stems and roots, in response to the stress. Furthermore there happened similar shift of antioxidant enzymes activities, which increased in the initial stimulation and decreased afterwards. Data showed SOD, CAT, POD and APX activities ascended to max at day 9, 6, 9 and 12 in leaves, at day 9, 6, 12 and 9 in stems, and at day 12, 6, 9 and 9 in roots, respectively. As a lipid peroxidation parameter, MDA content in different organs increased in the beginning, dropped afterward, and increased again in the late. Anyway the total trend was the rise of MDA level compared to the control. It was interesting that the MDA content appeared the lowest levels almost when the antioxidant enzymes activities were up to the highest. Our results demonstrated the different organs of D. candidum might produce accumulation of active oxygen species (AOS) under initial treatment of sound wave stress. Later AOS might start to reduce due to the enhancement of antioxidant enzymes activities treated by the stress. The data revealed that the antioxidant metabolism was to be important in determining the ability of plants to survive in sound stress, and the up regulation of these enzymes activities would help to reduce the build up of AOS, which could protect plant cells from oxidative damage. Moreover, different cell compartments might activate different defensive system to reduce excessive amount of AOS. Finally the mechanism of this action was also discussed simply.

  16. Stress formulation in the all-electron full-potential linearized augmented plane wave method

    NASA Astrophysics Data System (ADS)

    Nagasako, Naoyuki; Oguchi, Tamio

    2012-02-01

    Stress formulation in the linearlized augmented plane wave (LAPW) method has been proposed in 2002 [1] as an extension of the force formulation in the LAPW method [2]. However, pressure calculations only for Al and Si were reported in Ref.[1] and even now stress calculations have not yet been fully established in the LAPW method. In order to make it possible to efficiently relax lattice shape and atomic positions simultaneously and to precisely evaluate the elastic constants in the LAPW method, we reformulate stress formula in the LAPW method with the Soler-Williams representation [3]. Validity of the formulation is tested by comparing the pressure obtained as the trace of stress tensor with that estimated from total energies for a wide variety of material systems. Results show that pressure is estimated within the accuracy of less than 0.1 GPa. Calculations of the shear elastic constant show that the shear components of the stress tensor are also precisely computed with the present formulation [4].[4pt] [1] T. Thonhauser et al., Solid State Commun. 124, 275 (2002).[0pt] [2] R. Yu et al., Phys. Rev. B 43, 6411 (1991).[0pt] [3] J. M. Soler and A. R. Williams, Phys. Rev. B 40, 1560 (1989).[0pt] [4] N. Nagasako and T. Oguchi, J. Phys. Soc. Jpn. 80, 024701 (2011).

  17. TROTT computer program for two-dimensional stress wave propagation, volume 3

    NASA Astrophysics Data System (ADS)

    Seaman, L.; Curran, D. R.

    1980-04-01

    TROTT is a Lagrangian finite-difference computer program for calculating two dimensional stress wave propagation through solid, porous, and composite materials. The stress waves may be caused by impact, detonation of an explosive, or a prescribed velocity. The calculational procedure is the standard leapfrog method of von Neumann and Richtmyer, using artificial viscosity to smooth shock fronts. Quadrilateral or triangular cells are used. The momentum relations are derived by treating the cells as finite elements. Axisymmetric or planar flow can be handled. The constitutive relations include the standard Mie-Gruneisen equation-of-state and elastic-plastic, work-hardening deviator stress relations. A polytropic gas and detonating flow relations are provided for explosives. Ductile and brittle fracture and shear banding are provided by nucleation and growth models. Porous materials can be represented by a cap plasticity model. A model for layered composites is also present. The code is constructed for easy insertion of additional material models. The number of extra variables required for each cell for a material model can be specified on an input card. This manual includes many sample problems, a derivation of the flow equations, and a discussion of material models.

  18. Unsteady stress partitioning and momentum transfer in the wave bottom boundary layer over movable rippled beds

    NASA Astrophysics Data System (ADS)

    Rodríguez-Abudo, S.; Foster, D. L.

    2014-12-01

    Observations of the nearbed velocity field over a rippled sediment bed under asymmetric wave forcing conditions were collected using a submersible particle image velocimetry (PIV) system. To examine the role of bed form-induced dynamics in the total momentum transfer, a double-averaging technique was implemented on the two-dimensional time-dependent velocity field by means of the full momentum equation. This approach allows for direct determination of the bed form-induced stresses, i.e., stresses that arise due to the presence of bed forms, which are zero in flat bed conditions. This analysis suggests that bed form-induced stresses are closely related to the presence of coherent motions and may be partitioned from the turbulent stresses. Inferences of stress provided by a bed load transport model suggest that total momentum transfer obtained from the double-averaging technique is capable of reproducing bed form mobilization. Comparisons between the total momentum transfer and stress estimates obtained from local velocity profiles show significant variability across the ripple and suggest that an array of sensors is necessary to reproduce bed form evolution. The imbalance of momentum obtained by resolving the different terms constituting the near-bed momentum balance (i.e., acceleration deficit, stress gradient, and bed form-induced skin friction) provides an estimate of the bed form-induced pressure that is consistent with flow separation. This analysis reveals three regions in the flow: the free-stream, where all terms are relatively balanced; the near-bed, where momentum imbalance is significant during flow weakening; and below ripple crests, where bed form-induced pressure is the leading order mechanism.

  19. Large-amplitude internal waves sustain coral health during thermal stress

    NASA Astrophysics Data System (ADS)

    Schmidt, Gertraud M.; Wall, Marlene; Taylor, Marc; Jantzen, Carin; Richter, Claudio

    2016-09-01

    Ocean warming is a major threat for coral reefs causing widespread coral bleaching and mortality. Potential refugia are thus crucial for coral survival. Exposure to large-amplitude internal waves (LAIW) mitigated heat stress and ensured coral survival and recovery during and after an extreme heat anomaly. The physiological status of two common corals, Porites lutea and Pocillopora meandrina, was monitored in host and symbiont traits, in response to LAIW-exposure throughout the unprecedented 2010 heat anomaly in the Andaman Sea. LAIW-exposed corals of both species survived and recovered, while LAIW-sheltered corals suffered partial and total mortality in P. lutea and P. meandrina, respectively. LAIW are ubiquitous in the tropics and potentially generate coral refuge areas. As thermal stress to corals is expected to increase in a warming ocean, the mechanisms linking coral bleaching to ocean dynamics will be crucial to predict coral survival on a warming planet.

  20. Observation of ultrasonic guided wave propagation behaviours in pre-stressed multi-wire structures.

    PubMed

    Liu, Xiucheng; Wu, Bin; Qin, Fei; He, Cunfu; Han, Qiang

    2017-01-01

    Ultrasonic guided wave (UGW) is a promising technique for nondestructive testing of pre-stressed multi-wire structures, such as steel strand and wire rope. The understanding of the propagation behaviours of UGW in these structures is a priority to applications. In the present study, first the properties of the UGW missing frequency band in the pre-stressed seven-wire steel strand is experimentally examined. The high correlation between the observed results and the previously published findings proves the feasibility of the magnetostrictive sensor (MsS) based testing method. The evolution of missing frequency band of UGW in slightly tensioned steel strand is discussed. Two calibration equations representing the relationship between the missing band parameters and the tensile force are given to derive a new tensile force measurement method, which is capable of measuring an incremental of stress of approximately 3MPa. Second, the effects of tensile force on the UGW propagation behaviours in three types of complicated steel wire ropes are alternatively investigated based on the short time Fourier transform (STFT) results of the received direct transmission wave (DTW) signals. The observed inherent missing frequency band of the longitudinal mode UGW in the pre-stressed steel wire rope and its shifting to a higher frequency range as the increases of the applied tensile force are reported for the first time. The influence of applied tensile force on the amplitude of the DTW signal and the unique UGW energy jump behaviour observed in a wire rope of 16.0mm, 6×Fi(29)+IWRC are also investigated, despite the fact that they cannot yet be explained.

  1. Precision stress measurements in severe shock-wave environments with low-impedance manganin gauges

    NASA Astrophysics Data System (ADS)

    Vantine, H.; Chan, J.; Erickson, L.; Janzen, J.; Weingart, R.; Lee, R.

    1980-01-01

    New techniques that permit the use of low-impedance manganin stress gauges in chemically reacting shock waves in the 1.0-40.0 GPa range are described. The rugged, small, and fast response gauge has reproducibility better than 2% when used in conjunction with a pulsed bridge circuit and adjustable, current-regulated power supplies. Techniques are presented for fabricating the transducer package, calibrating the bridge circuit and oscilloscopes, designing the drive system, and reducing the data. Data are presented for planar impact experiments performed with a 102-mm gas gun on high-explosive samples. In particular, the Chapman-Jouguet pressure in the explosive RX03-BB /92.5% triaminotrinitrobenzene (TATB)/7.5% polychlorotrifluoroethylene (Kel-F binder)/ was directly measured to be 28.2 plus or minus 0.6 GPa. These new developments open the possibility of applying low-impedance manganin gauges in chemically reactive hydrodynamic flows such as the evolution of a shock wave into a detonation wave.

  2. Condition assessment of concrete pavements using both ground penetrating radar and stress-wave based techniques

    NASA Astrophysics Data System (ADS)

    Li, Mengxing; Anderson, Neil; Sneed, Lesley; Torgashov, Evgeniy

    2016-12-01

    Two stress-wave based techniques, ultrasonic surface wave (USW) and impact echo (IE), as well as ground penetrating radar (GPR) were used to assess the condition of a segment of concrete pavement that includes a layer of concrete, a granular base and their interface. Core specimens retrieved at multiple locations were used to confirm the accuracy and reliability of each non-destructive testing (NDT) result. Results from this study demonstrate that the GPR method is accurate for estimating the pavement thickness and locating separations (air voids) between the concrete and granular base layers. The USW method is a rapid way to estimate the in-situ elastic modulus (dynamic elastic modulus) of the concrete, however, the existence of air voids at the interface could potentially affect the accuracy and reliability of the USW test results. The estimation of the dynamic modulus and the P-wave velocity of concrete was improved when a shorter wavelength range (3 in. to 8.5 in.) corresponding to the concrete layer thickness was applied instead of the full wavelength rage (3 in. to 11 in.) based on the standard spacing of the receiver transducers. The IE method is proved to be fairly accurate in estimating the thickness of concrete pavements. However, the flexural mode vibration could affect the accuracy and reliability of the test results. Furthermore, the existence of air voids between the concrete and granular base layers could affect the estimation of the compression wave velocity of concrete when the full wavelength range was applied (3 in. to 11 in.). Future work is needed in order to improve the accuracy and reliability of both USW and IE test results.

  3. Plant salt stress status is transmitted systemically via propagating calcium waves

    SciTech Connect

    Stephan, Aaron B.; Schroeder, Julian I.

    2014-04-29

    The existence and relevance of rapid long distance signaling in plants is evident to any observer of the nastic movements of the Venus flytrap (Dionaea muscipula) or the sensitive plant (Mimosa pudica). However, all plants require the transmission of sensory information from the site of perception to other tissues to adjust their physiological states according to their environment. It is becoming increasingly apparent that rapid long-distance signals exist throughout the plant kingdom and may be responsible for initiating a multitude of physiological responses: electrical “action potentials” have been shown to convey wounding and saltstress information from leaf-to-leaf (1, 2); a “hydraulic signal” transmitted by the direction of water movement within the xylem can mediate long-distance signaling of water stress experienced by the roots to the leaves in Arabidopsis (3); and reactive oxygen species (ROS) have been shown to propagate across a plant and carry stimulus-specific information to a variety of stresses (4). In PNAS, Choi et al. (5) use elegant approaches and present advances demonstrating that calcium can function as a long-distance signaling messenger, propagating in waves from roots and carrying salt-stress signals to induce expression of salt tolerance genes in leaves.

  4. Plant salt stress status is transmitted systemically via propagating calcium waves

    DOE PAGES

    Stephan, Aaron B.; Schroeder, Julian I.

    2014-04-29

    The existence and relevance of rapid long distance signaling in plants is evident to any observer of the nastic movements of the Venus flytrap (Dionaea muscipula) or the sensitive plant (Mimosa pudica). However, all plants require the transmission of sensory information from the site of perception to other tissues to adjust their physiological states according to their environment. It is becoming increasingly apparent that rapid long-distance signals exist throughout the plant kingdom and may be responsible for initiating a multitude of physiological responses: electrical “action potentials” have been shown to convey wounding and saltstress information from leaf-to-leaf (1, 2); amore » “hydraulic signal” transmitted by the direction of water movement within the xylem can mediate long-distance signaling of water stress experienced by the roots to the leaves in Arabidopsis (3); and reactive oxygen species (ROS) have been shown to propagate across a plant and carry stimulus-specific information to a variety of stresses (4). In PNAS, Choi et al. (5) use elegant approaches and present advances demonstrating that calcium can function as a long-distance signaling messenger, propagating in waves from roots and carrying salt-stress signals to induce expression of salt tolerance genes in leaves.« less

  5. Protein viscosity, mineral fraction and staggered architecture cooperatively enable the fastest stress wave decay in load-bearing biological materials.

    PubMed

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2016-07-01

    One of the key functions of load-bearing biological materials, such as bone, dentin and sea shell, is to protect their inside fragile organs by effectively damping dynamic impact. How those materials achieve this remarkable function remains largely unknown. Using systematic finite element analyses, we study the stress wave propagation and attenuation in cortical bone at the nanoscale as a model material to examine the effects of protein viscosity, mineral fraction and staggered architecture on the elastic wave decay. It is found that the staggered arrangement, protein viscosity and mineral fraction work cooperatively to effectively attenuate the stress wave. For a typical mineral volume fraction and protein viscosity, an optimal staggered nanostructure with specific feature sizes and layouts is able to give rise to the fastest stress wave decay, and the optimal aspect ratio and thickness of mineral platelets are in excellent agreement with experimental measurements. In contrary, as the mineral volume fraction or the protein viscosity goes much higher, the structural arrangement is seen having trivial effect on the stress wave decay, suggesting that the damping properties of the composites go into the structure-insensitive regime from the structure-sensitive regime. These findings not only significantly add to our understanding of the structure-function relationship of load-bearing biological materials, and but also provide useful guidelines for the design of bio-inspired materials with superior resistance to impact loading.

  6. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    NASA Technical Reports Server (NTRS)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  7. Stress wave attenuation in thin structures by ultrasonic through-transmission

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Williams, J. H., Jr.

    1980-01-01

    The steady state amplitude of the output of an ultrasonic through transmission measurement is analyzed and the result is given in closed form. Provided that the product of the input and output transduction ratios; the specimen-transducer reflection coefficient; the specimen-transducer phase shift parameter; and the material phase velocity are known, this analysis gives a means for determining the through-thickness attenuation of an individual thin sample. Multiple stress wave reflections are taken into account and so signal echoes do not represent a difficulty. An example is presented for a graphite fiber epoxy composite (Hercules AS/3501-6). A direct method for continuous or intermittent monitoring of through thickness attenuation of plate structures which may be subject to service structural degradation is provided.

  8. Stress-wave attenuation in thin structures by ultrasonic through-transmission

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Williams, J. H., Jr.

    1980-01-01

    The steady-state amplitude of the output of an ultrasonic through-transmission measurement is analyzed and the result is given in closed form. Provided that the product of the input and output transduction ratios, the specimen-transducer reflection coefficient, the specimen-transducer phase-shift parameter, and the material phase velocity are known, this analysis gives a means for determining the through-thickness attenuation of an individual thin sample. Multiple stress-wave reflections are taken into account, and so signal echoes do not represent a difficulty. An example is presented for a graphite fiber epoxy composite (Hercules AS/3501-6). Thus, the technique provides a direct method for continuous or intermittent monitoring of through-thickness attenuation of plate structures which may be subject to service structural degradation.

  9. Antiplane wave scattering from a cylindrical cavity in pre-stressed nonlinear elastic media

    PubMed Central

    Shearer, Tom; Parnell, William J.; Abrahams, I. David

    2015-01-01

    The effect of a longitudinal stretch and a pressure-induced inhomogeneous radial deformation on the scattering of antiplane elastic waves from a cylindrical cavity is determined. Three popular nonlinear strain energy functions are considered: the neo-Hookean, the Mooney–Rivlin and a two-term Arruda–Boyce model. A new method is developed to analyse and solve the governing wave equations. It exploits their properties to determine an asymptotic solution in the far-field, which is then used to derive a boundary condition to numerically evaluate the equations local to the cavity. This method could be applied to any linear ordinary differential equation whose inhomogeneous coefficients tend to a constant as its independent variable tends to infinity. The effect of the pre-stress is evaluated by considering the scattering cross section. A longitudinal stretch is found to decrease the scattered power emanating from the cavity, whereas a compression increases it. The effect of the pressure difference depends on the strain energy function employed. For a Mooney–Rivlin material, a cavity inflation increases the scattered power and a deflation decreases it; for a neo-Hookean material, the scattering cross section is unaffected by the radial deformation; and for a two-term Arruda–Boyce material, both inflation and deflation are found to decrease the scattered power. PMID:26543398

  10. Antiplane wave scattering from a cylindrical cavity in pre-stressed nonlinear elastic media.

    PubMed

    Shearer, Tom; Parnell, William J; Abrahams, I David

    2015-10-08

    The effect of a longitudinal stretch and a pressure-induced inhomogeneous radial deformation on the scattering of antiplane elastic waves from a cylindrical cavity is determined. Three popular nonlinear strain energy functions are considered: the neo-Hookean, the Mooney-Rivlin and a two-term Arruda-Boyce model. A new method is developed to analyse and solve the governing wave equations. It exploits their properties to determine an asymptotic solution in the far-field, which is then used to derive a boundary condition to numerically evaluate the equations local to the cavity. This method could be applied to any linear ordinary differential equation whose inhomogeneous coefficients tend to a constant as its independent variable tends to infinity. The effect of the pre-stress is evaluated by considering the scattering cross section. A longitudinal stretch is found to decrease the scattered power emanating from the cavity, whereas a compression increases it. The effect of the pressure difference depends on the strain energy function employed. For a Mooney-Rivlin material, a cavity inflation increases the scattered power and a deflation decreases it; for a neo-Hookean material, the scattering cross section is unaffected by the radial deformation; and for a two-term Arruda-Boyce material, both inflation and deflation are found to decrease the scattered power.

  11. Effects of shock waves on oxidative stress in parotid gland of rat.

    PubMed

    Garca, M Fatih; Kavak, Servet; Gecit, Ilhan; Meral, Ismail; Demir, Halit; Turan, Mahfuz; Çeğin, Bilal; Bektas, Hava; Çankaya, Hakan

    2014-06-01

    This study was designed to investigate whether extracorporeal shock wave lithotripsy (ESWL) exposure to parotid gland produces an oxidative stress in parotid glands of rats. Twelve male Wistar-albino rats, 6 months of age with an average body weight of 250-300 g, were divided randomly into two groups, each consisting of six rats. The animals in the first group did not receive any treatment and served as control. The left parotid glands of animals in group 2 (ESWL treated) received a thousand 18 kV shock waves after anesthetizing the rats with 50 mg/kg of ketamine. The animals in both groups were killed 72 hours after the ESWL treatment, and the parotid glands were harvested for the determination of lipid peroxidation product malondialdehyde (MDA), antioxidant glutathione (GSH) levels and the activities of antioxidant enzymes such as superoxide dismutase (SOD), GSH-Px and catalase (CAT). It was found that MDA level increased in parotid glands of rats after the ESWL treatment. The SOD, GSH-Px and CAT enzyme activities, and the level of antioxidant GSH decreased in parotid gland of rats after the ESWL treatment. It was concluded that short-term ESWL treatment caused an increase in the free radical production and a decrease in the antioxidant enzyme activity in parotid glands of ESWL-treated rats.

  12. Simulation of stress waves in attenuating drill strings, including piezoelectric sources and sensors

    PubMed

    Carcione; Poletto

    2000-07-01

    A key element in drill steering and prediction of lithology ahead-of-the-bit is the transmission of while-drilling information from the bottom of the well to the rig operator and the geophysicists. Mud-pulse telemetry, based on pressure pulses along the drilling mud and extensional waves through the drill string, is the most used technique. The last method, properly designed, could transmit data rates up to 100 bits per second, against the 1 or 2 bits per second achieved with pressure pulses. In this work, a time-domain algorithm is developed for the propagation of one-dimensional axial, torsional, and flexural stress waves, including transducer sources and sensors. In addition, the equations include relaxation mechanisms simulating the viscoelastic behavior of the steel, dielectric losses, and any other losses, such as those produced by the presence of the drilling mud, the casing, and the formation. Moreover, the algorithm simulates the passbands and stopbands due to the presence of the coupling joints and pulse distortion and delay due to nonuniform cross-section areas. Acoustic and electric pulses, generated at one location in the string, can be propagated and detected at any other location by piezoelectric and acoustic sensors, such as PCB accelerometers, clamp-on ammeters, force, and strain transducers.

  13. Quantitative assessment of damage growth in graphite epoxy laminates by acousto-ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Talreja, R.; Govada, A.; Henneke, E. G., II

    1984-01-01

    The acoustoultrasonic NDT method proposed by Vary (1976, 1978) for composite laminate damage growth quantitative assessment can both respond to the development of damage states and furnish quantitative parameters that monitor this damage development. Attention is presently given to data obtained for the case of quasi-static loading and fatigue testing of graphite-epoxy laminates. The shape parameters of the power spectral density for the ultrasonic signals correlate well with such other indications of damage development as stiffness degradation.

  14. In-situ acousto-ultrasonic monitoring of crack propagation in Al2024 alloy

    NASA Astrophysics Data System (ADS)

    Vanniamparambil, Prashanth A.; Bartoli, Ivan; Hazeli, Kavan; Cuadra, Jefferson; Schwartz, Eric; Saralaya, Raghavendra; Kontsos, Antonios

    2012-04-01

    A data fusion technique implementing the principles of acoustic emission (AE), ultrasonic testing (UT) and digital image correlation (DIC) was employed to in situ monitor crack propagation in an Al 2024 alloy compact tension (CT) specimen. The specimen was designed according to ASTM E647-08 and was pre-cracked under fatigue loading to ensure stable crack growth. Tensile (Mode I) loads were applied according to ASTM E1290-08 while simultaneously recording AE activity, transmitting ultrasonic pulses and measuring full-field surface strains. Realtime 2D source location AE algorithms and visualization provided by the DIC system allowed the full quantification of the crack growth and the cross-validation of the recorded non-destructive testing data. In post mortem, waveform features sensitive to crack propagation were extracted and visible trends as a function of computed crack length were observed. In addition, following a data fusion approach, features from the three independent monitoring systems were combined to define damage sensitive correlations. Furthermore a novelty detector based on the Mahalanobis outlier analysis was implemented to quantify the extent of crack growth and to define a more robust sensing basis for the proposed system.

  15. Enhanced angiogenesis in grafted skins by gene transfer of human hepatocyte growth factor using laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Terakawa, Mitsuhiro; Sato, Shunichi; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Okano, Hideyuki; Obara, Minoru

    2007-02-01

    We delivered a therapeutic gene, hepatocyte growth factor (HGF), to skin grafts of rats using laser-induced stress waves (LISWs) with the objective of enhancing their adhesion. The density and uniformity of neovascularities were enhanced significantly in the grafted skins that were transfected using LISWs, suggesting the efficacy of this method to improve the outcome of skin transplantation.

  16. Sms1: Seismic Wave Velocities Variations With Tectonic Stress From Controlled Source Experiment.

    NASA Astrophysics Data System (ADS)

    Chastin, Sebastien; Crampin, Stuart; Shear-Wave Analysis Group

    We present clear observations of seismic velocity variations following comparatively distant seismic activity and a consequently change in tectonic stress. The Stress- Monitoring Site SMSITES at Húsavík in Northern Iceland, described in paper SMS2 at this meeting, was used to monitor short-term variations in absolute seismic velocity. The survey took place between the 10th and 23rd of August 2001. The signal from the controlled source, a DOV (Downhole Orbital Vibrator), was transmitted repeatedly between two boreholes at 315m-offset along a single sub- horizontal direct ray path ray path at ~500m depth. The azimuthal direction between the wells is almost parallel to the strike of the Húsavík-Flatey Transform Fault (HFF) of the Mid-Atlantic Ridge, and is about 200m from the surface break. Source and receivers are in a 200m-thick layer of sandstone sandwiched between fractured layers. The DOV source was swept every 12s and the three-component recordings summed every 100 sweeps. This routine was repeated 24hours a day for 13days. Statistical analysis of the source signal stability indicates the source is coherent at 20µs and that velocity variations can be resolved at close to 1 part in 10-5. Variations in relative velocities of 2% to 5%, are observed peak to peak for Vp, Vsh, and Vsv. The behaviour of P-wave and S-wave velocities is strikingly different and correlates with a swarm of ~110 waves velocities and a sudden 4% decrease of Vp. Following the swarm, Vp increases linearly, whereas Vs follows a typical "S"-shaped relaxation-curve increase to higher (presumably equilibrium) values. This is believed to be the first time that such well

  17. Contribution of stress wave and cavitation bubble in evaluation of cell-cell adhesion by femtosecond laser-induced impulse

    NASA Astrophysics Data System (ADS)

    Iino, Takanori; Li, Po-Lin; Wang, Wen-Zhe; Deng, Jia-Huei; Lu, Yun-Chang; Kao, Fu-Jen; Hosokawa, Yoichiroh

    2014-10-01

    When an intense femtosecond laser is focused in a cell culture medium, shock wave, stress wave, and cavitation bubble are generated at the laser focal point. Cell-cell adhesion can be broken at the cellular level by the impacts of these factors. We have applied this breaking of the adhesion to an estimation of the cell-cell adhesion strength. In this application, it is important to identify which of these factors is the dominant factor that breaks the adhesion. Here we investigated this issue using streptavidin-coated microbeads adhering to a biotin-coated substrate as a mimic of the cell-cell adhesion. The results indicated that the break was induced mainly by the stress wave, not by the impact of the cavitation bubble.

  18. Influence of acoustoelastic coefficient on wave time of flight in stress measurement in piezoelectric self-excited system

    NASA Astrophysics Data System (ADS)

    Kwaśniewki, Janusz; Dominik, Ireneusz; Lalik, Krzysztof; Holewa, Karolina

    2016-10-01

    This paper presents the Self-excited Acoustical System (SAS) in elastic construction stress change measurement. The system is based on the acoustical autoresonance phenomena and enables an indirect measurement of the construction effort level. The essence of the SAS system is to use a piezoelectric vibration emitter and a piezoelectric vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which are operating in a closed loop with a positive feedback. This causes the excitation of the system. The change of the velocity of wave propagation, which is associated with the change of the resonance frequency in the system is caused by the stress change in the examined material. A variable, which determines the change of the acoustic wave velocity, is called an acoustoelastic coefficient β. Such a coefficient allows to determine the absolute stress value in the tested material.

  19. Stress dependence of ultrasonic velocity in unidirectional graphite/epoxy composites for longitudinal waves propagating along the direction of stress

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1990-01-01

    Measurements of stress-induced velocity changes for propagation along the direction of applied stress in graphite/epoxy composites are presented. A linear relation between normalized velocity shift and stress is demonstrated for propagation and stress direction perpendicular to the fiber direction. The ratio of the SAC to the elastic compliance for this loading direction was assessed and found to have a value similar to that of numerous other materials which have very different linear elastic properties. Measurements with stress and propagation along the fibers yielded unusual behavior; the curves were very nonlinear and even shifted direction at higher loads.

  20. Rate and temperature dependences of the yield stress of commercial titanium under conditions of shock-wave loading

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Razorenov, S. V.; Garkushin, G. V.

    2016-05-01

    The evolution of elastic-plastic shock waves with the propagation distance has been studied in annealed titanium of commercial purity at temperatures 20 °C and 600 °C. The free surface velocity histories of the shock-loaded samples 0.25-4.0 mm in thickness have been recorded using the Velocity Interferometer System for Any Reflector. The measured decays of the elastic precursor waves have been converted into relationships between the shear stress and the initial plastic strain rate at the Hugoniot elastic limit. It has been found that the temperature practically does not influence on the resistance to high-rate plastic deformation: the plastic strain rate varies with the shear stress as γ ˙ = 2.5 × 10 6 ( τ / τ 0 ) 4.8 s-1 at 20 °C and γ ˙ = 2.9 × 10 6 ( τ / τ 0 ) 4.9 s-1 at 600 °C. An analysis of the rise times of the plastic shock waves has shown that for the same level of shear stress, the plastic strain rate after small compressive strain is more than by order of magnitude higher than the initial plastic strain rate at the wave's foot. Such acceleration of the plastic deformation seems to be a result of an intense multiplication of the mobile dislocations or twins.

  1. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves.

    PubMed

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  2. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  3. Propagation characteristics of laser-induced stress wave in deep tissue for gene transfer

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Takano, Shinta; Ashida, Hiroshi; Obara, Minoru

    2009-09-01

    Propagation characteristics of laser-induced stress waves (LISWs) in tissue and their correlation with properties of gene transfection were investigated for targeted deep-tissue gene therapy. LISWs were generated by irradiating a laser-absorbing material with 532-nm Q-switched Nd:YAG laser pulses; a transparent plastic sheet was attached on the absorbing material for plasma confinement. Temporal pressure profiles of LISWs that were propagated through different thickness tissues were measured with a needle-type hydrophone and propagation of LISWs in water was visualized by shadowgraph technique. The measurements showed that at a laser fluence of 1.2 J/cm 2 with a laser spot diameter of 3 mm, flat wavefront was maintained for up to 5 mm in depth and peak pressure P decreased with increasing tissue thickness d; P was proportional to d-0.54. Rat dorsal skin was injected with plasmid DNA coding for reporter gene, on which different numbers of excised skin(s) was/were placed, and LISWs were applied from the top of the skins. Efficient gene expression was observed in the skin under the 3 mm thick stacked skins, suggesting that deep-located tissue such as muscle can be transfected by transcutaneous application of LISWs.

  4. Stress-wave induced fracture of unidirectional composites: an experimental study using digital image correlation method

    NASA Astrophysics Data System (ADS)

    Lee, Dongyeon; Tippur, Hareesh V.

    2010-03-01

    In this work, fracture behavior of unidirectional graphite/epoxy composite materials is optically investigated. Single-edge notched coupons are studied under geometrically symmetric impact loading. The notch orientation parallel to or at an angle relative to the fiber orientation is considered to produce mode-I as well as mixed-mode fracture. Stress-wave induced crack initiation and rapid crack growth events are studied using a digital correlation technique and high-speed photography. Surface deformations histories in the crack-tip vicinity are obtained by analyzing decorated speckle recordings. Measured deformation fields are used to extract fracture parameters and examine the effect of fiber orientation on crack initiation and growth behaviors. The maximum crack speed observed is the highest for mode-I dominant conditions and decreases with increasing fiber orientation angle. With increasing fiber orientation angle, crack takes longer to attain the maximum speed upon initiation. The crack initiation toughness values decrease with increasing degree-of-anisotropy.

  5. Stress-wave induced fracture of unidirectional composites: an experimental study using digital image correlation method

    NASA Astrophysics Data System (ADS)

    Lee, Dongyeon; Tippur, Hareesh V.

    2009-12-01

    In this work, fracture behavior of unidirectional graphite/epoxy composite materials is optically investigated. Single-edge notched coupons are studied under geometrically symmetric impact loading. The notch orientation parallel to or at an angle relative to the fiber orientation is considered to produce mode-I as well as mixed-mode fracture. Stress-wave induced crack initiation and rapid crack growth events are studied using a digital correlation technique and high-speed photography. Surface deformations histories in the crack-tip vicinity are obtained by analyzing decorated speckle recordings. Measured deformation fields are used to extract fracture parameters and examine the effect of fiber orientation on crack initiation and growth behaviors. The maximum crack speed observed is the highest for mode-I dominant conditions and decreases with increasing fiber orientation angle. With increasing fiber orientation angle, crack takes longer to attain the maximum speed upon initiation. The crack initiation toughness values decrease with increasing degree-of-anisotropy.

  6. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    PubMed

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures.

  7. Analysis of Stress Waves Generated in Water Using Ultrashort Laser Pulses

    SciTech Connect

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Komashko, A.M.; Reidt, S.; Eichler, J.; Da Silva, L.B.

    2000-04-25

    A Mach-Zehnder interferometer was used for analysis of pressure waves generated by ultrashort laser pulse ablation of water. It was found that the shock wave generated by plasma formation rapidly decays to an acoustic wave. Both experimental and theoretical studies demonstrated that the energy transfer to the mechanical shock was less than 1%.

  8. Remote Love Wave Triggering of Tremor in the Nankai Subduction Zone: New Observations and Dynamic Stress Modeling

    NASA Astrophysics Data System (ADS)

    Enescu, B.; Chao, K.; Obara, K.; Peng, Z.; Matsuzawa, T.; Yagi, Y.

    2013-12-01

    The triggering of deep non-volcanic tremor (NVT) in the Nankai region, southwest Japan, by the surface waves of several large teleseismic earthquakes has been well documented (e.g., Miyazawa & Mori, 2005). These previous studies report that the Nankai NVT is primarily triggered by the passage of Rayleigh waves from the teleseismic events (e.g., Miyazawa & Brodsky, 2008). The relative lack of Love wave triggering in Nankai would be, however, an exception to the general observation that triggered tremor shows a positive correlation with the triggering potential, defined using the Coulomb failure criteria (Hill, 2012). To clarify the Nankai NVT triggering mechanism, we have systematically searched for triggered tremor due to large teleseismic events (Mw ≥ 7.5) occurred from 2001 to 2012. Our present analysis focuses on western Shikoku, where triggered NVT has been previously reported (e.g., Miyazawa & Mori, 2006). From a total of 55 teleseismic events, 18 show associated triggered NVT. Our analysis presents clear evidence of triggered NVT that correlates well with the passage of Love waves. The most outstanding example is that of the 2012 M8.6 Sumatra earthquake, a strike-slip event characterized by relatively large amplitude Love waves. The incoming surface waves from this earthquake are almost strike-parallel to the Nankai subduction zone, which corresponds to a higher Love wave triggering potential (Hill, 2012). The 2001 M7.8 Kunlun, the 2003 M8.3 Tokachi-oki, the 2004 M9.2 & 2007 M8.5 Sumatra, the 2006 M8.3 Kuril-Islands and the 2008 M7.9 Wenchuan earthquakes show as well Love-wave associated NVT triggering. In most of these cases the tremor is initiated by the incoming, faster-traveling Love waves and continues during the latter, larger-amplitude Rayleigh waves. We are also conducting dynamic stress modeling to better understand the triggering mechanism of tremor. Our approach builds up on the methods of Gonzalez-Huizar & Velasco (2011) and Obara (2012). In the

  9. Stress Dependence of Ultrasonic Velocity in Unidirectional Graphite/Epoxy Composites for Longitudinal Waves Propagating Along the Direction of Stress

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1990-01-01

    The first measurements of the stress induced velocity changes for propagation directions along the direction of applied stress in gr/ep composites have been presented. For propagation and stress direction perpendicular to the fiber direction, the data demonstrated a linear relation between normalized velocity shift and stress. After corrections for the delay line were made, the slope or SAC was determined and compared favorably with the expected value calculated from the previously determined nonlinear coefficients of this material. The ratio of the SAC to the elastic compliance for this direction of loading was evaluated and found to have a value similar to numerous other materials which have very different linear elastic properties. Measurements with stress and propagation along the fibers yielded unusual behavior. The curves were very nonlinear and even shifted direction at higher loads. The large scatter in the data due to bond variations made separation of material effects from bond induced artifacts impossible. Thus the SAC, R, and the remaining two unknown TOEC's could not be determined for this direction of propagation. These measurements further expand the basis of determining nonlinear elastic properties of composite materials. These properties may be useful in developing much needed NDE techniques to determine such important parameters as residual stress after cure and residual strength after impact damage. Additional study is needed to measure the nonlinear behavior in other composite materials including angle ply laminates. Also, other techniques to measure elastic nonlinearity such as harmonic generation should be applied to composites to improve the understanding of these properties and their importance.

  10. Guided wave-based J-integral estimation for dynamic stress intensity factors using 3D scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Owens, C. T.; Liu, K. C.; Swenson, E.; Ghoshal, A.; Weiss, V.

    2013-01-01

    The application of guided waves to interrogate remote areas of structural components has been researched extensively in characterizing damage. However, there exists a sparsity of work in using piezoelectric transducer-generated guided waves as a method of assessing stress intensity factors (SIF). This quantitative information enables accurate estimation of the remaining life of metallic structures exhibiting cracks, such as military and commercial transport vehicles. The proposed full wavefield approach, based on 3D laser vibrometry and piezoelectric transducer-generated guided waves, provides a practical means for estimation of dynamic stress intensity factors (DSIF) through local strain energy mapping via the J-integral. Strain energies and traction vectors can be conveniently estimated from wavefield data recorded using 3D laser vibrometry, through interpolation and subsequent spatial differentiation of the response field. Upon estimation of the Jintegral, it is possible to obtain the corresponding DSIF terms. For this study, the experimental test matrix consists of aluminum plates with manufactured defects representing canonical elliptical crack geometries under uniaxial tension that are excited by surface mounted piezoelectric actuators. The defects' major to minor axes ratios vary from unity to approximately 133. Finite element simulations are compared to experimental results and the relative magnitudes of the J-integrals are examined.

  11. Multi-Wave Prospective Examination of the Stress-Reactivity Extension of Response Styles Theory of Depression in High-Risk Children and Early Adolescents

    ERIC Educational Resources Information Center

    Abela, John R. Z.; Hankin, Benjamin L.; Sheshko, Dana M.; Fishman, Michael B.; Stolow, Darren

    2012-01-01

    The current study tested the stress-reactivity extension of response styles theory of depression (Nolen-Hoeksema "Journal of Abnormal Psychology" 100:569-582, 1991) in a sample of high-risk children and early adolescents from a vulnerability-stress perspective using a multi-wave longitudinal design. In addition, we examined whether obtained…

  12. Wave-induced abiotic stress shapes phenotypic diversity in a coral reef fish across a geographical cline

    NASA Astrophysics Data System (ADS)

    Fulton, C. J.; Binning, S. A.; Wainwright, P. C.; Bellwood, D. R.

    2013-09-01

    While morphological variation across geographical clines has been well documented, it is often unclear whether such changes enhance individual performance to local environments. We examined whether the damselfish Acanthochromis polyacanthus display functional changes in swimming phenotype across a 40-km cline in wave-driven water motion on the Great Barrier Reef, Australia. A. polyacanthus populations displayed strong intraspecific variation in swimming morphology and performance that matched local levels of water motion: individuals on reefs subject to high water motion displayed higher aspect-ratio fins and faster swimming speeds than conspecifics on sheltered reefs. Remarkably, intraspecific variation within A. polyacanthus spanned over half the diversity seen among closely related damselfish species from the same region. We find that local selection driven by wave-induced abiotic stress is an overarching ecological mechanism shaping the inter- and intraspecific locomotor diversity of coral reef fishes.

  13. The contribution of activated processes to Q. [stress corrosion cracking in seismic wave attenuation

    NASA Technical Reports Server (NTRS)

    Spetzler, H. A.; Getting, I. C.; Swanson, P. L.

    1980-01-01

    The possible role of activated processes in seismic attenuation is investigated. In this study, a solid is modeled by a parallel and series configuration of dashpots and springs. The contribution of stress and temperature activated processes to the long term dissipative behavior of this system is analyzed. Data from brittle rock deformation experiments suggest that one such process, stress corrosion cracking, may make a significant contribution to the attenuation factor, Q, especially for long period oscillations under significant tectonic stress.

  14. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    NASA Astrophysics Data System (ADS)

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two

  15. Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation

    NASA Astrophysics Data System (ADS)

    Schwendeman, Michael; Thomson, Jim

    2015-12-01

    Shipboard measurements of whitecap coverage are presented from two cruises in the North Pacific, and compared with in situ measurements of wind speed and friction velocity, average wave steepness, and near-surface turbulent dissipation. A threshold power law fit is proposed for all variables, which incorporates the flexibility of a power law with the threshold behavior commonly seen in whitecapping. The fit of whitecap coverage to wind speed, U10, closely matches similar relations from three recent studies, particularly in the range of 6-14 m/s. At higher wind speeds, the whitecap coverage data level off relative to the fits, and an analysis of the residuals shows some evidence of reduced whitecapping in rapidly developing waves. Wave slope variables are examined for potential improvement over wind speed parameterizations. Of these variables, the mean square slope of the equilibrium range waves has the best statistics, which are further improved after normalizing by the directional spread and frequency bandwidth. Finally, the whitecap coverage is compared to measurements of turbulent dissipation. Though still statistically significant, the correlation is worse than the wind or wave relations, and residuals show a strong negative trend with wave age. This may be due to an increased influence of microbreaking in older wind seas.

  16. A study of the use of vibration and stress wave sensing for the detection of bearing failure

    NASA Technical Reports Server (NTRS)

    Ensor, L. C.; Feng, C. C.

    1975-01-01

    Results from an experimental study of vibrations and stress waves emitted from ball bearings are presented. Fatique tests were run with both high quality bearings and man faulted bearings, all of one size. Tests were instrumented with different sensors to detect the noises from 10 Hz to 1 MHz. Frequency spectrum plots are presented. The modulation characteristics of the ultrasonic noises were analyzed, and acoustic emission type measurements were conducted. Results are presented which show that there are usable acoustic signal levels even beyond 500 KHz. These signal levels are modulated by a low frequency carrier which is a function of the stress loading and acoustic transmissibility. The results were correlated to fault size in the bearings. The correlation shows that the sensor used for signals from 100 KHz to 1 MHz gave the best sensitivity and detected the generation of very small spalls or pits.

  17. Reflectometric frequency-modulation continuous-wave distributed fiber-optic stress sensor with forward coupled beams.

    PubMed

    Zheng, G; Campbell, M; Wallace, P

    1996-10-01

    A distributed optical-fiber stress sensor whose principle of operation is based on the frequency-modulation continuous-wave technique is reported. The sensor consists of a length of birefringent fiber with a mirror attached to one end, a diode laser, and a p-i-n photodiode detector. The intensity and the location of an applied stress are determined simultaneously by detecting the amplitude and the frequency of the beat signal, which is produced by two forward-coupled mode beams. The system was found to have a reasonable spatial resolution of 0.85 m (rms error) in a sensing range of 100 m. The advantages and limitations of the sensor are also discussed.

  18. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-08-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.

  19. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization.

    PubMed

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-08-19

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.

  20. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    PubMed Central

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-01-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress. PMID:26286628

  1. Residual Stress Measurement and Calibration for A7N01 Aluminum Alloy Welded Joints by Using Longitudinal Critically Refracted ( LCR) Wave Transmission Method

    NASA Astrophysics Data System (ADS)

    Zhu, Qimeng; Chen, Jia; Gou, Guoqing; Chen, Hui; Li, Peng; Gao, W.

    2016-10-01

    Residual stress measurement and control are highly important for the safety of structures of high-speed trains, which is critical for the structure design. The longitudinal critically refracted wave technology is the most widely used method in measuring residual stress with ultrasonic method, but its accuracy is strongly related to the test parameters, namely the flight time at the free-stress condition ( t 0), stress coefficient ( K), and initial stress (σ0) of the measured materials. The difference of microstructure in the weld zone, heat affected zone, and base metal (BM) results in the divergence of experimental parameters. However, the majority of researchers use the BM parameters to determine the residual stress in other zones and ignore the initial stress (σ0) in calibration samples. Therefore, the measured residual stress in different zones is often high in errors and may result in the miscalculation of the safe design of important structures. A serious problem in the ultrasonic estimation of residual stresses requires separation between the microstructure and the acoustoelastic effects. In this paper, the effects of initial stress and microstructure on stress coefficient K and flight time t 0 at free-stress conditions have been studied. The residual stress with or without different corrections was investigated. The results indicated that the residual stresses obtained with correction are more accurate for structure design.

  2. Investigation of the Interface Phenomena Due to Interaction of High Intensity Stress Waves with Geologic Boundaries

    DTIC Science & Technology

    1991-11-30

    shockwave ........................ 10 Figure 5. Stress-density data fit for gray granodiorite ........... 15 Figure 6. Stress-density data fit for NTS...types were dry NTS tuff, gray granodiorite , and limestone, [5] and [6]. The data obtained in Ref. [5] were obtained from high pressure die assemblies...The results are shown in Figures 5 - 7. The data fit analysis for granodiorite resulted in two curves passing through the data points. The first curve

  3. Shear wave anisotropy and stress direction in and near Long Valley caldera, California, 1979-1988

    SciTech Connect

    Savage, M.K.; Peppin, W.A.; Vetter, U.R. )

    1990-07-10

    The authors observed shear wave splitting (birefringence) for two temporary surface deployments of three-component, digital seismographs, that were in place before and after M=6+ earthquakes near the Long Valley caldera, California. In one of these deployments, the data sample precedes the large events of the May 1980 Mammoth Lakes earthquake sequence by 6 months and cover the two most active months of the May 1980 aftershock sequence; one of the stations (WIT) from this deployment was reoccupied with identical instrumentation in 1988. Another deployment preceded the 1986 Chalfant Valley mainshock by 2 days and recorded events for 6 days. The polarization of the faster shear wave changes from N30{degree}W at Mammoth to due north at Chalfant Valley and in both cases is parallel to the strike of nearby surface faults and to the mean direction of P axes determined from focal mechanism groupings. Observations from nearby stations yield fast directions nearly at 23{degree} from each other, and time separations of fast and slow shear waves show considerable station-to-station variation, showing no correlation with earthquake-station distance or earthquake depth. These observations suggest that the observed anisotropy results primarily from near-station (presumably shallow) effects rather than from widespread aligned microcracks. The records at Long Valley station WIT show a slight variation of average fast shear wave polarization from 1979 to 1980, but with the limited amount of data available, this difference is not statistically significant.

  4. Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression.

    PubMed

    Le Quément, Catherine; Nicolaz, Christophe Nicolas; Habauzit, Denis; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves

    2014-09-01

    Emerging high data rate wireless communication systems, currently under development, will operate at millimeter waves (MMW) and specifically in the 60 GHz band for broadband short-range communications. The aim of this study was to investigate potential effects of MMW radiation on the cellular endoplasmic reticulum (ER) stress. Human skin cell lines were exposed at 60.4 GHz, with incident power densities (IPD) ranging between 1 and 20 mW/cm(2) . The upper IPD limits correspond to the ICNIRP local exposure limit for the general public. The expression of ER-stress sensors, namely BIP and ORP150, was then examined by real-time RT-PCR. Our experimental data demonstrated that MMW radiations do not change BIP or ORP150 mRNA basal levels, whatever the cell line, the exposure duration or the IPD level. Co-exposure to the well-known ER-stress inducer thapsigargin (TG) and MMW were then assessed. Our results show that MMW exposure at 20 mW/cm(2) inhibits TG-induced BIP and ORP150 over expression. Experimental controls showed that this inhibition is linked to the thermal effect resulting from the MMW exposure.

  5. Clinical applications of T-wave alternans assessed during exercise stress testing and ambulatory ECG monitoring.

    PubMed

    Verrier, Richard L; Malik, Marek

    2013-01-01

    Analytical methods to measure T-wave alternans (TWA), a beat-to-beat fluctuation in the morphology of the ST-segment and T wave in the electrocardiogram (ECG), have been developed to address the unmet challenge of identifying individuals at increased risk for sudden cardiac death. Conventional noninvasive markers including left ventricular ejection fraction have significant limitations as many individuals who die suddenly have relatively preserved ventricular mechanical function. TWA is an attractive marker as it is closely linked to ECG heterogeneity and abnormalities in calcium handling, key factors in arrhythmogenesis. The objectives of this review are to summarize the clinical evidence supporting use of TWA in risk stratification and to discuss its current and potential applications in guiding device and medical therapy.

  6. Gravity Probe-B Spacecraft attitude control based on the dynamics of slosh wave-induced fluid stress distribution on rotating dewar container of cryogenic propellant

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1991-01-01

    The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.

  7. Silencing by blasting: combination of laser pulse induced stress waves and magnetophoresis for siRNA delivery

    NASA Astrophysics Data System (ADS)

    Babincová, M.; Babincová, N.; Durdík, S.; Bergemann, C.; Sourivong, P.

    2016-06-01

    A new method is developed for efficient delivery of short interference RNA into cells using combination of magnetophoresis for pre-concentration of siRNA-magnetic nanoparticle complex on the surface of cells with subsequent nanosecond laser pulse generating stress waves in transfection chamber, which is able to permeabilize cell membrane for the facilitated delivery of siRNA into the cell interior. As has been shown using siRNA inducing cell apoptosis, combination of these two physical factors increased the efficiency of three different human carcinoma cells transfection to 93%, 89%, and 84%, for HeLa (cervical carcinoma), MCF-7 (breast carcinoma), and UCI-107 (ovarian carcinoma) cells, respectively. This new physical method of siRNA delivery may have therefore far reaching applications in biotechnology and functional genomics.

  8. Stress Wave and Damage Propagation in Transparent Laminates at Elevated Temperatures

    DTIC Science & Technology

    2010-03-01

    N62558-04-P-6031, E 08/06; Ernst - Mach Institute: Efringen-Kirchen, Germany, February 2006. 2Straßburger, E. High-Speed Photographic Study of Wave...Propagation and Impact Damage in Transparent Laminates; Final Report, contract no. N62558-05-P-0303, E 12/07; Ernst - Mach Institute: Efringen-Kirchen...contract no. W911NF-08-1-0006, E 22/08; Ernst - Mach Institute: Efringen-Kirchen, Germany, May 2008. 2 • Damaged area analyses from complementary

  9. A Comparison of Brain Wave Patterns of High and Low Grade Point Average Students During Rest, Problem Solving, and Stress Situations.

    ERIC Educational Resources Information Center

    Montor, Karel

    The purpose of this study was to compare brain wave patterns produced by high and low grade point average students, while they were resting, solving problems, and subjected to stress situations. The study involved senior midshipmen at the United States Naval Academy. The high group was comprised of those whose cumulative grade point average was…

  10. Deviatoric stresses and plastic strain rates in strong shock waves for six metals

    SciTech Connect

    Tonks, D.L.

    1993-11-01

    The strong shock theory of D. C. Wallace [Phys. Rev. B24, 5597 (198 1) and Phys. Rev. B24, 5607 (1981)] is used to calculate the shock structure for 1100 Al, 2024 Al, Cu, Fe, Ta, and U. Emphasis is given to the behavior of plasticity, i.e., average deviatoric stresses, plastic and total strains, and strain rates, which are given in figures for a number of shock strengths. This information will be useful for modeling plasticity in metals under extreme conditions. It was used for part of the PTW model for mechanical behavior.

  11. Effect of postural stress on left ventricular performance using the continuous-wave Doppler technique.

    PubMed

    Brown, R A; McCormick, K A; Vaitkevicius, P V; Fleg, J L

    1991-09-01

    To evaluate the effect of postural shifts on continuous-wave Doppler indices of left ventricular performance in normal man, we recorded Doppler signals suprasternally in 69 healthy volunteers, ranging in age from 20 to 86 years, in the supine position and 2 min after assumption of sitting and standing postures. All indices decreased progressively with increasing orthostasis: peak acceleration (PKA): 15.6 +/- 4.5 m/s2 to 14.0 +/- 4.0 m/s2 to 13.6 +/- 4.6 m/s2; peak velocity (PKV): 0.64 +/- 0.18 m/s to 0.58 +/- 0.17 m/s to 0.56 +/- 0.17 m/s; stroke distance (SD): 11.4 +/- 3.7 cm to 9.8 +/- 3.4 cm to 8.0 +/- 2.8 cm; SD x heart rate (VIH): 717 +/- 272 cm to 655 +/- 268 cm to 572 +/- 217 cm, from supine to sitting to standing, respectively (p less than 0.001). In contrast heart rate increased modestly from 62.4 +/- 10.0 bpm supine, to 66.9 +/- 12.4 bpm sitting, to 71.3 +/- 9.9 bpm standing (p less than .001). Similar postural changes in Doppler variables were seen in all three age groups (20 to 44 years; 45 to 64 years; and 65 to 86 years). Thus, orthostasis in normal subjects is accompanied by a reduction in all continuous-wave Doppler indices of left ventricular performance, regardless of age.

  12. Stress wave propagationin the site 12 hydraulic/explosive fracturing experiment

    SciTech Connect

    Boade, R. R.; Reed, R. P.

    1980-05-01

    The Site 12 experiment was a heavily instrumented field event performed to examine the hydraulic/explosive fracturing concept for preparing an underground oil shale bed for true in situ processing. One of the key phases of this fracturing concept is the blasting operation which involves the insertion and detonation of slurry explosive in a pre-formed system of hydrofractures. To obtain a sound understanding of the nature of the blasting operations, a rather extensive array of stress gages, accelerometers, and time-of-arrival gages was installed in the rock mass in the vacinity of the explosive to monitor the dynamic events initiated by the detonation. These gages provided considerable amounts of information which were useful in evaluating overall results of the experiment. Details of the gage array, of the data, of analysis methods, and of the results and conclusions are considered in the report.

  13. NDE of titanium alloy MMC rings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Percival, Larry D.; Yancey, Robert N.; Kautz, Harold E.

    1993-01-01

    Progress in the processing and fabrication of metal matrix composites (MMC's) requires appropriate mechanical and nondestructive testing methods. These methods are needed to characterize properties, assess integrity, and predict the life of engine components such as compressor rotors, blades, and vanes. Capabilities and limitations of several state-of-the-art nondestructive evaluation (NDE) technologies are investigated for characterizing titanium MMC rings for gas turbine engines. The use of NDE technologies such as x-ray computed tomography, radiography, and ultrasonics in identifying fabrication-related problems that caused defects in components is examined. Acousto-ultrasonics was explored to assess degradation of material mechanical properties by using stress wave factor and ultrasonic velocity measurements before and after the burst testing of the rings.

  14. Stress

    MedlinePlus

    ... flu shot, are less effective for them. Some people cope with stress more effectively than others. It's important to know your limits when it comes to stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  15. A Data-Driven Noise Reduction Method and Its Application for the Enhancement of Stress Wave Signals

    PubMed Central

    Feng, Hai-Lin; Fang, Yi-Ming; Xiang, Xuan-Qi; Li, Jian; Li, Guan-Hui

    2012-01-01

    Ensemble empirical mode decomposition (EEMD) has been recently used to recover a signal from observed noisy data. Typically this is performed by partial reconstruction or thresholding operation. In this paper we describe an efficient noise reduction method. EEMD is used to decompose a signal into several intrinsic mode functions (IMFs). The time intervals between two adjacent zero-crossings within the IMF, called instantaneous half period (IHP), are used as a criterion to detect and classify the noise oscillations. The undesirable waveforms with a larger IHP are set to zero. Furthermore, the optimum threshold in this approach can be derived from the signal itself using the consecutive mean square error (CMSE). The method is fully data driven, and it requires no prior knowledge of the target signals. This method can be verified with the simulative program by using Matlab. The denoising results are proper. In comparison with other EEMD based methods, it is concluded that the means adopted in this paper is suitable to preprocess the stress wave signals in the wood nondestructive testing. PMID:23213283

  16. Accelerated adhesion of grafted skins by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuya; Sato, Shunichi; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-02-01

    In our previous study, we delivered plasmid DNA coding for human hepatocyto growth factor (hHGF) to rat skin grafts based on laser-induced stress wave (LISW), by which production of CD31-positive cells in the grafted skins was found to be enhanced, suggesting improved angiogenesis. In this study, we validated the efficacy of this method to accelerate adhesion of grafted skins; reperfusion and reepithelialization in the grafted skins were examined. As a graft, dorsal skin of a rat was exsected and its subcutaneous fat was removed. Plasmid DNA expression vector for hHGF was injected into the graft; on its back surface a laser target with a transparent sheet for plasma confinement was placed, and irradiated with three nanosecond laser pulses at a laser fluence of 1.2 J/cm2 (532 nm; spot diameter, 3 mm) to generate LISWs. After the application of LISWs, the graft was transplanted onto its donor site. We evaluated blood flow by laser Doppler imaging and analyzed reepithelialization based on immunohistochemistry as a function of postgrafting time. It was found that both reperfusion and reepithelialization were significantly enhanced for the grafts with gene transfection than for normal grafts; reepithelialization was completed within 7 days after transplantation with the transfected grafts. These findings demonstrate that adhesion of grafted skins can be accelerated by delivering HGF gene to the grafts based on LISWs.

  17. Accelerated adhesion of grafted skin by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuya; Sato, Shunichi; Terakawa, Mitsuhiro; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-11-01

    Gene therapy using wound healing-associated growth factor gene has received much attention as a new strategy for improving the outcome of tissue transplantation. We delivered plasmid DNA coding for human hepatocyte growth factor (hHGF) to rat free skin grafts by the use of laser-induced stress waves (LISWs); autografting was performed with the grafts. Systematic analysis was conducted to evaluate the adhesion properties of the grafted tissue; angiogenesis, cell proliferation, and reepithelialization were assessed by immunohistochemistry, and reperfusion was measured by laser Doppler imaging as a function of time after grafting. Both the level of angiogenesis on day 3 after grafting and the increased ratio of blood flow on day 4 to that on day 3 were significantly higher than those in five control groups: grafting with hHGF gene injection alone, grafting with control plasmid vector injection alone, grafting with LISW application alone, grafting with LISW application after control plasmid vector injection, and normal grafting. Reepithelialization was almost completed on day 7 even at the center of the graft with LISW application after hHGF gene injection, while it was not for the grafts of the five control groups. These findings demonstrate the validity of our LISW-based HGF gene transfection to accelerate the adhesion of grafted skins.

  18. Coronal heating by the resonant absorption of Alfven waves: The effect of viscous stress tensor

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Davila, J. M.; Steinolfson, R. S.

    1994-01-01

    The time-dependent linearized magnetohydrodynamics (MHD) equations for a fully compressible, low-beta, viscoresistive plasma are solved numerically using an implicit integration scheme. The full viscosity stress tensor (Braginskii 1965) is included with the five parameters eta(sub i) i = 0 to 4. In agreement with previous studies, the numerical simulations demonstrate that the dissipation on inhomogeneities in the background Alfven speed occurs in a narrow resonant layer. For an active region in the solar corona the values of eta(sub i) are eta(sub o) = 0.65 g/cm/s, eta(sub 1) = 3.7 x 10(exp -12) g/cm/s, eta(sub 2) = 4 eta(sub 1), eta(sub 3) = 1.4 x 10(exp -6) g/cm/s, eta(sub 4) = 2 eta(sub 3), with n = 10(exp 10)/cu cm, T = 2 x 10(exp 6) K, and B = 100 G. When the Lundquist number S = 10(exp 4) and R(sub 1) much greater than S (where R(sub 1) is the dimensionless shear viscous number) the width of the resistive dissipation layer d(sub r) is 0.22a (where a is the density gradient length scale) and d(sub r) approximately S(exp -1/3). When S much greater than R(sub 1) the shear viscous dissipation layer width d(sub r) scales as R(sub 1)(exp -1/3). The shear viscous and the resistive dissipation occurs in an overlapping narrow region, and the total heating rate is independent of the value of the dissipation parameters in agreement with previous studies. Consequently, the maximum values of the perpendicular velocity and perpendicular magnetic field scale as R(sub 1)(exp -1/3). It is evident from the simulations that for solar parameters the heating due to the compressive viscosity (R(sub 0) = 560) is negligible compared to the resistive and the shear viscous (R(sub 1)) dissipation and it occurs in a broad layer of order a in width. In the solar corona with S approximately equals 10(exp 4) and R(sub 1) approximately equals 10(exp 14) (as calculated from the Braginskii expressions), the shear viscous resonant heating is of comparable magnitude to the resistive resonant

  19. Sediment movement along the U.S. east coast continental shelf-I. Estimates of bottom stress using the Grant-Madsen model and near-bottom wave and current measurements

    USGS Publications Warehouse

    Lyne, V.D.; Butman, B.; Grant, W.D.

    1990-01-01

    Bottom stress is calculated for several long-term time-series observations, made on the U.S. east coast continental shelf during winter, using the wave-current interaction and moveable bed models of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808; 1982, Journal of Geophysical Research, 87, 469-482). The wave and current measurements were obtained by means of a bottom tripod system which measured current using a Savonius rotor and vane and waves by means of a pressure sensor. The variables were burst sampled about 10% of the time. Wave energy was reasonably resolved, although aliased by wave groupiness, and wave period was accurate to 1-2 s during large storms. Errors in current speed and direction depend on the speed of the mean current relative to the wave current. In general, errors in bottom stress caused by uncertainties in measured current speed and wave characteristics were 10-20%. During storms, the bottom stress calculated using the Grant-Madsen models exceeded stress computed from conventional drag laws by a factor of about 1.5 on average and 3 or more during storm peaks. Thus, even in water as deep as 80 m, oscillatory near-bottom currents associated with surface gravity waves of period 12 s or longer will contribute substantially to bottom stress. Given that the Grant-Madsen model is correct, parameterizations of bottom stress that do not incorporate wave effects will substantially underestimate stress and sediment transport in this region of the continental shelf. ?? 1990.

  20. Measurement of the Length of Installed Rock Bolt Based on Stress Wave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor.

    PubMed

    Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing

    2017-02-23

    Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined.

  1. Measurement of the Length of Installed Rock Bolt Based on Stress Wave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing

    2017-01-01

    Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined. PMID:28241503

  2. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants

    PubMed Central

    Choi, Won-Gyu; Toyota, Masatsugu; Kim, Su-Hwa; Hilleary, Richard; Gilroy, Simon

    2014-01-01

    Their sessile lifestyle means that plants have to be exquisitely sensitive to their environment, integrating many signals to appropriate developmental and physiological responses. Stimuli ranging from wounding and pathogen attack to the distribution of water and nutrients in the soil are frequently presented in a localized manner but responses are often elicited throughout the plant. Such systemic signaling is thought to operate through the redistribution of a host of chemical regulators including peptides, RNAs, ions, metabolites, and hormones. However, there are hints of a much more rapid communication network that has been proposed to involve signals ranging from action and system potentials to reactive oxygen species. We now show that plants also possess a rapid stress signaling system based on Ca2+ waves that propagate through the plant at rates of up to ∼400 µm/s. In the case of local salt stress to the Arabidopsis thaliana root, Ca2+ wave propagation is channeled through the cortex and endodermal cell layers and this movement is dependent on the vacuolar ion channel TPC1. We also provide evidence that the Ca2+ wave/TPC1 system likely elicits systemic molecular responses in target organs and may contribute to whole-plant stress tolerance. These results suggest that, although plants do not have a nervous system, they do possess a sensory network that uses ion fluxes moving through defined cell types to rapidly transmit information between distant sites within the organism. PMID:24706854

  3. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars.

    PubMed

    Youssef, G; Crum, R; Prikhodko, S V; Seif, D; Po, G; Ghoniem, N; Kodambaka, S; Gupta, V

    2013-02-28

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>10(7) s(-1)), using laser-generated stress waves, are presented. Single-crystalline Cu pillars (∼1.20 μm in tall and ∼0.45 μm in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars.

  4. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars

    SciTech Connect

    Youssef, G.; Crum, R.; Seif, D.; Po, G.; Prikhodko, S. V.; Kodambaka, S.; Ghoniem, N.; Gupta, V.

    2013-02-28

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>10{sup 7} s{sup -1}), using laser-generated stress waves, are presented. Single-crystalline Cu pillars ({approx}1.20 {mu}m in tall and {approx}0.45 {mu}m in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars.

  5. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars

    NASA Astrophysics Data System (ADS)

    Youssef, G.; Crum, R.; Prikhodko, S. V.; Seif, D.; Po, G.; Ghoniem, N.; Kodambaka, S.; Gupta, V.

    2013-02-01

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>107 s-1), using laser-generated stress waves, are presented. Single-crystalline Cu pillars (˜1.20 μm in tall and ˜0.45 μm in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars.

  6. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars

    PubMed Central

    Youssef, G.; Crum, R.; Prikhodko, S. V.; Seif, D.; Po, G.; Ghoniem, N.; Kodambaka, S.; Gupta, V.

    2013-01-01

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>107 s−1), using laser-generated stress waves, are presented. Single-crystalline Cu pillars (∼1.20 μm in tall and ∼0.45 μm in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars. PMID:23526837

  7. Impact of 60-GHz millimeter waves on stress and pain-related protein expression in differentiating neuron-like cells.

    PubMed

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Boriskin, Artem; Sauleau, Ronan; Le Dréan, Yves

    2016-10-01

    Millimeter waves (MMW) will be increasingly used for future wireless telecommunications. Previous studies on skin keratinocytes showed that MMW could impact the mRNA expression of Transient Receptor Potential cation channel subfamily Vanilloid, member 2 (TRPV2). Here, we investigated the effect of MMW exposure on this marker, as well as on other membrane receptors such as Transient Receptor Potential cation channel subfamily Vanilloid, member 1 (TRPV1) and purinergic receptor P2X, ligand-gated ion channel, 3 (P2 × 3). We exposed the Neuroscreen-1 cell line (a PC12 subclone), in order to evaluate if acute MMW exposures could impact expression of these membrane receptors at the protein level. Proteotoxic stress-related chaperone protein Heat Shock Protein 70 (HSP70) expression level was also assessed. We used an original high-content screening approach, based on fluorescence microscopy, to allow cell-by-cell analysis and to detect any cell sub-population responding to exposure. Immunocytochemistry was done after 24 h MMW exposure of cells at 60.4 GHz, with an incident power density of 10 mW/cm(2) . Our results showed no impact of MMW exposure on protein expressions of HSP70, TRPV1, TRPV2, and P2 × 3. Moreover, no specific cell sub-populations were found to express one of the studied markers at a different level, compared to the rest of the cell populations. However, a slight insignificant increase in HSP70 expression and an increase in protein expression variability within cell population were observed in exposed cells, but controls showed that this was related to thermal effect. Bioelectromagnetics. 37:444-454, 2016. © 2016 Wiley Periodicals, Inc.

  8. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress1[OPEN

    PubMed Central

    Evans, Matthew J.; Choi, Won-Gyu

    2016-01-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca2+ traveling throughout the plant. For the Ca2+ wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca2+ wave originating from Ca2+ release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca2+ diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca2+ wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca2+ wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1. These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca2+ release dependent on the vacuolar channel TPC1. PMID:27261066

  9. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress.

    PubMed

    Evans, Matthew J; Choi, Won-Gyu; Gilroy, Simon; Morris, Richard J

    2016-07-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1.

  10. Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Hingst, W. R.; Porro, A. R.

    1991-01-01

    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.

  11. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    NASA Astrophysics Data System (ADS)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  12. Numerical modelling of physical processes and structural changes in metals under intensive irradiation with use of CRS code: dislocations, twinning, evaporation and stress waves

    NASA Astrophysics Data System (ADS)

    Mayer, A. E.; Borodin, E. N.; Krasnikov, V. S.; Mayer, P. N.

    2014-11-01

    CRS computer program is presented, which calculates the dynamical deformation of metals under irradiation by high-current electron and powerful ion beams. The incorporated mathematical models allow one to calculate stresses, deformations and structural changes induced by the irradiation. The CRS code numerically solves the equations system, which consists of continua mechanics equations, supplemented by equations of dynamics and kinetics of structural defects: dislocations, grain boundaries, twins, micro-cracks and vapour bubbles. The dislocation plasticity model, the grain boundary sliding model, the mechanical twinning model, the spall fracture model and the non-equilibrium evaporation model are incorporated in the code. The energy release function for electron beam can be calculated within the code, while it can be exported from over programs for ion beam. The CRS code can be a useful tool in theoretical estimation and interpretation of experiments in the field of materials modification by intensive energy fluxes. Restricted rate of plastic deformation provides high values of shear stresses and action of several competitive plasticity mechanisms. Non-equilibrium evaporation of metal in the energy release zone leads to a metastable state of overheated melt, which results in formation of tensile wave following the stress wave in the solid part of the irradiated metal.

  13. Controlled Low-Pressure Blast-Wave Exposure Causes Distinct Behavioral and Morphological Responses Modelling Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Comorbid Mild Traumatic Brain Injury-Post-Traumatic Stress Disorder.

    PubMed

    Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit

    2017-01-01

    The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.

  14. Erratum to Dynamic stresses, Coulomb failure, and remote triggering and to Surface wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Hill (2008) and Hill (2010) contain two technical errors: (1) a missing factor of 2 for computed Love‐wave amplitudes, and (2) a sign error in the off‐diagonal elements in the Euler rotation matrix.

  15. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress

    NASA Technical Reports Server (NTRS)

    Liou, M. S.; Adamson, T. C., Jr.

    1979-01-01

    An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.

  16. Source duration of stress and water-pressure induced seismicity derived from experimental analysis of P wave pulse width in granite

    NASA Astrophysics Data System (ADS)

    Masuda, K.

    2013-12-01

    Pulse widths of P waves in granite, measured in the laboratory, were analyzed to investigate source durations of rupture processes for water-pressure induced and stress-induced microseismicity. Much evidence suggests that fluids in the subsurface are intimately linked to faulting processes. Studies of seismicity induced by water injection are thus important for understanding the trigger mechanisms of earthquakes as well as for engineering applications such as hydraulic fracturing of rocks at depth for petroleum extraction. Determining the cause of seismic events is very important in seismology and engineering; however, water-pressure induced seismic events are difficult to distinguish from those induced by purely tectonic stress. To investigate this problem, we analyzed the waveforms of acoustic emissions (AEs) produced in the laboratory by both water-pressure induced and stress-induced microseismicity. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of about 70% of fracture strength, to the rock sample under 40 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emissions (AEs) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 17 MPa until macroscopic fracture occurred. We analysed AE waveforms produced by stress-induced AEs which occurred before the water-injection and by water-pressure induced AEs which occurred after the water-injection. Pulse widths were measured from the waveform traces plotted from the digital data. To investigate the source duration of the rupture process, we estimated the pulse width at the source and normalized by event magnitude to obtain a scaled pulse width at the source. After the effects of event size and hypocentral distance were removed from observed pulse widths, the ratio of the scaled source durations of water

  17. Alteration in Memory and Electroencephalogram Waves with Sub-acute Noise Stress in Albino Rats and Safeguarded by Scoparia dulcis

    PubMed Central

    Loganathan, Sundareswaran; Rathinasamy, Sheeladevi

    2016-01-01

    Background: Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. Objective: To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Materials and Methods: Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, and noise exposed which received Scoparia extract. Results: The results showed no marked difference observed between control and control treated with Scoparia extract on EAM, Y-maze, novel object test, and EEG in both prefrontal and occipital region, however, noise stress exposed rats showed significant increase in the reference memory and working memory error in EAM and latency delay, triad errors in Y-maze, and prefrontal and occipital EEG frequency rate with the corresponding increase in plasma corticosterone and epinephrine, and significant reduction in the novelty test, and significant reduction in the novelty test, amplitude of prefrontal, occipital EEG, and acetylcholine. Conclusion: These noise stress induced changes in EAM, Y-maze, novel object test, and neurotransmitters were significantly prevented when treated with Scoparia extract and these changes may be due to the normalizing action of Scoparia extract on the brain, which altered due to noise stress. SUMMARY Noise stress exposure causes EEG, behavior, and neurotransmitter alteration in the frontoparietal and occipital regions mainly involved in planning and recognition memoryOnly the noise stress exposed animals showed the significant alteration in the EEG, behavior, and neurotransmittersHowever, these noise stress induced changes in EEG behavior and neurotransmitters were significantly prevented when treated with Scoparia extractThese changes may be due to the normalizing action of Scoparia dulcis (adoptogen) on

  18. Negative Attachment Cognitions and Emotional Distress in mainland Chinese Adolescents: A Prospective Multi-Wave Test of Vulnerability-Stress and Stress Generation Models

    PubMed Central

    Cohen, Joseph R.; Hankin, Benjamin L.; Gibb, Brandon E.; Hammen, Constance; Hazel, Nicholas A.; Ma, Denise; Yao, Shuqiao; Zhu, Xiong Zhao; Abela, John R.Z.

    2014-01-01

    Objective The present study examined the relation between attachment cognitions, stressors, and emotional distress in a sample of Chinese adolescents. Specifically, it was examined whether negative attachment cognitions predicted depression and anxiety symptoms, and if a vulnerability-stress or stress generation model best explained the relation between negative attachment cognitions and internalizing symptoms. Method Participants included 558 adolescents (310 females and 248 males) from an urban school in Changsha, and 592 adolescents (287 females and 305 males) from a rural school in Liuyang, both in Hunan province located in mainland China. Participants completed self-report measures of negative attachment cognitions at baseline, and self-report measures of negative events, depression symptoms, and anxiety symptoms at baseline and at regular one month intervals for an overall 6-month follow-up (i.e., six follow-up assessments). Results Higher levels of negative attachment cognitions predicted prospective depression and anxiety symptoms. Furthermore, support was found for a stress generation model that partially mediated this longitudinal association. No support was found for a vulnerability-stress model. Conclusion Overall, these findings highlight new developmental pathways for development of depression and anxiety symptoms in mainland Chinese adolescents. PMID:23237030

  19. Non-β-blocking R-carvedilol enantiomer suppresses Ca2+ waves and stress-induced ventricular tachyarrhythmia without lowering heart rate or blood pressure.

    PubMed

    Zhang, Jingqun; Zhou, Qiang; Smith, Chris D; Chen, Haiyan; Tan, Zhen; Chen, Biyi; Nani, Alma; Wu, Guogen; Song, Long-Sheng; Fill, Michael; Back, Thomas G; Chen, S R Wayne

    2015-09-01

    Carvedilol is the current β-blocker of choice for suppressing ventricular tachyarrhythmia (VT). However, carvedilol's benefits are dose-limited, attributable to its potent β-blocking activity that can lead to bradycardia and hypotension. The clinically used carvedilol is a racemic mixture of β-blocking S-carvedilol and non-β-blocking R-carvedilol. We recently reported that novel non-β-blocking carvedilol analogues are effective in suppressing arrhythmogenic Ca(2+) waves and stress-induced VT without causing bradycardia. Thus, the non-β-blocking R-carvedilol enantiomer may also possess this favourable anti-arrhythmic property. To test this possibility, we synthesized R-carvedilol and assessed its effect on Ca(2+) release and VT. Like racemic carvedilol, R-carvedilol directly reduces the open duration of the cardiac ryanodine receptor (RyR2), suppresses spontaneous Ca(2+) oscillations in human embryonic kidney (HEK) 293 cells, Ca(2+) waves in cardiomyocytes in intact hearts and stress-induced VT in mice harbouring a catecholaminergic polymorphic ventricular tachycardia (CPVT)-causing RyR2 mutation. Importantly, R-carvedilol did not significantly alter heart rate or blood pressure. Therefore, the non-β-blocking R-carvedilol enantiomer represents a very promising prophylactic treatment for Ca(2+)- triggered arrhythmia without the bradycardia and hypotension often associated with racemic carvedilol. Systematic clinical assessments of R-carvedilol as a new anti-arrhythmic agent may be warranted.

  20. Non-β-blocking R-carvedilol enantiomer suppresses Ca2+ waves and stress-induced ventricular tachyarrhythmia without lowering heart rate or blood pressure

    PubMed Central

    Zhang, Jingqun; Zhou, Qiang; Smith, Chris D.; Chen, Haiyan; Tan, Zhen; Chen, Biyi; Nani, Alma; Wu, Guogen; Song, Long-Sheng; Fill, Michael; Back, Thomas G.; Wayne Chen, S.R.

    2016-01-01

    Carvedilol is the current β-blocker of choice for suppressing ventricular tachyarrhythmia (VT). However, carvedilol’s benefits are dose-limited, attributable to its potent β-blocking activity that can lead to bradycardia and hypotension. The clinically used carvedilol is a racemic mixture of β-blocking S-carvedilol and non-β-blocking R-carvedilol. We recently reported that novel non-β-blocking carvedilol analogues are effective in suppressing arrhythmogenic Ca2+ waves and stress-induced VT without causing bradycardia. Thus, the non-β-blocking R-carvedilol enantiomer may also possess this favourable anti-arrhythmic property. To test this possibility, we synthesized R-carvedilol and assessed its effect on Ca2+ release and VT. Like racemic carvedilol, R-carvedilol directly reduces the open duration of the cardiac ryanodine receptor (RyR2), suppresses spontaneous Ca2+ oscillations in human embryonic kidney (HEK) 293 cells, Ca2+ waves in cardiomyocytes in intact hearts and stress-induced VT in mice harbouring a catecholaminergic polymorphic ventricular tachycardia (CPVT)-causing RyR2 mutation. Importantly, R-carvedilol did not significantly alter heart rate or blood pressure. Therefore, the non-β-blocking R-carvedilol enantiomer represents a very promising prophylactic treatment for Ca2+-triggered arrhythmia without the bradycardia and hypotension often associated with racemic carvedilol. Systematic clinical assessments of R-carvedilol as a new anti-arrhythmic agent may be warranted. PMID:26348911

  1. Sensitivity of growth characteristics of tidal sand ridges and long bed waves to formulations of bed shear stress, sand transport and tidal forcing: A numerical model study

    NASA Astrophysics Data System (ADS)

    Yuan, Bing; de Swart, Huib E.; Panadès, Carles

    2016-09-01

    Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal currents are above 0.5 m s-1, while long bed waves occur in regions where the maximum tidal current velocity is slightly above the critical velocity for sand erosion and the current is elliptical. An idealized nonlinear numerical model was developed to improve the understanding of the initial formation of these bedforms. The model governs the feedbacks between tidally forced depth-averaged currents and the sandy bed on the outer shelf. The effects of different formulations of bed shear stress and sand transport, tidal ellipticity and different tidal constituents on the characteristics of these bedforms (growth rate, wavelength, orientation of the preferred bedforms) during their initial formation were examined systematically. The results show that the formulations for bed shear stress and slope-induced sand transport are not critical for the initial formation of these bedforms. For tidal sand ridges, under rectilinear tidal currents, increasing the critical bed shear stress for sand erosion decreases the growth rate and the wavelength of the preferred bedforms significantly, while the orientation angle slightly decreases. The dependence of the growth rate, wavelength and the orientation of the preferred bedforms on the tidal ellipticity is non-monotonic. A decrease in tidal frequency results in preferred bedforms with larger wavelength and smaller orientation angle, while their growth rate hardly changes. In the case of joint diurnal and semidiurnal tides, or spring-neap tides, the characteristics of the bedforms are determined by the dominant tidal constituent. For long bed waves, the number of anticyclonically/cyclonically oriented bedforms with respect to the principal

  2. Stress and temperature distributions of individual particles in a shock wave propagating through dry and wet sand mixtures

    NASA Astrophysics Data System (ADS)

    Schumaker, Merit G.; Kennedy, Gregory; Thadhani, Naresh; Hankin, Markos; Stewart, Sarah T.; Borg, John P.

    2017-01-01

    Determining stress and temperature distributions of dynamically compacted particles is of interest to the geophysical and astrological research communities. However, the researcher cannot easily observe particle interactions during a planar shock experiment. By using mesoscale simulations, we can unravel granular particle interactions. Unlike homogenous materials, the averaged Hugoniot state for heterogeneous granular materials differs from the individual stress and temperature states of particles during a shock event. From planar shock experiments for dry and water-saturated Oklahoma sand, we constructed simulations using Sandia National Laboratory code known as CTH and then compared these simulated results to the experimental results. This document compares and presents stress and temperature distributions from simulations, with a discussion on the difference between Hugoniot measurements and distribution peaks for dry and water-saturated sand.

  3. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  4. Multi-wave Prospective Examination of the Stress-Reactivity Extension of Response Styles Theory of Depression in High-Risk Children and Early Adolescents

    PubMed Central

    Abela, John R. Z.; Hankin, Benjamin L.; Sheshko, Dana M.; Fishman, Michael B.; Stolow, Darren

    2011-01-01

    The current study tested the stress-reactivity extension of response styles theory of depression (Nolen-Hoeksema Journal of Abnormal Psychology 100:569-582, 1991) in a sample of high-risk children and early adolescents from a vulnerability-stress perspective using a multi-wave longitudinal design. In addition, we examined whether obtained results varied as a function of either age or sex. During an initial assessment, 56 high-risk children (offspring of depressed parents; ages 7-14) completed measures assessing rumination and depressive symptoms. Children were subsequently given a handheld personal computer which signalled them to complete measures assessing depressive symptoms and negative events at six randomly selected times over an 8-week follow-up interval. In line with hypotheses, higher levels of rumination were associated with prospective elevations in depressive symptoms following the occurrence of negative events. Sex, but not age, moderated this association. Rumination was more strongly associated with elevations in depressive symptoms following the occurrence of negative events in girls than in boys. PMID:21892595

  5. Fully vectorial laser resonator modeling of continuous-wave solid-state lasers including rate equations, thermal lensing and stress-induced birefringence.

    PubMed

    Asoubar, Daniel; Wyrowski, Frank

    2015-07-27

    The computer-aided design of high quality mono-mode, continuous-wave solid-state lasers requires fast, flexible and accurate simulation algorithms. Therefore in this work a model for the calculation of the transversal dominant mode structure is introduced. It is based on the generalization of the scalar Fox and Li algorithm to a fully-vectorial light representation. To provide a flexible modeling concept of different resonator geometries containing various optical elements, rigorous and approximative solutions of Maxwell's equations are combined in different subdomains of the resonator. This approach allows the simulation of plenty of different passive intracavity components as well as active media. For the numerically efficient simulation of nonlinear gain, thermal lensing and stress-induced birefringence effects in solid-state active crystals a semi-analytical vectorial beam propagation method is discussed in detail. As a numerical example the beam quality and output power of a flash-lamp-pumped Nd:YAG laser are improved. To that end we compensate the influence of stress-induced birefringence and thermal lensing by an aspherical mirror and a 90° quartz polarization rotator.

  6. Urban heat island effects human heat-stress values in Portland (OR) during the July 2006 heat wave

    NASA Astrophysics Data System (ADS)

    Bornstein, R. D.; Melford, A.

    2009-12-01

    The Heat Index (HI), a measure of the effective temperature felt by the human body, is based on both 2-m air temperature and relative humidity (RH) values. This NWS index, however, is generally calculated by use of only airport data. It thus cannot account for urban heat island (UHI) effects, which would raise the temperature values used in its calculation, create greater HI values, and thus more accurate estimates of the danger to human populations. The current study thus uses 12 mesoscale sites around Portland, Oregon to map the UHI and resulting HI fields during the heat wave of 20-24 July 2006. Past studies have observed UHIs in the area, but temperatures during this heat wave were unusually high due to a combination of synoptic influences, i.e., high temperatures aloft, nocturnal cloud cover, and a surface high pressure area. The associated surface southerly flow of moist air also produced high RH values during both daytime (which raised HI values) and nighttime (which kept min temperatures high). Results showed two separate Portland midday UHI centers (of up to 16 F), divided by the Willamette River that flows through the city. The UHI produced significant differences in the HI values across the city, with the highest variability during the 22nd of July. HI values from the airport NWS site were much lower (up to 20 F) than those from the center of the UHI. An urbanized HI needs to thus be considered (either from mesoscale observations, statistical extrapolation, or mesoscale modeling) when forecasting HI values in urban areas.

  7. Deep sleep after social stress: NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict.

    PubMed

    Kamphuis, Jeanine; Lancel, Marike; Koolhaas, Jaap M; Meerlo, Peter

    2015-07-01

    Sleep is considered to be a recovery process of prior wakefulness. Not only duration of the waking period affects sleep architecture and sleep EEG, the quality of wakefulness is also highly important. Studies in rats have shown that social defeat stress, in which experimental animals are attacked and defeated by a dominant conspecific, is followed by an acute increase in NREM sleep EEG slow wave activity (SWA). However, it is not known whether this effect is specific for the stress of social defeat or a result of the conflict per se. In the present experiment, we examined how sleep is affected in both the winners and losers of a social conflict. Sleep-wake patterns and sleep EEG were recorded in male wild-type Groningen rats that were subjected to 1h of social conflict in the middle of the light phase. All animals were confronted with a conspecific of similar aggression level and the conflict took place in a neutral arena where both individuals had an equal chance to either win or lose the conflict. NREM sleep SWA was significantly increased after the social conflict compared to baseline values and a gentle stimulation control condition. REM sleep was significantly suppressed in the first hours after the conflict. Winners and losers did not differ significantly in NREM sleep time, NREM sleep SWA and REM sleep time immediately after the conflict. Losers tended to have slightly more NREM sleep later in the recovery period. This study shows that in rats a social conflict with an unpredictable outcome has quantitatively and qualitatively largely similar acute effects on subsequent sleep in winners and losers.

  8. A no-cost improved velocity-stress staggered-grid finite-difference scheme for modelling seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Etemadsaeed, Leila; Moczo, Peter; Kristek, Jozef; Ansari, Anooshiravan; Kristekova, Miriam

    2016-10-01

    We investigate the problem of finite-difference approximations of the velocity-stress formulation of the equation of motion and constitutive law on the staggered grid (SG) and collocated grid (CG). For approximating the first spatial and temporal derivatives, we use three approaches: Taylor expansion (TE), dispersion-relation preserving (DRP), and combined TE-DRP. The TE and DRP approaches represent two fundamental extremes. We derive useful formulae for DRP and TE-DRP approximations. We compare accuracy of the numerical wavenumbers and numerical frequencies of the basic TE, DRP and TE-DRP approximations. Based on the developed approximations, we construct and numerically investigate 14 basic TE, DRP and TE-DRP finite-difference schemes on SG and CG. We find that (1) the TE second-order in time, TE fourth-order in space, 2-point in time, 4-point in space SG scheme (that is the standard (2,4) VS SG scheme, say TE-2-4-2-4-SG) is the best scheme (of the 14 investigated) for large fractions of the maximum possible time step, or, in other words, in a homogeneous medium; (2) the TE second-order in time, combined TE-DRP second-order in space, 2-point in time, 4-point in space SG scheme (say TE-DRP-2-2-2-4-SG) is the best scheme for small fractions of the maximum possible time step, or, in other words, in models with large velocity contrasts if uniform spatial grid spacing and time step are used. The practical conclusion is that in computer codes based on standard TE-2-4-2-4-SG, it is enough to redefine the values of the approximation coefficients by those of TE-DRP-2-2-2-4-SG for increasing accuracy of modelling in models with large velocity contrast between rock and sediments.

  9. Near Shore Wave Processes

    DTIC Science & Technology

    2016-06-07

    to breaking waves described using the roller concept (Lippmann and Thornton, 1999), alongshore wind stress, cross-shore advection of mean momentum of...Lippmann and Thornton, 1999), and O[10] percent improvement by including the momentum mixing by the advection of the longshore current momentum by the mean...process modeling of breaking waves, momentum mixing due to the interaction of longshore and cross-shore vertical mean profiles, and bottom shear stress

  10. Hysteretic Faraday waves.

    PubMed

    Périnet, Nicolas; Falcón, Claudio; Chergui, Jalel; Juric, Damir; Shin, Seungwon

    2016-06-01

    We report on the numerical and theoretical study of the subcritical bifurcation of parametrically amplified waves appearing at the interface between two immiscible incompressible fluids when the layer of the lower fluid is very shallow. As a critical control parameter is surpassed, small amplitude surface waves bifurcate subcritically toward highly nonlinear ones with twice their amplitude. We relate this hysteresis with the change of shear stress using a simple stress balance, in agreement with numerical results.

  11. Stress-induced spatiotemporal variations in anisotropic structures beneath Hakone volcano, Japan, detected by S wave splitting: A tool for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Honda, Ryou; Yukutake, Yohei; Yoshida, Akio; Harada, Masatake; Miyaoka, Kazuki; Satomura, Mikio

    2014-09-01

    Hakone volcano, located at the northern tip of the Izu-Mariana volcanic arc, Japan, has a large caldera structure containing numerous volcanic hot springs. Earthquake swarms have occurred repeatedly within the caldera. The largest seismic swarm since the commencement of modern seismic observations (in 1968) occurred in 2001. We investigated the anisotropic structure of Hakone volcano based on S wave splitting analysis and found spatiotemporal changes in the splitting parameters accompanying the seismic swarm activity. Depth-dependent anisotropic structures are clearly observed. A highly anisotropic layer with a thickness of ~1.5 km is located beneath the Koziri (KZR) and Kozukayama (KZY) stations. The anisotropic intensity in the region reaches a maximum of 6-7% at a depth of 1 km and decreases markedly to less than 1% at a depth of 2 km. The anisotropic intensity beneath Komagatake station (KOM) decreases gradually from a maximum of 6% at the surface to 0% at a depth of 5 km but is still greater than 2.5% at a depth of 3 km. At KZY, the anisotropic intensity along a travel path of which the back azimuth was the south decreased noticeably after the 2001 seismic swarm activity. During the swarm activity, tilt meters and GPS recorded the crustal deformation. The observed decrease in anisotropic intensity is presumed to be caused by the closing of microcracks by stress changes accompanying crustal deformation near the travel path.

  12. Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats.

    PubMed

    Ragy, Merhan Mamdouh

    2015-01-01

    Increasing use of mobile phones in daily life with increasing adverse effects of electromagnetic radiation (EMR), emitted from mobile on some physiological processes, cause many concerns about their effects on human health. Therefore, this work was designed to study the effects of exposure to mobile phone emits 900-MHz EMR on the brain, liver and kidney of male albino rats. Thirty male adult rats were randomly divided into four groups (10 each) as follows: control group (rats without exposure to EMR), exposure group (exposed to 900-MHz EMR for 1 h/d for 60 d) and withdrawal group (exposed to 900-MHz electromagnetic wave for 1 h/d for 60 d then left for 30 d without exposure). EMR emitted from mobile phone led to a significant increase in malondialdehyde (MDA) levels and significant decrease total antioxidant capacity (TAC) levels in brain, liver and kidneys tissues. The sera activity of alanine transaminase (ALT), aspartate aminotransferase (AST), urea, creatinine and corticosterone were significantly increased (p < 0.05), while serum catecholamines were insignificantly higher in the exposed rats. These alterations were corrected by withdrawal. In conclusion, electromagnetic field emitting from mobile phone might produce impairments in some biochemicals changes and oxidative stress in brain, liver and renal tissue of albino rats. These alterations were corrected by withdrawal.

  13. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    NASA Astrophysics Data System (ADS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-09-01

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.

  14. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    SciTech Connect

    Del Ben, Mauro Hutter, Jürg; VandeVondele, Joost

    2015-09-14

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH{sub 3}, CO{sub 2}, formic acid, and benzene.

  15. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study is the first field based experiment that uses IR heaters to study the effects of a regionally defined heat wave on soybean physiology and productivity. The heating technology was successful and all of the heat waves were maintained at the target temperature for the three day duration of t...

  16. Nondestructive Determination of Heat/Fire Damage to Polymer- Matrix Composites Using Obliquely Insonified Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mal, A.; Lih, S.

    1995-01-01

    Heat and fire damage to composite structures cause loss of strength that cannot be detected by current NDE methods unless physical damage occurs. Further, there is a lack of fundamental understanding of the mechanism of damage from thermal exposure of organic matrix composites to elevated temperatures. Information compiled from field reports and lab experiments increasingly suggests that there is material degradation and it is not necessarily involved with the introduction of physical defects. In recent years, various researchers examined the potential to identifying thermal degradation to organic matrix composites prior to delamination. The methods that were used include: ultrasonics, backscattered X-ray, eddy current, thermography, drift and LPF spectroscopies, acousto-ultrasonics and hardness testing. None of these methods were able to correlate NDE results with loss of mechanical properties.

  17. Slow frictional waves

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan

    Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.

  18. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    NASA Technical Reports Server (NTRS)

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  19. THERMOPLASTIC WAVES IN MAGNETARS

    SciTech Connect

    Beloborodov, Andrei M.; Levin, Yuri E-mail: yuri.levin@monash.edu.au

    2014-10-20

    Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure, and velocity, and discuss implications for observed magnetar activity.

  20. Subsurface pressure profiling: a novel mathematical paradigm for computing colony pressures on substrate during fungal infections

    PubMed Central

    Patra, Subir; Banerjee, Sourav; Terejanu, Gabriel; Chanda, Anindya

    2015-01-01

    Colony expansion is an essential feature of fungal infections. Although mechanisms that regulate hyphal forces on the substrate during expansion have been reported previously, there is a critical need of a methodology that can compute the pressure profiles exerted by fungi on substrates during expansion; this will facilitate the validation of therapeutic efficacy of novel antifungals. Here, we introduce an analytical decoding method based on Biot’s incremental stress model, which was used to map the pressure distribution from an expanding mycelium of a popular plant pathogen, Aspergillus parasiticus. Using our recently developed Quantitative acoustic contrast tomography (Q-ACT) we detected that the mycelial growth on the solid agar created multiple surface and subsurface wrinkles with varying wavelengths across the depth of substrate that were computable with acousto-ultrasonic waves between 50 MHz–175 MHz. We derive here the fundamental correlation between these wrinkle wavelengths and the pressure distribution on the colony subsurface. Using our correlation we show that A. parasiticus can exert pressure as high as 300 KPa on the surface of a standard agar growth medium. The study provides a novel mathematical foundation for quantifying fungal pressures on substrate during hyphal invasions under normal and pathophysiological growth conditions. PMID:26262897

  1. All-Atom Molecular-Level Computational Analyses of Polyurea/Fused-Silica Interfacial Decohesion Caused by Impinging Tensile Stress-Waves

    DTIC Science & Technology

    2014-01-01

    University, and the Army Research Office (ARO) research contract entitled “Friction Stir Welding Behavior of Selected 2000-series and 5000-series Aluminum...to high-intensity static and dynamic loads (e.g. those arising from underwater blasts and ocean waves). In these applications, polyurea/ glass

  2. Hysteretic Faraday waves

    NASA Astrophysics Data System (ADS)

    Périnet, Nicolas; Falcón, Claudio; Chergui, Jalel; Shin, Seungwon; Juric, Damir

    2016-11-01

    We study with numerical simulations the two-dimensional Faraday waves in two immiscible incompressible fluids when the lower fluid layer is shallow. After the appearance of the well known subharmonic stationary waves, a further instability is observed while the control parameter passes a secondary threshold. A new state then arises, composed of stationary waves with about twice the original pattern amplitude. The bifurcation presents hysteresis: there exists a finite range of the control parameter in which both states are stable. By means of a simple stress balance, we show that a change of the shear stress can explain this hysteresis. Our predictions based on this model are in agreement with our numerical results. Project funded by FONDECYT Grants 1130354, 3140522 and the National Research Foundation of Korea (NRF- 2014R1A2A1A11051346). Computations supported by the supercomputing infrastructures of the NLHPC (ECM-02) and GENCI (IDRIS).

  3. ASTER Waves

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels

  4. The detection and characterization of natural fractures using P-wave reflection data, multicomponent VSP, borehole image logs and the in-situ stress field determination

    SciTech Connect

    Hoekstra, P.

    1995-04-01

    The objectives of this project are to detect and characterize fractures in a naturally fractured tight gas reservoir, using surface seismic methods, borehole imaging logs, and in-situ stress field data. Further, the project aims to evaluate the various seismic methods as to their effectiveness in characterizing the fractures, and to formulate the optimum employment of the seismic methods as regards fracture characterization.

  5. Longitudinal Linkages between Depressive and Posttraumatic Stress Symptoms in Adolescent Survivors Following the Wenchuan Earthquake in China: A Three-Wave, Cross-Lagged Study

    ERIC Educational Resources Information Center

    Ying, Liu-Hua; Wu, Xin-Chun; Lin, Chong-De

    2012-01-01

    This study aimed to determine the relationships between depressive and posttraumatic stress disorder (PTSD) symptoms in a sample of adolescent survivors following the Wenchuan earthquake in China. Two-hundred adolescent survivors were reviewed at 12, 18 and 24-months post-earthquake. Depression and PTSD were assessed by two self-report…

  6. Waves in periodic dissipative laminate metamaterial generated by plate impact

    NASA Astrophysics Data System (ADS)

    Navarro, Pedro Franco; Benson, David J.; Nesterenko, Vitali F.

    2017-01-01

    We investigated numerically the nature of high amplitude stress waves generated by plate impact on Al/W viscoplastic laminates with different cell sizes. Weakly attenuating localized travelling waves, closely resembling solitary waves, quickly form near the impacted surface at relatively short duration of incoming pulse. They have properties similar to solitary solutions of the Korteweg-de Vries equation with the dispersive and nonlinear parameters connected to laminate properties. The peak temperature in the localized stress wave is dramatically different than the temperature corresponding to the shock wave at the same pressure, reflecting different paths of loading. Increase of the duration of the incoming pulse results in a train of solitary pulses or in oscillatory stationary shock like stress waves. The leading front of the shock like stress wave is closely described by the rising part of solitary stress wave.

  7. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  8. Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures

    DTIC Science & Technology

    2016-08-03

    attenuated over time (again, we briefly discuss the relevant features in Supple- mental Material [41]). We now explore this nanopteronic waveform more...formation of genuinely traveling waves composed of a strongly-localized solitary wave on top of a small amplitude oscillatory tail. This type of wave...manipulat- ing highly nonlinear stress waves at will, including high wave attenuation and spontaneous formation of novel traveling waves after an impact

  9. Stress Management: Job Stress

    MedlinePlus

    Healthy Lifestyle Stress management Job stress can be all-consuming — but it doesn't have to be. Address your triggers, keep perspective and know when ... effects of stress at work. Effectively coping with job stress can benefit both your professional and personal ...

  10. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  11. Wave Propagation in the Vicinities of Rock Fractures Under Obliquely Incident Wave

    NASA Astrophysics Data System (ADS)

    Zou, Yang; Li, Jianchun; He, Lei; laloui, Lyesse; Zhao, Jian

    2016-05-01

    Though obliquely incident plane wave across rock fractures has been extensively investigated by theoretical analysis, the quantitative identification of each wave emerged from fractures has not been achieved either in numerical simulation or laboratory experiment. On the other hand, there are no theoretical results describing the stress/velocity state of the rocks beside a fracture. The superposition of the multiple waves propagating in the media results in the variation of the stress/velocity state. To understand the superposition of the wave components in the adjacent rocks of a facture, based on the geometrical analysis of the wave paths, the lag times among passing waves at an arbitrary point are determined. The normalised critical distances from the fracture to the measuring locations where the corresponding harmonic waves depart from other waves for a certain duration are then derived. Discussion on the correction for an arbitrary incident wave is then carried out considering the changes of the duration of the reflected and transmitted waves. Under the guidance of the analysis, wave superposition is performed for theoretical results and separated waves are obtained from numerical model. They are demonstrated to be consistent with each other. The measurement and the data processing provide an approach for wave separation in a relatively unbounded media. In addition, based on the mechanical analysis on the wave front, an indirect wave separation method is proposed which provides a possibility for laboratory experiments of wave propagation with an arbitrary incident angle.

  12. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  13. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  14. Solitary waves in a peridynamic elastic solid

    DOE PAGES

    Silling, Stewart A.

    2016-06-23

    The propagation of large amplitude nonlinear waves in a peridynamic solid is ana- lyzed. With an elastic material model that hardens in compression, sufficiently large wave pulses propagate as solitary waves whose velocity can far exceed the linear wave speed. In spite of their large velocity and amplitude, these waves leave the material they pass through with no net change in velocity and stress. They are nondissipative and nondispersive, and they travel unchanged over large distances. An approximate solution for solitary waves is derived that reproduces the main features of these waves observed in computational simulations. We demonstrate, by numericalmore » studies, that waves interact only weakly with each other when they collide. Finally, we found that wavetrains composed of many non-interacting solitary waves form and propagate under certain boundary and initial conditions.« less

  15. Solitary waves in a peridynamic elastic solid

    SciTech Connect

    Silling, Stewart A.

    2016-06-23

    The propagation of large amplitude nonlinear waves in a peridynamic solid is ana- lyzed. With an elastic material model that hardens in compression, sufficiently large wave pulses propagate as solitary waves whose velocity can far exceed the linear wave speed. In spite of their large velocity and amplitude, these waves leave the material they pass through with no net change in velocity and stress. They are nondissipative and nondispersive, and they travel unchanged over large distances. An approximate solution for solitary waves is derived that reproduces the main features of these waves observed in computational simulations. We demonstrate, by numerical studies, that waves interact only weakly with each other when they collide. Finally, we found that wavetrains composed of many non-interacting solitary waves form and propagate under certain boundary and initial conditions.

  16. Solitary waves in a peridynamic elastic solid

    NASA Astrophysics Data System (ADS)

    Silling, S. A.

    2016-11-01

    The propagation of large amplitude nonlinear waves in a peridynamic solid is analyzed. With an elastic material model that hardens in compression, sufficiently large wave pulses propagate as solitary waves whose velocity can far exceed the linear wave speed. In spite of their large velocity and amplitude, these waves leave the material they pass through with no net change in velocity and stress. They are nondissipative and nondispersive, and they travel unchanged over large distances. An approximate solution for solitary waves is derived that reproduces the main features of these waves observed in computational simulations. It is demonstrated by numerical studies that the waves interact only weakly with each other when they collide. Wavetrains composed of many non-interacting solitary waves are found to form and propagate under certain boundary and initial conditions.

  17. Slow wave propagation in soft adhesive interfaces.

    PubMed

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan

    2016-11-16

    Stick-slip in sliding of soft adhesive surfaces has long been associated with the propagation of Schallamach waves, a type of slow surface wave. Recently it was demonstrated using in situ experiments that two other kinds of slow waves-separation pulses and slip pulses-also mediate stick-slip (Viswanathan et al., Soft Matter, 2016, 12, 5265-5275). While separation pulses, like Schallamach waves, involve local interface detachment, slip pulses are moving stress fronts with no detachment. Here, we present a theoretical analysis of the propagation of these three waves in a linear elastodynamics framework. Different boundary conditions apply depending on whether or not local interface detachment occurs. It is shown that the interface dynamics accompanying slow waves is governed by a system of integral equations. Closed-form analytical expressions are obtained for the interfacial pressure, shear stress, displacements and velocities. Separation pulses and Schallamach waves emerge naturally as wave solutions of the integral equations, with oppositely oriented directions of propagation. Wave propagation is found to be stable in the stress regime where linearized elasticity is a physically valid approximation. Interestingly, the analysis reveals that slow traveling wave solutions are not possible in a Coulomb friction framework for slip pulses. The theory provides a unified picture of stick-slip dynamics and slow wave propagation in adhesive contacts, consistent with experimental observations.

  18. Deformation, strain and crack measurements using conjugate-wave holographic interferometry and its application to thermally stressed ceramic-coated metals

    NASA Astrophysics Data System (ADS)

    Gloeckner, Paul James

    The quantitative measurement of whole plane deformation fields has been approached by using methods such as moire interferometry, speckle interferometry and conventional holography. These methods have been used with success, but when isolation of deformation components is necessary and harsh environments exist some may not be practical. Conjugate Wave Holographic Interferometry (CWHI) is a non-contact method for measuring in-plane deformations on ordinary surfaces. By projecting the conjugate images from a hologram onto a deformed object, fringes can be observed that correlate to the object deformation. Its advantages include submicron resolution, whole field visualization, and isolation of individual in-plane components. Additionally, because CWHI is non-contacting it does not require special preparation of optically diffuse surfaces. Despite these apparent advantages, CWHI has not been widely used as an analysis tool. In this study, CWHI is used in conjunction with fringe skeletonizing and interpolation to obtain quantitative deformation and strain information for a simply supported beam. Additionally, the crack mouth opening displacement for a notched specimen was obtained. Experimentally obtained values agreed well with those predicted by theory. Furthermore, CWHI was applied to a ceramic thermal barrier coating subjected to localized 200°C heating at the surface and quantitative results for deformation and strain were obtained. An interesting phenomenon was observed during the crack measurements as well as the thermal loading study. Illumination of the object with a single conjugate image produced a dark spot at the crack, thus making it easily detectable. In the thermal loading study a dark spot was observed near the heated area in the ceramic layer. Several experiments were performed to identify the cause of the dark spot, but they were inconclusive.

  19. Making waves

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten

    2017-01-01

    Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.

  20. Constitutive modeling of fracture waves

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; Romensky, E. I.; Bourne, N. K.

    2003-02-01

    A fracture wave (FW) in a brittle material is a narrow transition region (border) of a continuous fracture zone, which may be associated with the damage accumulation process initiated by propagation of shock waves. In multidimensional structures the fracture wave may behave in an unusual way. The high-speed photography of penetration of a borosilicate (Pyrex) glass block [N. K. Bourne, L. Forde, and J. E. Field, Proc. SPIE 2869, 626 (1997)] shows a visible fracture zone with an apparent flat front although the projectile is a hemispherically nosed rod. A strain-rate-sensitive model is being developed and employed for analysis of the role of the complex stress state and kinetic description of the damage accumulation to describe the process of the impact. Numerical analysis is conducted with a one-dimensional wave propagation code employing the model and with the LS-DYNA2D hydrocode in which the model has been implemented. The analysis demonstrates that (i) the second (plastic) shock wave is superseded by quicker FW relaxing stress behind the elastic precursor, and (ii) the FW front flattening is apparently caused by the change in the acoustic directional properties. This change is associated with the phase-like transition due to the damage accumulation within the FW. In particular, the FW transition separates a highly anisotropic zone of material characterized acoustically by longitudinal and shear waves in front of the FW from a nearly isotropic region of the material characterized only by bulk waves behind the FW.

  1. Nonlinear Waves

    DTIC Science & Technology

    1989-06-15

    following surprising situation. Namely associated with the integrable nonlinear Schrodinger equations are standard numerical schemes which exhibit at...36. An Initial Boundary Value Problem for the Nonlinear Schrodinger Equations , A.S. Fokas, Physica D March 1989. 37. Evolution Theory, Periodic... gravity waves and wave excitation phenomena related to moving pressure distributions; numerical approximation and computation; nonlinear optics; and

  2. Microfluidic waves

    PubMed Central

    Utz, Marcel; Begley, Matthew R.; Haj-Hariri, Hossein

    2012-01-01

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s−1 result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  3. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  4. Moreton Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.

    1999-01-01

    "Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.

  5. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  6. Failure waves in shock-compressed glasses

    NASA Astrophysics Data System (ADS)

    Kanel, Gennady I.

    2005-07-01

    The failure wave is a network of cracks that are nucleated on the surface and propagate into the elastically stressed body. It is a mode of catastrophic fracture in an elastically stressed media whose relevance is not limited to impact events. In the presentation, main properties of the failure waves are summarized and discussed. It has been shown that the failure wave is really a wave process which is characterized by small increase of the longitudinal stress and corresponding increments of the particle velocity and the density. The propagation velocity of the failure wave is less than the sound speed; it is not directly related to the compressibility but is determined by the crack growth speed. Transformation of elastic compression wave followed by the failure wave in a thick glass plate into typical two-wave configuration in a pile of thin glass plates confirms crucial role of the surfaces. The latter, as well as specific kinematics of the process distinguishes the failure wave from a time-dependent inelastic compressive behavior of brittle materials. The failure wave is steady if the stress state ahead of it is supported unchanging. Mechanism of this self-supporting propagation of compressive fracture is not quite clear as yet. On the other hand, collected data about its kinematics allow formulating phenomenological models of the phenomenon. In some sense the process is similar to the diffusion of cracks from a source on the glass surface. However, the diffusion-like models contradict to observed steady propagation of the failure wave. Analogy with a subsonic combustion wave looks more fruitful. Computer simulations based on the phenomenological combustion-like model reproduces well all kinematical aspects of the phenomenon.

  7. Modulation of short waves by long waves. [ocean wave interactions

    NASA Technical Reports Server (NTRS)

    Reece, A. M., Jr.

    1978-01-01

    Wave-tank experiments were performed to investigate the cyclic short-wave energy changes, related in phase to an underlying long wave, which occur during active generation of the short-wave field by wind. Measurements of time series of the short-wave slope were made by a laser-optical system, where the basic long-wave parameters were controlled and wind speeds were accurately reproducible. The short-wave slope variances were found to exhibit cyclic variations that are related to the phase of the long wave. The variations result from two combined effects: (1) the short wave frequency is varied by the long-wave orbital velocity; (2) the energy of the short waves is modulated by the actions of aerodynamic and hydrodynamic couplings that operate on the short waves in a manner related to the long-wave phase.

  8. Coal Thickness Gauging Using Elastic Waves

    NASA Technical Reports Server (NTRS)

    Nazarian, Soheil; Bar-Cohen, Yoseph

    1999-01-01

    The efforts of a mining crew can be optimized, if the thickness of the coal layers to be excavated is known before excavation. Wave propagation techniques can be used to estimate the thickness of the layer based on the contrast in the wave velocity between coal and rock beyond it. Another advantage of repeated wave measurement is that the state of the stress within the mine can be estimated. The state of the stress can be used in many safety-related decisions made during the operation of the mine. Given these two advantages, a study was carried out to determine the feasibility of the methodology. The results are presented herein.

  9. Elastic waves in quasiperiodic structures

    NASA Astrophysics Data System (ADS)

    Velasco, V. R.; Zárate, J. E.

    2001-08-01

    We study the transverse and sagittal elastic waves in different quasiperiodic structures by means of the full transfer-matrix technique and surface Green-function matching method. The quasiperiodic structures follow Fibonacci, Thue-Morse and Rudin-Shapiro sequences, respectively. We consider finite structures having stress-free bounding surfaces and different generation orders, including up to more than 1000 interfaces. We obtain the dispersion relations for elastic waves and spatial localization of the different modes. The fragmentation of the spectrum for different sequences is evident for intermediate generation orders, in the case of transverse elastic waves, whereas, for sagittal elastic waves, higher generation orders are needed to show clearly the spectrum fragmentation. The results of Fibonacci and Thue-Morse sequences exhibit similarities not present in the results of Rudin-Shapiro sequences.

  10. Mitigating Stress Waves Using Nanofoams and Nanohoneycombs

    DTIC Science & Technology

    2014-04-16

    conducted quasi-static shear tests and SHB dynamic tests on single-parameter silica foam samples. The testing data showed consistent conelation between... silica foam samples. The testing data showed consistent correlation between the cell size and the transmitted pulse pressure and energy: Reducing cell...identify shear bands, compression zones, and undamaged zones in tested samples. (4) Synthesized two-parameter silica foam samples, with the cell

  11. Stress Wave Induced Damage in Rock

    DTIC Science & Technology

    1989-06-01

    LANGE, M.A., T.J. AHRENS, AND M.B. BOSLOUGH, (1984). Impact cratering and spall fracture of gabbro. Icarus, 58, 383-395. MELOSH , H. J., (1984). Impact ...increases rather uniformly with distance from the impact site, reaching the unshocked velocity at a distance of approximately one crater radius. The...horizontal distance from the impact , reaching typical unshocked velocities at distances approximately equal to or slightly greater than the crater radius

  12. Wave fields and spectra of Rayleigh waves in poroelastic media in the exploration seismic frequency band

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Yixian; Xia, Jianghai

    2012-12-01

    A better understanding of the influences of different surface fluid drainage conditions on the propagation and attenuation of surface waves as the stipulated frequency is varied is a key issue to apply surface wave method to detect subsurface hydrological properties. Our study develops three-dimensional dynamical Green's functions in poroelastic media for Rayleigh waves of possible free surface conditions: permeable - "open pore," impermeable - "closed pore," and partially permeable boundaries. The full transient response of wave fields and spectra due to a stress impulse wavelet on the surface are investigated in the exploration seismic frequency band for typical surface drainage conditions, viscous coupling-damping, solid frame properties and porous fluid flowing configuration. Our numerical results show that, due to the slow dilatational wave - P2 wave, two types of Rayleigh waves, designated as R1 and R2 waves, exist along the surface. R1 wave possesses high energy as classic Rayleigh waves in pure elastic media for each porous materials. A surface fluid drainage condition is a significant factor to influence dispersion and attenuation, especially attenuation of R1 waves. R2 wave for closed pore and partially permeable surfaces is only observed for a low coupling-damping coefficient. The non-physical wave for partially surface conditions causes the R1 wave radiates into the R2 wave in the negative attenuation frequency range. It makes weaker R1 wave and stronger R2 wave to closed pore surface. Moreover, it is observed that wave fields and spectra of R1 wave are sensitive to frame elastic moduli change for an open pore surface, and to pore fluid flow condition change for closed pore and partially permeable surface.

  13. Nuclear stress test

    MedlinePlus

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  14. Numerical study on wave dynamics and wave-induced bed erosion characteristics in Potter Cove, Antarctica

    NASA Astrophysics Data System (ADS)

    Lim, Chai Heng; Lettmann, Karsten; Wolff, Jörg-Olaf

    2013-12-01

    Wave generation, propagation, and transformation from deep ocean over complex bathymetric terrains to coastal waters around Potter Cove (King George Island, South Shetland Islands, Antarctica) have been simulated for an austral summer month using the Simulating Waves Nearshore (SWAN) wave model. This study aims to examine and understand the wave patterns, energy fluxes, and dissipations in Potter Cove. Bed shear stress due to waves is also calculated to provide a general insight on the bed sediment erosion characteristics in Potter Cove.A nesting approach has been implemented from an oceanic scale to a high-resolution coastal scale around Potter Cove. The results of the simulations were compared with buoy observations obtained from the National Data Buoy Center, the WAVEWATCH III model results, and GlobWave altimeter data. The quality of the modelling results has been assessed using two statistical parameters, namely the Willmott's index of agreement D and the bias index. Under various wave conditions, the significant wave heights at the inner cove were found to be about 40-50 % smaller than the ones near the mouth of Potter Cove. The wave power in Potter Cove is generally low. The spatial distributions of the wave-induced bed shear stress and active energy dissipation were found to be following the pattern of the bathymetry, and waves were identified as a potential major driving force for bed sediment erosion in Potter Cove, especially in shallow water regions. This study also gives some results on global ocean applications of SWAN.

  15. Wave-Action Balance Equation Diffraction (WABED) Model: Tests of Wave Diffraction and Reflection at Inlets

    DTIC Science & Technology

    2006-07-01

    model M2D . Future technical notes in this series will describe the interface and report additional validation and enhancements of WABED...circulation model M2D (Militello et al. 2004) is operated with WABED for calculation of the wave-induced current. A background flood current was supplied as...input to the wave model. To calculate the wave-induced current, M2D was forced by radiation stresses (Longuet-Higgins and Stewart 1964) computed by

  16. Making WAVES.

    ERIC Educational Resources Information Center

    Hindes, Victoria A.; Hom, Keri; Brookshaw, Keith

    About 46% of high school graduates enrolled in California State Universities need remedial courses in both math and English to prepare them for college level. These students typically earned B averages in their high school math and English classes. In order to address this issue, Shasta College launched Operation WAVES (Win by Achieving Valuable…

  17. Stress Evaluation and Model Validation Using Laser Ultrasonics

    SciTech Connect

    Dike, Jay J.; Lu, Wei-yang; Peng, Lawrence W.; Wang, James C. F.

    1999-02-01

    Rayleigh surface waves can be used to evaluate surface stresses and through-thickness stress gradients based on acoustoelasticity. Laser based ultrasonic techniques, which generate and detect surface waves, have the advantages of good spatial resolution and remote operation. The techniques have many potential applications. This is the final report of a LDRD project that is the first to exploit the benefits of laser ultrasonics for stress and stress gradient evaluation.

  18. Stress Fractures

    MedlinePlus

    Stress fractures Overview By Mayo Clinic Staff Stress fractures are tiny cracks in a bone. They're caused by ... up and down or running long distances. Stress fractures can also arise from normal use of a ...

  19. Bolt Stress Monitor

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In photo, an engineer is using a new Ultrasonic Bolt Stress Monitor developed by NASA's Langley Research Center to determine whether a bolt is properly tightened. A highly accurate device, the monitor is an important tool in construction of such structures as pressure vessels, bridges and power plants, wherein precise measurement of the stress on a tightened bolt is critical. Overtightened or undertightened bolts can fail and cause serious industrial accidents or costly equipment break-downs. There are a number of methods for measuring bolt stress. Most widely used and least costly is the torque wrench, which is inherently inaccurate; it does not take into account the friction between nut and bolt, which has an influence on stress. At the other end of the spectrum, there are accurate stress-measuring systems, but they are expensive and not portable. The battery-powered Langley monitor fills a need; it is inexpensive, lightweight, portable and extremely accurate because it is not subject to friction error. Sound waves are transmitted to the bolt and a return signal is received. As the bolt is tightened, it undergoes changes in resonance due to stress, in the manner that a violin string changes tone when it is tightened. The monitor measures the changes in resonance and provides a reading of real stress on the bolt. The device, patented by NASA, has aroused wide interest and a number of firms have applied for licenses to produce it for the commercial market.

  20. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  1. Guided Circumferential Waves in Layered Poroelastic Cylinders

    NASA Astrophysics Data System (ADS)

    Shah, S. A.; Apsar, G.

    2016-12-01

    The present paper investigates the propagation of time harmonic circumferential waves in a two-dimensional hollow poroelastic cylinder with an inner shaft (shaft-bearing assembly). The hollow poroelastic cylinder and inner shaft are assumed to be infinite in axial direction. The outer surface of the cylinder is stress free and at the interface, between the inner shaft and the outer cylinder, it is assumed to be free sliding and the interfacial shear stresses are zero, also the normal stress and radial displacements are continuous. The frequency equation of guided circumferential waves for a permeable and an impermeable surface is obtained. When the angular wave number vanish the frequency equation of guided circumferential waves for a permeable and an impermeable surface degenerates and the dilatational and shear waves are uncoupled. Shear waves are independent of the nature of surface. The frequency equation of a permeable and an impermeable surface for bore-piston assembly is obtained as a particular case of the model under consideration when the outer radius of the hollow poroelastic cylinder tends to infinity. Results of previous studies are obtained as a particular case of the present study. Nondimensional frequency as a function of wave number is presented graphically for two types of models and discussed. Numerical results show that, in general, the first modes are linear for permeable and impermeable surfaces and the frequency of a permeable surface is more than that of an impermeable surface.

  2. Internal Ocean Waves

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1

  3. Ultrasonics used to measure residual stress

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Ultrasonic method is used to measure residual stress in metal structures. By using this method, various forms of wave propagation in metals are possible, and more thorough analysis of complex geometric structures may be had.

  4. Acoustoelastic lamb wave propagation in a homogeneous, isotropic aluminum plate

    SciTech Connect

    Gandhi, Navneet; Michaels, Jennifer E.; Lee, Sang Jun

    2011-06-23

    The effect of stress on Lamb wave propagation is relevant to both nondestructive evaluation and structural health monitoring because of changes in received signals due to both the associated strain and the acoustoelastic effect. A homogeneous plate that is initially isotropic becomes anisotropic under uniaxial stress, and dispersion of propagating waves becomes directionally dependent. The problem is similar to Lamb wave propagation in an anisotropic plate, except the fourth order tensor in the resulting wave equation does not have the same symmetry as that for the unstressed anisotropic plate, and the constitutive equation relating incremental stress to incremental strain is more complicated. Here we consider the theory of acoustoelastic Lamb wave propagation and show how dispersion curves shift anisotropically for an aluminum plate under uniaxial tension. Theoretical predictions of changes in phase velocity as a function of propagation direction are compared to experimental results for a single wave mode.

  5. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  6. The Reshock and Release Waves in PTFE

    NASA Astrophysics Data System (ADS)

    Karakhanov, S. M.; Bordzilovsky, S. A.

    1999-06-01

    To study the deformation and destruction of PTFE polymer the specimens were loaded by the complex wave structure: shock, reshock and release wave. The transmitted stress-time profiles were recorded with the manganin gages. The Lagrange analysis of stress histories gave the stress-volume paths during reshock loading and unloading of PTFE in the stress range of 10 to 35 GPa. The data revealed the viscoelastic behavior typical for polymers. For a single shock loading the relaxation zone with the duration of about 0.3 μs was noticeable behind the first stress jump. The reshock-release stress pulse that started from the state behind the first shock attenuated with the rate greater than in hydrodynamic approximation. The correlation was noticed between the stress-time and electrical resistivity-time profiles in the relaxation zone. The reloading-unloading stress hysteresis gave the possibility to measure the critical shear stress (τ) in a shocked state. The data showed the decrease in τ at higher stresses. The authors suggested that the most probable mechanism of destruction of PTFE in the studied region of pressures and temperatures is thermodestruction of a polymer chain by the thermal fluctuations under load.

  7. Fracture Interface Waves in an Anisotropic Medium

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Shao, S.; Abell, B.

    2011-12-01

    The detection of fractures in an anisotropic medium is complicated by discreet modes that are guided or confined by fractures and that travel with velocities close (~92%) to the shear wave velocity. For instance, fractures can mask the presence of textural anisotropy in a rock, and can increase the apparent shear wave velocity anisotropy. In this study, we examine how fracture interface waves affect the interpretation of shear wave velocities for two orthogonal polarizations propagating parallel to the layers. Samples with textural anisotropy measuring 100 x 100 x 100 mm were fabricated from garolite, an epoxy - cloth laminate, with layer thickness on the order of 0.5 mm. Three fracture samples were created with: (1) a fracture oriented parallel to layering, (2) a fracture oriented perpendicular to layering, and (3) two intersecting orthogonal fractures. An intact sample without fractures was used a standard. A seismic array, consisting of source and receiver arrays, was used to perform full waveform measurements. Each array contained two compressional and five shear wave piezoelectric contact transducers with a central frequency of 1 MHz. Shear wave transducers were polarized both perpendicular and parallel to the layering as well as to the fracture. Measurements were made for a range of stresses (0.4 - 4MPa). When the shear wave was polarized parallel to a fracture, the shear wave traveled at the bulk shear velocity respective to the layering. However, when the shear wave was polarized perpendicular to a fracture, the measured velocity ranged between the Rayleigh wave velocity at low stress and the bulk shear wave at high stress. The shear wave velocities perpendicular and parallel to the layering (propagation direction parallel to the layers) were ~1500 m/s and ~1600 m/s, respectively, in the intact sample. However, in the fractured samples, the observed shear wave anisotropy depended on the stress and fracture orientation relative to the layering. When the

  8. Biological responses of audiogenic stress

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Behari, J.; Sharma, K. N.

    1986-12-01

    Biological effects of prolonged exposure to sound waves (˜17 kHz) on developing female rats were examined. Rat pups of day 80 were grouped into two. Experimental group was exposed to sound waves and control group, who were not so exposed. Daily food, water intake were measured in developing animals and spontaneous motor activity, electrocardiogram and blood sugar were studied in adults. It was found that the experimental group of animals behaved differently from the control group. It is concluded that the sound waves produced changes in the animals which were within the physiological limits but were suggestive of development of stress.

  9. Dynamic stresses, Coulomb failure, and remote triggering

    USGS Publications Warehouse

    Hill, D.P.

    2008-01-01

    Dynamic stresses associated with crustal surface waves with 15-30-sec periods and peak amplitudes 5 km). The latter is consistent with the observation that extensional or transtensional tectonic regimes are more susceptible to remote triggering by Rayleigh-wave dynamic stresses than compressional or transpressional regimes. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems.

  10. Wave propagation in ballistic gelatine.

    PubMed

    Naarayan, Srinivasan S; Subhash, Ghatu

    2017-01-23

    Wave propagation characteristics in long cylindrical specimens of ballistic gelatine have been investigated using a high speed digital camera and hyper elastic constitutive models. The induced transient deformation is modelled with strain rate dependent Mooney-Rivlin parameters which are determined by modelling the stress-strain response of gelatine at a range of strain rates. The varying velocity of wave propagation through the gelatine cylinder is derived as a function of prestress or stretch in the gelatine specimen. A finite element analysis is conducted using the above constitutive model by suitably defining the impulse imparted by the polymer bar into the gelatine specimen. The model results are found to capture the experimentally observed wave propagation characteristics in gelatine effectively.

  11. Stress-dependent ultrasonic scattering in polycrystalline materials.

    PubMed

    Kube, Christopher M; Turner, Joseph A

    2016-02-01

    Stress-dependent elastic moduli of polycrystalline materials are used in a statistically based model for the scattering of ultrasonic waves from randomly oriented grains that are members of a stressed polycrystal. The stress is assumed to be homogeneous and can be either residual or generated from external loads. The stress-dependent elastic properties are incorporated into the definition of the differential scattering cross-section, which defines how strongly an incident wave is scattered into various directions. Nine stress-dependent differential scattering cross-sections or scattering coefficients are defined to include all possibilities of incident and scattered waves, which can be either longitudinal or (two) transverse wave types. The evaluation of the scattering coefficients considers polycrystalline aluminum that is uniaxially stressed. An analysis of the influence of incident wave propagation direction, scattering direction, frequency, and grain size on the stress-dependency of the scattering coefficients follows. Scattering coefficients for aluminum indicate that ultrasonic scattering is much more sensitive to a uniaxial stress than ultrasonic phase velocities. By developing the stress-dependent scattering properties of polycrystals, the influence of acoustoelasticity on the amplitudes of waves propagating in stressed polycrystalline materials can be better understood. This work supports the ongoing development of a technique for monitoring and measuring stresses in metallic materials.

  12. Making Waves: Seismic Waves Activities and Demonstrations

    NASA Astrophysics Data System (ADS)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  13. Method and apparatus for measuring stress

    DOEpatents

    Thompson, R. Bruce

    1985-06-11

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  14. Method and apparatus for measuring stress

    DOEpatents

    Thompson, R.B.

    1983-07-28

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  15. Capillary rogue waves.

    PubMed

    Shats, M; Punzmann, H; Xia, H

    2010-03-12

    We report the first observation of extreme wave events (rogue waves) in parametrically driven capillary waves. Rogue waves are observed above a certain threshold in forcing. Above this threshold, frequency spectra broaden and develop exponential tails. For the first time we present evidence of strong four-wave coupling in nonlinear waves (high tricoherence), which points to modulation instability as the main mechanism in rogue waves. The generation of rogue waves is identified as the onset of a distinct tail in the probability density function of the wave heights. Their probability is higher than expected from the measured wave background.

  16. Do Carpets Alleviate Stress?

    PubMed Central

    HOKI, Yoko; SATO, Kunio; KASAI, Yuichi

    2016-01-01

    Background: Owing to increased complexity in the evolution of society, stress has become an important public health problem, and is responsible for more than 30 types of diseases. Most of the research on stress conducted to date has focused on physical and psychological aspects; however, there are very few reports about the association between psychological stress and elements within the residential environment, such as the home, room, and furniture. Therefore, in this study, we focused on the effects of indoor flooring in the residential environment on stress, as flooring is a feature that the human body is in contact with for long periods of time. We objectively measured the extent of psychological stress perceived while walking on carpeting and on wood flooring. Methods: Forty-two healthy subjects were recruited for this study, and were asked to walk on carpeting and wood flooring for 10 min each. Their electroencephalogram (EEG) and skin impedance values were measured for each task. Results: The α-wave content percentage in EEG data and skin impedance values were significantly higher just after walking on carpet than just after walking on wood flooring. Conclusion: Walking on carpeting induces less stress than walking on wood flooring. PMID:27648413

  17. Nonlinear Waves.

    DTIC Science & Technology

    1986-05-27

    con- €"" straints:’. *’Permanent address: Dipartimento di Fisica . Universita di Roma 1. 00185 u 11lia. tr(a U(x)) = 0. (7a. 2469 1. Math,. PyS. 26 (10...Tenenblat Universidade de Brasilia Departamento de Matematica Brasilia, Brasil September 1985 , - . Abstract The generalized wave equation and generalized...Permanent addrems: Dipartimento di Fisica . Universita di Roma t3 U, 0. Roma. Italy The linear limit of i3) provides the most general solution ot 2614 J. MatM

  18. Wave Dissipation and Balance - NOPP Wave Project

    DTIC Science & Technology

    2014-09-30

    processes that affect wind-generated ocean gravity waves. The various dissipative processes that contribute to the spectral wave evolution are isolated...over mature ocean surface wave spectra. J. Phys. Oceanogr., 34:3345–2358, 2004. K. Hasselmann. On the non-linear energy transfer in a gravity wave...P. Giovanangeli. Air flow structure over short- gravity breaking water waves. Boundary-Layer Meteorol., 126:477–705, 2008. doi: 10.1007/s10546-007

  19. Mesoscale Wind Predictions for Wave Model Evaluation

    DTIC Science & Technology

    2016-06-07

    SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Mesoscale Wind Predictions for Wave Model Evaluation...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 1 Mesoscale Wind Predictions for Wave Model...resolution (< 10 km) atmospheric wind and surface stress fields produced by an atmospheric mesoscale data assimilation system to the numerical prediction of

  20. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  1. A critical survey of wave propagation and impact in composite materials

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    A review of the field of stress waves in composite materials is presented covering the period up to December 1972. The major properties of waves in composites are discussed and a summary is made of the major experimental results in this field. Various theoretical models for analysis of wave propagation in laminated, fiber and particle reinforced composites are surveyed. The anisotropic, dispersive and dissipative properties of stress pulses and shock waves in such materials are reviewed. A review of the behavior of composites under impact loading is presented along with the application of wave propagation concepts to the determination of impact stresses in composite plates.

  2. CMS-Wave

    DTIC Science & Technology

    2014-10-27

    2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE CMS -Wave 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward-marching, finite...difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction, diffraction, reflection

  3. Analysis of critically refracted longitudinal waves

    NASA Astrophysics Data System (ADS)

    Pei, Ning; Bond, Leonard J.

    2015-03-01

    Fabrication processes, such as, welding, forging, and rolling can induce residual stresses in metals that will impact product performance and phenomena such as cracking and corrosion. To better manage residual stress tools are needed to map their distribution. The critically refracted ultrasonic longitudinal (LCR) wave is one such approach that has been used for residual stress characterization. It has been shown to be sensitive to stress and less sensitive to the effects of the texture of the material. Although the LCR wave is increasingly widely applied, the factors that influence the formation of the LCR beam are seldom discussed. This paper reports a numerical model used to investigate the transducers' parameters that can contribute to the directionality of the LCR wave and hence enable performance optimization when used for industrial applications. An orthogonal test method is used to study the transducer parameters which influence the LCR wave beams. This method provides a design tool that can be used to study and optimize multiple parameter experiments and it can identify which parameter or parameters are of most significance. The simulation of the sound field in a 2-D "water-steel" model is obtained using a Spatial Fourier Analysis method. The effects of incident angle, standoff, the aperture and the center frequency of the transducer were studied. Results show that the aperture of the transducer, the center frequency and the incident angle are the most important factors in controlling the directivity of the resulting LCR wave fields.

  4. Analysis of critically refracted longitudinal waves

    SciTech Connect

    Pei, Ning Bond, Leonard J.

    2015-03-31

    Fabrication processes, such as, welding, forging, and rolling can induce residual stresses in metals that will impact product performance and phenomena such as cracking and corrosion. To better manage residual stress tools are needed to map their distribution. The critically refracted ultrasonic longitudinal (LCR) wave is one such approach that has been used for residual stress characterization. It has been shown to be sensitive to stress and less sensitive to the effects of the texture of the material. Although the LCR wave is increasingly widely applied, the factors that influence the formation of the LCR beam are seldom discussed. This paper reports a numerical model used to investigate the transducers' parameters that can contribute to the directionality of the LCR wave and hence enable performance optimization when used for industrial applications. An orthogonal test method is used to study the transducer parameters which influence the LCR wave beams. This method provides a design tool that can be used to study and optimize multiple parameter experiments and it can identify which parameter or parameters are of most significance. The simulation of the sound field in a 2-D 'water-steel' model is obtained using a Spatial Fourier Analysis method. The effects of incident angle, standoff, the aperture and the center frequency of the transducer were studied. Results show that the aperture of the transducer, the center frequency and the incident angle are the most important factors in controlling the directivity of the resulting LCR wave fields.

  5. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  6. Longitudinal nonlinear wave propagation through soft tissue.

    PubMed

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated

  7. Ultrasonic stress measurements in prestressing tendons

    NASA Astrophysics Data System (ADS)

    Washer, Glenn A.; Green, Robert E.

    2002-05-01

    The goal of this research was to examine ultrasonic stress measurement techniques for the condition assessment of prestressing tendons. Acoustoelastic measurements were made in prestressing rods and strands, and constants are reported that relate the change in ultrasonic velocity to the change in stress. The effects of dispersion in prestressing tendons, which act as circular wave guides for ultrasonic waves, were measured and evaluated. For this research, narrow-band, noncontact Electromagnetic Acoustic Transducers (EMATs) were designed to launch and receive ultrasonic waves propagating within the tendons.

  8. Study of stress corrosion in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Brummer, S. B.

    1967-01-01

    Mechanism of the stress corrosion cracking of high-strength aluminum alloys was investigated using electrochemical, mechanical, and electron microscopic techniques. The feasibility of detecting stress corrosion damage in fabricated aluminum alloy parts by nondestructive testing was investigated using ultrasonic surface waves and eddy currents.

  9. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.; Sapozhnikov, Oleg A.

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  10. Surface waves affect frontogenesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Nobuhiro; Fox-Kemper, Baylor; Hamlington, Peter E.; Van Roekel, Luke P.

    2016-05-01

    This paper provides a detailed analysis of momentum, angular momentum, vorticity, and energy budgets of a submesoscale front undergoing frontogenesis driven by an upper-ocean, submesoscale eddy field in a Large Eddy Simulation (LES). The LES solves the wave-averaged, or Craik-Leibovich, equations in order to account for the Stokes forces that result from interactions between nonbreaking surface waves and currents, and resolves both submesoscale eddies and boundary layer turbulence down to 4.9 m × 4.9 m × 1.25 m grid scales. It is found that submesoscale frontogenesis differs from traditional frontogenesis theory due to four effects: Stokes forces, momentum and kinetic energy transfer from submesoscale eddies to frontal secondary circulations, resolved turbulent stresses, and unbalanced torque. In the energy, momentum, angular momentum, and vorticity budgets for the frontal overturning circulation, the Stokes shear force is a leading-order contributor, typically either the second or third largest source of frontal overturning. These effects violate hydrostatic and thermal wind balances during submesoscale frontogenesis. The effect of the Stokes shear force becomes stronger with increasing alignment of the front and Stokes shear and with a nondimensional scaling. The Stokes shear force and momentum transfer from submesoscale eddies significantly energize the frontal secondary circulation along with the buoyancy.

  11. Waves at Navigation Structures

    DTIC Science & Technology

    2014-10-27

    upgrades the Coastal Modeling System’s ( CMS ) wave model CMS -Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq-type nonlinear wave...provided by this work unit address these critical needs of the Corps’ navigation mission. Description Issue Addressed CMS -Wave application at Braddock...Bay, NY WaveNet application in Gulf of Mexico CMS -Wave and BOUSS-2D are two numerical wave models, and WaveNet and TideNet are two web-based

  12. Improving coastal wave hindcasts by combining offshore buoy observations with global wave models.

    NASA Astrophysics Data System (ADS)

    Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.

    2014-12-01

    Waves conditions in southern California are sensitive to offshore wave directions. Due to blocking by coastal islands and refraction across complex bathymetry, a <10o difference in incident wave direction can dramatically change coastal wave energy. Directional wave buoys are fundamentally low-resolution instruments, while the directional bin widths of operational wind-wave models are coarse (e.g. 10o). Operational wind-wave models have useful prediction skill in the nearshore, however, wave buoy measurements, when combined with standard directional estimation techniques, are shown to provide significantly better hindcasts. Techniques to combine offshore global wave model predictions (NOAA's Wave Watch 3 hindcasts) and offshore buoy measurements are being developed. The skill of different combination methodologies as an offshore boundary condition is assessed using spectral ray-tracing methods to transform incident offshore swell-spectra to shallow water buoy locations. A nearly continuous 10 yr data set of approximately 14 buoys is used. Comparisons include standard bulk parameters (e.g. significant wave height, peak period), the frequency-dependent energy spectrum (needed for run-up estimation) and radiation stress component Sxy (needed for alongshore current and sediment transport estimation). Global wave model uncertainties are unknown, complicating the formulation of optimum assimilation constraints. Several plausible models for estimating offshore waves are tested. Future work includes assimilating nearshore buoy observations, with the long-term objective of accurate regional wave hindcasts using an efficient mix of global wave models and buoys. This work is supported by the California Department of Parks and Recreation, Division of Boating and Waterways Oceanography Program.

  13. Spiral waves on a contractile tissue

    NASA Astrophysics Data System (ADS)

    Mesin, L.; Ambrosi, D.

    2011-02-01

    In a healthy cardiac tissue, electric waves propagate in the form of a travelling pulse, from the apex to the base, and activate the contraction of the heart. Defects in the propagation can destabilize travelling fronts and originate possible new periodic solutions, as spiral waves. Spiral waves are quite stable, but the interplay between currents and strain can distort the periodic pattern, provided the coupling is strong enough. In this paper we investigate the stability of spiral waves on a contractile medium in a non-standard framework, in which the electrical potential dictates the active strain (not stress) of the muscle. The role of conducting and contracting fibers is included in the model and periodic boundary conditions are adopted. A correlation analysis allows to evaluate numerically the range of stability of the parameters for the spiral waves, depending on the strain of the contracted fibers and on the magnitude of the stretch activated current.

  14. Wave groupiness variations in the nearshore

    USGS Publications Warehouse

    List, J.H.

    1991-01-01

    This paper proposes a new definition of the groupiness factor, GF, based on the envelope of the incident-wave time series. It is shown that an envelope-based GF has several important advantages over the SIWEH-based groupiness factor, including objective criteria for determining the accuracy of the envelope function and well-defined numerical limits. Using this new GF, the variability of incident wave groupiness in the field is examined both temporally, in unbroken waves at a fixed location, and spatially, in a cross-shore array through the surf zone. Contrary to previous studies using the SIWEH-based GF, results suggest that incident wave groupiness may not be an independent parameter in unbroken waves; through a wide range of spectral shapes, from swell to storm waves, the groupiness did not vary significantly. As expected, the groupiness decreases rapidly as waves break through the surf zone, although significant wave height variability persists even through a saturated surf zone. The source of this inner surf zone groupiness is not identified; however, this observation implies that models of long wave generation must account for nonsteady radiation stress gradients landward of some narrow zone near the mean breakpoint. ?? 1991.

  15. Waves and Tsunami Project

    ERIC Educational Resources Information Center

    Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.

    2007-01-01

    Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…

  16. Ocean wave dynamics and El Nino

    SciTech Connect

    Schneider, E.K.; Huang, B.; Shukla, J.

    1995-10-01

    The response of an ocean general circulation model to specified wind stress is used to understand the role of ocean wave propagation in the evolution of El Nino events in sea surface temperatures (SST) in the equatorial Pacific Ocean. In a control experiment the ocean model reproduces observed equatorial Pacific interannual variability in response to forcing by the observed wind stress. The ocean model is then forced with the same wind stress but with the time evolution of the wind stress forcing reversed. An analysis of the anomalies from the annual cycle in these two experiments delineates the parts of the response that are in equilibrium with and out of equilibrium with the wind stress forcing. The experiment demonstrates that the heat content is not in equilibrium with the wind stress forcing either on or near the equator. Very close to the equator the slope of the thermocline is in equilibrium with the wind stress, but the mean heat content is far from equilibrium. Slightly off of the equator in the western Pacific westward propagating heat content anomalies appear to originate in regions of strong wind stress forcing and then propagate to the western boundary. These westward propagating anomalies also depart significantly from equilibrium with the wind stress forcing. Additional experiments allow these westward propagating anomalies to be identified as freely propagating Rossby waves. The Rossby waves are shown to determine the equatorial heat content response to the wind stress forcing when they arrive at the western boundary and to be responsible for the nonequilibrium behavior of the equatorial mean heat content. A simplified coupled model is derived by fitting the results and estimating parameter values from the numerical experiments. 45 refs., 16 figs.

  17. Cold Stress

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  18. Surface wave tomography

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    Vertically polarized shear wave velocity (VSV), determined primarily from fundamental mode Rayleigh waves, and the difference between the velocity of horizontally polarized shear waves (VSH) and VSV, therefore a measure of anisotropy, are shown.

  19. Ambient tectonic stress as fragile geological feature

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2014-09-01

    seismic waves produce frictional failure within shallow pervasively cracked rocks. Distributed failure preferentially relaxes ambient tectonic stresses, providing a fragility measure of past strong shaking. Relaxation of the regional fault-normal compression appears to have occurred within granite from 768 m down to ˜1000-1600 m depth at the Pilot Hole near Parkfield, California. Subsequent movements on the main fault have imposed strike-slip stress within the relaxed region. Peak ground velocities of ˜2 m s-1 are inferred for infrequent (few 1000 yr recurrence) past earthquakes from stress relaxation within the granite and from the variation of S wave velocity with depth in the overlying sandstone. Conversely, frequent strong shaking in slowly deforming regions relaxes shallow ambient tectonic stress. This situation is expected beneath Whittier Narrows, where strong Love waves from numerous San Andreas events repeatedly produced nonlinear behavior.

  20. Simulation of turbulent flow over idealized water waves

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter P.; McWilliams, James C.; Moeng, Chin-Hoh

    2000-02-01

    Turbulent flow over idealized water waves with varying wave slope ak and wave age c/u[low asterisk] is investigated using direct numerical simulations at a bulk Reynolds number Re = 8000. In the present idealization, the shape of the water wave and the associated orbital velocities are prescribed and do not evolve dynamically under the action of the wind. The results show that the imposed waves significantly influence the mean flow, vertical momentum fluxes, velocity variances, pressure, and form stress (drag). Compared to a stationary wave, slow (fast) moving waves increase (decrease) the form stress. At small c/u[low asterisk], waves act similarly to increasing surface roughness zo resulting in mean vertical velocity profiles with shorter buffer and longer logarithmic regions. With increasing wave age, zo decreases so that the wavy lower surface is nearly as smooth as a flat lower boundary. Vertical profiles of turbulence statistics show that the wave effects depend on wave age and wave slope but are confined to a region kz < 1 (where k is the wavenumber of the surface undulation and z is the vertical coordinate). The turbulent momentum flux can be altered by as much as 40% by the waves. A region of closed streamlines (or cat's-eye pattern) centred about the critical layer height was found to be dynamically important at low to moderate values of c/u[low asterisk]. The wave-correlated velocity and flux fields are strongly dependent on the variation of the critical layer height and to a lesser extent the surface orbital velocities. Above the critical layer zcr the positions of the maximum and minimum wave-correlated vertical velocity ww occur upwind and downwind of the peak in zcr, like a stationary surface. The wave-correlated flux uwww is positive (negative) above (below) the critical layer height.

  1. Auroral plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1989-01-01

    A review is given of auroral plasma wave phenomena, starting with the earliest ground-based observations and ending with the most recent satellite observations. Two types of waves are considered, electromagnetic and electrostatic. Electromagnetic waves include auroral kilometric radiation, auroral hiss, ELF noise bands, and low-frequency electric and magnetic noise. Electrostatic waves include upper hybrid resonance emissions, electron cyclotron waves, lower hybrid waves, ion cyclotron waves and broadband electrostatic noise. In each case, a brief overview is given describing the observations, the origin of the instability, and the role of the waves in the physics of the auroral acceleration region.

  2. Dispersive wave emission from wave breaking.

    PubMed

    Conforti, Matteo; Trillo, Stefano

    2013-10-01

    We show that pulses undergoing wave breaking in nonlinear weakly dispersive fibers radiate, owing to phase-matching (assisted by higher-order dispersion) of linear dispersive waves with the shock-wave front. Our theoretical results perfectly explain the radiation observed recently from pulses propagating in the normal dispersion (i.e., nonsolitonic) regime.

  3. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  4. IWA : an analysis program for isentropic wave measurements.

    SciTech Connect

    Ao, Tommy

    2009-02-01

    IWA (Isentropic Wave Analysis) is a program for analyzing velocity profiles of isentropic compression experiments. IWA applies incremental impedance matching correction to measured velocity profiles to obtain in-situ particle velocity profiles for Lagrangian wave analysis. From the in-situ velocity profiles, material properties such as wave velocities, stress, strain, strain rate, and strength are calculated. The program can be run in any current version of MATLAB (2008a or later) or as a Windows XP executable.

  5. Residual stress measurements in carbon steel

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Min, N.

    1986-01-01

    External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.

  6. Wave-current interaction in Willapa Bay

    USGS Publications Warehouse

    Olabarrieta, M.; Warner, J.C.; Kumar, N.

    2011-01-01

    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary. Copyright 2011 by the American Geophysical Union.

  7. Wave-current interaction in Willapa Bay

    NASA Astrophysics Data System (ADS)

    Olabarrieta, Maitane; Warner, John C.; Kumar, Nirnimesh

    2011-12-01

    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.

  8. Wave Propagation in Polymers, Part II

    NASA Astrophysics Data System (ADS)

    Newlander, David C.; Charest, Jacques A.; Lilly, Martin D.; Eisler, Robert D.

    1999-06-01

    Work reported in a previous study (Wave Propagations in Polymers, Part I, J.A. Charest, M.D. Lilly, 44th ARA Meeting Munich, Germany Sept. 17-20, 1993) discussed gas gun plane wave impact work and the measurements of stress wave profiles in Polycarbonate at around 2 kbars. The wave profiles were obtained using combined carbon and PVDF thin film stress gauges. The results showed amplitude attenuation and dispersion effects which were neither expected nor predictable from available hydrocode models. The data have been revisited using a modified material model and the PUFF74 computer code. These new wave profile calculations show remarkable agreement with the previous experiments in Polycarbonate. The model treats the material as viscoelastic-plastic using methods developed by Bade (Dynamic Response Model for PMMA, W. L. Bade, AVCO Systems Division, TR K500-74-WLB-204, Oct. 1, 1974). The measured and calculated results are quite different from those exhibited by PMMA at similar impact conditions. This work is expected to further our understanding of the processes that control wave propagation in highly-compressible and viscoelastic/viscoplastic media. It is also expected to provide clues on the effects of high strain rates on properties such as the modulus of elasticity, strength, and material loading behavior.

  9. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer

  10. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    USGS Publications Warehouse

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  11. Mechanical waves during tissue expansion

    NASA Astrophysics Data System (ADS)

    Serra-Picamal, Xavier; Conte, Vito; Vincent, Romaric; Anon, Ester; Tambe, Dhananjay T.; Bazellieres, Elsa; Butler, James P.; Fredberg, Jeffrey J.; Trepat, Xavier

    2012-08-01

    The processes by which an organism develops its shape and heals wounds involve expansion of a monolayer sheet of cells. The mechanism underpinning this epithelial expansion remains obscure, despite the fact that its failure is known to contribute to several diseases, including carcinomas, which account for about 90% of all human cancers. Here, using the micropatterned epithelial monolayer as a model system, we report the discovery of a mechanical wave that propagates slowly to span the monolayer, traverses intercellular junctions in a cooperative manner and builds up differentials of mechanical stress. Essential features of this wave generation and propagation are captured by a minimal model based on sequential fronts of cytoskeletal reinforcement and fluidization. These findings establish a mechanism of long-range cell guidance, symmetry breaking and pattern formation during monolayer expansion.

  12. A Simple Wave Driver

    ERIC Educational Resources Information Center

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  13. Finsler p p -waves

    NASA Astrophysics Data System (ADS)

    Fuster, Andrea; Pabst, Cornelia

    2016-11-01

    In this work we present Finsler gravitational waves. These are a Finslerian version of the well-known p p -waves, generalizing the very special relativity line element. Our Finsler p p -waves are an exact solution of Finslerian Einstein's equations in vacuum and describe gravitational waves propagating in an anisotropic background.

  14. Phonons, Atoms, and Waves

    ERIC Educational Resources Information Center

    Reid, John S.

    1977-01-01

    Discussed are how the thermal vibrations of a solid are described in terms of lattice waves, how these waves interact with other waves, or with themselves, and how one is led from such a description in terms of waves to the concept of a phonon. (Author/MA)

  15. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    PubMed

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions.

  16. Dynamic stresses, coulomb failure, and remote triggering: corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes <1  MPa are capable of triggering seismicity at sites remote from the generating mainshock under appropriate conditions. Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10  km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.

  17. Planetary plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1993-01-01

    The primary types of plasma waves observed in the vicinity of the planets Venus, Mars, Earth, Jupiter, Saturn, Uranus, and Neptune are described. The observations are organized according to the various types of plasma waves observed, ordered according to decreasing distance from the planet, starting from the sunward side of the planet, and ending in the region near the closest approach. The plasma waves observed include: electron plasma oscillations and ion acoustic waves; trapped continuum radiation; electron cyclotron and upper hybrid waves; whistler-mode emissions; electrostatic ion cyclotron waves; and electromagnetic ion cyclotron waves.

  18. Teleseismic S wave microseisms.

    PubMed

    Nishida, Kiwamu; Takagi, Ryota

    2016-08-26

    Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth's interior.

  19. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  20. Holocaust survivors: three waves of resilience research.

    PubMed

    Greene, Roberta R; Hantman, Shira; Sharabi, Adi; Cohen, Harriet

    2012-01-01

    Three waves of resilience research have resulted in resilience-enhancing educational and therapeutic interventions. In the first wave of inquiry, researchers explored the traits and environmental characteristics that enabled people to overcome adversity. In the second wave, researchers investigated the processes related to stress and coping. In the third wave, studies examined how people grow and are transformed following adverse events, often leading to self-actualize, client creativity and spirituality. In this article the authors examined data from a study, "Forgiveness, Resiliency, and Survivorship among Holocaust Survivors" funded by the John Templeton Foundation ( Greene, Armour, Hantman, Graham, & Sharabi, 2010 ). About 65% of the survivors scored on the high side for resilience traits. Of the survivors, 78% engaged in processes considered resilient and felt they were transcendent or had engaged in behaviors that help them grow and change over the years since the Holocaust, including leaving a legacy and contributing to the community.

  1. Weakly nonlinear magnetohydrodynamic wave interactions

    SciTech Connect

    Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.

    1999-06-01

    Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}

  2. Debriefing Stress.

    ERIC Educational Resources Information Center

    Hill, Jonnie L.; Lance, Cynthia G.

    2002-01-01

    Discussion pf the stress associated with the educational use of games and simulations focuses on a study of graduate students that used the Myers-Briggs Type Indicator to determine that people with certain personality types experience stress at different intensities. Also found that all participants, regardless of personality type, needed…

  3. Wave Dissipation and Balance - NOPP Wave Project

    DTIC Science & Technology

    2012-09-30

    ocean with the atmosphere, land and solid Earth. Waves also define in many ways the appearance of the ocean seen by remote- sensing instruments. Beyond...waves, sediments and remote sensing systems, and to improve our forecasting and hindcasting capacity of these phenomena from the global ocean to the...feedback on the wave model quality APPROACH AND WORK PLAN By combining theoretical advances with numerical models, remote sensing and field

  4. Thermal Stress Awareness, Self-Study #18649

    SciTech Connect

    Chochoms, Michael

    2016-11-15

    Thermal stresses can expose individuals to a variety of health hazards at work, home, and play. Every year thermal stresses cause severe injuries and death to a large range of people, from elderly people in cities during summer heat waves to young people engaged in winter mountaineering. Awareness is the key to preventing the health hazards associated with thermal stresses. This course is designed for personnel at Los Alamos National Laboratory (LANL). It addresses both heat and cold stresses and discusses their factors, signs and symptoms, treatments, and controls.

  5. Propagation of elastic pressure waves in a beam window

    NASA Astrophysics Data System (ADS)

    Davenne, T. R.; Loveridge, P.

    2016-09-01

    As particle accelerator beam power increases, stress on beam windows and targets increases. Many simulations are carried out to model the dynamic stresses that are induced in these critical components by near instantaneous beam heating. However while it is often easy to obtain simulation results there are few analytical solutions available to check the accuracy of simulation techniques. We follow the strand of several authors over the years who have offered analytical solutions to the classic problem of radial stress waves in a beam window. Many of these significant contributions have still had niggling issues with regard to resolving peak stress and limitations on the applied initial heating condition. We formulate an analytical expression for the radial pressure waves based on a Green's function solution of Feynman's wave equation. A complete analysis of the problem demonstrates that a hypothesis that beam induced pressure waves are composed of a static and transient component is indeed correct. The analytical expression is shown to give stable bounded solutions with easily determined peak stress levels. Finally a comparison between analytical expression and finite element analysis of the problem yields some general guidelines that should be adhered to for achieving accurate stress wave simulations.

  6. Near-field tsunami edge waves and complex earthquake rupture

    USGS Publications Warehouse

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  7. ULF Waves at Mercury

    NASA Astrophysics Data System (ADS)

    Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.

    2016-02-01

    This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.

  8. Fracture channel waves

    NASA Astrophysics Data System (ADS)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  9. Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models

    NASA Astrophysics Data System (ADS)

    Yang, Si-Tong; Wei, Jiu-Chuan; Cheng, Jiu-Long; Shi, Long-Qing; Wen, Zhi-Jie

    2016-12-01

    Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling twodimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity V x, V y, and V z for the same node in 3-D staggered-grid finite difference models by calculating the average value of V y, and V z of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways

  10. Modeling shock waves in orthotropic elastic materials

    NASA Astrophysics Data System (ADS)

    Vignjevic, Rade; Campbell, James C.; Bourne, Neil K.; Djordjevic, Nenad

    2008-08-01

    A constitutive relationship for modeling of shock wave propagation in orthotropic materials is proposed for nonlinear explicit transient large deformation computer codes (hydrocodes). A procedure for separation of material volumetric compression (compressibility effects equation of state) from deviatoric strain effects is formulated, which allows for the consistent calculation of stresses in the elastic regime as well as in the presence of shock waves. According to this procedure the pressure is defined as the state of stress that results in only volumetric deformation, and consequently is a diagonal second order tensor. As reported by Anderson et al. [Comput. Mech. 15, 201 (1994)], the shock response of an orthotropic material cannot be accurately predicted using the conventional decomposition of the stress tensor into isotropic and deviatoric parts. This paper presents two different stress decompositions based on the assumption that the stress tensor is split into two components: one component is due to volumetric strain and the other is due to deviatoric strain. Both decompositions are rigorously derived. In order to test their ability to describe shock propagation in orthotropic materials, both algorithms were implemented in a hydrocode and their predictions were compared to experimental plate impact data. The material considered was a carbon fiber reinforced epoxy material, which was tested in both the through-thickness and longitudinal directions. The ψ decomposition showed good agreement with the physical behavior of the considered material, while the ζ decomposition significantly overestimated the longitudinal stresses.

  11. Signature of seismic wave attenuation during fracture network formation

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Zhubayev, Alimzhan; Houben, Maartje; Hardebol, Nico; Smeulders, David

    2015-04-01

    Seismic waves are significantly affected by the presence of fractures and faults. Fractures alter the arrival time of a seismic wave and the amplitude of the seismic wave. Attenuation of a seismic wave is the reduction of wave amplitude due to the presence of e.g. fractures. Attenuation of acoustic compressional P- and shear S-waves have been measured in laboratory studies on different rock types. These studies generally show a decrease in attenuation with an increase in stress. This decrease in attenuation is attributed to progressive crack closure of pre-existing cracks. The stress-dependent decrease in attenuation reported in these studies all occur within the elastic deformation field, i.e. below yield stress levels and thus no additional cracks/micro-fractures have yet been formed. At stress levels just above the yield strength the first fractures start to form. With increasing stress, fractures nucleate, grow and coalesce until a connected network of fractures has developed at which failure of the rock sample occurs. The change in attenuation during the fracturing process however has seldom been investigated. In analogy to fracture closure, where attenuation generally decreases, fracture formation should cause again an increase in attenuation. Here we report an experimental study on shales from Whitby (UK), where s-wave attenuation was measured in the laboratory during an increase in stress towards fracture formation until complete failure of the shale samples. Before yield stress conditions, as expected an increase in stress caused a gradual decrease in attenuation. At the transition from elastic to inelastic deformation behaviour, the first microfractures start to form and attenuation starts to increase again. This reversal in attenuation behaviour could potentially be used as an indicator that failure of a rock mass under stress is imminent (imminence of seismicity). The measured seismic velocities do not depict the transition from elastic to inelastic

  12. Alongshore momentum transfer to the nearshore zone from energetic ocean waves generated by passing hurricanes

    NASA Astrophysics Data System (ADS)

    Mulligan, Ryan P.; Hanson, Jeffrey L.

    2016-06-01

    Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.

  13. Experimental study of the acoustoelastic Lamb wave in thin plates

    NASA Astrophysics Data System (ADS)

    Pei, Ning; Bond, Leonard J.

    2016-02-01

    Many factors can cause residual stresses in industry, like rolling, welding and coating. Residual stresses can have both benefits and shortcomings on components, so it is important to find the residual stresses out and enhance its benefits part and get rid of its harmful part. There are many methods for residual stresses detection and ultrasonic method turns out to be a good one for it is nondestructive, relative cheap and portable. The critically refracted longitudinal (LCR) wave is widely used for it is regarded most sensitive to stress and less sensitive to texture which can influence detection results. Ultrasonic methods for residual stresses detection are based on time of flight (TOF) measurement, but because the measurement should reach nanosecond to show stress change, there are many other factors that can influence TOF, like temperature, texture of the components and even the thickness of the couplant. So increasing the TOF's sensitivity to stress is very important. In this paper the relationships between velocity and frequency are studied experimentally[6] for different Lamb modes, under various stress loadings. The result shows that the sensitivity of different modes various a lot, the A1 mode is the most sensitivity, compared to S0, S1 and A0 modes; if the force is added to 100 MPa, the change stress of A1 mode can be as large to 80 m/s, which is about 10 times more sensitive than the traditional bulk wave. This makes it as a good choice for residual stress detection.

  14. Solitary Wave in One-dimensional Buckyball System at Nanoscale.

    PubMed

    Xu, Jun; Zheng, Bowen; Liu, Yilun

    2016-02-19

    We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale.

  15. Solitary Wave in One-dimensional Buckyball System at Nanoscale

    PubMed Central

    Xu, Jun; Zheng, Bowen; Liu, Yilun

    2016-01-01

    We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624

  16. Heat Stress

    MedlinePlus

    ... Stress Learn some tips to protect workers including: acclimatization, rest breaks, and fluid recommendations. NIOSH Workplace Solution: ... Blog: Adjusting to Work in the Heat: Why Acclimatization Matters The natural adaptation to the heat takes ...

  17. Stress echocardiography

    MedlinePlus

    ... P, Bonow RO, Braunwald E, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 14. Read More Exercise stress test Review Date 4/20/2015 Updated ...

  18. Stress Management

    MedlinePlus

    ... It can help your mind and body adapt (resilience). Without it, your body might always be on ... of a self-guided, multimedia, stress management and resilience training program. Behaviour Research and Therapy. 2013;51: ...

  19. Childhood Stress

    MedlinePlus

    ... to a Therapist Teens Talk About Stress (Video) Obsessive-Compulsive Disorder Tips for Divorcing Parents Preparing Your Child for ... to Your Child About the News Separation Anxiety Obsessive-Compulsive Disorder Relax & Unwind Center Taking the Pressure Off Sports ...

  20. Stress Concentrations.

    DTIC Science & Technology

    1982-09-01

    N00014-81-K-0186 % U.M. Project No. SF- CARS Report No. 60 1] School of Engineering University of Maryland *College Park, MD. 20742 . 7,- previous...three-dimensionml photoelasticitv as well as electrical strain rages, dial pages and micrometers are used to determine the stress distri- bution in a...from a previous paper were converted into stress fields using two approaches. First, the concept of strain-energy function for an isotropic elastic body

  1. Wave Meteorology and Soaring

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  2. Detonation Wave Profile

    SciTech Connect

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  3. On Waves in a Linear Elastic Half-Space with Free Boundary

    NASA Astrophysics Data System (ADS)

    Rushchitsky, J. J.

    2016-11-01

    The problem of linear elasticity for free harmonic (periodic) and solitary bell-shaped (nonperiodic) waves in an isotropic half-space with stress-free plane boundary is considered. The half-space is made of either conventional (classical structural) or nonconventional (nonclassical auxetic) material. Two cases of wave damping are studied: rapid (surface wave) and periodic (nonsurface wave). The following conclusions on a free harmonic wave are drawn: a surface wave exists in materials of both classes, but the ratio of the wave velocity to the velocity of a transverse plane wave in auxetic materials is somewhat lower than in conventional materials; a nonsurface wave cannot be described by the approach applied to conventional materials, but can theoretically exist in auxetic materials where there are two wave velocities. For a solitary (bell-shaped) wave, the assumption that the wave velocity depends on the wave phase is substantiated and some constraint is imposed on the time of travel of the wave and the way the wave velocity varies with time. The following conclusions are drawn: a rapidly damped bell-shaped wave cannot be described by the approach for both classes of materials, whereas a periodically damped bell-shaped wave can be described

  4. Wave dynamics of a Pacific Atoll with high frictional effects

    NASA Astrophysics Data System (ADS)

    Rogers, Justin S.; Monismith, Stephen G.; Koweek, David A.; Dunbar, Robert B.

    2016-01-01

    We report field measurements of waves and currents made from September 2011 to July 2014 on Palmyra Atoll in the central Pacific that were used in conjunction with the SWAN wave model to characterize the wave dynamics operant on the atoll. Our results indicate that wave energy is primarily from the north during the northern hemisphere winter and from the south in the northern hemisphere summer. Refraction of waves along the reef terraces due to variations in bathymetry leads to focusing of waves in specific locations. Bottom friction, modeled with a modified bottom roughness formulation, is the significant source of wave energy dissipation on the atoll, a result that is consistent with available observations of wave damping on Palmyra. Indeed modeled wave dissipation rates from bottom friction are on average larger than dissipation rates due to breaking and are an order of magnitude larger than what has been observed on other, less geometrically complex reefs, a result which should be corroborated with future in situ measurements. The SWAN wave model with a modified bottom friction formulation better predicts bulk wave energy properties than the existing formulation at our measurement stations. The near bed squared velocity, a proxy for bottom stress, shows strong spatial variability across the atoll and exerts control over geomorphic structure and benthic community composition.

  5. The Iowa wave machines

    NASA Astrophysics Data System (ADS)

    Daffron, John D.; Greenslade, Thomas B.; Stille, Dale

    2010-03-01

    Wave machines are a staple of demonstration lectures, and a good pair of wave machines can make the idea of transverse and longitudinal waves clearly evident to students. The demonstration apparatus collection of the University of Iowa contains examples of transverse and longitudinal wave machines that will be of interest to readers of The Physics Teacher. These machines probably date from about 1925 and may have been locally produced. You too can build them.

  6. WaveNet

    DTIC Science & Technology

    2015-10-30

    modeling and planning missions which require metocean data ( winds , waves, tides, water levels). It allows users to access, process, and analyze wave...and wind data from different data sources (Figure 1), and provides a combination of analysis and graphical capabilities to minimize the complexity and...employs techniques to minimize complexity and uncertainty of data processing. WaveNet is a decision-support tool that provides wave and wind data

  7. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (Inventor)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  8. Wood Bond Testing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.

  9. Coronal heating by waves

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1983-01-01

    Alfven waves or Alfvenic surface waves carry enough energy into the corona to provide the coronal energy requirements. Coronal loop resonances are an appealing means by which large energy fluxes enter active region loops. The wave dissipation mechanism still needs to be elucidated, but a Kolmogoroff turbulent cascade is fully consistent with the heating requirements in coronal holes and active region loops.

  10. Waves of Hanta

    NASA Astrophysics Data System (ADS)

    Abramson, Guillermo

    2003-03-01

    A spatially extended model of the hantavirus infection in deer mice is analyzed. Traveling waves solutions of the infected and susceptible populations are studied in different regimes, controlled by an environmental parameter. The wave of infection is shown to lag behind the wave of susceptible population, and the delay between the two is analyzed numerically and through a piecewise linearization.

  11. Feasibility of detecting fatigue damage in composites with coda waves

    NASA Astrophysics Data System (ADS)

    Livings, Richard; Dayal, Vinay; Barnard, Dan

    2015-03-01

    Coda waves are the late arriving portion of bulk or guided waves, and are the result of scattering of the waves due to heterogeneities in the material. Since these waves interact with a region multiple times, the effect of otherwise undetectable changes in material and/or stress state accumulates and becomes detectable. This work examines the feasibility of detecting incipient fatigue damage in CFRP sample with coda wave analysis. Specimens are subjected to low cycle fatigue in a four-point bend set-up. Ultrasonic measurements are periodically taken perpendicular to the direction of loading during the fatiguing process after removing all loads. Detection and reception sensitivity of coda waves in composites are studied. Also studied are the effects of the coupling between the transducer and sample for a reliable and repeatable measurement.

  12. Predicting Binge Drinking in College Students: Rational Beliefs, Stress, or Loneliness?

    PubMed

    Chen, Yixin; Feeley, Thomas Hugh

    2015-01-01

    We proposed a conceptual model to predict binge-drinking behavior among college students, based on the theory of planned behavior and the stress-coping hypothesis. A two-wave online survey was conducted with predictors and drinking behavior measured separately over 2 weeks' time. In the Wave 1 survey, 279 students at a public university in the United States answered questions assessing key predictors and individual characteristics. In the Wave 2 survey, 179 participants returned and reported their drinking behavior over 2 weeks' time. After conducting a negative binomial regression, we found that more favorable attitude toward drinking and less perceived control of drinking at Wave 1 were associated with more binge drinking at Wave 2; subjective norm at Wave 1 was not a significant predictor of binge drinking at Wave 2; students with higher stress at Wave 1 engaged in more binge drinking at Wave 2, but those with higher loneliness did not. Implications of findings are discussed.

  13. Wave turbulence in annular wave tank

    NASA Astrophysics Data System (ADS)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  14. Experimental Measurement of In Situ Stress

    NASA Astrophysics Data System (ADS)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  15. Effects of obliquely opposing and following currents on wave propagation in a new 3D wave-current basin

    NASA Astrophysics Data System (ADS)

    Lieske, Mike; Schlurmann, Torsten

    2016-04-01

    INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common

  16. Fast wave current drive

    SciTech Connect

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities.

  17. Spectra of Surface Waves

    DTIC Science & Technology

    1989-03-22

    with a wave follower during Marsen. J. Gophysical Res. 88, 9844-9849. 11. Hughes, B.A., 1978. The effects on internal waves on surface waves : 2...Spectra of Surface Waves K. Watson March 1989 JSR-88-130 Approved for public release; distribution unlimited. DTIC SELECTE JUN0 11989 0 JASONE The...Arlington, VA 22209 8503Z 11. TITLE (hlde Secvfty Cof.kaftn) SPECTRA OF SURFACE WAVES (U) 12. PERSONAL AUTHOfRS) K. Watson 13a. TYPE OF REPORT 13b. TIME

  18. Imaging stress.

    PubMed

    Brielle, Shlomi; Gura, Rotem; Kaganovich, Daniel

    2015-11-01

    Recent innovations in cell biology and imaging approaches are changing the way we study cellular stress, protein misfolding, and aggregation. Studies have begun to show that stress responses are even more variegated and dynamic than previously thought, encompassing nano-scale reorganization of cytosolic machinery that occurs almost instantaneously, much faster than transcriptional responses. Moreover, protein and mRNA quality control is often organized into highly dynamic macromolecular assemblies, or dynamic droplets, which could easily be mistaken for dysfunctional "aggregates," but which are, in fact, regulated functional compartments. The nano-scale architecture of stress-response ranges from diffraction-limited structures like stress granules, P-bodies, and stress foci to slightly larger quality control inclusions like juxta nuclear quality control compartment (JUNQ) and insoluble protein deposit compartment (IPOD), as well as others. Examining the biochemical and physical properties of these dynamic structures necessitates live cell imaging at high spatial and temporal resolution, and techniques to make quantitative measurements with respect to movement, localization, and mobility. Hence, it is important to note some of the most recent observations, while casting an eye towards new imaging approaches that offer the possibility of collecting entirely new kinds of data from living cells.

  19. Triggering of earthquake aftershocks by dynamic stresses

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.; Bodin, P.

    2000-01-01

    It is thought that small 'static' stress changes due to permanent fault displacement can alter the likelihood of, or trigger, earthquakes on nearby faults. Many studies of triggering in the nearfield, particularly of aftershocks, rely on these static changes as the triggering agent and consider them only in terms of equivalent changes in the applied load on the fault. Here we report a comparison of the aftershock pattern of the moment magnitude MW = 7.3 Landers earthquake, not only with static stress changes but also with transient, oscillatory stress changes transmitted as seismic waves (that is, 'dynamic' stresses). Dynamic stresses do not permanently change the applied load and thus can trigger earthquakes only by altering the mechanical state or properties of the fault zone. These dynamically weakened faults may fail after the seismic waves have passed by, and might even cause earthquakes that would not otherwise have occurred. We find similar asymmetries in the aftershock and dynamic stress patterns, the latter being due to rupture propagation, whereas the static stress changes lack this asymmetry. Previous studies have shown that dynamic stresses can promote failure at remote distances, but here we show that they can also do so nearby.

  20. Waves of energy

    NASA Astrophysics Data System (ADS)

    Smith, F. G. W.; Charlier, R. H.

    1981-06-01

    Possible means for harnessing the energy contained in ocean waves are considered. Problems associated with the low-grade nature of wave energy and the rate at which wave crests approach are pointed out, and simple devices already in use for the supply of energy to bell buoys, whistle buoys and lighted buoys are noted. Attention is then given to wave energy conversion systems based on the focusing of waves onto a narrow ramp leading to a reservoir from which water is released to power a turbine generator; a slightly submerged circular shell which directs waves into its center cavity where waves act to turn a turbine (the Dam-Atoll); a long vertical pipe with an internal valve allowing water to move in an upward direction (the Isaacs wave-energy pump); a turbine located at the bottom of an open-topped pipe (the Masuda buoy); a completely submerged closed air chamber from which runs a large pipe open to the sea; a wave piston which acts by the compression of air to drive a turbine; a massive structure with upper and lower reservoirs (the Russel rectifier); and devices which consist of floating or submerged objects which transfer wave energy to pumps (the Salter duck and Cockerell raft.) It is concluded that although wave-powered generators are not likely to become competitive in the near future or provide more than a small portion of world demand, they may be found useful under special conditions.

  1. [F-waves].

    PubMed

    Wang, F C; Massart, N; Kaux, J-F; Bouquiaux, O

    2011-12-01

    F-waves result from the discharge of the motoneurons following their antidromic activation. The F-wave appears, as an indirect (the F-wave latency decreases when the stimulation site moves away from the muscular detection) and late response (occurring after the M response). In practice, the most useful parameter is the F-wave minimal latency, provided that at least seven distinct F-waves are evoked. When the analysis is relative either to the controlateral side, or to a former examination, this parameter is one of most sensitive in electroneuromyography. F-wave evocation implies conduction along the entire peripheral nervous system, and particularly its proximal part, which is not investigated by nervous trunks conduction velocity studies. Thus, F wave study is the most useful in plexopathies and polyradiculonevritis. In the early phase of Guillain-Barré syndrome, their absence may be the unique sign indicative of proximal conduction blocks.

  2. Stress-related cardiomyopathies

    PubMed Central

    2011-01-01

    Stress-related cardiomyopathies can be observed in the four following situations: Takotsubo cardiomyopathy or apical ballooning syndrome; acute left ventricular dysfunction associated with subarachnoid hemorrhage; acute left ventricular dysfunction associated with pheochromocytoma and exogenous catecholamine administration; acute left ventricular dysfunction in the critically ill. Cardiac toxicity was mediated more by catecholamines released directly into the heart via neural connection than by those reaching the heart via the bloodstream. The mechanisms underlying the association between this generalized autonomic storm secondary to a life-threatening stress and myocardial toxicity are widely discussed. Takotsubo cardiomyopathy has been reported all over the world and has been acknowledged by the American Heart Association as a form of reversible cardiomyopathy. Four "Mayo Clinic" diagnostic criteria are required for the diagnosis of Takotsubo cardiomyopathy: 1) transient left ventricular wall motion abnormalities involving the apical and/or midventricular myocardial segments with wall motion abnormalities extending beyond a single epicardial coronary artery distribution; 2) absence of obstructive epicardial coronary artery disease that could be responsible for the observed wall motion abnormality; 3) ECG abnormalities, such as transient ST-segment elevation and/or diffuse T wave inversion associated with a slight troponin elevation; and 4) the lack of proven pheochromocytoma and myocarditis. ECG changes and LV dysfunction occur frequently following subarachnoid hemorrhage and ischemic stroke. This entity, referred as neurocardiogenic stunning, was called neurogenic stress-related cardiomyopathy. Stress-related cardiomyopathy has been reported in patients with pheochromocytoma and in patients receiving intravenous exogenous catecholamine administration. The role of a huge increase in endogenous and/or exogenous catecholamine level in critically ill patients

  3. Nonlinear attenuation of S-waves and Love waves within ambient rock

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.

  4. Development of the hybrid numerical simulation to clarify shock viscosity effects in a plastic shock wave front

    NASA Astrophysics Data System (ADS)

    Abe, A.

    Shock viscous stress can be defined as the stress differences between the stress on Rayleigh line and the equilibrium stress at the same strain. The shock viscous stress is one of the important parameters with respect to rising times of elastic and plastic shock wave fronts [1]. Swegle and Grady took the routine program of the shock viscous stress into their one-dimensional finite difference wave code, and they predicted the shock wave rise times occurred in several kind of materials with relatively small stress impacts [2]. Their numerical results seemed to represent the experimental results measured by the velocity interferometer system (VISAR). Strictly speaking, however, their method was not sufficiently accurate because their expression of the shock viscous stress was the stress differences between Rayleigh line and Hugoniot. Recently, we had proposed a new analytical method to get temperature in steady shock wave fronts and the effects were ascertained for a ceramic material and some metals [3-6]. When we derive the temperature in shock wave fronts by our method, we can also get the quasistatic (equilibrium) stresses. Therefore, it is possible to obtain the shock viscous stress analytically. The structured variations in the shock wave rising process are closely related to the dissipative processes in the material, and it is interesting to investigate these structured characteristics.

  5. Experimental investigation of change of energy of infragavity waves in dependence on spectral characteristics of an irregular wind waves in coastal zone

    NASA Astrophysics Data System (ADS)

    Saprykina, Yana; Divinskii, Boris

    2013-04-01

    no clear total dependences of energy of infrragravity waves from energy of wind waves and mean period of infragravity waves from mean period of wind waves. But significant wave height of infragravity waves depends on relative water depth (wave height of wind waves divided on water depth). There are different types of this dependence for breaking and non-breaking waves. The influence of peak period, significant wave height and directional spreading of initial wave spectrum on these dependences are discussed. The peculiarities of spectra of infragravity waves for non-breaking, breaking and multibreaking wind waves are shown. This work is supported by the RFBR, project 12-05-00965. References: Longuet-Higgins, M. S., R. W. Stewart, 1962. Radiation stress and mass transport in gravity waves, with an application to surf beats. J. Fluid Mech., 13, pp. 481-504. Symonds G., D.A. Huntley, A.J. Bowen, 1982. Two dimensional surf beat: long wave generation by a time-varying breakpoint. J. of Geoph. Res., 87(C), pp.492-498. Madsen P.A., Sorensen O.R., Shaffer H.A. 1997. Surf zone dynamics simulated by a Boussinesq type model. Coastal Engineering, 32, p. 255-287.

  6. Energy Partitioning of Seismic Waves in Fractured Rocks

    SciTech Connect

    1997-08-31

    Advances in locating and characterizes fractures in oil and gas reservoirs, and at waste isolation sites from seismic surveys requires improved interpretation methods. Experimental and theoretical results from this work have lead to an understanding of diagnostic signatures of energy that is partitioned into body waves and guided modes by fractures. Compressional waves and shear waves (i.e., shear waves with particle motion perpendicular to the fracture plane) are sensitive to changes in shear stress on a pre-existing fracture and to the formation of a fracture in a previously intact specimen. Both types of waves exhibit a shift in frequency content and a change in the amplitude of the wave as a fracture is formed or a pre-existing fracture is closed. The dispersion characteristics of interfact waves that propagate along a fracture enable quantification of fracture specific stiffness. A new compressional-mode interface wave was measured that has the potential for becoming a diagnostic tool for changes in stress in a fracture. The results of this research provide the basis for the development of seismic imaging techniques and analyses tools for locating and characterizing fractures on the field scale.

  7. Shock wave structure in heterogeneous reactive media

    SciTech Connect

    Baer, M.R.

    1997-06-01

    Continuum mixture theory and mesoscale modeling are applied to describe the behavior of shock-loaded heterogeneous media. One-dimensional simulations of gas-gun experiments demonstrate that the wave features are well described by mixture theory, including reflected wave behavior and conditions where significant reaction is initiated. Detailed wave fields are resolved in numerical simulations of impact on a lattice of discrete explosive {open_quotes}crystals{close_quotes}. It is shown that rapid distortion first occurs at material contact points; the nature of the dispersive fields includes large amplitude fluctuations of stress over several particle pathlengths. Localization of energy causes {open_quotes}hot-spots{close_quotes} due to shock focusing and plastic work as material flows into interstitial regions.

  8. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.

  9. Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2001-01-01

    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.

  10. Modeling the effects of wave skewness and beach cusps on littoral sand transport

    USGS Publications Warehouse

    Haas, K.A.; Check, L.A.; Hanes, D.M.

    2008-01-01

    A process-based numerical modeling system is utilized for predicting littoral sand transport. The intent is to examine conditions slightly more complex than linear waves impinging upon a plane beach. Two factors that we examine are wave skewness and longshore varying bathymetry. An empirical model is used for calculating the skewed bottom wave orbital velocity. The advection of sediment due to the skewed wave velocity is larger and in the direction of the waves, opposite to the results with sinusoidal wave velocities, due to the increase in the bottom shear stress under the wave crests. The model system is also applied to bathymetry containing beach cusps. When the wave field has relatively weak longshore wave power, the currents and the littoral transport exhibit significant longshore variability, thereby altering the overall mean littoral transport.

  11. Cycloidal Wave Energy Converter

    SciTech Connect

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  12. Heat waves, aging, and human cardiovascular health.

    PubMed

    Kenney, W Larry; Craighead, Daniel H; Alexander, Lacy M

    2014-10-01

    This brief review is based on a President's Lecture presented at the Annual Meeting of the American College of Sports Medicine in 2013. The purpose of this review was to assess the effects of climate change and consequent increases in environmental heat stress on the aging cardiovascular system. The earth's average global temperature is slowly but consistently increasing, and along with mean temperature changes come increases in heat wave frequency and severity. Extreme passive thermal stress resulting from prolonged elevations in ambient temperature and prolonged physical activity in hot environments creates a high demand on the left ventricle to pump blood to the skin to dissipate heat. Even healthy aging is accompanied by altered cardiovascular function, which limits the extent to which older individuals can maintain stroke volume, increase cardiac output, and increase skin blood flow when exposed to environmental extremes. In the elderly, the increased cardiovascular demand during heat waves is often fatal because of increased strain on an already compromised left ventricle. Not surprisingly, excess deaths during heat waves 1) occur predominantly in older individuals and 2) are overwhelmingly cardiovascular in origin. Increasing frequency and severity of heat waves coupled with a rapidly growing at-risk population dramatically increase the extent of future untoward health outcomes.

  13. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  14. Transport of parallel momentum by collisionless drift wave turbulence

    SciTech Connect

    Diamond, P. H.; McDevitt, C. J.; Guercan, Oe. D.; Hahm, T. S.; Naulin, V.

    2008-01-15

    This paper presents a novel, unified approach to the theory of turbulent transport of parallel momentum by collisionless drift waves. The physics of resonant and nonresonant off-diagonal contributions to the momentum flux is emphasized, and collisionless momentum exchange between waves and particles is accounted for. Two related momentum conservation theorems are derived. These relate the resonant particle momentum flux, the wave momentum flux, and the refractive force. A perturbative calculation, in the spirit of Chapman-Enskog theory, is used to obtain the wave momentum flux, which contributes significantly to the residual stress. A general equation for mean k{sub parallel} () is derived and used to develop a generalized theory of symmetry breaking. The resonant particle momentum flux is calculated, and pinch and residual stress effects are identified. The implications of the theory for intrinsic rotation and momentum transport bifurcations are discussed.

  15. Propagation of torsional waves in pre-stretched composite cylinder with an imperfect interface

    NASA Astrophysics Data System (ADS)

    Ozturk, A.

    2017-02-01

    Propagation of torsional waves in pre-stressed circular cylinders is investigated within the framework of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in an initially stressed body. It is assumed that the elasticity relations of the materials of the cylinder components are given through the Murnaghan potential. Numerical results related to the torsional wave dispersion and the influence of the mentioned initial stresses, as well as imperfectness paremeter on this dispersion are presented and discussed.

  16. Feeling Stressed

    MedlinePlus

    ... It could be a friend, a parent, a teacher, or a friend's parent. The person may have some great advice or a different way to look at things. Plus, just getting support can feel good. Remember, you don't have to handle stress ...

  17. Acoustic-wave generation in the process of CO2-TEA-laser-radiation interaction with metal targets in air

    NASA Astrophysics Data System (ADS)

    Apostol, Ileana; Teodorescu, G.; Serbanescu-Oasa, Anca; Dragulinescu, Dumitru; Chis, Ioan; Stoian, Razvan

    1995-03-01

    Laser radiation interaction with materials is a complex process in which creation of acoustic waves or stress waves is a part of it. As a function of the laser radiation energy and intensity incident on steel target surface ultrasound signals were registered and studied. Thermoelastic, ablation and breakdown mechanisms of generation of acoustic waves were analyzed.

  18. The US Navy Coupled Ocean-Wave Prediction System

    DTIC Science & Technology

    2014-09-01

    Stokes drift to be the dominant wave effect and that it increased surface drift speeds by 35% and veered the current in the direction of the wind...important for the prediction of the dispersion of contaminants as well as the projected path of a drifting mine field. Several regional modeling systems...ocean model has been modified to incorporate the effect of the Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum

  19. Linear Elastic Waves

    NASA Astrophysics Data System (ADS)

    Revenough, Justin

    Elastic waves propagating in simple media manifest a surprisingly rich collection of phenomena. Although some can't withstand the complexities of Earth's structure, the majority only grow more interesting and more important as remote sensing probes for seismologists studying the planet's interior. To fully mine the information carried to the surface by seismic waves, seismologists must produce accurate models of the waves. Great strides have been made in this regard. Problems that were entirely intractable a decade ago are now routinely solved on inexpensive workstations. The mathematical representations of waves coded into algorithms have grown vastly more sophisticated and are troubled by many fewer approximations, enforced symmetries, and limitations. They are far from straightforward, and seismologists using them need a firm grasp on wave propagation in simple media. Linear Elastic Waves, by applied mathematician John G. Harris, responds to this need.

  20. RADIATION WAVE DETECTION

    DOEpatents

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  1. Validation and verification of the acoustic emission technique for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Gagar, Daniel Omatsola

    The performance of the Acoustic Emission (AE) technique was investigated to establish its reliability in detecting and locating fatigue crack damage as well as distinguishing between different AE sources in potential SHM applications. Experiments were conducted to monitor the AE signals generated during fatigue crack growth in coupon 2014 T6 aluminium. The influence of stress ratio, stress range, sample geometry and whether or not the load spectrum was of constant or variable amplitude were all investigated. AE signals detected were correlated with values of applied cyclic load throughout the tests. Measurements of time difference of arrival were taken for assessment of errors in location estimates obtained using time of flight algorithms with a 1D location setup. At the onset of crack growth high AE Hit rates were observed for the first few millimetres after which they rapidly declined to minimal values for an extended period of crack growth. Another peak and then decline in AE Hit rates was observed for subsequent crack growth before yet another increase as the sample approached final failure.. AE signals were seen to occur in the lower two-thirds of the maximum load in the first few millimetres of crack growth before occurring at progressively smaller values as the crack length increased. A separate set of AE signals were observed close to the maximum cyclic stress throughout the entire crack growth process. At the failure crack length AE signals were generated across the entire loading range. Novel metrics were developed to statistically characterise variability of AE generation with crack growth and at particular crack lengths across different samples. A novel approach for fatigue crack length estimation was developed based on monitoring applied loads to the sample corresponding with generated AE signals. An acousto-ultrasonic method was used to calibrate the AE wave velocity in a representative wing-box structure which was used to successfully locate the

  2. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  3. Millimeter Wave Ocular Effects

    DTIC Science & Technology

    1987-02-20

    illustrates the rabbit head in holder by photography (a), thermography (b) and thermographic profile (c). The temperature of the cornea was measured using an...and graphs of profiles of the 40 temperatures difference (final-initial) of the rabbit cornea heated by the focused beam of millimeter waves from the...antenna. 5. Cooling of the cornea by air flow. 43 6. Temperature as a function of power applied using 45 continuous wave millimeter waves of

  4. Kinesthetic Transverse Wave Demonstration

    NASA Astrophysics Data System (ADS)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  5. Tide-surge and wave interaction in the Gulf of Maine during an extratropical storm

    NASA Astrophysics Data System (ADS)

    Zou, Qingping; Xie, Dongmei

    2016-12-01

    The fully coupled spectral wave and circulation model SWAN + ADCIRC was applied to investigate tide-surge and wave interaction in the Gulf of Maine during the extratropical storm on Patriot's Day of 2007. Significant tide-surge and wave interaction was found over Georges Bank and in the coastal areas. Over Georges Bank, the wave-induced current reached 0.2 m/s at the storm peak, accounting for 17 % of the total depth-averaged current. In Saco Bay, the current was dominated by wave-induced current with a magnitude up to 1.0 m/s during the storm. Two clockwise circulation gyres were found to form and sustain over a period of 26 hours during the storm in the bay. They were driven by spatial variations of wave height, direction and the resulting wave radiation stress gradient. Wave setup reached 0.2 m at the storm peak along the coast of Saco Bay. In Saco Bay, wave energy dissipation was reduced and wave height increased due to the increased water depth at high tide and surge. Therefore, wave height was modulated by tide and surge accordingly along the coast. As a result, wave setup and wave-induced current in the bay were also modulated by tide and surge. During the tidal cycle at the storm peak, wave setup increased with tidal level and the maximum wave setup coincided with high tide.

  6. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  7. Optical rogue waves.

    PubMed

    Solli, D R; Ropers, C; Koonath, P; Jalali, B

    2007-12-13

    Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schrödinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation.

  8. Wave attenuation in the shallows of San Francisco Bay

    USGS Publications Warehouse

    Lacy, Jessica R.; MacVean, Lissa J.

    2016-01-01

    Waves propagating over broad, gently-sloped shallows decrease in height due to frictional dissipation at the bed. We quantified wave-height evolution across 7 km of mudflat in San Pablo Bay (northern San Francisco Bay), an environment where tidal mixing prevents the formation of fluid mud. Wave height was measured along a cross shore transect (elevation range−2mto+0.45mMLLW) in winter 2011 and summer 2012. Wave height decreased more than 50% across the transect. The exponential decay coefficient λ was inversely related to depth squared (λ=6×10−4h−2). The physical roughness length scale kb, estimated from near-bed turbulence measurements, was 3.5×10−3 m in winter and 1.1×10−2 m in summer. Estimated wave friction factor fw determined from wave-height data suggests that bottom friction dominates dissipation at high Rew but not at low Rew. Predictions of near-shore wave height based on offshore wave height and a rough formulation for fw were quite accurate, with errors about half as great as those based on the smooth formulation for fw. Researchers often assume that the wave boundary layer is smooth for settings with fine-grained sediments. At this site, use of a smooth fw results in an underestimate of wave shear stress by a factor of 2 for typical waves and as much as 5 for more energetic waves. It also inadequately captures the effectiveness of the mudflats in protecting the shoreline through wave attenuation.

  9. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  10. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  11. Thermal Stress

    DTIC Science & Technology

    2011-01-01

    central nervous system ; exertional heat stroke Unclassified Unclassified Unclassified Unclassified 6 Lisa R. Leon 508-233-4862 Reset Thermal Stress...of this syndrome.Heat Transfer Mechanisms The effectiveness of heat transfer mechanisms is critical for the control of core temperature during...and conduction are effective mechanisms of heat loss but are only effective when skin temperature exceeds that of the environment. Evaporation is

  12. Interaction of a harmonic wave with a dynamically transforming inhomogeneity

    NASA Astrophysics Data System (ADS)

    Mikata, Yozo; Nemat-Nasser, S.

    1991-08-01

    The elastodynamic response of the transformation-toughened ceramics under a time-harmonic stress wave is investigated. A phenomenological model is proposed to describe the situation, which involves the interaction between an incident stress wave and a dynamic inhomogeneity with a stress-induced martensitic transformation. The most important assumption made in this model is that the stress-induced transformation can be treated as completely reversible. The solution for this model is obtained by combining solutions to a scattering problem, a dynamic inhomogeneity problem, and a static inhomogeneity problem. An exact closed form solution is obtained for the dynamic inhomogeneity problem. The numerical results for the zirconia-toughened ceramics suggest that, under the high-frequency dynamic loading, the transformation-toughened ceramics might lose its toughness due to a relatively large tension field caused by the dynamically transforming zirconia particle.

  13. Sea surface wind stress in stratified atmospheric flow

    SciTech Connect

    Myrhaug, D.; Slaattelid, O.H.

    1996-12-31

    The paper presents the wind shear stress on the sea surface as well as the velocity profile in stably stratified atmospheric boundary layer flow over wind waves by using similarity theory. For a given geostrophic velocity, Coriolis parameter, spectral peak period and stratification parameter the sea surface shear stress is determined. Further, the direction of the sea surface shear stress and the velocity profile are given. Parameterizations of the results are also presented. Finally, the engineering relevance of the results is discussed.

  14. Shock wave-boundary layer interactions in rarefied gas flows

    NASA Technical Reports Server (NTRS)

    Bird, G. A.

    1991-01-01

    A numerical study is presented, using the direct simulation Monte Carlo (DSMC) method, of shock wave-boundary layer interactions in low density supersonic flows. Test cases include two-dimensional, axially-symmetric and three-dimensional flows. The effective displacement angle of the boundary layer is calculated for representative flat plate, wedge, and cone flows. The maximum pressure, shear stress, and heat transfer in the shock formation region is determined in each case. The two-dimensional reflection of an oblique shock wave from a flat plate is studied, as is the three-dimensional interaction of such a wave with a sidewall boundary layer.

  15. Wave propagation in one-dimensional microscopic granular chains

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Hsun; Daraio, Chiara

    2016-11-01

    We employ noncontact optical techniques to generate and measure stress waves in uncompressed, one-dimensional microscopic granular chains, and support our experiments with discrete numerical simulations. We show that the wave propagation through dry particles (150 μm radius) is highly nonlinear and it is significantly influenced by the presence of defects (e.g., surface roughness, interparticle gaps, and misalignment). We derive an analytical relation between the group velocity and gap size, and define bounds for the formation of highly nonlinear solitary waves as a function of gap size and axial misalignment.

  16. Gravity waves and instabilities in the lower and middle atmosphere

    NASA Technical Reports Server (NTRS)

    Klostermeyer, Juergen

    1989-01-01

    Some basic aspects of mesoscale and small-scale gravity waves and instability mechanisms are discussed. Internal gravity waves with wavelengths between ten and less than one kilometer and periods between several hours and several minutes appear to play a central role in atmospheric wavenumber and frequency spectra. Therefore, the author discusses the propagation of gravity waves in simplified atmospheric models. Their interaction with the wind as well as their mutual interaction and stability mechanisms based on these processes are discussed. Mesosphere stratosphere troposphere radar observations showing the relevant hydrodynamic processes are stressed.

  17. Fluid pressure waves trigger earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2015-03-01

    Fluids-essentially meteoric water-are present everywhere in the Earth's crust, occasionally also with pressures higher than hydrostatic due to the tectonic strain imposed on impermeable undrained layers, to the impoundment of artificial lakes or to the forced injections required by oil and gas exploration and production. Experimental evidence suggests that such fluids flow along preferred paths of high diffusivity, provided by rock joints and faults. Studying the coupled poroelastic problem, we find that such flow is ruled by a nonlinear partial differential equation amenable to a Barenblatt-type solution, implying that it takes place in form of solitary pressure waves propagating at a velocity which decreases with time as v ∝ t [1/(n - 1) - 1] with n ≳ 7. According to Tresca-Von Mises criterion, these waves appear to play a major role in earthquake triggering, being also capable to account for aftershock delay without any further assumption. The measure of stress and fluid pressure inside active faults may therefore provide direct information about fault potential instability.

  18. Origin of crustal anisotropy: Shear wave splitting studies in Japan

    SciTech Connect

    Kaneshima, Satoshi )

    1990-07-10

    Shear wave splitting manifested as leading shear wave polarization, that is, parallel alignment of leading shear wave particle motions from a variety of sources, has been observed at a number of seismograph stations in Japan. Detected on shear wave seismograms from crustal earthquakes over a wide range of source zones and source-receiver azimuths, the shear wave splitting can be attributed to crustal anisotropy. This paper discusses the relation between leading shear wave polarization directions and tectonic features of Japan. To explain the observed shear wave splitting, the author proposes that at least three phenomena should be taken into account: stress-induced microcracks primarily aligned in vertical or subvertical planes; cracks or fractures in the vicinity of active faults having their orientation parallel to the fault planes; and intrinsic rock anisotropy resulting from preferred orientation of minerals. Travel time differences between leading and slower split shear waves from crustal and upper mantle earthquakes analyzed for about one third of the stations suggest that the crustal anisotropy which causes the observed shear wave splitting may be limited to the upper 15-25 km. This implies that the density of nonhorizontally aligned cracks or fractures below 15-25 km and into the upper mantle is much smaller than that in the crust above 15-25 km.

  19. Oceanic-wave-measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T.

    1980-01-01

    Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.

  20. Modulation of Fear Extinction by Stress, Stress Hormones and Estradiol: A Review

    PubMed Central

    Stockhorst, Ursula; Antov, Martin I.

    2016-01-01

    Fear acquisition and extinction are valid models for the etiology and treatment of anxiety, trauma- and stressor-related disorders. These disorders are assumed to involve aversive learning under acute and/or chronic stress. Importantly, fear conditioning and stress share common neuronal circuits. The stress response involves multiple changes interacting in a time-dependent manner: (a) the fast first-wave stress response [with central actions of noradrenaline, dopamine, serotonin, corticotropin-releasing hormone (CRH), plus increased sympathetic tone and peripheral catecholamine release] and (b) the second-wave stress response [with peripheral release of glucocorticoids (GCs) after activation of the hypothalamus-pituitary-adrenocortical (HPA) axis]. Control of fear during extinction is also sensitive to these stress-response mediators. In the present review, we will thus examine current animal and human data, addressing the role of stress and single stress-response mediators for successful acquisition, consolidation and recall of fear extinction. We report studies using pharmacological manipulations targeting a number of stress-related neurotransmitters and neuromodulators [monoamines, opioids, endocannabinoids (eCBs), neuropeptide Y, oxytocin, GCs] and behavioral stress induction. As anxiety, trauma- and stressor-related disorders are more common in women, recent research focuses on female sex hormones and identifies a potential role for estradiol in fear extinction. We will thus summarize animal and human data on the role of estradiol and explore possible interactions with stress or stress-response mediators in extinction. This also aims at identifying time-windows of enhanced (or reduced) sensitivity for fear extinction, and thus also for successful exposure therapy. PMID:26858616

  1. Modulation of Fear Extinction by Stress, Stress Hormones and Estradiol: A Review.

    PubMed

    Stockhorst, Ursula; Antov, Martin I

    2015-01-01

    Fear acquisition and extinction are valid models for the etiology and treatment of anxiety, trauma- and stressor-related disorders. These disorders are assumed to involve aversive learning under acute and/or chronic stress. Importantly, fear conditioning and stress share common neuronal circuits. The stress response involves multiple changes interacting in a time-dependent manner: (a) the fast first-wave stress response [with central actions of noradrenaline, dopamine, serotonin, corticotropin-releasing hormone (CRH), plus increased sympathetic tone and peripheral catecholamine release] and (b) the second-wave stress response [with peripheral release of glucocorticoids (GCs) after activation of the hypothalamus-pituitary-adrenocortical (HPA) axis]. Control of fear during extinction is also sensitive to these stress-response mediators. In the present review, we will thus examine current animal and human data, addressing the role of stress and single stress-response mediators for successful acquisition, consolidation and recall of fear extinction. We report studies using pharmacological manipulations targeting a number of stress-related neurotransmitters and neuromodulators [monoamines, opioids, endocannabinoids (eCBs), neuropeptide Y, oxytocin, GCs] and behavioral stress induction. As anxiety, trauma- and stressor-related disorders are more common in women, recent research focuses on female sex hormones and identifies a potential role for estradiol in fear extinction. We will thus summarize animal and human data on the role of estradiol and explore possible interactions with stress or stress-response mediators in extinction. This also aims at identifying time-windows of enhanced (or reduced) sensitivity for fear extinction, and thus also for successful exposure therapy.

  2. Cardiovascular stress of photochemotherapy (PUVA)

    SciTech Connect

    Ciafone, R.A.; Rhodes, A.R.; Audley, M.; Freedberg, I.M.; Abelmann, W.H.

    1980-11-01

    The recently devised therapy for psoriasis and related skin diseases, consisting of long-wave ultraviolet light and oral 8-methoxypsoralen (PUVA), was investigated for its cardiovascular effects. In seventeen patients, long-wave ultraviolet light therapy in a treatment enclosure (mean duration, 19.3 minutes) resulted in ambient temperatures of 39.2 degrees C +/- 2.1 degrees C (SD) and skin temperatures of 38.2 degrees C +/- 1.4 degrees C. In upright subjects, heart rate rose 30.8% to 114.4 +/- 25.2 beats per minute (bpm). Intensive room air conditioning, outside of the treatment enclosure, although significantly lowering skin and ambient temperatures, did not affect the heart rates significantly. PUVA therapy is associated with a definite cardiovascular stress when the box type of therapeutic unit is used. Possible modifications are discussed.

  3. Power from Ocean Waves.

    ERIC Educational Resources Information Center

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  4. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  5. Mask Waves Benchmark

    DTIC Science & Technology

    2007-10-01

    24 . Measured frequency vs. set frequency for all data .............................................. 23 25. Benchmark Probe#1 wave amplitude variation...4 8 A- 24 . Wave amplitude by probe, blower speed, lip setting for 0.768 Hz on the short I b an k...frequency and wavemaker bank .................................... 24 B- 1. Coefficient of variation as percentage for all conditions for long bank and bridge

  6. Gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  7. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  8. The Relativistic Wave Vector

    ERIC Educational Resources Information Center

    Houlrik, Jens Madsen

    2009-01-01

    The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…

  9. Waves in polar lows

    NASA Astrophysics Data System (ADS)

    Orimolade, A. P.; Furevik, B. R.; Noer, G.; Gudmestad, O. T.; Samelson, R. M.

    2016-08-01

    In a rather stationary fetch, one would not expect large waves in polar low situations. However, the picture changes when one considers a moving fetch. The significant wave heights that may be associated with the recorded polar lows on the Norwegian continental shelf from December 1999 to October 2015 are estimated using a one-dimensional parametric wave model. A comparison of the measured and the forecasted significant wave heights in two recent polar low cases in the Barents Sea is presented. The estimated significant wave heights show that the values could have been up to and above 9 m. The forecasted significant wave heights considerably underestimated the measured significant wave heights in the two recent polar low cases that are considered. Furthermore, a generalization of the fetch-limited wave equation in polar lows is proposed, which allows the wind field to vary in space and time, and is shown to give results that are consistent with the one-dimensional parametric model.

  10. Thermal-Wave Imaging.

    ERIC Educational Resources Information Center

    Rosencwaig, Allan

    1982-01-01

    Thermal features of and beneath the surface of a sample can be detected and imaged with a thermal-wave microscope. Various methodologies for the excitation and detection of thermal waves are discussed, and several applications, primarily in microelectronics, are presented. (Author)

  11. Search for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Tsubono, K.

    The current status of the experimental search for gravitational waves is reviewed here. The emphasis is on the Japanese TAMA project. We started operation of the TAMA300 laser interferometric detector in 1999, and are now collecting and analyzing observational data to search for gravitational wave signals.

  12. Posttraumatic Stress Disorder

    MedlinePlus

    ... ON THIS TOPIC Helping Kids Cope With Stress Obsessive-Compulsive Disorder Posttraumatic Stress Disorder Special Needs Factsheet Taking Your ... Childhood Stress About Teen Suicide Sadness and Depression Obsessive-Compulsive Disorder Phobias Five Steps for Fighting Stress Going to ...

  13. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  14. Experiments on excitation waves

    NASA Astrophysics Data System (ADS)

    Müller, S. C.

    Recent trends in the experimentation on chemical and biochemical excitation waves are presented. In the Belousov-Zhabotinsky reaction, which is the most suitable chemical laboratory system for the study of wave propagation in excitable medium, the efficient control of wave dynamics by electrical fields and by light illumination is illustrated. In particular, the effects of a feedback control are shown. Further new experiments in this system are concerned with three-dimensional topologies and boundary effects. Important biological applications are found in the aggregation of slime mould amoebae, in proton waves during oscillatory glycolysis, and in waves of spreading depression in neuronal tissue as studied by experiments in chicken retina. Numerical simulations with appropriate reaction-diffusion models complement a large number of these experimental findings.

  15. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  16. Project GlobWave

    NASA Astrophysics Data System (ADS)

    Busswell, Geoff; Ash, Ellis; Piolle, Jean-Francois; Poulter, David J. S.; Snaith, Helen; Collard, Fabrice; Sheera, Harjit; Pinnock, Simon

    2010-12-01

    The ESA GlobWave project is a three year initiative, funded by ESA and CNES, to service the needs of satellite wave product users across the globe. Led by Logica UK, with support from CLS, IFREMER, SatOC and NOCS, the project will provide free access to satellite wave data and products in a common format, both historical and in near real time, from various European and American SAR and altimeter missions. Building on the successes of similar projects for Sea Surface Temperature and ocean colour, the project aims to stimulate increased use and analysis of satellite wave products. In addition to common-format satellite data the project will provide comparisons with in situ measurements, interactive data analysis tools and a pilot spatial wave forecast verification scheme for operational forecast production centres. The project will begin operations in January 2010, with direction from regular structured user consultation.

  17. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  18. Gravity-Wave astronomy

    NASA Astrophysics Data System (ADS)

    Grishchuk, Leonid Petrovich

    The article concerns astronomical phenomena , related with discovery of gravitational waves of various nature: 1) primordial (relic) gravitational waves, analogous to MWBR 2) gravitational waves due to giant collisions in the Universe between 2a) Macroscopic black Holes in the centers of Galaxies 2b) Tidal disruption of neutron stars by Black holes 2c) deformations of the space-time by stellar mass Black Holes moving near giant Black Holes in the centers of Galaxies 2d) Supernovae phenomena 2e) accretion phenomena on Black Holes and Neutron stars. The Earth based interferometric technics (LIGO Project) to detect gravitational waves is described as well as the perspectiva for a space Laser Interferometric Antena (LISA)is discussed. The article represents a modified text of the Plenary talk "Gravity-Wave astronomy" given at the XI International gravitational Conference (July 1986, Stockholm, Sweden).

  19. Sculpting Waves (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Engheta, Nader

    2015-09-01

    In electronics controlling and manipulating flow of charged carriers has led to design of numerous functional devices. In photonics, by analogy, this is done through controlling photons and optical waves. However, the challenges and opportunities are different in these two fields. Materials control waves, and as such they can tailor, manipulate, redirect, and scatter electromagnetic waves and photons at will. Recent development in condensed matter physics, nanoscience, and nanotechnology has made it possible to tailor materials with unusual parameters and extreme characteristics and with atomic precision and thickness. One can now construct structures much smaller than the wavelengths of visible light, thus ushering in unprecedented possibilities and novel opportunities for molding fields and waves at the nanoscale with desired functionalities. At such subwavelength scales, sculpting optical fields and waves provides a fertile ground for innovation and discovery. I will discuss some of the exciting opportunities in this area, and forecast some future directions and possibilities.

  20. The influence of ferrite volume fraction on Rayleigh wave propagation in A572 grade 50 steel

    NASA Astrophysics Data System (ADS)

    Abbasi, Zeynab; Tehrani, Niloofar; Ozevin, Didem; Indacochea, J. E.

    2017-02-01

    The acoustoelastic effect is the interaction between ultrasonic wave velocity and stress. To estimate the stress a perturbation signal is introduced and the shift in time of flight is measured at the receiving location. In addition to the stress, the wave velocity can be affected by the volume fraction of the phases in the material's microstructure. This study investigates the changes in Rayleigh wave velocity as a function of stress and microstructure obtained in A572 grade 50 steel following heat treatments. The steel was heat treated to homogenize the microstructure of as-received steel that showed banding; the samples are heat treated at 970 °C for 0.5, 1, and 4 hours, furnace cooled and metallographically characterized. The acoustoelastic coefficient for 1 MHz perturbation frequency is calculated by uniaxial loading of each heat treated plate while measuring ultrasonic wave velocity. The results are discussed in relation to the reduction of banding obtained from optical microscopy.

  1. Stress measurement in thick plates using nonlinear ultrasonics

    NASA Astrophysics Data System (ADS)

    Abbasi, Zeynab; Ozevin, Didem

    2015-03-01

    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interaction of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.

  2. Stress measurement in thick plates using nonlinear ultrasonics

    SciTech Connect

    Abbasi, Zeynab E-mail: dozevin@uic.edu; Ozevin, Didem E-mail: dozevin@uic.edu

    2015-03-31

    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interaction of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.

  3. Transactional associations between youths' responses to peer stress and depression: the moderating roles of sex and stress exposure.

    PubMed

    Agoston, Anna M; Rudolph, Karen D

    2011-02-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict subsequent depression. Youth (M age = 12.41; SD = 1.19; 86 girls, 81 boys) and their maternal caregivers completed semi-structured interviews and questionnaires at three annual waves. Multi-group comparison path analyses were conducted to examine sex and stress-level differences in the proposed reciprocal-influence model. In girls and in youth exposed to high levels of peer stress, maladaptive stress responses predicted more depressive symptoms and adaptive stress responses predicted fewer depressive symptoms at each wave. These findings suggest the utility of preventive interventions for depression designed to enhance the quality of girls' stress responses. In boys, depression predicted less adaptive and more maladaptive stress responses, but only at the second wave. These findings suggest that interventions designed to reduce boys' depressive symptoms may help them develop more adaptive stress responses.

  4. Spatial equation for water waves

    NASA Astrophysics Data System (ADS)

    Dyachenko, A. I.; Zakharov, V. E.

    2016-02-01

    A compact spatial Hamiltonian equation for gravity waves on deep water has been derived. The equation is dynamical and can describe extreme waves. The equation for the envelope of a wave train has also been obtained.

  5. Standing Waves on a Shoestring.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1992-01-01

    Describes the construction of a wave generator used to review the algebraic relationships of wave motion. Students calculate and measure the weight needed to create tension to generate standing waves at the first eight harmonics. (MDH)

  6. Measurement of the stress state of materials by reflection of polarization-modulated light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2017-02-01

    A method for measuring mechanical stresses of photoelastic materials from the difference between the reflection coefficients of orthogonally polarized light waves incident on the surface of the stressed medium is considered. Comparative results of measurements of the stress state of polymethylmethacrylate in the conventional transmission polarization optical scheme and by the proposed refraction method are presented. A case of normal light incidence is considered.

  7. Investigation of Urban Heat Stress from Satellite Atmospheric Profiles

    NASA Astrophysics Data System (ADS)

    Hu, L.; Brunsell, N. A.

    2014-12-01

    Heat stress is the leading cause of weather-related human mortality in the United States and in many countries world-wide. Heat stress is usually enhanced by the urban heat island effect. Here, we investigate the ability to use remotely sensed atmospheric profiles to detect and monitor heat stress in the urban environment. MODIS atmospheric profiles at 5 km are used to quantify the spatial distribution of heat stress across Chicago during summer periods from 2003-2013. Four heat stress indices are investigated (Discomfort Index (DI), NWS Heat Index (HI), Humidex, and Simplified Wet Bulb Globe Temperature (SWBGT)) from the near-surface temperature and humidity observed at ground sites and retrieved from satellite atmospheric profiles. The heat stress climatology indicates that the urban effects are similar to the heat stress in top 5% hot days and 11 summers during the daytime. There is a lack of relationship between urban fraction and the heat stress on the warmest nights. The nighttime heat stress in the hottest 5% suggests a larger stress compared to the normal conditions during 11 summers. A case study of the heat wave in 2012 is assessed to identify the key pre-heat wave spatial patterns, which may potentially apply to predict future high heat-stress events. In addition, the role of the temporal persistence on the spatial dynamics of the heat wave is also examined. This research illustrates the spatial heat pattern under normal and heat wave conditions, which may help to make public heat health protection strategies. Also, the remotely sensed temperature and humidity information are invaluable to assess urban heat island impact spatially and temporally.

  8. Dynamics of baroclinic wave systems

    NASA Technical Reports Server (NTRS)

    Barcilon, Albert; Weng, Hengyi

    1989-01-01

    The research carried out in the past year dealt with nonlinear baroclinic wave dynamics. The model consisted of an Eady baroclinic basic state and uneven Elkman dissipation at the top and bottom boundaries with/without slopes. The method of solution used a truncated spectral expansion with three zonal waves and one or two meridional modes. Numerical experiments were performed on synoptic scale waves or planetary scale waves with/without wave-wave interaction.

  9. Formation and Propagation of Love Waves in a Surface Layer with a P-Wave Source

    DTIC Science & Technology

    1990-04-01

    AD- A225 559 GL-TR-90-0100 Formation and Propagation of Love Waves in a Surface Layer with a P-Wave Source A. L. Florence S. A. Miller PTh FILE COP...describing outgoing waves is (p(r,t) = - f(s) s = t - (r- a)/ cr (27) In terms of the function f(s), the displacement, velocity, and stresses are cr r2...28) cr r2 (29) CyrpC2 - +2(1- 2,0) ’ + = 1 -1 (r2 (30) ce P21 - I -M I= I$ C(2r )x + ) (31) in which 1) is Poisson’s ratio. For a given cavity wall

  10. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    NASA Astrophysics Data System (ADS)

    Tsvelodub, O. Yu

    2016-10-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. Weakly nonlinear steady-state traveling solutions of the equation with wave numbers in a vicinity of neutral wave numbers are constructed analytically. The nature of the wave branching from the undisturbed solution is investigated. Steady-state traveling solutions, whose wave numbers within the instability area are far from neutral wave numbers, are found numerically.

  11. Chronic Stress and Posttraumatic Stress Disorders.

    ERIC Educational Resources Information Center

    Davidson, Laura M.; Baum, Andrew

    1986-01-01

    Examined the relationship between chronic stress and symptoms of posttraumatic stress syndrome in people living within five miles of the Three Mile Island (TMI) nuclear power station. Results provided evidence of substantive links between chronic stress and development of mild symptoms of posttraumatic stress disorder. (Author/BL)

  12. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  13. Slow strain waves in the Earth: observational evidence and models

    NASA Astrophysics Data System (ADS)

    Bykov, Victor

    2014-05-01

    Recent remarkable progress in theoretical studies of the solitary strain waves, that have contributed greatly to the solution of the fundamental problem of strain waves in the Earth, is overviewed. The concept of strain waves generated in the Earth is based on the results of the study of earthquake distribution and slow tectonic deformation processes and the transfer of geophysical field anomalies. Propagation of strain waves is represented quantitatively by the rates of earthquake migration and geophysical responses to active faulting. These processes, and possibly the related strain waves, are either of global (global tectonic waves) or local (strain waves in faults) scales (Bykov, 2005). Global tectonic waves propagating at velocities from 10 to 100 km/yr are detected from migration of large earthquakes (Stein et al., 1997), seismic velocity anomalies (Nevsky et al., 1987), offsets of water level in wells along faults (Barabanov et al. 1988), or from transient displacement of seismic reflectors (Bazavluk and Yudakhin, 1993). Strain waves along crustal faults at velocities of 1-10 km/day are inferred from radon, electrokinetic and hydrogeodynamic signals, such as solitary waves (Nikolaevskiy, 1998). Migration of episodic tremor and slow slip events along plate boundaries in subduction zones and transform fault zones at a rate of 10 km/day, on an average (Schwartz and Rokosky, 2007), may be new evidence and indication of strain waves in the Earth. The detected mechanisms of strain wave exciting are caused by the block and microplate rotation, relative block displacement in crustal fault zones, transform faults, zones of the lithospheric plate collision and subduction and irregularity of the Earth's rotation (Bykov, 2005). These waves in the shape of kinks or solitons moving at velocities a great number of orders less than those of the ordinary seismic waves provide the possibility to explain slow stress redistribution in the crust. During a recent decade the sine

  14. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  15. Shoaling internal solitary waves

    NASA Astrophysics Data System (ADS)

    Sutherland, B. R.; Barrett, K. J.; Ivey, G. N.

    2013-09-01

    The evolution and breaking of internal solitary waves in a shallow upper layer as they approach a constant bottom slope is examined through laboratory experiments. The waves are launched in a two-layer fluid through the standard lock-release method. In most experiments, the wave amplitude is significantly larger than the depth of the shallow upper layer so that they are not well described by Korteweg-de Vries theory. The dynamics of the shoaling waves are characterized by the Iribarren number, Ir, which measures the ratio of the topographic slope to the square root of the characteristic wave slope. This is used to classify breaking regimes as collapsing, plunging, surging, and nonbreaking for increasing values of Ir. For breaking waves, the maximum interface descent, Hi⋆, is predicted to depend upon the topographic slope, s, and the incident wave's amplitude and width, Asw and Lsw, respectively, as Hi⋆≃4sAswLsw. This prediction is corroborated by our experiments. Likewise, we apply simple heuristics to estimate the speed of interface descent, and we characterize the speed and range of the consequent upslope flow of the lower layer after breaking has occurred.

  16. Undamped electrostatic plasma waves

    SciTech Connect

    Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.

    2012-09-15

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.

  17. Global Coronal Waves

    NASA Astrophysics Data System (ADS)

    Chen, P. F.

    2016-02-01

    After the Solar and Heliospheric Observatory (SOHO) was launched in 1996, the aboard Extreme Ultraviolet Imaging Telescope (EIT) observed a global coronal wave phenomenon, which was initially named ``EIT wave" after the telescope. The bright fronts are immediately followed by expanding dimmings. It has been shown that the brightenings and dimmings are mainly due to plasma density increase and depletion, respectively. Such a spectacular phenomenon sparked long-lasting interest and debates. The debates were concentrated on two topics, one is about the driving source, and the other is about the nature of this wavelike phenomenon. The controversies are most probably because there may exist two types of large-scale coronal waves that were not well resolved before the Solar Dynamics Observatory (SDO) was launched: one is a piston-driven shock wave straddling over the erupting coronal mass ejection (CME), and the other is an apparently propagating front, which may correspond to the CME frontal loop. Such a two-wave paradigm was proposed more than 13 years ago, and now is being recognized by more and more colleagues. In this paper, we review how various controversies can be resolved in the two-wave framework and how important it is to have two different names for the two types of coronal waves.

  18. Glutamatergic Retinal Waves

    PubMed Central

    Kerschensteiner, Daniel

    2016-01-01

    Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446

  19. Wave-wave interactions in solar type III radio bursts

    SciTech Connect

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  20. Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.

    ERIC Educational Resources Information Center

    Leung, W. P.

    1980-01-01

    Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)